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Concentration and local smoothness
of the averaging process*†
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Abstract

We consider the averaging process on the discrete d-dimensional torus. On this
graph, the process is known to converge to equilibrium on diffusive timescales, not
exhibiting cutoff. In this work, we refine this picture in two ways. Firstly, we prove a
concentration phenomenon of the averaging process around its mean, occurring on a
shorter timescale than the one of its relaxation to equilibrium. Secondly, we establish
sharp gradient estimates, which capture its fast local smoothness property. This is
the first setting in which these two features of the averaging process — concentration
and local smoothness — can be quantified. These features carry useful information
on a number of large scale properties of the averaging process. As an illustration of
this fact, we determine the limit profile of its distance to equilibrium and derive a
quantitative hydrodynamic limit for it. Finally, we discuss their implications on cutoff
for the binomial splitting process, the particle analogue of the averaging process.
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1 Introduction

The averaging process on a graph is a random evolution of a probability mass
function over its vertices. Its dynamics consists in repeatedly iterating the following two
operations:

(i) first, select an unordered pair of nearest neighbor vertices at the arrival times of
i.i.d. Poisson clocks;
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Concentration and local smoothness

(ii) then, level out the masses associated to them.

Hence, step (i) is random, while step (ii) is deterministic. In particular, each update is
performed at some i.i.d. space-time locations, and conserves the total mass. Therefore,
as time runs, for any mass initialization and provided the underlying graph is connected,
the averaging dynamics will converge to a deterministic flat distribution. In view of
the degeneracy of the equilibrium and of the intrinsic irreversibility of the averaging
dynamics, a comprehensive quantitative picture of such a convergence in relation to the
underlying graph structure is, despite the recent advances, still a largely open problem
of both applied and theoretical interest.

The averaging process appears in the computer science literature as a basic model
of opinion dynamics (or randomized distributed/gossip algorithms, see, e.g., [BGPS06,
Sha09, MSW22] and references therein), together with a long list of variants, e.g., with
updates involving only one vertex at a time (see, e.g., [BCN20] and references therein).
In this realm, vertices are typically interpreted as agents, their masses as corresponding
to their opinions, and the long-run limiting distribution arising from the local random
interactions is then referred to as the consensus.

The mathematical interest on the averaging process as an interacting particle system
was revived about a decade ago by a series of lectures and expository articles by Aldous
[Ald11] and Aldous and Lanoue [AL12]. Since then, the list of works on the subject
rapidly grew (see, e.g., [CDSZ22, Spi22, QS23, MSW22, Cao23, CQS23]). In particular,
the seminal paper [AL12] was the first one to link this model to the theory of Markov
chains mixing times [AF02, LP17, MT06], and established the first general bounds on the
mixing of the averaging process. Only recently, [CDSZ22, QS23, CQS23] provided the
first sharp asymptotic mixing results on specific geometries, either proving or excluding
the occurrence of the so-called cutoff phenomenon [LP17, Chapter 18].

In this article, we consider the averaging process on large discrete d-dimensional
tori. Mixing in this setting is covered by the analysis carried out in [QS23], which shows
that the averaging process mixes gradually (i.e., without exhibiting an abrupt cutoff
phenomenon) on diffusive timescales. Our aim is to refine this picture, by analyzing two
new features of the averaging process — an early concentration phenomenon, and a
fast local smoothness property — and extract from them quantitative information on its
mixing and scaling behaviors. After a quick recap on the averaging process and its main
properties, we present our findings first informally in Section 1.4, and then in detail in
Section 2.

1.1 Setting and model definition

For every integer d ≥ 1, let TdN := (Z/NZ)
d be the discrete d-dimensional torus of

size N ∈ N. Moreover, let P(TdN ) denote the space of probability mass functions on TdN ,
namely,

P(TdN ) :=

{
η ∈ [0, 1]T

d
N

∣∣∣∣ ∑
x∈TdN

η(x) = 1

}
.

For such a compact subset P(TdN ) of RT
d
N , we further let C(P(TdN )) indicate the Banach

space of continuous functions on P(TdN ) endowed with the uniform norm.

The averaging process on TdN (shortly, Avg(TdN )) is the Markov jump process evolving
on P(TdN ) and with infinitesimal generator L = LN given, for all f ∈ C(P(TdN )), as

Lf(η) :=
1

2

∑
x∈TdN

∑
y∈TdN
|x−y|=1

(
f(ηxy)− f(η)

)
, η ∈ P(TdN ) .
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Concentration and local smoothness

Here, |x− y| denotes the usual graph distance between vertices x, y ∈ TdN , while ηxy ∈
P(TdN ) is obtained from η ∈ P(TdN ) by updating the masses η(x) and η(y) with their
average value: for all x, y and z ∈ TdN ,

ηxy(z) :=

{
1
2 (η(x) + η(y)) if z = x or z = y

η(z) else .

Henceforth, although the updates occur at both random times and locations, as
time runs, the deterministic averages and the conservation of mass lead the (random)
distribution to become flat, for any mass initialization. In formulas, this reads as

ηξt
t→∞−−−→ π ≡ 1/Nd , ξ ∈ P(TdN ) , (1.1)

where (ηξt )t≥0 = (ηξ,Nt )t≥0 denotes a trajectory of Avg(TdN ) when starting at time t = 0

from ξ ∈ P(TdN ), π = πN is the uniform distribution on TdN , and the above convergence
holds a.s. with respect to the random sequence of updates. For the probability law
corresponding to such random updates, we write P = PN , while E = EN stands for the
corresponding expectation.

1.2 Mixing for the averaging process

The statement in (1.1) concerns the qualitative long-run behavior of the averaging
process on a fixed-size torus. A mixing analysis aims at quantifying such a convergence in
the limit as N →∞, with the scope of better capturing the relevant timescales governing
the relaxation of ηξt , when starting from a worst-case initial condition ξ ∈ P(TdN ).

As a sensible notion of distance between the law of ηξt and that of π, we consider the
(mean) Lp-distance to equilibrium, given, for all N ∈ N and p ∈ [1, 2], by

E

[∥∥∥∥ηξtπ − 1

∥∥∥∥p
p

] 1
p

:=

( ∑
x∈TdN

π(x)E

[∣∣∣∣ηξt (x)

π(x)
− 1

∣∣∣∣p]) 1
p

, with ξ ∈ P(TdN ) , (1.2)

and define the corresponding (worst-case) Lp-mixing time as the first time t ≥ 0 for
which the above quantity falls below 1/2 for all initial conditions ξ ∈ P(TdN ). Note that
‖ · ‖p = ‖ · ‖p,N in (1.2) stands for the usual Lp-norm on (TdN , π). Further, we remark
that (1.2) may also be interpreted as the Lp-Wasserstein metrics between the random
ηξt ∈ P(TdN ) and the deterministic π ∈ P(TdN ), when endowing P(TdN ) with the distance
induced by ‖ · ‖p. Note that stronger distances, e.g., total variation, are less relevant in

the context of the averaging process; indeed, the equilibrium π is deterministic, while ηξt
has a non-degenerate random distribution at any time t > 0, provided that ξ 6= π.

Within this setting, a worst-case mixing analysis for Avg(TdN ) has been carried out
in [QS23]. There, the authors show that mixing occurs gradually at times t = Θ(N2).
This result was actually derived for a larger class of graph sequences, referred to as
“finite-dimensional” [QS23, Assumption 1], establishing in all these examples that mixing
of the averaging process was dictated by that of the corresponding simple random walk
on the same graph. Other settings for which sharp asymptotics for the Lp-mixing times,
with p = 1, 2, have been established are the hypercube [CQS23], and the complete and
complete bipartite graphs [CDSZ22, CQS23]. In these last three examples, cutoff occurs.
For a quick overview on these results and on some general tools recently developed for
the study of mixing times of the averaging process, we refer the interested reader to
[CQS23, Section 2].
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1.3 Averaging process as a noisy heat flow

The averaging process may also be viewed as the probability distribution of a ran-
dom walk (Ut)t≥0 in a highly degenerate dynamic random environment, in which the
time-dependent conductances between nearest neighbors are either zero, or become
“instantaneously infinite” as soon as the Poisson clock associated to the pair rings. At the
occurrence of such an event, the walk originally sitting on one of the vertices will find
itself with equal probability on either one of the two nearest neighbors.

With this interpretation, while a realization of ηξt ∈ P(TdN ) coincides with the distribu-
tion of Ut for a quenched realization of the random environment, the mean E[ηξt ] ∈ P(TdN )

shall be considered as the corresponding annealed law. As already observed in [AL12,
Lemma 1] and exploited in [QS23, CQS23] (see also [Tra23, Section 6.3] for a recent use
of this fact), t 7→ E[ηξt ] describes the heat flow of RW(TdN ), the “lazy” continuous-time
simple random walk (Xt)t≥0 on TdN , with X0 ∼ ξ and infinitesimal generator LRW = LRW

N

given, for all ψ ∈ RTdN , by

LRWψ(x) =
1

2

∑
y∈TdN
|x−y|=1

(
ψ(y)− ψ(x)

)
, x ∈ TdN . (1.3)

Hence, letting PRW
ξ denote the law associated to this walk and πξt its distribution at time

t ≥ 0, we obtain

E
[
ηξt (x)

]
= πξt (x) := PRW

ξ

(
Xt = x

)
, x ∈ TdN , t ≥ 0 , ξ ∈ P(TdN ) . (1.4)

In other words, (1.4) states that the “noisy” jump process ηξt has the heat flow πξt as its
mean. Although the heat flow does not necessarily identify the correct mixing behavior
of the averaging process on all graphs, we will prove that a strong form of concentration
of ηξt around πξt holds on TdN .

