
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 29 (2024), article no. 91, 1–39.
ISSN: 1083-6489 https://doi.org/10.1214/24-EJP1155

Sample path MDP for the current and the tagged
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Abstract

We prove sample path moderate deviation principles (MDP) for the current and the
tagged particle in the symmetric simple exclusion process, which extends the results
in [39], where the MDP was only proved at any fixed time.
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1 Introduction

The exclusion process is informally defined as a family of indistinguishable particles
performing random walks on some graph subjected to the exclusion rule, i.e., there is
at most one particle at each site. It has been a long-standing problem to investigate
the behaviors of a typical particle in the exclusion process, which is called the tagged
particle. Due to the interactions with the other particles, the replacement of the tagged
particle itself is not a Markov process. Despite that, much progress has been made since
Spitzer introduced the exclusion process in [36]. We refer the readers to [24, 21] and
references therein for an excellent survey on the tagged particle process.

The model is usually called the symmetric simple exclusion process (SSEP) if the
underlying graph is the one-dimensional infinite lattice Z and a particle jumps to its left
and right neighbors at equal rates 1/2. Since the total number of particles is conserved
by the dynamics, the Bernoulli product measure with constant density ρ ∈ [0, 1], denoted
by νρ, is invariant for the SSEP, see [23] for example. Assume the initial distribution
of the SSEP is the Bernoulli product measure νρ conditioned on having a particle at
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MDP for the current and the tagged particle

the origin, and let X(t) be the position of this tagged particle at time t. Since particles
cannot jump over each other in the SSEP, the tagged particle turns out to be sub-diffusive.
Precisely speaking, Arratia [1] and De Masi and Ferrari [5] showed that

Xt

t1/4
⇒ N (0, σ2

X), t→ +∞,

where N (0, σ2
X) is the normal distribution with mean zero and variance σ2

X :=
√

2/π(1−
ρ)/ρ. The above central limit theorem was then extended to the invariance principle by
Peligrad and Sethuraman [27],{XtN2

N1/2
: 0 ≤ t ≤ T

}
⇒
{
B

1/4
t : 0 ≤ t ≤ T

}
, N → +∞,

where B1/4
· is the fractional Brownian motion with Hurst index 1/4 and T > 0 is fixed.

Jara and Landim [15] also proved central limit theorems for the tagged particle when
the initial distribution of the SSEP is non-equilibrium. Recently, Conroy and Sethuraman
[4] showed that the scaled position of the tagged particle converges to a Gumble limit
law when the process starts from the step configuration.

Large and moderate deviation behaviors of the tagged particle in the SSEP have also
been studied. The large deviation behaviors were investigated in [33, 12]. When the
initial distribution of the SSEP is the Bernoulli product measure νρ conditioned on having
a particle at the origin, the same authors [39] proved that for any t > 0, the sequence
{X(tN2)/aN}N≥1 satisfies moderate deviation principles with decay rate a2N/N and with
rate function

√
2πρα2/[4(1− ρ)

√
t], where

√
N � aN � N .

We comment that the above deviation results only considered the behaviors of the
tagged particle at any fixed time t. The main aim of this paper is to investigate sample
path moderate deviations for the tagged particle. Roughly speaking, we proved that
when the SSEP starts from the same initial distribution as in [39], the sequence of
processes {X(tN2)/aN : 0 ≤ t ≤ T}N≥1 satisfies moderate deviation principles with
decay rate a2N/N , where

√
N logN � aN � N and T > 0 is fixed. Moreover, the

moderate deviation rate function is proportional to the large deviation rate function of
the fractional Brownian motion with Hurst index 1/4. See Theorem 2.2 for details.

Since the relative ordering of the particles is conserved in the SSEP, closely related
to the position of the tagged particle is the current of the process. This current-tagged
particle relationship has been used in the above literature [5, 15, 33, 39]. To prove
Theorem 2.2, we also proved sample path moderate deviation principles for the current,
which is the content of Theorem 2.1 and has its own interest.

The main idea of the proof is as follows. As in [39], by using moderate deviation
principles from hydrodynamic limits of the SSEP [10], we first prove finite-dimensional
moderate deviation principles for the current and the tagged particle, where the rate
function is given by a variational formula. In [39], this variational problem was solved
by constructing a minimizer of the problem directly and cannot be extended to the
finite-dimensional case straightforwardly. Instead, we use the Fourier approach and
then obtain an explicit formula for the finite-dimensional deviation rate function. Then,
we need to prove the exponential tightness of the sample path of the current and the
tagged particle, which requires more delicate analysis compared with [39] since all the
estimates should be uniform in time. Finally, using standard results from large deviations
theory, we obtain another variational formula for the rate function of the sample path,
which could be solved easily from known results on fractional Brownian motion.

Very recently, the first named author in [38] proved non-equilibrium moderate devia-
tions from hydrodynamic limits of the SSEP. It remains a challenge to extend the results
in this paper to the non-equilibrium case by using the above results. Another possible
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MDP for the current and the tagged particle

direction is to consider the sample path moderate deviation principles for the tagged
particle in the SSEP in random environments or in the asymmetric exclusion process.
We leave those as future works.

1.1 Related literature

For the tagged particle in exclusion processes, Saada [29] and Rezakhanlou [28]
proved the law of large numbers. When the process starts from its equilibrium measure,
except the literature mentioned above, central limit theorems and invariance principles
were proved by Kipnis and Varadhan [20] in the symmetric case in all dimensions except
the one-dimensional nearest neighbor case, by Varadhan [37] in the asymmetric mean-
zero case, by Kipnis [18] in the one-dimensional nearest neighbor asymmetric case
and by Sethuraman, Varadhan and Yau [35] in the asymmetric case in three or higher
dimensions. In dimensions d ≤ 2 when the underlying random walk has a drift except for
the one-dimensional nearest-neighbor case, a full CLT or invariance principle remains
open. However, Sethuraman [31] proved that the tagged particle is diffusive in this case.

Jara [13] and the second named author [40] proved CLT for the tagged particle when
particles perform random walks with long jumps. The tagged particle in the SSEP with
bond disorder was considered in [16]. In [22, 25, 26], the authors considered the tagged
particle process in order to check the validity of the Einstein relation. The heat kernel
bound for the tagged particle in the SSEP was also obtained in [11]. In [30, 34], the
authors investigated large deviations of the tagged particle in the asymmetric exclusion
process. Besides on the integer lattice Zd, the tagged particle was also considered on
regular trees [2] and on Galton–Watson trees [9].

The behavior of the tagged particle has also been investigated in other interacting
particle processes, such as in zero range processes [14, 17, 32] or in stirring-exclusion
processes [3].

1.2 Notation

For integers m,n > 0 and U, V ⊂ R, let Cm,n(U × V ) be the space of functions on
U × V which are continuously m (resp. n) times differentiable on the first (resp. second)
variable, and let Cm,nc (U × V ) be those functions in Cm,n(U × V ) with compact support.
Let S(R) be the space of Schwartz functions on R and let S ′(R) be its dual space, i.e.,
the space of tempered distributions. For a metric space (Σ, d(·, ·)), let D([0,∞),Σ) be the
space of càdlàg functions equipped with the Skorohod topology.

For any column vector α = (α1, α2, . . . , αn)T ∈ Rn, denote by ‖α‖∞ := sup1≤j≤n |αj |
the uniform norm of α. For a ∈ R, let [a] be the largest integer smaller than or equal to
a. For two positive sequences {aN} and {bN}, we write aN � bN if limN→∞ aN/bN = 0.

1.3 Outline of the paper

In Section 2, we introduce the model and state the main results of the paper. We
recall moderate deviations from hydrodynamic limits of the SSEP and prove several
basic properties of the rate function from hydrodynamic limits in Section 3. Section 4
is devoted to identifying the rate function of the tagged particle or the current with a
variational formula. We prove the exponential tightness of the tagged particle and the
current in Section 5. Finally, the proof of Theorems 2.1 and 2.2 is presented in Section 6.
To make the paper easier to follow, we put the tedious calculations in Section A.
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2 Model and results

2.1 Model

The state space of the one-dimensional symmetric simple exclusion process (SSEP) is
Ω = {0, 1}Z. For a configuration η ∈ Ω, η(x) = 1 if and only if there is one particle at site
x. The infinitesimal generator of the process acts on local functions f : Ω→ R as

L f(η) =
1

2

∑
x∈Z

{
f(ηx,x+1)− f(η)

}
. (2.1)

Above, we call f a local function if it depends on η only through a finite number of sites,
and ηx,y is the configuration obtained from η by exchanging the values of η(x) and η(y),
that is,

ηx,y(z) =


η(z) if z 6= x, y;

η(y) if z = x;

η(x) if z = y.

For each ρ ∈ [0, 1], let νρ be the Bernoulli product measure on Ω with marginals given by

νρ{η : η(x) = 1} = ρ, ∀x ∈ Z.

It is well known that νρ is reversible and ergodic for the SSEP, cf. [23] for example.
Denote by {ηt}t≥0 the Markov process with generator L . For a probability measure

µ on Ω, denote by Pµ the measure on the path space D([0,∞),Ω) of the process ηt with
initial measure µ, and by Eµ the corresponding expectation.

2.2 MDP for the current

We first recall basic facts of the fractional Brownian motion. Let {B1/4
t }t≥0 be the

fractional Brownian motion with Hurst parameter 1/4, which is a mean-zero continuous-
time Gaussian process with covariance given by

Cov
(
B

1/4
t , B1/4

s

)
=

1

2

(
t1/2 + s1/2 − |t− s|1/2

)
=: a(t, s)

for any s, t ≥ 0. It is shown in [6] that the fractional Brownian motion has the following
representation,

B
1/4
t =

∫ t

0

K(t, s)dBs, ∀t ≥ 0, (2.2)

where {Bt}t≥0 is the standard one-dimensional Brownian motion starting from the origin,
and the kernel function is explicitly given by

K(t, s) =
(t− s)−1/4√
V Γ(3/4)

F (1/4,−1/4, 3/4, 1− t

s
)

for any 0 ≤ s < t, where

V =
8Γ(3/2) cos(π/4)

π
and F (α, β, γ, z) =

+∞∑
k=0

(α)k(β)k
(γ)kk!

zk

with (a)k defined as Γ(a+ k)/Γ(a). Moreover, it is easy to see that for any s, t ≥ 0,∫ t∧s

0

K(t, τ)K(s, τ)dτ = a(t, s).
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Fix a time horizon T > 0. Let H be the set of càdlàg functions f : [0, T ]→ R such that
there exists a function hf ∈ L2[0, T ] satisfying

f(t) =

∫ t

0

K(t, s)hf (s)ds, ∀0 ≤ t ≤ T.

For any f ∈ D([0, T ],R), define

Ipath(f) =

{
1
2

∫ T
0

(hf (s))2ds if f ∈ H,
+∞ otherwise.

By (2.2) and [7, Theorem 3.4.12], Ipath(f) is the large deviation rate function of the

sequence of the processes { 1√
N
B

1/4
t : 0 ≤ t ≤ T}N≥1.

For each x ∈ Z, let Jx,x+1(t) be the net number of particles across the bond (x, x+ 1)

up to time t, i.e., the number of particles jumping from x to x+ 1 minus the number of
particles jumping from x+ 1 to x during the time interval [0, t].

The first result concerns moderate deviations for the path of the current when the
process starts from the initial measure νρ for some ρ ∈ (0, 1). Throughout the article, we
assume {aN}N≥1 to be a sequence of positive numbers such that

lim
N→∞

aN
N

= lim
N→∞

N logN

a2N
= 0.

Theorem 2.1. Fix ρ ∈ (0, 1). For f ∈ D([0, T ],R), define

Icur(f) =
1

σ2
J

Ipath(f)

where σ2
J := σ2

J(ρ) :=
√

2
πρ(1− ρ). Then, the sequence of the processes{

1

aN
J−1,0(tN2) : 0 ≤ t ≤ T

}
N≥1

satisfies moderate deviation principles with rate a2N/N and with rate function Icur.
Precisely speaking, for any closed set C ⊆ D([0, T ],R),

lim sup
N→+∞

N

a2N
logPνρ

({ 1

aN
J−1,0(tN2) : 0 ≤ t ≤ T

}
∈ C
)
≤ − inf

f∈C
Icur(f),

and for any open set O ⊆ D([0, T ],R),

lim inf
N→+∞

N

a2N
logPνρ

({ 1

aN
J−1,0(tN2) : 0 ≤ t ≤ T

}
∈ O

)
≥ − inf

f∈O
Icur(f).

2.3 MDP for the tagged particle

Note that the particles in the SSEP are indistinguishable. In this subsection, we
distinguish one particular particle, put it initially at the origin, and call it the tagged
particle. Denote by X(t) the position of the tagged particle at time t. By convention,
X(0) = 0. Since particles cannot jump over each other, the relative ordering of the
particles is conserved.

