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Limit theorems for mixed-norm sequence spaces
with applications to volume distribution
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Abstract

Let p, q ∈ (0,∞] and `mp (`nq ) be the mixed-norm sequence space of real matrices
x = (xi,j)i≤m,j≤n endowed with the (quasi-)norm ‖x‖p,q :=

∥∥(‖(xi,j)j≤n‖q
)
i≤m

∥∥
p
. We

shall prove a Poincaré–Maxwell–Borel lemma for suitably scaled matrices chosen
uniformly at random in the `mp (`nq )-unit balls Bm,n

p,q , and obtain both central and non-
central limit theorems for their `p(`q)-norms. We use those limit theorems to study
the asymptotic volume distribution in the intersection of two mixed-norm sequence
balls. Our approach is based on a new probabilistic representation of the uniform
distribution on Bm,n

p,q .
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1 Introduction and main results

The asymptotic theory of convex bodies is intimately linked to probability theory
whose methods and ideas have been key elements in obtaining numerous deep results of
both analytic and geometric flavour. It has led to the development of a quite powerful
quantitative methodology in geometric functional analysis and allowed to form a quali-
tatively new picture of high-dimensional spaces and structures. The role of convexity
in high-dimensional spaces is similar to the role of independence in probability and
guarantees a certain regularity of the otherwise complex structure of a high-dimensional
space. One of the most classical results of stochastic-geometric and high-dimensional
flavor is probably the Poincaré–Maxwell–Borel lemma, which asserts that any fixed
number of coordinates of a vector chosen uniform at random from the boundary of the
unit Euclidean ball Bn2 is approximately Gaussian (see, e.g., [5]), and in the more modern
spirit there is the pioneering work of V. D. Milman on the concentration-of-measure
phenomenon, which has led to several major breakthroughs (see, e.g., [1, 18]). The ar-
guably most prominent example of the last two decades is Klartag’s central limit theorem
for convex bodies, showing that the marginals of a high-dimensional isotropic and log-
concave random vector are approximately Gaussian distributed [16]. Besides Klartag’s
central limit theorem for convex bodies, a number of other (weak) limit theorems have
been obtained for various geometric quantities in the last decades, demonstrating their
regularity and universality; we refer to the survey [22] for references. Several of those
results have led to a deeper understanding of the volume distribution in high-dimensional
convex bodies.

The motivation of the present paper is essentially twofold and will be elaborated upon
in view of classical and preceding works before presenting our main results.

Motivation 1: Poincaré–Maxwell–Borel type results. Having its roots in kinetic gas
theory, and going back to Maxwell and later Poincaré and Borel, it is observed that the
first k coordinates of a random point on the (n− 1) -dimensional Euclidean sphere Sn−1

2

are asymptotically independent and Gaussian as n tends to infinity; to be precise,

lim
n→∞

dTV

(
L(
√
n(Xn

i )i≤k),L((Zi)i≤k)
)

= 0,

where dTV denotes the total variation distance, (Xn
i )i≤n is sampled uniformly from Sn−1

2

and Z1, . . . , Zk are independent standard Gaussian variables, and k ∈ N is fixed. We
refer to Diaconis and Freedman [5, Section 6] for a more detailed account and give a
more detailed statement in Proposition 2.1 below. In [5], Diaconis and Freedman prove
an analogous result for the simplex and exponential distribution. Generalizations to the
`p -sphere were obtained by Mogul ′ skĭı [19], where the point was distributed according
to the normalized Hausdorff measure, and by Rachev and Rüschendorf [23] for the
cone probability measure. The latter authors exploited a probabilistic representation
relating a p -generalized Gaussian distribution to the `p -balls, allowing one to make a
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Limit theorems for mixed-norm sequence spaces

transition from a random vector with dependent coordinates to one with independent
ones. Naor and Romik [20] showed that the normalized Hausdorff measure and the cone
probability measure are asymptotically equal (their equality for p ∈ {1, 2,∞} irrespective
of dimension being long known prior), thereby unifying the previous results. A further
generalization to Orlicz balls (and even beyond) was undertaken recently by Johnston
and Prochno [9]. We stress that all results cited have been proved for the total variation
distance of probability measures. In the present article we only consider the weak
topology on probability measures (equivalently: convergence in distribution of random
variables).

Motivation 2: Schechtman–Schmuckenschläger type results. Instigated by a question
of V. D. Milman, Schechtman and Zinn [27] found an upper bound on the volume left over
from an `p -ball after cutting out a dilated `q -ball; incidentally the authors utilized the
same stochastic representation as did Rachev and Rüschendorf (see above). A few years
after, Schechtman and Schmuckenschläger [26] used that probabilistic representation in
order to investigate the limit of the volume of the cut-out portion in the very same setting
as before, revealing the following threshold behaviour: below a certain critical dilation
factor depending only on p and q the limit is zero, and above that it is one, provided the
`p -ball has unit volume. More formally, writing Dnp for the n -dimensional unit-volume `p
-ball,

lim
n→∞

vn(Dnp ∩ tDnq ) =

{
0 if tAp,q < 1,

1 if tAp,q > 1.

About a decade later, Schmuckenschläger [28, 29] determined the asymptotics at the
threshold itself and found the limit to be 1/2 by proving a central limit theorem that
revealed this behaviour. We refer to Proposition 2.2 below for the precise statement.
More recently, Kabluchko, Prochno, and Thäle [12, 14] revisited the results of Schecht-
man and Schmuckenschläger, providing a unified framework and also generalizing the
previous works in various directions, yet still treating `p -balls and using the probabilistic
representation. A further step was taken by Kabluchko and Prochno [11], studying the
intersections of Orlicz balls and observing a similar thresholding behaviour; here much
finer tools from large deviations theory and statistical mechanics where required, and it
is not even known whether the limit at the threshold itself exists. Another generalization
from `p -balls to `p -ellipsoids, i.e., axis-parallel-scaled balls (a case not covered by Orlicz
balls), was recently obtained by Juhos and Prochno in [10]; the phenomenon of the
threshold emerges again. The case of intersections of unit balls from classical random
matrix ensembles has been treated by Kabluchko, Prochno, and Thäle in [13]. Let us
point out that understanding the asymptotic volume of intersections of scaled unit balls
naturally appears, for instance, when studying the curse of dimensionality for high-
dimensional numerical integration problems [8].

Suspecting a universal behaviour among symmetric convex bodies, we tackle an-
other generalization, namely finite-dimensional sequence spaces with mixed `p -norms,
and consider the asymptotic volume of the intersection of two balls: the thresholding
behaviour is found to be valid also in this case, and for a wide range of parameters
the limit in the critical case is determined; little surprisingly, owing to the larger set of
parameters as compared to the `p -balls, this limit’s value is much more varied and the
overall analysis is considerably more delicate.

Let us point out that the study of mixed-norm spaces is a classical one in approxima-
tion theory and geometric functional analysis and we refer, for instance, to the work of
Schütt regarding the symmetric basis constant of these spaces [30], the characterization
of mixed-norm subspaces of L1 by Prochno and Schütt [21] and Schechtman [24], the
work on non-existence of greedy bases for the mixed-norm spaces by Schechtman [25]
and the study of volumetric properties of these spaces by Kempka and Vybíral [15] as
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well as the recent work of Mayer and Ullrich on the order of entropy numbers of mixed-
norm unit balls [17].

We would like to add that, naturally, it would be interesting to consider even more
general norms. The main hindrance, though, is that each of the results referenced in the
motivation above, and others more, has required tools tailored to the specific problems;
to our best knowledge there is no unified theory yet that would allow us to assess such
questions “in one fell swoop.” Current research is conducted, e.g., for Schatten norms
of not necessarily square matrices.

The mathematical setup

In order to be able to present our main results, we shall briefly introduce the most
essential setup; more details can be found in Section 2 on notation and preliminaries.

For p, q ∈ (0,∞] and m,n ∈ N define the finite-dimensional mixed-norm sequence
space `mp (`nq ) to be the space Rm×n endowed with the (m · n) -dimensional Lebesgue
measure vmn, given for any measurable A ⊂ Rm×n by

vmn(A) :=

∫
Rm×n

1A(x) dx1,1 · · · dx1,n · · · dxm,1 · · · dxm,n,

and with the quasinorm

‖x‖p,q :=
∥∥(‖(xi,j)j≤n‖q)i≤m∥∥p,

where x = (xi,j)i≤m,j≤n ∈ Rm×n, and ‖·‖p is the usual `p -norm, that is,

‖(xi)i≤n‖p :=


( n∑
i=1

|xi|p
)1/p

if p <∞,

max
i≤n
|xi| if p =∞.

In particular, we consider the unit balls

Bm,np,q :=
{
x ∈ Rm×n : ‖x‖p,q ≤ 1

}
;

the `p -unit ball and sphere in Rn are written Bnp and Sn−1
p , respectively; ωnp denotes the

volume of Bnp .

We seek to characterize Unif(Bm,np,q ), the uniform distribution on Bm,np,q . Given a
random matrix X = (Xi,j)i≤m,j≤n ∼ Unif(Bm,np,q ), define

Ri := ‖(Xi,j)j≤n‖q and Θi := (Θi,j)j≤n :=
(Xi,j

Ri

)
j≤n

for i ∈ [1,m]; (1.1)

then clearly (Ri)i≤m ∈ Bmp ∩ [0,∞)m, Θi is almost surely well-defined and Θi ∈ Sn−1
q .

The notations Ri and Θi, Θi,j are used throughout this article with the meaning given
in (1.1); note that they actually depend on the parameters p, q,m, n, but we suppress this
in our notation.

For p ∈ (0,∞] the p -generalized Gaussian distribution, or p -Gaussian distribution
for short, is defined to be the probability measure on R with Lebesgue-density

x 7→

{
1

2p1/p Γ( 1
p +1)

e−|x|
p/p if p <∞,

1
2 1[−1,1](x) if p =∞.
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1.1 Main results— a Schechtman–Zinn probabilistic representation

The first main result, which facilitates all computations and is essential to our proofs,
is a probabilistic representation of the uniform distribution on Bm,np,q , generalizing the
classical result of Schechtman and Zinn [27] and Rachev and Rüschendorf [23]. Given
the numerous applications of the classical probabilistic representation, the following
result clearly is of independent interest.

Proposition 1.1. Let p, q ∈ (0,∞] and m,n ∈ N, and let X ∼ Unif(Bm,np,q ).

(a) The distribution of (Ri)i≤m has Lebesgue-density

fR1,...,Rm(r1, . . . , rm) =
(2n)m

ωmp/n

m∏
i=1

rn−1
i · 1Bm

p ∩[0,∞)m(r1, . . . , rm).

Therefore, (Ri)i≤m can be represented as

(Ri)i≤m
d
=

{
U1/(mn)

( |ξi|1/n
(
∑m

k=1|ξk|p/n)1/p

)
i≤m if p <∞,

(|ξi|1/n)i≤m if p =∞,

where U, ξ1, . . . , ξm are independent random variables with U distributed uniformly on
[0, 1], and ξ1, . . . , ξm are p

n -Gaussian.

(b) The random vectors (Ri)i≤m,Θ1, . . . ,Θm are all independent, each Θi is dis-
tributed according to the cone measure on Sn−1

q , for i ∈ [1,m], and therefore can be
represented as

Θi
d
=
( ηi,j
‖(ηi,l)l≤n‖q

)
j≤n

,

where (ηi,j)i≤m,j≤n is an array of independent q -Gaussian random variables.

(c) The components Xi,j of X have the representation

Xi,j = RiΘi,j

d
=

U1/(mn) |ξi|1/n
(
∑m

k=1|ξk|p/n)1/p
ηi,j

‖(ηi,l)l≤n‖q if p <∞,
|ξi|1/n ηi,j

‖(ηi,l)l≤n‖q if p =∞,

(1.2)

where U, ξ1, . . . , ξm, η1,1, . . . , ηm,n are as before.

1.2 Main results— Poincaré–Maxwell–Borel principles

One type of limit theorem which we are considering is a Poincaré–Maxwell–Borel
principle, that is, a statement about the limiting distribution of the first few coordinates of
a random vector. In the following two theorems, we shall always assume (Xi,j)i≤m,j≤n ∼
Unif(Bm,np,q ).

Owing to the nature of the space `mp (`nq ), having two parameters for dimension, in
the sequel limit theorems will usually be considered for three different regimes: firstly,
letting m→∞ while keeping n fixed; secondly, vice versa, keeping m fixed while letting
n → ∞; and thirdly, letting n → ∞ while treating m as dependent on n and going to
infinity as well.

In order to keep the amount of case distinctions at a minimum, for the case of the
parameter value p =∞ we agree on these conventions:

c

p
:= 0 for any c ∈ R, p

c
:=∞ for any c ∈ (0,∞), p1/p := 1.
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For the formulation of our results we introduce the following quantities (whose super-
scripts denote indices, not powers):

Mα
p :=

pα/p

α+ 1

Γ(α+1
p + 1)

Γ( 1
p + 1)

for p ∈ (0,∞] and α ∈ (0,∞),

Mp
p := 1 for p =∞,

(1.3)

and

Cα,βp := Mα+β
p −Mα

p M
β
p , V αp := Cα,αp for p ∈ (0,∞] and α, β ∈ (0,∞),

Cp,βp := V pp := 0 for p =∞ and β ∈ (0,∞).

We can now formulate the first Poincaré–Maxwell–Borel principle for the case where
m → ∞ while n is fixed. By L(X) we denote the distribution, or law, of a random
variable X.

Theorem A (m→∞, n constant). Let p, q ∈ (0,∞], let k, n ∈ N be fixed, and let ξ1, . . . , ξk
be independent p

n -Gaussian random variables.
(a) The following weak convergence holds true,

(m1/pXi,j)i≤k,j≤n
d−−−−→

m→∞
(|ξi|1/n Θi)i≤k.

(b) The empirical measures satisfy

1

m

m∑
i=1

δm1/p Ri

P−−−−→
m→∞

L
(
|ξ1|1/n

)
,

and

1

m

m∑
i=1

δm1/p (Xi,j)j≤n

P−−−−→
m→∞

L
(
|ξ1|1/n Θ1

)
.

The convergence is to be understood as convergence in probability in the space of
probability measures on R and Rn, respectively, endowed with the Lévy–Prokhorov
metric; cf. Lemma 3.3.

We now formulate the second Poincaré–Maxwell–Borel principle for n→∞ while m
is either fixed or tends to infinity with n.

Theorem B (n → ∞). Let p, q ∈ (0,∞], let m ∈ N be fixed or let m = m(n) → ∞ as
n→∞, let k, l ∈ N (k ≤ m if necessary), and let (ηi,j)i≤k,j≤l be an array of independent
q -Gaussian random variables.

(a) The following weak convergence holds true,

(m1/p n1/qXi,j)i≤k,j≤l
d−−−−→

n→∞
(ηi,j)i≤k,j≤l.

(b) The empirical measure satisfies

1

mn

m∑
i=1

n∑
j=1

δm1/p n1/q Xi,j

P−−−−→
n→∞

L(η1,1).

The convergence is to be understood as convergence in probability in the space of
probability measures on R endowed with the Lévy–Prokhorov metric; cf. Lemma 3.3.
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1.3 Main results— weak limit theorems

Here we present three weak limit theorems for ‖X‖p2,q2 , where X ∼ Unif(Bm,np1,q1) and
(p1, q1) 6= (p2, q2) in general (for (p1, q1) = (p2, q2) see Remark 1.3 below). We start with
the case m→∞ while n is fixed.

Theorem C (m → ∞, n fixed). Let p1, q1, q2 ∈ (0,∞] and p2 ∈ (0,∞) with (p1, q1) 6=
(p2, q2), let n ∈ N, and for each m ∈ N let Xm ∼ Unif(Bm,np1,q1). Then(

√
m

(
m1/p1−1/p2

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2
‖Xm‖p2,q2 − 1

))
m≥1

d−→ σN,

where N is a standard Gaussian random variable, and

σ2 :=
1

np1
− 1

p2
2

−
2C

p1/n,p2/n
p1/n

p1p2M
p2/n
p1/n

+
M

2p2/n
p1/n

E[‖Θ1‖2p2q2 ]

(p2M
p2/n
p1/n

E[‖Θ1‖p2q2 ])2
.

Remark 1.2. It can be shown that σ2 = 0 iff (p1, q1) = (p2, q2).

The following weak limit theorem covers the case where n→∞ while m is fixed. We
obtain both central and non-central limit behaviour, depending on the relation/values of
the parameters p1, q1, and q2.

Theorem D (m fixed, n → ∞). Let p1, q1 ∈ (0,∞] and p2, q2 ∈ (0,∞) with (p1, q1) 6=
(p2, q2), let m ∈ N be fixed, and for each n ∈ N let Xn ∼ Unif(Bm,np1,q1).
(a) If q1 6= q2, then(

√
n

(
m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

‖Xn‖p2,q2 − 1

))
n≥1

d−→ σN,

where N is a standard Gaussian random variable, and

σ2 :=
1

m

(
V q1q1
q2
1

−
2Cq1,q2q1

q1q2M
q2
q1

+
V q2q1

(q2M
q2
q1 )2

)
.