1.4 Summary of main results

Let us provide a preliminary informal description of the two main features of Avg that
we investigate in this article, together with some of their applications. In what follows,
the standard asymptotic notation “O( · )”, “o( · )”, “Θ( · )”, “�”, etc., refers to the limit
N →∞.

In what follows, we focus on worst-case initial conditions ξ ∈ P(TdN ), which, by simple
convexity arguments (see, e.g., [CQS23, Section 2.3]), are all Dirac measures: for all
t ≥ 0,

sup
ξ∈P(TdN )

E

[∥∥∥∥ηξtπ − 1

∥∥∥∥p
p

] 1
p

= sup
x∈TdN

E

[∥∥∥∥ηt(x, · )π
− 1

∥∥∥∥p
p

] 1
p

.

(The analogous identity for RW(TdN ) is well-known.) Here and all throughout, we write
ηt(x, · ) = ηξt and, similarly, πt(x, · ) = πξt , whenever ξ = 1x, for some x ∈ TdN . Finally, in

the translation-invariant context of the torus TdN , E
[∥∥ηt(x, · )

π − 1
∥∥p
p

]
and

∥∥πt(x, · )
π − 1

∥∥p
p

do not depend on x ∈ TdN ; hence, for notational convenience, we consider ηt(0, · ) and
πt(0, · ), i.e., we fix the location of the initial mass as x = 0 ∈ TdN all throughout.

1.4.1 Early concentration phenomenon

The idea adopted in [QS23] in order to identify the correct timescale at which the
averaging process mixes is, in a nutshell, the following. First, identify the timescale at
which RW mixes; there, compare the distance-to-equilibrium of Avg with the one of RW,
and prove that the resulting error becomes arbitrarily small on that same timescale.
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More in detail, this strategy starts from two estimates. The first one — the lower
bound in [QS23, Lemma 5.1], which is an immediate consequence of Jensen inequality
and (1.4) — states that mixing for ηt(0, · ) does not occur before that of πt(0, · ): for all
p ∈ [1, 2] and t ≥ 0, ∥∥∥∥πt(0, · )π

− 1

∥∥∥∥
p

≤ E
[∥∥∥∥ηt(0, · )π

− 1

∥∥∥∥p
p

] 1
p

. (1.5)

The second one — a slight sharpening of the upper bound in [QS23, §5.2] — follows by
the triangle inequality for the Lp-Wasserstein metrics in (1.2) and Jensen inequality: for
all p ∈ [1, 2] and t ≥ 0,

E

[∥∥∥∥ηt(0, · )π
− 1

∥∥∥∥p
p

] 1
p

≤
∥∥∥∥πt(0, · )π

− 1

∥∥∥∥
p

+ E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

] 1
2

. (1.6)

In view of these two bounds, if one expects the mixing of ηt(0, · ) to be dictated by that
of πt(0, · ), the key to get matching lower and upper bounds in (1.5)–(1.6) consists in
efficiently estimating the second term on the right-hand side of (1.6).

By implementing this strategy for the specific example of TdN , since πt(0, · ) mixes
gradually at times t = Θ(N2), showing

lim
n→∞

E

[∥∥∥∥ηtN (0, · )
π

− πtN (0, · )
π

∥∥∥∥2

2

]
= 0 , for all tN � N2 , (1.7)

readily implies that also ηt(0, · ) mixes at times t = Θ(N2). Proving (1.7) is the main step
in the proofs of [QS23, Proposition 2.8 & Theorem 2.9].

Our first main goal is the following improvement of (1.7):

lim
n→∞

E

[∥∥∥∥ηtN (0, · )
π

− πtN (0, · )
π

∥∥∥∥2

2

]
= 0 , for all tN � N

2d
d+2 . (1.8)

Since N2d/(d+2) � N2 for any d ≥ 1, (1.8) captures a new timescale — dimension-
dependent, but always shorter than the diffusive one — after which ηt(0, · ) and its
expectation πt(0, · ) stay close to each other, although both of them are still far from
stationarity. For this reason, we refer to such a property of the averaging process as an
early concentration phenomenon. For the precise quantitative version of this result, see
Theorem 2.4 below.

In view of the bounds (1.5) and (1.6) — which hold true on any graph — early
concentration of Avg may be considered as a stronger form of mixing, whenever Avg

and RW mix on the same timescale. On the one hand, this suggests that, just like the
mixing behaviors of Avg and RW are comparable on a large class of geometries (see,
e.g., [QS23, Proposition 2.8] and [CQS23, Theorem 1.1]), early concentration should
not be an exclusive instance of the example of Avg(TdN ) considered here, and should be
investigated in settings in which scaling limits of discrete gradients of the underlying heat
flow are available. On the other hand, this automatically excludes early concentration
from settings like the complete and complete bipartite graphs [CDSZ22, CQS23], in
which mixing of Avg occurs on a strictly longer timescale than that of RW. For what
concerns L2-mixing, this is further explained by the following identity, which resembles
the inequality in (1.6) with p = 2: for all t ≥ 0,

E

[∥∥∥∥ηt(0, · )π
− 1

∥∥∥∥2

2

]
=

∥∥∥∥πt(0, · )π
− 1

∥∥∥∥2

2

+ E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

]
. (1.9)

The proof of (1.9) combines the definition of L2-norm in (1.2) and the identity in (1.4).
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A quantitative version of (1.8) bears several useful consequences related to both
mixing and scaling limits of Avg(TdN ). For instance, as a refinement of mixing, our
estimate combined with a quantitative local CLT for RW(TdN ) identifies the limit profile
for Avg(TdN ): for all p ∈ [0, 1] and t > 0,

E

[∥∥∥∥ηtN2(0, · )
π

− 1

∥∥∥∥p
p

] 1
p

= ‖ht(0, · )− 1‖Lp(Td) +O

(
1

N

)
,

where ht(0, · ) is the heat kernel of the diffusion on Td with generator 1
2∆. We detail this

result and its simple proof in Proposition 2.5 below. For related recent results about
limit profiles also in absence of cutoff, see, e.g., [BDCJ22].

Along the same lines, (1.8) with tN = tN2 may be also interpreted as a quantitative
hydrodynamic limit for Avg(TdN ) (Corollary 2.6). Here, the heat equation ∂tρ = 1

2∆ρ on
Td arises as a hydrodynamic equation, and convergence is established in the stronger
Lp-Wasserstein metrics rather than in probability, as most typically done (see, e.g., the
classical monograph [KL99]).

1.4.2 Fast local smoothness

Mixing of the averaging process typically deals with measuring how far the averaging
process ηt(0, · ) is from its global equilibrium π. Next to this measure of distance-to-
equilibrium, Aldous and Lanoue [AL12, Section 2.3] proposed a natural notion of local
smoothness, aiming at quantifying more accurately the local flatness of ηt(0, · ). As
intuitively clear, local smoothness should occur at least as fast as global mixing and, as
we will show in Theorem 2.4, is intimately related in our context to the phenomenon of
early concentration discussed in the previous paragraph. Nevertheless, analyzing local
smoothness in general settings turns out to be a delicate issue, and, compared to the
range of tools recently developed for the study of global mixing for Avg, techniques and
results for local mixing are rather limited (see, e.g., [AL12, Proposition 4] and [BBG20,
Corollary 1]).

Following [AL12] and the analogy with the corresponding heat flow, we employ the
(mean) Dirichlet form to quantify local roughness of the averaging process. Indeed, while
Lp-distances are natural quantities to measure the distance to equilibrium of πt(0, · ),
the Dirichlet form associated to RW(TdN ) with generator LRW (1.3), given by

E(ψ) :=
1

4Nd

∑
x∈TdN

∑
y∈TdN
|x−y|=1

(ψ(x)− ψ(y))
2 , ψ ∈ RT

d
N ,

relates to an infinitesimal, thus, local, stage of the convergence of πt(0, · ), as encoded in

d

dt

∥∥∥∥πt(0, · )π
− 1

∥∥∥∥2

2

= −2 E
(
πt(0, · )

π

)
, t ≥ 0 . (1.10)

In [AL12, Proposition 2], the authors prove an analogous identity for ηt(0, · ):

d

dt
E

[∥∥∥∥ηt(0, · )π
− 1

∥∥∥∥2

2

]
= −E

[
E
(
ηt(0, · )
π

)]
, t ≥ 0 . (1.11)

These two relations are, indeed, similar, although differing by a factor 2; this dissimilarity
is reflected by different exponential decay rates for the (mean) L2-distances. Neverthe-
less, both (1.10) and (1.11) show that quantifying the decay rates of the terms on the
right-hand side implies refined mixing results for πt(0, · ) and ηt(0, · ), respectively.
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A first simple estimate for the (mean) Dirichlet form along the averaging process may
be obtained via a convexity argument as done to derive (1.5). Indeed, Jensen inequality
and the identity (1.4) yield the following lower bound:

E
(
πt(0, · )

π

)
≤ E

[
E
(
ηt(0, · )
π

)]
, t ≥ 0 . (1.12)

Our main contribution is to show that, for Avg(TdN ), the inequality in (1.12) can actually
be reversed as follows

E

[
E
(
ηt(0, · )
π

)]
≤ C φ(t/Nd) E

(
πt(0, · )

π

)
, t ≥ 0 , (1.13)

at the negligible cost of including some dimension-dependent constant C = C(d) > 0

and a term φ(t/Nd) which diverges only for very large times t� Nd. Ultimately, since
the Dirichlet form along the heat flow πt(0, · ) may be efficiently estimated on TdN , this
yields a quantitative control for the local smoothness of Avg(TdN ) for all times t ≥ 0.
This allows, in particular, to capture both the fast local smoothening (on the same
timescale at which early concentration in (1.8) occurs) of Avg(TdN ), as well as the correct
exponential contraction rate for large times. As an immediate consequence of this, we
obtain, by integrating over time this bound, the corresponding control for the global
distance-to-equilibrium (Corollary 2.3). The latter result and (1.13) are both employed in
Section 7.