Observe that the tagged particle process {X(t)}t≥0 itself is not Markovian. How-
ever, both the coupled process {(ηt, X(t))}t≥0 and the environment process {ξt}t≥0 are
Markovian, where ξt(x) = ηt(X(t) + x) for x ∈ Z and t ≥ 0.
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For ρ ∈ (0, 1), let ν∗ρ be the measure obtained from the Bernoulli product measure νρ
conditioned on having a particle at the origin, i.e.,

ν∗ρ(·) = νρ(· |η(0) = 1).

It is also well known that ν∗ρ is invariant and ergodic for the environment process {ξt}t≥0.
The second result of the article concerns moderate deviations for the sample path

of the tagged particle when the process starts from the initial measure ν∗ρ for some
ρ ∈ (0, 1).

Theorem 2.2. Fix ρ ∈ (0, 1). For f ∈ D([0, T ],R), define

Itag(f) =
1

σ2
X

Ipath(f)

where σ2
X =

√
2
π

1−ρ
ρ . Then, the sequence of the tagged particle processes{

1

aN
X(tN2) : 0 ≤ t ≤ T

}
N≥1

satisfies moderate deviation principles with rate a2N/N and with rate function Itag.
Precisely speaking, for any closed set C ⊆ D([0, T ],R),

lim sup
N→+∞

N

a2N
logPν∗ρ

({ 1

aN
X(tN2) : 0 ≤ t ≤ T

}
∈ C
)
≤ − inf

f∈C
Itag(f),

and for any open set O ⊆ D([0, T ],R),

lim inf
N→+∞

N

a2N
logPν∗ρ

({ 1

aN
X(tN2) : 0 ≤ t ≤ T

}
∈ O

)
≥ − inf

f∈O
Itag(f).

3 Preliminary estimates

3.1 Moderate deviations from hydrodynamic limits

We first recall moderate deviation principles for the empirical measure of the SSEP
when the process starts from its invariant measure νρ for some ρ ∈ (0, 1), see [10] for
details. For each N ≥ 1, the centered empirical measure µNt ∈ S ′(R) of the SSEP, which
acts on Schwartz functions G ∈ S(R), is defined as〈

µNt , G
〉

=
1

aN

∑
x∈Z

(
ηtN2(x)− ρ

)
G(x/N).

In this subsection, we assume the sequence of positive numbers {aN}N≥1 satisfies

lim
N→∞

aN
N

= lim
N→∞

N

a2N
= 0.

Let D([0, T ],S ′(R)) be the set of càdlàg functions from [0, T ] to S ′(R) endowed with the
topology under which limn→+∞ θn = θ in D([0, T ],S ′(R)) if and only if

{θnt (G)}0≤t≤T → {θt(G)}0≤t≤T

in D([0, T ],R) for any G ∈ S(R). For G ∈ C1,∞c ([0, T ]×R) and µ ∈ D([0, T ],S ′(R)), define
the linear functional l(·, ·) as

l(µ,G) = 〈µT , GT 〉 − 〈µ0, G0〉 −
∫ T

0

〈µs,
(
∂s + (1/2)∂2u

)
Gs〉ds.
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Above, Gs(u) = G(s, u) and 〈·, ·〉 is the bilinear form on S ′(R)× S(R) such that 〈µ, g〉 =

µ(g) is the output of µ acting on g for µ ∈ S ′(R) and g ∈ S(R). The rate function
QT (µ) := QT,dyn(µ) +Q0(µ0) is defined as

QT,dyn(µ) = sup
G∈C1,∞c ([0,T ]×R)

{
l(µ,G)− χ(ρ)

2

∫ T

0

∫
R

(∂uG)2(s, u) du ds

}
,

Q0 (µ0) = sup
φ∈C∞c (R)

{
〈µ0, φ〉 −

χ(ρ)

2

∫
R

φ2(u)du

}
,

where χ(ρ) = ρ(1− ρ) is the compressibility of the SSEP.

Theorem 3.1 ([10]). Let ρ ∈ (0, 1). The sequence of processes {µNt : 0 ≤ t ≤ T}N≥1
satisfies the MDP with decay rate a2N/N and with rate function QT (µ). More precisely,
for any closed set C ⊆ D([0, T ],S ′(R)),

lim sup
N→∞

N

a2N
log Pνρ

(
{µNt : 0 ≤ t ≤ T} ∈ C

)
≤ − inf

µ∈C
QT (µ),

and for any open set O ⊆ D([0, T ],S ′(R)),

lim inf
N→∞

N

a2N
log Pνρ

(
{µNt : 0 ≤ t ≤ T} ∈ O

)
≥ − inf

µ∈O
QT (µ).

Remark 3.2. Let η· and η∗· be two SSEPs with initial distributions νρ and ν∗ρ respectively.
By the basic coupling (see [23] for example), one could couple η· and η∗· together such
that ηt(x) = η∗t (x) for all but one x. As a consequence, the associated empirical measures
of the two processes satisfy

|
〈
µNt − µ

N,∗
t , G

〉
| ≤ ‖G‖∞

aN
, ∀t ≥ 0, ∀G ∈ S(R).

Thus, the above theorem also holds under Pν∗ρ .

3.2 Properties

In this subsection, we establish several properties of the measure µ when it satisfies
QT (µ) < ∞. Before that, we first introduce some notation. For H,G ∈ C1,2c ([0, T ] ×R),
define

[H,G] :=

∫ T

0

∫
R

∂uH(t, u)∂uG(t, u) du dt.

In order to make [·, ·] an inner product, we say H ∼ G if [H −G,H −G] = 0. Let H1 be
the Hilbert space obtained as the completion of C1,2c ([0, T ]×R))/ ∼ with respect to the
inner product [·, ·].
Lemma 3.3. Let µ ∈ S ′(R). If QT (µ) < ∞, then there exist functions ψ ∈ L2(R) and
H ∈ H1 such that, for any φ ∈ S(R),〈

µ0, φ
〉

=

∫
R

ψ(u)φ(u)du,

and that µ is the unique weak solution of the following PDE{
∂tµ(t, u) = (1/2)∂2uµ(t, u)− χ(ρ)∂2uH(t, u), t > 0, u ∈ R,
µ(0, u) = ψ(u), u ∈ R.

(3.1)

In particular, µ = µ(t, u) is a function. Moreover,

Q0(µ0) =
‖ψ‖2L2(R)

2χ(ρ)
, QT,dyn(µ) =

χ(ρ)

2
[H,H].
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The proof of the above lemma follows directly from Riesz’s representation theorem.
We refer the readers to Appendix A.1 for its proof.

In the above lemma, we say µ is a weak solution to (3.1) if for any G ∈ C1,2c ([0, T ]×R)

and for any 0 < t ≤ T ,∫
R

µ(t, u)G(t, u)du =

∫
R

ψ(u)G(0, u)du+

∫ t

0

∫
R

µ(s, u)(∂s + (1/2)∂2u)G(s, u) du ds

+ χ(ρ)

∫ t

0

∫
R

∂uG(s, u)∂uH(s, u) du ds.

Actually, µ has the following explicit expression: for any t ≥ 0 and for any u ∈ R,

µ(t, u) =

∫
R

pt(u− v)ψ(v)dv − χ(ρ)

∫ t

0

∫
R

p′t−s(u− v)∂vH(s, v) dv ds, (3.2)

where pt(u) is the heat kernel

pt(u) =
1√
2πt

e−u
2/(2t)

and p′t(u) := ∂
∂upt(u).

Using the explicit formula of µ, we have the following lemma, which states that the
macroscopic current is well-defined and can be explicitly characterized if the MDP rate
function of the fluctuation fields is finite. Below, we shall approximate µ by a sequence
{µn} in A (introduced in Subsection 3.3), and the following lemma allows us to calculate
the limit of the current associated to the sequence {µn}, see the proof of Proposition 4.2
and Lemma 6.3.

Lemma 3.4. If QT (µ) <∞, then the limit∫ ∞
0

[µ(t, u)− µ(0, u)]du := lim
M→∞

∫ M

0

[µ(t, u)− µ(0, u)]du

is well-defined. Moreover,∫ ∞
0

[µ(t, u)− µ(0, u)]du =

∫ t

0

∫
R

[
− 1

2
p′s(v)ψ(v) + χ(ρ)pt−s(v)∂vH(s, v)

]
dv ds.

Proof. By (3.2), ∫ M

0

[µ(t, u)− µ(0, u)]du = I− II,

where

I =

∫ M

0

∫
R

[
pt(u− v)− p0(u− v)

]
ψ(v) dv du,

II = χ(ρ)

∫ t

0

∫ M

0

∫
R

p′t−s(u− v)∂vH(s, v) dv du ds.

For the first term, we write it as

I =

∫ M

0

∫
R

∫ t

0

ṗs(u− v)ψ(v) ds dv du =
1

2

∫ M

0

∫
R

∫ t

0

p′′s (u− v)ψ(v) ds dv du

=
1

2

∫
R

∫ t

0

[
p′s(M − v)− p′s(v)

]
ψ(v) ds dv.
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Above, ṗs(u) := ∂
∂sps(u) and we used the identity ṗs(u) = (1/2)p′′s (u). For the second

term,

II = χ(ρ)

∫ t

0

∫
R

[
pt−s(M − v)− pt−s(v)

]
∂vH(s, v) dv ds.

Thus, we conclude the proof once we show that

lim
M→∞

∫
R

(∫ t

0

p′s(M − v) ds
)
ψ(v) dv = 0, (3.3)

lim
M→∞

∫ t

0

∫
R

pt−s(M − v)∂vH(s, v) dv ds = 0. (3.4)

One could check directly that, for any t > 0, ps(u) ∈ L2([0, t]×R) and∫ t

0

p′s(·) ds ∈ L2(R). (3.5)

We refer the readers to Appendix A.2 for the proof of (3.5). Finally, (3.3) and (3.4) follow
from the following claim: if f, g ∈ L2(R), then

lim
M→∞

∫
R

f(M − u)g(u)du = 0.

The similar result holds when f, g ∈ L2([0, t]×R). Indeed, by splitting∫
R

f(M − u)g(u)du =

∫
|u|>M/2

f(M − u)g(u)du+

∫
|u|≤M/2

f(M − u)g(u)du,

and by Cauchy-Schwarz inequality, we bound∣∣∣ ∫
R

f(M − u)g(u)du
∣∣∣ ≤ ‖f‖L2(R)

(∫
|u|>M/2

g(u)2du
)1/2

+ ‖g‖L2(R)

(∫
u>M/2

f(u)2du
)1/2

,

which converges to zero as M →∞. This concludes the proof.

Remark 3.5. By repeating the above arguments, one could also show that if QT (µ) <∞,
then for any 0 < t ≤ T ,

lim
M→∞

1

M

∫ M

0

u[µ(t, u)− µ(0, u)] du = 0.

Remark 3.6. Using (3.2) and Lemma 3.3, it is not difficult to show that the moderate
deviation rate function QT (·) is good. Here we give an outline of the check of this
property. The property that QT (·) is lower semi-continuous follows directly from the fact
that QT (·) is the supremum of a class of continuous functions from D([0, T ],S ′(R)) to R.
Consequently,

{µ : QT (µ) ≤ c} := Lc

is closed for any c > 0. Hence, we only need to show that Lc is compact. Us-
ing (3.2), Lemma 3.3, the formula of integration by parts, Cauchy-Schwarz inequality
and ∂tp(t, u) = 1

2∂
2
up(t, u), we have∣∣〈µt, f〉∣∣ ≤ ‖ψ‖L2(R)‖f‖L2(R) + χ(ρ)

√
T‖f ′‖L2(R)

√
[H,H]

=
√

2χ(ρ)Q0(µ0)‖f‖L2(R) +
√
T‖f ′‖L2(R)

√
2χ(ρ)QT,dyn(µ)

≤ 2
√
χ(ρ)QT (µ)

(
‖f‖L2(R) +

√
T‖f ′‖L2(R)

)
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and ∣∣〈µt, f〉− 〈µs, f〉∣∣
≤ t− s

2
‖f ′′‖L2(R)‖ψ‖L2(R) + χ(ρ)

√
t− s‖f ′‖L2(R)

√
[H,H]

+
χ(ρ)

2
(t− s)

√
T‖f ′′′‖L2(R)

√
[H,H]

≤
√

2QT (µ)χ(ρ)

(
t− s

2
‖f ′′‖L2(R) +

√
t− s‖f ′‖L2(R) +

t− s
2

√
T‖f ′′′‖L2(R)

)
for any µ such that QT (µ) < +∞, any f ∈ S(R) and any 0 ≤ s ≤ t ≤ T . Therefore, for
any f ∈ S(R), {µt(f) : 0 ≤ t ≤ T}µ∈Lc are uniformly bounded and equicontinuous. As a
result, the compactness of Lc follows from Ascoli-Arzela theorem.

3.3 Alternative formulas for QT
Introduce

A =
{
µ : there exist H ∈ C1,2c ([0, T ]×R)) and ψ ∈ C2c (R) such that µ satisfies (3.1)

}
.

One could check directly that if µ ∈ A, then for any t > 0, µ(t, ·) is integrable on R and
vanishes at infinity. For µ ∈ A, define J the macroscopic instantaneous current as

J = −1

2
∂uµ+ χ(ρ)∂uH. (3.6)

Obviously,
∂tµ+ ∂uJ = 0.