(b) If q1 = q2 and p1 <∞, then

(
mn(1−m1/p1−1/p2‖Xn‖p2,q1)

)
n≥1

d−→ E +
p1 − p2

2p1

m−1∑
i=1

N2
i ,

where E is an exponentially distributed random variable with mean 1, N1, . . . , Nm−1

are standard Gaussian random variables, and E,N1, . . . , Nm−1 are independent.
(c) If q1 = q2 and p1 =∞, then

(
mn(1−m−1/p2‖Xn‖p2,q1)

)
n≥1

d−→
m∑
i=1

Ei,

where E1, . . . , Em are independent, exponentially distributed random variables with
mean 1.

Remark 1.3. Statement (b) above remains true even if p1 = p2 and m = m(n)→∞; this

is because then ‖Xn‖p1,q1
d
= U1/(mn), and

(
mn(1− U1/(mn))

)
n→∞

d−→ E.

The third weak limit theorem now treats the case where both m and n tend to infinity.

Theorem E (m,n→∞). Let p1, q1 ∈ (0,∞] and p2, q2 ∈ (0,∞) with (p1, q1) 6= (p2, q2), let
m = m(n)→∞ as n→∞, let N be a standard Gaussian random variable, and for each
n ∈ N let Xn ∼ Unif(Bm,np1,q1).
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(a) If q1 6= q2, then(
√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2
‖Xn‖p2,q2 − 1

))
n≥1

d−→ σN,

where

σ2 :=
V q1q1
q2
1

−
2Cq1,q2q1

q1q2M
q2
q1

+
V q2q1

(q2M
q2
q1 )2

.

(b) If q1 = q2 and p1 <∞, then(
√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

)1/p2
‖Xn‖p2,q1 − 1

))
n≥1

d−→ |p2 − p1|√
2 p1

N.

(c) If q1 = q2 and p1 =∞, then(
√
mn

(
‖Xn‖p2,q1

m1/p2(M
p2/n
∞ )1/p2

− 1

))
n≥1

d−→ N.

1.4 Applications— asymptotic volume distribution in intersections of mixed-
norm balls

Kempka and Vybíral [15] have studied the volume of unit balls in the mixed-norm
sequence spaces. Our distributional limit theorems of Section 1.3 now allow us to obtain
Schechtman–Schmuckenschläger-type results on the distribution of volume in the mixed
norm spaces; for that we write rm,np,q := vmn(Bm,np,q )1/(mn) (notice that vmn((rm,np,q )−1 ·
Bm,np,q ) = 1), and for any p1, q1, p2, q2 ∈ (0,∞] and t ∈ (0,∞) we set

V m,n(t) := vmn
(
(rm,np1,q1)−1Bm,np1,q1 ∩ t(r

m,n
p2,q2)−1Bm,np2,q2

)
.

Clearly V m,n(t) also depends on p1, q1, p2, q2, but since those parameters are fixed, and
since we wish to keep the notation simple, we will suppress them.

Corollary 1.4 (m → ∞, n fixed). Let p1, q1, q2 ∈ (0,∞] and p2 ∈ (0,∞) with (p1, q1) 6=
(p2, q2), let n ∈ N be fixed, and let t ∈ (0,∞). Define

Ap1,q1;p2,q2;n :=

(
ωnq1 Γ( np1 + 1)

ωnq2 Γ( np2 + 1)

)1/n( e
n

)1/p1−1/p2 p
1/p1
1

p
1/p2
2

1(
M

p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 .

Then

lim
m→∞

V m,n(t) =


0 if tAp1,q1;p2,q2;n < 1,
1
2 if tAp1,q1;p2,q2;n = 1,

1 if tAp1,q1;p2,q2;n > 1.

In order to formulate the next result we remind the reader of the gamma-distribution
Γ(α, β), defined for shape parameter α ∈ (0,∞) and scale parameter β ∈ (0,∞) via its
Lebesgue-density: for any measurable A ⊂ R put

Γ(α, β)(A) :=

∫
A

xα−1 e−x/β

βα Γ(α)
1(0,∞)(x) dx.

Corollary 1.5 (m fixed, n → ∞). Let p1, q1 ∈ (0,∞] and p2, q2 ∈ (0,∞) with (p1, q1) 6=
(p2, q2), let m ∈ N be fixed, and let t ∈ (0,∞). Define

Aq1,q2 :=
Γ( 1

q1
+ 1)

Γ( 1
q2

+ 1)
e1/q1−1/q2

q
1/q1
1

q
1/q2
2

(Mq2
q1 )−1/q2 .
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Limit theorems for mixed-norm sequence spaces

Then

lim
n→∞

V m,n(t) =

{
0 if tAq1,q2 < 1,

1 if tAq1,q2 > 1.

In the case tAq1,q2 = 1, we have

lim
n→∞

V m,n(t) =


1
2 if q1 6= q2,

1 if q1 = q2, p1 <∞, and m = 1,

0 if q1 = q2 and p1 =∞,

and in the case q1 = q2, p1 <∞, and m ≥ 2 there is the more involved expression

lim
n→∞

V m,n(t) = Γ
(m− 1

2
, 2 max

{
1,
p1

p2

})((
0,
p1(m− 1) log(p1p2 )

p1 − p2

])

+ Γ
(m− 1

2
, 2 min

{
1,
p1

p2

})((p1(m− 1) log(p1p2 )

p1 − p2
,∞
))

.

Remark 1.6. 1. We stress that Aq1,q2 does not depend on any of p1, p2, m, as opposed
to Ap1,q1;p2,q2;n in Corollary 1.4. Also notice that the subcases for limn→∞ V m,n(t) at the
threshold tAq1,q2 = 1 correspond precisely to the subcases in Theorem D, which yield
different limiting distributions.

2. The point p1(m−1) log(p1/p2)
p1−p2 is the positive intersection point of the two gamma

densities involved; since the density of Γ
(
m−1

2 , 2 min{1, p1p2 }
)

takes strictly smaller values

on
(p1(m−1) log(p1/p2)

p1−p2 ,∞
)

than that of Γ
(
m−1

2 , 2 max{1, p1p2 }
)

does, it follows thatlimn→∞
V m,n(t) < 1 in the last mentioned case of Corollary 1.5.

A simple estimate also yields limp1→∞ limn→∞ V m,n(A−1
q1,q2) = 0 in the case q1 = q2,

so we have a kind of continuity here.

Corollary 1.7 (m,n → ∞). Let p1, q1 ∈ (0,∞] and p2, q2 ∈ (0,∞) with (p1, q1) 6= (p2, q2),
let m = m(n)→∞ as n→∞, and let t ∈ (0,∞); define Aq1,q2 as in Corollary 1.5. Then

lim
n→∞

V m,n(t) =

{
0 if tAq1,q2 < 1,

1 if tAq1,q2 > 1.

Concerning tAq1,q2 = 1, in the case q1 6= q2 assume

M := lim
n→∞

√
mn

(
m1/p1−1/p2(

M
p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 rm,np1,q1

rm,np2,q2

A−1
q1,q2 − 1

)

exists in [−∞,∞]; then

lim
n→∞

V m,n(A−1
q1,q2) =

{
Φ(σ−1M) if q1 6= q2,

0 if q1 = q1,

where Φ denotes the CDF of the standard normal distribution and σ is defined in
Theorem E, (a).

Remark 1.8. We leave as an open problem the formulation of simple precise conditions
under which the limit M exists; one main obstacle is determining the exact asymptotics
of E[‖Θ1‖p2q2 ].

Remark 1.9. From the definition of ‖·‖p,q it is clear that any of the conditions m = 1,
or n = 1, or p = q reproduces the usual `p -norm, and indeed it may be verified that all
results presented in this paper are consistent with the previous results pertaining to `p
-spaces stated in the introduction.
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2 Notation and preliminaries

In this section we shall introduce the notation used throughout this paper, provide
some background information on mixed-norm spaces, and present and prove several
technical results needed in the sequel.

2.1 Notation

We suppose that all random variables occurring in this paper are defined on a common
probability space (Ω,A,P). Expectations, in particular variances and covariances, are
taken with respect to P and are denoted by E[·], Var[·] and Cov[·, ·], respectively; for
a finite-dimensional random vector E indicates the expectation vector and Cov the
covariance matrix. A centred random variable has expectation zero.

Let X be an E -valued random variable, for some measurable space E, and let µ be a
measure on E. We write X ∼ µ to express that X has law, or distribution, µ (equivalently,
µ is the image measure of P under X); the law of X also is addressed as L(X). Instead

of L(X) = L(Y ) we usually write X
d
= Y .

If E is a separable metric space and X,X1, X2, . . . are E -valued random variables,
then almost sure convergence, convergence in probability, and convergence in distribu-

tion of the sequence (Xn)n∈N to X are denoted by (Xn)n∈N
a.s.−−→ X, (Xn)n∈N

P−→ X, and

(Xn)n∈N
d−→ X, resp., or equivalently Xn

a.s.−−−−→
n→∞

X, Xn
P−−−−→

n→∞
X, and Xn

d−−−−→
n→∞

X, resp.

The Euclidean space Rn is endowed with its Borel σ -algebra and the n -dimensional
Lebesgue-volume vn. For a Borel set A ⊂ Rn with vn(A) ∈ (0,∞) let Unif(A) stand
for the uniform distribution on A with respect to vn. For a vector µ ∈ Rn (zero vector
0) and a positive-semidefinite matrix Σ ∈ Rn×n (unit matrix In) let N (µ,Σ) be the n

-dimensional normal, or Gaussian, distribution with mean µ and covariance matrix Σ.
E(1) denotes the standard exponential distribution.

The (measure-theoretic) indicator function of a set A is written 1A.
For nonempty sets A ⊂ Rn and Λ ⊂ R we put ΛA := {λa : λ ∈ Λ, a ∈ A}; especially

λA := {λ}A.
For a probability measure µ and an index set I, µ⊗I :=

⊗
i∈I µ denotes its I -fold

product measure; in particular, µ⊗n :=
⊗n

i=1 µ.
Indices of vector coordinates or sequence terms are by default natural numbers

starting at 1; therefore an expression like (xi)i≤n is to be understood as (x1, x2, . . . , xn).
Likewise, interval notation is used for natural indices.

We are going to employ Landau notation in our proofs; in particular we will use O, o
and Θ. We recall their definitions:

an = O(bn) :⇐⇒ ∃M ∈ (0,∞)∃n0 ∈ N∀n ≥ n0 : |an| ≤Mbn,

an = o(bn) :⇐⇒ ∀ε ∈ (0,∞)∃n0 ∈ N∀n ≥ n0 : |an| ≤ εbn,
an = Θ(bn) :⇐⇒ ∃m,M ∈ (0,∞)∃n0 ∈ N∀n ≥ n0 : mbn ≤ |an| ≤Mbn;

where (an)n≥1 and (bn)n≥1 are real sequences, and bn ≥ 0 for all n ∈ N. Mostly we will
use O(bn) etc. as a stand-in for an in formulas.

2.2 The `p- and mixed-norm sequence spaces

`p -spaces For n ∈ N and p ∈ (0,∞] let `np denote the n -dimensional `p -space, that is,
Rn equipped with the quasinorm

‖(xi)i≤n‖p :=


( n∑
i=1

|xi|p
)1/p

for p <∞,

max
i≤n
|xi| for p =∞;
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this is a norm iff n = 1 or p ≥ 1. The unit ball and unit sphere are written Bnp and Sn−1
p ,

resp.; the former’s volume is ωnp := vn(Bnp ) = (2 Γ(1/p+1))n

Γ(n/p+1) . On the sphere we introduce

the normalized cone measure κn−1
p (A) := vn([0,1]A)

ωn
p

, for Borel sets A ⊂ Sn−1
p ; it is the

unique probability measure such that the following polar integration formula is valid
(see, e.g., [20, Prop. 1]): for any measurable map h : Rn → [0,∞],∫

Rn

h(x) dx = nωnp

∫
[0,∞)

∫
S
n−1
p

rn−1 h(rθ) dκn−1
p (θ) dr.

The uniform distribution on Bnp has a nice stochastic representation in terms of
independent random variables with known distributions, having its roots in [27] and
independently [23]. In order to formulate it, let γp denote the p -generalized Gaussian
distribution on R; recall from the introduction that it is defined via its Lebesgue density

dγp(x)

dx
:=

{
1

2p1/p Γ(1/p+1)
e−|x|

p/p if p <∞,
1
2 1[−1,1](x) if p =∞.

In particular, γ2 = N (0, 1) and γ∞ = Unif([−1, 1]). An easy calculation shows Mα
p =∫

R
|x|α dγp(x) for α ∈ (0,∞), where Mα

p has been defined in (1.3). Now let X be a
random vector in Rn and p ∈ (0,∞), then X ∼ Unif(Bnp ) iff there exist independent
random variables U ∼ Unif([0, 1]) and Y1, . . . , Yn ∼ γp such that

X
d
= U1/n (Yi)i≤n

‖(Yi)i≤n‖p
. (2.1)

Obviously
(Yi)i≤n

‖(Yi)i≤n‖p ∈ S
n−1
p , and actually its distribution is κn−1

p . Notice that Bn∞ =

[−1, 1]n and hence Unif(Bn∞) = γ⊗n∞ , therefore the coordinates of X ∼ Unif(Bn∞) already
are independent.

In order for the reader to compare the known results for `p -balls with the new ones
for `p(`q) -balls presented in Subsections 1.2–1.4 we give the precise statements here.

For the Poincaré–Maxwell–Borel principle recall the notion of total variation dis-
tance of probability measures: let (E, E) be a measurable space and let µ and ν

be probability measures on E, then their total variation distance is defined to be
dTV(µ, ν) := 2 supA∈E |µ(A) − ν(A)|; if µ and ν are absolutely continuous w.r.t. a com-
mon measure λ on E with densities f and g, resp., then dTV(µ, ν) =

∫
E
|f − g|dλ can be

shown. Convergence w.r.t. dTV of the laws of random variables implies convergence in
distribution. The following goes back to [23, Theorems 4.1, 4.5].

Proposition 2.1. Let p ∈ (0,∞], let k = k(n) = o(n), and for each n ∈ N let Xn ∼ κn−1
p ,

then

dTV

(
L
(
n1/p(Xn

i )i≤k
)
, γ⊗kp

)
≤
√

2

πe

k

n
+ o
(k
n

)
.

In particular, for k ∈ N fixed, (
n1/p(Xn

i )i≤k
)
n≥1

d−→ (ξi)i≤k,

where (ξi)i≤k ∼ γ⊗kp .

The `p -versions of the weak limit theorems and the asymptotic volume of intersections
reach back to [26, Theorem], [28, Theorem 2.1], and [29, Theorem 3.2]. The latter two
papers introduced weak limit results, the first one more covertly by using the Berry–
Esseen theorem, the second one directly. That thread was taken up in [12, Theorem 1.1]
and subsequent works.
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Proposition 2.2. Let p ∈ (0,∞] and q ∈ (0,∞) with p 6= q.
(a) Either let Xn ∼ Unif(Bnp ) for all n ∈ N, or let Xn ∼ κn−1

p for all n ∈ N, then(√
n

(
n1/p−1/q

(Mq
p )1/q

‖Xn‖q − 1

))
n≥1

d−→ σN,

where N ∼ N (0, 1) and

σ2 :=
V pp
p2
−

2Cp,qp
pqMq

p
+

V qp
q2(Mq

p )2
.

(b) Let t ∈ [0,∞) and define

Ap,q :=
Γ( 1

p + 1)

Γ( 1
q + 1)

e1/p−1/q p
1/p

q1/q
(Mq

p )−1/q.

Then

lim
n→∞

vn
(
(ωnp )−1/nBnp ∩ t(ωnq )−1/nBnq

)
=


0 if tAp,q < 1,
1
2 if tAp,q = 1,

1 if tAp,q > 1.

`p(`q) -spaces One possible generalization of `np is our object under investigation, the
mixed-norm sequence space `mp (`nq ): Let m,n ∈ N and p, q ∈ (0,∞], and endow the real
space of matrices Rm×n with the (m · n) -dimensional Lebesgue-volume, vmn, and with
the `p(`q) -quasinorm

‖(xi,j)i≤m,j≤n‖p,q :=
∥∥(‖(xi,j)j≤n‖q)i≤m∥∥p.

Pictorially speaking, for ‖·‖p,q first take the q -norm along rows, then take the p -norm of
the resulting numbers. For the sake of completeness, albeit irrelevant for the purpose of
the present paper, we remark that ‖·‖p,q is a norm iff both ‖·‖p and ‖·‖q are norms. Also
notice `1p(`

n
q ) ∼= `nq , `mp (`1q)

∼= `mp , and `mp (`np ) ∼= `mnp .
The corresponding unit ball shall be written Bm,np,q ; in particular we have Bm,n∞,q ∼=

(Bnq )m, that is, the m -fold Cartesian product. The precise volume of Bm,np,q has been
computed recently by Kempka and Vybíral [15], who have showed that

ωm,np,q := vmn(Bm,np,q ) =
ωmp/n(ωnq )m

2m
=

2mn Γ( 1
q + 1)mn Γ(np + 1)m

Γ(mnp + 1)Γ(nq + 1)m
. (2.2)

A probabilistic representation of Unif(Bm,np,q ) parallel to Equation (2.1) is precisely the
content of Proposition 1.1. Higher-order mixed norms are introduced in the Appendix.

