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Abstract

The paper concerns classical solution of path-dependent partial differential equations
(PPDEs) with coefficients depending on both variables of path and path-valued mea-
sure, which are crucial to understanding large-scale mean-field interacting systems in
a non-Markovian setting. We construct classical solutions of the PPDEs via solution
of the forward and backward stochastic differential equations. To accommodate the
intricacies introduced by the appearance of the path in the coefficients, we develop a
novel technique known as the “parameter frozen” approach to the PPDEs.
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1 Introduction

Denote by CT,d the space of continuous functions on [0, T ] with values in Rd and by PC2
the totality of probability measures on CT,d with finite second order moments. Given
functions (b1, σ1) on CT,d and (b2, σ2) on PC2 , we investigate a path-dependent mean-field
PDE given by

∂tu(t, ω, µ) + 1
2Tr [∂2

ωu(t, ω, µ)σ1(ωt)σ1(ωt)
T ] + ∂ωu(t, ω, µ)b1(ωt)

+ 1
2Tr [

∫
CT,d

∂ω̃∂µu(t, ω, µ, ω̃)µ(dω̃)σ2(µt)σ2(µt)
T ] +

∫
CT,d

∂µu(t, ω, µ, ω̃)µ(dω̃)b2(µt)

+f(t, ω, u(t, ω, µ), σ1(ωt)∂ωu(t, ω, µ), µ,Lu(t,Wµ,µ)) = 0,

u(T, ω, µ) = Φ(ω, µ), (t, ω, µ) ∈ [0, T ]× CT,d × PC2 .
(1.1)
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Path-dependent mean-field PDE

In this equation, (functional) derivatives ∂ω and ∂µ are taken in the spirit of Dupire and
Lions (see the subsequent definitions (2.9) and (2.20)), respectively, and Wµ represents
the canonical processes on CT,d under µ. The study of mean-field PDEs (or master
equations) is crucial in understanding large systems in physics, games, and other areas
of applied mathematics. While classical mean-field theory has its roots in statistical
physics, quantum mechanics, and quantum chemistry (see Kac [36], McKean [41],
Sznitman [49, 50, 51, 52]), recent developments have extended its applications to areas
like stochastic differential games, partial differential equations (PDEs), and stochastic
control, impacting fields such as engineering and economics (see e.g. [39], [11], [7],
[13], [14], [29]), just to mention a few.

Mean-field PDEs have been studied in various frameworks: Bensoussan et al. [5] consider
the regular case when measure variables are restricted on those measures of square
integrable density functions, Cardaliaguet [11] gives a viscosity solution for first-order
HJB equations on a Wasserstein space, Gomes and Saude [33] survey well-posedness of
HJB-FP equations for reduced mean-field games, Buckdahn et al. [9] and Chassagneux
et al. [12] study classical solutions for second order master equations through stochastic
differential equations (SDEs) and forward backward stochastic differential equations
(FBSDEs) respectively, Carmona and Delarue [15] consider the mean-field games and
corresponding master equation with common noise, Cardaliaguet et al. [16] give an ana-
lytic approach for master equations, Pham and Wei [47] study the dynamic programming
principle for Bellman master equation, Gangbo et al. study the well-posedness of master
equations under non-monotonic conditions, etc. However, all these works consider the
state-dependent case, which means (ω, µ) in Equation (1.1) take values in Rd ×P2(Rk).
Here, P2(Rk) is the set of probability measures on Rk with finite second order moments.
In practice, numerous problems could be non-Markovian or path-dependent: to mention
a few, prices of exotic options (e.g. Asian, chooser, lookback and barrier options [22],
[21], [35], [28]), stochastic differential game and stochastic control with delayed infor-
mation ([2], [30], [48], [56], [53]), rough volatility [32], [6], etc. In particular, Peng in his
ICM 2010 lecture [44] introduces the connection between non-Markovian FBSDEs and
so called path-dependent PDEs (PPDEs), the latter of which is regarded as a crucial tool
in the non-Markovian control theory.