Define K(t, u) the macroscopic current across the macroscopic point u during time [0, t]

as

K(t, u) :=

∫ t

0

J(s, u)ds.

Then, for u ∈ R and t > 0,
∂uK(t, u) = µ(0, u)− µ(t, u). (3.7)

By direct calculations, for µ ∈ A,

χ(ρ)QT (µ) = χ(ρ)QT (µ0,K) :=
1

2

∫ T

0

∫
R

(∂tK)
2

(t, u)dudt+
1

4

∫
R

(∂uK)
2

(T, u)du

+
1

8

∫ T

0

∫
R

(
∂uµ0(u)− ∂2uK(t, u)

)2
dudt+

1

2

∫
R

[
µ2
0(u)− µ0(u)∂uK(T, u)

]
du. (3.8)

The above formula is exactly [39, Eqn. (3.8)], whose proof is presented in Appendix A.3.

4 Variational formula for the rate function

In this section, we present a variational formula for the rate function Ipath. For any
n ≥ 1, any column vector α ∈ Rn and any 0 ≤ t1 < t2 < . . . < tn, let

I{tj}nj=1
(α) =

1

2
αTA−1

{tj}nj=1

α (4.1)

where A{tj}nj=1
is the n× n matrix with (k, `)-component equal to a(tk, t`) for 1 ≤ k, ` ≤ n.

Recall a(·, ·) is the covariance function of the fractional Brownian motion with Hurst
parameter 1/4.

The following variational formula relates Ipath the rate function of the sample path to
the corresponding finite-dimensional rate functions, which is a direct consequence of [8,
Theorem 4.28].
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Proposition 4.1. For any f ∈ D([0, T ],R),

Ipath(f)

= sup
{
I{tj}nj=1

(
f{tj}nj=1

)
: n ≥ 1, 0 ≤ t1 < t2 < . . . < tn ≤ T, tj ∈ ∆c

f for all 1 ≤ j ≤ n
}
,

where f{tj}nj=1
= (f(t1), f(t2), . . . , f(tn))T and ∆c

f is the set of continuities of f .

Proof. It is well known that for any 0 ≤ t1 < t2 < . . . < tn, I{tj}nj=1
(·) is the large devia-

tion rate function of the sequence of Gaussian vectors
{

1√
N

(
B

1/4
t1 , B

1/4
t2 , . . . , B

1/4
tn

)}
N≥1

,

and Ipath(·) is the rate function of the sequence
{

1√
N
B

1/4
t : 0 ≤ t ≤ T

}
N≥1

, see [7] for

example. Then, by [8, Theorem 4.28], the result follows immediately.

The following lemma gives a variational formula for the finite-dimensional rate
function appearing in the last proposition, which is the main result of this section.

Proposition 4.2. For any positive integer n, any column vector α = (α1, . . . , αn)T ∈ Rn,
and any 0 < t1 < t2 < . . . < tn ≤ T , we have

inf
{
QT (µ) :

∫ ∞
0

[µ(tj , u)− µ(0, u)]du = αj , 1 ≤ j ≤ n
}

=

√
2π

4χ(ρ)
αTA−1α, (4.2)

where A = A{tj}nj=1
for short.

Note that √
2π

4χ(ρ)
αTA−1α =

1

σ2
J

I{tj}nj=1
(α).

In the rest of this section, we prove Proposition 4.2.

4.1 Restricted to µ ∈ A
We first show that we could restrict the infimum in Proposition 4.2 to µ ∈ A, which is

the content of the next result.

Proposition 4.3 (The case n ≥ 1). For any positive integer n, any column vector α ∈ Rn,
and any 0 < t1 < t2 < . . . < tn ≤ T , we have

inf
{
QT (µ) : µ ∈ A,

∫ ∞
0

[µ(tj , u)− µ(0, u)]du = αj , 1 ≤ j ≤ n
}

=

√
2π

4χ(ρ)
αTA−1α, (4.3)

where A = A{tj}nj=1
.

We first prove Proposition 4.2 from the last result, and then prove the last proposition
in the next subsection.

Proof of Proposition 4.2. By Proposition 4.3,

inf
{
QT (µ) :

∫ ∞
0

[µ(tj , u)− µ(0, u)]du = αj , 1 ≤ j ≤ n
}
≤
√

2π

4χ(ρ)
αTA−1α,

and it remains to prove the opposite direction of the last inequality. Take µ such that
QT (µ) <∞ and ∫ ∞

0

[µ(tj , u)− µ(0, u)]du = αj , ∀1 ≤ j ≤ n.

Then, by Lemma 3.3, there exist ψ ∈ L2(R) and H ∈ H1 such that µ is the unique weak
solution to the PDE (3.1). For ε > 0, let ψε ∈ C2c (R) and Hε ∈ C1,2c ([0, T ]×R) such that

ψε → ψ in L2(R), and Hε → H in H1, ε→ 0.
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Denote by µε the solution of the PDE (3.1) associated with ψε and Hε. Finally, let

αεj :=

∫ ∞
0

[µε(tj , u)− µε(0, u)]du, ∀1 ≤ j ≤ n.

By Lemmas 3.3 and 3.4,

lim
ε→0
QT (µε) = QT (µ), lim

ε→0
αεj = αj , ∀1 ≤ j ≤ n.

Thus,

QT (µ) = lim
ε→0
QT (µε)

≥ lim sup
ε→0

inf
{
QT (µ) : µ ∈ A,

∫ ∞
0

[µ(tj , u)− µ(0, u)]du = αεj , 1 ≤ j ≤ n
}

= lim sup
ε→0

√
2π

4χ(ρ)
αTε A

−1αε =

√
2π

4χ(ρ)
αTA−1α,

where αε = (αε1, α
ε
2, . . . , α

ε
n)T . We conclude the proof by taking the infimum over µ on

the left-hand side of the last inequality.

4.2 Proof of Proposition 4.3

The proof of Proposition 4.3 is based on Fourier approach and is divided into several
lemmas. Observe that if µ ∈ A, then by (3.7) and the fact that µ vanishes at infinity,

K(t, 0) =

∫ ∞
0

[µ(t, u)− µ(0, u)]du, t > 0,

which allows us to reduce the constraints inside the infimum in (4.3) to K(tj , 0) = αj for
1 ≤ j ≤ n. Obviously, we also have K(0, u) = 0 for any u ∈ R by the definition of K(t, u).

First, we consider the case n = 1 and K(T, 0) = α for some α ∈ R. The following
result was proved in [39] by constructing the minimizer of the variational problem
directly. Here, we present a different approach, which allows us to generalize it to the
case n > 1.

Lemma 4.4. Fix α ∈ R. Then,

inf{QT (µ) : µ ∈ A, K(0, ·) = 0, K(T, 0) = α} =

√
2πα2

4χ(ρ)
√
T
. (4.4)

Proof. Recall that we sometimes write QT (µ) as QT (µ0,K) to indicate the dependence
of QT on µ0 and K, see (3.8). The proof is divided into several steps:

Step 1. We first minimize QT (µ0,K) subject to K(0, ·) = 0 and K(T, ·) being a known
function. We claim that the infimum is attained at the point (KT,α, µT,α0 ) such that

−∂2tKT,α(t, u) +
1

4
∂4uK

T,α(t, u)− 1

4
∂3uµ

T,α
0 (u) = 0, (4.5)

−T
4
∂2uµ

T,α
0 (u) +

1

4

∫ T

0

∂3uK
T,α(t, u)dt+ µT,α0 (u)− 1

2
∂uK

T,α(T, u) = 0. (4.6)

Indeed, the above equations are obtained by solving, for any µ0 and K such that
K(0, ·) = K(T, ·) = 0,

d

dε
QT (µT,α0 + εµ0,K

T,α)|ε=0 =
d

dε
QT (µT,α0 ,KT,α + εK)|ε=0 = 0.
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For any function f ∈ S(R), define the Fourier transform of f as

Ff(ξ) =
1√
2π

∫
R

eiuξf(u)du, ξ ∈ R.

Then, (Ff ′)(ξ) = −iξFf(ξ), ξ ∈ R. This permits us to rewrite (4.5) and (4.6) as

−∂2tFKT,α(t, ξ) +
ξ4

4
FKT,α(t, ξ)− iξ3

4
FµT,α0 (ξ) = 0, (4.7){

1 +
Tξ2

4

}
FµT,α0 (ξ) = −i

{ξ
2
FKT,α(T, ξ) +

ξ3

4

∫ T

0

FKT,α(t, ξ)dt
}
. (4.8)

Solving (4.7), we have

FKT,α(t, ξ) = C1(ξ)etξ
2/2 + C2(ξ)e−tξ

2/2 +
iFµT,α0 (ξ)

ξ
(4.9)

for two functions C1(ξ) and C2(ξ). Since we assumed KT,α(0, ·) = 0 and KT,α(T, ·) is
known, the coefficients are determined byC1(ξ) + C2(ξ) +

iFµT,α0 (ξ)
ξ = 0,

C1(ξ)eTξ
2/2 + C2(ξ)e−Tξ

2/2 +
iFµT,α0 (ξ)

ξ = FKT,α(T, ξ).
(4.10)

Inserting (4.9) into (4.8), we have

FµT,α0 (ξ) = − iξ
2

{
FKT,α(T, ξ) + C1(ξ)

[
eTξ

2/2 − 1
]

+ C2(ξ)
[
1− e−Tξ

2/2
]}
. (4.11)

Finally, using (4.11), and solving (4.10), we haveC1(ξ) = 1
2(eTξ2/2−1)

FKT,α(T, ξ),

C2(ξ) = − eTξ
2/2

2(eTξ2/2−1)
FKT,α(T, ξ).

In conclusion, we have shown that, for 0 ≤ t ≤ T ,

FµT,α0 (ξ) = − iξ
2
FKT,α(T, ξ), (4.12)

FKT,α(t, ξ) =
1

2

[etξ2/2 − e(T−t)ξ2/2
eTξ2/2 − 1

+ 1
]
FKT,α(T, ξ). (4.13)

Step 2. By Parseval’s identity and (3.8),

χ(ρ)QT (µ0,K) =

∫ T

0

∫
R

{1

2

∣∣∂tFK(t, ξ)
∣∣2 +

1

8

∣∣− iξFµ0(ξ) + ξ2FK(t, ξ)
∣∣2}dξ dt

+
1

4

∫
R

{∣∣Fµ0(ξ)
∣∣2 +

∣∣Fµ0(ξ) + iξFK(T, ξ)
∣∣2}dξ. (4.14)

For example, to obtain the last line, just note that

1

4

∫
R

(∂uK)
2

(T, u)du+
1

2

∫
R

[
µ2
0(u)− µ0(u)∂uK(T, u)

]
du

=
1

4

∫
R

|ξFK(T, ξ)|2 dξ +
1

2

∫
R

[
|Fµ0(ξ)|2 + iξFµ0(ξ)FK(T, ξ)

]
dξ

=
1

4

∫
R

{∣∣Fµ0(ξ)
∣∣2 +

∣∣Fµ0(ξ) + iξFK(T, ξ)
∣∣2}dξ.
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The first term on the right hand side could be calculated similarly. Inserting (KT,α, µT,α0 )

into (4.14), and by (4.12) and (4.13),

χ(ρ)QT (µT,α0 ,KT,α)

=

∫ T

0

∫
R

ξ4

32[eTξ2/2 − 1]2
|FKT,α(T, ξ)|2

[(
etξ

2/2+e(T−t)ξ
2/2
)2

+
(
etξ

2/2−e(T−t)ξ
2/2
)2]

dξ dt

+

∫
R

ξ2

8
|FKT,α(T, ξ)|2 dξ =

∫
R

ξ2eTξ
2/2

4[eTξ2/2 − 1]
|FKT,α(T, ξ)|2 dξ. (4.15)

Step 3. Finally, we need to optimize QT (µT,α0 ,KT,α) over FKT,α(T, ξ). The boundary
condition KT,α(T, 0) = α is equivalent to

1√
2π

∫
R

FKT,α(T, ξ)dξ = α. (4.16)

By Cauchy-Schwarz inequality,(∫
R

FKT,α(T, ξ)dξ
)2
≤
(∫

R

ξ2eTξ
2/2

4[eTξ2/2 − 1]
|FKT,α(T, ξ)|2 dξ

)(∫
R

4[eTξ
2/2 − 1]

ξ2eTξ2/2
dξ
)
.

Thus, the infimum of (4.15) is attained at the point

FKT,α(T, ξ) =
α(1− e−Tξ2/2)√

Tξ2
,

and equals

(
√

2πα)2
(∫

R

4(eTξ
2/2 − 1)

ξ2eTξ2/2
dξ
)−1

= (
√

2πα)2
(∫

R

4(1− e−Tξ2/2)

ξ2
dξ
)−1

=

√
2πα2

4
√
T

.

In the last identity, we used Equation (A.1). This concludes the proof.

The next lemma extends the last result to the case n = 1 and K(t, 0) = α for 0 < t ≤ T
and α ∈ R.