2.3 Auxiliary tools and results

First we state two of our main devices in dealing with convergence in distribution
of random variables, presented such as fits our needs. The first is a combination of
Slutsky’s theorem proper, a consequence of [3, Theorem 3.1], and the continuous-
mapping theorem [3, Theorem 2.7]; with a slight abuse of language we will refer to the
present version as ‘Slutsky’s theroem.’

Proposition 2.3 (Slutsky’s theorem). Let E,F,G be separable metric spaces, let X,X1,

X2, . . . be E -valued random variables, let Y, Y1, Y2, . . . be F -valued random variables,

and let f : E×F → G be continuous. If (Xn)n≥1
d−→ X, and (Yn)n≥1

P−→ Y , and Y is almost

surely constant, then
(
f(Xn, Yn)

)
n≥1

d−→ f(X,Y ).
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The second allows us to handle remainder terms in Taylor expansions, hence we will
call it the ‘remainder lemma.’ In general it appears to be well-known and widely used;
nevertheless, as we cannot find a good reference, and for the convenience of the reader
we also provide a proof.

Lemma 2.4 (remainder lemma). Let d, l ∈ N, let R : Rd → R be a function for which
there exist M, δ ∈ (0,∞) such that |R(x)| ≤ M‖x‖l for all x ∈ Rd with ‖x‖ ≤ δ, where
‖·‖ is an arbitrary norm on Rd; let (αn)n≥1 and (βn)n≥1 be real sequences such that
1
αn

= O(1) and βn = O(|αn|l), and let (Zn)n≥1 be a sequence of Rd -valued random

variables such that (αnZn)n≥1
P−→ 0. Then

(
βnR(Zn)

)
n≥1

P−→ 0.

Proof. Let ε ∈ (0,∞), then for all those n ∈ N where βn 6= 0 (for all others the following
probability is zero already),

P
[
|βnR(Zn)| ≥ ε

]
= P

[
|βnR(Zn)| ≥ ε ∧ ‖Zn‖ ≤ δ

]
+ P

[
|βnR(Zn)| ≥ ε ∧ ‖Zn‖ > δ

]
≤ P

[
|βn|M ‖Zn‖l ≥ ε

]
+ P

[
‖Zn‖ ≥ δ

]
= P

[
‖αnZn‖ ≥

( |αn|l
|βn|

ε

M

)1/l
]

+ P
[
‖αnZn‖ ≥ |αn|δ

]
.

By the premises there exist n0 ∈ N and C ∈ (0,∞) such that 1
|αn| ≤ C and |βn| ≤ C|αn|l

for all n ≥ n0, and this implies

P
[
|βnR(Zn)| ≥ ε

]
≤ P

[
‖αnZn‖ ≥

( ε

CM

)1/l
]

+ P

[
‖αnZn‖ ≥

δ

C

]
.

Because of limn→∞ αnZn = 0 in probability, the claim follows.

In the remainder of this subsection we gather diverse auxiliary results together with
their proofs.

Lemma 2.5. Let p, q ∈ (0,∞] and let (ξn)n≥1 ∼ γ⊗Np . If either q <∞ or p = q =∞, then(
n−1/q‖(ξi)i≤n‖q

)
n≥1

a.s.−−→ (Mq
p )1/q.

Proof. Case q <∞: We have

n−1/q‖(ξi)i≤n‖q =

(
1

n

n∑
i=1

|ξi|q
)1/q

,

and the claim follows from the SLLN.
Case p = q = ∞: Here ‖(ξi)i≤n‖∞ = max{|ξi| : i ≤ n} =: Mn. First we show

(Mn)n≥1
d−→ 1 by establishing (P[Mn ≤ x])n≥1 → 1[1,∞)(x) for all x ∈ R, then, because

1 is constant, convergence in probability follows. Clearly Mn ∈ [0, 1], hence P[Mn ≤
x] = 1[1,∞)(x) for all x ∈ R \ [0, 1] and n ∈ N, so convergence is immediate; and for any
x ∈ [0, 1] we get

P[Mn ≤ x] = P[∀i ∈ [1, n] : |ξi| ≤ x]

=

n∏
i=1

P[|ξi| ≤ x] = P[|ξ1| ≤ x]n

= xn −−−−→
n→∞

1[1,∞)(x),

where we have used independence for the second equality and identical distribution for

the third. This proves (Mn)n≥1
d−→ 1.
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Via the Borel–Cantelli lemma it suffices to show

∞∑
n=1

P[|Mn − 1| ≥ ε] <∞

for any ε > 0 in order to strengthen convergence in probability to almost sure conver-
gence. So let ε > 0, w.l.o.g. ε < 1, then

P[|Mn − 1| ≥ ε] = P[Mn ≤ 1− ε] + P[Mn ≥ 1 + ε]

= (1− ε)n,

where recall Mn ≤ 1. But
∑∞
n=1(1− ε)n = 1−ε

ε <∞, and the proof is complete.

Lemma 2.6. Let p ∈ (0,∞], q, r ∈ (0,∞), and for each n ∈ N let ξn ∼ γp/n.
1. We have the following asymptotics, as n→∞:

(a) If p <∞,

E[|ξn|q/n] = M
q/n
p/n = 1 +

q(q − p)
2p

1

n
+
( q2

8p2
− 5q

12p
+

3

8
− p

12q

) q2

n2
+O

( 1

n3

)
and

C
q/n,r/n
p/n =

qr

p

1

n
+
(q2 + qr + r2

2p2
− q + r

p
+

1

2

) qr
n2

+O
( 1

n3

)
.

(b) If p =∞,

Mq/n
∞ =

∞∑
k=0

(−q)k

nk
= 1− q

n
+O

( 1

n2

)
and

Cq/n,r/n∞ =

∞∑
k=2

(−1)k
k−1∑
l=1

((k
l

)
− 1
)
qlrk−l

1

nk
=
qr

n2

(
1− 2(q + r)

n
+O

( 1

n2

))
,

and for any α ∈ (0,∞) we have (here E ∼ E(1))

E
[∣∣|ξn|q/n −Mq/n

∞
∣∣α] =

( q
n

)α
E[|E − 1|α](1 + o(1)).

2. We have the distributional limits:
(a) If p <∞, (√

n(|ξn|q/n − 1)
)
n≥1

d−→ q
√
p
N,

where N ∼ N (0, 1).
(b) If p =∞, (

n(1− |ξn|q/n)
)
n∈N

d−→ qE,

where E ∼ E(1).

Proof. 1. (a) Recall the formula in Equation (1.3),

M
q/n
p/n =

(
p
n

)(q/n)/(p/n)

q
n + 1

Γ
( q/n+1

p/n + 1
)

Γ
(

1
p/n + 1

) =
( p
n

)q/p Γ
(
q+n
p

)
Γ
(
n
p

) ,

and subsequently Cq/n,r/np/n = M
(q+r)/n
p/n −Mq/n

p/nM
r/n
p/n . The result now is a simple conse-

quence of Stirling’s formula, Γ(z) =
√

2π zz−1/2 e−z eR(z) for z ∈ (0,∞), where we know
R(z) = 1

12z +O( 1
z3 ).
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(b) Note that of course ∞n =∞ for all n ∈ N and thus |ξn| ∼ Unif([0, 1]), hence by direct
calculation

Mq/n
∞ =

∫ 1

0

xq/n dx =
1

1 + q
n

;

the result then follows from the geometric series. Therewith we also get

Cq/n,r/n∞ = M (q+r)/n
∞ −Mq/n

∞ Mr/n
∞ =

1

1 + q+r
n

− 1(
1 + q

n

)(
1 + r

n

) ,
and we use the geometric series again and the Cauchy product of series.

Let α ∈ (0,∞). It suffices to show supn∈NE
[∣∣n(|ξn|q/n −Mq/n

∞ )
∣∣α] < ∞; then the

convergence of moments follows together with

n(|ξn|q/n −Mq/n
∞ ) = n(1−Mq/n

∞ )− n(1− |ξn|q/n)
d−−−−→

n→∞
q − qE = q(1− E),

where we have anticipated 2.(b), whose proof is independent. We may restrict ourselves
to α ≥ 1, then |x+ y|α ≤ 2α−1(|x|α + |y|α) by Hölder’s inequality, and so

E
[∣∣n(|ξn|q/n −Mq/n

∞ )
∣∣α] ≤ 2α−1

(∣∣n(1−Mq/n
∞ )

∣∣α + E
[∣∣n(1− |ξn|q/n)

∣∣α]);
now since

∣∣n(1 −Mq/n
∞ )

∣∣α converges and hence is bounded, we must ensure supn∈N
E
[∣∣n(1 − |ξn|q/n)

∣∣α] < ∞. Exploiting Taylor expansion of the exponential function we
have

|ξn|q/n = eq log|ξn|/n = 1 +
q log|ξn|

n
+R

(q log|ξn|
n

)
,

where we know R(x) = ey

2 x
2 with some y between 0 and x, for any x ∈ R (Lagrangian

form of remainder term). In our case, since |ξn| ∼ Unif([0, 1]), we have q log|ξn|
n ≤ 0 almost

surely, thus we can estimate ∣∣∣R(q log|ξn|
n

)∣∣∣ ≤ q2 log|ξn|2

2n2
.

In particular we can write E := − log|ξn| ∼ E(1), then we get

E
[∣∣n(1− |ξn|q/n)

∣∣α] = E

[∣∣∣∣qE − nR(−qEn )∣∣∣∣α]
≤ 2α−1

(
qαE[Eα] + nαE

[∣∣∣∣R(−qEn )∣∣∣∣α])
≤ 2α−1

(
qαE[Eα] +

q2αE[E2α]

2α nα

)
,

and clearly this last expression remains bounded in n ∈ N.
2. (a) We show the result for q = p first. Let n ∈ N and h : R → R measurable and

nonnegative, then

E[h(|ξn|p/n)] =
1

2
(
p
n

)n/p
Γ
(
n
p + 1

) ∫ ∞
0

h(|x|p/n)e−|x|
p/n/(p/n) dx

=
1(

p
n

)n/p
Γ
(
n
p + 1

) ∫ ∞
0

h(x)e−x/(p/n) n

p
xn/p−1 dx

=
1(

p
n

)n/p
Γ
(
n
p

) ∫ ∞
0

h(x)xn/p−1 e−x/(p/n) dx;
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Limit theorems for mixed-norm sequence spaces

this shows that |ξn|p/n follows a gamma distribution with shape parameter n
p and scale

parameter p
n . Then because of the semigroup and scaling properties of the gamma

distribution, there exists a sequence (gj)j≥1 of independent random variables, each
having a gamma distribution with shape 1

p and scale p, such that

|ξn|p/n
d
=

1

n

n∑
j=1

gj .

The classical CLT yields
1√
n

n∑
j=1

(gj − 1)
d−−−−→

n→∞

√
pN

with N ∼ N (0, 1), where we have used E[g1] = 1 and Var[g1] = p. Since

1√
n

n∑
j=1

(gj − 1)
d
=
√
n(|ξn|p/n − 1),

this concludes the case q = p.
For general q call Ξn :=

√
n(|ξn|p/n − 1), then we have

√
n(|ξn|q/n − 1) =

√
n
((

1 +
Ξn√
n

)q/p
− 1
)
.

Taylor expansion gives

√
n(|ξn|q/n − 1) =

√
n
(

1 +
q

p

Ξn√
n

+R
( Ξn√

n

)
− 1
)

=
q

p
Ξn +

√
nR
( Ξn√

n

)
,

where the remainder satisfies |R(x)| ≤ Mx2 with some M > 0 for all x ∈ R suffi-

ciently small. From the case q = p we know (Ξn)n≥1
d−→ √pN , so by Slutsky’s theorem

n1/4 Ξn√
n

= n−1/4 Ξn
P−−−−→

n→∞
0; thus by the remainder lemma

√
nR
(

Ξn√
n

) P−−−−→
n→∞

0, and

another application of Slutsky’s theorem leads to the desired statement.
(b) Using Taylor expansion of the exponential function as in the proof of 1.(b),

|ξn|q/n = eq log|ξn|/n = 1 +
q log|ξn|

n
+R

(q log|ξn|
n

)
,

where the remainder satisfies |R(x)| ≤Mx2 with some M > 0 for all x ∈ R sufficiently
small. Rearrange,

n(1− |ξn|q/n) = −q log|ξn| − nR
(q log|ξn|

n

)
.

As before we know |ξn| ∼ Unif([0, 1]) for all n ∈ N; this implies − log|ξn| ∼ E(1). Also
√
n q log|ξn|

n = qn−1/2 log|ξn|
a.s.−−−−→
n→∞

0, so the remainder lemma yields nR
( q log|ξn|

n

) P−−−−→
n→∞

0.

Thus follows the claim.

Lemma 2.7. Let p, q ∈ (0,∞) with p 6= q, and for each n ∈ N let ξn ∼ γp/n; define

Zn := n

( |ξn|q/n −Mq/n
p/n

qM
q/n
p/n

− |ξn|
p/n − 1

p

)
.

Then

(Zn)n≥1
d−→ q − p

2p
(N2 − 1),
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Limit theorems for mixed-norm sequence spaces

where N ∼ N (0, 1); and for any α ∈ (0,∞) we have

sup
{
E[|Zn|α] : n ∈ N

}
<∞,

in particular convergence of moments holds true, i.e., (E[|Zn|α])n≥1 →
∣∣ q−p

2p

∣∣αE[|N2 −
1|α].

Proof. First we prove the claimed weak convergence. From the proof of Lemma 2.6,
2.(a), we know

|ξn|p/n
d
=

1

n

n∑
i=1

gi

with (gn)n≥1 ∼ Γ( 1
p , p)

⊗N; we also know

Ξn :=
√
n
(
|ξn|p/n − 1

) d
=

1√
n

n∑
i=1

(gi − 1)
d−−−−→

n→∞

√
pN

with N ∼ N (0, 1). Then we have |ξn|p/n = 1 + Ξn√
n

, and via Taylor expansion of x 7→
(1 + x)q/p we get

Zn = n

(
1

qM
q/n
p/n

(
1 +

q

p

Ξn√
n

+
q(q − p)

2p2

Ξ2
n

n
+R

( Ξn√
n

)
−Mq/n

p/n

)
− Ξn
p
√
n

)

=
n(1−Mq/n

p/n )

qM
q/n
p/n

+

√
n(1−Mq/n

p/n )

pM
q/n
p/n

Ξn +
q − p

2p2M
q/n
p/n

Ξ2
n +

n

qM
q/n
p/n

R
( Ξn√

n

)
,

where the remainder term satsifies |R(x)| ≤M |x|3 for all |x| ≤ 1
2 with some M > 0. From

Lemma 2.6, 1.(a), we know M
q/n
p/n = 1 + q(q−p)

2pn +O( 1
n2 ); this means both

n(1−Mq/n
p/n )

qM
q/n
p/n

−−−−→
n→∞

−q − p
2p

and √
n(1−Mq/n

p/n )

qM
q/n
p/n

−−−−→
n→∞

0,

the latter also implies via Slutsky’s theorem

√
n(1−Mq/n

p/n )

qM
q/n
p/n

Ξn
P−−−−→

n→∞
0.

Equally by Slutsky’s theorem we get

n1/3 Ξn√
n

= n−1/6 Ξn
P−−−−→

n→∞
0,

thence with the remainder lemma,

n

qM
q/n
p/n

R
( Ξn√

n

)
P−−−−→

n→∞
0,

and another application of Slutsky’s theorem leads to

(Zn)n≥1
d−→ −q − p

2p
+
q − p
2p2

(
√
pN)2 =

q − p
2p

(N2 − 1).
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Limit theorems for mixed-norm sequence spaces

Now we prove the boundedness of moments. Let α > 0, w.l.o.g. such that α ≥ 1 and
2αq
p ≥ 1. Let n ∈ N, then

E
[
|Zn|α

]
= E

[
|Zn|α 1[|Ξn|<n1/4]

]
+ E

[
|Zn|α 1[|Ξn|≥n1/4]

]
, (2.3)

and we are going to show that either term on the right-hand side remains bounded as
n→∞. For the first expectation on the right-hand side of (2.3) we use the same Taylor
expansion as before and additionally apply the inequality

∣∣∑k
i=1 ai

∣∣α ≤ kα−1
∑k
i=1|ai|α

(which is a direct consequence of Hölder’s inequality), that is,

E
[
|Zn|α 1[|Ξn|<n1/4]

]
≤ 4α−1E

[(∣∣∣∣n(1−Mq/n
p/n )

qM
q/n
p/n

∣∣∣∣α +

∣∣∣∣
√
n(1−Mq/n

p/n )

pM
q/n
p/n

∣∣∣∣α|Ξn|α
+

∣∣∣∣ q − p
2p2M

q/n
p/n

∣∣∣∣α|Ξn|2α +

(
n

qM
q/n
p/n

)α∣∣∣R( Ξn√
n

)∣∣∣α)1[|Ξn|<n1/4]

]

≤ 4α−1

(∣∣∣∣n(1−Mq/n
p/n )

qM
q/n
p/n

∣∣∣∣α +

∣∣∣∣
√
n(1−Mq/n

p/n )

pM
q/n
p/n

∣∣∣∣αE[|Ξn|α]

+

∣∣∣∣ q − p
2p2M

q/n
p/n

∣∣∣∣αE[|Ξn|2α] +

(
n

qM
q/n
p/n

)α
E

[∣∣∣R( Ξn√
n

)∣∣∣α 1[|Ξn|<n1/4]

])
.