The bound in (1.13) and an improved version of (1.12) are the content of Theorem 2.1,
and together represent the first sharp results concerning local smoothness for the
averaging process. It is worth to emphasize that an analogous result, although for a
different model, has been recently proven by Banerjee and Burdzy in [BB21, Theorem
2.6]. There, the authors study (among other things) the smoothing process on TdN , a
model discussed by Liggett within the class of linear systems [Lig05, Chapter IX]. Like
the averaging process, also the smoothing process falls into the class of Markovian
mass redistribution models. However, since averages are performed over one vertex
at the time, the smoothing dynamics does not conserve mass. This seemingly marginal
variation leads to some qualitative differences between the two processes. For instance,
equilibrium for the smoothing process is a truly random mass profile, while this is not the
case for the averaging. Moreover, as proved in [BB21, Proposition 2.5], averaging over a
single vertex deterministically does not increase the value of E(ηtπ ); as simple examples
show, this monotonicity property does not hold when performing our edge-averaging
dynamics. Nevertheless, despite these dissimilarities, we import some of their arguments
into our analysis, yielding comparable local smoothness behaviors of the two processes
when considered on TdN .

As already anticipated, fast local smoothness comes with some relevant applications.
One of them, and probably the most important, is the early concentration phenomenon
(Theorem 2.4). As a second application, we show how to transfer the integral information
encoded in the (mean) Dirichlet form into pointwise gradient estimates for Avg(TdN ).
This result is presented in Proposition 2.2, and may be viewed as an analogue of the
annealed gradient estimates for random walks in dynamic random environment recently
obtained in [DKS23].

2 Main results

We are now ready to present our main results and some of their consequences in full
detail. Before that, recalling the definition of the random walk RW(TdN ) (Section 1.3),
we define λ = λN > 0 as its spectral gap, namely the smallest non-zero eigenvalue of
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the (negative) generator −LRW given in (1.3). It is well-known that λ = 1− cos(2π/N) =
2π2

N2

(
1 +O( 1

N2 )
)
. Finally, we write trel = tNrel = 1/λ = N2

2π2

(
1 +O( 1

N2 )
)

for the correspond-
ing relaxation time.

In what follows, B,C,C1, C2, . . . , C
′
1, C

′
2, . . . > 0 denote constants whose exact value

is unimportant and may change from line to line. Moreover, unless stated otherwise,
such constants may depend on d ≥ 1, but not on other variables, e.g., N ∈ N and t ≥ 0.

2.1 Local smoothness and gradients estimates

The following is the first of our main results.

Theorem 2.1 (Local smoothness). For all d ≥ 1, for all N ∈ N large enough, and for all
t ≥ 0, we have

(1 + C1(t ∧ 1)) E
(
πt(0, · )

π

)
≤ E

[
E
(
ηt(0, · )
π

)]
≤ C2 exp

(
Bt

Nd+2

)
E
(
πt(0, · )

π

)
, (2.1)

for some constants B,C1, C2 > 0 (depending only on d ≥ 1).

Although we formulated the above result as a comparison between the (mean)
Dirichlet form of Avg(TdN ) and that of RW(TdN ), the latter quantity is rather explicit
thanks to the full knowledge of eigenvalues and eigenfunctions for RW(TdN ) (see also
Section 4.1 below for more details). Indeed, one obtains, for all N ∈ N large enough and
for all t ≥ 0,

C ′1 Ξ(t) ≤ E
(
πt(0, · )

π

)
≤ C ′2 Ξ(t) , with Ξ(t) :=

Nd exp (−2t/trel)(
Nd+2 ∧ td/2+1

)
∨ 1

, (2.2)

for some constants C ′1, C
′
2 > 0 (depending only on d ≥ 1).

Plugging the bounds in (2.2) into (2.1) allows to quantify the fast local smoothness of
Avg(TdN ). Not only there follows that

E

[
E
(
ηtN (0, · )

π

)]
= Θ

(
1

N2

)
, for all tN = Θ(N2) ,

but we also extract quantitative information for t� N2 and t� N2. In particular, as long
as t = O(N2), the resulting upper bound states that ηt(0, · ) gets locally smoother at the
polynomial scale t−(d/2+1) (just like πt(0, · )). For larger times, instead, local smoothness
becomes exponential, with rate 2/trel (1 + o(1)), thus, crucially recovering the factor 2

in the exponential decay rate (cf. (1.10) and (1.11)). Let us further remark that, since
trel = N2

2π2 (1 + o(1)) = o(Nd+2), the exponential factor in the upper bound of (2.1) plays
no significant role as long as t = O(Nd+2), a timescale much longer than the diffusive
one. As for the lower bound in (2.1), the factor (1 + C1 (t ∧ 1)) is a seemingly irrelevant
improvement upon (1.12). However, this term is strictly larger than one as soon as t > 0,
suggesting that, even after a very small time, the fluctuations of the random gradients of
ηt(0, · ) become comparable with their mean.

Local smoothness is an integral (mean) quantity regarding the gradients of the
averaging process. As a consequence of the estimate in Theorem 2.1, we derive pointwise
(rather than integral) estimates for such gradients. We remark that, keeping in mind
the interpretation from Section 1.3 of ηt(x, y) as the distribution of a random walk
in a dynamic random environment, such bounds may be thought of as the analogues
(for p = 2) of the annealed gradient estimates recently obtained in [DKS23, Theorem
1.6(i)] for the time-dependent random conductance model with space-time ergodic and
uniformly elliptic environment on Zd. We emphasize that, although our result resembles
that in [DKS23], the two proofs are quite different. We postpone the proof of the
following result to Section 6.
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Proposition 2.2 (Pointwise gradient estimates). For all d ≥ 1, for all N ∈ N large
enough, for all t ≥ 0, and for all x, y ∈ TdN with |x− y| = 1, we have

E
[(
ηt(0, x)− ηt(0, y)

)2] ≤ C

(N2d+2 ∧ td+1) ∨ 1
exp

(
−2t/trel +

Bt

Nd+2

)
,

for some constants B,C > 0 (depending only on d ≥ 1).

Let us conclude this discussion on local smoothness with an important result on
mixing of Avg(TdN ), which will turn out useful in Section 7, and which is immediately
derived by integrating the infinitesimal relation (1.11) over the time interval [t,+∞),
combined with the upper bounds in (2.1) and (2.2).

Corollary 2.3. For all d ≥ 1, for all N ∈ N large enough, and for all t ≥ 0, we have

E

[∥∥∥∥ηt(0, · )π
− 1

∥∥∥∥2

2

]
≤ CNd(

Nd ∧ td/2
)
∨ 1

exp

(
−2t/trel +

Bt

Nd+2

)
,

for some constants B,C > 0 (depending only on d ≥ 1).

2.2 Concentration and limit profile

We now present our second main result, whose proof is based on the following identity
(which we prove in Lemma 5.1)

E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

]
=

1

dNd

∫ t

0

E

[
E
(
ηt−s(0, · )

π

)]
E
(
πs(0, · )

π

)
ds , t ≥ 0 ,

and the findings in Theorem 2.1.

Theorem 2.4 (Concentration). Recall Ξ(t) from (2.2). For all d ≥ 1, for all N ∈ N large
enough, and for all t ≥ 0, we have

C1 (1 ∧ t) Ξ(t) ≤ E
[∥∥∥∥ηt(0, · )π

− πt(0, · )
π

∥∥∥∥2

2

]
≤ C2 (1 ∧ t) Ξ(t) exp

(
Bt

Nd+2

)
, (2.3)

for some constants B,C1, C2 > 0 (depending only on d ≥ 1).

The proof of the following consequence of Theorem 2.4 may be found in Section 6.

Proposition 2.5 (Limit profile). Fix d ≥ 1, and let ht(0, u), u ∈ Td and t ≥ 0, be the heat
kernel of the diffusion on Td with generator 1

2∆, started from the origin 0 ∈ Td.
Then, for all bounded intervals [a, b] ⊂ (0,+∞), there exists C = C(a, b, d) > 0

satisfying, for all p ∈ [1, 2] and for all N ∈ N large enough,

sup
t∈[a,b]

∣∣∣∣∣E
[∥∥∥∥ηtN2(0, · )

π
− 1

∥∥∥∥p
p

] 1
p

−
∥∥ht(0, · )− 1

∥∥
Lp(Td)

∣∣∣∣∣ ≤ C

N
.

As already discussed in Section 1.4.1, specializing the upper bound in (2.3) to times
t = Θ(N2) yields a quantitative hydrodynamic limit for Avg(TdN ). We report the precise
statement below. Its simple proof is analogous to that of Proposition 2.5 and, thus, is left
to the reader.