Lemma 4.5. Fix 0 < t ≤ T and α ∈ R. Then,

inf{QT (µ) : µ ∈ A, K(0, ·) = 0, K(t, 0) = α} =

√
2πα2

4χ(ρ)
√
t
. (4.17)

Proof. For any t > 0, let µt,αT be the minimizer of (4.17), which does exist by the following
construction. Denote by Ht,α

T the function H in (3.1), respectively Kt,α
T the function K

in (3.7), associated with the function µt,αT . We call µt,αT , or correspondingly (Kt,α
T , µt,αT,0),

the minimizer of the rate function QT (µ) with current α at time t. In particular, when
T = t,

µT,α = µT,αT , HT,α = HT,α
T , KT,α = KT,α

T ,

the precise expressions of which are given through the proof of Lemma 4.4.
We claim the infimum in (4.17) is attained at the point µt,αT such that

(i) for 0 ≤ s ≤ t, the function µt,αT is the unique solution to{
∂sµ

t,α
T (s, u) = 1

2∂
2
uµ

t,α
T (s, u)− χ(ρ)∂2uH

t,α(s, u), u ∈ R,
µt,αT (0, u) = µt,α0 (u), u ∈ R,

(4.18)

where Ht,α is the function H associated with the minimizer of the rate function
Qt(µ) with current α at time t;
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(ii) for t ≤ s ≤ T , the function µt,αT is the unique solution to{
∂sµ

t,α
T (s, u) = 1

2∂
2
uµ

t,α
T (s, u), u ∈ R,

µt,αT (t, u) = µt,α(t, u), u ∈ R.
(4.19)

Roughly speaking, the minimizer µt,αT evolves as the minimizer of the rate function Qt(µ)

with current α at time t during time interval [0, t], and then evolves according to the
hydrodynamic equation of the SSEP after time t. This claim is obvious since

QT,dyn(µ) =
χ(ρ)

2
[H,H],

and thus

inf{QT (µ) : µ ∈ A, K(0, ·)=0, K(t, 0)=α} ≥ inf{Qt(µ) : µ ∈ A, K(0, ·)=0, K(t, 0) = α}

Moreover, by Lemma 4.4, the left-hand side of (4.17) equals

QT (µt,αT ) = Qt(µt,α) +

∫ T

t

0ds =

√
2πα2

4χ(ρ)
√
t
,

which concludes the proof.

One could check directly that the functions µt,αT and (Kt,α
T , µt,αT,0) constructed in the

last proof satisfy the following properties:

(P1) for 0 ≤ s ≤ t,

Fµt,αT,0(ξ) = − iξ
2
FKt,α(t, ξ), (4.20)

FKt,α
T (s, ξ) =

1

2

[esξ2/2 − e(t−s)ξ2/2
etξ2/2 − 1

+ 1
]
FKt,α(t, ξ), (4.21)

where

FKt,α(t, ξ) =
α(1− e−tξ2/2)√

tξ2
;

(P2) for t ≤ s ≤ T ,

FKt,α
T (s, ξ) =

1

2

[
1 + e−(s−t)ξ

2/2
]
FKt,α(t, ξ). (4.22)

Moreover, by direct calculations (see Section A.4), for 0 ≤ s ≤ T ,

Kt,α
T (s, 0) =

1√
2π

∫
R

FKt,α
T (s, ξ)dξ =

αa(t, s)√
t

, (4.23)

where a(t, s) = 1
2 (
√
t+
√
s−
√
|t− s|) is the covariance function of the fractional Brownian

motion with Hurst parameter 1
4 .

(P1) is exactly (4.12) and (4.13). (P2) follows from (4.19) and (3.7). Indeed, by (4.19),

Fµt,αT (s, ξ) = Fµt,α(t, ξ)e−(s−t)ξ
2/2, t ≤ s ≤ T,

and by (3.7),
− iξFKt,α

T (s, ξ) = Fµt,αT,0(ξ)−Fµt,αT (s, ξ), s ≥ 0. (4.24)

Taking s = t in the last expression, and then using (P1), we obtain

Fµt,αT (t, ξ) =
iξ

2
FKt,α(t, ξ).
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Therefore, by (4.24), for s ≥ t,

−iξFKt,α
T (s, ξ) = − iξ

2
FKt,α(t, ξ)−Fµt,α(t, ξ)e−(s−t)ξ

2/2 = − iξ
2

[
1+e−(s−t)ξ

2/2
]
FKt,α(t, ξ),

as claimed.
Finally, we are ready to prove Proposition 4.3.

Proof of Proposition 4.3. Let

µnT := µ
n,{tj}nj=1,{αj}

n
j=1

T , (Kn
T , µ

n
T,0) := (K

n,{tj}nj=1,{αj}
n
j=1

T , µ
n,{tj}nj=1,{αj}

n
j=1

T,0 )

be the minimizer of (4.2). We claim that

Kn
T =

n∑
j=1

βjK
tj ,1
T , µnT,0 =

n∑
j=1

βjµ
tj ,1
T,0 (4.25)

for some coefficients βj ∈ R, 1 ≤ j ≤ n. Recall that for 1 ≤ j ≤ n,
(
K
tj ,1
T , µ

tj ,1
T,0

)
is the

minimizer of the rate function QT (µ) with current one at time tj , and is constructed
in (4.18) and (4.19). We prove claim (4.25) in Section A.5. The coefficients {βj} satisfy
the following constraints

n∑
j=1

βjK
tj ,1
T (tk, 0) = αk, 1 ≤ k ≤ n. (4.26)

By (4.23), the last line is equivalent to

n∑
j=1

βj
a(tj , tk)
√
tj

= αk, 1 ≤ k ≤ n.

Let D = diag(dj)1≤j≤n be the diagonal matrix with dj = 1/
√
tj . Let β = (β1, . . . , βn)T be

the column vector. Then, we have shown that

ADβ = α.

Note that AD is invertible, which ensures the existence and uniqueness of β.
Inserting (4.25) into (4.14), we have

χ(ρ)QT (µnT,0,K
n
T ) = βTQβ, (4.27)

where Q = (qjk)1≤j,k≤n is the matrix with qjk being the real part of

∫ T

0

∫
R

{1

2
∂tFK

tj ,1
T (t, ξ)∂tFKtk,1

T (t, ξ)

+
1

8

[
− iξFµtj ,1T,0 (ξ) + ξ2FKtj ,1

T (t, ξ)
][
− iξFµtk,1T,0 (ξ) + ξ2FKtk,1

T (t, ξ)
]}
dξ dt

+
1

4

∫
R

{
Fµtj ,1T,0 (ξ)Fµtk,1T,0 (ξ)

+
[
Fµtj ,1T,0 (ξ) + iξFKtj ,1

T (T, ξ)
][
Fµtk,1T,0 (ξ) + iξFKtk,1

T (T, ξ)
]}
dξ.

After a long computation (see Section A.6), we have

qjk =

√
2π

4
√
tjtk

ajk. (4.28)
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Equivalently,

Q =

√
2π

4
DAD.

Therefore,

χ(ρ)QT (µnT,0,K
n
T ) =

√
2π

4
αTA−1α,

which concludes the proof.

5 Exponential tightness

In this section, we prove the sequences of the two processes

{J−1,0(tN2)/aN : 0 ≤ t ≤ T}N≥1 and {X(tN2)/aN : 0 ≤ t ≤ T}N≥1

are exponentially tight.

5.1 A uniform super-exponential estimate

We first state a super-exponential estimate for the space average of the current. The
following result was proved by the same authors in [39] without the supremum over time
inside the probability.

Lemma 5.1. For any δ > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logP

(
sup

0≤t≤T

∣∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣ > δ

)
= −∞ (5.1)

under both P = Pνρ and P = Pν∗ρ .

Proof. By Remark 3.2, we only need to discuss the case where P = Pνρ . By Markov’s
inequality, for any K > 0, the expression in (5.1) is bounded by

− δK +
N

a2N
logEνρ

[
exp

{
sup

0≤t≤T

∣∣∣aNK
nN2

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣}]. (5.2)

Since K could be taken arbitrarily large, we only need to prove that, for any fixed K > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logEνρ

[
exp

{
sup

0≤t≤T

∣∣∣aNK
nN2

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣}] = 0.

By using the inequality

exp{ sup
0≤t≤T

|xt|} ≤ exp{ sup
0≤t≤T

xt}+ exp{ sup
0≤t≤T

(−xt)}

for any trajectory {xt}, and log(a+ b) ≤ log 2 + max{log a, log b} for any a, b > 0, without
loss of generality, it suffices to prove that, for any fixed K > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logEνρ

[
exp

{
sup

0≤t≤T

aNK

nN2

nN−1∑
x=0

Jx,x+1(tN2)
}]

= 0. (5.3)

Since for each x ∈ Z, {Jx,x+1(t)} is a compound Poisson process with intensity

1

2

∫ t

0

(ηs(x)− ηs(x+ 1))ds,
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and there are no common jumps between those compound Poisson processes,

MN,1
t = exp

{aNK
nN2

nN−1∑
x=0

Jx,x+1(tN2)− ΓN,1n,K(t)
}

is a mean-one exponential martingale, where

ΓN,1n,K(t) =
1

2

nN−1∑
x=0

(
eaNK/(nN

2) − 1
)∫ tN2

0

(ηs(x)− ηs(x+ 1))ds.

Then, by Cauchy-Schwarz inequality, the expectation in (5.3) is bounded by

Eνρ

[
sup

0≤t≤T
{MN,1

t } exp
{

sup
0≤t≤T

ΓN,1n,K(t)
}]

≤ Eνρ
[

sup
0≤t≤T

(MN,1
t )2

]1/2
Eνρ

[
exp

{
sup

0≤t≤T
2ΓN,1n,K(t)

}]1/2
.

As a consequence, the expression in (5.3) is bounded by

N

2a2N
logEνρ

[
sup

0≤t≤T
(MN,1

t )2
]

+
N

2a2N
logEνρ

[
exp

{
sup

0≤t≤T
2ΓN,1n,K(t)

}]
.

For the martingale term in the last line, we have

(MN,1
t )2 = exp

{1

2

[4aNK

nN2

nN−1∑
x=0

Jx,x+1(tN2)− 2ΓN,2n,K(t)
]

+ ΓN,2n,K(t)− 2ΓN,1n,K(t)
}

=: (MN,2
t )1/2 exp

{
ΓN,2n,K(t)− 2ΓN,1n,K(t)

}
,

where

2ΓN,2n,K(t) =
1

2

nN−1∑
x=0

(
e4aNK/(nN

2) − 1
)∫ tN2

0

(ηs(x)− ηs(x+ 1))ds,

and

MN,2
t = exp

{4aNK

nN2

nN−1∑
x=0

Jx,x+1(tN2)− 2ΓN,2n,K(t)
}

is also a martingale. By Doob’s inequality and Cauchy-Schwarz inequality,

N

a2N
logEνρ

[
sup

0≤t≤T
(MN,1

t )2
]
≤ N log 4

a2N
+

N

a2N
logEνρ

[
(MN,1

T )2
]

≤ N log 4

a2N
+

N

2a2N
logEνρ

[
MN,2
T

]
+

N

2a2N
logEνρ

[
exp

{
2ΓN,2n,K(T )− 4ΓN,1n,K(T )

}]
. (5.4)

Note that the second term on the right-hand side of (5.4) is zero. Since aN �
√
N , the

first term on the right-hand side of (5.4) converges to zero as N → ∞. Therefore, to
prove (5.3), we only need to prove

lim sup
n→∞

lim sup
N→∞

N

2a2N
logEνρ

[
exp

{
sup

0≤t≤T
2ΓN,1n,K(t)

}]
= 0, (5.5)

since the third term on the right-hand side of (5.4) could be treated in the same way.
Since |ex − 1− x| ≤ (x2/2)e|x|,

ΓN,1n,K(t) ≤ aNK

2nN2

∫ tN2

0

(ηs(0)− ηs(nN))ds+
CN,nta

2
NK

2

n2N2
,
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where CN,n is uniformly bounded in N and n. Thus, we are left to show

lim sup
n→∞

lim sup
N→∞

N

a2N
logEνρ

[
exp

{
sup

0≤t≤T

aNK

nN2

∫ tN2

0

(ηs(0)− ηs(nN))ds
}]

= 0. (5.6)

Since

sup
0≤t≤T

aNK

nN2

∫ tN2

0

(ηs(0)− ηs(nN))ds ≤ sup
0≤k≤TN

aNK

nN2

∫ kN

0

(ηs(0)− ηs(nN))ds+
aNK

nN
,

where the supremum on the right-hand side is over integers k, the left-hand side in (5.6)
is bounded by

lim sup
n→∞

lim sup
N→∞

N

a2N
logEνρ

[
exp

{
sup

0≤k≤TN

aNK

nN2

∫ kN

0

(ηs(0)− ηs(nN))ds
}]
.