We already know that the first three deterministic coefficients converge in R; because of
E[|g1|β ] <∞ for all β ∈ R≥0 and of [2, Theorem 2] also E[|Ξn|α] and E[|Ξn|2α] converge
as n→∞. Finally if |Ξn| < n1/4, then

∣∣ Ξn√
n

∣∣ < n−1/4 −−−−→
n→∞

0; hence eventually for all n,

on the event [|Ξn| < n1/4] we have
∣∣ Ξn√

n

∣∣ ≤ 1
2 , and then

nαE

[∣∣∣R( Ξn√
n

)∣∣∣α 1[|Ξn|<n1/4]

]
≤ nαE

[
Mα

∣∣∣∣ Ξn√
n

∣∣∣∣3α] = n−α/2MαE[|Ξn|3α] −−−−→
n→∞

0,

because also E[|Ξn|3α] converges as n→∞.
Now we attend to the second expectation on the right-hand side of (2.3). First we

apply Hölder’s inequality,

E
[
|Zn|α 1[|Ξn|≥n1/4]

]
≤ E[|Zn|2α]1/2P[|Ξn| ≥ n1/4]1/2. (2.4)

The first factor on the right-hand side of (2.4) is dealt with rather crudely, we simply
estimate

E[|Zn|2α] = n2αE

[∣∣∣∣ |ξn|q/n −Mq/n
p/n

qM
q/n
p/n

− |ξn|
p/n − 1

p

∣∣∣∣2α]

≤ n2α 32α−1

(
E[|ξn|2αq/n] + (M

q/n
p/n )2α

(qM
q/n
p/n )2α

+
E[||ξn|p/n − 1|2α]

p2α

)
;

for the individual summands we see

E[|ξn|2αq/n] = E

[∣∣∣∣ 1n
n∑
i=1

gi

∣∣∣∣2αq/p] ≤ n2αq/p−1

n2αq/p

n∑
i=1

E[|gi|2αq/p] = E[|g1|2αq/p],

and

E[||ξn|p/n − 1|2α] = E

[∣∣∣∣ 1n
n∑
i=1

(gi − 1)

∣∣∣∣2α] ≤ n2α−1

n2α

n∑
i=1

E[|gi − 1|2α] = E[|g1 − 1|2α],
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Limit theorems for mixed-norm sequence spaces

so we have

E[|Zn|2α]1/2 = O(nα).

The second factor on the right-hand side of (2.4) equals P
[∣∣n−3/4

∑n
i=1(gi − 1)

∣∣ ≥ 1
]1/2

;
because the moment generating function of g1 is finite in a neighbourhood of 0, the series∑
n≥1(gn − 1) satisfies a moderate deviations principle, hence by [4, Theorem 3.7.1],

lim
n→∞

1√
n

logP

[∣∣∣∣ 1

n3/4

n∑
i=1

(gi − 1)

∣∣∣∣ ≥ 1

]
= −1

2

12

Var[g1 − 1]
= − 1

2p
.

This implies that eventually,

P

[∣∣∣∣ 1

n3/4

n∑
i=1

(gi − 1)

∣∣∣∣ ≥ 1

]
≤ e−

√
n/(4p),

and in total we obtain

E
[
|Zn|α 1[|Ξn|≥n1/4]

]
≤ Cnα e−

√
n/(8p) −−−−→

n→∞
0.

Lemma 2.8. Let p ∈ (0,∞], q ∈ (0,∞), either let m ∈ N be fixed or let m = m(n)→∞
as n→∞, and for each n ∈ N let (ξn,i)i≤m ∼ γ⊗mp/n. Then

(
1

m

m∑
i=1

|ξn,i|q/n
)
n≥1

P−→ 1.

Proof. Actually we are going to show that convergence is in L2, that is,

E

[(
1

m

m∑
i=1

|ξn,i|q/n − 1

)2]
−−−−→
n→∞

0.

First note
1

m

m∑
i=1

|ξn,i|q/n − 1 =
1

m

m∑
i=1

(
|ξn,i|q/n −Mq/n

p/n

)
+
(
M

q/n
p/n − 1

)
,

and from Lemma 2.6 we know (M
q/n
p/n )n≥1 → 1, hence it suffices to prove

E

[(
1

m

m∑
i=1

(
|ξn,i|q/n −Mq/n

p/n

))2]
−−−−→
n→∞

0.

So let n ∈ N, then the random variables |ξn,i|q/n −Mq/n
p/n , i ∈ [1,m], are i.i.d. and centred,

hence

E

[(
1

m

m∑
i=1

(
|ξn,i|q/n −Mq/n

p/n

))2]
= Var

[
1

m

m∑
i=1

(
|ξn,i|q/n −Mq/n

p/n

)]
=

1

m
Var
[
|ξn,1|q/n −Mq/n

p/n

]
.

In any case we have 1
m ≤ 1 and from Lemma 2.6 again we get

Var
[
|ξn,1|q/n −Mq/n

p/n

]
= Var

[
|ξn,1|q/n

]
−−−−→
n→∞

0,

and this finishes the proof.
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The next lemma states a moderate deviations result for p -Gaussian variables. Note
that the case p ≥ q treated below actually is covered by the standard theory, because
then the moment generating function is finite in a neighbourhood of zero.

Lemma 2.9. Let p ∈ (0,∞] and q ∈ (0,∞), and let (ξn)n≥1 ∼ γ⊗Np . If p < q, then let
β ∈

(
1
2 ,

1
2−p/q

)
; else if p ≥ q, then let β ∈ ( 1

2 , 1). Then the moderate deviations of(∑n
i=1(|ξi|q −Mq

p )
)
n≥1

are determined by the following, where t ∈ (0,∞),

lim
n→∞

n1−2β logP

[
1

nβ

∣∣∣∣ n∑
i=1

(
|ξi|q −Mq

p

)∣∣∣∣ ≥ t] = − t2

2V qp
.

Proof. This follows easily from [6, Theorem 2.2] by plugging in bn = nβ and using the
tail-estimate for γp, to wit, if p <∞, then

P[|ξ1| ≥ x] =
x1−p e−x

p/p

p1/p Γ( 1
p + 1)

(1 + o(1)) as x→∞,

and if p = ∞, then |ξ1| ≤ 1 a.s. and hence P[|ξ1| ≥ x] = 0 for any x > 1. Then
condition (2.3) in [6] is equivalent to

β
(p
q
− 2
)

+ 1 > 0,

and our indicated values for β satisfy that. The rate function is stated explicitly in (2.7)
of [6].

The following lemma slightly extends the results [12, Theorem 1.1] and [14, Theo-
rem A]. The case of Xn ∼ κn−1

∞ and q <∞ actually is addressed in [22, Theorem 4.4, 1.]
and its subsequent remark; but the proof merely glosses over said case, in particular it
is not mentioned how to handle ‖(ξi)i≤n‖∞. For the sake of completeness, we provide a
proof here.

Lemma 2.10. Let q1 ∈ (0,∞] and p, q2 ∈ (0,∞) with q1 6= q2, and either let Xn ∼
Unif(Bnq1) for any n ∈ N, or Xn ∼ κn−1

q1 for any n ∈ N. Define (Yn)n≥1 by

Yn :=
√
n

(
np(1/q1−1/q2)

(Mq2
q1 )p/q2

‖Xn‖pq2 − 1

)
.

Then
(Yn)n≥1

d−→ pσN,

where N ∼ N (0, 1) and

σ2 :=
V q1q1
q2
1

−
2Cq1,q2q1

q1q2M
q2
q1

+
V q2q1

q2
2(Mq2

q1 )2
.

Moreover, for any α ∈ [1,∞),
sup
n∈N

E[|Yn|α] <∞. (2.5)

Therefore
(
E[|Yn|α]

)
n≥1
→ pασαE[|N |α], and if α is integer, (E[Y αn ])n≥1 → pασαE[Nα],

and in particular (
E
[
np(1/q1−1/q2)‖Xn‖pq2

])
n≥1
→ (Mq2

q1 )p/q2 . (2.6)

Proof. Concerning convergence of (Yn)n≥1 for p = 1, the only case still open isXn ∼ κn−1
∞

and q2 <∞. Let (ξi)i≥1 ∼ γ⊗N∞ , then

‖Xn‖q2
d
=
‖(ξi)i≤n‖q2
‖(ξi)i≤n‖∞

=

(∑n
i=1|ξi|q2

)1/q2
‖(ξi)i≤n‖∞

.
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Define

Ξn :=
1√
n

n∑
i=1

(
|ξi|q2 −Mq2

∞
)

and Hn :=
√
n(1− ‖(ξi)i≤n‖∞),

then by the CLT (Ξn)n≥1
d−→ σN with N ∼ N (0, 1) and σ2 := V q2∞ . Furthermore, as has

already been glimpsed in the proof of Lemma 2.5, Un := ‖(ξi)i≤n‖n∞ ∼ Unif([0, 1]), hence
(Un)n≥1 converges in distribution. Via the exponential series we have

Hn =
√
n(1− U1/n

n ) = −
√
nR1

( log(Un)

n

)
,

where R1 : R → R satisfies |R1(x)| ≤ M1|x| for all x ∈ R s.t. |x| ≤ δ, with suitable
δ,M1 ∈ (0,∞). Now Slutsky’s theorem implies n1/2 log(Un)

n = n−1/2 log(Un) −−−−→
n→∞

0 in

distribution and hence in probability; from the latter and the remainder lemma (with

l = 1) there follows (Hn)n≥1
P−→ 0. Now we may write

‖Xn‖q2
d
=

(
nMq2
∞ +

√
nΞn

)1/q2
1− Hn√

n

= n1/q2(Mq2
∞ )1/q2

(
1 + 1

M
q2
∞

Ξn√
n

)1/q2
1− Hn√

n

= n1/q2(Mq2
∞ )1/q2

(
1 +

1

q2M
q2
∞

Ξn√
n

+
Hn√
n

+R2

( Ξn√
n
,

Hn√
n

))
and rearranging terms gives

√
n

(
n−1/q2

(Mq2
∞ )1/q2

‖Xn‖q2 − 1

)
d
=

Ξn
q2M

q2
∞

+ Hn +
√
nR2

( Ξn√
n
,

Hn√
n

)
,

where we have employed the Taylor expansion(
1 + x

M
q2
∞

)1/q2
1− y

= 1 +
x

q2M
q2
∞

+ y +R2(x, y),

with the remainder term satisfying |R2(x, y)| ≤M2‖(x, y)‖22 in a suitable neighbourhood of
(0, 0). Notice n1/4

(
Ξn√
n
, Hn√

n

)
= (n−1/4Ξn, n

−1/4Hn) for any n ∈ N; since (Ξn)n≥1 converges

in distribution, Slutsky’s theorem implies
(
n1/4

(
Ξn√
n
, Hn√

n

))
n≥1

P−→ (0, 0), and with the

remainder lemma we infer
(√
nR2

(
Ξn√
n
, Hn√

n

))
n≥1

P−→ 0. Another application of Slutsky’s
theorem finally yields the desired convergence

√
n

(
n−1/q2

(Mq2
∞ )1/q2

‖Xn‖q2 − 1

)
d−−−−→

n→∞

σN

q2M
q2
∞
.

For p 6= 1 notice

Yn =
√
n

((
1 +

Zn√
n

)p
− 1

)
, where Zn :=

√
n

(
n1/q1−1/q2

(Mq2
q1 )1/q2

‖Xn‖q2 − 1

)
.

Now by what we already have proved, (Zn)n≥1
d−→ σN , and again via Slutsky this implies(

n1/4 Zn√
n

)
n≥1

= (n−1/4Zn)n≥1
P−→ 0. But then Taylor expansion yields

Yn =
√
n

(
1 + p

Zn√
n

+R3

( Zn√
n

)
− 1

)
= pZn +

√
nR3

( Zn√
n

)
;
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again the remainder term satisfies |R3(x)| ≤ Mx2, and the remainder lemma and
Slutsky’s theorem lead to the desired conclusion.

The boundedness of moments in (2.5) is subtler to prove. Let α ≥ 1, and choose β
as in Lemma 2.9, but with β ≤ 3

4 . We treat the case Xn ∼ Unif(Bnq1) only; the result for
κn−1
q1 follows by replacing U with 1 in what follows.

Case q1 <∞: Take (ξi)i≥1 ∼ γ⊗Nq1 and U ∼ Unif([0, 1]) independent, and define

xn :=
1

Mq2
q1

√
n

n∑
i=1

(
|ξi|q2 −Mq2

q1

)
and yn :=

1√
n

n∑
i=1

(|ξi|q1 − 1);

then

|Yn|α
d
= nα/2

∣∣∣∣np(1/q1−1/q2)

(Mq2
q1 )p/q2

Up/n
‖(ξi)i≤n‖pq2
‖(ξi)i≤n‖pq1

− 1

∣∣∣∣α
= nα/2

∣∣∣∣Up/n
(
1 + xn√

n

)p/q2(
1 + yn√

n

)p/q1 − 1

∣∣∣∣α.
Define the event An := [|xn| ≤ nβ−1/2 ∧ |yn| ≤ nβ−1/2], then

E[|Yn|α] = E[|Yn|α 1An
] + E[|Yn|α 1Ac

n
], (2.7)

and we are going to show that either expectation on the right-hand side of (2.7) is
bounded for n ∈ N. For the first one, write

(1 + x)p/q2

(1 + y)p/q2
= 1 +R4(x, y),

i.e., R4 is the zeroth remainder term of Taylor’s expansion, which may be bounded as
follows,

|R4(x, y)| ≤ c1(|x|+ |y|) for |x|, |y| ≤ 1
2 ,

where c1 ∈ (0,∞). Making use of |x + y|α ≤ c2(|x|α + |y|α) (to be precise, c2 =

max{1, 2α−1}), we get

E[|Yn|α 1An ] = nα/2E

[∣∣∣∣Up/n(1 +R4

( xn√
n
,
yn√
n

))
− 1

∣∣∣∣α 1An

]
≤ c2nα/2

(
E[(1− Up/n)α] + E[Upα/n]E

[∣∣∣R4

( xn√
n
,
yn√
n

)∣∣∣α 1An

])
≤ c2nα/2

(
Γ(α+ 1)Γ(np + 1)

Γ(α+ n
p + 1)

+ cα1 c2E

[
|xn|α

nα/2
+
|yn|α

nα/2

])
, (2.8)

where we have used independence of U and {xn, yn}, and on An the estimates n−1/2|xn|,
n−1/2|yn| ≤ nβ−1 hold true, therefore eventually they are smaller than 1

2 since β < 1.
Now it is well known that

lim
x→∞

Γ(x+ y)

xy Γ(x)
= 1 (2.9)

for any fixed y > 0, so the first term within the parentheses in (2.8) behaves like n−α.
For the second term notice that (xn)n≥1 and (yn)n≥1 satisfy the central limit theorem,
and E

[∣∣|ξ1|qj −Mqj
q1

∣∣α] <∞ for j ∈ {1, 2}, hence by [2, Theorem 2] E[|xn|α] and E[|yn|α]

converge to the corresponding (finite!) moments of the respective normal distributions.
This concludes lim supn→∞E[|Yn|α 1An

] <∞.
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In order to tackle the second summand in (2.7), first apply Hölder’s inequality to get

E[|Yn|α 1Ac
n
] ≤ nα/2E[1Ac

n
]1/3E

[(
1 +

yn√
n

)−3pα/q1
]1/3

· E
[∣∣∣Up/n(1 +

xn√
n

)p/q2
−
(

1 +
yn√
n

)p/q1 ∣∣∣3α]1/3

.

(2.10)

With the union bound the first expectation on the right-hand side of (2.10) is further
estimated E[1Ac

n
] ≤ P[|xn| ≥ nβ−1/2] + P[|yn| ≥ nβ−1/2]. Writing out we have

P[|xn| ≥ nβ−1/2] = P

[
1

nβ

∣∣∣∣ n∑
i=1

(
|ξi|q2 −Mq2

q1

)∣∣∣∣ ≥Mq2
q1

]

= exp
(
−n2β−1

(Mq2
q1 )2

2V q2q1

(
1 + o(1)

))
,

where the asymptotics are argued by Lemma 2.9; an analogous result is obtained for yn,
hence limn→∞ nα/2E[1Ac

n
]1/3 = 0.