Corollary 2.6 (Quantitative hydrodynamic limit). Fix d ≥ 1 and, for all g ∈ C(Td), let
(t, u) ∈ [0,∞)×Td 7→ hgt (u) be the unique solution to the heat equation ∂tρ = 1

2∆ρ on Td

with initial condition ρ0 = g.
Then, for all bounded intervals [a, b] ⊂ (0,+∞), there exists C = C(a, b, d) > 0

satisfying, for all N ∈ N large enough, for all ξ ∈ P(TdN ), and Ψ ∈ C(TdN ),

sup
t∈[a,b]

E

[∣∣∣∣ ∑
x∈TdN

ηξtN2(x) Ψ( xN )−
∫
Td
hgt (u) Ψ(u) du

∣∣∣∣] ≤ ‖Ψ‖∞(CN +

∥∥∥∥ ξπ − g( ·N )

π

∥∥∥∥
1

)
.
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2.3 Structure of the paper

The rest of the paper is organized as follows. In Section 3, we discuss some pre-
liminary facts which allow us to conveniently reformulate our problem. In Sections 4
and 5 we present the proofs of our main results, Theorems 2.1 and 2.4, respectively. The
proofs of Propositions 2.2 and 2.5 are the content of Section 6. As a further application
of our main results, in Section 7, we prove cutoff (in total variation distance) for an
interacting particle system dual to the averaging process, known as binomial splitting
process, strengthening a result in [QS23].

3 Preliminaries

In this section, we introduce two auxiliary Markov processes, whose properties will
play a key role in Sections 4 and 5 below, dedicated to the proofs of our main results.

3.1 Coupled random walks

As discussed in (1.4), first-order moments of the averaging process may be expressed
in terms of the random walk Xt. This property is a particular instance of duality (see, e.g.,
[Lig05]). This connection was already noted in [AL12], further exploited and generalized
in [QS23, CQS23], and holds more generally for all kth-order moments. In particular,
in order to prove our main results, we will need to introduce a dual system of k = 2

interacting walks, which we now describe in detail.
Place two particles on the vertices of TdN , and endow each unordered pair of nearest

neighbors of TdN with exponential clocks of unit rate, independent over the pairs. Assume
that the clock associated to the pair {x, y}, |x−y| = 1, rings. Particles sitting at that time
on either x or y decide, independently from each other and with probability 1/2, to change
vertex, i.e., moving from x to y if originally at x, or vice versa. Let ((Xt, Yt))t≥0 ⊂ TdN×TdN
denote the Markov process of the positions of these two particles. Both marginals Xt and
Yt evolve as two copies of RW(TdN ). Moreover, they move independently as long as they
are at graph distance larger than one. However, when sitting at distance smaller than
two, the two walks may interact by experiencing synchronous jumps. For this reason,
we refer to (Xt, Yt) as a system of two coupled random walks, shortly CRW(TdN ). We let
PCRW
ν denote its law when (X0, Y0) ∼ ν.

The importance of CRW(TdN ) lies in the following second-order duality relation,
analogous to that in (1.4):

E
[
ηξt (x)ηξt (y)

]
= PCRW

ξ⊗ξ (Xt = x , Yt = y) , t ≥ 0 , x, y ∈ TdN , ξ ∈ P(TdN ) . (3.1)

In analogy with the notation used for RW(TdN ), when ξ⊗ ξ′ = 1x⊗1y for some x, y ∈ TdN ,
we simply write PCRW

x,y = PCRW
ξ⊗ξ′ . The introduction of CRW(TdN ) and the duality relation

with Avg(TdN ) allow us to efficiently rewrite the mean Dirichlet form of Avg(TdN ).

Proposition 3.1. For all d ≥ 1, N ∈ N, t ≥ 0 and e ∈ TdN with |e| = 1, we have

1

dNd
E

[
E
(
ηt(0, · )
π

)]
= PCRW

0,0 (Xt − Yt = 0)−PCRW
0,0 (Xt − Yt = e) . (3.2)

Proof. By definition of E( · ) and the duality relation (3.1), we obtain

E

[
E
(
ηt(0, · )
π

)]
=
Nd

4

∑
x,y∈TdN
|x−y|=1

E
[

(ηt(0, x)− ηt(0, y))
2 ]

=
Nd

2

∑
x∈TdN

∑
y∈TdN
|x−y|=1

{
E
[
ηt(0, x)2

]
− E

[
ηt(0, x)ηt(0, y)

]}

EJP 29 (2024), paper 93.
Page 10/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1154
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration and local smoothness

=
Nd

2

∑
x∈TdN

∑
y∈TdN
|x−y|=1

{
PCRW

0,0 (Xt = x , Yt = x)−PCRW
0,0 (Xt = x , Yt = y)

}
.

We get the desired conclusion by rearranging the terms in the last summation as follows:∑
x∈TdN

∑
y∈TdN
|x−y|=1

PCRW
0,0 (Xt = x , Yt = y) = 2dPCRW

0,0 (Xt = Yt) ,

∑
x∈TdN

∑
y∈TdN
|x−y|=1

PCRW
0,0 (Xt = x , Yt = y) =

∑
e′∈TdN
|e′|=1

PCRW
0,0 (Yt = Xt + e′)

= 2dPCRW
0,0 (Xt − Yt = e) ,

where for the last identity we used the translation and permutation invariance of the

marginals laws of (Xt, Yt), as well as (Xt, Yt)
Law
= (Yt, Xt) under PCRW

0,0 .

3.2 Difference process

Next to CRW(TdN ), motivated by the result in Proposition 3.1, we consider a second
auxiliary process. Given ((Xt, Yt))t≥0 evolving as CRW(TdN ), define (Zt)t≥0 as

Zt := Xt − Yt , t ≥ 0 .

We refer to Zt as the difference process associated to (Xt, Yt). In our context, Zt turns
out to be a Markov process. Indeed, if we were considering the difference process
Z0
t := X0

t −Y 0
t associated to (X0

t , Y
0
t ), two independent copies of RW(TdN ), then it is well-

known that Z0
t is the simple random walk on TdN with infinitesimal generator A0 = 2LRW,

i.e., Z0
t jumps like RW(TdN ), but at a double rate. As for Zt, due to the interaction

between Xt and Yt when |Xt − Yt| ≤ 1, Zt moves like Z0
t with a defect represented by

slow bonds attached to the origin. More in detail, the infinitesimal generator A of Zt
reads as

A = A0 +R ,

where we recall that A0 = 2LRW is the generator of Z0
t , while, for all ψ : TdN → R,

Rψ(z) :=


− 1

2A0ψ(0) if z = 0

− 1
2 (ψ(0)− ψ(z)) + 1

4 (ψ(−z)− ψ(z)) if |z| = 1

0 else .

Moreover, for all t ≥ 0, let St = etA (resp. S0
t = etA0) denote the transition kernels of the

random walk Zt (resp. Z0
t ). Observe that, since both A0 and R are symmetric kernels,

A and St are symmetric, too. Symmetry of St and Proposition 3.1 imply the following
result.

Proposition 3.2. For all t ≥ 0, we have

1

dNd
E

[
E
(
ηt(0, · )
π

)]
= St(0, 0)− St(e, 0) . (3.3)

We conclude this section by observing that similar computations to those employed
to derive (3.2) readily yield the following analogue of (3.3): for all t ≥ 0,

1

dNd
E
(
πt(0, · )

π

)
= S0

t (0, 0)− S0
t (e, 0) . (3.4)
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Hence, by (3.3), (3.4), and Jensen inequality, we obtain, for all t ≥ 0,

St(0, 0)− St(e, 0) =
1

dNd
E

[
E
(
ηt(0, · )
π

)]
≥ 1

dNd
E
(
πt(0, · )

π

)
= S0

t (0, 0)− S0
t (e, 0) .

(3.5)

4 Proof of Theorem 2.1

This section is devoted to the proof of Theorem 2.1, which we split into three parts.
First, we exploit the representations in (3.3) and (3.4) to express the mean Dirichlet form
of Avg(TdN ) as an infinite series (Section 4.1). Then, for this infinite series, we provide
lower and upper bounds in Sections 4.2 and 4.3, respectively. We gather all these facts
together in Section 4.4.

4.1 A renewal-type equation

Our main goal in this section is to find a closed-form expression for the remainder in
the inequality (3.5). For this purpose, we employ the identities in (3.3) and (3.4) involving
Dirichlet forms and the transition kernels St and S0

t , respectively, both introduced in
Section 3.2. Let us further recall the definition of the associated generators A = A0 +R

and A0 from Section 3.2.
We start by applying the integration by parts formula: for all x ∈ TdN and t ≥ 0,

St(x, 0)− S0
t (x, 0) = −

∫ t

0

∑
y∈TdN

S0
t−s(x, y) (A0 −A)Ss10(y) ds

=

∫ t

0

S0
t−s(x, 0)RSs10(0) ds+

∫ t

0

∑
y∈TdN
|y|=1

S0
t−s(x, y)RSs10(y) ds

= −1

2

∫ t

0

S0
t−s(x, 0)

∑
y∈TdN
|y|=1

(Ss(y, 0)− Ss(0, 0)) ds

− 1

2

∫ t

0

∑
y∈TdN
|y|=1

S0
t−s(x, y) (Ss(0, 0)− Ss(y, 0)) ds

=
1

2

∫ t

0

∑
y∈TdN
|y|=1

(Ss(0, 0)− Ss(y, 0))
(
S0
t−s(x, 0)− S0

t−s(x, y)
)

ds .

Noting that Ss(e, 0) = Ss(e
′, 0) for all e, e′ ∈ TdN with |e| = |e′| = 1, we further obtain

St(x, 0)− S0
t (x, 0) =

∫ t

0

(Ss(0, 0)− Ss(e, 0))
∑
y∈TdN
|y|=1

1

2

(
S0
t−s(x, 0)− S0

t−s(x, y)
)

ds .

By evaluating the above expression at x = 0 and x = e ∈ TdN , and subtracting, we get

St(0, 0)− St(e, 0) = S0
t (0, 0)− S0

t (e, 0) (4.1)

+

∫ t

0

(Ss(0, 0)− Ss(e, 0))
∑
y∈TdN
|y|=1

1

2

(
S0
t−s(0, 0)− S0

t−s(0, y)− S0
t−s(e, 0) + S0

t−s(e, y)
)

ds .