Using the inequality

logE[exp{ sup
0≤k≤TN

Xk}] ≤ logE
[ TN∑
k=0

eXk
]
≤ log(TN + 1) + max

0≤k≤TN
logE[eXk ],

and since aN �
√
N logN , we only need to prove

lim sup
n→∞

lim sup
N→∞

max
0≤k≤TN

N

a2N
logEνρ

[
exp

{aNK
nN2

∫ kN

0

(ηs(0)− ηs(nN))ds
}]

= 0, (5.7)

which has been shown in the proof of [39, Lemma 4.1]. We also refer the readers to
Section A.7 for details. This concludes the proof.

5.2 Exponential tightness of the current

To show the sequence of processes {J−1,0(tN2)/aN : 0 ≤ t ≤ T}N≥1 is exponentially
tight, we only need to prove the following estimates for the current.

Lemma 5.2. We have the following estimates for the current under both P = Pνρ and
P = Pν∗ρ :

1. for any fixed T > 0,

lim sup
M→∞

lim sup
N→∞

N

a2N
logP

(
sup

0≤t≤T

1

aN

∣∣J−1,0(tN2)
∣∣ > M

)
= −∞; (5.8)

2. for any ε > 0,

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logP

(
sup

0<t≤δ

1

aN

∣∣J−1,0((t+ τ)N2)− J−1,0(τN2)
∣∣ > ε

)
= −∞,

(5.9)
where TT is the set of all stopping times bounded by T .

Proof. As in the last lemma, we only need to deal with the case where P = Pνρ . For any
n > 0, introduce the function Gn : R→ R as

Gn(u) = (1− u/n)+1{u ≥ 0}, u ∈ R.

Then, one could check directly that, for any n > 0,

1

aN
J−1,0(tN2) =

〈
µNt , Gn

〉
−
〈
µN0 , Gn

〉
+

1

nNaN

nN−1∑
x=0

Jx,x+1(tN2). (5.10)
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Thus, we only need to show that the estimates in the lemma hold respectively for the
terms on the right-hand side of the last line, i.e.,

lim sup
n→∞

lim sup
M→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤T

∣∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣ > M

)
= −∞, (5.11)

lim sup
n→∞

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logPνρ

(
sup

0≤t≤δ

∣∣∣ 1

nNaN

nN−1∑
x=0

[Jx,x+1((t+ τ)N2)− Jx,x+1(τN2)]
∣∣∣ > ε

)
= −∞, (5.12)

and

lim sup
n→∞

lim sup
M→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤T

∣∣〈µNt , Gn〉∣∣ > M
)

= −∞, (5.13)

lim sup
n→∞

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logPνρ

(
sup

0≤t≤δ

∣∣〈µNt+τ − µNτ , Gn〉∣∣ > ε
)

= −∞. (5.14)

Note that the left hand side of (5.11) is bounded by

lim sup
n→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤T

∣∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣ > 1

)
.

Thus, (5.11) is true by Lemma 5.1. Since the probability in (5.12) is bounded by

2Pνρ

(
sup

0≤t≤T

∣∣∣ 1

nNaN

nN−1∑
x=0

Jx,x+1(tN2)
∣∣∣ > ε/2

)
,

the estimate in (5.12) also follows directly from Lemma 5.1.

The estimates in (5.13) and (5.14) have been proved in [10, Lemma 3.2] for Schwartz
test functions. Thus, we only need to find G̃n ∈ S(R) such that, for any ε > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤T

∣∣〈µNt , Gn − G̃n〉∣∣ > ε
)

= −∞. (5.15)

We underline that this is not obvious since we only have the priori bound

∣∣〈µNt , Gn − G̃n〉∣∣ ≤ C(n)
N

aN

and note that aN � N . To this end, we choose G̃n ∈ S(R) such that

|δn(u)| := |Gn(u)− G̃n(u)| ≤ Cn−1, ∀u ∈ R,

and that the support of δn(·) is contained in [−2n, 2n]. For 0 ≤ i ≤ N3, let ti = iT/N3.
Then, the probability in (5.15) is bounded by

Pνρ

(
sup

0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)

+Pνρ

(
sup

0≤t≤T

∣∣〈µNt , δn〉∣∣− sup
0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)
. (5.16)

For the first term in the last line, since the process is stationary,

Pνρ

(
sup

0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)
≤ (N3 + 1)Pνρ

(∣∣〈µN0 , δn〉∣∣ > ε/2
)
.
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Then, using aN �
√
N logN , for any A > 0,

lim sup
n→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)

= lim sup
n→∞

lim sup
N→∞

N

a2N
logPνρ

(∣∣〈µN0 , δn〉∣∣ > ε/2
)

≤ −Aε
2

+ lim sup
n→∞

lim sup
N→∞

N

a2N
logEνρ

[
exp

{aNA
N

∣∣∑
x∈Z

η̄0(x)δn(x/N)
∣∣}].

As before, we could remove the absolute value inside the exponential in the last line.
Since νρ is a product measure, and by Taylor’s expansion up to second order, we bound
the last line by

− Aε

2
+ lim sup

n→∞
lim sup
N→∞

N

a2N

∑
x∈Z

logEνρ

[
exp

{aNA
N

η̄0(x)δn(x/N)
}]

≤ −Aε
2

+ lim sup
n→∞

lim sup
N→∞

CA2

N

∑
x∈Z

δ2n(x/N) = −Aε
2
.

Since A could be arbitrarily large,

lim sup
n→∞

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)

= −∞.

It remains to bound the second term in (5.16). Before that, we first recall the stirring
representation for the symmetric exclusion process. Initially, we put a particle at each
site of Z. Those particles are distinguishable. For each bond (x, x+ 1), we have a Poisson
process with parameter 1

2 , and assume those Poisson processes are independent. When
the Poisson clock associated with the bond (x, x+ 1) rings, we exchange the particles at
sites x and x + 1. Let ξxt be the position at time t of the particle initially at site x. For
η ∈ Ω, let

ηt(x) = 1 if and only if ξyt = x for some y ∈ Z such that η(y) = 1.

Then, {ηt} is a version of the SSEP with initial configuration η. Note that for each x, {ξxt }
is a continuous-time simple random walk with jump rate one. Using this representation,
for any s, t ≥ 0, we have

〈
µNt − µNs , δn

〉
=

1

aN

∑
y∈Z

[
δn

(ξytN2

N

)
− δn

(ξysN2

N

)]
η0(y).

Thus, we bound the second term in (5.16) by

Pνρ

(
sup

0≤t≤T

∣∣〈µNt , δn〉∣∣− sup
0≤i≤N3

∣∣〈µNti , δn〉∣∣ > ε/2
)

≤ Pνρ
(

sup
0≤i≤N3

sup
ti≤t≤ti+1

∣∣〈µNt − µNti , δn〉∣∣ > ε/2
)
≤ N3Pνρ

(
sup

0≤t≤t1

∣∣〈µNt − µN0 , δn〉∣∣ > ε/2
)

= N3Pνρ

(
sup

0≤t≤t1

∣∣∣ 1

aN

∑
y∈Z

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ > ε/2
)
.

To conclude the proof, it is sufficient to show that, for any n > 0,

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤t1

∣∣∣ 1

aN

∑
y∈Z

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ > ε/2
)

= −∞. (5.17)
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For the above sum over y ∈ Z, we consider the two cases |y| > 3Nn and |y| ≤ 3Nn

respectively.
For the case |y| > 3Nn, δn(y/N) = 0 since the support of δn is contained in [−2n, 2n].

Then, we bound

Pνρ

(
sup

0≤t≤t1

∣∣∣ 1

aN

∑
|y|>3Nn

δn

(ξytN2

N

)
η0(y)

∣∣∣ > ε/2
)

≤ Pνρ
(

sup
0≤t≤t1

|ξytN2 | ≤ 2Nn for some |y| > 3Nn
)

≤
∑

|y|>3Nn

Pνρ

(
sup

0≤t≤t1
|ξytN2 − y| ≥ |y| − 2Nn

)
.

Since for each y, |ξytN2 −y| is stochastically bounded by a Poisson process with parameter
tN2, and recall t1 = T/N3, the last line is bound by∑

|y|>3Nn

e−c(|y|−2Nn) ≤ e−cNn

for some constant c > 0. Therefore,

lim sup
N→∞

N

a2N
logPνρ

(
sup

0≤t≤t1

∣∣∣ 1

aN

∑
|y|>3Nn

δn

(ξytN2

N

)
η0(y)

∣∣∣ > ε/2
)

= −∞.

It remains to bound

Pνρ

(
sup

0≤t≤t1

∣∣∣ 1

aN

∑
|y|≤3Nn

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ > ε/2
)

≤ Pνρ(AcN ) + Pνρ

({
sup

0≤t≤t1

∣∣∣ 1

aN

∑
|y|≤3Nn

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ > ε/2
}
∩AN

)
,

(5.18)

where
AN =

{
sup

|y|≤3Nn
sup

0≤t≤t1
|ξytN2 − y| ≤ a3/2N N−1/2

}
.

Standard large deviation estimates yield

Pνρ(A
c
N ) ≤ 7Nne−ca

3/2
N N−1/2

for some constant c > 0, and thus

lim sup
N→∞

N

a2N
logPνρ(A

c
N ) = −∞.

We claim that the event inside the second probability on the right-hand side of (5.18)
is empty for N large enough, which is sufficient to conclude the proof. Indeed, first
note that δn is only discontinuous at the origin. Moreover, on the event AN , for each
0 ≤ t ≤ t1, the cardinality of

BN,t := {|y| ≤ 3Nn : y ≥ 0, ξytN2 < 0 or y < 0, ξytN2 ≥ 0}

is bounded by 2a
3/2
N N−1/2. Thus, on the event AN ,

sup
0≤t≤t1

∣∣∣ 1

aN

∑
y∈BN,t

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ ≤ 4

n

√
aN
N
,
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which goes to zero as N →∞. By the piecewise smoothness of δn,

sup
0≤t≤t1

∣∣∣ 1

aN

∑
|y|≤3Nn,y/∈BN,t

[
δn

(ξytN2

N

)
− δn

( y
N

)]
η0(y)

∣∣∣ ≤ C(n)

√
aN
N
,

which also vanishes as N →∞, thus concluding the proof.

5.3 Exponential tightness of the tagged particle

As in the last subsection, if follows from the following estimates that the sequence of
processes {X(tN2)/aN : 0 ≤ t ≤ T}N≥1 is exponentially tight.

Lemma 5.3. We have the following estimates for the replacement of the tagged particle:

1. for any fixed T > 0,

lim sup
M→∞

lim sup
N→∞

N

a2N
logPν∗ρ

(
sup

0≤t≤T

1

aN

∣∣X(tN2)
∣∣ > M

)
= −∞; (5.19)

2. for any ε > 0,

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logPν∗ρ

(
sup

0<t≤δ

1

aN

∣∣X((t+ τ)N2)−X(τN2)
∣∣ > ε

)
= −∞,

(5.20)
where TT is the set of all stopping times bounded by T .

Proof. We first prove (5.19). Since the process is symmetric with respect to the origin,
we could remove the absolute value inside the probability in (5.19). If X(tN2) > aNM

for some 0 ≤ t ≤ T , then J−1,0(tN2) ≥
∑[aNM ]
x=0 ηtN2(x) for some 0 ≤ t ≤ T . Thus, the

probability in (5.19) is bounded by

Pν∗ρ

(
sup

0≤t≤T
J−1,0(tN2) ≥ inf

0≤t≤T

[aNM ]∑
x=0

ηtN2(x)
)
≤ Pν∗ρ

(
sup

0≤t≤T
J−1,0(tN2) ≥ ρaNM/2

)

+ Pν∗ρ

(
inf

0≤t≤T

[aNM ]∑
x=0

ηtN2(x) ≤ ρaNM/2
)
.

To finish the proof, it remains to show that

lim sup
M→∞

lim sup
N→∞

N

a2N
logPν∗ρ

(
sup

0≤t≤T
J−1,0(tN2) ≥ ρaNM/2

)
= −∞,

which follows directly from (5.8), and that, for any fixed M > 0,

lim sup
N→∞

N

a2N
logPν∗ρ

(
inf

0≤t≤T

[aNM ]∑
x=0

ηtN2(x) ≤ ρaNM/2
)

= −∞. (5.21)

Now, we prove (5.21). For 0 ≤ i ≤ N2, define ti = iT/N2. Then, for ti ≤ t ≤ ti+1,

[aNM ]∑
x=0

ηtN2(x) =

[aNM ]∑
x=0

ηtiN2(x) + J−1,0(tiN
2, tN2)− J[aNM ],[aNM ]+1(tiN

2, tN2),

which implies that

inf
0≤t≤T

[aNM ]∑
x=0

ηtN2(x) ≥ inf
0≤i≤N2

[aNM ]∑
x=0

ηtiN2(x)

− sup
0≤i≤N2

sup
ti≤t≤ti+1

∣∣J−1,0(tiN
2, tN2)

∣∣− sup
0≤i≤N2

sup
ti≤t≤ti+1

∣∣J[aNM ],[aNM ]+1(tiN
2, tN2)

∣∣.
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This permits us to bound the probability in (5.21) by

Pν∗ρ

(
inf

0≤i≤N2

[aNM ]∑
x=0

ηtiN2(x) ≤ 3ρaNM/4
)

+ Pν∗ρ

(
sup

0≤i≤N2

sup
ti≤t≤ti+1

∣∣J−1,0(tiN
2, tN2)

∣∣ ≥ ρaNM/8
)

+ Pν∗ρ

(
sup

0≤i≤N2

sup
ti≤t≤ti+1

∣∣J[aNM ],[aNM ]+1(tiN
2, tN2)

∣∣ ≥ ρaNM/8
)
.