The second expectation in (2.10) can be computed explicitly, because 1 + yn√
n

=
1
n

∑n
i=1|ξi|q1 , and the latter follows a certain gamma-distribution, which yields

E

[(
1 +

yn√
n

)−3pα/q1
]

=
( n
q1

)3pα/q1 Γ(n−3pα
q1

)

Γ( nq1 )
,

and that converges to 1 as n → ∞ by (2.9). Finally the third expectation in (2.10) is
bounded from above, up to a constant factor depending only on α, by

E[U3pα/n]E

[(
1 +

xn√
n

)3pα/q2
]

+ E

[(
1 +

yn√
n

)3pα/q1
]
.

The yn -term we have dealt with before (just replace −α by α), and E[U3pα/n] ≤ 1.
Similarly to yn we have 1 + xn√

n
= 1

nM
q2
q1

∑n
i=1|ξi|q2 , whose law is not known explicitly

though; nevertheless all moments of |ξ1|q2 are finite, and (1 + xn√
n

)n≥1 → 1 almost surely
by the SLLN, and by [7, Theorem 10.2] convergence is valid also in the Lp -sense, which
in its turn implies

lim
n→∞

E

[(
1 +

xn√
n

)3pα/q2
]

= 13pα/q2 = 1.

Taken together this amounts to lim supn→∞E[|Yn|α 1Ac
n
] = 0 and thus, returning

to (2.7),lim supn→∞E[|Yn|α] <∞.
Case q1 = ∞: We are not going to spell out the details here, since the line of

reasoning is analogous to the first case. Take U and (ξn)n≥1 and define xn as before, but
set yn := Hn as in the proof of the CLT for ‖Xn‖q2 given above, so the representation
reads

|Yn|α
d
= nα/2

∣∣∣∣Up/n
(
1 + xn√

n

)p/q2(
1− yn√

n

)p − 1

∣∣∣∣α.
The remainder of this case’s proof is conducted with the obvious adaptations; in particular

notice yn
d
=
√
n(1− U1/n) which may be used to calculate moments and P[|yn| ≥ nβ−1/2].

Lastly, the convergence of (E[|Yn|α])n≥1 now is almost immediate, as boundedness
of {E[|Yn|α+1] : n ∈ N} implies uniform integrability of (|Yn|α)n≥1, and together with

(|Yn|α)n≥1
d−→ pασα|N |α this implies the claimed convergence; analogously for integer α

and E[Y αn ]. Statement (2.6) follows from the relation

np(1/q1−1/q2)‖Xn‖pq2 = (Mq2
q1 )p/q2

(
1 +

Yn√
n

)
and the fact (E[Yn])n≥1 → pσE[N ] = 0.
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3 Proofs of the Poincaré–Maxwell–Borel principles

In this section we present the proofs of the Poincaré–Maxwell–Borel principles, that
is, Theorem A and Theorem B. We shall start with the probabilistic representation of
Schechtman–Zinn type, which facilitates computations.

3.1 Proof of the probabilistic representation

In this subsection we present the proof of Proposition 1.1, which provides us with a
probabilistic representation of the uniform distribution on the unit balls in mixed-norm
sequence spaces.

Let h : Rm×n → [0,∞) be an arbitrary measurable function, then

E[h(X)] =
1

ωm,np,q

∫
Rm×n

h(x)1Bm,n
p,q

(x) dx,

or writing x in terms of its rows x1, . . . , xm,

E[h(X)] =
1

ωm,np,q

∫
Rn

· · ·
∫
Rn

h(x1, . . . , xm)1Bm,n
p,q

(x1, . . . , xm) dxm · · · dx1.

Introduce polar coordinates for each row separately, that is xi = riθi with ri ∈ [0,∞)

and θi ∈ Sn−1
q — notice that this corresponds to our decomposition (Xi,j)j≤n = RiΘi

introduced in (1.1)— to get

E[h(X)] =
nm(ωnq )m

ωm,np,q

∫
[0,∞)

rn−1
1

∫
S
n−1
q

· · ·
∫

[0,∞)

rn−1
m

∫
S
n−1
q

h(r1θ1, . . . , rmθm)

· 1Bm,n
p,q

(r1θ1, . . . , rmθm) dκn−1
q (θm) drm · · · dκn−1

q (θ1) dr1.

Finally use (riθi)i≤m ∈ Bm,np,q iff (ri)i≤m ∈ Bmp , plug in ωm,np,q = 2−mωmp/n(ωnq )m (see
Equation (2.2)), and gather terms to arrive at

E[h(X)] =

∫
[0,∞)m

(2n)m

ωmp/n

m∏
i=1

rn−1
i 1Bm

p
(r1, . . . , rm)

·
∫

(Sn−1
q )m

h(r1θ1, . . . , rmθm) d(κn−1
q )⊗m(θ1, . . . , θm) d(r1, . . . , rm).

Now we recognize that the last integral proves the claimed density of (Ri)i≤m, the
claimed independence and the claimed distribution of the Θi, i ∈ [1,m].

It remains to show the representation of (Ri)i≤m. To that end define (Si)i≤m :=

(Rni )i≤m, hence Ri = S
1/n
i for each i ∈ [1,m]; this yields the Jacobian n−m

∏m
i=1 s

1/n−1
i

and (Si)i≤m has density

fS1,...,Sm
(s1, . . . , sm) =

(2n)m

ωmp/n

m∏
i=1

(s
1/n
i )n−1 1Bm

p ∩[0,∞)m(s
1/n
1 , . . . , s1/n

m )n−m
m∏
i=1

s
1/n−1
i

=
2m

ωmp/n
1Bm

p/n
∩[0,∞)m(s1, . . . , sm).

Therefore (Si)i≤m ∼ Unif(Bmp/n ∩ [0,∞)m), and by Schechtman and Zinn it can be written

(Si)i≤m
d
=

{
U1/m

( |ξi|
(
∑m

k=1|ξk|p/n)n/p

)
i≤m if p <∞,

(|ξi|)i≤m if p =∞.

Transforming back to (Ri)i≤m concludes the proof.
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3.2 Proofs of the Poincaré–Maxwell–Borel principles

Lemma 3.1. Let p, q ∈ (0,∞]. Then for any fixed k, l ∈ N (k ≤ m, l ≤ n where necessary):

(a) (m1/pRi)i≤k
d−−−−→

m→∞
(|ξi|1/n)i≤k for fixed n ∈ N, where (ξi)i≤k ∼ γ⊗kp/n,

(b) (m1/pRi)i≤k
P−−−−→

n→∞
(1)i≤k for either fixed m ∈ N or m = m(n)→∞, and

(c) (n1/q Θi,j)i≤k,j≤l
d−−−−→

n→∞
(ηi,j)i≤k,j≤l, where (ηi,j)i≤k,j≤l ∼ γ⊗(k×l)

q .

Proof. (a) Case p <∞: We use Proposition 1.1, (a),

(m1/pRi)i≤k
d
=

U1/(mn)(
1
m

∑m
i=1|ξi|p/n

)1/p (|ξi|1/n)i≤k. (3.1)

By the SLLN, 1
m

∑m
i=1|ξi|p/n

a.s.−−−−→
m→∞

M
p/n
p/n = 1, hence the right-hand-side converges a.s.

to (|ξi|1/n)i≤k, and convergence in distribution follows.

Case p =∞: Obvious because of (Ri)i≤k
d
= (|ξi|1/n)i≤k.

(b) Case p <∞: By Lemma 2.8 we know both
(

1
m

∑m
i=1|ξi|p/n

)
n≥1

P−→ 1 and(|ξi|1/n)n≥1

P−→ 1 for each i ∈ [1, k] (apply the lemma with q = 1 and m = 1), hence the right-hand-side
of (3.1) converges to 1 in probability, therefore (m1/pRi)i≤k converges in distribution
towards a constant and thus also in probability.

Case p =∞: Now (Ri)i≤k
d
= (|ξi|1/n)i≤k

P−−−−→
n→∞

(1)i≤k via Lemma 2.8.

(c) We have by Proposition 1.1, (b),

(n1/q Θi,j)i≤k,j≤l
d
=

(
ηi,j

n−1/q‖(ηi,j′)j′≤n‖q

)
i≤k,j≤l

. (3.2)

By Lemma 2.5 (n−1/q‖(ηi,j′)j′≤n‖q)n≥1
a.s.−−→ 1, so the right-hand-side of (3.2) converges

to (ηi,j)i≤k,j≤l almost surely.

Remark 3.2. Statements (a) and (c) of Lemma 3.1 can be seen as consequences of Propo-
sition 2.1; this is immediate for (c), and for (a) recall from the proof of Proposition 1.1
that (Rni )i≤m ∼ Unif(Bmp/n ∩ [0,∞)m).

For a separable metric space E let M1(E) denote the convex set of probability
measures on (E,B(E)) endowed with the topology of weak convergence of measures;
thenM1(E) is separable too. This topology onM1(E) may be metrized by, e.g., the Lévy–
Prokhorov metric dLP. We denote by Lipb(E) the space of bounded, Lipschitz-continuous
functions on E, equipped with the norm ‖f‖Lip := max{‖f‖∞, |f |Lip} where |f |Lip is the
Lipschitz-constant of f .

Lemma 3.3. Let (µn)n∈N be a sequence ofM1(E) -valued random measures and µ ∈
M1(E) a deterministic measure. Then

(µn)n≥1
P−→ µ⇐⇒ ∀f ∈ Lipb(E) :

(∫
E

f dµn

)
n∈N

P−→
∫
E

f dµ.

Proof. ⇒: Let f ∈ Lipb(E), then the map ν 7→
∫
E
f dν is continuous at µ w.r.t. dLP, hence

for any ε > 0 there exists δ > 0 such that, for any ν ∈M1(E),

dLP(µ, ν) < δ =⇒
∣∣∣∣∫
E

f dν −
∫
E

f dµ

∣∣∣∣ < ε.

Now let ε > 0, then

P

[∣∣∣∣∫
E

f dµn −
∫
E

f dµ

∣∣∣∣ ≥ ε] ≤ P[dLP(µn, µ) ≥ δ] −−−−→
n→∞

0.
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⇐: Let ε > 0. The open ball BLP
ε (µ) is open in the weak topology, thus there exist

m ∈ N, f1, . . . , fm ∈ Lipb(E) and δ > 0 such that

m⋂
i=1

{
ν ∈M1(E) :

∣∣∣∣∫
E

fi dν −
∫
E

fi dµ

∣∣∣∣ < δ

}
⊂ BLP

ε (µ).

The union-bound then implies

P[dLP(µn, µ) ≥ ε] = P[µn ∈ BLP
ε (µ)c]

≤ P
[
µn ∈

m⋃
i=1

{
ν ∈M1(E) :

∣∣∣∣∫
E

fi dν −
∫
E

fi dµ

∣∣∣∣ ≥ δ}]

≤
m∑
i=1

P

[∣∣∣∣∫
E

fi dµn −
∫
E

fidµ

∣∣∣∣ ≥ δ] −−−−→n→∞
0.

Proof of Theorem A. (a) We have

(m1/pXi,j)i≤k,j≤n = (m1/pRiΘi)i≤k.

The claim follows from Lemma 3.1, (a), together with the independence of (Ri)i≤m from
Θ1,. . . , Θm.

(b) Case p <∞: The stochastic representation of (Ri)i≤m implies

1

m

m∑
i=1

δm1/p Ri

d
=

1

m

m∑
i=1

δU1/(mn) ( 1
m

∑m
k=1|ξk|p/n)−1/p|ξi|1/n .

For the sake of legibility call Cm := U1/(mn)
(

1
m

∑m
i=1|ξi|p/n

)−1/p
, then (Cm)m≥1

a.s.−−→ 1.
Now it suffices to prove (

1

m

m∑
i=1

δCm|ξi|1/n

)
m≥1

P−→ L(|ξ1|1/n),

since then
(

1
m

∑m
i=1 δm1/p Ri

)
m≥1

→ L(|ξ1|1/n) in distribution and, because the latter is

constant inM1(R), also in probability.
We apply Lemma 3.3. Let f ∈ Lipb(R), then

∣∣∣∣ 1

m

m∑
i=1

f(Cm|ξi|1/n)− E[f(|ξ1|1/n)]

∣∣∣∣
≤
∣∣∣∣ 1

m

m∑
i=1

f(Cm|ξi|1/n)− 1

m

m∑
i=1

f(|ξi|1/n)

∣∣∣∣+

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/n)− E[f(|ξ1|1/n)]

∣∣∣∣
≤ 1

m

m∑
i=1

∣∣f(Cm|ξi|1/n)− f(|ξi|1/n)
∣∣+

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/n)− E[f(|ξ1|1/n)]

∣∣∣∣
≤ |f |Lip|Cm − 1| 1

m

m∑
i=1

|ξi|1/n +

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/n)− E[f(|ξ1|1/n)]

∣∣∣∣;
the last line converges a.s. to zero because the sums obey the SLLN, and thus also in
probability.

Essentially the same argument is valid for 1
m

∑m
i=1 δm1/pXi

. Write m1/pXi
d
= Cm|ξi|1/n

Θi with Cm as before, and let f ∈ Lipb(Rn), where the Lipschitz constant is taken with
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respect to ‖·‖q, then

∣∣∣∣ 1

m

m∑
i=1

f(Cm|ξi|1/nΘi)− E[f(|ξ1|1/nΘ1)]

∣∣∣∣
≤
∣∣∣∣ 1

m

m∑
i=1

f(Cm|ξi|1/nΘi)−
1

m

m∑
i=1

f(|ξi|1/nΘi)

∣∣∣∣
+

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/nΘi)− E[f(|ξ1|1/nΘ1)]

∣∣∣∣
≤ 1

m

m∑
i=1

∣∣f(Cm|ξi|1/nΘi)− f(|ξi|1/nΘi)
∣∣+

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/nΘi)− E[f(|ξ1|1/nΘ1)]

∣∣∣∣
≤ |f |Lip|Cm − 1| 1

m

m∑
i=1

|ξi|1/n +

∣∣∣∣ 1

m

m∑
i=1

f(|ξi|1/nΘi)− E[f(|ξ1|1/nΘ1)]

∣∣∣∣;
again the sums obey the SLLN and hence the desired convergence is implied.

Case p = ∞: Notice that by the stochastic representation we are dealing with
independent random variables and thus the convergence is immediate.

Proof of Theorem B. (a) Recall

(m1/p n1/qXi,j)i≤m,j≤n = (m1/pRi · n1/qΘi,j)i≤m,j≤n.

Lemma 3.1, (b) and (c), imply the convergence in distribution of (m1/p n1/qXi,j)i≤k,j≤l
as claimed, where the joint convergence of (Ri)i≤m, Θ1,. . . , Θm may be argued either by
their independence or by Slutsky’s theorem.

(b) Case p < ∞: Write Cm,n := U1/(mn)
(

1
m

∑m
i=1|ξi|p/n

)−1/p
and Di,n := |ξi|1/n ·

(n−1/q‖(ηi,j)j≤n‖q)−1, then (U1/(mn))n≥1
a.s.−−→ 1 and Lemma 2.8 imply

(Cm,n)n≥1
P−→ 1;

also (|ξi|1/n)n≥1
P−→ 1 for each i ≤ m by applying Lemma 2.8 with m = q = 1, which

together with Lemma 2.5 yields

(Di,n)n≥1
P−→ 1.

