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Abstract

Generalized Pólya urns with non-linear feedback are an established probabilistic model
to describe the dynamics of growth processes with reinforcement, a generic example
being competition of agents in evolving markets. It is well known which conditions
on the feedback mechanism lead to monopoly where a single agent achieves full
market share, and various further results for particular feedback mechanisms have
been derived from different perspectives. In this paper we provide a comprehensive
account of the possible asymptotic behaviour for a large general class of feedback,
and describe in detail how monopolies emerge in a transition from sub-linear to super-
linear feedback via hierarchical states close to linearity. We further distinguish super-
and sub-exponential feedback, which show conceptually interesting differences to
understand the monopoly case, and study robustness of the asymptotics with respect
to initial conditions, heterogeneities and small changes of the feedback mechanisms.
Finally, we derive a scaling limit for the full time evolution of market shares in the
limit of diverging initial market size, including the description of typical fluctuations
and extending previous results in the context of stochastic approximation.
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1 Introduction

In the near future, customers who intend to buy a new car will have the choice
between several different technologies like modern cars powered by fossile or synthetic
fuels, hydrogen or batteries. Although electric cars seem to be in the pole position in the
race for the future car market, it is still open which technology will win or whether there
will be a mixture of different technologies. The economist Brian R. Arthur suggests in
[4] to model the competition between technologies as a generalized Pólya urn, which
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Asymptotics of generalized Pólya urns

was basically introduced by Hill, Lane and Sudderth in [24]. In this model the decision
which technology to choose depends on three factors. First, it supposes that each
technology has an intrinsic deterministic attractiveness or fitness. Second, the decision
depends on the choice of earlier customers. For example, if many bought an electric car
before, there will be a dense charging infrastructure and thus electric cars get more
attractive for future customers. A second argument for this reinforcement is that high
revenues in the past provide financial means for a faster technological development
as well as cheaper prices because of lower production costs per unit. The resulting
overall attractiveness of technology i is now modeled as a hypothetical feedback-function
Fi(Xi) ≥ 0 depending on the number Xi ∈ N = {1, 2, 3 . . .} of customers, who chose
technology i before. High values of Fi(Xi) indicate high attractiveness of technology
i. A typical example is Fi(k) = αik

β, where αi > 0 models the intrinsic attractiveness
and β > 0 the reinforcement effects in the market. The third determinant of customers
decision is their personal preference, which is difficult to include in a deterministic model
and probabilistic approaches are more appropriate. We assume that customers enter
the market sequentially and have full information. Given the current state (X1, . . . , XA)

of the market, a customer will opt for technology i with probability

Fi(Xi)

F1(X1) + ...+ FA(XA)
,

where A ≥ 2 is the number of different technologies. The market size X1 + . . . + XA

increases by one in each step. If Fi(k) = k, then this corresponds to the original Pólya
urn, which was introduced by Pólya and Eggenberger in [19]. Depending on the feedback
function, monopoly may occur where one technology achieves full market share, as well
as random or deterministic non-zero asymptotic market shares for several technologies.
The monopolist is in general random and depends on the behaviour of the young market.
Analyzing which feedback function leads to which regime provides an understanding of
the determinants of the long-time behavior of markets.

Mathematically, this setup corresponds to a discrete-time Markov process, which is
called a (generalized) non-linear Pólya urn in the following and introduced in detail in the
next Section. Apart from the competition of technologies, many other interpretations and
applications of generalized Pólya urns are possible. An obvious one is the competition of
companies in the same market for new customers or the competition between regions for
new companies to settle. The dynamics of household wealth is another growth process
with reinforcement (see e.g. [20] and references therein) that can be modelled with urns.
[39] summarizes further applications in psychology or evolutionary biology, and more
recently, [44, 41] use Pólya urns in the context of cryptocurrencies. In the following we
will adapt the more general terminology of agents {1, . . . , A} instead of technologies.

Mathematical properties of non-linear Pólya urns have been examined before, often
focused on polynomial feedback functions [29, 17, 30, 37, 24, 28, 12, 33] or homogeneous
models with Fi ≡ F [38, 36, 34]. In applications, the feedback functions are usually a
hypothetical construction that can barely be measured in real systems similar to utility
functions in economic situations, thus a general mathematical understanding without
restrictive conditions on Fi is important. This paper investigates the long-time behavior
of non-linear Pólya urns for a very general class of feedback functions. Fi could even be
decreasing or exponentially increasing, which reveals some surprising differences to the
usually studied polynomial case. An important restriction is, however, that Fi depends
only on Xi, which excludes stationary limit cycles as studied e.g. in [13].

In Section 2 we introduce the model, give a detailed summary of previous related
results and highlight the main novelties of the paper. In the monopoly case, we present
in Section 3 an asymptotic result for large initial market sizes on the distribution of
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the winner, extending previous results for particular feedback functions. In the non-
monopoly case we present in Section 4 a novel approach to compute the deterministic
long-time market shares, which do not depend on the initial condition or early dynamics.
In Section 5, we study in detail the transition between both cases for almost linear
feedback functions, which are particularly relevant in various applications including
wealth dynamics [20]. Moreover, we derive in Section 6 a law of large numbers for the
dynamics of the process for large initial market size, which is asymptotically described
by an ordinary differential equation and has previously been studied for particular
feedback functions in the context of stochastic approximation [11, 39, 42]. Extending
these results, we also establish a functional central limit theorem to describe typical
dynamic fluctuations by a system of SDEs in Section 7. The question of a Gaussian
approximation of the dynamics of Pólya urns has also been addressed in recent research,
see [10] and [16]. Predictable behaviour can only be expected for large initial market
size, the behavior of very young markets is intrinsically random. While bounds on the
probabilities of certain events can be obtained, we focus here mostly on asymptotic
results and provide a rather complete account of the possible dynamic and long-time
behaviour of generalized non-linear Pólya urns. To our knowledge this paper provides
the first complete account for the generalized non-linear Pólya urn, which is a classical
model for reinforcement dynamics.

More generalisations of Pólya’s urn (e.g. for infinitely many agents and more complex
replacement mechanisms) have been addressed in further recent research [32, 13, 5, 27,
7, 31, 42, 48, 49], and in [1, 2, 3] the authors include a rescaling mechanism to inhibit
long-range dynamic dependencies. The study of generalized Pólya urns is also closely
related to reinforced random walks, see e.g. [15, 45, 14]

2 The generalized Pólya urn model

2.1 Basic definitions and background

We now formally introduce the model. All random variables are defined on some
large enough probability space [Ω,A,P]. Let A ≥ 2 be the number of agents and
Fi : N → (0,∞) be the feedback function of agent i ∈ [A] := {1, . . . , A}. We define a
homogeneous, discrete-time Markov process (X(n))n∈N0

= ((X1(n), . . . , XA(n))n∈N0
on

the state space NA with initial condition X(0) = (X1(0), . . . , XA(0)) ∈ NA such that
Xi(0) ≥ 1 for all i ∈ [A], and transition probabilities

P
(
X(n+ 1) = X(n) + e(i)

∣∣X(n)
)

=
Fi(Xi(n))

F1(X1(n)) + ...+ FA(XA(n))
, i = 1, . . . , A, (2.1)

where e(i) = (δi,j)
A
j=1 is the i-th unit vector. We denote by N := X1(0) + ...+XA(0) ≥ A

the initial market size. Whenever needed, we set Fi(0) = 0, and whenever useful, we
take continuously differentiable extensions Fi : (0,∞)→ (0,∞) to the positive real line,
which is supposed to be monotone on intervals of the form [n, n + 1], n ∈ N. In many
applications, F is increasing, but most of our results also hold without this assumption.

We interpret Xi(n) as the number of customers of agent i at time n and define the
corresponding time-inhomogeneous Markov process (χ(n))n∈N0

of market shares

χi(n) :=
Xi(n)

N + n
∈ (0, 1), i = 1, . . . , A, n ∈ N0 ,

with χ(n) = (χ1(n), . . . , χA(n)) ∈ ∆o
A−1, where ∆o

A−1 is the interior of the unit simplex
∆A−1 := {(x1, . . . , xA) ∈ [0, 1]A : x1 + ...+ xA = 1}. Moreover, we establish the notation

χ(∞) := lim
n→∞

χ(n)
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for the long time market share whenever it exists. We will see throughout the pa-
per that χ(∞) is well defined in all generic situations, but it is possible to construct
counterexamples (see Example A.8). For later use we introduce the notation

p(k, x) = (pi(k, x))i∈[A] =

(
Fi(kxi)

F1(kx1) + . . . FA(kxA)

)
i∈[A]

(2.2)

for the transition probabilities, where k ∈ N and x = (x1, . . . , xA) ∈ ∆A−1.
A useful alternative construction of the process is provided by the so-called expo-

nential embedding (see e.g. [38] and references therein). We take independent random
variables τi(k), i = 1, . . . , A, k ∈ N, where τi(k) is exponentially distributed with rate
parameter Fi(k). For each i we define the corresponding continuous-time counting
process

(
Ξi(t)

)
t≥0

with

Ξi(t) = Ξ
(Xi(0))
i (t) := max

{
l ∈ N0 :

l∑
k=0

τi(Xi(0) + k) ≤ t

}
+Xi(0), t ≥ 0. (2.3)

These are independent birth processes with Ξi(0) = Xi(0), where the time between the
k-th and (k + 1)-th event of Ξi is given by τi(Xi(0) + k). If 0 = t0 < t1 < t2 < ... is the
sequence of jump-times of the process Ξ(t) = (Ξ1(t), . . . ,ΞA(t)), i.e.

tn+1 = min {t > tn : Ξ(t) 6= Ξ(tn)} ,

then Rubin’s theorem (proven in e.g. [38]) states, that the jump chain (Ξ(tn) : n ∈ N0)

has the same distribution as the process (X(n) : n ∈ N0). Thus we can define:

X(n) := Ξ(tn) (2.4)

In fact, the birth processes Ξi(t) can explode as the sum
∑∞
k=Xi(0) τi(k) might be finite.

We therefore define the random explosion times

Ti(Xi(0)) :=

∞∑
k=Xi(0)

τi(k) ∈ (0,∞], i = 1, . . . , A.

In the following we are especially interested in the occurrence of monopoly, which
requires some definitions.

Definition 2.1. For i ∈ [A] we define the events

1. weak monopoly

wMoni(χ(0), N) :=
{
ω ∈ Ω : lim

n→∞
χi(n)(ω) = 1

}
= {χi(∞) = 1} ,

i.e. the market share of agent i converges to one;

2. strong monopoly

sMoni(χ(0), N) :=
{

lim
n→∞

∑
j 6=i

Xj(n) <∞
}
,

i.e. agent i wins in all but finitely many steps;

3. total monopoly

tMoni(χ(0), N) :=
{
∀n ≥ 0 ∀j ∈ [A] \ {i} : Xj(n) = Xj(0)

}
,

i.e. agent i wins in all steps.
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Obviously, a total monopoly is also a strong monopoly and a strong monopoly al-
ways implies a weak monopoly. Via exponential embedding one can express the event
sMoni(χ(0), N) by the explosion times through

sMoni(χ(0), N) =
⋂
j 6=i

{
Ti(Xi(0)) < Tj(Xj(0))

}
(2.5)

as equality of finite explosion times has probability zero (see below). With the observation

Ti(Xi(0)) <∞ ⇔ ETi(Xi(0)) =

∞∑
k=Xi(0)

1

Fi(k)
<∞ ⇔

∞∑
k=1

1

Fi(k)
<∞,

one can easily derive the following generally known criterion for the occurrence of
strong monopoly (see e.g. [15, 38]).

Theorem 2.2. Strong monopoly occurs with probability one, i.e.

P

(
A⋃
i=1

sMoni(χ(0), N)

}
= 1,

if and only if
∞∑
k=1

1

Fi(k)
<∞ for at least one i , (M)

otherwise the probability is zero.

If (M) holds, the density of the explosion time Ti(Xi(0)) (computed in [47]) as a sum
of exponential variables has support on the whole positive real line for all choices of Fi.
So the probability of sMoni(χ(0), N) is positive if and only if agent i fulfills (M) and the
monopolist is random among all agents i ∈ [A] that satisfy (M). For the polynomial case
Fi(k) = αik

β , αi > 0, β ∈ R, i ∈ [A], Theorem 2.2 implies that strong monopoly occurs if
and only if β > 1.

On the other hand, when no agent fulfills (M), Xi(n)→∞ almost surely for all i ∈ [A],
and we have the following consistency property.

Proposition 2.3. Assume that none of the Fi satisfies (M). Define a’partial’ Pólya urn
process X̃(n) for a subset B ⊂ [A] of agents with the same feedback functions Fi and
initial condition X̃(0) = (Xi(0) : i ∈ B). Then the process

(
X̃(n)

)
n∈N0

can be identified

as a (random) subsequence of
(
Xi(n) : i ∈ B

)
n∈N0

.

Proof. The independence property of the exponential embedding provides a canonical
coupling of the processes X̃ and X. For that, define recursively s0 = 0 and

sn+1 := inf{s > sn : ∃i ∈ B : Ξi(s) 6= Ξi(sn)} .

Note that sn <∞ is well defined for all n ≥ 0, since none of the Fi fulfill (M). Then set
X̃i(n) := Ξi(sn), which directly implies the claim since (sn) is a subsequence of (tn).

In particular, if one of the limits

χ̃(∞) := lim
n→∞

(
X̃i(n)

X̃1(n) + . . .+ X̃Ã(n)

)
i∈B

, χB(∞) := lim
n→∞

(
Xi(n)

X1(n) + . . .+XÃ(n)

)
i∈B

exists, then so does the other and both have the same distribution. This implies further
neutrality of the limit χ(∞) in the sense of [26], so that it has a (possibly degenerate)
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Dirichlet distribution on ∆A−1, whenever it exists. In the degenerate case, the Dirich-
let distribution is either deterministic or concentrated on the vertices of ∆A−1 with

P
(⋃A

i=1 wMoni(χ(0), N)
)

= 1. This will be discussed in several examples in Sections 4

and 5. Note that in the case of weak monopoly this corresponds to hierarchical states,
where the asymptotic distribution among losing agents again exhibits a weak monopolist.

2.2 Review of previous results

As already described in the introduction, generalisations of Pólya urns have been
studied in numerous papers. In this section, we shortly present a selection of results
related to our work. To our knowledge, the most comprehensive result concerning the
long time limit of the process (χ(n))n of market shares is the following.

Theorem 2.4. [11, Theorem 3.1] Suppose that p(x) := limk→∞ p(k, x) (cf. (2.2)) exists
for all x ∈ ∆A−1 and that even

∞∑
k=1

supx∈∆A−1
‖p(k, x)− p(x)‖
k

<∞ (2.6)

holds. Moreover, assume that there is a twice differentiable Lyapunov function for the
vector field (G(x))x∈∆A−1

= (p(x) − x)x∈∆A−1
. Then χ(n) converges almost surely for

n → ∞ and the limit is either in {x ∈ ∆A−1 : G(x) = 0} or the border of a connected
component of this set.

Note that a Lyapunov function does always exist in the case A = 2 and when p is
differentiable with equal feedback functions for all agents. Moreover, [11] shows under
mild technical assumptions that each stable fixed point of the vector field G is attained
in the limit n → ∞ with positive probability, whereas unstable fixed points are never
attained.

Theorem 2.4 allows to compute the long time market shares in generic situations,
like Fi(k) = αik

β. Nevertheless, condition (2.6) is not fulfilled e.g. for Fi(k) = log(k) or
Fi(k) = ek.

In the monopoly case described in Theorem 2.2, the monopolist is in general random.
Consequently, one is interested in the probability that a specific agent is the monopolist,
at least in the limit N → ∞. [34] derives such a result in a situation with only two
symmetric agents.

Theorem 2.5. [34, Theorem 2] Let A = 2 and F1 = F2 = F . Assume that F fulfills (M)
and that

lim inf
x→∞

x
d

dx
logF (x) >

1

2
and lim

x→∞

d

dx
logF (x) = 0.

Moreover, suppose that there is a constant C > 0 such that for all ε ∈ (0, 1
2 ) and all x > 0

large enough

sup
x≤t≤x1+ε

∣∣∣∣∣ t ddt logF (t)

x d
dx logF (x)

− 1

∣∣∣∣∣ ≤ Cε
holds. Let X(0) = (N + λq(N), N − λq(N)) for N,λ > 0 and q(a) :=

√
a

4a d
da logF (a)−2

.

Then the probability of agent 1 being the monopolist converges to Φ(λ) for N → ∞,
where Φ denotes the cumulative distribution function of the normal distribution.

For F (x) = xβ , β > 1 these assumptions are fulfilled and q(a) =
√
a√

4β−2
is of order

√
a. This means that even a small initial advantage (compared to N ) of one agent leads

to this agent being the monopolist with high probability. Note that the assumptions of
Theorem 2.5 are not satisfied for exponentially increasing feedback.
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Under similar assumptions as in Theorem 2.5, [38] shows that the number of steps,
in which the looser wins, has a heavy tailed distribution. Moreover, if χi(0) < 1

2 for an
agent i, then P(sMoni(χ(0), N)) is exponentially decreasing in N , i.e. the first steps
of the process decide who wins. [18] provides similar results for the asymmetric case
Fi(x) = αix

β , i ∈ {1, 2}, β > 1, αi > 0. More recently in [33], a result for polynomial
feedback with different exponents was shown.

Theorem 2.6. [33, Theorem 2.2] Let A = 2 and Fi(k) = kβi with 1 < β1 ≤ β2. Define the
critical values

αcr =
β1 − 1

β2 − 1
and νcr = α

1
β2−1
cr .

Moreover, set X(0) = (x, νxα + o(xα)) for α ∈ (0, 1), ν > 0.

1. If either α < αcr or α = αcr and ν < νcr, then limx→∞P(sMon1(X(0)) = 1.

2. If either α > αcr or α = αcr and ν > νcr, then limx→∞P(sMon2(X(0)) = 1.

Hence, even the agent with inferior feedback can be the monopolist with high
probability when there is a strong enough imbalance in the initial composition of the
urn, i.e. X2(0) ∼ X1(0)α for α < αcr. In addition, [33] provides a result for the critical
case α = αcr, ν = νcr.

For Fi(k) = kβ , i ∈ [A] with β < 1, we know from Theorem 2.4 that limn→∞ χi(n) = 1
A

almost surely for all i ∈ [A] irrespective of the initial configuration χ(0). The rate of
convergence is specified in [30].

Theorem 2.7. [30, Propsition 3] Let Fi(k) = kβ for all i ∈ [A] and β ∈ (0, 1).

1. If 1
2 < β < 1, then

n1−β
(
χ(n)− 1

A

)
n→∞−−−−→ C almost surely

for a random, nonzero vector C.

2. If 0 < β < 1
2 and i ∈ [A], then

√
n

(
χi(n)− 1

A

)
n→∞−−−−→ N

(
0,

A− 1

A1+2β(1− 2β)

)
in distribution,

where N denotes a Gaussian distribution.

3. If β = 1
2 and i ∈ [A], then√

n

log(n)

(
χi(n)− 1

A

)
n→∞−−−−→ N

(
0,
A− 1

A2

)
in distribution.

The convergence in part 2 and 3 can be extended to the vector χ(n). Part 1 implies
that the leading agent does only change finitely often. According to [36, Theorem 1],
this happens also for general feedback functions F = F1 = . . . = FA if and only if

∞∑
k=1

1

F (k)2
<∞ ,

where also a technical condition lim infk→∞ F (k) > 0 was assumed, including cases
where F is not monotone increasing.
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2.3 Main contributions of this paper

One important purpose of this paper is to provide a comprehensive approach and a
complete picture for the asymptotics of the generalized Pólya urn model, which applies
for a large class of feedback functions. This allows us to fully characterize the emergence
of monopoly in a transition from sub-linear to super-linear feedback, where the system
exhibits interesting behaviour including hierarchical states and weak monopoly.The
following table provides an overview of results for the different classes of feedback
functions and the corresponding regimes of the generalized Pólya urn model. These are
derived in Sections 3 and 4, where also details on the assumptions and examples are
given.