By Remark 3.2, we could replace the above Pν∗ρ with Pνρ . Since νρ is invariant for the
SSEP, using the large deviation principle of the sum of i.i.d. random variables, there
exists C > 0 independent of N and 1 ≤ i ≤ N2 such that

lim sup
N→+∞

1

aN
logPνρ

( [aNM ]∑
x=0

ηtiN2(x) ≤ 3ρaNM/4
)

= −C

for all 1 ≤ i ≤ N2. Then, since aN �
√
N logN and

Pνρ

(
inf

0≤i≤N2

[aNM ]∑
x=0

ηtiN2(x) ≤ 3ρaNM/4
)
≤ (N2 + 1)Pνρ

( [aNM ]∑
x=0

η0(x) ≤ 3ρaNM/4
)
,

we have

lim sup
N→+∞

N

a2N
logPνρ

(
inf

0≤i≤N2

[aNM ]∑
x=0

ηtiN2(x) ≤ 3ρaNM/4
)

= −∞. (5.22)

Since a particle crosses an edge at rate at most 1, {
∣∣J−1,0(tiN

2, tN2)
∣∣}t≥ti is stochastically

dominated from above by a Poisson process with rate 1. Thus,

Pνρ( sup
0≤i≤N2

sup
ti≤t≤ti+1

∣∣J−1,0(tiN
2, tN2)

∣∣ ≥ ρaNM/8)

≤ N2Pνρ( sup
ti≤t≤ti+1

∣∣J−1,0(tiN
2, tN2)

∣∣ ≥ ρaNM/8) ≤ CN2 exp{−CaNM}

for some constant C > 0, which implies

lim sup
N→+∞

N

a2N
logPνρ

(
sup

0≤i≤N2

sup
ti≤t≤ti+1

∣∣J−1,0(tiN
2, tN2)

∣∣ ≥ ρaNM/8
)

= −∞. (5.23)

By translation invariance, (5.23) still holds when J−1,0(tiN
2, tN2) is replaced by

J[aNM ],[aNM ]+1(tiN
2, tN2),

thus concluding the proof of (5.21).
Now we prove (5.20). We first remove the absolute value inside the probability

in (5.20) as before. For any M > 0, we define

BM,N,δ =
{

sup
0≤t≤T+δ

1

aN
|X(tN2)| ≤M

}
.

By (5.19),

lim sup
M→+∞

lim sup
N→+∞

N

a2N
logPν∗ρ (BcM,N,δ) = −∞.

Hence, to prove (5.20), we only need to show that

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logPν∗ρ

(
sup

0<t≤δ

1

aN

(
X((t+ τ)N2)−X(τN2)

)
> ε,BN,M,δ

)
= −∞

(5.24)
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for any M > 0. We further define

CN,M,ε,δ =
{

inf
−aNM≤k≤aNM

inf
0≤t≤T+δ

[aNε]∑
x=0

ηtN2(x+ k) ≥ ρaNε

2

}
,

where the infimum is over integers k. Then, by (5.21),

lim sup
N→+∞

N

a2N
logPν∗ρ (CcN,M,ε,δ) = −∞.

Therefore, to prove (5.24), we only need to show that, for any M > 0,

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
logPν∗ρ

(
sup

0<t≤δ

1

aN

(
X((t+ τ)N2)−X(τN2)

)
> ε,

BN,M,δ, CN,M,ε,δ

)
= −∞. (5.25)

Conditioned on the event BN,M,δ

⋂
CN,M,ε,δ, we have X(τN2) = k for some −aNM ≤

k ≤ aNM . Moreover, if 1
aN

(
X((t+ τ)N2)−X(τN2)

)
> ε for some 0 < t ≤ δ, then

Jk−1,k((t+ τ)N2)− Jk−1,k(τN2) =

X((t+τ)N2)∑
x=k

η(t+τ)N2(x)

≥
k+[aNε]∑
x=k

η(t+τ)N2(x) =

[aNε]∑
x=0

η(t+τ)N2(x+ k) ≥ ρaNε

2

for some −aNM ≤ k ≤ aNM . Thus, to prove (5.25), we only need to show that

lim sup
δ→0

lim sup
N→∞

sup
τ∈TT

N

a2N
log

×
∑

k:|k|≤aNM

Pν∗ρ

(
sup

0<t≤δ

1

aN

(
Jk−1,k((t+ τ)N2)− Jk−1,k(τN2)

)
≥ ρε

2

)
= −∞, (5.26)

which follows immediately from (5.9) since aN �
√
N logN . This concludes the proof.

6 Proof of Theorems 2.1 and 2.2

In this section, we prove Theorems 2.1 and 2.2. We first state two lemmas concerning
finite-dimensional moderate deviation principles for the current and the tagged particle.

Lemma 6.1. For any n ≥ 1 and for any 0 ≤ t1 < t2 < . . . < tn, the sequence{ 1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)}

N≥1

satisfies moderate deviation principles with decay rate a2N/N and with rate function
σ−2J I{tj}nj=1

under both Pνρ and Pν∗ρ . Recall the definition of I{tj}nj=1
from (4.1). More

precisely, for any closed set C ⊆ Rn,

lim sup
N→+∞

N

a2N
logP

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ C
)
≤ − inf

α∈C

1

σ2
J

I{tj}nj=1
(α), (6.1)

and for any open set O ⊆ Rn,

lim inf
N→+∞

N

a2N
logP

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ O

)
≥ − inf

α∈O

1

σ2
J

I{tj}nj=1
(α),

(6.2)
where P = Pνρ or P = Pν∗ρ .
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Lemma 6.2. For any n ≥ 1 and for any 0 ≤ t1 < t2 < . . . < tn, the sequence{ 1

aN

(
X(t1N

2), . . . , X(tnN
2)
)}

N≥1

satisfies moderate deviation principles with decay rate a2N/N and with rate function
σ−2X I{tj}nj=1

. More precisely, for any closed set C ⊆ Rn,

lim sup
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ C
)
≤ − inf

α∈C

1

σ2
X

I{tj}nj=1
(α), (6.3)

and for any open set O ⊆ Rn,

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ O

)
≥ − inf

α∈O

1

σ2
X

I{tj}nj=1
(α). (6.4)

We shall prove Lemmas 6.1 and 6.2 in later subsections. Now we utilize these two
lemmas to prove Theorems 2.1 and 2.2.

Proof of Theorems 2.1 and 2.2. We first prove Theorem 2.1. In Lemma 5.2, we have
shown that the sequence { 1

aN
J−1,0(tN2) : 0 ≤ t ≤ T}N≥1 is exponentially tight. Using [8,

Theorem 4.28] and Lemma 6.1, the sequence { 1
aN
J−1,0(tN2) : 0 ≤ t ≤ T}N≥1 satisfies

moderate deviation principles with decay rate a2N/N and with rate function given by

sup
{ 1

σ2
J

I{tj}nj=1

(
f{tj}nj=1

)
: n ≥ 1, 0 ≤ t1 < t2 < . . . < tn ≤ T, tj ∈ ∆c

f for all 1 ≤ j ≤ n
}

for all f ∈ D([0, T ],R), where f{tj}nj=1
and ∆c

f are defined as in Proposition 4.1. Using

Proposition 4.1 again, the last supremum equals

1

σ2
J

Ipath(f) = Icur(f),

which concludes the proof of Theorem 2.1. For Theorem 2.2, we use Lemmas 5.3 and 6.2
instead.

6.1 Proof of Lemma 6.1

For α ∈ Rn and r > 0, let

B(α, r) = {β ∈ Rn : ‖β −α‖∞ < r}

be the cube of radius r centered at α. For any M > 0, shorten

B̄M = B(0,M) = {α ∈ Rn : ‖α‖∞ ≤M} .

We first prove the lower bound (6.2).

Proof of (6.2). For any open set O ⊆ Rn and for any point α ∈ O, using (5.1) and (5.10),
for sufficiently small ε > 0 such that B(α, ε) ⊆ O,

lim inf
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ O

)
≥ lim inf
m→+∞

lim inf
N→+∞

N

a2N
logPνρ

({〈
µNtj , Gm

〉
−
〈
µN0 , Gm

〉}n
j=1
∈ B(α, ε/2),∣∣∣∣∣ 1

mNaN

mN−1∑
x=0

Jx,x+1(tjN
2)

∣∣∣∣∣ < ε/2 for all 1 ≤ j ≤ n
)

= lim inf
m→+∞

lim inf
N→+∞

N

a2N
logPνρ

({〈
µNtj , Gm

〉
−
〈
µN0 , Gm

〉}n
j=1
∈ B(α, ε/2)

)
. (6.5)
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Note that Gm /∈ S(R). By (5.15) and Theorem 3.1, the last line is bounded from below by

lim inf
m→+∞

lim inf
N→+∞

N

a2N
logPνρ

({〈
µNtj , G̃m

〉
−
〈
µN0 , G̃m

〉}n
j=1
∈ B(α, ε/4)

)
≥ − lim sup

m→+∞
inf
{
Qtn(µ) :

{〈
µtj , G̃m

〉
−
〈
µ0, G̃m

〉}n
j=1
∈ B(α, ε/4)

}
.

Let µntn := µ
n,{tj}nj=1,{αj}

n
j=1

tn be the minimizer of the following variational problem

inf
{
Qtn(µ) : µ ∈ A,

∫ ∞
0

[µ(tj , u)− µ(0, u)]du = αj , 1 ≤ j ≤ n
}

which was introduced in the proof of Proposition 4.3. Since µntn ∈ A, by the explicit
expression of µ given in (3.2), µntn(t, u) ∈ L1(R) for any t ∈ [0, tn]. Thus, by dominated
convergence theorem, for all 1 ≤ j ≤ n,

lim
m→+∞

〈
µntn(tj , ·)− µntn(0, ·), G̃m

〉
=

∫ ∞
0

[
µntn(tj , u)− µntn(0, u)

]
du = αj . (6.6)

This implies that, for m large enough,{〈
µntn(tj), G̃m

〉
−
〈
µntn(0), G̃m

〉}n
j=1
∈ B(α, ε/4).

Consequently,

lim inf
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ O

)
≥ −Qtn(µntn) = −

√
2π

4χ(ρ)
αTA−1{tj}nj=1

α = − 1

σ2
J

I{tj}nj=1
(α).

Since α ∈ O is arbitrary,

lim inf
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ O

)
≥ sup

α∈O
− 1

σ2
J

I{tj}nj=1
(α)

= − inf
α∈O

1

σ2
J

I{tj}nj=1
(α).

By Remark 3.2, the lower bound also holds under Pν∗ρ , thus concluding the proof.

Now, we prove the upper bound (6.1). By exponential tightness of the current (see
Lemma 5.2), we only need to prove the estimate for any compact subset in Rn.

Proof of (6.1). As in the proof of the lower bound, we only need to deal with the case
where P = Pνρ . Let K ⊆ Rn be any compact subset. For any r > 0, we could find a
sequence of points αj ∈ K, j = 1, 2, . . . , `(r), such that

K ⊆
⋃̀
j=1

B(αj , r).

By (5.10), for any m > 0 and any r > 0,

lim sup
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ K

)
≤ max

1≤j≤`
lim sup
N→+∞

N

a2N

logPνρ

({〈
µNti , Gm

〉
−
〈
µN0 , Gm

〉
+

1

mNaN

mN−1∑
x=0

Jx,x+1(tiN
2)
}n
i=1
∈ B(αj , r)

)
,
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Using Lemma 5.1, the right-hand side of the last inequality is bounded from above by,
for any r > 0,

lim sup
m→∞

max
1≤j≤`

lim sup
N→+∞

N

a2N
logPνρ

({〈
µNti , Gm

〉
−
〈
µN0 , Gm

〉}n
i=1
∈ B(αj , 2r)

)
.

By (5.15), we could replace the above Gm with the Schwartz function G̃m. Then, using
moderate deviation principles from hydrodynamic limits (see Theorem 3.1), we finally
bound the last expression from above by, for any r > 0,

lim sup
m→∞

max
1≤j≤`

− inf
{
Qtn(µ) :

{〈
µti , G̃m

〉
−
〈
µ0, G̃m

〉}n
i=1
∈ B(αj , 3r)

}
.

We first show that there exists some constant C0 independent of r, j,m such that, for
m large enough,

inf
{
Qtn(µ) :

{〈
µti , G̃m

〉
−
〈
µ0, G̃m

〉}n
i=1
∈ B(αj , 3r)

}
≤ C0. (6.7)

Indeed, let µn,jtn := µ
n,{ti}ni=1,{α

j
i}
n
i=1

tn be as in the proof of (6.2), where αji is the i-th
component of αj for 1 ≤ i ≤ n. By (6.6), for m large enough,{〈

µn,jtn (ti)− µn,jtn (0), G̃m
〉}n
i=1
∈ B(αj , 3r).