Now take any f ∈ Lipb(R) and consider∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(Cm,nDi,nηi,j)− E[f(η1,1)]

∣∣∣∣;
we have to show that the probability of this expression being smaller than any positive
number converges to one. So let ε > 0. Define Bm,n,ε :=

∑m
i=1 1[|Di,n−1|≥ε], then Bm,n,ε

is binomially distributed with parameters m and P[|D1,n − 1| ≥ ε], and there holds

( 1
m Bm,n,ε)n≥1

P−→ 0: indeed, let δ > 0, then

P
[∣∣∣ 1

m
Bm,n,ε

∣∣∣ ≥ δ] ≤ 1

m2 δ2
Var[Bm,n,ε]

=
1

mδ2
P[|D1,n − 1| ≥ ε]P[|D1,n − 1|< ε],

and because of (D1,n)n≥1
P−→ 1 the latter converges to zero as n → ∞, irrespective of

whether m is fixed or diverges. We also have the laws of large numbers
(

1
mn

∑m
i=1

∑n
j=1
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f(ηi,j)
)
n≥1

P−→ E[f(η1,1)] and
(

1
mn

∑m
i=1

∑n
j=1|ηi,j |

)
n≥1

P−→ M1
q . Now there exists an

n0 ∈ N such that, for any n ≥ n0, the probability of the event that |Cm,n − 1| ≤ ε and
2‖f‖∞ 1

mBm,n,ε ≤ ε and
∣∣ 1
mn

∑m
i=1

∑n
j=1 f(ηi,j)−E[f(η1,1)]

∣∣ ≤ ε and
∣∣ 1
mn

∑m
i=1

∑n
j=1|ηi,j |−

M1
q

∣∣ ≤ ε all hold true is at least, say, 1− ε. Let n ≥ n0, then on the same event, for any
i ∈ [1,m] such that |Di,n − 1| < ε, we have

|Cm,nDi,n − 1| ≤ |Cm,n||Di,n − 1|+ |Cm,n − 1| ≤ (1 + ε)ε+ ε = ε2 + 2ε,

and therewith∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(Cm,nDi,nηi,j)− E[f(η1,1)]

∣∣∣∣
≤
∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(Cm,nDi,nηi,j)−
1

mn

m∑
i=1

n∑
j=1

f(ηi,j)

∣∣∣∣
+

∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(ηi,j)− E[f(η1,1)]

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣f(Cm,nDi,nηi,j)− f(ηi,j)
∣∣+ ε

= ε+
1

mn

m∑
i=1

n∑
j=1

1[|Di,n−1|<ε]
∣∣f(Cm,nDi,nηi,j)− f(ηi,j)

∣∣
+

1

mn

m∑
i=1

n∑
j=1

1[|Di,n−1|≥ε]
∣∣f(Cm,nDi,nηi,j)− f(ηi,j)

∣∣
≤ ε+

|f |Lip

mn

m∑
i=1

n∑
j=1

1[|Di,n−1|<ε]|Cm,nDi,n − 1||ηi,j |

+
1

mn

m∑
i=1

n∑
j=1

1[|Di,n−1|≥ε]
(
|f(Cm,nDi,nηi,j)|+ |f(ηi,j)|

)
≤ ε+

|f |Lip

mn
(ε2 + 2ε)

m∑
i=1

n∑
j=1

|ηi,j |+
2‖f‖∞Bm,n,ε

m

≤ ε+ |f |Lip(ε2 + 2ε)(M1
q + ε) + ε.

Because this estimate holds for all n ≥ n0 with probability at least 1− ε, convergence in
probability is established.

Case p =∞: Again let f ∈ Lipb(R), then with the same notation and techniques as
before,∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(Di,nηi,j)− E[f(η1,1)]

∣∣∣∣ ≤ ∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(Di,nηi,j)−
1

mn

m∑
i=1

n∑
j=1

f(ηi,j)

∣∣∣∣
+

∣∣∣∣ 1

mn

m∑
i=1

n∑
j=1

f(ηi,j)− E[f(η1,1)]

∣∣∣∣
≤ 1

mn

m∑
i=1

n∑
j=1

∣∣f(Di,nηi,j)− f(ηi,j)
∣∣+ o(1).

The remaining argument is the same as in the case p < ∞, only formally Cm,n = 1

throughout.
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4 Proofs of the weak limit theorems

In this section we present the proofs of the weak limit theorems, that is, Theorem C,
Theorem D, and Theorem E, as well as of Corollaries 1.4, 1.5, and 1.7.

4.1 Proofs of the weak limit theorems

Recall that Theorem C treats the regime m→∞ while n is fixed.

Proof of Theorem C. Case p1 <∞: Appealing to Proposition 1.1 we have

‖Xm‖p2,q2
d
= U1/(mn)

(∑m
i=1|ξi|p2/n‖Θi‖p2q2

)1/p2(∑m
i=1|ξi|p1/n

)1/p1 .

Define

Ξm :=
1√
m

m∑
i=1

(
|ξi|p1/n − 1

)
and

Hm :=
1√
m

m∑
i=1

(
|ξi|p2/n‖Θi‖p2q2 −M

p2/n
p1/n

E[‖Θ1‖p2q2 ]
)
,

then by the multivariate CLT we know((
Ξm
Hm

))
m≥1

d−→ N 2(0,Σ)

with covariance-matrix

Σ :=

(
p1
n C

p1/n,p2/n
p1/n

E[‖Θ1‖p2q2 ]

C
p1/n,p2/n
p1/n

E[‖Θ1‖p2q2 ] Var[|ξ1|p2/n‖Θ1‖p2q2 ]

)
.

For brevity’s sake we set µ := M
p2/n
p1/n

E[‖Θ1‖p2q2 ]. Therewith we get

‖Xm‖p2,q2
d
= U1/(mn) (mµ+

√
mHm)1/p2

(m+
√
mΞm)1/p1

=
m1/p2 µ1/p2

m1/p1
U1/(mn)

(
1 + Hm

µ
√
m

)1/p2(
1 + Ξm√

m

)1/p1
=

µ1/p2

m1/p1−1/p2

(
1 +

log(U)

mn
− Ξm
p1
√
m

+
Hm

p2µ
√
m

+R
( log(U)

m
,

Ξm√
m
,

Hm√
m

))
,

where for the third equality we have performed the Taylor-expansion

eu/n

(
1 + y

µ

)1/p2(
1 + x

)1/p1 = 1 +
u

n
− x

p1
+

y

p2µ
+R(u, x, y),

where the remainder satisfies |R(u, x, y)| ≤M‖(u, x, y)‖22 in a suitable neighbourhood of
(0, 0, 0). Rearranging yields

√
m

(
m1/p1−1/p2

µ1/p2
‖Xm‖p2,q2 − 1

)
d
=

log(U)

n
√
m
− Ξm

p1
+

Hm

p2µ
+
√
mR

( log(U)

m
,

Ξm√
m
,

Hm√
m

)
.
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We have m1/4
( log(U)

m , Ξm√
m
, Hm√

m

)
= (m−3/4 log(U),m−1/4Ξm,m

−1/4Hm), and this converges

in probability to (0, 0, 0) as m→∞ by appealing to Slutsky’s theorem and the known dis-
tributional convergence of (Ξm,Hm). The remainder lemma then implies

(√
mR

( log(U)
m ,

Ξm√
m
, Hm√

m

))
m≥1

P−→ 0. Since we also know (m−1/2 log(U))m≥1 −→ 0 almost surely and thus
in probability, by Slutsky’s theorem the right-hand-side of the last display converges to
the random variable σN , where N ∼ N (0, 1) and

σ2 =
(
− 1

p1
,

1

p2µ

)
Σ

(
− 1
p1
1
p2µ

)
;

a simple calculation shows that this is the desired variance.
Case p1 = ∞: Omit U1/(mn) and

∑m
i=1|ξ1|p1/n from the probabilistic representation

and reiterate the argument.

The regime for Theorem D is n→∞ while m is fixed.

Proof of Theorem D. (a) Case p1 <∞: We define, for i ∈ [1,m],

Ξn,i :=
√
n(|ξi|p1/n − 1),

Hn,i :=
√
n

(
np2(1/q1−1/q2)

(Mq2
q1 )p2/q2

‖Θi‖p2q2 − 1

)
;

then, since ξ1, . . . , ξm,Θ1, . . . ,Θm are independent for each n ∈ N, so are Ξn,1, . . . ,Ξn,m,

Hn,1, . . . ,Hn,m, and by Lemma 2.6, 2.(a), ((Ξn,i)i≤m)n≥1
d−→ (
√
p1N1,i)i≤m and by Lem-

ma 2.10 ((Hn,i)i≤m)n≥1
d−→ (p2σN2,i)i≤m with (N1,i)i≤m, (N2,i)i≤m ∼ N (0, Im) indepen-

dent. This leads to

‖Xn‖p2,q2
d
= U1/(mn)

(∑m
i=1|ξi|p2/n‖Θi‖p2q2

)1/p2(∑m
i=1|ξi|p1/n

)1/p1
=

(Mq2
q1 )1/q2

m1/p1−1/p2 n1/q1−1/q2
U1/(mn)

(
1
m

∑m
i=1

(
1 +

Ξn,i√
n

)p2/p1(
1 +

Hn,i√
n

))1/p2(
1
m

∑m
i=1

(
1 +

Ξn,i√
n

))1/p1
=

(Mq2
q1 )1/q2

m1/p1−1/p2 n1/q1−1/q2

(
1 +

log(U)

mn
+

1

p2m

m∑
i=1

Hn,i√
n

+R

(
log(U)

n
,
(Ξn,i√

n

)
i≤m

,
(Hn,i√

n

)
i≤m

))
,

where we have introduced the Taylor polynomial expansion

eu/m
(

1
m

∑m
i=1(1 + xi)

p2/p1(1 + yi)
)1/p2(

1
m

∑m
i=1(1 + xi)

)1/p1 = 1 +
u

m
+

1

p2m

m∑
i=1

yi +R
(
u, (xi)i≤m, (yi)i≤m

)
(the partial derivatives of first order w.r.t. x1, . . . , xm are indeed zero), where again
the remainder term satsifies |R

(
u, (xi)i≤m, (yi)i≤m

)
| ≤ M

∥∥(u, (xi)i≤m, (yi)i≤m)∥∥2

2
in a

neighbourhood of 0. Rearranging yields

√
n

(
m1/p1−1/p2n1/q1−1/q2

(Mq2
q1 )1/q2

‖Xn‖p2,q2 − 1

)
d
=

log(U)

m
√
n

+
1

p2m

m∑
i=1

Hn,i

+
√
nR

(
log(U)

n
,
(Ξn,1√

n

)
i≤m

,
(Hn,i√

n

)
i≤m

)
,
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and we apply the usual argument: ((Ξn,i)i≤m)n≥1 and ((Hn,i)i≤m)n≥1 converge in dis-

tribution, hence from Slutsky’s theorem we infer n1/4
( log(U)

n ,
(Ξn,1√

n

)
i≤m,

(Hn,i√
n

)
i≤m

)
=(

n−3/4 log(U), (n−1/4Ξn,i)i≤m, (n
−1/4Hn,i)i≤m

)
−−−−→
n→∞

0 in distribution and in probabil-

ity; the remainder lemma then gives
(√
nR
( log(U)

n ,
(Ξn,1√

n

)
i≤m,

(Hn,i√
n

)
i≤m

))
n≥1

P−→ 0; we

also have
( log(U)
m
√
n

)
n≥1
→ 0 almost surely and in probability; and a final use of Slutsky’s

theorem leads to the desired result.
Case p1 =∞: Now according to Lemma 2.6, 2.(b),

Ξn,i := n(1− |ξi|p2/n)
d−−−−→

n→∞
p2Ei,

where (Ei)i≤m ∼ E(1)⊗m is independent of (N2,i)i≤m introduced before; and therewith

‖Xn‖p2,q2
d
=

(Mq2
q1 )1/q2

m−1/p2 n1/q1−1/q2

(
1

m

m∑
i=1

(
1− Ξn,i

n

)(
1 +

Hn,i√
n

))1/p2

=
(Mq2

q1 )1/q2

m−1/p2 n1/q1−1/q2

(
1−

m∑
i=1

Ξn,i
p2mn

+

m∑
i=1

Hn,i

p2m
√
n

+R

((Ξn,1
n

)
i≤m

,
(Hn,i√

n

)
i≤m

))
,

and the rest follows as before, with the modification
√
n
(Ξn,i

n

)
i≤m = (n−1/2 Ξn,i)i≤m

P−−−−→
n→∞

0 and similarly for the remainder term.
(b) Here, as in the following case, ‖Θi‖q2 = ‖Θi‖q1 = 1 and therefore we have

‖Xn‖p2,q1
d
= U1/(mn)

(∑m
i=1|ξi|p2/n

)1/p2(∑m
i=1|ξi|p1/n

)1/p1 .
We perform Taylor expansion of the same function as in (a), case p1 <∞, but restricted
to (yi)i≤m = 0 and writing out second-order terms, to wit,

eu/m
(

1
m

∑m
i=1(1 + xi)

p2/p1
)1/p2(

1
m

∑m
i=1(1 + xi)

)1/p1 = 1 +
u

m
+

u2

2m2
+
p2 − p1

2p2
1m

2
xTAx+R(u, x),

where A = (ai,j)i,j≤m ∈ Rm×m is given by ai,i = m − 1 and ai,j = −1 for all i, j ∈ [1,m]

with i 6= j, and the remainder term satisfies |R(u, x)| ≤M‖(u, x)‖32 with some M > 0 for
all ‖(u, x)‖2 sufficiently small. So this gives

‖Xn‖p2,q1
d
= m1/p2−1/p1

(
1 +

log(U)

mn
+

log(U)2

2m2n2
+
p2 − p1

2p2
1m

2

(Ξn,i√
n

)T
i≤m

A
(Ξn,i√

n

)
i≤m

+R

(
log(U)

n
,
(Ξn,i√

n

)
i≤m

))
,

or equivalently via rearrangement,

mn
(
1−m1/p1−1/p2‖Xn‖p2,q1

) d
= − log(U)− log(U)2

2mn
+
p1 − p2

2p2
1m

(Ξn,i)
T
i≤mA(Ξn,i)i≤m

−mnR
(

log(U)

n
,
(Ξn,i√

n

)
i≤m

)
.

We choose (l, αn, βn) := (3, n1/3, n) for the remainder lemma; indeed, n1/3
( log(U)

n ,(Ξn,i√
n

)
i≤m

)
=
(
n−2/3 log(U), n−1/6(Ξn,i)i≤m

)
converges to 0 in probability as n → ∞,
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therefore the remainder lemma implies
(
nR
( log(U)

n ,
(Ξn,i√

n

)
i≤m

))
n≥1

P−→ 0. Additionally we

have ( log(U)2

n )n≥1 → 0 almost surely and hence in probability. Thus via Slutsky’s theorem
we obtain(

mn
(
1−m1/p1−1/p2‖Xn‖p2,q1

))
n≥1

d−→ − log(U) +
p1 − p2

2p1m
(N1,i)

T
i≤mA(N1,i)i≤m,

and it remains to argue that the right-hand side has the claimed distribution. That
− log(U) ∼ E(1), is common lore. Since (ξi)i≤m is independent from U , (N1,i)i≤m can
be assumed independent from U . The matrix A is symmetric and has eigenvalues
m with multiplicity m − 1 and 0 with multiplicity 1, hence its spectral decomposition
reads A = O diag(m, . . . ,m, 0)OT with orthogonal O ∈ Rm×m. The standard Gaussian
distribution is orthogonally invariant, that is (Ni)i≤m := OT(N1,i)i≤m ∼ N (0, Im), and
thereby

(N1,i)
T
i≤mA(N1,i)i≤m = (Ni)

T
i≤m diag(m, . . . ,m, 0)(Ni)i≤m = m

m−1∑
i=1

N2
i .

Because (Ni)i≤m still is independent from U we have finished.

(c) Using the same expansion as in (a), case p1 =∞, and restricting to (yi)i≤m = 0

like in (b) while naming R′(x) := R(x,0), we arrive at

‖Xn‖p2,q1
d
=

( m∑
i=1

|ξi|p2/n
)1/p2

= m1/p2

(
1−

m∑
i=1

Ξn,i
p2mn

+R′
((Ξn,i

n

)
i≤m

))
.

The result follows, after a rearrangement, from 1
p1

(Ξn,i)i≤m
d−→ E(1)⊗m, managing the

remainder term as in (b) above.

In Theorem E now we consider n → ∞ and m = m(n) → ∞. The proof features
the Lyapunov CLT: let ((Zn,i)i≤m)n≥1 be an array of R -valued random variables with
independent rows (i.e., for any n ∈ N the variables Zn,1, . . . , Zn,m are independent),

and call sn :=
(∑m

i=1 Var[Zn,i]
)1/2

. If sn > 0 for all n ∈ N and Lyapunov’s condition is
statisfied, sc., there exists some δ > 0 with

lim
n→∞

1

s2+δ
n

m∑
i=1

E
[
|Zn,i − E[Zn,i]|2+δ

]
= 0, (4.1)

then
1

sn

m∑
i=1

(
Zn,i − E[Zn,i]

) d−−−−→
n→∞

N (0, 1).

As an aside, note that actually Lyapunov’s condition implies Lindeberg’s condition which
in its turn implies the CLT.