Table 1: The different regimes of the generalized Pólya urn model (Sections 3 and 4).

Class of feedback Examples Assumption Main result

lim sup
k→∞

Fi(k)
∞∑
l=k

1
Fi(l)

<∞

Fi(k) = αie
βik

αi > 0, βi > 0

∀j 6= i as N →∞
Fi(χi(0)N)
Fj(χj(0)N) →∞

P(tMoni(χ(0), N))
N→∞−−−−→ 1 (Cor. 3.7)

∞∑
k=1

1
Fi(k) <∞ and

Fi(k)
∞∑
l=k

1
Fi(l)

k→∞−−−−→∞

Fi(k) = αik
β

αi > 0, β > 1;
Fi(k) = αik(log k)β

αi > 0, β > 1

∀j 6= i : lim sup
N→∞∑

k≥χi(0)N
Fi(k)−1

∑
k≥χj(0)N

Fj(k)−1 < 1

P(sMoni(χ(0), N))
N→∞−−−−→ 1

(Thm. 3.12)

∞∑
k=1

1
Fi(k) =∞ and

Fi(k)
k

k∑
l=1

1
Fi(l)

k→∞−−−−→∞

Fi(k) = αik(log k)β

αi > 0, β ≤ 1

∀j 6= i:

lim sup
k→∞

Fj(k)
Fi(k) < 1

P(wMoni(χ(0), N))

= 1 (Prop. 4.8)

Fi(k)
k

k∑
l=1

1
Fi(l)

k→∞−−−−→ c ∈ (0,∞)

Fi(k) = αik
β

αi > 0, β < 1;
Fi(k) = αi(log k)β

αi > 0, β ∈ R

∀j 6= i:
Fi(k)
Fj(k)

k→∞−−−−→ cj

χi(∞) = 1
1+
∑
j 6=i c

−c
j

(Cor. 4.7)

In the case of total or strong monopoly, we show that the assumption is satisfied
for almost all initial shares χ(0), such that the state space ∆A−1 can be dissected into
asymptotic attraction domains (Theorem 3.4). In Section 5 we also discuss in detail
the transition from monopoly for super-linear feedback to deterministic limits χ(∞) for
sub-linear feedback, summarized in the following table for homogeneous models.

Table 2: Transition from monopoly to non-monopoly for almost linear feedback in
homogeneous models with F1 = . . . = FA = F (Section 5).

Class of feedback fct. Examples Main result
∞∑
k=1

1
F (k) =∞ and

F (k)/k
k→∞−−−−→∞

F (k) = k(log k)β

β ∈ (0, 1)
P(
⋃A
i=1 wMoni(χ(0), N)) = 1

(Cor. 5.3)

lim
k→∞

F (k)/k ∈ (0,∞) F (k) = k
χ(∞) has a continuous
distribution (Cor. 5.3)

∞∑
k=1

1
F (k)2 <∞ and

F (k)/k
k→∞−−−−→ 0

F (k) = k(log k)β

β < 0

χi(∞) = ( 1
A , . . . ,

1
A )

(Cor. 5.3)

Since total monopoly is a special case of strong monopoly, the asymptotic behaviour
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(a) Fi(k) = k2, i = 1, 2, 3

0 20 40 60 80 100
step number n

0.0

0.2

0.4

0.6

0.8

1.0

1(n)
2(n)
3(n)

(b) Fi(k) = k log(k + 1), i = 1, 2, 3
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(c) Fi(k) = k, i = 1, 2, 3
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(d) Fi(k) =
√
k, i = 1, 2, 3

Figure 1: Simulated evolution of the market shares χi(n) for the first 100 steps of a
generalized Pólya urn with different feedback functions. Here A = 3 and X(0) = (1, 1, 1).

of the generalized Pólya urn exhibits four main regimes describing the emergence of
monopoly, which are also illustrated in Figure 1:

(a) If F satisfies (M), then the process exhibits strong monopoly (Theorem 2.2 above).
The monopolist is random, but can be predicted with high probability for large
initial values, such that the space ∆A−1 can be dissected into explicitly computable
attraction domains (Theorem 3.4).

(b) If F does not satisfy (M), but limk→∞
F (k)
k =∞ still holds, then the process exhibits

weak monopoly with a random monopolist (Corollary 5.3) and hierarchical states
with weak monopoly among the losing agents (Proposition 2.3 above).

(c) If limk→∞
F (k)
k ∈ (0,∞), then χ(∞) exists almost surely and has a non-degenerate

Dirichlet distribution. This includes the classical Pólya urn (Corollary 5.3).
(d) If F is sublinear, then χ(∞) exists almost surely and is deterministic with limit

given by Corollary 4.5 (under mild, but necessary technical assumptions).

These regimes react differently to unequal fitness of agents. For Fi(k) = αiF (k) with
αi > 0 distinct, we show the following properties:

(a) If F satisfies (M), then the process still exhibits random strong monopoly with well-
defined attraction domains, which continuously depend on αi. For exponentially
increasing F , these domains do not depend on αi (Theorem 3.12, Corollary 3.7).

(b/c) If F does not satisfy (M), but limk→∞
F (k)
k ∈ (0,∞], then the agent with the largest

fitness αi is a deterministic weak monopolist (Proposition 4.8) and we have hierar-
chical states.
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Asymptotics of generalized Pólya urns

(d) If F is sublinear, then χ(∞) still exists and is deterministic. The dependence of χ(∞)

on αi can be either continuous (Corollar 4.5) or discontinuous (Proposition 4.8).
For exponentially decreasing F , there is no dependence on αi (Appendix A.2).

Furthermore, we derive a scaling limit for the time evolution of market shares in The-
orem 6.1 and characterize the fluctuations in the Functional Central Limit Theorem 7.1.
This part uses standard techniques from stochastic approximation, but we include it to
provide a complete picture of the asymptotics of the generalized Pólya urn.

3 Asymptotics for the strong monopoly case

We assume that at least one agent i fulfills (M), so that a random strong monopoly
occurs with probability one. To characterize the asymptotics, we have to distinguish two
different types of feedback functions with slightly different behavior.

Definition 3.1. Let agent i (or Fi) fulfill (M). We call i (or Fi) of type P (for polynomial)
if

lim
k→∞

Fi(k)

∞∑
l=k

1

Fi(l)
=∞ (3.1)

and of type E (for exponential) if

lim sup
k→∞

Fi(k)

∞∑
l=k

1

Fi(l)
<∞. (3.2)

For the rest of this section we assume that all agents with feedback functions that
fulfill (M) are either of type P or type E. Of course it is possible to construct counter-
examples (see Example A.5), but these two types still cover a very large range, including
most previous results.

Proposition 3.2. If
d

dx
log(F (x))

x→∞−−−−→ 0 (3.3)

then F is of type P, and if

lim inf
x→∞

d

dx
log(F (x)) > 0 (3.4)

then F is of type E.

The proof is provided in Appendix A.3. As explained in Example A.5 (a), these criteria
are not necessary for being of type P resp. E. This criteria means that functions that grow
exponentially or faster are of type E whereas functions that grow slower than exponential
(like polynomials) are of type P. Note that Oliveira’s “valid feedback functions” in [38] or
[36] are of type P, which includes furthermore all regular varying functions. Example A.5
(b) presents a construction of a feedback function that is neither of type P nor type E.

3.1 Asymptotic attraction domains

If at least one agents fulfills the monopoly condition (M), we know by Theorem 2.2 that
there is a strong monopoly, where all agents satisfying (M) have a positive probability
of being the monopolist. Thus, the monopolist is in general random. Nevertheless, in
most situations it is possible to predict the winner with high probability for large initial
market size.

Definition 3.3. The asymptotic attraction domain of an agent i ∈ [A] is defined as

Di =
{
χ(0) ∈ ∆o

A−1 : lim
N→∞

P(sMoni(χ(0), N)) = 1
}
⊂ ∆o

A−1.
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(a) F1(k) = F2(k) = F3(k) = k2
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(b) F1(k) = F2(k) = 2k2,
F3(k) = k2
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(c) F1(k) = F2(k) = k3,
F3(k) = k2

Figure 2: Asymptotic attraction domains in the case A = 3 with various feedback
functions.

Obviously, the asymptotic attraction domains are disjoint, since P(sMonj(χ(0), N)) ≤
1−P(sMoni(χ(0), N)) for j 6= i. The main result of this section states that the asymptotic
attraction domains cover the whole simplex up to boundaries under mild regularity
conditions.

Theorem 3.4. Let at least one agent satisfy (M) and all agents satisfying (M) are either
of type P or type E. Moreover, assume that one of the following conditions holds:

1. At least one agent is of type E and for all χ(0) ∈ ∆o
A−1, i, j ∈ [A]

lim inf
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
= 0 and lim sup

N→∞

Fi(χi(0)N)

Fj(χj(0)N)
=∞

do not hold simultaneously.

2. No agent is of type E and all agents of type P (there is at least one) fulfill

lim sup
k→∞

1

k
Fi(k)

∞∑
l=k

1

Fi(l)
<∞. (3.5)

In addition, suppose that limN→∞
Fi(χi(0)N)
Fj(χj(0)N) ∈ [0,∞] exists for all χ(0) ∈ ∆o

A−1, i, j ∈
[A].

Then the asymptotic attraction domains are polytopes that dissect the simplex up to
boundaries, i.e.

A⋃
i=1

Di = ∆A−1,

where (·) is the topological closure. If agent i does not satisfy (M) then Di = ∅.
As a direct consequence of the exponential embedding, P(sMoni(χ(0), N) = 0 for all

agents that do not fulfill (M). Hence, their attraction domains are empty. The rest of
Theorem 3.4 basically follows from the results presented in the following subsections,
where e.g. explicit conditions for

lim
N→∞

P(sMoni(χ(0), N)) = 1

as well as bounds of P(sMoni(χ(0), N)) are derived. The final proof of Theorem 3.4 will
be presented in subsection 3.4. It will turn out that the explosion times Ti from Section 2
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concentrate around their expectations, i.e.

lim
N→∞

Ti(Nχi(0))

ETi(Nχi(0))
= 1 almost surely,

only for agents of type P, but not for type E, so we need to study these two types
of feedback functions separately. The technical conditions in each case are mild and
will be discussed in the following subsections. For example, (3.5) excludes feedback
close to the identity such as Fi(k) = k(log k)β, β ≥ 1, where the explosion times of all
agents concentrate around the same value irrespective of initial conditions as shown
in Proposition 3.15. This special case is discussed in Example A.6. Condition (3.5)
ensures that explosion times depend on the initial condition which therefore determine
the attraction domains, and this is satisfied for generic feedback such as Fi(k) = αkβ,
β > 1. Another characteristic of type E is, that a strong monopoly is typically even a
total monopoly, at least when N is large.

Theorem 3.5. Let Assumption 1 in Theorem 3.4 be satisfied. If agent i is of type E and
χ(0) ∈ Do

i is in the interior of Di, then

lim
N→∞

P(tMoni(χ(0), N)) = 1. (3.6)

Theorem 3.5 is a direct consequence of Theorem 3.6 given below. As explained in
Corollary 3.10, total monopoly does in general not occur, if χ(0) is on the boundary of
the attraction domain. In addition, it turns out that in generic situations the probability
of total monopoly is bounded away from one, if all agents are of type P.

3.2 Agents of type E and total monopoly

This subsection examines the process, when at least one agent is of type E. The
following results basically imply the first part of Theorem 3.4 as well as Theorem 3.5 as
described in Section 3.4. The main result of this subsection provides a useful lower and
upper bound for the probability of total monopoly.

Theorem 3.6. Let agent i fulfill (M). Then for all χ(0) ∈ ∆o
A−1 and N ≥ 1

∏
j 6=i

exp

−Fj(χj(0)N)

∞∑
k=χi(0)N

1

Fi(k)

 ≤ P(tMoni(χ(0), N))

≤
∏
j 6=i

exp

−cNFj(χj(0)N)

∞∑
k=χi(0)N

1

Fi(k)


where

cN := inf
k∈N0

Fi(χi(0)N + k)

Fi(χi(0)N + k) +
∑
j 6=i Fj(χj(0)N)

> 0 .

Proof. Direct calculation yields

P(tMoni(χ(0), N)) =

∞∏
k=0

Fi(χi(0)N + k)

Fi(χi(0)N + k) +
∑
j 6=i Fj(χj(0)N)

≥ exp

{
−
∞∑
k=0

∑
j 6=i Fj(χj(0)N)

Fi(χi(0)N + k)

}
=
∏
j 6=i

exp

−Fj(χj(0)N)

∞∑
k=χi(0)N

1

Fi(k)


using the inequality e−x ≤ 1

1+x for x > −1. For the upper bound, we estimate

P(tMoni(χ(0), N)) =

∞∏
k=0

Fi(χi(0)N + k)

Fi(χi(0)N + k) +
∑
j 6=i Fj(χj(0)N)
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= exp


∞∑
k=0

log(Fi(χi(0)N + k)− log

Fi(χi(0)N + k) +
∑
j 6=i

Fj(χj(0)N)


??
≤ exp

{
−
∞∑
k=0

∑
j 6=i Fj(χj(0)N)

Fi(χi(0)N + k) +
∑
j 6=i Fj(χj(0)N)

}

=
∏
j 6=i

exp

{
−Fj(χj(0)N)

∞∑
k=0

1

Fi(χi(0)N + k) +
∑
j 6=i Fj(χj(0)N)

}

≤
∏
j 6=i

exp

{
−cNFj(χj(0)N)

∞∑
k=0

1

Fi(χi(0)N + k)

}

using log(x+ y)− log(x) ≥ y
x+y in ??.

An immediate consequence of Theorem 3.6 is, that for any agent fulfilling (M) the
probability of a total monopoly is positive but less than one. In addition, the theorem
reveals a significant behavioural difference between agents of type E and type P: whereas
total monopoly is very likely for type E agents when the initial market size N is large, it
is rather untypical for type P, which is explained in the following corollary and example.

Corollary 3.7. 1. If agent i is of type E, then for all χ(0) ∈ ∆o
A−1 the following are

equivalent:

lim
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
=∞ for all j 6= i (3.7)

lim
N→∞

P(tMoni(χ(0), N)) = 1. (3.8)

2. If agent i fulfills (M), then for all χ(0) ∈ ∆o
A−1

Fj(χi(0)N)

∞∑
k=χi(0)N

1

Fi(k)

N→∞−−−−→ 0 for all j 6= i (3.9)

is sufficient for (3.8). If in addition Fi(k) is monotone for large k, (3.9) is equivalent
to (3.8).

Proof. 1. If i is of type E, then (3.7) implies

Fj(χj(0)N)

∞∑
k=χi(0)N

1

Fi(k)
≤ Fj(χj(0)N)

const.

Fi(χi(0)N)

N→∞−−−−→ 0

using (3.2), and (3.8) follows from the lower bound of Theorem 3.6. The necessity of (3.7)
follows from

P(tMoni(χ(0), N)) ≤ Fi(χi(0)N)∑A
j=1 Fj(χj(0)N)

=
(

1 +
∑
j 6=i

Fj(χi(0)N)

Fi(χj(0)N)

)−1

.

2. (3.9) implies that the lower bound of Theorem 3.6 converges to one so that (3.8)
holds. Now we assume that (3.9) does not hold. If Fi(χi(0)N)

Fj(χj(0)N) does not converge to
infinity for some j 6= i, then with 1., (3.8) cannot hold. Thus we can assume (3.7)

for all j 6= i, which implies cN
N→∞−−−−→ 1 for the upper bound in Theorem 3.6 due to

asymptotic monotonicity of Fi(χi(0)N + k) as N → ∞. The upper bound then implies
that P(tMoni(χ(0), N)) does not converge to one.
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Example 3.8. 1. In the polynomial case Fi(k) = αik
βi with αi > 0, i = 1, ..., A and

1 < β1 ≤ . . . ≤ βA condition (3.9) is equivalent to βA > βA−1 + 1 for all χ(0) ∈ ∆o
A−1.

If βA = βA−1 + 1, then

lim
N→∞

P(tMonA(χ(0), N)) =
∏

j=1,...,A−1 :
βA=βj+1

exp

{
− αj
αA

(
χj(0)

χA(0)

)βA−1
}
∈ (0, 1)

since cN
N→∞−−−−→ 1 and limN→∞P(tMonj(χ(0), N)) = 0 for j 6= A. If βA < βA−1 + 1,

in particular if β1 = . . . = βA, then limN→∞P(tMoni(χ(0), N)) = 0 for all agents.
2. When Fi(k) = αie

βik for αi > 0, βi > 0, i = 1, ..., A, then condition (3.7) is equivalent
to βiχi(0) > βjχj(0).

Remarkably for type E agents, if Fi(k) = αiF (k) for all i and a function F fulfilling
(3.2), then for large N the almost surely deterministic monopolist does not depend on
the attractiveness-parameters αi, but is only determined by the initial condition due to
the strong feedback effect of type E functions.

Moreover, Theorem 3.6 provides information about the rate of convergence in (3.8)
and (3.15). If agent i is of type E, then Theorem 3.6 states together with 1 + x ≤ ex and∑k
l=1(1− xl) ≥ 1−

∑k
l=1 xi, x1, . . . xk ≥ 0

P(tMoni(χ(0), N)) ≥
∏
j 6=i

(
1− CFj(χj(0)N)

Fi(χi(0)N)

)
≥ 1− C

∑
j 6=i

Fj(χj(0)N)

Fi(χi(0)N)
,

where

C := sup
k≥1

Fi(k)

∞∑
l=k

1

Fi(l)
<∞

because of (3.2). Thus the convergence can be considered as quite fast. For example for
A = 3, F1(k) = F2(k) = F3(k) = ek and X(0) = (6, 4, 4) the bounds in Theorem 3.6 are:

0.652 ≈ e−2/(e(e−1)) ≤ P(tMon1(χ(0), N)) ≤ e−2e/((e−1)(2−e2)) ≈ 0.714

Indeed, condition (3.7) is fulfilled for an i in most generic cases, when at least one
agent is of type E. To be more precise: If the expression in (3.7) neither tends to infinity
nor to zero, then an arbitrarily small change in the initial market shares provides (3.7).

Proposition 3.9. Let agent i be of type E.