Therefore, the infimum in (6.7) is bounded from above by

Qtn(µn,jtn ) =

√
2π

4χ(ρ)
(αj)TA−1{ti}ni=1

αj ≤ sup
α∈K

√
2π

4χ(ρ)
αTA−1{ti}ni=1

α := C0,

which proves (6.7).
For any r, j,m and any ε > 0, there exists µr,j,mε such that{〈

µr,j,mε (ti, ·)− µr,j,mε (0, ·), G̃m
〉}n
i=1
∈ B(αj , 3r), (6.8)

and
Qtn(µr,j,mε )− ε ≤ inf

{
Qtn(µ) :

{〈
µti , G̃m

〉
−
〈
µ0, G̃m

〉}n
i=1
∈ B(αj , 3r)

}
.

Moreover, by (6.7),
sup
r,j,m

Qtn(µr,j,mε ) ≤ C0 + ε. (6.9)

So far, we have shown that, for any ε > 0,

lim sup
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ K

)
≤ − lim inf

r→0
lim inf
m→+∞

min
1≤j≤`

Qtn(µr,j,mε ) + ε = − lim inf
r→0

lim inf
m→+∞

Qtn(µr,j̃,mε ) + ε, (6.10)

where j̃ := j(r,m, ε) := arg min1≤j≤`Qtn(µr,j,mε ).
By (6.9), we could extract a subsequence along which the limit on the right-hand side

of (6.10) is attained as r → 0,m → +∞. According to Remark 3.6, {µr,j,mε : r, j,m} is
a subset of the compact set LC0+ε. Hence, by further extracting a subsequence, there
exists µ∗ε such that µr,j̃,mε converges to µ∗ε in D([0, T ],S ′(R)), and by the compactness of
K, there also exists some α = (α1, α2, . . . , αn) ∈ K such that αj̃ converges to α along
this subsequence. Then, by the lower-semicontinuity of Qtn ,

Qtn(µ∗ε) ≤ lim inf
r→0

lim inf
m→+∞

Qtn(µr,j̃,mε ),
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and thus,

lim sup
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ K

)
≤ −Qtn(µ∗ε) + ε. (6.11)

Moreover, by Lemma 6.3 below,∫ ∞
0

[
µ∗ε(ti, u)− µ∗ε(0, u)

]
du = αi, ∀1 ≤ i ≤ n. (6.12)

Therefore, by Proposition 4.2,

lim sup
N→+∞

N

a2N
logPνρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ K

)
≤ − inf

α∈K
inf
µ

{
Qtn(µ) :

∫ ∞
0

[
µ(ti, u)− µ(0, u)

]
du = αi, ∀1 ≤ i ≤ n

}
+ ε

= − inf
α∈K

1

σ2
J

I{tj}nj=1
(α) + ε.

We conclude the proof of (6.1) by letting ε→ 0.

It remains to prove the following lemma.

Lemma 6.3. If the sequence µm ∈ D([0, T ],S ′(R)), m ≥ 1, satisfies that

lim
m→∞

µm = µ in D([0, T ],S ′(R)), sup
m≥1
QT (µm) ≤ C0

for some µ ∈ D([0, T ],S ′(R)) and for some finite constant C0, then for any 0 < t ≤ T ,

lim
m→∞

∫
R

[µm(t, u)− µm(0, u)]G̃m(u) du =

∫ ∞
0

[µ(t, u)− µ(0, u)] du.

Proof. For any m ≥ n, we write∫
R

[µm(t, u)− µm(0, u)]G̃m(u) du

=

∫
R

[µm(t, u)− µm(0, u)][G̃m(u)− G̃n(u)] du+

∫
R

[µm(t, u)− µm(0, u)]G̃n(u) du. (6.13)

We first prove that the first term on the right-hand side in the last identity converges
to zero as m→∞, n→∞. By Lemma 3.3, Eqn. (3.2) and the uniform boundedness of
QT (µm), there exists some constant C1 such that, for any t > 0,

sup
m≥1
‖µm(t, ·)‖L2(R) ≤ C1.

Since ‖Gm − G̃m‖2L2(R) ≤ Cm−1, by Cauchy-Schwarz inequality, we only need to show
that

lim
n→∞

lim
m→∞

∫
R

[µm(t, u)− µm(0, u)][Gm(u)−Gn(u)] du = 0.

We could also find µ̃m ∈ A such that ‖µ̃m(t, ·)−µm(t, ·)‖2L2(R) ≤ Cm
−2. Since ‖Gm‖2L2(R) ≤

Cm, using Cauchy-Schwarz inequality again, it is sufficient to show that

lim
n→∞

lim
m→∞

∫
R

[µ̃m(t, u)− µ̃m(0, u)][Gm(u)−Gn(u)] du = 0. (6.14)
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Let J̃m be the current associated with µ̃m, i.e., ∂tµ̃m + ∂uJ̃
m = 0. Since

Gm(u)−Gn(u) =


0 if u ≤ 0 or u ≥ m;
u
n −

u
m if 0 ≤ u ≤ n;

1− u
m if n ≤ u ≤ m,

using integration by parts formula, we rewrite the left-hand side in (6.14) as( 1

n
− 1

m

)∫ t

0

∫ n

0

J̃m(s, u)duds− 1

m

∫ t

0

∫ m

n

J̃m(s, u)duds.

Note that by (3.6) and the uniform boundedness of QT (µm), there exists some constant
C2 such that sup0≤t≤T supm≥1 ‖J̃m(t, ·)‖L2(R) ≤ C2. Then, by Cauchy-Schwarz inequality,

the last expression is bounded by C(n−1/2 +m−1/2), concluding the proof of (6.14).
For the second term in (6.13), letting m→∞, it converges to∫

R

[µ(t, u)− µ(0, u)]G̃n(u)du.

Note that µ(t, ·) may not be in L1(R), and thus we cannot use dominated convergence
theorem directly. Instead, we first replace G̃n(u) with Gn(u) as in the above argument,
and then only need to deal with∫

R

[µ(t, u)− µ(0, u)]Gn(u)du =

∫ n

0

[µ(t, u)− µ(0, u)]du− 1

n

∫ n

0

u[µ(t, u)− µ(0, u)] du

by the definition of Gn. At last, letting n→∞ and using Lemma 3.4 and Remark 3.5, we
conclude the proof.

6.2 Proof of Lemma 6.2

We start with the lower bound (6.4).

Proof of (6.4). Observe that if J−1,0(t) ≥ 0, then

J−1,0(t) =

X(t)−1∑
x=0

ηt(x) =

X(t)−1∑
x=0

(ηt(x)− ρ) + ρX(t), (6.15)

and if J−1,0(t) < 0, then

J−1,0(t) = −
−1∑

x=X(t)

ηt(x) = −
−1∑

x=X(t)

(ηt(x)− ρ) + ρX(t). (6.16)

For any given α = (α1, . . . , αn)T ∈ O and any ε > 0, by (6.2),

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10)

)
(6.17)

≥ − inf
β∈B(ρα,ερ/10)

1

σ2
J

I{tj}nj=1
(β) > −∞.

For M > 0, let DM,N be the event that |X(tjN
2)| ≤ aNM for all 1 ≤ j ≤ n. Using (5.19),

we have

lim sup
M→+∞

lim sup
N→+∞

N

a2N
logPν∗ρ

(
Dc
M,N

)
= −∞.
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Hence, there exists M1 > 0 such that

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10), DM1,N

)
= lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10)

)
≥ − inf

β∈B(ρα,ερ/10)

1

σ2
J

I{tj}nj=1
(β). (6.18)

Let FN be the event that | 1
aN

∑k
x=0(ηtjN2(x)−ρ)| < ρε

10 and | 1
aN

∑−1
x=−k(ηtjN2(x)−ρ)| < ρε

10

for all 1 ≤ k ≤ M1aN and all 1 ≤ j ≤ n. By Remark 3.2 and standard large deviation
results, we have

lim sup
N→+∞

1

aN
logPν∗ρ (F cN ) < 0

and thus

lim sup
N→+∞

N

a2N
logPν∗ρ (F cN ) = −∞. (6.19)

Using (6.18) and (6.19), we have

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10), DM1,N , FN

)
≥ − inf

β∈B(ρα,ερ/10)

1

σ2
J

I{tj}nj=1
(β). (6.20)

Conditioned on the event DM1,N

⋂
FN , according to (6.15) and (6.16), if

1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10),

then ∣∣∣∣ 1

aN
X(tjN

2)− αj
∣∣∣∣ < ε/5 < ε, ∀1 ≤ j ≤ n.

Consequently, for sufficiently small ε > 0 such that B(α, ε) ⊆ O, we have

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ O

)
≥ lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ B(α, ε)

)
≥ lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ B(ρα, ερ/10), DM1,N , FN

)
≥ − inf

β∈B(ρα,ερ/10)

1

σ2
J

I{tj}nj=1
(β)

Since ε is arbitrary and I{tj}nj=1
is continuous, let ε→ 0, we have

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ O

)
≥ − 1

σ2
J

I{tj}nj=1
(ρα)

= − 1

σ2
X

I{tj}nj=1
(α).

Since α ∈ O is arbitrary,

lim inf
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ O

)
≥ sup

α∈O

(
− 1

σ2
X

I{tj}nj=1
(α)

)
= − inf

α∈O

1

σ2
X

I{tj}nj=1
(α)

and the proof is completed.

EJP 29 (2024), paper 91.
Page 31/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1155
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


MDP for the current and the tagged particle

At last, we prove the upper bound (6.3).

Proof of (6.3). According to Lemma 5.3, we only need to prove (6.3) for all compact set
K ⊆ Rn. For any compact set K ⊆ Rn, there exists M2 > 0 such that K ⊆ B̄M2 . For given
0 < ε < 1 and each N ≥ 1, we denote by VN the event that | 1

aN

∑k
x=0

(
ηtjN2(x)− ρ

)
| ≤ ε

and | 1
aN

∑−1
x=−k

(
ηtjN2(x)− ρ

)
| ≤ ε for all 1 ≤ k ≤ (M2 + 1)aN and 1 ≤ j ≤ n. Then,

similar with (6.19), we have

lim sup
N→+∞

N

a2N
logPν∗ρ (V cN ) = −∞

and thus

lim sup
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ K

)
= lim sup

N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ K, VN

)
. (6.21)

Conditioned on VN , if 1
aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ K, then, by (6.15) and (6.16),

1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ (ρK)ε ,

where ρK = {ρβ : β ∈ K} and for some subset A ⊂ Rn and some a > 0,

Aa := {β ∈ Rn : ‖β − γ‖∞ ≤ a for some γ ∈ A}.

Since K is compact, (ρK)ε is also compact for all ε > 0. As a result, by (6.1), for any
0 < ε < 1,

lim sup
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ K, VN

)
≤ lim sup

N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
J−1,0(t1N

2), . . . , J−1,0(tnN
2)
)
∈ (ρK)ε

)
≤ − inf

β∈(ρK)ε

1

σ2
J

I{tj}nj=1
(β).

Since I{tj}nj=1
is uniformly continuous on B̄M2+1 and (ρK)ε is compact,

lim
ε→0

inf
β∈(ρK)ε

1

σ2
J

I{tj}nj=1
(β) = inf

β∈ρK

1

σ2
J

I{tj}nj=1
(β) = inf

α∈K

1

σ2
X

I{tj}nj=1
(α).

Therefore, by (6.21),

lim sup
N→+∞

N

a2N
logPν∗ρ

(
1

aN

(
X(t1N

2), . . . , X(tnN
2)
)
∈ K

)
≤ − inf

α∈K

1

σ2
X

I{tj}nj=1
(α),

and the proof is completed.

A Calculations

A.1 Proof of Lemma 3.3

We only prove the statement for QT,dyn, and the remaining is much simpler. If
QT,dyn(µ) <∞, then there exists some constant A > 0 such that, for anyG ∈ C1,∞c ([0, T ]×
R),

l(µ,G)− χ(ρ)

2
[G,G] ≤ A.
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Replacing G with aG for any a ∈ R, we have that

al(µ,G)− a2χ(ρ)

2
[G,G] ≤ A, ∀a ∈ R.

Optimizing over a,

l(µ,G)2 ≤ 2χ(ρ)A[G,G], ∀G ∈ C1,∞c ([0, T ]×R).

Since C1,∞c ([0, T ]×R) is dense in H1, l(µ, ·) is a linear bounded functional on H1. Thus,
there exists some function H ∈ H1 such that

l(µ,G) = χ(ρ)[H,G], ∀G ∈ H1.

In particular,

QT,dyn(µ) = χ(ρ) sup
G∈C1,∞c ([0,T ]×R)

{
[H,G]− 1

2
[G,G]

}
=
χ(ρ)

2
[H,H],

which concludes the proof.