Proof of Theorem E. (a) Case p1 <∞: Recall the representation

‖Xn‖p2,q2
d
= U1/(mn)

(∑m
i=1|ξi|p2/n‖Θi‖p2q2

)1/p2(∑m
i=1|ξi|p1/n

)1/p1 .
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Define the random variables Ξ1
n,i, Ξ2

n,i, and Ξ3
n,i by

Ξ1
n,i := |ξi|p1/n − 1, Ξ2

n,i :=
|ξi|p2/n −Mp2/n

p1/n

M
p2/n
p1/n

,

Ξ3
n,i :=

‖Θi‖p2q2 − E[‖Θ1‖p2q2 ]

E[‖Θ1‖p2q2 ]
,

and their sums

Zkn :=

m∑
i=1

Ξkn,i for k ∈ {1, 2, 3} and Z4
n :=

m∑
i=1

Ξ2
n,iΞ

3
n,i,

then

‖Xn‖p2,q2
d
=

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2

m1/p1−1/p2
U1/(mn)

(
1
m

∑m
i=1(1 + Ξ2

n,i)(1 + Ξ3
n,i)
)1/p2(

1
m

∑m
i=1(1 + Ξ1

n,i)
)1/p1

=
(M

p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2

m1/p1−1/p2
U1/(mn)

(
1 + 1

mZ
2
n + 1

mZ
3
n + 1

mZ
4
n

)1/p2(
1 + 1

mZ
1
n

)1/p1
=

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2

m1/p1−1/p2

(
1 +

log(U)

mn
− Z1

n

p1m
+
Z2
n + Z3

n + Z4
n

p2m

+R

(
log(U)

mn
,
Z1
n

m
,
Z2
n

m
,
Z3
n

m
,
Z4
n

m

))
,

where we have introduced the Taylor expansion

eu
(1 + z2 + z3 + z4)1/p2

(1 + z1)1/p1
= 1 + u− z1

p1
+
z2 + z3 + z4

p2
+R(u, z1, z2, z3, z4),

with the remainder term satisfying |R(u, z1, z2, z3, z4)| ≤ M‖(u, z1, z2, z3, z4)‖22 in a suit-
able neighbourhood of 0. Then we can rearrange as follows,

√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2
‖Xn‖p2,q2 − 1

)
d
=

log(U)√
mn

−
√
nZ1

n

p1
√
m

+

√
n(Z2

n + Z3
n + Z4

n)

p2
√
m

+
√
mnR

(
log(U)

mn
,
Z1
n

m
,
Z2
n

m
,
Z3
n

m
,
Z4
n

m

)
,

and we are going to argue that only
√

n
m Z3

n makes a nontrivial contribution to the limit
as n → ∞, in the sense that all other terms converge to zero in probability; Slutsky’s
theorem yields the result then.

Clearly
( log(U)√

mn

)
n≥1

a.s.−−→ 0. Next, Ξ1
n,i, Ξ2

n,i, and Ξ3
n,i are centred, and therefore so is

Zkn for k ∈ {1, 2, 3, 4}. The respective variances are as follows, where we use Lemma 2.6,
1.(a),

Var

[
Z1
n

m

]
=

1

m
Var
[
|ξ1|p1/n − 1

]
=

1

m

1

p1n

(
1 +O

( 1

n

))
= Θ

( 1

mn

)
;

analogously,

Var

[
Z2
n

m

]
=

Var
[
|ξ1|p2/n −Mp2/n

p1/n

]
m(M

p2/n
p1/n

)2
=

1

m

p22
p1n

(
1 +O

(
1
n

))(
1 +O

(
1
n

))2 = Θ
( 1

mn

)
.
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Defining Yn as in Lemma 2.10 and employing (E[Y kn ])n≥1 → pk2σ
k E[Nk] as stated there,

we get

E[‖Θ1‖p2q2 ] =
(Mq2

q1 )p2/q2

np2(1/q1−1/q2)

(
1 +

E[Yn]√
n

)
=

(Mq2
q1 )p2/q2

np2(1/q1−1/q2)

(
1 + o

( 1√
n

))
and

Var[‖Θ1‖p2q2 ] =
(Mq2

q1 )2p2/q2

n2p2(1/q1−1/q2)

Var[Yn]

n
=
p2

2σ
2(Mq2

q1 )2p2/q2

n2p2(1/q1−1/q2)+1

(
1 + o(1)

)
;

these lead to

Var

[
Z3
n

m

]
=

1

m

Var[‖Θ1‖p2q2 ]

E[‖Θ1‖p2q2 ]2
=
p2

2σ
2

mn

(
1 + o(1)

)
,

and therewith also to

Var

[
Z4
n

m

]
=

1

m

Var[|ξ1|p2/n] Var[‖Θ1‖p2q2 ]

(M
p2/n
p1/n

)2E[‖Θ1‖p2q2 ]2
= Θ

( 1

mn2

)
.

We further note that

m∑
i=1

E[|Ξ3
n,i|3] =

m

E[‖Θ1‖p2q2 ]3
E

[
(Mq2

q1 )3p2/q2

n3p2(1/q1−1/q2)

∣∣∣∣Yn − E[Yn]√
n

∣∣∣∣3]
=

m

n3/2
p3

2σ
3E[|N |3]

(
1 + o(1)

)
.

But then the array ((Ξ3
n,i)i≤m)n≥1 satisfies Lyapunov’s condition (4.1) with δ = 1 since∑m
i=1E[|Ξ3

n,i|3]

Var[Z3
n]3/2

=
Θ(mn−3/2)

Θ(m3/2n−3/2)
= Θ

( 1√
m

)
,

and hence we get the CLT (Var[Z3
n]−1/2Z3

n)n≥1
d−→ N , or rather(√

n

m
Z3
n

)
n≥1

d−→ p2σN.

On the other hand there is still Var
[√

n
m Z4

n

]
= Θ( 1

n ), and a little bit less obviously
(employ Lemma 2.6 again; alternatively, Lemma 2.7 with weaker asymptotics),

Var

[√
n

m

(Z2
n

p2
− Z

1
n

p1

)]
= n

(
V
p2/n
p1/n

(p2M
p2/n
p1/n

)2
−

2C
p1/n,p2/n
p1/n

p1p2M
p2/n
p1/n

+
V
p1/n
p1/n

p2
1

)
=

(p2 − p1)2

2p2
1 n

(
1+O

( 1

n

))

wherefore by Čebyšëv’s inequality both
√

n
m

(Z2
n

p2
− Z1

n

p1

)
and

√
n
m Z4

n converge to zero in
probability. For the remainder term we consider

(mn)1/4

(
log(U)

mn
,
Z1
n

m
,
Z2
n

m
,
Z3
n

m
,
Z4
n

m

)
=

(
log(U)

(mn)3/4
,
n1/4 Z1

n

m3/4
,
n1/4 Z2

n

m3/4
,
n1/4 Z3

n

m3/4
,
n1/4 Z4

n

m3/4

)
.

Again ((mn)−3/4 log(U))n≥1
a.s.−−→ 0 is obvious. For k ∈ {1, 2, 3} we have Var[m−3/4n1/4Zkn]

= Θ((mn)−1/2), and also Var[m−3/4n1/4Z4
n] = Θ(m−1/2n−3/2); hence the respective

components converge to zero in probability via Čebyšëv’s inequality. This establishes
that the conditions of the remainder lemma are met, and finally the remainder term
converges to zero in probability.
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Case p1 =∞: There is no need to iterate the argument in its entirety; for one, omit
U and Ξ1

n from the previous case, and for another, we have different asymptotics for the
variances; to wit, referring to Lemma 2.6, 1.(b),

Var

[
Z2
n

m

]
=

1

m

V
p2/n
∞

(M
p2/n
∞ )2

=

p22
n2

(
1 +O

(
1
n

))
m
(
1 +O

(
1
n

))2 =
p2

2

mn2

(
1 +O

( 1

n

))
,

and correspondingly,

Var

[
Z4
n

m

]
=
p4

2σ
2

mn3

(
1 + o(1)

)
.

These imply Var
[√

n
m Z2

n

]
= Θ( 1

n ) and Var
[√

n
m Z4

n

]
= Θ( 1

n2 ), hence
(√

n
m Z2

n

)
n∈N

P−→ 0

and
(√

n
m Z4

n

)
n∈N

P−→ 0 via Čebyšëv’s inequality. For the remainder term we consider

(mn)1/4

(
Z2
n

m
,
Z3
n

m
,
Z4
n

m

)
=

(
n1/4 Z2

n

m3/4
,
n1/4 Z3

n

m3/4
,
n1/4 Z4

n

m3/4

)
.

We have Var[m−3/4n1/4Z2
n] = Θ(m−1/2n−3/2) and also Var[m−3/4n1/4Z4

n]= Θ(m−1/2n−5/2),
and Var[m−3/4n1/4Z3

n] = Θ((mn)−1/2) remains unchanged; hence the respective compo-
nents converge to zero in probability via Čebyšëv’s inequality. The remainder lemma
does the rest.

(b) Define Ξ1
n,i, Ξ2

n,i, Z
1
n, and Z2

n as in (a), then we have the probabilistic representa-
tion

‖Xn‖p2,q1
d
= U1/(mn)

(∑m
i=1|ξi|p2/n

)1/p2(∑m
i=1|ξi|p1/n

)1/p1
= U1/(mn)

(
mM

p2/n
p1/n

+M
p2/n
p1/n

Z2
n

)1/p2
(m+ Z1

n)1/p1

=
(M

p2/n
p1/n

)1/p2

m1/p1−1/p2
U1/(mn)

(
1 +

Z2
n

m

)1/p2(
1 +

Z1
n

m

)1/p1
=

(M
p2/n
p1/n

)1/p2

m1/p1−1/p2

(
1 +

log(U)

mn
− Z1

n

p1m
+

Z2
n

p2m
+R

( log(U)

mn
,
Z1
n

m
,
Z2
n

m

))
,

where we have used the same Taylor expansion as in (a), but evaluated at z3 = z4 = 0,
and the remainder term satsifies |R(u, z1, z2)| ≤ M‖(u, z1, z2)‖22 with some M > 0 in a
neighbourhood of (0, 0, 0). Rearranging yields

√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

)1/p2
‖Xn‖p2,q1−1

)
d
=

log(U)√
m

+
n√
m

(Z2
n

p2
−Z

1
n

p1

)
+
√
mnR

( log(U)

mn
,
Z1
n

m
,
Z2
n

m

)
.

We know (m−1/2 log(U))n≥1
a.s.−−→ 0; in order to apply the remainder lemma we have to

ensure

m1/4n1/2
( log(U)

mn
,
Z1
n

m
,
Z2
n

m

)
P−−−−→

n→∞
(0, 0, 0),

but we have m1/4n1/2 log(U)
mn = m−3/4n−1/2 log(U)

a.s.−−−−→
n→∞

0, and with reference to the

proof of (a), Var
[
m1/4n1/2 Z

k
n

m

]
= m1/2nΘ( 1

mn ) = Θ(m−1/2) −−−−→
n→∞

0 for k ∈ {1, 2}, hence

via Čebyšëv’s inequality m1/4n1/2
(Z1

n

m ,
Z2

n

m

) P−−−−→
n→∞

(0, 0).
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It remains to show that n√
m

(Z2
n

p2
− Z1

n

p1

)
converges to the claimed distribution. Written

out, the term in parentheses reads

Z2
n

p2
− Z1

n

p1
=

m∑
i=1

( |ξi|p2/n −Mp2/n
p1/n

p2M
p2/n
p1/n

− |ξi|
p1/n − 1

p1

)
;

call Zn,i :=
|ξi|p2/n−Mp2/n

p1/n

p2M
p2/n

p1/n

− |ξi|
p1/n−1
p1

, then E[Zn,i] = 0, and we are going to demonstate

that the array ((Zn,i)i≤m)n≥1 satisfies Lyapunov’s condition. Let δ > 0, then from
Lemma 2.7 we get, for any i ∈ [1,m],

E
[
|Zn,i|2+δ

]
= n−2−δ E

[
|nZn,i|2+δ

]
= n−2−δ

∣∣∣p2 − p1

2p1

∣∣∣2+δ

E
[
|N2 − 1|2+δ

]
(1 + o(1)),

and as we have established already in the proof of (a),

s2
n := Var

[ m∑
i=1

Zn,i

]
=
m(p2 − p1)2

2p2
1n

2

(
1 +O

( 1

n

))
.

These now show

1

s2+δ
n

m∑
i=1

E
[
|Zn,i|2+δ

]
=
mn−2−δ

∣∣∣p2−p12p1

∣∣2+δ
E
[
|N2 − 1|2+δ

]
(1 + o(1))

m1+δ/2n−2−δ
∣∣p2−p1√

2 p1

∣∣2+δ(
1 +O

(
1
n

))
=

1

mδ/2

E
[
|N2 − 1|2+δ

]
21+δ/2

(1 + o(1)) −−−−→
n→∞

0,

that is, Lyapunov’s condition is satisfied, and hence we have the CLT

1

sn

m∑
i=1

Zn,i =

√
2 p1

|p2 − p1|
n√
m

(
1 +O

( 1

n

))(Z2
n

p2
− Z1

n

p1

)
d−−−−→

n→∞
N ∼ N (0, 1),

equivalently,
n√
m

(Z2
n

p2
− Z1

n

p1

)
d−−−−→

n→∞

|p2 − p1|√
2 p1

N,

which concludes this part’s proof.
(c) Keeping Z2

n as before, we have

‖Xn‖p2,q1
d
=

( m∑
i=1

|ξi|p2/n
)1/p2

= m1/p2(Mp2/n
∞ )1/p2

(
1 +

Z2
n

m

)1/p2

= m1/p2(Mp2/n
∞ )1/p2

(
1 +

Z2
n

p2m
+R

(
Z2
n

m

))
,

equivalently

√
mn

(
‖Xn‖p2,q1

m1/p2(M
p2/n
∞ )1/p2

− 1

)
d
=

n

p2
√
m
Z2
n +
√
mnR

(
Z2
n

m

)
,

where the remainder fulfils |R(x)| ≤ Mx2 in some neighbourhood of zero. Like in the
proof of (a), case p1 =∞, we use Lemma 2.6, 1.(b), to see

Var

[
m1/4n1/2 Z

2
n

m

]
=
√
mn

p2
2

mn2

(
1 +O

( 1

n

))
=

p2
2√
mn

(
1 +O

( 1

n

))
,
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and via Čebyšëv’s inequality this immediately implies
(
m1/4n1/2 Z

2
n

m

)
n≥1

P−→ 0, and thus
by the remainder lemma the remainder term converges to zero.

Since Z2
n =

∑m
i=1

|ξi|p2/n−Mp2/n
∞

M
p2/n
∞

, we are going to prove that the triangular array(( |ξi|p2/n−Mp2/n
∞

M
p2/n
∞

)
i≤m

)
n≥1

satisfies Lyapunov’s condition with any δ ∈ (0,∞) (the compo-

nents are centred already); so let δ ∈ (0,∞). Employing Lemma 2.6, 1.(b), again we
have, for any i ∈ [1,m],

E

[∣∣∣∣ |ξi|p2/n −Mp2/n
∞

M
p2/n
∞

∣∣∣∣2+δ]
=

(
p2
n

)2+δ
E[|E − 1|2+δ](1 + o(1))

(1 + o(1))2+δ
=
p2+δ

2 E[|E − 1|2+δ]

n2+δ
(1+o(1)),

so together with the by now well-known Var[Z2
n] =

mp22
n2

(
1 +O( 1

n )
)

we get∑m
i=1E

[∣∣ |ξi|p2/n−Mp2/n
∞

M
p2/n
∞

∣∣2+δ]
Var[Z2

n]1+δ/2
=
mn−2−δp2+δ

2 E[|E − 1|2+δ](1 + o(1))

m1+δ/2n−2−δp2+δ
2

(
1 +O( 1

n )
)

=
E[|E − 1|2+δ]

mδ/2
(1 + o(1)) −−−−→

n→∞
0.

So this shows
(
Var[Z2

n]−1/2 Z1
n

)
n≥1

=
(

n
p2
√
m

(
1+O( 1

n )
)
Z2
n

)
n≥1

d−→ N ∼ N (0, 1), and finally(
n

p2
√
m
Z2
n

)
n≥1

d−→ N,

and through an application of Slutsky’s theorem the proof is finished.

4.2 Proofs of the corollaries

The key observation is the following: let X ∼ Unif(Bm,np1,q1), then (rm,np1,q1)−1X ∼
Unif((rm,np1,q1)−1Bm,np1,q1), and therewith, for any t ∈ [0,∞),

V m,n(t) = vm,n
(
(rm,np1,q1)−1Bm,np1,q1 ∩ t(r

m,n
p2,q2)−1Bm,np2,q2

)
= P

[
(rm,np1,q1)−1X ∈ t(rm,np2,q2)−1Bm,np2,q2

]
= P

[
‖X‖p2,q2 ≤

rm,np1,q1

rm,np2,q2

t

]
. (4.2)

Proof of Corollary 1.4. We use Theorem C, thus, continuing from Equation (4.2),

V m,n(t) = P

[√
m

(
m1/p1−1/p2(

M
p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 ‖Xm‖p2,q2 − 1

)

≤
√
m

(
m1/p1−1/p2(

M
p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 rm,np1,q1

rm,np2,q2

t− 1

)]
.

The last random variable converges in distribution to a centred nondegenerate normally
distributed random variable N , hence we must determine the limit of the right-hand-side.
Recall the definition of the radii rm,npi,qi at the beginning of Section 1.4; expanding the
gamma-functions in the volumes vmn(Bm,npi,qi) (which see Equation (2.2)) using Stirling’s
formula we arrive at

m1/p1−1/p2(
M

p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 rm,np1,q1

rm,np2,q2

=

{
Ap1,q1;p2,q2;n

(
1 +O( 1

m )
)

if p1 <∞,
Ap1,q1;p2,q2;n

(
1 +O( log(m)

m )
)

if p1 =∞.
(4.3)

This implies

lim
m→∞

m1/p1−1/p2(
M

p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 rm,np1,q1

rm,np2,q2

= Ap1,q1;p2,q2;n,
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and therewith the cases tAp1,q1;p2,q2;n < 1 or tAp1,q1;p2,q2;n > 1 are immediately accounted
for. In the threshold case tAp1,q1;p2,q2;n = 1 we need the information in Equation (4.3)
that the correction-term is of order o(m−1/2) in either case; this yields

√
m

(
m1/p1−1/p2(

M
p2/n
p1/n

E[‖Θ1‖p2q2 ]
)1/p2 rm,np1,q1

rm,np2,q2

t− 1

)
=
√
m
(
tAp1,q1;p2,q2;n

(
1 + o

( 1√
m

))
− 1
)

=
√
m o

( 1√
m

)
= o(1),

and finally

lim
m→∞

V m,n(t) = P[N ≤ 0] =
1

2
.