EJP 29 (2024), paper 93.
Page 12/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1154
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration and local smoothness

By exploiting the symmetry and translation invariance of the random walk Z0
t , we may

simplify the summation above as follows: for e, e′ ∈ TdN with |e| = |e′| = 1 and e′ 6= ±e,∑
y∈TdN
|y|=1

1

2

(
S0
t (0, 0)− S0

t (0, y)− S0
t (e, 0) + S0

t (e, y)
)

= (d+ 1/2)S0
t (0, 0)− 2dS0

t (e, 0) + (d− 1)S0
t (e+ e′, 0) + 1/2S0

t (2e, 0) .

Hence, adopting the shorthand notation

f(t) := (d+ 1/2)S0
t (0, 0)− 2dS0

t (e, 0) + (d− 1)S0
t (e+ e′, 0) + 1/2S0

t (2e, 0) , (4.2)

g(t) := S0
t (0, 0)− S0

t (e, 0) , u(t) := St(0, 0)− St(e, 0) , (4.3)

the identity in (4.1) reads as the following renewal equation

u(t) = g(t) +

∫ t

0

u(s) f(t− s) ds , t ≥ 0 , (4.4)

for which, by iterating this integral relation, a solution may be expressed in terms of an
infinite series expansion involving only the functions f and g:

u = g +

∞∑
k=1

(g ∗ f∗k) =

∞∑
k=0

(g ∗ f∗k) , with f∗0 := δ0 , f∗k := f ∗ f∗(k−1) . (4.5)

Here, the symbol ∗ denotes the usual convolution for functions defined on R, although
we will always apply it to functions which vanish on (−∞, 0). Let us further remark that,
with our notation, f∗1 = f . Moreover, note that both f and g are bounded and continuous.
Therefore, in order to ensure that u =

∑
k

(
g ∗ f∗k

)
is the unique solution to (4.4), it

suffices to show that the functions f and g (and, thus, their iterated convolutions) are
non-negative. We prove this property in Lemma 4.1 below. In the same lemma, we gather
other simple properties of these functions to be employed later.

Instrumentally to the proof of this lemma, we remark that the functions f and g may
be further simplified, since they only depend on transition probabilities of the simple
random walk Z0

t (without defects) on TdN and Z0
t moves independently among each of the

d components. Indeed, letting pt(i) = pt(i, 0), for i ∈ TN and t ≥ 0, denote the transition
probabilities to the origin of the one-dimensional simple random walk on TN (i.e., Z0

t for
d = 1), we obtain, for all d ≥ 1, x = (i1, . . . , id) ∈ TdN and t ≥ 0,

S0
t (x, 0) =

d∏
`=1

pt(i`) .

Henceforth, we have, for all d ≥ 1,

g(t) = pt(0)d−1 (pt(0)− pt(1)) , (4.6)

while, for d = 1,

f(t) = 3/2 pt(0)− 2 pt(1) + 1/2 pt(2) , (4.7)

and, for d ≥ 2,

f(t) = pt(0)d−2
[
d (pt(0)− pt(1))

2
+ 1/2

(
pt(0)2 − 2 pt(1)2 + pt(0)pt(2)

)]
. (4.8)
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In what follows, we will repeatedly employ this convenient rewriting in combination with
the explicit eigendecomposition (or, equivalently, the Laplace inversion formula) of pt(i)
(see, e.g., [LP17, Section 12.3.1]): for all i ∈ TN and t ≥ 0,

pt(i) =
1

N

N−1∑
j=0

cos (2πij/N) exp
(
−2λNj t

)
, with λNj := 1− cos (2πj/N) ≥ 0 . (4.9)

Lemma 4.1. For every d ≥ 1, we have:

(a) For all t > 0, f(t) and g(t) are positive and uniformly (with respect to N ∈ N) bounded
away from zero.

(b) For all N ∈ N large enough, f and g are decreasing.

(c) For all N ∈ N large enough, f ≤ (d+ 1/2) g.

Proof. By the inversion formula (4.9), we obtain at once that

t 7−→ pt(0) and t 7−→ pt(0)− pt(1)

are decreasing and, for each fixed t ≥ 0, uniformly (in N ∈ N) bounded away from zero.
A similar conclusion holds for

t 7−→ 3/2 pt(0)− 2 pt(1) + 1/2 pt(2) and t 7−→ pt(0)2 − 2 pt(1)2 + pt(0)pt(2) ,

as a consequence of the following two inequalities, respectively:

3/2− 2 cos a+ 1/2 cos 2a = 4 (sin (a/2))
4 ≥ 0 , a ∈ R ,

1− 2 cos a cos b+ 1/2 cos 2a+ 1/2 cos 2b = (cos a− cos b)
2 ≥ 0 , a, b ∈ R .

Therefore, the claims in items (a)–(b) hold true because f and g in (4.6)–(4.8) are products
and sums of functions satisfying such properties.

As for item (c), we claim that pt(2) ≤ pt(1) for all t ≥ 0. For this purpose, let us define
t ∈ [0,∞) 7→ qt := pt(1) − pt(2), and observe that, for all N ≥ 4, q0 = 0, whereas, since
pt(1), pt(2)→ 1

N as t→∞, limt→∞ qt = 0. In view of (4.9), we have, for all t ≥ 0,

q′t =
1

N

N−1∑
j=0

{2 (cos (2πj/N)− cos (4πj/N)) (cos (2πj/N)− 1)} exp
(
−2λNj t

)
, (4.10)

from which we obtain q′0 = 1. Indeed, 2
N

∑N−1
j=0 cos (2πij/N) cos (2π`j/N) = 0 if (i, `) =

(0, 1), (0, 2), (1, 2), whereas = 1 if (i, `) = (1, 1). Furthermore, t 7→ q′t must become
negative because q0 = limt→∞ qt = 0, and we now argue that it changes sign only once,
thus, ensuring that qt ≥ 0 for all t ≥ 0. The expression within curly brackets in (4.10)
reads as

κNj := −16 (sin (πj/N))
4

(1/2 + cos (2πj/N)) ,

which is non-negative if and only if j ∈ [N/3, 2N/3]. Moreover, since κNj = κNN−j and
λNj = λNN−j , we get the following decomposition of q′t in terms of non-negative and
non-positive parts (in what follows, we omit to write the integer part of N/3, N/2, 2N/3):

q′t = r−t + r+
t :=

2

N

N/3∑
j=1

κNj exp
(
−2λNj t

)
+

1

N

2N/3−1∑
j=N/3+1

κNj exp
(
−2λNj t

)
.
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Let T = TN > 0 be the first time t > 0 satisfying q′t = 0. Then, since j ∈ {1, . . . , N − 1} 7→
λNj ∈ (0, 2] is symmetric around N/2 and increasing on {1, . . . , N/2}, we get, for all s ≥ 0,

q′T+s ≤ r−T exp
(
−2λNbN/3cs

)
+ r+

T exp
(
−2λNbN/3c+1s

)
≤ q′T exp

(
−2λNbN/3cs

)
≤ 0 ,

where the last step used the definition of T . Altogether, since we showed that q′0 = 1 > 0,
this proves that, for all N ≥ 4 and t ≥ 0, qt ≥ 0, that is,

pt(2) ≤ pt(1) , t ≥ 0 . (4.11)

Finally, inserting (4.11) into the expressions for f in (4.7)–(4.8), we obtain, for d = 1,

f(t) ≤ 3/2 (pt(0)− pt(1)) = 3/2 g(t) , t ≥ 0 ,

while, for d ≥ 2,

f(t) ≤ pt(0)d−2
[
d (pt(0)− pt(1))

2
+ 1/2 (pt(0)− pt(1))

2
]

= (d+ 1/2) pt(0)d−2 (pt(0)− pt(1))
2

≤ (d+ 1/2) pt(0)d−1 (pt(0)− pt(1)) = (d+ 1/2) g(t) , t ≥ 0 ,

where for the last inequality we used the crude bound pt(0)−pt(1) ≤ pt(0). This concludes
the proof of the lemma.

4.2 Lower bound in Theorem 2.1

In view of (3.3)–(3.4), (4.2)–(4.3), and the infinite series representation in (4.5), we
recast the lower bound in (2.1) in terms of the functions u(t) and g(t). This is the content
of the following lemma. Remark that, as in Theorem 2.1, for t > 0, we aim at a strict,
uniform in N ∈ N, inequality u  g, improving upon the obvious estimate u ≥ g given
in (3.5).

Lemma 4.2. For all d ≥ 1, there exists c = c(d) ∈ (0, 1) satisfying, for all N ∈ N large
enough and for all t ≥ 0,

u(t) ≥ exp (c (1 ∧ t)) g(t) .

Proof. We show that, for all d ≥ 1 and N ∈ N,

u(t) ≥

(
sup
s∈[0,t]

exp (sf(s))

)
g(t) , t ≥ 0 , (4.12)

holds true. This suffices since f is decreasing, f(0) = d+ 1/2 and, for each s > 0, f(s) is
uniformly (in N ∈ N) bounded away from zero (Lemma 4.1).