A.2 Proof of (3.5)

In this subsection, we prove that, for any t > 0,∫ t

0

p′s(·) ds ∈ L2(R),

where ps(·) is the heat kernel. By direct calculations,

p′s(u) = −u
s
ps(u).

Making the change of variables u2/2s 7→ τ ,∫ t

0

p′s(·) ds =

∫ t

0

− u√
2πs3/2

e−u
2/(2s)ds = −

∫ +∞

u2/2t

1√
πτ
e−τ dτ.

Thus, ∣∣∣ ∫ t

0

p′s(u) ds
∣∣∣ ≤ C min

{√t
|u|
e−u

2/(2t), 1
}

for some finite constant C, which concludes the proof.

A.3 Proof of (3.8)

Recall in Lemma 3.3 we have shown that

QT,dyn(µ) =
χ(ρ)

2

∫ T

0

∫
R

(∂uH)
2

(t, u)dudt.

Replacing ∂uH with χ(ρ)−1[J + 1
2∂uµ], we have

χ(ρ)QT,dyn(µ) =

∫ T

0

∫
R

{
1

2
J2(t, u) +

1

8
(∂uµ)

2
(t, u) +

1

2
J(t, u)∂uµ(t, u)

}
dudt.

Integrating by parts and using ∂tµ+ ∂uJ = 0,∫ T

0

∫
R

1

2
J(t, u)∂uµ(t, u)dudt =

1

4

∫
R

{
µ2(T, u)− µ2

0(u)
}
du.

Thus,

χ(ρ)QT,dyn(µ) =

∫ T

0

∫
R

{
1

2
J2(t, u) +

1

8
(∂uµ)

2
(t, u)

}
dudt+

1

4

∫
R

{
µ2(T, u)− µ2

0(u)
}
du.

Finally, we obtain (3.8) by using (3.7) and the formula for Q0 in Lemma 3.3.
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A.4 Proof of (4.23)

Recall that for 0 ≤ s ≤ t,

FKt,α
T (s, ξ) =

α

2
√
tξ2

[
e−(t−s)ξ

2/2 − e−sξ
2/2 + 1− e−tξ

2/2
]
,

and for t ≤ s ≤ T ,

FKt,α
T (s, ξ) =

α

2
√
tξ2

[
e−(s−t)ξ

2/2 − e−sξ
2/2 + 1− e−tξ

2/2
]
.

Using the integeral formula∫
R

1− e−ax2

x2
dx = 2

√
πa, a > 0, (A.1)

one easily proves (4.23). To prove (A.1), the left-hand side of the identity equals∫
R

∫ a

0

e−yx
2

dydx =

∫ a

0

√
π
√
y
dy = 2

√
πa,

as claimed.

A.5 Proof of (4.25)

We prove (4.25) by calculus of variations. For any µ0, µ̂0 ∈ C2c (R) and K, K̂ ∈
C1,2c ([0, T ]×R), we denote by Λ

(
(µ0,K), (µ̂0, K̂)

)
the positive-definite quadratic form

∫ T

0

∫
R

1

2
∂tK(t, u)∂tK̂(t, u)dudt

+

∫ T

0

∫
R

1

8

(
∂uµ0(u)− ∂2uK(t, u)

) (
∂uµ̂0(u)− ∂2uK̂(t, u)

)
dudt

+

∫
R

1

2

(
µ0(u)− 1

2
∂uK(T, u)

)(
µ̂0(u)− 1

2
∂uK̂(T, u)

)
du+

∫
R

1

8
∂uK(T, u)∂uK̂(T, u)du.

Then, using (3.8), we have

χ(ρ)QT (µ0,K) = Λ ((µ0,K), (µ0,K)) . (A.2)

For any given µ̂0 ∈ C2c (R) and K̂ ∈ C1,2c ([0, T ]×R) such that K̂(0, ·) = 0 and K̂(tj , 0) =

0, we define

Gj(ε) = Λ
(

(µ
tj ,1
T,0 ,K

tj ,1
T ) + ε(µ̂0, K̂), (µ

tj ,1
T,0 ,K

tj ,1
T ) + ε(µ̂0, K̂)

)
for all ε ∈ R. By Lemma 4.5,

d

dε
Gj(ε)

∣∣∣
ε=0

= 0

and hence

Λ((µ
tj ,1
T,0 ,K

tj ,1
T ), (µ̂0, K̂)) = 0. (A.3)

For any given µ0 ∈ C2c (R) and K ∈ C1,2c ([0, T ]×R) such that K(0, ·) = 0 and K(tj , 0) = αj
for all 1 ≤ j ≤ n, let

K̃ = K −
n∑
j=1

βjK
tj ,1
T and µ̃0 = µ0 −

n∑
j=1

βjµ
tj ,1
T,0 ,
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where {βj}j≥1 satisfy (4.26), then

K̃(0, ·) = 0 and K̃(tj , 0) = 0

for all 1 ≤ j ≤ n. Consequently, by (A.3),

Λ

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

 , (µ̃0, K̃)

 = 0. (A.4)

For any ε ∈ R, let

G̃(ε) = Λ

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

+ ε(µ̃0, K̃),

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

+ ε(µ̃0, K̃)

 .

By (A.4), for all ε ∈ R,

G̃(ε) = Λ

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

 ,

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

+ ε2Λ(µ̃0, K̃)

≥ Λ

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

 ,

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

 .

Therefore,

Λ ((µ0,K), (µ0,K)) = G̃(1) ≥ Λ

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T

 ,

 n∑
j=1

βjµ
tj ,1
T,0 ,

n∑
j=1

βjK
tj ,1
T


and (4.25) follows from (A.2).

A.6 Proof of (4.28)

As in the proof of Proposition 4.3, qjk is the real part of∫ T

0

∫
R

{1

2
∂sFK

tj ,1
T (s, ξ)∂sFKtk,1

T (s, ξ)

+
1

8

[
− iξFµtj ,1T,0 (ξ) + ξ2FKtj ,1

T (s, ξ)
][
− iξFµtk,1T,0 (ξ) + ξ2FKtk,1

T (s, ξ)
]}
dξ ds

+
1

4

∫
R

{
Fµtj ,1T,0 (ξ)Fµtk,1T,0 (ξ)

+
[
Fµtj ,1T,0 (ξ) + iξFKtj ,1

T (T, ξ)
][
Fµtk,1T,0 (ξ) + iξFKtk,1

T (T, ξ)
]}
dξ. (A.5)

Also recall from (P1) and (P2) after the proof of Lemma 4.5 that

Fµt,αT,0(ξ) = (−iξ) α

2
√
tξ2

[1− e−tξ
2/2],

FKt,α
T (s, ξ) =

α

2
√
tξ2

[1− e−tξ
2/2 + e−(t−s)ξ

2/2 − e−sξ
2/2], 0 ≤ s ≤ t,

FKt,α
T (s, ξ) =

α

2
√
tξ2

[1− e−tξ
2/2 + e−(s−t)ξ

2/2 − e−sξ
2/2], t ≤ s ≤ T.

Without loss of generality, assume tj < tk. Since for 0 ≤ s ≤ t,

∂sFKt,α
T (s, ξ) =

α

4
√
t
[e−(t−s)ξ

2/2 + e−sξ
2/2],

−iξFµt,αT,0(ξ) + ξ2FKt,α
T (s, ξ) =

α

2
√
t
[e−(t−s)ξ

2/2 − e−sξ
2/2],
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and for t ≤ s ≤ T ,

∂sFKt,α
T (s, ξ) =

α

4
√
t
[−e−(s−t)ξ

2/2 + e−sξ
2/2],

−iξFµt,αT,0(ξ) + ξ2FKt,α
T (s, ξ) =

α

2
√
t
[e−(s−t)ξ

2/2 − e−sξ
2/2],

the first two lines in (A.5) equal A(0, tj) +A(tj , tk) +A(tk, T ), where

A(0, tj) =
1

32
√
tjtk

∫ tj

0

∫
R

{
[e−(tj−s)ξ

2/2 + e−sξ
2/2][e−(tk−s)ξ

2/2 + e−sξ
2/2]

+ [e−(tj−s)ξ
2/2 − e−sξ

2/2][e−(tk−s)ξ
2/2 − e−sξ

2/2]
}
dξ ds

=
1

16
√
tjtk

∫ tj

0

∫
R

{
e−(

tj+tk
2 −s)ξ2 + e−sξ

2
}
dξ ds =

√
π

16
√
tjtk

∫ tj

0

{ 1√
tj+tk

2 − s
+

1√
s

}
ds

=

√
π

8
√
tjtk

{√ tj + tk
2

−
√
tk − tj

2
+
√
tj

}
,

A(tj , tk) =
1

32
√
tjtk

∫ tk

tj

∫
R

{
[e−(tk−s)ξ

2/2 + e−sξ
2/2][−e−(s−tj)ξ

2/2 + e−sξ
2/2]

+ [e−(tk−s)ξ
2/2 − e−sξ

2/2][e−(s−tj)ξ
2/2 − e−sξ

2/2]
}
dξ ds

=
1

16
√
tjtk

∫ tk

tj

∫
R

{
e−sξ

2

−e−(s−
tj
2 )ξ2

}
dξ ds =

√
π

8
√
tjtk

{√
tk−

√
tj−

√
tk −

tj
2

+

√
tj
2

}
,

and

A(tk, T ) =
1

32
√
tjtk

∫ T

tk

∫
R

{
[−e−(s−tk)ξ

2/2 + e−sξ
2/2][−e−(s−tj)ξ

2/2 + e−sξ
2/2]

+ [e−(s−tk)ξ
2/2 − e−sξ

2/2][e−(s−tj)ξ
2/2 − e−sξ

2/2]
}
dξ ds

=
1

16
√
tjtk

∫ T

tk

∫
R

{
e−(s−

tk+tj
2 )ξ2 + e−sξ

2

− e−(s−
tj
2 )ξ2 − e−(s−

tk
2 )ξ2

}
dξ ds

=

√
π

8
√
tjtk

{√
T − tk + tj

2
−
√
tk − tj

2
+
√
T−
√
tk−

√
T − tj

2
+

√
tk −

tj
2
−
√
T − tk

2
+

√
tk
2

}
.

Thus, the first two lines in (A.5) equal

√
π

8
√
tjtk

{√ tj + tk
2
−2

√
tk − tj

2
+
√
T+

√
tj
2

+

√
tk
2

+

√
T − tk + tj

2
−
√
T − tj

2
−
√
T − tk

2

}
.

Similarly, since

Fµt,αT,0(ξ) + iξFKt,α
T (T, ξ) =

iα

2ξ
√
t
[e−(T−t)ξ

2/2 − e−Tξ
2/2],

the last two lines in (A.5) equal

1

16
√
tjtk

∫
R

ξ−2
{

[1− e−tjξ
2/2][1− e−tkξ

2/2]+[e−(T−tj)ξ
2/2 − e−Tξ

2/2]

× [e−(T−tk)ξ
2/2 − e−Tξ

2/2]
}
dξ.
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Using the integeral formula∫
R

1− e−ax2

x2
dx = 2

√
πa, a > 0,

the last two lines in (A.5) equal

√
π

8
√
tjtk

{√ tj
2

+

√
tk
2
−
√
tj + tk

2
−
√
T − tj + tk

2
−
√
T +

√
T − tk

2
+

√
T − tj

2

}
.

Therefore,

qjk =

√
2π

8
√
tjtk

(
√
tk +

√
tj −

√
tk − tj),

as claimed.

A.7 Proof of (5.7)

By Feynman-Kac formula ([19, Lemma A.1.7.2]), we may bound the expression in (5.7)
by

kN2

a2N
sup

f :νρ−density

{∫ aNK

nN2

nN−1∑
x=0

(
η(x)− η(x+ 1)

)
f(η)νρ(dη)−

〈
−L

√
f,
√
f
〉
ρ

}
.

Above, we call f is a νρ− density if f ≥ 0 and
∫
fdνρ = 1, and for two local functions

f, g : Ω→ R, 〈
f, g
〉
ρ

=

∫
f(η)g(η) νρ(dη).

Since νρ is invariant for the SSEP,

〈
−L

√
f,
√
f
〉
ρ

=
1

4

∑
x∈Z

∫ (√
f(ηx,x+1)−

√
f(η)

)2
νρ(dη).

Making the change of variables η 7→ ηx,x+1 and using the Cauchy-Schwarz inequality, for
any A > 0, we bound the first term inside the above brace by

aNK

2nN2

nN−1∑
x=0

∫ (
η(x)− η(x+ 1)

)(
f(η)− f(ηx,x+1)

)
νρ(dη)

≤ aNK

4nN2

nN−1∑
x=0

{
A

∫ (√
f(ηx,x+1)−

√
f(η)

)2
νρ(dη)+

1

A

∫ (√
f(ηx,x+1)+

√
f(η)

)2
νρ(dη)

}
≤ aNKA

nN2

〈
−L

√
f,
√
f
〉
ρ

+
aNK

NA
.

Taking A = nN2/(aNK), we finally bound the expression in (5.7) by kK2/(Nn). Since
k ≤ TN , the proof is concluded.
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