1. If j is of type P for all j 6= i, then (3.7) holds.
2. If j 6= i is of type E and

lim inf
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
> 0, (3.10)

then for any ε > 0:

lim
N→∞

Fi((χi(0) + ε)N)

Fj(χj(0)N)
=∞

Proof. 1. By (3.2) we have for agent i of type E that∑∞
l=k+1

1
Fi(l)∑∞

l=k
1

Fi(l)

= 1− 1

Fi(k)
∑∞
l=k

1
Fi(l)

< 1− c (3.11)

for some c ∈ (0, 1) and k large enough, thus the sequence
(∑∞

l=χi(0)N
1

Fi(l)

)
N

converges

to zero faster than (1− c)N/χi(0). For an agent j 6= i of type P we have by (3.1) for any
d > 0 ∑∞

l=k+1
1

Fj(l)∑∞
l=k

1
Fj(l)

= 1− 1

Fj(k)
∑∞
l=k

1
Fj(l)

> 1− d
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for k large enough, thus the sequence
(∑∞

l=χj(0)N
1

Fj(l)

)
N

converges to zero slower than

(1− d)N/χj(0). Together this yields∑∞
l=χj(0)N

1
Fj(l)∑∞

l=χi(0)N
1

Fi(l)

N→∞−−−−→∞

exponentially fast as d is arbitrarily small. Finally (3.7) follows from

Fi(χi(0)N)

Fj(χj(0)N)
≥
∑∞
l=χj(0)N

1
Fj(l)∑∞

l=χi(0)N
1

Fi(l)

· 1

Fj(χj(0)N)
∑∞
l=χj(0)N

1
Fj(l)

N→∞−−−−→∞ (3.12)

as Fj(χj(0)N)
∑∞
l=χj(0)N

1
Fj(l)

→∞ slower than exponentially.
2. Now let agent j 6= i be of type E and assume (3.10). Then with (3.2):

lim inf
N→∞

∑∞
l=χj(0)N

1
Fj(l)∑∞

l=χi(0)N
1

Fi(l)

≥ lim inf
N→∞

const.
Fi(χi(0)N)

Fj(χj(0)N)
> 0

Iterated application of estimate (3.11) yields∑∞
l=(χi(0)+ε)N

1
Fi(l)∑∞

l=χi(0)N
1

Fi(l)

< (1− c)bεNc N→∞−−−−→ 0 for some c ∈ (0, 1) ,

and as a consequence∑∞
l=(χi(0)+ε)N

1
Fi(l)∑∞

l=χj(0)N
1

Fj(l)

=

∑∞
l=(χi(0)+ε)N

1
Fi(l)∑∞

l=χi(0)N
1

Fi(l)

·
∑∞
l=χi(0)N

1
Fi(l)∑∞

l=χj(0)N
1

Fj(l)

N→∞−−−−→ 0

Once again, the estimate in (3.12) proves the claim together with (3.2).

Corollary 3.7 implies that for any agent i ∈ [A] of type E

{χ(0) ∈ ∆o
A−1 : (3.7) holds} ⊆ Di.

Due to Proposition 3.9, these sets are even equal up to boundaries under Assumption
1 of Theorem 3.4. Moreover, the first part of Proposition 3.9 states that the attraction
domains of all agents of type P are empty, if there is at least one agent of type E. Recall
that for finite N the probability of monopoly is positive for all agents satisfying (M).

Finally, one can ask what happens for large N and critical market shares, i.e. for χ(0)

lying exactly on the edge between the asymptotic attraction domains. It stands to reason
that in this situation the monopolist remains random even for large N . Nevertheless, the
exact limiting behaviour depends on whether the feedback functions grow exponentially
or even super-exponentially.

Corollary 3.10. Let all agents be of type E and consider χ(0) ∈ ∆o
A−1, such that

lim sup
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
<∞ (3.13)

for all i, j ∈ [A]. Then the following holds:

1. For all agents i ∈ [A] we have lim infN→∞P(tMoni(χ(0), N)) > 0.

2. If for all agents i ∈ [A] we have super-exponentially growing feedback, i.e.

lim
k→∞

Fi(k + 1)

Fi(k)
=∞,

then limN→∞P
(⋃A

i=1 tMoni(χ(0), N)
)

= 1.
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3. If for all agents i ∈ [A] we have at most exponentially growing feedback, i.e.

lim sup
k→∞

Fi(k + 1)

Fi(k)
<∞,

then lim supN→∞P
(⋃A

i=1 tMoni(χ(0), N)
)
< 1.

The proof is given in Appendix A.3.

Example 3.11. Let Fi(k) = eαik
β

for αi > 0, β > 0 and all i ∈ [A]. Then condition
(3.13) is equivalent to αiχi(0)β = αjχj(0)β for all i, j ∈ [A]. According to Corol-

lary 3.10, we have in this case limN→∞P
(⋃A

i=1 tMoni(χ(0), N)
)

= 1 for β > 1 and

lim supN→∞P
(⋃A

i=1 tMoni(χ(0), N)
)
< 1 for β ≤ 1.

We summarize the main conclusions for total mononpoly in the limit of large initial
market size N →∞: If for all agents the feedback functions grow super-exponentially,
the winner of the first step will win all steps. This does not hold for any χ(0) ∈ ∆o

A−1 if
all feedback functions grow at most exponentially. In general, total monopoly of an agent
i can occur with probability one according to Corollary 3.7: if i is of type E and (3.7)
holds, or if (3.9) holds.

3.3 Agents of type P

Let us now turn to the more widely studied case when all agents are of type P. We
already saw in Example 3.8 that in this case a total monopoly is rather untypical. Since
the definition of type P includes the monopoly condition (M), strong monopoly still occurs
with probability one. Again, it is possible to predict the monopolist in the limit N →∞.

Theorem 3.12. Let all agents be of type P (in particular (M) holds) or not fulfill (M). If
there is an agent i ∈ {1, ..., A} of type P such that

lim sup
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

< 1 for all j 6= i , (3.14)

then
lim
N→∞

P(sMoni(χ(0), N)) = 1 . (3.15)

Note that condition (3.14) can be replaced by the easier, but stricter condition

lim sup
N→∞

Fj(χj(0)N)

Fi(χi(0)N)
<
χj(0)

χi(0)

since

lim sup
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= lim sup
N→∞

∫∞
χi(0)N

1
Fi(u)du∫∞

χj(0)N
1

Fj(u)du
= lim sup

N→∞

χi(0) 1
Fi(χi(0)N)

χj(0) 1
Fj(χj(0)N)

due to de l’Hospital’s Theorem. This implies that for regular varying Fi(k) = αik
βL(k),

where β > 1 and L is a slowly varying function, the attraction domains are equal to the
polynomial case, where Fi(k) = αik

β . Moreover, the attraction domains do not change if

Fi is replaced by another function F̃i satisfying limk→∞
F̃i(k)
Fi(k) = 1.

Proof. This is an immediate consequence of the following Lemma 3.13 and the exponen-
tial embedding representation (2.5) of the strong monopoly via

P ({Ti(χi(0)N) < Tj(χj(0)N)}) = P

(
Ti(χi(0)N)

ETi(χi(0)N)
· ETj(χj(0)N)

Tj(χj(0)N)
· ETi(χi(0)N)

ETj(χj(0)N)
< 1

)
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N→∞−−−−→ 1,

since ETi(χi(0)N) =
∑∞
k=χi(0)N

1
Fi(k) .

Lemma 3.13. If agent i is of type P(in particular (M) holds), then:

V ar

(
Ti(χi(0)N)

ETi(χi(0)N)

)
N→∞−−−−→ 0

Proof. We can find an appropriate regular extension of Fi, such that for all n ≥ 1

∞∑
k=n

1

Fi(k)
=

∫ ∞
n

dx

Fi(x)
and

∞∑
k=n

1

Fi(k)2
=

∫ ∞
n

dx

Fi(x)2
.

By the theorem of de L’Hospital and (3.1) this implies

lim
N→∞

V ar

(
Ti(χi(0)N)

ETi(χi(0)N)

)
= lim
N→∞

∑∞
k=χi(0)N

1
Fi(k)2(∑∞

k=χi(0)N
1

Fi(k)

)2 = lim
N→∞

∫∞
χi(0)N

dx
Fi(x)2(∫∞

χi(0)N
dx
Fi(x)

)2

= lim
N→∞

1

2Fi(χi(0)N)
∑
k=χi(0)N

1
Fi(k)

= 0 .

Example 3.14. If Fi(k) = αik
β for all i and β > 1, then the condition (3.14) is equivalent

to αiχi(0)β−1 > αjχj(0)β−1. Thus, in contrast to the type E case (Example 3.8), the
attractiveness-parameters αi affect the monopolist.

Lemma 3.13 uncovers another behavioral difference between type P and type E
agents: For type P agents the explosion time concentrates on its expectation, whereas
the variance of Ti(χi(0)N)/ETi(χi(0)N) remains bounded from below for type E agents
by an analogous argument, using (3.2). For many type P agents, including Fi(k) = αik

βi ,
it is possible to prove that the convergence of Ti(χi(0)N)/ETi(χi(0)N) is even almost
sure (see the proof of Proposition 3.17 together with the Lemma of Borel-Cantelli).

It is now natural to look for an analogy to Proposition 3.9 for type P agents in order to
make sure that (3.14) is fulfilled for almost all initial market shares χ(0). Unfortunately,
this attempt is meant to fail as the example Fi(k) = Fj(k) = k(log k)α for α > 1 shows. In
this case

∞∑
k=bχi(0)Nc

1

Fi(k)
∼
∫ ∞
χi(0)N

1

x(log x)α
dx =

1

1− α
log(χi(0)N)1−α ,

where for sequences (aN )N and (bN )N we write aN ∼ bN if aN/bN → 1 for N → ∞.
Therefore (3.14) is not fulfilled for all choices of χi(0), χj(0), since

lim
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= lim
N→∞

(
log(N) + log(χi(0))

log(N) + log(χj(0))

)1−α

= 1.

Nevertheless, with a further condition we can find a similar result as Proposition 3.9.

Proposition 3.15. Suppose that for some i 6= j

lim
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= 1. (3.16)
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1. If there exists C <∞ such that for all k ∈ N

1

k
Fi(k)

∞∑
l=k

1

Fi(l)
≤ C,

then for all ε > 0

lim sup
N→∞

∑∞
k=(χi(0)+ε)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

< 1 .

2. If

lim
k→∞

1

k
Fi(k)

∞∑
l=k

1

Fi(l)
=∞ (i.e. i is in particular of type P) (3.17)

and (3.16) holds for one choice of χi(0), χj(0), then (3.16) holds for all choices
χi(0), χj(0) ≥ 0 with χi(0) + χj(0) ≤ 1.

Proof. 1. We have by (3.5)∑∞
k=χi(0)N+1

1
Fi(k)∑∞

k=χi(0)N
1

Fi(k)

= 1− 1

Fi(χi(0)N)
∑∞
k=χi(0)N

1
Fi(k)

≤ 1− 1

Cχi(0)N
(3.18)

and iterated application of this yields∑∞
k=(χi(0)+ε)N

1
Fi(k)∑∞

k=χi(0)N
1

Fi(k)

≤
(

1− 1

C(χi(0) + ε)N

)bεNc
N→∞−−−−→ e

− ε
C(χi(0)N+ε) < 1 .

Finally, this implies

lim sup
N→∞

∑∞
k=(χi(0)+ε)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= lim sup
N→∞

∑∞
k=(χi(0)+ε)N

1
Fi(k)∑∞

k=χi(0)N
1

Fi(k)

·
∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

< 1 .

2. The second part follows by similar arguments, using Condition (3.17) for an “≥”-
estimate in (3.18), where C = C(N) is arbitrarily large.

Example 3.16. If Fi(k) = αiF (k) for all i ∈ [A] and a feedback function F fulfilling
(3.17), e.g. F (k) = k log(k)β for β ≥ 1. According to 2. of Proposition 3.15, we then have

lim
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= lim
N→∞

αj
∑∞
k=χi(0)N

1
F (k)

αi
∑∞
k=χj(0)N

1
F (k)

=
αj
αi

for all χ(0) ∈ ∆A−1

and, hence, Di = ∆o
A−1 if αi > αj for all j 6= i.

If all agents are of type P, Theorem 3.12 implies that for any agent i ∈ [A]

{χ(0) ∈ ∆o
A−1 : (3.14) holds} ⊆ Di.

Assuming 2. in Theorem 3.4, we get from Proposition 3.15 that the sets are equal up to
boundaries.

In the situation of the second part of Proposition 3.15, the explosion times concentrate

asymptotically on the same value, i.e. Ti(χi(0)N)/Tj(χj(0)N)
N→∞−−−−→ 1 in distribution.

Thus, it is not possible to predict the monopolist for large N by the means of this section.
We discuss this special situation in Example A.6. If α1 = . . . = αA and χi(0) = 1

A for all
i, then P(sMoni(χ(0), N)) = 1

A holds for all N for symmetry reasons, i.e. χ(0) does not
belong to any attraction domain as the monopolist remains random even in the limit
N →∞. Example A.7 underlines that this property does not hold in general, because in
some cases the boundary between the attraction domains belongs to one of them.

We finish this subsection with a result on the rate of convergence in (3.15). [18]
presents a bound for P(sMoni(χ(0), N)) in the case Fi(k) = Fj(k) = kα, but a straight-
forward generalization of this procedure is possible.
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Proposition 3.17. Let all agents be of type P with monotone feedback functions. If
(3.14) and (3.3) hold for agent i ∈ [A], i.e. χ(0) ∈ Di, we have

P(sMoni(χ(0), N)) ≥ 1−
A∑
j=1

exp

−(dj − ε)

√√√√Fj(χj(0)N)

∞∑
k=χj(0)N

1

Fj(k)


for any ε > 0 and large enough N , where

dj := g

(
lim sup
N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

)
> 0 with g(x) :=

1− x
1 + x

for j 6= i

and di := minj 6=i dj .

This means that the rate of convergence in (3.1) gives a lower bound for the rate of
convergence of P(sMoni(χi(0)). The proof is provided in Appendix A.3.

For Fi(k) = αkβ we have Fi(k)
∑∞
l=k

1
Fi(l)

∼ k
1−β , thus the convergence of

P(sMoni(χi(0)N)) can be considered as fast. Hence, P(sMoni(χ(0), N)) is close to
one even for moderate N , when χ(0) ∈ Di is in the asymptotic attraction domain.

In the type E case we saw that a total monopoly is very likely whereas in the type
P case the losers might also win in some steps. It is now a question of interest how
many steps the losers win, i.e. the value of Xj(∞) = limn→∞Xj(n) if agent j is not the
monopolist. Results on this question can be found in [38] and [47]. It is remarkable
that for polynomially growing feedback functions the distribution of Xj(∞) has heavy
tails. [14, 47] also present results on the time when the monopoly occurs. Further
asymptotic results on strong monopoly, mainly in the type P case, can be found e.g. in
[30, 34, 37, 18, 17, 33, 28].

3.4 Proof of Theorem 3.4 and Theorem 3.5

Finally, we shortly explain how Theorem 3.4 and Theorem 3.5 follow from the results
of the previous sections.

First, assume that Assumption 1 of Theorem 3.4 is satisfied, i.e. at least one agent is
of type E. Then Corollary 3.7 implies that for any agent i ∈ [A] of type E

D̃i := {χ(0) ∈ ∆o
A−1 : ( 3.7) holds} ⊆ Di.

Obviously:

D̃i =
⋂
j 6=i

{
χ(0) ∈ ∆o

A−1 : lim
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
=∞

}
Due to Proposition 3.9, there is a ratio ri,j ∈ [0,∞] such that

lim
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
=

{
∞ if χi(0)

χj(0) > ri,j

0 if χi(0)
χj(0) < ri,j

for each pair i 6= j of agents. Note that

lim
N→∞

Fi(χi(0)N)

Fj(χj(0)N)
= lim
N→∞

Fi

(
χi(0)
χj(0)N

)
Fj(N)

.

Hence,

D̃i =
⋂
j 6=i

{
χ(0) ∈ ∆o

A−1 :
χi(0)

χj(0)
> ri,j

}
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is an intersection of half-spaces and the simplex, i.e. a polytope. Moreover, D̃1, . . . , D̃A

cover the whole simplex up to boundaries, since the “winning”-relation
limN→∞

Fi(χi(0)N)
Fj(χj(0)N) = ∞ is transitive. Thus, D1, . . . , DA cover the simplex up to bound-

aries as well and D̃i equals Di up to boundaries. According to Corollary 3.7, we even
have P(tMoni(χ(0), N)) −→ 1 for N → ∞, if χ(0) ∈ D̃i. Hence, Theorem 3.5 is proven,
too.

If Assumption 2 of Theorem 3.4 is satisfied, the proof is analogous using Theorem 3.12
and Proposition 3.15. Note that

lim
N→∞

Fi(χj(0)N)

Fj(χi(0)N)
= c ∈ [0,∞] =⇒ lim

N→∞

∑∞
k=χi(0)N

1
Fi(k)∑∞

k=χj(0)N
1

Fj(k)

= c
χi(0)

χj(0)

due to the Theorem of de l’Hospital.

In summary, for finite N the monopolist is random and even disadvantageous agents
can win. If the initial market size N is large, it is possible to predict the winner with
high probability depending on the initial market shares.

4 The non-monopoly case

Now we consider the case when no agent fulfills (M), such that no strong monopoly
occurs. It is known that in the case of a standard Pólya urn, i.e. Fi(k) = k for all agents,
the limit χ(∞) = limn→∞ χ(n) exists almost surely and χ(∞) has a Dirichlet-distribution
with parameter X(0) (see e.g. [21]). Thus, in the long run all agents have a stable,
non-zero, random market share.

It is basically known (e.g. from [11]) that if the feedback functions grow significantly
slower than linear, then χ(∞) is deterministic. We present an alternative approach
to the sub-linear case, which allows some additional insights. For example, the case
Fi(k) = log(k) is not included in the results of [11]. In addition, our approach allows to
construct feedback functions such that χ(n) does not even converge for n→∞. In order
to get deterministic limits in our approach, we will need a condition, which ensures that
the feedback functions grow slow enough. We will mainly use:

lim sup
k→∞

1

k
Fi(k)

k∑
l=1

1

Fi(l)
<∞ (4.1)

Note that this already implies that i does not fulfill (M). We add some examples to
gain an understanding of this restriction.

Example 4.1. 1. For Fi(k) = k(log(k + 1))α with α ∈ R (4.1) is not fulfilled as∑k
l=1

1
Fi(l)

∼ (log k)1−α.

2. If Fi(k) = αkβ for α > 0, β < 1, then (4.1) is fulfilled as
∑k
l=1

1
Fi(l)

∼ k1−β

α(1−β) .

3. For Fi(k) = log(k + 1) (4.1) is fulfilled as
∑k
l=1

1
Fi(l)

∼ k
log(k) .

4. (4.1) is fulfilled if lim infk→∞ Fi(k) > 0 and lim supk→∞ Fi(k) <∞.

In fact, condition (4.1) contains a monotonicity in the following sense.

Proposition 4.2. If Fi fulfills (4.1) and for some j 6= i

lim sup
u→∞

∫ u

1

(
d

dx
log(Fj(x))− d

dx
log(Fi(x))

)
dx ∈ [−∞,∞) ,

then Fj fulfills (4.1) as well.
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The proof is presented in Appendix A.3. Proposition 4.2 implies in particular that if Fi
satisfies (4.1) and d

dx log(Fj(x)) ≤ d
dx log(Fi(x)) for all x ≥ 1, then Fj satisfies (4.1), too.

This includes the case Fj(k) = const.Fi(k).
In general, our approach even allows feedback functions that converge to zero as

long as this convergence is not to fast, which is ensured by the condition

lim inf
k→∞

1

kp
Fi(n)

k∑
l=1

1

Fi(l)
> 0 for some p >

1

2
. (4.2)

Note that (4.2) is fulfilled for any feedback function with lim infk→∞ Fi(k) > 0 as well as
for Fi(k) = k−α, α > 0, but not for Fi(k) = e−k. In analogy to Proposition 4.2 we get a
monotonicity here in the sense that if Fi fulfills (4.2) and

lim sup
u→∞

∫ u

1

(
d

dx
log(Fi(x))− d

dx
log(Fj(x))

)
dx ∈ [−∞,∞) ,

then Fj fulfills (4.2), too. We are now prepared for the main result of this section
regarding the counting processes (2.3) of the exponential embedding from Section 2.

Theorem 4.3. Let Fi fulfill (4.1) and (4.2). Then

Ξi(t)

a−1
i (t)

t→∞−−−→ 1 almost surely ,

where a−1
i denotes the inverse function of ai(t) :=

∫ t
1

dx
Fi(x) .