Proof of Corollary 1.5. Case q1 6= q2: Here we invest Theorem D, that is,

V m,n(t) = P

[√
n

(
m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

‖Xn‖p2,q2 − 1

)
≤
√
n

(
m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

rm,np1,q1

rm,np2,q2

t− 1

)]
.

Like in the proof of Corollary 1.4 we use asymptotic expansion; to wit, this reads

m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

rm,np1,q1

rm,np2,q2

=

{
Aq1,q2

(
1 +O( 1

n )
)

if q1 <∞,
Aq1,q2

(
1 +O

( log(n)
n

))
if q1 =∞.

(4.4)

On the one hand this yields

lim
n→∞

m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

rm,np1,q1

rm,np2,q2

= Aq1,q2 ,

and therefore the result is immediate for tAq1,q2 < 1 or tAq1,q2 > 1. On the other hand,
for the threshold-case tAq1,q2 = 1 Equation (4.4) tells us that either way we are off by at
most o(n−1/2). Thus

√
n

(
m1/p1−1/p2 n1/q1−1/q2

(Mq2
q1 )1/q2

rm,np1,q1

rm,np2,q2

t− 1

)
=
√
n
(
tAq1,q2

(
1 + o

( 1√
n

))
− 1
)

=
√
n o
( 1√

n

)
= o(1),

and the conclusion follows as in the proof of Corollary 1.4.
Case q1 = q2 and p1 <∞: The starting point is similar to the above,

V m,n(t) = P

[
mn

(
1− m1/p1

m1/p2
‖Xn‖p2,q1

)
≥ mn

(
1− m1/p1

m1/p2

rm,np1,q1

rm,np2,q1

t

)]
.

The asymptotic reads

m1/p1

m1/p2

rm,np1,q1

rm,np2,q1

= 1− (m− 1) log(p1/p2)

2mn
+O

( 1

n2

)
; (4.5)

this implies

lim
n→∞

m1/p1

m1/p2

rm,np1,q1

rm,np2,q1

= 1 = Aq1,q1 ,

and again the result follows easily for tAq1,q1 = t < 1 or t > 1. In the threshold case t = 1

there follows from Equation (4.5),

mn

(
1− m1/p1

m1/p2

rm,np1,q1

rm,np2,q1

t

)
=

(m− 1) log(p1/p2)

2
+O

( 1

n

)
,
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and therefore

lim
n→∞

V m,n(1) = P

[
E +

p1 − p2

2p1

m−1∑
i=1

N2
i ≥

(m− 1) log(p1/p2)

2

]
.

For m = 1 this simplifies to

lim
n→∞

V 1,n(1) = P[E ≥ 0] = 1.

In the case m ≥ 2 note that
∑m−1
i=1 N2

i ∼ Γ(m−1
2 , 2) (the chi-squared distribution with

m− 1 degrees of freedom). Because E and
∑m−1
i=1 N2

i are independent we can compute
the given probability explicitly as follows, where we have to distinguish whether p1 < p2

or p1 > p2. Here we treat only the former in detail; the latter is done analogously. First
we have

P

[
E +

p1 − p2

2p1

m−1∑
i=1

N2
i ≥

(m− 1) log(p1/p2)

2

]
=

∫ ∞
0

x(m−3)/2

2(m−1)/2Γ(m−1
2 )

e−x/2
∫ ∞

(m−1) log(p1/p2)
2 − (p1−p2)x

2p1

e−y 1R≥0
(y) dy dx;

then for any x > 0 we have (m−1) log(p1/p2)
2 − (p1−p2)x

2p1
≥ 0 iff x ≥ p1(m−1) log(p1/p2)

p1−p2 , and

since p1 < p2 this last expression is positive. Hence for x < p1(m−1) log(p1/p2)
p1−p2 the inner

integral is 1, and else it is∫ ∞
(m−1) log(p1/p2)

2 − (p1−p2)x
2p1

e−y 1R≥0
(y) dy = e−

(m−1) log(p1/p2)
2 +

(p1−p2)x
2p1 =

(p2

p1

)(m−1)/2

e
x
2−

p2x
2p1 .

So by splitting up the outer integral we reach

P

[
E +

p1 − p2

2p1

m−1∑
i=1

N2
i ≥

(m− 1) log(p1/p2)

2

]

=

∫ p1(m−1) log(p1/p2)
p1−p2

0

x(m−3)/2

2(m−1)/2Γ(m−1
2 )

e−x/2 dx

+

∫ ∞
p1(m−1) log(p1/p2)

p1−p2

x(m−3)/2

2(m−1)/2Γ(m−1
2 )

e−x/2
(p2

p1

)(m−1)/2

e
x
2−

p2x
2p1 dx;

now the first summand obviously equals∫ p1(m−1) log(p1/p2)
p1−p2

0

x(m−3)/2

2(m−1)/2Γ(m−1
2 )

e−x/2 dx = Γ
(m− 1

2
, 2
)((

0,
p1(m− 1) log(p1p2 )

p1 − p2

])
,

and the second summand evaluates to∫ ∞
p1(m−1) log(p1/p2)

p1−p2

x(m−3)/2

2(m−1)/2Γ(m−1
2 )

e−x/2
(p2

p1

)(m−1)/2

e
x
2−

p2x
2p1 dx

=

∫ ∞
p1(m−1) log(p1/p2)

p1−p2

x(m−3)/2(
2p1
p2

)(m−1)/2
Γ(m−1

2 )
e
− x

2p1/p2 dx

= Γ
(m− 1

2
,

2p1

p2

)((p1(m− 1) log(p1p2 )

p1 − p2
,∞
))

,
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and because of min{1, p1p2 } = p1
p2

, max{1, p1p2 } = 1 this equals the claimed expression.
Case q1 = q2 and p1 =∞: Now we are working with

V m,n(t) = P

[
mn(1−m−1/p2‖Xn‖p2,q1) ≥ mn

(
1−

rm,n∞,q1
m1/p2 rm,np2,q1

t

)]
.

This time we have
rm,n∞,q1

m1/p2 rm,np2,q1

= 1− (m− 1) log(n)

2mn
+O

( 1

n

)
, (4.6)

whence we see

lim
n→∞

rm,n∞,q1
m1/p2 rm,np2,q1

= 1 = Aq1,q1 ,

and the noncritical cases follow as before. For the threshold-value t = 1, Equation (4.6)
results in

mn

(
1−

rm,n∞,q1
m1/p2 rm,np2,q1

)
=

(m− 1) log(n)

2
+O(1),

which leads us to

lim
n→∞

V m,n(1) = P

[ m∑
i=1

Ei ≥ ∞
]

= 0.

Proof of Corollary 1.7. Case q1 6= q2: Referring to Theorem E we have

V m,n(t) = P

[√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2
‖Xn‖p2,q2 − 1

)

≤
√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

E[‖Θ1‖p2q2 ])1/p2

rm,np1,q1

rm,np2,q2

t− 1

)]
.

Notice that in any case

lim
n→∞

m1/p1 n1/q1 rm,np1,q1

m1/p2 n1/q2 rm,np2,q2

= (Mq2
q1 )1/q2Aq1,q2

and

lim
n→∞

1

(M
p2/n
p1/n

E[‖n1/q1−1/q2Θ1‖p2q2 ])1/p2
= (Mq2

q1 )−1/q2 ,

and from these follow the limit values for the cases tAq1,q1 < 1 and tAq1,q2 > 1. In the
remaining case tAq1,q2 = 1, by our assumptions the probability converges to the claimed
value P[σN ≤M ] = Φ(σ−1M).

Case q1 = q2 and p1 <∞: Again we rewrite

V m,n(t) = P

[√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

)1/p2
‖Xn‖p2,q1 − 1

)

≤
√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

)1/p2

rm,np1,q1

rm,np2,q1

t− 1

)]
.

The asymptotic expansions needed here are

m1/p1

m1/p2

rm,np1,q1

rm,np2,q1

= 1 +
log(p2/p1)

2n

(
1− 1

m
+ Θ

( 1

n

))
+O

( 1

mn2

)
and

(M
p2/n
p1/n

)−1/p2 = 1− p2 − p1

2p1n
+O

( 1

n2

)
,
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they lead to the claimed results concerning tAq1,q2 = t < 1 or t > 1. For t = 1, plugging
in yields

√
mn

(
m1/p1−1/p2

(M
p2/n
p1/n

)1/p2

rm,np1,q1

rm,np2,q1

t− 1

)

=
√
mn

((
1− p2 − p1

2p1n
+O

( 1

n2

))(
1 +

log(p2/p1)

2n

(
1− 1

m
+ Θ

( 1

n

))
+O

( 1

mn2

))
− 1

)
=
√
mn

(
1

2n

(
log
(p2

p1

)
− p2 − p1

p1
− log(p2/p1)

m
+ Θ

( 1

n

))
+O

( 1

mn2

))
=

√
m

2

(
log
(p2

p1

)
− p2 − p1

p1
− 1

m
+ Θ

( 1

n

))
+O

( 1√
mn

)
;

and since the logarithm is strictly concave and p1 6= p2 (forced by q1 = q2) we know

log
(p2

p1

)
− p2 − p1

p1
<
p2

p1
− 1− p2 − p1

p1
= 0,

hence the limit as n→∞ is minus infinity. This gives the claimed limits.
Case q1 = q2 and p1 =∞: Lastly we have

V m,n(t) = P

[√
mn

(
‖Xn‖p2,q1

m1/p2(M
p2/n
∞ )1/p2

− 1

)
≤
√
mn

(
1

m1/p2(M
p2/n
∞ )1/p2

rm,n∞,q1
rm,np2,q1

t− 1

)]
.

As usual we expand,

rm,n∞,q1
m1/p2 rm,np2,q1

= 1− log(2πn/p2)

2n

(
1 +O

( log(n)

n

))
+

log(2πmn/p2)

2mn

(
1 +O

( log(n)

n

))
+O

( log(mn)2

m2n2

)
and

(Mp2/n
∞ )−1/p2 = 1 +

1

n
+O

( 1

n2

)
,

and they account for the cases tAq1,q2 = t < 1 or t > 1. Lastly concerning t = 1, plugging
in gives us

√
mn

(
1

m1/p2(M
p2/n
∞ )1/p2

rm,n∞,q1
rm,np2,q1

− 1

)
=
√
mn

((
1 +

1

n
+O

( 1

n2

))(
1− log(2πn/p2)

2n

(
1 +O

( log(n)

n

))
+

log(2πmn/p2)

2mn

(
1 +O

( log(n)

n

))
+O

( log(mn)2

m2n2

))
− 1

)
=
√
mn

(
− log(2πn/p2)

2n

(
1 +O

( 1

log(n)

))
+

log(2πmn/p2)

2mn

(
1 +O

( log(n)

n

))
+O

( log(mn)2

m2n2

))
=
√
m log(2πn/p2)

(
−1

2

(
1 +O

( 1

log(n)

))
+

log(2πmn/p2)

2m log(2πn/p2)

(
1 +O

( log(n)

n

)))
+O

( log(mn)2

m3/2n

)
.
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Now we observe
log(2πmn/p2)

m log(2πn/p2)
=

log(m)

m log(2πn/p2)
+

1

m
,

which converges to zero. So in total we get

lim
n→∞

√
mn

(
1

m1/p2(M
p2/n
∞ )1/p2

rm,n∞,q1
rm,np2,q1

− 1

)
= −∞,

and the conclusion easily follows. Notice that this result is consistent with the previous
case p2 < p1 <∞.

A Appendix: higher-order mixed-norm spaces

It is not difficult to generalize the idea of mixed norms to higher orders in the
following sense. Let k ∈ N, let pk = (pj)j≤k ∈ (0,∞]k and nk = (nj)j≤k ∈ Nk, then on
R×nk := Rn1×···×nk define the k th-order mixed norm with exponents p1, . . . , pk recursively
by ‖·‖p1

:= ‖·‖p1 , and for k ≥ 2,

‖(xi)i∈×nk
‖pk

:=
∥∥(‖(xi,ik)i∈×nk−1

‖pk−1

)
ik≤nk

∥∥
pk
.

We call `nk
pk

:= (R×nk , ‖·‖pk
) the (real) finite-dimensional k th-order mixed-norm sequence

space, then we have the recursion `nk
pk

= `nk
pk

(`
nk−1
pk−1). Let Bnk

pk
be its closed unit ball, whose

(n1 · · ·nk)-dimensional Lebesgue volume we denote by ωnk
pk

, and Snk
pk

its unit sphere with
associated cone measure κnk

pk
. Via the usual identification (C, |·|) ∼= (R2, ‖·‖2) we may

also subsume complex mixed-norm spaces under the real ones, to wit

`nk
pk

(C) ∼= `nk
pk

(`22) = `
(2,nk)
(2,pk).

Notice that compared to the definition in Section 2.2 we have reversed the order of
indices here in order to write the recursion in a more natural manner (append new
indices at end, not at beginning), so what we have notated Bm,np,q there, corresponds to

B
(n,m)
(q,p) here.

The recursive structure of `nk
pk

lends itself well to calculate ωnk
pk

in a recursive way as
well. For the following assume k ≥ 2. Then we have

ωnk
pk

=

∫
R×nk

1Bnk
pk

(x) dx

=

∫
(R×nk−1 )nk

1Bnk
pk

(
((xi,ik)i∈×nk−1

)ik≤nk

)
dx.

On each of the nk component spaces introduce `
nk−1
pk−1 -polar coordinates, i.e., (xi,ik)i∈×nk−1

= rikθik with rik ∈ [0,∞) and θik ∈ S
nk−1
pk−1 for each ik ∈ [1, nk]; therewith we get

‖((xi,ik)i∈×nk−1
)ik≤nk

‖pk
=
∥∥(‖rikθik‖pk−1

)
ik≤nk

∥∥
pk

= ‖(rik)ik≤nk
‖pk

and hence 1Bnk
pk

(
((xi,ik)i∈×nk−1

)ik≤nk

)
= 1Bnk

pk
((rik)ik≤nk

). This yields

ωnk
pk

=
(
n1 · · ·nk−1ω

nk−1
pk−1

)nk

∫
[0,∞)nk

∫
(S

nk−1
pk−1

)nk

1Bnk
pk

(r)

nk∏
ik=1

r
n1···nk−1−1
ik

d(κ
nk−1
pk−1)⊗nk(θ) dr

= (ω
nk−1
pk−1 )nk

∫
[0,∞)nk

1Bnk
pk

(r)

nk∏
ik=1

(
n1 · · ·nk−1r

n1···nk−1−1
ik

)
dr.
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Now transform sik := r
n1···nk−1

ik
for each ik ∈ [1, nk]; recall ‖(xi)i≤n‖p = ‖(|xi|α)i≤n‖1/αp/α

for any α ∈ (0,∞), which gives

‖r‖pk = ‖(rn1···nk−1

ik
)ik≤nk

‖1/(n1···nk−1)
pk/(n1···nk−1) = ‖s‖1/(n1···nk−1)

pk/(n1···nk−1),

hence 1Bnk
pk

(r) = 1Bnk
pk/(n1···nk−1)

(s) and thus

ωnk
pk

= (ω
nk−1
pk−1 )nk

∫
[0,∞)nk

1Bnk
pk/(n1···nk−1)

(s) ds

=
(ω

nk−1
pk−1 )nk ωnk

pk/(n1···nk−1)

2nk
,

which is the desired recursive formula. Via induction on k this leads to the explicit
formula

ωnk
pk

= 2n1···nk

k∏
j=1

(ω
nj

pj/(n1···nj−1))
nj+1···nk

2nj ···nk
= 2n1···nk

k∏
j=1

Γ(
n1···nj−1

pj
+ 1)nj ···nk

Γ(
n1···nj

pj
+ 1)nj+1···nk

.

In the special case of `(m,n)
(p,q) (C) this yields

ω
(2,m,n)
(2,p,q) = 22mn

Γ( 1
2 + 1)2mn Γ( 2

p + 1)mn Γ( 2m
q + 1)n

Γ( 2
2 + 1)mn Γ( 2m

p + 1)n Γ( 2mn
q + 1)

= πmn
Γ( 2

p + 1)mn Γ( 2m
q + 1)n

Γ( 2m
p + 1)n Γ( 2mn

q + 1)
,

and this equals the value given in [15, Theorem 5].
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