In what follows, we derive (4.12) by showing that∫ t

0

f∗k(s) ds ≥ (tf(t))
k

k!
, t ≥ 0 , (4.13)

holds for all k ∈ N. We show (4.13) by induction on k ∈ N. The claim for k = 1, namely∫ t
0
f(s) ds ≥ tf(t), clearly holds since f is decreasing. Fix k ≥ 2, and assume (4.13) to be

true for k − 1; then, for all t ≥ 0,∫ t

0

f∗k(s) ds =

∫ t

0

∫ s

0

f(s− r) f∗(k−1)(r) dr ds

≥
∫ t

0

f(s)

∫ s

0

f∗(k−1)(r) dr ds
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≥
∫ t

0

f(s)k
sk−1

(k − 1)!
ds

≥ f(t)k
∫ t

0

sk−1

(k − 1)!
ds =

(tf(t))
k

k!
,

where for the first and third inequalities we used the monotonicity and positivity of
f , while for the second one we used the induction hypothesis. This shows the validity
of (4.13). The desired conclusion now follows by the infinite-series representation of
u(t) in (4.5), as well as the monotonicity of g and the positivity of f (Lemma 4.1): for all
t ≥ s ≥ 0,

u(t) = g(t) +

∞∑
k=1

∫ t

0

g(t− r) f∗k(r) dr

≥ g(t) + g(t)

∞∑
k=1

∫ s

0

f∗k(r) dr

≥ g(t)

( ∞∑
k=0

(sf(s))
k

k!

)
= g(t) exp (sf(s)) ,

where the last inequality is a consequence of (4.13) and positivity of g. Optimizing over
s ≤ t yields (4.12) and, thus, concludes the proof.

4.3 Upper bound in Theorem 2.1

Also for the derivation of the upper bound in Theorem 2.1, we exploit the infinite-
series representation (4.5) for u involving convolutions of the functions f and g. However,
since we are not interested in optimizing constants in this case, we may employ f ≤
(d+ 1/2) g from Lemma 4.1(c) and positivity of f and g (Lemma 4.1(a)) to estimate u(t)

from above by ũ(t), defined as

ũ :=

∞∑
k=1

g̃∗k , with g̃ := (d+ 1/2) g . (4.14)

Hence, the following estimate combined with (2.2) (cf. (4.3) and (3.4)) would conclude
the proof of the upper bound in Theorem 2.1.

Lemma 4.3. For all d ≥ 1 and for all N ∈ N large enough, we have

∞∑
k=1

g̃∗k(t) ≤ C

Nd+2 ∧ td/2+1
exp

(
−2t/trel +

Bt

Nd+2

)
, t > 0 , (4.15)

for some constants B,C > 0 (depending only on d ≥ 1).

Before entering the details of the proof of Lemma 4.3, we remark that, compared to
the bound

g̃(t) ≤ C ′

Nd+2 ∧ td/2+1
exp (−2t/trel) , t ≥ 0 , (4.16)

for some C ′ = C ′(d) > 0, estimating the infinite series in (4.15) requires an extra factor
exp

(
Bt
Nd+2

)
. With this approach, this exponential factor is actually unavoidable, as we

now explain. Recall the lower bound for g (thus, for g̃, too) in (2.2), analogous to (4.16):
for some C ′′ = C ′′(d) > 0,

g̃(t) ≥ C ′′(
Nd+2 ∧ td/2+1

)
∨ 1

exp (−2t/trel) , t ≥ 0 .
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Finally, letting c = c(t) := C′′

Nd+21[0,∞)(t), we get g̃(t) ≥ c exp (−2t/trel) and, thus,

∞∑
k=1

g̃∗k(t) ≥ exp (−2t/trel)

∞∑
k=1

c∗k(t) = exp (−2t/trel)

∞∑
k=1

(ct)k

k!
= exp (−2t/trel + ct) .

Proof of Lemma 4.3. Since we can follow closely the proof in [BB21, Lemma 5.6], our
task boils down to establishing the analogues of the two preliminary lemmas therein,
namely [BB21, Lemmas 5.4 & 5.5].

We start by showing that, for all N ∈ N large enough, we have∫ ∞
0

g̃(t) dt ≤ d+ 1/2

2d
, (4.17)

from which we then derive, for some B = B(d) > 0 and θ ∈ (0, 1),∫ ∞
0

exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) dt ≤ θ . (4.18)

In order to prove (4.17), recall g̃ := (d+ 1/2) g, as well as (4.3) and (3.4). Henceforth,∫ ∞
0

g̃(t) dt =
d+ 1/2

2dNd

∫ ∞
0

2E
(
πt(0, · )

π

)
dt =

d+ 1/2

2dNd

∥∥∥∥10

π
− 1

∥∥∥∥2

2

≤ d+ 1/2

2d
,

where the last step follows from
∥∥10

π − 1
∥∥2

2
= Nd − 1. This yields (4.17).

For what concerns (4.18), arguing similarly as in the proof of [BB21, Lemma 5.5], we
split the integral in (4.18) into three pieces, so to obtain∫ ∞

0

exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) dt =

∫ εN2

0

· · ·+
∫ N2

εN2

· · ·+
∫ ∞
N2

· · · , (4.19)

for some well-chosen ε ∈ (0, 1). We first deal with the first integral on the right-hand side
above. Since trel ≥ δN2, for some δ > 0, for all γ ∈ (0, 1/3), there exists ε = ε(δ, γ) > 0

small enough such that, for all N ∈ N large enough,

exp
(
2εN2/trel

)
≤ 1 + γ .

With such a choice of γ, ε > 0, (4.17) ensures that∫ εN2

0

exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) dt ≤ (1 + γ)

∫ ∞
0

g̃(t) dt ≤ (1 + γ) (d+ 1/2)

2d
< 1 . (4.20)

Note the strict inequality above. Now, the second and third integrals on the right-hand
side of (4.19) may be turned as small as desired via the estimate in (4.16), by choosing
first N ∈ N large enough and then B > 0 large enough, respectively. Indeed,∫ N2

εN2

exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) dt ≤ C ′

∫ N2

εN2

t−(d/2+1) dt ≤ CN−d , (4.21)

for some C = C(d, ε) > 0, and∫ ∞
N2

exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) dt ≤ C ′

Nd+2

∫ ∞
N2

exp

(
− Bt

Nd+2

)
dt =

C ′

B
. (4.22)

Hence, (4.20), (4.21) and (4.22) yield (4.18) for some θ ∈ ( (1+γ)(d+1/2)
2d , 1) by choosing

γ > 0 small enough, and, then, N ∈ N and B > 0 large enough.
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From this stage, the rest of the proof follows as in [BB21, Lemma 5.6]; we streamline
the main arguments in [BB21, pp. 1150–1153] for the reader’s convenience, while
implementing the small modifications required. Recall θ ∈ (0, 1) from (4.18), and fix
σ ∈ (0, 1) such that θ/σ ∈ (0, 1). For such a σ ∈ (0, 1), we define the sequence

am :=
1

2

σ
2(m−1)
d+2∑∞

j=1 σ
2(j−1)
d+2

, m ≥ 1 ,

which, by definition, satisfies

∞∑
m=1

am = 1/2 and a∗ :=

∞∏
m=1

(1− am) > 0 . (4.23)

Next, by adopting the following shorthand notation for the integrand in (4.18),

h(t) := exp

(
2t/trel −

Bt

Nd+2

)
g̃(t) ≤ C ′

td/2+1 ∧Nd+2
=: h̃(t) , t > 0 , (4.24)

we claim that the following holds true: for all k ∈ N and t > 0,

h∗k(t) ≤ 2θkh̃

(
t− t

k∑
m=1

am

)
+ θk−1

k∑
m=1

h̃(ta∗am) . (4.25)

We refer to [BB21, Eq. (5.35) & pp. 1150–1151] for the proof by induction of this
inequality. Here, we only remark that t 7→ h̃(t) given in (4.24) (and, thus, the right-hand
side of (4.25)) is a non-increasing function; this fact, (4.23), and the inequalities in (4.18)
and (4.24) are the only inputs required for the proof of (4.25).

By (4.25) and the monotonicity of t 7→ h̃(t), we obtain, for all t > 0,

∞∑
k=1

h∗k(t) ≤ 2

∞∑
k=1

θkh̃

(
t− t

k∑
m=1

am

)
+

∞∑
k=1

θk−1
k∑

m=1

h̃(ta∗am)

≤ 2θ

1− θ
h̃(t/2) +

1

1− θ

∞∑
m=1

θm−1 h̃(ta∗am) .

Now, for t ≤ 2N2, since ta∗am ≤ tam ≤ N2, we further get, for some C = C(d) > 0,

∞∑
k=1

h∗k(t) ≤ 2θC

1− θ
1

td/2+1
+

C ′

1− θ

∞∑
m=1

θm−1

(ta∗am)
d/2+1

≤ 2θC

1− θ
1

td/2+1
+

C ′′

1− θ
1

td/2+1

∞∑
m=1

(
θ

σ

)m−1

≤ C

td/2+1
,

where for the last inequality we used that θ/σ ∈ (0, 1). Analogously, we have

∞∑
k=1

h̃∗k(t) ≤ C

Nd+2
, t > 2N2 .

Since
∞∑
k=1

h∗k(t) = exp

(
2t/trel −

Bt

Nd+2

) ∞∑
k=1

g̃∗k(t) , t ≥ 0 ,

this concludes the proof of the lemma.
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4.4 Conclusion of the proof of Theorem 2.1

Proof of Theorem 2.1. Recall (3.3), (3.4), and (4.3). Then, the lower bound in (2.1) is
the content of Lemma 4.2. The upper bound for times t ≥ 1 may be obtained from u ≤ ũ
(defined in (4.14)), Lemma 4.3, and the first inequality in (2.2). The same upper bound,
but for small times t ∈ [0, 1], follows by the very definition of u in (4.3) and

u(t) = St(0, 0)− St(e, 0) ≤ St(0, 0) ≤ 1 . (4.26)

This concludes the proof of the theorem.