Note that a−1
i exists as ai is strictly monotone. The asymptotics of birth processes

have been studied in the literature before, e.g. in [6]. One main result of [6] will be used
for a special case in Section 5 to abandon condition (4.1). The following lemma provides
the first step of the proof of Theorem 4.3, using standard ideas from renewal theory.

Lemma 4.4. If Fi fulfills (4.2) for p > 1
2 , then

ai(Ξi(t))

t

t→∞−−−→ 1 almost surely .

Proof. (4.2) implies

lim
k→∞

k∑
l=1

V ar

(
τi(l)

ai(l)

)
= lim
k→∞

k∑
l=1

1

Fi(l)2ai(l)2
≤ lim
k→∞

k∑
l=1

const.

l2p
<∞ ,

using ai(k) ∼
∑k
l=1

1
Fi(l)

for k →∞. According to the Kolmogorov criterion (see e.g. [23],
Section 6.2) this is sufficient for

Si(k)

ai(k)

k→∞−−−−→ 1 almost surely,

where Si(k) :=
∑k
l=1 τi(l). We use this and Ξi(t)→∞ a.s. for the final estimate:

1 = lim
t→∞

ai(Ξi(t))

Si(Ξi(t))− Si(Xi(0)− 1)
≤ lim
t→∞

ai(Ξi(t))

t
≤ lim
t→∞

ai(Ξi(t))

Si(Ξi(t) + 1)− Si(Xi(0)− 1)

≤ lim
t→∞

ai(Ξi(t) + 1)

Si(Ξi(t) + 1)
= 1

EJP 29 (2024), paper 92.
Page 21/56

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1157
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Asymptotics of generalized Pólya urns

Now Theorem 4.3 is easy to prove.

Proof. Lemma 4.4 states

ai(Ξi(t)) = t+ o(t) ⇔ Ξi(t) = a−1
i (t+ o(t)) almost surely

(using the Landau o-notation). It thus remains to show that

lim
t→∞

a−1
i (t+ o(t))

a−1
i (t)

= 1. (4.3)

The condition (4.1) implies using ai(k) ∼
∑k
l=1

1
Fi(l)

for k →∞

lim
t→∞

o(ai(t))
Fi(t)

t
= 0

and hence, replacing t by a−1
i (t) (note: a−1

i (t)→∞), we get:

lim
t→∞

o(t)
Fi(a

−1
i (t))

a−1
i (t)

= 0

Finally,

log

(
a−1
i (t+ o(t))

a−1
i (t)

)
=

∫ t+o(t)

t

d

dx
log
(
a−1
i (x)

)
dx =

∫ t+o(t)

t

d
dxa
−1
i (x)

a−1
i (x)

dx

=

∫ t+o(t)

t

Fi(a
−1
i (x))

a−1
i (x)

dx
t→∞−−−→ 0 ,

which includes (4.3).

Theorem 4.3 implies that the market shares in the exponential embedding are asymp-
totically given by

Ξi(t)

Ξ1(t) + ...+ ΞA(t)
∼ a−1

i (t)

a−1
1 (t) + ...+ a−1

A (t)
for t→∞.

Via (2.4) we can now conclude for the discrete-time urn model.

Corollary 4.5. Let all agents fulfill (4.1) and (4.2). If the limit

χi(∞) := lim
t→∞

a−1
i (t)

a−1
1 (t) + ...+ a−1

A (t)
∈ [0, 1] (4.4)

exists for an i ∈ [A], then

χi(n)
n→∞−−−−→ χi(∞) almost surely .

If the limit in (4.4) does not exist, then χi(n) does not converge for n→∞.
If the limit in (4.4) exists for all i ∈ [A], then χ(n)

n→∞−−−−→ χ(∞) ∈ ∆A−1 almost surely.

Note that the a−1
i do not depend on N and χ(0), thus the long time behavior of market

shares (χ(n))n∈N in the generalized Pólya urn does not depend on initial conditions if
(4.1) and (4.2) are satisfied. If the limit in (4.4) exists, a market modeled by a Pólya urn
under the assumptions of the corollary reveals stable and deterministic market shares
in the long run and these market shares do not depend on the current market situation
and can also take values in (0, 1). If the limit χ(∞) exists it is in ∆A−1, since ∆A−1 is
compact and therefore the laws of χ(n) form a tight sequence. The corollary provides a
way to explicitly calculate these long-time market shares.
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Example 4.6. 1. If Fi(k) = αik
β with αi > 0, β < 1, i = 1, ..., A, then

a−1
i (t) = (αi(1− β)t+ 1)

1
1−β

and hence:

χi(∞) =
α

1
1−β
i

α
1

1−β
1 + ...+ α

1
1−β
A

∈ (0, 1)

Consequently, the impact of the fitness parameters αi in the long-time limit in-
creases with β, where

χi(∞)→ 1

A
for β → −∞ and χi(∞) =

αi
α1 + ...+ αA

for β = 0 .

The limiting case β → 1 will be discussed later in Proposition 4.8.

2. If Fi(k) = αi log(k + 1) with αi > 0, i = 1, ..., A, then

a−1
i (t) ∼ αit log(αit) for t→∞

and thus:
χi(∞) =

αi
α1 + ...+ αA

Note that this is the same asymptotic market share as if the customers’ decisions
were independent (with constant feedback functions as for β = 0 above), so that
the strong law of large numbers applies.

It is also possible to find examples where the limit (4.4) does not exist. In the situation
of Example A.8, the market share of the agents oscillates with constant amplitude but
increasing period. We now add a criterion that ensures the existence of the limit in (4.4).

Corollary 4.7. Suppose that for an agent i the following tightening of (4.1) holds,

Fi(k)

k

k∑
l=1

1

Fi(l)

k→∞−−−−→ c ∈ (0,∞) , (4.5)

and that the limits

lim
k→∞

Fi(k)

Fj(k)
= cj ∈ [0,∞] exist for all j 6= i . (4.6)

Then the limit in (4.4) exists and

χi(∞) =

1 +
∑
j 6=i

c−cj

−1

.

In particular, P(wMoni(χ(0), N)) = 1 if and only if all cj are infinity, otherwise
P(wMoni(χ(0), N)) = 0. If all cj are one, then the condition (4.5) can be replaced
by (4.1) and χj(∞) = 1/A for all j = 1, ..., A.

Proof. Recall that ai(t) =
∫ t

1
dx
Fi(x) is strictly increasing. For a fixed j 6= i we show that

Ξj(t)/Ξi(t) converges to c−cj . First, we assume 0 < cj < ∞, such that agents i and j

fulfill (4.1) and (4.2). (4.6) implies via the theorem of de l’Hospital aj(t)/ai(t)→ cj for

t→∞ and consequently a−1
j (t) = a−1

i (δ(t)t) for a function δ with δ(t)
t→∞−−−→ 1/cj <∞. In

combination with Theorem 4.3 it remains to show that a−1
i (δ(t)t)/a−1

i (t) converges to
c−1
j for t→∞. For this we consider

log

(
a−1
i (δ(t)t)

a−1
i (t)

)
=

∫ δ(t)t

t

d

dx
log a−1

i (x)dx =

∫ δ(t)t

t

Fi(a
−1
i (x))

a−1
i (x)

dx
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∼
∫ δ(t)t

t

c

x
dx = c log(δ(t))

as (4.5) implies via time-shift

Fi(a
−1
i (t))

a−1
i (t)

∼ c

t
for t→∞.

Thus:
a−1
j (t)

a−1
i (t)

=
a−1
i (δ(t)t)

a−1
i (t)

∼ δ(t)c t→∞−−−→ c−cj

For agents j with cj = 0 the asymptotic market share is for sure bigger than in a
situation where Fj is replaced by CFi, C > 0, i.e. Ξj(t)/Ξi(t) is for t → ∞ larger than
any C. Hence, it converges to infinity. Similarly for agents with cj =∞.

Note that in the case c = 1 (including e.g. feedback functions such as log k, 1/ log k

or functions converging in (0,∞)) the limit χi(∞) is equal to the case Fi(k) = const., i.e.
draws from the urn are independent and the usual strong law of large numbers applies.
So this weak reinforcement does not play any role in the long run.

So far, we did not consider cases near the classical Pólya urn with Fi(k) = k, where
random limits χi(∞) are possible. Nevertheless, as Lemma 4.4 does not require (4.1),
our approach provides some insight into such asymmetric cases as well. The symmetric
case with feedback functions close to the classical Pólya urn is treated in Section 5.

Proposition 4.8. Let an agent i fulfill

Fi(k)

k

k∑
l=1

1

Fi(l)

k→∞−−−−→∞, (4.7)

but not (M), i.e.
∑∞
k=1

1
Fi(k) =∞. If

lim sup
k→∞

Fj(k)

Fi(k)
< 1 for all agents j 6= i , (4.8)

then P(wMoni(χ(0), N)) = 1.

Proof. First note that via exponential embedding, the event wMoni(χ(0), N) is equivalent

to Ξi(t)/Ξj(t)
t→∞−−−→∞ for all j 6= i. Obviously, agent i fulfills (4.2). First, we assume that

agent j does, too. Define

ψ(t) :=

∫ t

0

ex

Fi(ex)
dx =

∫ et

1

1

Fi(x)
dx = ai(e

t)

and thus a−1
i (t) = eψ

−1(t). Assumption (4.8) implies that for any j 6= i there is a constant
c < 1 with ai(t) ≤ caj(t) for large enough t and consequently a−1

j (t) ≤ a−1
i (ct). Lemma 4.4

states that Ξi(t) = a−1
i (t+ o(t)) and Ξj(t) = a−1

j (t+ o(t)) ≤ a−1
i (ct+ o(t)) almost surely.

Thus it remains to show that

a−1
i (t+ o(t))

a−1
i (ct+ o(t))

t→∞−−−→∞,

which is equivalent to ψ−1(t+ o(t))− ψ−1(ct+ o(t))
t→∞−−−→∞. It is sufficient that

t · d
dt
ψ−1(t) = t ·

Fi

(
eψ
−1(t)

)
eψ−1(t)

= t
Fi
(
a−1
i (t)

)
a−1
i (t)

t→∞−−−→∞,
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which follows since a−1
i (t)

t→∞−−−→∞ and Assumption (4.7) is equivalent to Fi(t)
t ai(t)

t→∞−−−→
∞.

If agent j does not fulfill (4.2), then Fj is bounded from above and hence Ξj is stochas-
tically dominated by a homogeneous Poisson process (with constant rate). Consequently,
Ξj(t) grows asymptotically not faster than linear and hence Ξi(t)/Ξj(t) → ∞ almost
surely.

Condition (4.7) includes feedback functions of the form Fi(k) = αik(log k)β for all
β ≤ 1, including the linear case Fi(k) = αik for β = 0. If in addition (4.8) holds, i.e.
αi > αj for an agent i and all j 6= i, then we have an almost sure weak monopoly
for agent i. This is consistent with the strong monopoly for β > 1 as described in
Example 3.16. Note that the weak monopoly in Proposition 4.8 is almost sure even for
finite N , in contrast to the results on strong monopoly derived in Section 3, where the
strong monopolist is random and can only be predicted in the limit N →∞.

On the other hand, condition (4.1) includes sublinear feedback functions of the form
Fi(k) = αik

β with β < 1, which have positive long-time market shares for all agents as
discussed in Example 4.6.

Exponentially decreasing feedback functions were not taken into account so far as
they do not fulfill (4.2). Since such cases do not seem to be of great importance for
the mentioned interpretations of the model, we are content with an example, which we
discuss in Appendix A.2 using the method of stochastic approximation.

We conclude the presentation with a short overview of further related results. [35,
37, 29] discuss another change of behaviour that is not apparent from our approach.
Consider the case

F1 = F2 = ... = FA , lim inf
k→∞

Fi(k) > 0 and
∞∑
k=1

1

Fi(k)
=∞ .

If
∞∑
k=1

1
Fi(k)2 <∞, e.g. for Fi(k) = k, then the leading agent changes only finitely often

with probability one, whereas in the case
∞∑
k=1

1
Fi(k)2 =∞ this probability is zero.

For F1(k) = ... = FA(k) = kβ, it is shown in [30] that χi(n) converges to 1/A at rate
nβ−1 for 1/2 < β < 1 (almost surely), at rate n−1/2 for 0 < β < 1/2 and at rate

√
log(n)/n

for β = 1/2 (in a weak sense). For 0 < β ≤ 1/2, a central limit theorem holds.

In the case A = 2 and Fi(k) = αik
β [28] derives the tail distributions of the number

and last times of ties X1(n) = X2(n).

5 Feedback functions close to the classical Pólya urn

We know from Theorem 2.2 that a generalized Pólya urn reveals strong monopoly
if and only if at least one feedback function grows significantly faster than linear, i.e.
fulfills (M). As described in Section 4, linear feedback functions imply random long-time
market shares, whereas a deterministic limit occurs for feedback functions growing
significantly slower than linear, i.e. those fulfilling (4.1). Nevertheless, some feedback
functions that are close to linear (like Fi(k) = k(log k)β , β 6= 0) are not covered by our
results so far. To our knowledge, the literature does not provide results on the long
time behaviour of a generalized Pólya urn with almost linear feedback. For instance, if
Fi(k) = kL(k) for a slowly varying function L, then Theorem 2.4 does not determine the
long-time limit, since limN→∞ p(N, x) = x for all x ∈ ∆A−1. We approach this question
exploiting general results on birth processes, which require that Fi does not fulfill (M)
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but inverted squares are summable, i.e.

∞∑
k=1

1

Fi(k)
=∞ and σ2

i :=

∞∑
k=Xi(0)

1

Fi(k)2
<∞. (5.1)

Recall the exponential embedding from Section 2 and notations introduced therein. For
this section, it is convenient to adapt previous definitions using

ai(t) :=

∫ Xi(0)+t

Xi(0)

dx

Fi(x)
and Si(k) :=

Xi(0)+k∑
l=Xi(0)

τi(l), (5.2)

and to extend Fi on (0,∞) by a right-continuous step function. The key to the desired
results is provided by the following result in [6].

Theorem 5.1. [6, Theorem 3.3’, Theorem 3.4, Lemma 3.1] Assume that Fi fulfills (5.1).
Then t − ai(Ξi(t)) and Si(k) − ai(k) converge almost surely for t → ∞ resp. k → ∞ to
the same random variable Ui ∈ R. Moreover, σ2

i is the variance of Ui.

We can now apply this general result in our situation.

Corollary 5.2. Assume that Fi fulfills (5.1). Then:

1. If limk→∞
Fi(k)
k = 0, then

Ξi(t)

a−1
i (t)

t→∞−−−→ 1 almost surely.

2. If limk→∞
Fi(k)
k = c ∈ (0,∞), then

Ξi(t)

a−1
i (t)

t→∞−−−→ e−cUi almost surely.

3. If limk→∞
Fi(k)
k =∞, then

Ξi(t)

a−1
i (t)

= exp

(∫ t−Ui−o(1)

t

hi(s)ds

)

for a (deterministic) function hi with lims→∞ hi(s) =∞.

Proof. Theorem 5.1 implies t− ai(Ξi(t)) = Ui + o(1) and hence

Ξi(t) = a−1
i (t− Ui + o(1))

Using d
dta
−1
i (t) = Fi(a

−1
i (t) +Xi(0)) in the logarithmic derivative yields

a−1
i (t) = exp

(∫ t

0

d

ds
log
(
a−1
i (t)

)
ds

)
= exp

(∫ t

0

Fi(a
−1
i (s) +Xi(0))

a−1
i (s)

ds

)
(5.3)

and consequently

Ξi(t)

a−1
i (t)

=
a−1
i (t− Ui − o(1))

a−1
i (t)

= exp

(∫ t−Ui−o(1)

t

Fi(a
−1
i (s) +Xi(0))

a−1
i (s)

ds

)
.

Now, be aware that limt→∞ a−1
i (t) = ∞ as Fi does not fulfill (M) and that the limit of

F (k + const.)/k for k →∞ is equal to the limit of F (k)/k. Then all parts of the corollary
follow directly from their assumptions.
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Like in Section 4, we can now conclude from the exponential embedding to the
evolution of market shares in the Pólya urn via

lim
n→∞

χi(n)

χ1(n) + . . . χA(n)
= lim
t→∞

Ξi(t)

Ξ1(t) + . . .ΞA(t)
,

provided that the limit exists.
We are now particularly interested in cases with equal feedback functions for all

agents, since agents with different attractiveness are already covered by Proposition 4.8.

Corollary 5.3. Assume that all agents have the same feedback function Fi ≡ F and that
F fulfills (5.1). Then for all χ(0) ∈ ∆o

A−1:

1. If limk→∞
F (k)
k = 0, then

χi(n)
n→∞−−−−→ 1

A
almost surely, for all i ∈ [A] .

2. If limk→∞
F (k)
k = c ∈ (0,∞), then the limit χ(∞) = limn→∞ χ(n) exists almost

surely and has a non-degenerate Dirichlet distribution on ∆A−1.

3. If limk→∞
F (k)
k =∞, then χ(∞) = limn→∞ χ(n) exists almost surely and the process

exhibits a weak monopoly, i.e

P

(
A⋃
i=1

wMoni(χ(0), N)

)
= 1 such that P (wMoni(χ(0), N)) > 0 for all i ∈ [A].

In other words: If the feedback function grows any slower than the identity, then the
market shares converge to a deterministic limit as time tends to infinity, and the limit
does not depend on the initial condition. If the feedback functions grow any faster than
the identity, the process exhibits weak monopoly, which is not strong as (M) is necessary
in Theorem 2.2. The weak monopoly can been seen in the Simulation shown in Figure 1
(d). In contrast to the non-symmetric situation of Proposition 4.8, the monopolist is
random with probability depending on the initial condition χ(0).

Proof. Note that the Ui from Theorem 5.1 are independent with distribution depending
on χ(0) and N . In addition, their distribution is continuous as Ui emerges from a sum of
independent, centered exponentially distributed random variables. By definition (5.2)
we get ai(t) = aj(t+ const.) + const. with constants depending on the initial conditions
and F , and after inversion we have a−1

i (t) = a−1
j (t+ const.) + const. for all i, j ∈ [A]. With

(5.3) this implies

a−1
i (t) = a−1

j (t) exp

(∫ t+const.

t

F (a−1
j (s) +Xj(0))

a−1
j (s)

ds

)
+ const. , (5.4)

and note that a−1
j (t)→∞ in all cases.

1. In this case (5.4) implies that a−1
i (t) ∼ a−1

j (t). Then the claim follows directly from
Corollary 5.2 via

lim
n→∞

χi(n)

χ1(n) + . . . χA(n)
= lim
t→∞

Ξi(t)

Ξ1(t) + . . .ΞA(t)
= lim
t→∞

a−1
i (t)

a−1
1 (t) + . . . a−1

A (t)
=

1

A
.

2. Here, again with (5.4), a−1
i (t)/a−1

j (t) converges to a finite, non-zero constant for
all i, j ∈ [A], such that Corollary 5.2 yields

lim
t→∞

Ξi(t)

Ξ1(t) + . . .ΞA(t)
= lim
t→∞

e−cUia−1
i (t)

e−cU1a−1
1 (t) + . . . e−cUAa−1

A (t)
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=

1 +
∑
j 6=i

ec(Ui−Uj) lim
t→∞

a−1
j (t)

a−1
i (t)

−1

.

Hence, limn→∞ χ(n) exists almost surely and has a continuous distribution, which is of
Dirichlet type according to Proposition 2.3 and [26].

3. Due to Lemma 5.4, we can assume X(0) = (1, . . . , 1), so that ai = aj and hi = hj .
Then:

lim
t→∞

Ξi(t)

Ξ1(t) + . . .ΞA(t)
= lim
t→∞

1 +
∑
j 6=i

Ξj(t)

Ξi(t)

−1

= lim
t→∞

1 +
∑
j 6=i

exp

(∫ t−Uj−o(1)

t

hj(s)ds−
∫ t−Ui−o(1)

t

hi(s)ds

)−1

= lim
t→∞

1 +
∑
j 6=i

exp

(∫ t−Uj−o(1)

t−Ui−o(1)

hi(s)ds

)−1

=

{
1 if Ui < Uj for all j 6= i

0 else

Recall that lims→∞ hi(s) = ∞. Again by Lemma A.10, the unboundedness of the Ui
implies that P (wMoni(χ(0), N)) > 0 for all i ∈ [A].

Lemma 5.4. For all choices of F1, . . . , FA, we have

P

(
A⋃
i=1

wMoni

((
1

A
, . . . ,

1

A

)
, A

))
= 1

⇔ P

(
A⋃
i=1

wMoni(χ(0), N)

)
= 1 for all χ(0) ∈ ∆o

A−1, N ∈ N.

Proof. The implication ⇐ is trivial. Thus, assume that the process X(n) starts in

X(0) = (1, . . . , 1) and that P
(⋃A

i=1 wMoni
((

1
A , . . . ,

1
A

)
, A
))

= 1. Moreover, take any

x ∈ ∆o
A−1, M ∈ N. Then the claim follows directly from the Markov property,

1 = P

(
A⋃
i=1

wMoni

((
1

A
, . . . ,

1

A

)
, A

) ∣∣X(M −A) = Mx

)
= P

(
A⋃
i=1

wMoni(x,M)

)
,

since P (X(M −A) = Mx) > 0.

The following example presents a class of feedback functions, for which four different
regimes are possible.

Example 5.5. Let Fi(k) = k(log k)β for all i ∈ [A] and β ∈ R. Depending on β, four
different regimes occur for n→∞:

1. For β < 0, χi(n) for each agent i converges almost surely to 1
A independently of

χ(0).

2. For β = 0, the market shares χ(n) converge almost surely to a random limit
χ(∞) ∈ ∆A−1, which is not a corner point and its distribution depends on the initial
condition χ(0).

3. For β ∈ (0, 1], the process exhibits a weak monopoly which is not strong, i.e. all
agents win in infinitely many steps, but the market share of one agent converges to
one. The monopolist is random, and the distribution of χ(∞) on the corner points
of ∆A−1 depends on χ(0).
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4. For β > 1, there is a strong monopoly. The monopolist is random and the distribu-
tion of χ(∞) on the corner points of ∆A−1 depends on the initial condition χ(0) as
well.

According to Theorem 5.1, we have tn − ai(Xi(n))
n→∞−−−−→ Ui by definition of the

exponential embedding with jump times tn. If limk→∞ F (k)/k =∞, this convergence can
be specified by replacing tn by a deterministic function and by computing the distribution
of Ui.

Theorem 5.6. Assume that Fi ≡ F does not fulfill (M) and that F (k)/k
k→∞−−−−→∞ holds.

Then there exist independent random variables U1, . . . , UA such that

(ai(n)− ai(Xi(n)))i∈[A]
n→∞−−−−→

Ui − Xi(0)−1∑
k=1

1

F (k)
− min
j∈[A]

Uj − Xj(0)−1∑
k=1

1

F (k)


i∈[A]

almost surely. Moreover, the cumulant generating function (CGF) of each Ui is given by

λ 7→ log
(
EeλUi

)
=

∞∑
l=2

λl

l

∞∑
k=Xi(0)

1

F (k)l
(5.5)

and the radius of convergence is mink≥Xi(0) F (k).

In particular, there is exactly one agent, namely the weak monopolist, such that the
limit of ai(n)− ai(Xi(n)) is zero. The proof of Theorem 5.6 can be found in Appendix A.4.

According to Theorem 5.6, Xi(n) is asymptotically well described by

Xi(n) ≈ a−1
i

(
ai(n)− Ũi + min

j∈[A]
Ũj

)
,

where Ũj := Uj −
∑Xj(0)−1
k=1

1
F (k) for all j ∈ [A]. Now, consider two distinct agents i, j

and assume for simplicity of notation that Xi(0) = Xj(0), such that ai(k − Xi(0)) =

aj(k −Xj(0)) =: a(k). Then Theorem 5.6 states that

a(Xi(n))− a(Xj(n))
n→∞−−−−→ Uj − Ui almost surely.

Moreover, the CGF of Uj − Ui is the sum of the CGFs of Uj and Ui due to independence.
Hence, Eeλ(Uj−Ui) is finite if and only if |λ| < mink≥Xi(0) F (k). Thus, the distribution of
Uj − Ui has exponential tails, and these findings can be used as follows.

Example 5.7. Let Fi(k) ≡ F (k) = k log(k) andXi(0) = Xj(0) = 1 for two agents i, j ∈ [A],
so that ai(t) = aj(t) = log log t. Then the continuous mapping theorem yields

logXi(n)

logXj(n)

n→∞−−−−→ eUj−Ui almost surely,

where eUj−Ui has a power-law distribution due to the explanations above. Remarkably,
the log-ratios logXi(n)

logXj(n) and logXi′ (n)
logXj′ (n) are asymptotically also independent for distinct pairs

of agents (i, j), (i′, j′).

An important application of Theorem 5.6 is its implication for the rate of convergence.
In fact, the convergence of the process of market shares χ(n) to an edge of the simplex
can be considered as logarithmically slow.

Corollary 5.8. Assume that Fi = F and L(k) := F (k)/k is increasing, but (M) does not
hold. Then there is a random constant c > 0 such that

χi(n) ≥ e−cL(n) for all n ≥ 1 and i ∈ [A].
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Proof. Since the limit in Theorem 5.6 is finite, there is a constant c > 0 such that

c ≥
∫ n+Xi(0)

Xi(n)

1

F (s)
ds =

∫ 1+Xi(0)/n

χi(n)

1

sL(ns)
ds ≥ 1

L(n)

∫ 1+Xi(0)/n

χi(n)

1

s
ds

=
log(1 +Xi(0)/n)

L(n)
− log(χi(n))

L(n)
.

Since limn→∞
log(1+Xi(0)/n)

L(n) = 0, we have

c ≥ − log(χi(n))

L(n)

for an updated constant c, which proves the claim.

In particular, χi(n) converges to zero slower than any polynomial when
limn→∞ L(n)/ log(n) = 0. Example A.12 underlines that this bound can be considered as
sharp in a generic situation.

If the second part of (5.1) is not fulfilled, i.e. σ2
i = ∞, then Si(k)−a(k)∑k

l=1
1

Fi(l)
2

fulfills the

Lindeberg condition. Hence, Theorem 5.1 and its implications are wrong if we drop the
condition σ2

i <∞. As already described at the end of Section 4, [30] derives a central
limit theorem for polynomial feedback functions with σ2

i = ∞. Moreover, [35, 37, 29]
present another transition between functions satisfying this condition and those who do
not.

Another remarkable property is the following: The proof of part 3 of Corollary 5.3
reveals that Xi(n)

Xj(n) → 0 or ∞ for n → ∞ for all i 6= j. This corresponds to a hierar-
chical structure of asymptotic market shares consistent with weak monopoly and the
consistency property in Proposition 2.3, such that within each subset of agents a weak
monopolist has full relative market share. Such hierarchical structures are often ob-
served at phase transition points, in our case the transition between strong monopoly
and deterministic limit shares.

6 A law of large numbers for the dynamics

So far our investigations focused on the analysis of the long-time behavior of a
generalized Pólya urn. This section examines the dynamics of the process in the limit
for large initial market size N , based on the concept of stochastic approximation (see
e.g. [11, 39, 42, 9]), which traces back to [40]. Note that X(n) and χ(n) depend

on N , thus we establish the notation X(N)(n) =
(
X

(N)
1 (n), ..., X

(N)
A (n)

)
= X(n) and

χ(N)(n) =
(
χ

(N)
1 (n), ..., χ

(N)
A (n)

)
= χ(n) for this section and assume that χ(N)(0) is equal

for all N (up to roundings).

Theorem 6.1. Define for x ∈ ∆A−1

G(k, x) = p(k, x)− x and G(x) = lim
k→∞

G(k, x), (6.1)

where we assume that G(k, (·)) converges for k →∞ uniformly to a Lipschitz-continuous
function G on an open neighborhood D ⊂ ∆A−1 of the image of the solution Z : (0,∞)→
∆A−1 of the differential equation

d

dt
Z(t) =

G(Z(t))

1 + t
with Z(0) = χ(0). (6.2)

Moreover, we define the following sequence of stochastic processes in ∆A−1:

(Z(N))N :=
(
Z(N)(t) : t ≥ 0

)
N

:=
(
χ(N)(bNtc) : t ≥ 0

)
N
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Then: Z(N) converges to Z weakly on the Skorochod space D([0,∞),∆A−1).

Similar ODE approximations of the generalized Pólya urn model have also been de-
rived in [43, 8], but they rather focus on the embedded process Ξ(t) from the exponential
embedding and on the limit t→∞ instead of N →∞.

Proof. By construction, we have ‖Z(N)(t) − Z(N)(s)‖ ≤ N |t−s|+1
N for all t, s ≥ 0, where

‖ · ‖ = ‖ · ‖∞ denotes the supremum norm. This implies by [25, Proposition VI.3.26] that
the sequence (Z(N))N is tight in D([0,∞),∆A−1), with the additional property that all
weak limits of converging subsequences are concentrated on the subspace of continuous
functions. We now take any converging subsequence and show that the limit solves
(6.2). As the solution of (6.2) is unique due to the assumed Lipschitz-continuity of G, this
implies the claim. For simplicity of notation assume that the subsequence is (Z(N))N
itself. Then we can write the increments as

χ(N)(n+ 1)− χ(N)(n) =
X(N)(n+ 1)

N + n+ 1
− χ(N)(n)

=
(N + n)χ(N)(n) +X(N)(n+ 1)−X(N)(n)

N + n+ 1
− χ(N)(n)

=
1

N + n+ 1

(
−χ(N)(n) +X(N)(n+ 1)−X(N)(n)

)
=

1

N + n+ 1

(
G(N + n, χ(N)(n)) + ξ(N)(n)

)
with ξ(N)(n) := X(N)(n+ 1)−X(N)(n)−G(N +n, χ(N)(n))−χ(N)(n). Note that ξ(N)(n) is

F (N)
n+1-measurable, where (F (N)

n )n≥0 is the filtration generated by the process (χ(N)(n))n.
Furthermore,

E
[
ξ(N)(m) | F (N)

n

]
= 0 for m ≥ n

since with (6.1) E
[
X(N)(n+ 1)−X(N)(n) | F (N)

n

]
= G(N + n, χ(N)(n)) + χ(N)(n). The

ξ(N)(n) are also uncorrelated, as for m > n

E
[
ξ

(N)
i (n)ξ

(N)
j (m)

]
= E

[
ξ

(N)
i (n)E

[
ξ

(N)
j (m) | F (N)

n+1

]]
= 0 for all i, j ∈ [A] . (6.3)

Summing up the increments yields the standard Doob-Meyer decomposition

χ(N)(n) = χ(N)(0) +H(N)(n) +M (N)(n)

with predictable and martingale part, respectively

H(N)(n) :=

n−1∑
k=0

G(N + k, χ(N)(k))

N + k + 1
and M (N)(n) :=

n−1∑
k=0

1

N + k + 1
ξ(N)(k) . (6.4)

With uncorrelated and centered increments (M (N)(n))n≥0 is a centered martingale with

respect to the filtration (F (N)
n )n≥0, thus Doob’s inequality yields for any ε > 0:

P
(
∃s ∈ [0,∞) : ‖M (N)(bNsc)‖ ≥ ε

)
= lim
t→∞

P
(
∃s ≤ t : ‖M (N)(bNsc)‖ ≥ ε

)
≤ lim
t→∞

A

ε2
E
[
‖M (N)(bNtc)‖2

]
= lim
t→∞

A

ε2

bNtc−1∑
k=0

1

(N + k + 1)2
E
[
‖ξ(N)(k)‖2

]
≤ A

ε2

∞∑
k=0

1

(N + k + 1)2

N→∞−−−−→ 0 (6.5)
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since ‖ξ(N)(k)‖ ≤ 1 almost surely by definition. Hence, the sequence(
M (N)(Nt) : t ≥ 0

)
N

of stochastic processes converges to zero weakly on D([0,∞),RA).

Now we turn to the predictable part H(N). By the Skorochod representation theorem
we can find a probability space such that the convergence of (Z(N))N is almost sure.
Then for fixed ω ∈ Ω (Z(N))N converges with respect to the Skorochod norm to a process
Ẑ on ∆A−1. As Ẑ is continuous, the convergence is uniform on bounded time intervals.
Denote t0 ∈ (0,∞] the stopping time, when Ẑ first leaves D. Then for any t < t0 and
large enough N = N(t) we have Z(N)(t) ∈ D and consequently

H(N)(bNtc) =

bNtc−1∑
k=0

G(N + k, χ(N)(k))

N + k + 1
=

bNtc−1∑
k=0

1

N
·
G(N + k, χ(N)(N · kN ))

1 + k
N + 1

N

N→∞−−−−→
∫ t

0

G(Z(u))

1 + u
du

as the sequence
(
u 7→ G(N+k,χ(N)(Nu))

1+u+ 1
N

)
N

of functions converges uniformly to u 7→ G(Z(u))
1+u

on bounded time intervals. Thus, we have for t < t0 that (Z(N))N converges weakly on
D([0,∞),∆A−1) to Ẑ(t) = χ(0) +

∫ t
0
G(Z(x))

1+x dx which fulfills (6.2) and by uniqueness of

solutions we have Ẑ = Z and t0 =∞.

This means, that (χ(N)(n))n≥0 is asymptotically deterministic and driven by the vector-
field (G(x))x∈∆A−1

modulo a time change. Let Y : [0,∞)→ ∆A−1 be the solution of the
time-homogeneous differential equation

d

dt
Y (t) = G(Y (t)) with Y (0) = χ(0) , (6.6)

so that Z(t) = Y (log(1 + t)). Then for large N the process (χ(N)(n))n≥0 is approximately
given by

(
Y
(
log
(
1 + n

N

)))
n≥0

. We can use this result e.g. to estimate the number of
steps until the process reaches a given neighborhood of its long-time limit for large N .

Corollary 6.2. In the situation above let D ⊂ ∆A−1 be an open neighborhood of
limt→∞ Y (t) and define the following last entrance times:

t∗ := sup{t ≥ 0: Y (t) /∈ D}

tN := sup{n ≥ 0 : χ(N)(n) /∈ D}

Then we have
tN
N

N→∞−−−−→ et
∗
− 1 in probability .

This follows directly from the Theorem 6.1 via the continuous mapping theorem.
Another interesting consequence of Theorem 6.1 is the following. In the monopoly

case described in Section 3, we may start our process in an unstable fixed point χ(0)

of the vector field G. Although we know that the process exhibits strong monopoly, we
have Z(t) ≡ χ(0) for all times t ≥ 0 in Theorem 6.1. This implies that a linear scaling of
time is not sufficient to capture the escape from an unstable equilibrium.

Corollary 6.3. In the situation of Theorem 6.1, let G(χ(0)) = 0. For ε > 0 define the
escape time

tN (ε) := inf{n ≥ 0: ‖χ(n)− χ(0)‖ ≥ ε}.

with the convention inf ∅ =∞. Then

tN (ε)

N

N→∞−−−−→∞ in probability .
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Figure 3: The vector field G for different feedback functions and A = 3. Here • marks
the stable and ◦ the unstable fixed points of the dynamics (6.2). In addition, Figure (a)
shows the asymptotic attraction domains as derived in Example 3.14.
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Proof. This follows from Theorem 6.1 via

P

(
tN (ε)

N
> t

)
= P

(
‖Z(N)(s)− χ(0)‖ < ε for all s ≤ t

)
= P

(
sup

0≤s≤t
‖Z(N)(s)− Z(s)‖ < ε

)
N→∞−−−−→ 1

for all t > 0 since Z(s) ≡ χ(0).

Simulations for Fi(k) = kβ , β > 1 indicate that the escape from an unstable equilib-
rium is faster the larger β is. Recall that for superexponential feedback functions (see
Corollary 3.10) the winner of the first step wins in all further steps with high probability
if N is large. Hence, it only takes O(N) time to escape from an unstable equilibrium in
this case. Nevertheless, this does not pose a contradiction to Corollary 6.3 since the con-
vergence of G(k, (·)) to G is not uniform in an unstable equilibrium. Thus, Theorem 6.1
is not applicable and the assumption of uniform convergence can not be removed.

Figure 3 shows the dynamics of the process (χ(n))n in various generic situations.
The fixed points of the dynamics, i.e. the zeros of the vector-field G, are the long-time
market-shares of our generalized Pólya-urn, but only the stable fixed points are attained
with positive probability. Figure (a), (b) and (c) comply with the properties found in the
sections before, i.e. monopoly in the superlinear case and stable, non-zero market-shares
in the sublinear case. Figure (d) underlines that the set of stable fixed points is not
necessarily discrete. Note that when Fi(k) = kL(k) for all agents i ∈ [A] and a slowly
varying function L, then the field G is constantly zero, such that all points are fixed
points. In particular, this holds for the original Pólya urn, where L is a constant function.
If L diverges, then the process exhibits weak monopoly resp. deterministic limits for
finite N (see Section 5), which is again not captured by Theorem 6.1 as it takes more
than O(N) steps to reach the long-time limit.

Moreover, the assumptions of Theorem 6.1 are not fulfilled for exponential feedback,
since G is not continuous. Nevertheless, the dynamics in the limit N →∞ are already
described by Corollary 3.7, which states that all steps are won by the same agents as
long as χ(0) is not on the boundary between the attraction domains. Note that this is
consistent with Theorem 6.1, i.e. (6.2) still holds.

Since Fi only depends on Xi and not Xj , j 6= i there are no limit cycles and the
dynamics tends to a fixed point, as opposed to models discussed in [13].

7 A functional central limit theorem for the dynamics

In Section 6 we derived a functional law of large numbers for the process of market
shares for large initial values, which states that the time-scaled process Z(N) can
be well approximated by a deterministic process Z for large N . In order to gain an
understanding of the fluctuations around this limit, we prove a corresponding functional
central limit theorem in this section. Let us first state our main result. We use the
notations introduced in Section 6 and establish furthermore the notation

p(x) = (pi(x))i∈[A] = lim
k→∞

p(k, x) , (7.1)

for all x ∈ ∆A−1. Note that the existence of p is equivalent to the existence of G. Denote
by

T∆A−1 :=

{
(x1, . . . , xA) ∈ RA :

A∑
i=1

xi = 0

}
(7.2)

the tangent space of ∆A−1.
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Theorem 7.1. Suppose that

lim
k→∞

√
k sup
x∈∆A−1

‖G(k, x)−G(x)‖ = 0. (7.3)

Moreover, let G be continuously differentiable on ∆o
A−1. Then we have

√
N
(
Z(N)(t)− Z(t)

)
t≥0

N→∞−−−−→ (Z̃(t))t≥0 weakly on D([0,∞), T∆A−1),

where Z̃ is the solution of the system of stochastic differential equations

dZ̃i(t) =
DGi(Z(t))

1 + t
• Z̃(t)dt+

∑
j 6=i

√
pi(Z(t))pj(Z(t))

1 + t
dBi,j(t), i ∈ [A]. (7.4)

Here, DGi denotes the differential operator of Gi and Bi,j is a standard Brownian motion,
which is independent of Bk,l if {i, j} 6= {k, l} and Bj,i = −Bi,j for i 6= j.