5 Proof of Theorem 2.4

We divide the proof of Theorem 2.4 on the phenomenon of early concentration into
two parts. First, we express the quantity of interest in terms of (mean) Dirichlet forms
for Avg(TdN ) and RW(TdN ). This is carried out in Lemma 5.1, by specializing some
expressions obtained in [QS23, CQS23] to our setting. Finally, thanks to this rewriting,
we exploit the estimates (and the proof arguments) from Theorem 2.1 to conclude.

Lemma 5.1. For all d ≥ 1, N ∈ N and t ≥ 0, we have

E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

]
=

1

dNd

∫ t

0

E

[
E
(
ηt−s(0, · )

π

)]
E
(
πs(0, · )

π

)
ds (5.1)

= dNd

∫ t

0

(St−s(0, 0)− St−s(e, 0))
(
S0
s (0, 0)− S0

s (e, 0)
)

ds , (5.2)

for some e ∈ TdN with |e| = 1.

Proof. Let Nt denote the left-hand side of (5.1). Then, by the last two displays in [CQS23,
Proposition 2.5], we have

Nt =
Nd

2

∫ t

0

1

2

∑
x∈TdN

∑
y∈TdN
|x−y|=1

(πs(0, x)− πs(0, y))
2

Φt−s(x, y) ds , (5.3)

where Φt(x, y) is defined in terms of CRW(TdN ) (Section 3.1) as follows:

Φt(x, y) :=
1

2

(
PCRW
x,x

(
Xt = Yt

)
+ PCRW

y,y

(
Xt = Yt

)
− 2PCRW

x,y

(
Xt = Yt

))
.

By translation invariance of the dynamics of CRW(TdN ) and recalling the definition of the
difference process Zt and its kernel St (Section 3.2), we obtain, for all nearest neighbor
vertices x, y ∈ TdN ,

Φt(x, y) = PCRW
0,0

(
Xt = Yt

)
−PCRW

0,e

(
Xt = Yt

)
= St(0, 0)− St(e, 0) ,

where e ∈ TdN is any vertex satisfying |e| = 1. Plugging this identity into (5.3), we get

Nt =

∫ t

0

(St−s(0, 0)− St−s(e, 0)) E
(
πs(0, · )

π

)
ds .

The identities in (5.1) and (5.2) follow by (3.3) and (3.4), respectively.

Proof of Theorem 2.4. Let us adopt the notation from Section 4. Recalling the definitions
of u(t) and g(t) in (4.3), the identity in (5.2) reads as

1

dNd
E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

]
= (u ∗ g)(t) , t ≥ 0 .
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For the upper bound in (2.3), since u ≤ ũ and 0 ≤ g ≤ g̃ (cf. (4.5) and (4.14)), we obtain

u ∗ g ≤ ũ ∗ g =

∞∑
k=1

(g̃∗k ∗ g) ≤
∞∑
k=2

g̃∗k ≤
∞∑
k=1

g̃∗k = ũ ,

and observe that the right-hand side was estimated, for all t > 0 and N ∈ N large enough,
in Lemma 4.3. This provides the desired estimate for t ≥ 1; for t ∈ [0, 1], it suffices to
recall g ≤ u ≤ 1 (cf. (4.5) and (4.26)), yielding

(u ∗ g)(t) ≤ t , t ≥ 0 .

For the lower bound in (2.3), using again 0 ≤ g ≤ u and the monotonicity of t 7→ g(t)

(Lemma 4.1(b)), we get, for all t ≥ 0,

(u ∗ g)(t) ≥ (g ∗ g)(t) = 2

∫ t/2

0

g(t− s) g(s) ds ≥ 2g(t)

∫ t/2∧1

0

g(s) ds ≥ c (t ∧ 1) g(t) ,

where the last inequality follows from Lemma 4.1(a)–(b). The first inequality in (2.2)
and (3.4), (4.3) yield the desired lower bound, thus, concluding the proof of the theorem.

6 Proofs of Propositions 2.2 and 2.5

We start with the proof of Proposition 2.2.

Proof of Proposition 2.2. Recall that, for P-a.e. realization of the Poisson point process
used for the updates, ηt(0, · ) may also be interpreted as the probability distribution
over TdN of the “infinitesimal chunk” of mass U0,t ∈ TdN , which is a time-inhomogeneous
random walk, started in 0 ∈ TdN , and evolving at later times as follows: nothing happens,
until the vertex on which it sits, say x ∈ TdN , experiences an update with a nearest neigh-
bor, say y ∈ TdN ; in that case, the chunk moves from x to y with probability 1/2, while with
the remaining probability it stays put. Since we are describing a time-inhomogeneous
Markov process, we adopt, only in this proof, the slightly more convenient notation
ηs,t( · , · ), s ≤ t, indicating both starting and terminal times.

In view of this representation, Chapman-Kolmogorov formula holds in our context,
and reads as follows: for all 0 ≤ s ≤ t,

η0,t(0, x)− η0,t(0, y) =
∑
z∈TdN

η0,s(0, z) (ηs,t(z, x)− ηs,t(z, y)) . (6.1)

Then, by (6.1) and Cauchy-Schwarz inequality, we get, for all 0 ≤ s ≤ t,

E
[(
ηt(0, x)− ηt(0, y)

)2]
= E

[( ∑
z∈TdN

η0,s(0, z) (ηs,t(z, x)− ηs,t(z, y))

)2]
≤
∑
z∈TdN

E
[
η0,s(0, z)

(
ηs,t(z, x)− ηs,t(z, y)

)2]
=
∑
z∈TdN

E
[
ηs(0, z)

]
E
[(
ηt−s(z, x)− ηt−s(z, y)

)2]
=
∑
z∈TdN

πs(0, z)E
[(
ηt−s(z, x)− ηt−s(z, y)

)2]
,

where the third step is a consequence of the fact that the Poisson updates over the time
intervals (0, s) and (s,+∞) are independent, while for the fourth one we used (1.4). By
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using the well-known heat kernel estimate πs(0, z) ≤ C
((
sd/2 ∧Nd

)
∨ 1
)−1

, we further
get

E
[(
ηt(0, x)− ηt(0, y)

)2] ≤ C(
sd/2 ∧Nd

)
∨ 1

∑
z∈TdN

E
[(
ηt−s(z, x)− ηt−s(z, y)

)2]
=

C(
sd/2 ∧Nd

)
∨ 1

2

dNd
E

[
E
(
ηt−s(0, · )

π

)]
,

where for the last step we used the duality relation (3.1), the reversibility of CRW(TdN )

with respect to the counting measure on TdN ×TdN , and Proposition 3.1. After inserting
s = t/2 ∧N2 in this last estimate, the upper bounds in (2.1) and (2.2) yield the desired
result.

We then conclude this section with the proof of Proposition 2.5 about the limit profile.

Proof of Proposition 2.5. Recall that, although we omit N ∈ N from the notation, ‖ · ‖p
denotes the Lp-norm on (TdN , π). By the triangle inequality and (1.5)–(1.6), we get∣∣∣∣∣E

[∥∥∥∥ηtN2(0, · )
π

− 1

∥∥∥∥p
p

] 1
p

−
∥∥ht − 1

∥∥
Lp(Td)

∣∣∣∣∣
≤ E

[∥∥∥∥ηtN2(0, · )
π

− 1

∥∥∥∥p
p

] 1
p

−
∥∥∥∥πtN2(0, · )

π
− 1

∥∥∥∥
p

+

∣∣∣∣∣
∥∥∥∥πtN2(0, · )

π
− 1

∥∥∥∥
p

−
∥∥ht( · /N)− 1

∥∥
p

∣∣∣∣∣+
∣∣∣∥∥ht( · /N)− 1

∥∥
p
−
∥∥ht − 1

∥∥
Lp(Td)

∣∣∣
≤ E

[∥∥∥∥ηtN2(0, · )
π

− πtN2(0, · )
π

∥∥∥∥2

2

] 1
2

+

∥∥∥∥πtN2(0, · )
π

− ht( · /N)

∥∥∥∥
p

+
1

N

d∑
i=1

‖∂iht‖C(Td) ,

where the last term has been estimated via a first-order Taylor expansion (recall that
ht ∈ C∞(Td), for all t > 0). The first term on the right-hand side above is O( 1

N )

thanks to Theorem 2.4, while the second term is o( 1
N ) by the quantitative local CLT for

RW(TdN ) (see, e.g., [LL10] for the analogous result on Zd). Since all these estimates are
uniform over finite time intervals bounded away from zero and infinity, this concludes
the proof.

7 An application to cutoff of the dual particle system

As a further consequence of Corollary 2.3 and the quantitative concentration result
in Theorem 2.4, we provide sharp estimates for the mixing time of the particle system
discussed in [QS23], dual to the averaging process, known as binomial splitting process.
In a few words, this model is the k-particle generalization of the processes RW(TdN ) and
CRW(TdN ) previously introduced. Here, we provide a quick description of this particle
system and refer to [QS23, Section 2.1] (see also [PR23, Section 1.2]) for more details,
results, and background.

Given the discrete torus TdN , d ≥ 1, and an integer k ∈ N, let Ωk = ΩN,k denote the
configuration space of k indistinguishable particles on TdN , namely,

Ωk :=

{
ζ ∈ NT

d
N

0

∣∣∣∣ ∑
x∈TdN

ζ(x) = k

}
.
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On such a configuration space, we consider (ζkt )t≥0 = (ζN,kt )t≥0 as the Markov process
which evolves as follows: start with a particle configuration ζ ∈ Ωk at time t = 0; at the
Poisson event times of Avg(TdN ) involving, say, the nearest neighbors x, y ∈ TdN , reassign,
independently and uniformly at random, x or y as the new position of each particle which
was originally sitting on either x or y. The name “binomial splitting” is now explained:
the update corresponds to placing on x a binomially-distributed fraction of the total
ζ(x) + ζ(y) particles. Further, the dynamics conserves the total number of particles,
and, although particles interact when performing simultaneous jumps, at equilibrium,
they are distributed as if they were independent. Indeed, a simple detailed balance
computation ensures that

µk,π = Multinomial(k, π) ,

is the unique reversible measure for the particle system with k particles. Finally, it is
immediate to see that the particle systems with k = 1 and k = 2 particles correspond,
respectively, to the processes RW(TdN ) and CRW(TdN ) described in Sections 1.3 and 3.1,
once the particles’ labels are removed.