The differential operator DGi(z) : T∆A → R, z̃ 7→ T∆A−1(z) • z̃ for z ∈ ∆o
A−1 is the

product with the gradient ∇Gi(z), when G is defined on an open neighbourhood of
T∆A−1 in RA. [9] presents a central limit theorem in a general stochastic approximation
setting. Further functional central limit theorems in the context of Pólya urns have
recently been studied in [10] and [16].

For the proof, we use again the method of stochastic approximation. In the Doob
decomposition (6.4), we prove separately a limit theorem for the martingale part M (N)

in Subsection 7.1 and for the predictable part H(N) in Subsection 7.2, which directly
imply Theorem 7.1 by summing up both. Note that Theorem 7.4 for the martingale does
not use the rather restrictive condition (7.3). Within these Subsections, we discuss in
detail the properties and interpretation of the diffusion part and the drift part of (7.4).

Figure 4 shows the process Z(N) − Z for large N . We can observe that Z(N)(t)− Z(t)

is close to zero for large t. Indeed, this complies with formula (7.8).

Proposition 7.2. In the situation of Theorem 7.1, assume that Z(∞) := limt→∞ Z(t)

exists and that DG(Z(∞)) is a negative definite operator. Then

Z̃(t)
t→∞−−−→ 0 in L2 and almost surely.

The proof can be found in Appendix A.5. In generic examples one can show that
DG(Z(∞)) is indeed negative definite, but it is also possible to find a counterexample.

Example 7.3. Let Fi(k) = αik
β for αi > 0, β > 0, such that

Gi(x) =
αix

β
i

α1x
β
1 + . . . αAx

β
A

− xi for all x ∈ ∆A−1 .

Since there is an obvious extension of G to RA, the operator DG(x) is negative definite

if and only if the well-defined differential matrix
(

∂
∂xj

Gi(x)
)
i,j=1,...,A

is negative definite.

1. Consider the monopoly case β > 1. Moreover, let χ(0) be in the attraction domain of

agent i, i.e. Z(t)
t→∞−−−→ e(i). A simple computation shows ∇Gj(e(i)) = (−δl,j)l=1,...,A

for all j ∈ [A], where δi,j denotes the Kronecker delta. Hence, DG(e(i)) is negative
definite.

2. In the monopoly case β > 1 assume that χ(0) is the unique unstable fixpoint of
the vector field G. Then Z(∞) = χ(0) and DG(Z(∞)) is positive definite. Thus,

E‖Z̃(t)‖2 t→∞−−−→∞ follows by similar argumentation.
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Figure 4: The processes

√
N
(
Z(N)(t)− Z(t)

)
for A = 3 and N = 10.000.

3. For β = 1, we have H(t) ≡ 0 since G(x) ≡ 0. In this case Z̃(t) does not converge to
zero for t→∞. This is due to the fact that for β = 1 and large (but finite) N the
time-limit limn→∞ χ(N)(n) is close to χ(0), but still random. For β 6= 1, the long-time
limit can be predicted precisely for large N (at least with high probability).

4. Now, let β < 1. For simplicity, assume αi = 1 for all i ∈ [A], but a similar argument
is possible in a non-symmetric situation. Then Z(∞) := limt→∞ Z(t) =

(
1
A

)
i=1,...,A

.

It can be shown that ∇Gi(Z(∞)) = (cδi,j + d(1 − δi,j))j=1,...,A for some c < d < 0,
i.e. DG(Z(∞)) is negative definite.

Note that the time-change factor 1
1+t in (7.4) does not change the long-time limit of

the dynamics, but slows down the rate of convergence. The Grönwall estimate in the
proof of Proposition 7.2 implies that Z̃(t) converges to zero at least at rate t−2λ. For the
classical Pòlya urn we have λ = 0, such that there is no convergence to zero.

As we can see, the first steps of our process are of particular interest. In order to put
focus on this, Appendix A.1 examines the limiting behaviour of (χ(bNβtc))t≥0 for N →∞
and non-linear time scale β ∈ (0, 1).

7.1 Convergence of the martingale part

This subsection examines the martingaleM (N) = (M
(N)
1 , . . . ,M

(N)
A ) as defined in (6.4).

We have already seen in Section 6 that M (N) vanishes for N →∞. Under appropriate
scaling, we can yield the following central limit theorem, which accounts for the diffusion
part of (7.4). For simplicity we will at first only consider one fixed agent (without loss of
generality agent 1) while keeping A ≥ 2 general.

Theorem 7.4. We assume that the convergence (7.1) is uniform on an open neighbor-
hood of the image of Z and that p is a Lipschitz continuous function on this neigh-
bourhood. Moreover, denote by (M1(t))t≥0 a time-inhomogeneous Markov process with
generator

Lsf :=
f ′′

2(1 + s)2
p1(Z(s))(1− p1(Z(s))), s ≥ 0

and M1(0) = 0. Then

√
N
(
M

(N)
1 (bNtc)

)
t≥0

N→∞−−−−→ (M1(t))t≥0 weakly on D([0,∞),R) .
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Alternatively, the inhomogeneous Markov-process M1 is characterized as the solution
of the stochastic differential equation

dM1(t) =

√
p1(Z(t))(1− p1(Z(t)))

1 + t
dB(t), M1(0) = 0,

where B denotes a standard Brownian motion. Thus, M1 is a time-changed Brownian
motion. To be more precise, M1(t) = B(〈M〉t), where

t 7→ 〈M1〉(t) :=

∫ t

0

p1(Z(s))(1− p1(Z(s)))

(1 + s)2
dt ≤

∫ t

0

1

4(1 + s)2
ds <

1

4

is the quadratic variation process of M1. Note that 〈M1〉(t) is deterministic and monotone
increasing in t, and thus M1(t) converges almost surely for t → ∞ and the limit has a
centered Gaussian distribution with variance limt→∞〈M1〉(t).

For the proof of Theorem 7.4, we first show tightness of the sequence(√
NM

(N)
1 (bNtc) : t ≥ 0

)
N

on D([0,∞),R) and then prove that the limit of any con-

verging subsequence is a Markov-process with generator (Ls)s>0. For later use in
Appendix A.1, we keep the tightness result a bit more general than necessary.

Lemma 7.5. The sequence of martingales
(
N1− β2M

(N)
1 (bNβtc) : t ≥ 0

)
N

is tight for all

β ∈ (0, 1].

Proof. We use a version of the Aldous criterion in [46, Lemma 3.11] for this. See
Appendix A.5 for details.

By the definition of tightness and Theorem 6.1, we also get tightness of the joint
sequence (Z(N), N1− β2M

(N)
1 (bNβ(·)c))N . Before we turn to the proof of Theorem 7.4, we

add another helpful lemma.

Lemma 7.6. With p as defined in (7.1) and β ∈ (0, 1], we have for all smooth test-
functions f : R→ R with compact support

E
[
f
(
N1− β2M

(N)
1 (k + 1)

)
− f

(
N1− β2M

(N)
1 (k)

) ∣∣F (N)
k

]
=

N2−β

2(N + k + 1)2
f ′′
(
N1− β2M

(N)
1 (k)

)
p1(N + k, χ(N)(k))

(
1− p1(N + k, χ(N)(k))

)
+ o

(
N−β

)
as N →∞.

Proof. This follows from Taylor expansion. See Appendix A.5 for details.

Now we are well prepared for the proof of Theorem 7.4.

Proof. We show that for any limit (Z,M1) of a convergent subsequence of

(Z(N),
√
NM

(N)
1 (bN(·)c))N , M1 is a Markov process with generator (Ls)s>0. For sim-

plicity of notation, assume that the sequence is convergent itself.
Take a smooth test-function f : R→ R with compact support. Then for each N

f
(√

NM
(N)
1 (bNtc)

)
−f(0)−

bNtc−1∑
k=0

E
[
f
(√

NM
(N)
1 (k + 1)

)
− f

(√
NM

(N)
1 (k)

) ∣∣F (N)
k

]
,

(7.5)
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is a martingale in continuous time t ≥ 0 as (Z(N),M
(N)
1 ) is a discrete-time Markov

process. The continuous mapping theorem implies that f
(√

NM
(N)
1 (bN(·)c)

)
converges

to f(M1) in D((0,∞),R). Due to Lemma 7.6, the sum converges as follows:

bNtc−1∑
k=0

E
[
f
(√

NM
(N)
1 (k + 1)

)
− f

(√
NM

(N)
1 (k)

) ∣∣F (N)
k

]

=

bNtc−1∑
k=0

[
N

2(N + k + 1)2
f ′′
(√

NM
(N)
1 (k)

)
p1(N + k, χ(N)(k))

(
1− p1(N + k, χ(N)(k))

)
+ o(1/N)

]

=

bNtc−1∑
k=0

1

2N(1 + k
N + 1

N )2
f ′′
(√

NM
(N)
1

(
N
k

N

)
)

)
p1

(
N+k, Z(N)

( k
N

))
·
(

1−p1

(
N+k, Z(N)

( k
N

)))
+ o(1)

N→∞−−−−→
∫ t

0

f ′′(M1(s))

2(1 + s)2
p1(Z(s)) (1− p1(Z(s)) ds =

∫ t

0

Lsf(M1(s))ds

Convergence for N → ∞ holds almost surely on an appropriate probability space by
Skorochod’s representation theorem, which implies weak convergence. Summing up,
we have that (7.5) converges to

f(M1(t))− f(0)−
∫ t

0

Lsf(M1(s))ds (7.6)

for N → ∞. As f and f ′′ are bounded, the sequence in (7.5) is obviously uniformly
integrable in N . Thus, [46, Theorem 5.3] implies that (7.6) is a martingale as well.
Moreover, the solution of the martingale problem (7.6) is unique as a time-changed
Brownian motion is always the unique solution if its corresponding martingale problem.
Hence, M1 is a time-inhomogeneous Markov-process with generator (Ls)s≥0.

Example 7.7. 1. Let Fi(k) = eαik, αi > 0, i ∈ [A] and suppose that χi(0)αi > χj(0)αj
for an i ∈ [A] and all j 6= i. Then M1(t) = 0 almost surely for all t ≥ 0, since
p(x) = e(i) for x ∈ Di, in particular on the path of Z. This complies with the idea of
a total monopoly described in Section 3.

2. If Fi(k) = k, i ∈ [A], then Z(s) ≡ χ(0) for all s ≥ 0 and p(x) = x for all x ∈ ∆A−1.

Hence, 〈M1〉(t) = χ1(0)(1 − χ1(0))
(

1− 1
1+t

)
for all t ≥ 0. Note that in this case

the martingale part M (N) = χ(N) − χ(N)(0) encompasses the whole dynamic as
H(N)(t) ≡ 0 for all t ≥ 0.

3. Let Fi(k) = kβ , χi(0) = 1
A for all i ∈ [A] and β > 0. Since we start in a stable or un-

stable equilibrium point, we have Z(t) ≡ χ(0) and hence 〈M1〉(t) = A−1
A2

(
1− 1

1+t

)
for all t ≥ 0. In particular, M1 does not depend on β.

For non-linear, polynomial feedback functions and general initial market shares, the
expressions for Z are lengthy or even not explicit. Figure 5 shows some realisations of
the process M1. It can be seen that the convergence of M1(t) for t → ∞ is faster the
faster the feedback functions grow. In the monopoly case, the variation of M1 is small if
χ(0) is already close to zero or one.

So far in this section, we only considered one fixed agent. Nevertheless, one can
obtain an extension of Theorem 7.4 for all agents by a completely analogous, but lengthy
argument, which we leave to the reader.
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Figure 5: Realisations of the process M for different feedback functions and A = 3

generated by the Euler-Maruyama method for (7.7) with bandwidth 1
100 .

Theorem 7.8. Suppose that the assumptions of Theorem 7.4 are fulfilled. Moreover,
denote by (M(t))t≥0 an A-dimensional time-inhomogeneous Markov process with gener-
ator

L̃sf(x) :=

A∑
i=1

pi(Z(s))(1− pi(Z(s))

2(1 + s)2

∂2

(∂xi)2
f(x)−

A∑
i,j=1
j 6=i

pi(Z(s))pj(Z(s))

(1 + s)2

∂2

∂xi∂xj
f(x)

with x ∈ RA and M(0) = 0. Then

√
N
(
M (N)(bNtc)

)
t≥0

N→∞−−−−→ (M(t))t≥0 weakly on D([0,∞),RA).

The specific form of the generator is due to the conditioned covariance matrix of the
increments ξ(N), which is for j 6= i:

E
[
ξ

(N)
i (k)ξ

(N)
j

∣∣F (N)
k

]
= −pi(k, χ(N)(k))

(
1− pi(k, χ(N)(k))

)
pj(k, χ

(N)(k))

− pj(k, χ(N)(k))pi(k, χ
(N)(k))

(
1− pj(k, χ(N)(k))

)
+
(

1− pi(k, χ(N)(k))− p̃i(k, χ(N)(k))
)
pi(k, χ

(N)(k))pj(k, χ
(N)(k))

= −pi(k, χ(N)(k))pj(k, χ
(N)(k))

Alternatively, the A-dimensional generator L̃s can be rewritten as

L̃sf(x) =

A∑
i,j=1
i<j

pi(Z(s))pj(Z(s))

2(1 + s)2

(
∂

∂xi
− ∂

∂xj

)2

f(x), x ∈ ∆A−1,

where
(

∂
∂xi
− ∂

∂xj

)2
:= ∂2

(∂xi)2
+ ∂2

(∂xj)2
−2 ∂2

∂xi∂xj
is the second derivative along the diagonal

xi = xj . From this form of the generator it is easy to see (e.g. by a coordinate
transformation) that M solves the system of stochastic differential equations

dMi(t) =
∑
j 6=i

√
pi(Z(t))pj(Z(t))

1 + t
dBi,j(t) , i = 1, . . . , A (7.7)
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where Bi,j is a standard Brownian motion, which is independent of Bk,l if {i, j} 6= {k, l}
and Bj,i = −Bi,j for i 6= j. It follows immediately that

(∑A
i=1 dMi(t)

)
= 0 for all t > 0.

Hence, the sum
∑A
i=1Mi(t) = 0 is a conserved quantity. Consequently, the state space

of M is the tagent space T∆A−1. This allows the following interpretation of the limit
process M : Each pair of agents exchanges mass according to a time-changed Brownian
motion and the exchange of several distinct pairs of agents is independent. Figure 5
finally shows two simulations of the process M with polynomial feedback.

7.2 Convergence of the predictable part

In order to complete the proof of Theorem 7.1, let us now turn to the predictable part
H(N) in the Doob decomposition (6.4), which accounts for the drift part of (7.4). It is
important to recall that H(N)(bNtc) is deterministic when M (N)(bNsc) is given for s ≤ t.
Because of that, it is possible to express the limit process of

√
N
(
χ(0)+H(N)(bNtc)−Z(t)

)
for N →∞ in terms of the limit M of

√
NM (N). In Section 6, we derived that χ(0)+H(N)

converges to the deterministic process Z for N →∞ and the following result describes
the deviation under appropriate scaling.

Theorem 7.9. Suppose that the assumptions of Theorem 7.1 are fulfilled. Then

√
N
(
χ(0) +H(N)(bNtc)− Z(t)

)
t≥0

N→∞−−−−→ (H(t))t≥0 weakly on D([0,∞), T∆A−1) ,

where H is the solution of the system of random ordinary differential equations (RODE)

d

dt
H(t) =

DG(Z(t))

1 + t
• (H(t) +M(t)) , H(0) = 0 . (7.8)

Here, DG(z) : T∆A−1 → RA denotes the differential operator of G at the point
z ∈ ∆o

A−1 ⊂ RA, i.e. DG(z) • x is the derivative of G at z in direction x ∈ T∆A−1. Note
that H(t) as well as M(t) (as described in the previous section) are in the tangent space
T∆A−1 ⊂ RA (7.2), and therefore also H(t) +M(t) ∈ T∆A−1. If G is well defined on an
open neighbourhood of ∆A−1 in RA (like in Example 7.3), then DG can be interpreted
as the common differential matrix and • as the matrix-vector product.

The solution of a RODE is defined pathwise, in the sense that for any fixed realisation
ω ∈ Ω M(t) = M(t, ω) is a deterministic function, such that H(t) = H(t, ω) is the solution
of the ordinary differential equation (7.8). Further details on the theory of RODEs can
be found e.g. in [22].

Consequently for fixed ω ∈ Ω, (7.8) is a linear, time inhomogeneous ordinary differen-
tial equation, whose solution can be expressed as the matrix exponential

H(t) = e
∫ t
0
DG(Z(s))

1+s ds

∫ t

0

e−
∫ s
0
DG(Z(u))

1+u duDG(Z(s))

1 + s
•M(s)ds.

An important part of the proof of Theorem 7.9 will be the tightness of the sequence
of processes

√
N
(
χ(0) +H(N)(bNtc)− Z(t)

)
t≥0

. For that, we bound its increments by

the supremum of the martingale M (N).

Lemma 7.10. In the situation of Theorem 7.9 we have with probability one for all
0 ≤ s < t ≤ T

‖H(N)(bNtc)−Z(t)−H(N)(bNsc) + Z(s)‖

≤ const.
(

(t− s) sup
0≤u≤T

‖M (N)(bNuc)‖+
t− s√
N

+
1

N

)
,

where const. is a constant only depending on G and T .
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Proof. The prove uses Gronwall’s inequality. See Appendix A.5 for details.

We are now ready for the proof of Theorem 7.9.

Proof. Via [25, Proposition VI.3.26], we get tightness of(√
N
(
χ(0) +H(N)(bNtc)− Z(t)

)
t≥0

)
N

from Lemma 7.10 and the stochastic bounded-

ness of the sequence (
√
NM (N)(bNtc))t≥0 (see proof of Lemma 7.5). Now we show that

the limit of any convergent subsequence is as desired. For simplicity of notation, assume
that the sequence is convergent itself. Since Theorem 7.4 applies we can take an appro-

priate probability space Ω, such that the convergence
√
NM (N)(bNtc, ω)

N→∞−−−−→M(t, ω)

holds locally uniformly almost surely. Note that this already implies Z(N)(ω)
N→∞−−−−→ Z

locally uniformly. Now, fix ω ∈ Ω. Using (6.4) and the mean value theorem, we get

√
N
(
χ(0) +H(N)(bNtc)− Z(t)

)
=
√
N

bNtc−1∑
k=0

G(N + k, χ(N)(k))

N + k + 1
−
∫ t

0

G(Z(s))

1 + s
ds


=
√
N

bNtc−1∑
k=0

G(χ(N)(k))

N + k + 1
−
∫ t

0

G(Z(s))

1 + s
ds+

bNtc−1∑
k=0

G(N + k, χ(N)(k))−G(χ(N)(k))

N + k + 1


=
√
N

∫ t

0

G(χ(N)(bNsc))−G(Z(s))

1 + s
ds+O

(
1

N

)
+ o

(
1√
N

) bNtc−1∑
k=0

1

N + k + 1


=
√
N

∫ t

0

G(χ(N)(bNsc))−G(Z(s))

1 + s
ds+ o(1)

=
√
N

∫ t

0

DG(m(N)(s)) • (χ(N)(bNsc)− Z(s))

1 + s
ds+ o(1)

=

∫ t

0

DG(m(N)(s)) •
√
N
(
(χ(0) +H(N)(bNsc)− Z(s) +M (N)(bNsc

)
1 + s

ds+ o(1)

N→∞−−−−→
∫ t

0

DG(Z(s)) • (H(s) +M(s))

1 + s
ds,

where m(N)(s) is an intermediate value between Z(s) and χ(N)(bNsc). In line 3, we used
assumption (7.3) once again. The claim follows since (7.8) has a unique solution due
to the Theorem of Picard-Lindelöf, and H(t) ∈ T∆A−1 since H(N)(k) ∈ T∆A−1 for all
N ≥ 1.

Figure 6 shows a simulation of the process
√
N
(
χ(0) +H(N)(bNtc)− Z(t)

)
for large

N and small t. Note that the limit process (7.8) has continuously differentiable paths,
their regularity is equivalent to that of integrated Brownian motion. As a consequence
of Proposition 7.2, H(t) is convergent for t → ∞ with random limit − limt→∞M(t) in
generic examples. Combining Theorem 7.8 and Theorem 7.9 yields the desired central
limit theorem for the difference Z(N) − Z = χ(0) +H(N) − Z +M (N).

A Appendix

A.1 Functional limit theorems with non-linear time scale

From a stochastical point of view, the first steps of a generalized Pólya urn are of
special interest because the randomness plays a significant role. In the later stages
of the process, the market shares and thus the probability of winning in a certain
step remain almost invariant, such that the sequence of winners (X(n + 1) − X(n))n
is almost independent and identically distributed for large n. Even in the Central
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Figure 6: The processes H̄(N)(t) = (H̄

(N)
1 (t), H̄

(N)
2 (t), H̄

(N)
3 (t)) :=√

N
(
χ(0) +H(N)(bNtc)− Z(t)

)
for A = 3 and N = 100.000.

Limit Theorem 7.4 the limiting process M becomes virtually constant for large t. In
order to particularly focus on the early stages of the process, we analyse the process
N1− β2

(
χ(N)(bNβtc)

)
t>0

for large initial market size N and β ∈ (0, 1). Recall the Doob
decomposition (6.4) and the notations from Section 6.

Theorem A.1. Suppose that the assumptions of Theorem 7.4 are fulfilled and denote by
(Bt)t≥0 a standard Brownian motion. Then for any β ∈ (0, 1) we have weak convergence
to a Brownian motion on D([0,∞):

N1− β2
(
M

(N)
1 (bNβtc)

)
t≥0

N→∞−−−−→
√
p1(χ(0))(1− p1(χ(0))) (Bt)t≥0

Proof. We will only sketch the proof as it is quite analogous to the proof of Theo-
rem 7.4. We use the tightness given by Lemma 7.5 and assume that the sequence

N1− β2
(
M

(N)
1 (bNβ(·)c)

)
N

converges to a process M̂1. Then we take a smooth test-

function f : R→ R with compact support and consider the martingales

f
(
N1− β2M

(N)
1 (bNβtc)

)
− f(0)

−
bNβtc−1∑
k=0

E
[
f
(
N1− β2M

(N)
1 (k + 1)

)
− f

(
N1− β2M

(N)
1 (k)

) ∣∣F (N)
k

]
.

Then we know that f
(
N1− β2M

(N)
1 (bNβtc)

)
converges to f

(
M̂1(t)

)
and via Lemma 7.6

we get:

bNβtc−1∑
k=0

E
[
f
(
N1− β2M

(N)
1 (k + 1)

)
− f

(
N1− β2M

(N)
1 (k)

) ∣∣F (N)
k

]

=

bNβtc−1∑
k=0

N2−β

2(N + k + 1)2
f ′′
(
N1− β2M

(N)
1 (k)

)
p1(N + k, χ(N)(k))

(
1− p1(N + k, χ(N)(k))

)

=

bNβtc−1∑
k=0

f ′′
(
N1− β2M

(N)
1

(
Nβ k

Nβ

))
2Nβ(1 + k

N + 1
N )2

· p1

(
N + k, Z(N)

(
k

N

))(
1− p1

(
N + k, Z(N)

(
k

N

)))
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N→∞−−−−→
∫ t

0

f ′′(M̂1(s))

2
p1(Z(0)) (1− p1(Z(0)) ds ,

where we have used β < 1 and k/N → 0 in the last step. This implies that M̂1 is a Markov

process with generator p1(Z(0)) (1− p1(Z(0)) f
′′

2 . Hence, M̂1 is the desired Brownian
motion.

Note that Theorem A.1 is consistent with Theorem 7.4 for small t. This limiting
Brownian motion can be understood as a consequence of Donsker’s invariance principle,
since the shares do barely change at the beginning of the process for large initial values.
Again, a straight forward extension to higher dimensions is possible.

Theorem A.2. Suppose that the assumptions of Theorem 7.4 are fulfilled and let β ∈
(0, 1). Then the sequence of processes N1− β2

(
M (N)(bNβtc)

)
t≥0

converges for N →∞ to
a time-homogeneous Markov process with generator

L̂f(x) :=
1

2

A∑
i,j=1
i<j

pi(Z(0))pj(Z(0))

(
∂

∂xi
− ∂

∂xj

)2

f(x), x ∈ RA

weakly on D([0,∞), T∆A−1).

As in Subsection 7.1, the limit process can be interpreted as independent exchanges
of mass between pairs of agents according to a Brownian motion.

We already know from Theorem 6.1 that χ(N)(bNβtc) converges to χ(0) for N →
∞, when β < 1. Moreover, Theorem A.1 states, that the process

(
M (N)(bNβtc)

)
t≥0

converges to zero at rate N1− β2 . In addition, it follows from

N1−βH(N)(bNβtc) = N1−β
bNβtc−1∑
k=0

G(N + k, χ(N)(k))

N + k + 1

=

bNβtc−1∑
k=0

1

Nβ
·
G(N + k, χ(N)(Nβ · k

Nβ
))

1 + k
N + 1

N

N→∞−−−−→
∫ t

0

G(χ(0))du = G(χ(0))t,

that
(
H(N)(bNβtc)

)
t≥0

converges to (G(χ(0))t)t≥0 at rate N1−β, which immediately
implies the following law of large numbers.

Corollary A.3. Under the assumptions of Theorem A.1 we have

N1−β
(
χ(N)(bNβtc)− χ(0)

)
t≥0

N→∞−−−−→ (G(χ(0))t)t≥0 weakly on D([0,∞),RA) .

Combining these results for an analysis of the deviations of χ(N)(bNβtc) requires
further distinction of β as specified in the following functional CLT.

Corollary A.4. Let β ∈ (0, 1) and γ > 0 as specified below. Suppose that

lim
k→∞

kγ sup
x∈∆A−1

‖G(k, x)−G(x)‖ = 0.

Moreover, let G be continuously differentiable. Then

Nγ
(
N1−β

(
χ(N)(bNβtc)− χ(0)

)
−G(χ(0))t

)
t≥0

N→∞−−−−→ (Ẑ(t))t≥0

weakly on D([0,∞),RA), where the limiting process Ẑ is defined as follows:

1. For β > 2
3 set γ = 1− β. Then:

Ẑ(t) =
1

2
DG(χ(0))G(χ(0))t2.
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Figure 7: Simulation of the processes χ(N)(bNβtc) − χ(0) and
N1−β (χ(N)(bNβtc)− χ(0)

)
− G(χ(0))t for β = 1

2 and N = 106. We took A = 3,
F1(k) = F2(k) = F3(k) = k2 and χ(0) = (0.5, 0.3, 0.2).

2. For β = 2
3 set γ = 1

3 . Then

Ẑ(t) =
1

2
DG(χ(0))G(χ(0))t2 + M̂(t),

where M̂ is the limiting process from Theorem A.2.

3. For β < 2
3 set γ = β

2 . Then Ẑ = M̂ .

Proof. We only sketch the proof as it is widely analogous to the proof of Theorem 7.9.
Again, we use the decomposition (6.4) and rephrase as follows:

Nγ
(
N1−β

(
χ(N)(bNβtc)− χ(0)

)
−G(χ(0))t

)
= Nγ

(
N1−βH(N)(bNβtc)−G(χ(0))t

)
+N1−β+γM (N)(bNβtc)

= Nγ

∫ t

0

G(χ(N)(Nβu)−G(χ(0))du+ o(1) +N1−β+γM (N)(bNβtc)

= Nγ

∫ t

0

DG(χ(0)) •
(
χ(N)(Nβu)− χ(0)

)
du+ o(1) +N1−β+γM (N)(bNβtc)

= Nγ+β−1DG(χ(0)) •
∫ t

0

N1−β
(
χ(N)(Nβu)− χ(0)

)
du+ o(1) +N1−β+γM (N)(bNβtc)

Finally, the claims follow via Theorem A.2 and Corollary A.3.

The assumptions of Theorem A.4 are satisfied e.g. for Fi(k) = αik
β. To sum up,

in the limit N → ∞ the process χ(N)(bNβtc) stays at χ(0) for all time t. After scaling,
Corollary A.3 reveals a linear drift into direction G(χ(0)). The fluctuations around this
linear drift can itself be described by a random SDE for β ≤ 2

3 and by a deterministic
ODE for β > 2

3 , since second order terms dominate the randomness for too large β.
These findings are illustrated by Figure 7.

A.2 Some atypical examples

The following example shows, that the criteria of Proposition 3.2 is not necessary and
that there are feedback functions that are neither of type P nor type E.
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Example A.5. 1. The conditions from Proposition 3.2 are not necessary for being
type P resp. E. For instance take any function F of type E and define F̃ (2k) =

F̃ (2k + 1) = F (k). Then F̃ is also of type E, but does obviously not fulfill (3.4).

2. A possible construction of a feedback function that is neither of type P nor type E,
but satisfies (M), is the following. Take a function F such that

0 < lim
k→∞

F (k)

∞∑
l=k

1

F (l)
<∞.

holds, e.g. F (k) = ek. Then define a new feedback function F̃ by replacing each
F (k) by k elements that all equal kF (k), i.e.(

F̃ (1), F̃ (2), . . .
)

=
(
F (1), 2F (2), 2F (2), 3F (3), 3F (3), 3F (3), . . .

)
.

One can easily check that F̃i has the desired properties.

We now discuss a situation, where condition (3.5) is not satisfied, but where we can
still identify attraction domains.

Example A.6. Let A = 2 and F (k) = F1(k) = F2(k) = k(log k)β for β > 1. Assume
χ1(0) > χ2(0). Then

ET2(Nχ2(0))− ET1(Nχ1(0))

=

χ1(0)N−1∑
k=χ2(0)N

1

F (k)
∼ 1

β − 1

(
(log(χ2(0)N))1−β − (log(χ1(0)N))1−β)

∼ const.(logN)−β for N →∞ ,

but for the variance we have

V ar(Ti(Nχi(0))) =

∞∑
k=χi(0)N

1

F (k)2
∼ const.

N(logN)2β
for N →∞

due to Karamata’s theorem. Using Chebyshev’s inequality as in Example A.7, we get that

P(sMon1(χ(0), N)) = P(T2(Nχ2(0)) > T1(Nχ1(0)))
N→∞−−−−→ 1 .

Hence, χ(0) ∈ D1 is in the attraction domain of agent 1. An analogous argumentation is
possible for β = 1.

Next, we present a situation where the boundary between attractions domains
belongs to one of them.

Example A.7. Consider the process for A = 2 and F1(k) = kβ , F2(k) = kβ

1+k−δ
for β > 1

and δ ∈ (0, 1
2 ). Then we have

∞∑
k=χ2(0)N

1

F2(k)
=

∞∑
k=χ2(0)N

(
1

kβ
+

1

kβ+δ

)
∼

∞∑
k=χ2(0)N

1

kβ
=

∞∑
k=χ2(0)N

1

F1(k)

and
∞∑

k=χ2(0)N

1

F2(k)2
∼

∞∑
k=χ2(0)N

1

F1(k)2

for N → ∞. Moreover, set χ1(0) = χ2(0) = 1
2 , such that (3.16) holds, and define

εN := cN1−β−δ for a constant c > 0 as specified below. Chebyshev’s inequality yields

P (T1(χ1(0)N) > ET1(χ1(0)N) + εN ) ≤ V ar(T1(χ1(0)N))

ε2N
=

∑∞
k=N/2

1
F1(k)2

ε2N

N→∞−−−−→ 0
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since
∑∞
k=N/2

1
F1(k)2 ∼

1
2β−1 (N/2)1−2β and δ < 1

2 . Similarly,

P (T2(χ1(0)N) < ET2(χ1(0)N)− εN ) ≤ V ar(T2(χ2(0)N))

ε2N
=

∑∞
k=N/2

1
F2(k)2

ε2N

N→∞−−−−→ 0.

In addition, we have for sufficiently large N and small c > 0 that

ET1(χ1(0)N) + εN < ET2(χ2(0)N)− εN ,

because

ET2(χ2(0)N)− ET1(χ1(0)N) =

∞∑
k=N/2

1

kβ+δ
∼ 1

β + δ − 1
(N/2)1−β−δ .

Thus for large N

P(sMon1(χ1(0), N)) = P
(
T1(χ1(0)N) < T2(χ2(0)N)

)
≥ P

(
T1(χ1(0)N) < ET1(χ1(0)N) + εN ∧ T2(χ2(0)N) > ET2(χ2(0)N)− εN

)
= P

(
T1(χ1(0)N) < ET1(χ1(0)N) + εN

)
P
(
T2(χ2(0)N) > ET2(χ2(0)N)− εN

)
N→∞−−−−→ 1

using the independence of T1(χ1(0)N) and T2(χ1(0)N). Hence, χ(0) ∈ D1.

The following example presents a feedback function, for which the market shares
χ(n) do not converge for n→∞.

Example A.8. Take A = 2 and set

a−1
1 (t) = t2 (sin(log(t)) + 2) and a−1

2 (t) = t2.

This corresponds to F2(t) =
√
t and F1(t) =

(
d
dt (a

−1
1 )−1(t)

)−1
, which is well defined due

to d
dta
−1
1 (t) = t (2 sin(log(t)) + cos(log(t)) + 4) > 0. Then Theorem 4.3 implies

Ξ1(t)

Ξ1(t) + Ξ2(t)
∼ sin(log(t)) + 2

sin(log(t)) + 3

and hence χ1(n) oscillates between 1/2 and 3/4.

Let us finally discuss the long-time limits of a Pólya urn with exponentially decreasing
feedback, since this case is not covered by our previous results.

Example A.9. Let A = 2 and Fi(k) = αie
−βik, αi, βi > 0, i = 1, 2. As explained in detail

in Section 6, we can write

χ1(n) = χ1(0) +H1(n) +M1(n) for n ≥ 0 ,

where (M1(n))n∈N0
is an almost sure convergent martingale and

H1(n) :=

n−1∑
k=0

G1(N + k, χ1(k))

N + k + 1

is predictable with G1(k, x) := p1(k, (x, 1− x))− x, x ∈ (0, 1) given by centered transition
probabilities (2.2). In the case of exponentially decreasing feedback, we have the
following convergence:

G1(k, x)
k→∞−−−−→ G1(x) :=


1− x, if xβ1 < (1− x)β2

α1

α1+α2
− x, if xβ1 = (1− x)β2

−x, otherwise

(A.1)
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The convergence is locally uniform in (0, 1) apart from the point x = x0 := β2

β1+β2
. Take

ε > 0. For large enough k, G1(k, (·)) is sufficiently close to G1 outside an ε-neighborhood
of x0. If for a large n, |χ1(n)−x0| > ε, then the process (χ1(n))n enters the ε-neighborhood
of x0 in finite time because of the convergence of the martingale. As the same holds for
ε/2 instead of ε, we get that the process leaves this ε-neighborhood only finitely often.
This yields

χ1(n)
n→∞−−−−→ x0 almost surely.

Thus, the limit is not only independent of the initial market shares, but also of the
fitness-parameters αi (in contrast to polynomially decreasing feedback). Note that
these findings are consistent with Corollary 4.5, i.e. (4.4) still holds. Because of the
independence property in the exponential embedding in Section 2, this can easily be
extended to general A. For different (at least) exponentially decreasing feedback, we
basically only need a convergence as in (A.1) for an analogous result.

Remarkably, Example A.9 reveals the following behavioural difference between
exponentially decreasing and polynomial feedback. Suppose that there are agents i, j
such that

lim
k→∞

Fi(k)

Fj(k)
= 0.

Then agent i is marginalized, i.e. limn→∞ χi(n) = 0, if Fi satisfies (4.5), in particular if
Fi(k) = αik

βi for βi < 1. On the other hand, for exponentially decreasing feedback like
in Example A.9, we might still have limn→∞ χi(n) > 0.

A.3 Supplementary proofs for Section 3 and Section 4

First, we give a short proof of the criteria for an agent to be of type P resp. E
presented in Proposition 3.2.

Proof of Proposition 3.2. First we assume (3.3) and observe that

F (k + 1)

F (k)
= exp

{∫ k+1

k

d

dx
log(F (x))dx

}
k→∞−−−−→ 1. (A.2)

Consequently, for any given ε > 0 there exists k0 such that ∀k ≥ k0 : F (k+1)/F (k) ≤ 1+ε.
Then we get for k ≥ k0:

F (k)

∞∑
l=k

1

F (l)
=

∞∑
l=k

l∏
m=k+1

F (m− 1)

F (m)
≥
∞∑
l=k

(
1

1 + ε

)l−k
=

1

1− 1
1+ε

ε→0−−−→∞

The result for type E follows similarly.

Second, we give a proof for Corollary 3.10.

Proof of Corollary 3.10. 1. This follows directly from Theorem 3.6 and (3.2):

P(tMoni(χ(0)) ≥
∏
i 6=j

exp

−Fi(χi(0)N)

∞∑
k=χj(0)N

1

Fj(k)


≥
∏
i 6=j

exp

{
−const. Fi(χi(0)N)

Fj(χj(0)N)

}
2. First, we write

P

(
A⋃
i=1

tMoni(χ(0), N)

)
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=

A∑
j=1

P

(
A⋃
i=1

tMoni(χ(0), N)
∣∣X(1)−X(0) = e(j)

)
P
(
X(1)−X(0) = e(j)

)

=

A∑
j=1

P

(
tMonj

(
1

N + 1

(
χ(0)N + e(j)

)
, N + 1

))
P
(
X(1)−X(0) = e(j)

)
and then apply Theorem 3.6 and (3.2):

P

(
tMonj

(
1

N + 1

(
χ(0)N + e(j)

)
, N + 1

))
≥
∏
i 6=j

exp

−Fi(χi(0)N)

∞∑
k=χj(0)N+1

1

Fj(k)


≥
∏
i 6=j

exp

{
−const. Fi(χi(0)N)

Fj(χj(0)N + 1)

}
=
∏
i 6=j

exp

{
−const. Fi(χi(0)N)

Fj(χj(0)N)
· Fj(χj(0)N)

Fj(χj(0)N + 1)

}
N→∞−−−−→ 1

3. Similarly to the second part, this follows from

P

(
tMonj

(
1

N + 1

(
χ(0)N + e(j)

)
, N + 1

))
≤ Fj(χ(0)N + 1)

Fj(χi(0)N + 1) +
∑
i 6=j Fi(χi(0)N)

=

1 +
∑
i 6=j

Fi(χi(0))

Fj(χj(0))
· Fj(χj(0))

Fj(χj(0) + 1)
·

−1

.

Next, we derive the rate of convergence for the probability of strong monopoly in the
type P case, which is given by Proposition 3.17.