We are interested in proving a total variation (TV) cutoff phenomenon for this process,
as k = kN →∞, strengthening the result in [QS23, Theorem 2.3]. For this purpose, let,
for all k ∈ N, (P kt )t≥0 denote the Markov transition kernel associated to (ζkt )t≥0, and
write µP kt for the distribution of ζkt when ζk0 ∼ µ, for some µ ∈ P(Ωk). (Here, in analogy
with P(TdN ), P(Ωk) stands for the space of probability distributions on Ωk.) Further, we
consider

dk(t) = dN,k(t) := sup
µ∈P(Ωk)

∥∥µP kt − µk,π∥∥TV
, t ≥ 0 ,

to encode the worst-case TV-distance to equilibrium of the process as a function of
time. Then, recalling that trel = tNrel > 0 denotes the spectral gap of RW(TdN ) (which, by
[QS23, Theorem 2.1], coincides with the spectral gap of the k-particle binomial splitting
process), and letting

T (a) = TN,k(a) :=
trel

2
(log k + awk) , a ∈ R , (7.1)

the result in [QS23, Theorem 2.3] specialized to the setting of the torus TdN reads as
follows:

lim
a→−∞

lim inf
N→∞

dk(T (a)) = 1 , (7.2)

lim
a→∞

lim sup
N→∞

dk(T (a)) = 0 , (7.3)

for wk ≡ 1 and for all k = kN → ∞ satisfying k = O(N2d). Our main improvement
consists in extending this result from quadratic to exponentially-many particles, paying
the price of enlarging the so-called cutoff window wk.

Proposition 7.1 (Cutoff for binomial splitting process). Letting wk := 1 ∨ log k
Nd

, we have:

(a) the claim in (7.2) holds for all k →∞ satisfying log k = o(Nd logN);

(b) the claim in (7.3) holds for all k →∞.

In particular, TV-cutoff for (ζkt )t≥0 holds for k →∞ satisfying log k = o(Nd logN).

We anticipate that, on the one hand, the strategy in [QS23] and our estimates
on the fast local smoothness of Avg(TdN ) suffice to yield the desired upper bound,
i.e., Proposition 7.1(b). On the other hand, for the lower bound, our results on early
concentration of Avg(TdN ) combined with the proof in [QS23] fail to provide sharp
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estimates in the regime log k ≥ Nd. With the purpose of covering also this case, here,
we follow a different proof strategy.

Finally, the key observation of the proof of Proposition 7.1 is that (ζkt )t≥0 and Avg(TdN )

are related to each other via the following intertwining relation [QS23, Proposition 3.1]:
for all ξ ∈ P(TdN ), k ∈ N, and t ≥ 0,

µk,ξP
k
t = E

[
µk,ηξt

]
, with µk,η := Multinomial(k, η) , for all η ∈ P(TdN ) . (7.4)

We crucially exploit this fact for establishing both claims in Proposition 7.1.

Proof of Proposition 7.1. We divide the proof into two parts, starting with item (b).

Upper bound (b). By (a slight generalization of) the intertwining relation in (7.4), we
have the following estimate [QS23, Lemma 6.4]: for all k ∈ N and t ≥ 0,

dk(t) := sup
µ∈P(Ωk)

∥∥µP kt − µk,π∥∥TV
≤
√
ekE

[∥∥∥∥ηt(0, · )π
− 1

∥∥∥∥2

2

] 1
2

.

Thanks to Corollary 2.3, we further get, for some C = C(d) > 0 and for all t ≥ N2,

dk(t) ≤ C
√
kNd/2(

Nd/2 ∧ td/4
)
∨ 1

exp

(
−t/trel +

Bt

2Nd+2

)
= C
√
k exp

(
−t/trel +

Bt

2Nd+2

)
,

where for the last step we used t ≥ N2. Recall trel = Θ(N2), k →∞, and wk := 1 ∨ log k
Nd

.
Hence, by substituting t = T (a)� N2 given in (7.1), the right-hand side above reads as

C exp

(
−a

2
wk +

Btrel

4Nd+2
(log k + awk)

)
,

which vanishes taking first N → ∞ and then a → ∞. This concludes the proof of the
upper bound.

Lower bound (a). The approach we follow goes via the intertwining relation (7.4), which
we employ as follows:

dk(t) ≥
∥∥µk,ξP kt − µk,π∥∥TV

= sup
A⊂Ωk

(
E
[
µk,ηξt

(A)
]
− µk,π(A)

)
≥ E

[
µk,ηξt

(A∗)
]
− µk,π(A∗) ,

(7.5)

for some A∗ ⊂ Ωk and ξ ∈ P(TdN ) that we now specify.
First, we set ξ = 10 and t = T (a), for some a < 0. With this choice, we have (see, e.g.,

[LP17, Lemma 20.11])

‖πt(0, · )− π‖TV := sup
B⊂TdN

(
πt(0, B)− π(B)

)
≥ e−t/trel

2
=
e−awk/2

2
√
k

.

Let B∗ = B∗(N, a) ⊂ TdN be a proper subset which attains the above supremum; hence,

πt(0, B∗) ≥ π(B∗) +
e−awk/2

2
√
k

. (7.6)

Now, for some b > 0 to be fixed later, define, for all N ∈ N large enough,

A∗ = A∗(N, a, b) :=

{
ζ ∈ Ωk :

∑
x∈B∗

ζ(x) ≥ k
(
π(B∗) + b√

k

)}
.
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Let us continue from (7.5). Since, under µk,η, k ∈ N and η ∈ P(TdN ), we have
Zk,η(B∗) :=

∑
x∈B∗ ζ(x) ∼ Bin(k, η(B∗)), we obtain (recall t = T (a))

dk(t) ≥ E
[
P
(
Zk,ηt(0,B∗) ≥ k

(
π(B∗) + b√

k

))]
− P

(
Zk,π(B∗) ≥ k

(
π(B∗) + b√

k

))
≥ E

[
P
(
Zk,ηt(0,B∗) ≥ k

(
π(B∗) + b√

k

))]
− π(B∗) (1− π(B∗))

b2

≥ E
[
P
(
Zk,ηt(0,B∗) ≥ k

(
π(B∗) + b√

k

))]
− 1

b2
,

where for the second step we applied Cauchy-Schwarz inequality. Let us now provide a
lower bound for the first term on the right-hand side above. For this purpose, for every
c > b > 0,

E
[
P
(
Zk,ηt(0,B∗) ≥ kπ(B∗) + b

√
k
)]

≥ E
[
P
(
Zk,ηt(0,B∗) ≥ kπ(B∗) + b

√
k
)
1{

ηt(0,B∗)≥π(B∗)+
c√
k

}]
≥ P

(
Z
k,π(B∗)+

c√
k ≥ kπ(B∗) + b

√
k
)
P
(
ηt(0, B∗) ≥ π(B∗) + c√

k

)
= P

(
Z
k,π(B∗)+

c√
k ≥ kπ(B∗) + c

√
k − (c− b)

√
k
)
P
(
ηt(0, B∗) ≥ π(B∗) + c√

k

)
≥ (c− b)2

(c− b)2 + 1
P
(
ηt(0, B∗) ≥ π(B∗) + c√

k

)
,

where for the second inequality we used the stochastic domination Zk,q & Zk,p if
q > p, while for the last one we used Cantelli inequality. Furthermore, provided that
e−awk/2 > 4c, we get, again by Cantelli inequality,

P
(
ηt(0, B∗) ≥ π(B∗) + c√

k

)
= P

(
ηt(0, B∗) ≥ πt(0, B∗)−

(
πt(0, B∗)− π(B∗)− c√

k

))
≥ 1

1 + σ2/r2
,

with

σ := E
[(
ηt(0, B∗)− πt(0, B∗)

)2] 1
2 , r := πt(0, B∗)− π(B∗)− c√

k
≥ e−awk/2/2− c√

k
> 0 .

Hence, we are done as soon as we can show that σ2/r2 → 0. Recall (7.6) and e−awk > 4c;
then, we have

r2 ≥ 1

k

(
e−awk/2

2
− c
)2

≥ e−awk

16k
.

Moreover, recalling that ‖ηt(0, · )π − πt(0, · )
π ‖1 = 2 supB⊂TdN (ηt(0, B)− πt(0, B)), we get

σ2 := E
[(
ηt(0, B∗)− πt(0, B∗)

)2] ≤ 1

4
E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

1

]
≤ 1

4
E

[∥∥∥∥ηt(0, · )π
− πt(0, · )

π

∥∥∥∥2

2

]
≤ C

N2

e−awk

k
exp

(
Btrel

2Nd+2
(log k + awk)

)
,

where for the second line we used Jensen inequality, while for the third one we used the
second inequality in (2.3) with t = T (a) ≥ N2. (Here, B, C > 0 depend only on d ≥ 1.)
Hence,

σ2

r2
≤ C

N2
exp

(
Btrel

2Nd+2
(log k + awk)

)
≤ C

N2
exp

(
Btrel

2Nd+2
log k

)
N→∞−−−−→ 0 ,

provided that log k = o(Nd logN). Finally, setting c > b > 0 large enough and a < 0 small
enough concludes the proof.
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