Proof of Proposition 3.17. Once again, the proof uses the exponential embedding from

Section 2. Let t > 0 and s :=
(∑∞

l=k
1

Fj(l)2

)− 1
2

. Then the Markov-inequality and monotone

convergence yield for all j ∈ [A] and t > 0:

P

 ∞∑
l=k

τj(l)−
∞∑
l=k

1

Fj(l)
> t

√√√√ ∞∑
l=k

1

Fj(l)2


≤ exp

−s ∞∑
l=k

1

Fj(l)
− st

√√√√ ∞∑
l=k

1

Fj(l)2

 · E exp

(
s

∞∑
l=k

τj(l)

)

= exp

(
−s

∞∑
l=k

1

Fj(l)
− t

)
·
∞∏
l=k

Eesτj(l) = exp

(
−s

∞∑
l=k

1

Fj(l)
− t

)
·
∞∏
l=k

(
1 +

s

Fj(l)− s

)

≤ exp

(
−s

∞∑
l=k

1

Fj(l)
− t

)
·
∞∏
l=k

exp

(
s

Fj(l)− s

)
= exp

(
s

∞∑
l=k

(
− 1

Fj(l)
+

1

Fj(l)− s

)
− t

)

≤ exp

(
s2
∞∑
l=k

1

(Fj(l)− s)2
− t

)
≤ exp

 s2(
1− s

Fj(k)

)2

∞∑
l=k

1

Fj(l)2
− t

 = cj(k)e−t,

where cj(k) := exp

(
1(

1− s
Fj(k)

)2

)
. Setting

t = (di − ε)
∑∞
l=k

1
Fj(l)√∑∞

l=k
1

Fj(l)2
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(which is positive for ε small enough since dj > 0 for all j ∈ [A]) yields

P

(∑∞
l=k τj(l)∑∞
l=k

1
Fj(l)

− 1 > (di − ε)

)
≤ cj(k) exp

−(di − ε)
∑∞
l=k

1
Fj(l)√∑∞

l=k
1

Fj(l)2


≤ cj(k) exp

−(di − ε)

√√√√Fj(k)

∞∑
l=k

1

Fj(l)

 .

The second estimate uses Fj(l) ≥ Fj(k) by monotonicity. Analogously, one can show

P

(∑∞
l=k τj(l)∑∞
l=k

1
Fj(l)

− 1 < −(dj − ε)

)
≤ exp

1− (dj − ε)

√√√√Fj(k)

∞∑
l=k

1

Fj(l)

 .

Both estimates then imply for large enough N together with (2.5):

P(sMoni(χ(0), N)) ≥ 1−
∑
j 6=i

(
1− P

(
Ti(χi(0)N) < Tj(χj(0)N)

))

≥ 2−A+
∑
j 6=i

P

(
Ti(χi(0)N)∑∞
k=χi(0)N

1
Fi(k)

< 1 + (dj − ε)

)
· P

(
Tj(χj(0)N)∑∞
k=χj(0)N

1
Fj(k)

> 1− (dj − ε)

)

≥ 2−A+

1− ci(χi(0)N) · exp

−(di − ε)

√√√√Fi(χi(0)N)

∞∑
k=χi(0)N

1

Fi(k)


·
∑
j 6=i

1− exp

1− (dj − ε)

√√√√Fj(χj(0)N)

∞∑
k=χj(0)N

1

Fj(k)


≥ 1− (A− 1) ci(χi(0)N) · exp

−(di − ε)

√√√√Fi(χi(0)N)

∞∑
k=χi(0)N

1

Fi(k)


−
∑
j 6=i

exp

1− (dj − ε)

√√√√Fj(χj(0)N)

∞∑
k=χj(0)N

1

Fj(k)


In the last inequality we use (1− x)(1− y) ≥ 1− x− y for x, y ≥ 0. Next, we observe that

ci(k) = exp

 1(
1− s

Fi(k)

)2

 = exp


1(

1− 1

Fi(k)
√∑∞

l=k
1

Fi(l)
2

)2

 k→∞−−−−→ e ,

because F 2 is also of type P due to (3.3). Using (3.1), this finally leads to

P(sMoni(χ(0), N)) ≥ 1−
A∑
j=1

exp

−(dj − 2ε)

√√√√Fj(χj(0)N)

∞∑
k=χj(0)N

1

Fj(k)


for large enough N .

The following is a short proof of Proposition 4.2.
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Proof of Proposition 4.2. The assumption implies via (A.2)

Fi(k + l)

Fi(k)
≥ const.Fj(k + l)

Fj(k)

for all k, l ∈ N and hence:

1

k
Fi(k)

k∑
l=1

1

Fi(l)
=

1

k

k∑
l=1

Fi(k)

Fi(l)
≥ const.1

k

k∑
l=1

Fj(k)

Fj(l)
= const.

1

k
Fj(k)

n∑
l=1

1

Fj(l)

A.4 Proof of Theorem 5.6

This Subsection provides a proof for Theorem 5.6 and a related example. First, we
characterize the distribution of Ui by computing its CGF. For that, we exploit that Ui is
also the limit of Si(k)− ai(k) for k →∞ according to Theorem 5.1.

Lemma A.10. Assume that Fi ≡ F fulfills (5.1). Then the CGF of Ui is given by (5.5) and
the radius of convergence is mink≥Xi(0) F (k).

Proof. The CGF of the limit Ui = limk→∞ Si(k)− ai(k) = limk→∞
∑k
l=Xi(0)

(
τi(l)− 1

F (l)

)
is the pointwise limit of the CGFs:

log
(
EeλUi

)
= lim
k→∞

log

E exp

λ k∑
l=Xi(0)

(
τi(l)−

1

F (l)

)
= log

 ∞∏
k=Xi(0)

e−λ/F (k)Eeλτi(k)

 =

∞∑
k=Xi(0)

[
log
(
Eeλτi(k)

)
− λ

F (k)

]

=

∞∑
k=Xi(0)

[
log

(
F (k)

F (k)− λ

)
− λ

F (k)

]
= −

∞∑
k=Xi(0)

[
log

(
1− λ

F (k)

)
+

λ

F (k)

]
We now use the series representation of x 7→ log(1+x) and change the order of summation
due to absolut convergence:

log
(
EeλUi

)
=

∞∑
k=Xi(0)

[ ∞∑
l=1

1

l

(
λ

F (k)

)l
− λ

F (k)

]
=

∞∑
k=Xi(0)

∞∑
l=2

1

l

(
λ

F (k)

)l

=

∞∑
l=2

λl

l

∞∑
k=Xi(0)

1

F (k)l

Note that
∑∞
k=Xi(0)

1
F (k)l

< ∞ for l ≥ 2. Now, define M := {k ≥ Xi(0) : F (k) =

minl≥Xi(0) F (l)} and let k0 ∈M . The radius of convergence of the power series represen-
tation of the CGF is given by

lim inf
l→∞

1

l

∞∑
k=Xi(0)

1

F (k)l

−1/l

= F (k0) lim inf
l→∞

#M +
∑

k≥Xi(0), k/∈M

F (k0)l

F (k)l

−1/l

= F (k0)

since
∑
k≥Xi(0), k/∈M

F (k0)l

F (k)l
l→∞−−−→ 0 and #M <∞ if F (k)/k

k→∞−−−−→∞.

In particular, EUi = 0 since the first term in the series is λ2, and the l-th cumulant of
Ui is (l − 1)!

∑∞
k=Xi(0)

1
F (k)l

for l ≥ 2. For the proof of Theorem 5.6, it remains to show

that tn − ai(n) converges as desired.
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Lemma A.11. In the situation of Theorem 5.6 we have

tn − ai(n)
n→∞−−−−→ min

j∈[A]
(Uj − ci,j) ,

where ci,j :=
∑Xj(0)−1
k=1

1
F (k) −

∑Xi(0)−1
k=1

1
F (k) for i, j ∈ [A].

Proof. By definition of tn and ai(n) and by Theorem 5.1, we have

tn − ai(n) ≤ min
j∈[A]

Sj(n)− ai(n)

= min
j∈[A]

(Sj(n)− aj(n) + aj(n)− ai(n))
n→∞−−−−→ min

j∈[A]
(Uj − ci,j)

as aj(n)− ai(n)
n→∞−−−−→ ci,j . Furthermore,

tn − ai(n) ≥ min
j∈[A]

Sj(n/A)− ai(n)

= min
j∈[A]

(Sj(n/A)− aj(n/A) + aj(n/A)− aj(n) + aj(n)− ai(n))
n→∞−−−−→ min

j∈[A]
(Uj − ci,j) .

This holds because

aj(n)− aj(n/A) =

∫ Xj(0)+n

Xj(0)+n/A

1

F (s)
ds =

(
n− n

A

) 1

F (mn)

n→∞−−−−→ 0

for a mean value mn ∈ (Xj(0) + n/A, Xj(0) + n) using F (k)/k
k→∞−−−−→∞.

An important consequence of Theorem 5.6 is Corollary 5.8, which provides a lower
bound for the rate of convergence limn→∞ χ(n). We finally discuss that bound based on
an example.

Example A.12. Let Fi(k) ≡ F (k) = k(log k)β for β ≥ 0. For β = 0, the lower bound
e−cL(n) is constant since χi(n) does converge to a non-zero limit. For β ∈ (0, 1), the
bound converges to zero slower than any polynomial, whereas it is of order n−c for β = 1.
Note that c is random and unbounded. Finally for β > 1, the process reveals strong
monopoly such that χ(n) converges to an edge of the simplex at rate 1/n. In that specific
case for β ≤ 1, we can also derive an upper bound for χi(0), provided that agent i is not
the monopolist. Since the limit in Theorem 5.6 is non-zero and ai(t) ∼ (log t)1−β , there is
a positive constant such that

0 < const. ≤ (log n)1−β − (log(Xi(n)))1−β

and consequently

log(Xi(n)) ≤
(
(log n)1−β − const.

) 1
1−β .

Defining ε(n) = 1
n

(
n1−β − const.

) 1
1−β yields:

Xi(n) ≤ e(logn)ε(logn) ⇔ Xi(n)

n
≤ e(logn)ε(logn)−logn = e−(logn)(1−ε(logn))

Note that 1 − ε(n) > 0 converges to zero at rate 1/n1−β, so that we finally get the
following estimate:

χi(n) ≤ const.e−const.(logn)β

Thus, the bound in Corollary 5.8 can be considered as sharp.
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A.5 Proofs for Section 7

First, we prove Proposition 7.2 which shows that the fluctuations Z̃(t) vanish for
t→∞.

Proof of Proposition 7.2. As explained in Subsection 7.1, the generator of Z̃ is given by

Ltf(x) =

A∑
i=1

DGi(Z(t)) · x
1 + t

· ∂

∂xi
f(x) +

A∑
i=1

pi(Z(t))(1− pi(Z(t)))

2(1 + t)2

∂2

∂x2
i

f(x)

+

A∑
i=1
i6=j

pi(Z(t))pj(Z(t))

(1 + t)2

∂2

∂xi∂xj
f(x)

for x = (x1, . . . , xA) ∈ T∆A−1. Thus, for f(x) = x2
1 + . . .+ x2

A we have

Ltf(x) =

A∑
i=1

DGi(Z(t)) · x
1 + t

· 2xi +

A∑
i=1

pi(Z(t))(1− pi(Z(t)))

(1 + t)2

=
2

1 + t
〈DG(Z(t))x, x〉+

b(t)

(1 + t)2

for a bounded function b(t). Since t 7→ DG(Z(t)) is continuous and DG(Z(∞)) is negative
definite, DG(Z(t)) is also negative definite for t ≥ t0, when t0 > 0 is large enough. Thus,
there is λ > 0 such that

〈DG(Z(t))x, x〉 ≤ −λ‖x‖2

for all x ∈ RA and t ≥ t0. In summary, we get

Ltf(x) ≤ − 2λ

1 + t
‖x‖2 +

b(t)

(1 + t)2

for t ≥ t0. Now, applying Dynkin’s formula yields

d

dt
E‖Z̃(t)‖2 = ELtf(Z̃(t)) ≤ − 2λ

1 + t
E‖Z̃(t)‖2 +

b(t)

(1 + t)2
.

for t ≥ t0. Finally, the claim follows from Grönwall’s inequality:

E‖Z̃(t)‖2 ≤
(∫ t

t0

b(s)

(1 + s)2
ds+ E‖Z̃(t0)‖2

)
exp

(∫ t

t0

− 2λ

1 + s
ds

)
t→∞−−−→ 0

For the almost sure convergence we fix a realisation ω ∈ Ω, such that
m := limt→∞M(t)(ω) exists. Then we get from (7.8) and the Cauchy-Schwarz inequality
that

d

dt
‖H(t) +m‖2

=
2

1 + t

(
〈DG(Z(t))(H(t) +m), H(t) +m)〉+ 〈H(t) +m,DG(Z(t))(M(t)−m)〉

)
≤ 2

1 + t

(
− λ‖H(t) +m‖2 + ‖H(t) +m)‖ · ‖DG(Z(t))(M(t)−m)‖

)
for t ≥ t0. Hence

d

dt
‖H(t) +m‖2 > 0 =⇒ ‖DG(Z(t))(M(t)−m)‖

λ
> ‖H(t) +m‖,

which implies ‖H(t) +m‖ t→∞−−−→ 0 as ‖DG(Z(t))(M(t)−m)‖ t→∞−−−→ 0.
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Next, we prove Lemma 7.5, which claims tightness of the sequence(
N1− β2M

(N)
1 (bNβtc) : t ≥ 0

)
N

.

Proof of Lemma 7.5. According to a version of the Aldous criterion in [46, Lemma 3.11],
the following two properties are sufficient for the tightness.

1. Stochastic Boundedness: For C, T > 0 we have by Doob’s inequality and (6.3)

P

(
sup

0<t≤T
N1− β2

∣∣M (N)
1 (bNβtc)

∣∣ > C

)
≤ N2−β

C2
E
(
M

(N)
1 (bNβT c)2

)

=
N2−β

C2

bNβTc−1∑
k=0

1

(N + k + 1)2
E
(
ξ

(N)
1 (k)2

)
≤ N2−β

C2

bNβTc−1∑
k=0

1

(N + k + 1)2

≤ N2−β

C2

∫ bNβTc+N
N

1

s2
ds =

N2−β

C2

(
1

N
− 1

bNβT c+N

)
≤ N2−β

C2
· bN

βT c
N2

≤ const.(T )/C2 C→∞−−−−→ 0

uniformly in N .
2. Similarly, we get for 0 < t ≤ T and 0 < u ≤ δ:

E

[(
N1− β2M

(N)
1 (bNβ(t+ u)c)−N1− β2M

(N)
1 (bNβtc)

)2 ∣∣F (N)

bNβtc

]

≤ N2−β
bNβ(t+u)c−1∑
k=bNβtc

1

(N + k + 1)2
E
[
ξ

(N)
1 (k)2

∣∣F (N)

bNβtc

]
≤ N2−β

bNβ(t+δ)c−1∑
k=bNβtc

1

(N + k + 1)2

≤ N2−β
∫ bNβ(t+δ)c+N

bNβtc+N

1

s2
ds = N2−β

(
1

bNβtc+N
− 1

bNβ(t+ δ)c+N

)
≤ N2−β · bN

β(t+ δ)c − bNβtc
N2

≤ const.(δ) δ→0−−−→ 0

uniformly in N , finishing the proof.

Proof of Lemma 7.6. Taylor-expansion of f with Lagrange’s remainder yields:

E
[
f
(
N1− β2M

(N)
1 (k + 1)

)
− f

(
N1− β2M

(N)
1 (k)

) ∣∣F (N)
k

]
= N1− β2 f ′

(
N1− β2M

(N)
1 (k)

)
E
[
M

(N)
1 (k + 1)−M (N)

1 (k)
∣∣F (N)
k

]
+
N2−β

2
E

[
f ′′
(
m(N)(k)

)(
M

(N)
1 (k + 1)−M (N)

1 (k)
)2 ∣∣F (N)

k

]
=

N2−β

2(N + k + 1)2

[
E
[
f ′′
(
N1− β2M

(N)
1 (k)

)
ξ

(N)
1 (k)2

∣∣F (N)
k

]
+ o(1)

]
=

N2−β

2(N + k + 1)2
f ′′
(
N1− β2M

(N)
1 (k)

)((
1− p1(N + k, χ(N)(k))

)2

p1(N + k, χ(N)(k))

+ p1(N + k, χ(N)(k))2
(

1− p1(N + k, χ(N)(k))
))

+ o
(
N−β

)
=

N2−β

2(N + k + 1)2
f ′′
(
N1− β2M

(N)
1 (k)

)
p1(N + k, χ(N)(k))

(
1− p1(N + k, χ(N)(k))

)
+ o

(
N−β

)
Here, m(N)(k) denotes a (random) intermediate value between N1− β2M

(N)
1 (k) and

N1− β2M
(N)
1 (k + 1). Note that m(N)(k)−N1− β2M

(N)
1 (k)

N→∞−−−−→ 0 at rate N−
β
2 .
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Proof of Lemma 7.10. Let L > 0 be a Lipschitz constant for G. We use (6.4) and calcu-
late:

‖H(N)(bNtc)− Z(t)−H(N)(bNsc)− Z(s)‖

=

∥∥∥∥∥∥
bNtc−1∑
k=bNsc

G(N + k, χ(N)(k))

N + k + 1
−
∫ t

s

G(Z(u))

1 + u
du

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
bNtc−1∑
k=bNsc

G(χ(N)(k))

N + k + 1
−
∫ t

s

G(Z(u))

1 + u
du

∥∥∥∥∥∥
+

∥∥∥∥∥∥
bNtc−1∑
k=bNsc

G(N + k, χ(N)(k))

N + k + 1
−
bNtc−1∑
k=bNsc

G(χ(N)(k))

N + k + 1

∥∥∥∥∥∥
≤
∥∥∥∥∫ t

s

G(χ(N)(bNuc))−G(Z(u))

1 + u
du

∥∥∥∥+
const.

N
+
const.√
N

bNtc−1∑
k=bNsc

1

N + k + 1

≤
∫ t

s

‖G(χ(N)(bNuc))−G(Z(u))‖
1 + u

du+
const.

N
+ const.

t− s√
N

≤ L
∫ t

s

‖χ(N)(bNuc)− Z(u)‖
1 + u

du+ const.
t− s√
N

+
const.

N

≤ L
∫ t

s

‖χ(N)(bNuc)− Z(u)‖du+ const.
t− s√
N

+
const.

N

≤ L
∫ t

s

‖χ(0) +H(N)(bNuc)− Z(u)‖du+ L

∫ t

s

‖M (N)(bNuc)‖du+ const.
t− s√
N

+
const.

N

≤ L
∫ t

s

‖H(N)(bNuc)− Z(u)−H(N)(bNsc) + Z(s)‖du+ const.
t− s√
N

+
const.

N

+ L

∫ t

s

‖χ(0) +H(N)(bNsc)− Z(s)‖du+ L(t− s) sup
0≤u≤T

‖M (N)(bNuc)‖

= L

∫ t

s

‖H(N)(bNuc)− Z(u)−H(N)(bNsc) + Z(s)‖du+ const.
t− s√
N

+
const.

N

+ L(t− s)‖χ(0) +H(N)(bNsc)− Z(s)‖+ L(t− s) sup
0≤u≤T

‖M (N)(bNuc)‖

In line 2, the second summand is of order 1/
√
N due to assumption (7.3). Now Grönwall’s

inequality yields:

‖H(N)(bNtc)− Z(t)−H(N)(bNsc) + Z(s)‖ ≤ eL(t−s) ·
(
const.

t− s√
N

+
const.

N

+ L(t− s)‖χ(0) +H(N)(bNsc)− Z(s)‖+ L(t− s) sup
0≤u≤T

‖M (N)(bNuc)‖
)

Repeating the same calculation with 0 in the place of s and s instead of t yields:

‖χ(0) +H(N)(bNsc)− Z(s)‖ ≤ eLs ·
(
Ls sup

0≤u≤T
‖M (N)(bNuc)‖+ const.

s√
N

+
const.

N

)
Combining these two inequalities proves the claim.
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