Dupire [22] introduces a functional Itô formula to incorporate the calculus of path-
dependent functionals, which is subsequently developed by Cont-Fournié [17, 18] and
references therein (on the other hand, see another approach to path-dependent problems
of Flandoli and Zanco [27] by lifting the primal problem into a functional one in Banach
spaces). In contrast to the classical approach of functional analysis (see e.g. Ahn [1]),
Dupire’s approach is featured by the finite dimensional vertical derivative (see the
following definition (2.9)), and is admitted to solve non-Markovin problems (see e.g. [54],
[48]). Concerning the well-posedness of PPDEs, Peng and Wang [46] consider smooth
solutions of parabolic PPDEs; Ekren et al. [23, 24, 25] study the viscosity solution of
quasilinear and fully nonlinear PPDEs; Cosso et al. [19] treat PPDEs as the Hilbert space
valued equations and build the viscosity solution; Peng and Song [45] introduce a new
path derivative and build Sobolev solutions for corresponding parabolic fully-nonlinear
PPDEs via G− BSDEs [43]; Wu and Zhang [55] solve a master equation with solutions in
a form of V (t, µ), µ ∈ PC2 . Recently, new viscosity solutions are introduced from different
viewpoints by Zhou [57], Bouchard et al. [10] and Cosso et al. [20].

Although several definitions of viscosity solutions are available, the understanding of a
smooth solution seems to be still very limited. The well-understood smooth solution of
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Path-dependent mean-field PDE

PPDE 
∂tu(t, ω) + 1

2Tr [∂2
ωu(t, ω)σ(ωt)σ(ωt)

T ] + ∂ωu(t, ω)b(ωt)

+f(t, ω, u(t, ω), σ(ωt)∂ωu(t, ω)) = 0,

u(T, ω) = Φ(ω), (t, ω) ∈ [0, T ]× CT,d,

(1.2)

seems to be restricted within the case where (b, σ) = (0, I) (though (b, σ) can be extended
to be state-dependent in some sense). Here and in the following, we write ω(t) to denote
the value of path ω at time t, and ωt = ωt(·) = ω(t∧ .) to denote the path up to time t. The
problem comes from the definition of vertical derivatives. To be more precise, consider
path-dependent SDE

Xγt(s) = γ(t) +

∫ s

t

b(Xγt
r )dr +

∫ s

t

σ(Xγt
r )dB(r), (1.3)

and a functional Φ defined on càdlàg space. Then we ask whether or when we have the
vertical differentiability of Φ(Xγt) in γt, which is necessary to study the smooth solution
of (1.2) via FBSDEs, even when both path functionals b and σ have smooth vertical
derivatives of any order! The existing results exclude the case of a general forward
system with nontrivial coefficients, and seem to be no help to study the corresponding
control problems.
The paper focuses smooth solution of path-dependent PDEs. In contrast to the state-
dependent case [12], smooth solution of equation (1.1) by FBSDEs meets with new issues.
The first comes from the weak formulism of vertical derivatives (see identities (2.9)
and (2.20) for details). Dupire’s vertical derivative [22] is defined in a finite-dimensional
space, but depends on the “cut-off” time for functionals. In particular, to show the
horizontal differentiability of the decoupling field u on [0, T ]× CT,d, we have that for any
t, h ∈ [0, T ] and γt ∈ CT,d,

u(t+ h, γt)− u(t, γt) =
[
u(t+ h, γt)− u(t+ h,Bγtt+h)

]
+
[
u(t+ h,Bγtt+h)− u(t, γt)

]
, (1.4)

where

Bγtt+h(s) := γ(s)1s≤t + (γ(t) +B(s)−B(t))1t+h>s≥t + (γ(t) +B(t+ h)−B(t))1s≥t+h,

and B is a Brownian motion. Then to apply Itô’s formula to compute the first difference
of the right hand side of the last identity, the path “differentiability” of flow u on [t, t+ h]

is required. Such a differentiability is no longer the vertical derivative of u since it is
taken before the “cut-off” time t+ h. To handle this issue, we introduce a new notation
called “strong vertical derivative” (SVD) (see Definition 2.1), built upon Dupire’s vertical
derivative, which restricts functionals to be vertically differentiable before the cut-off
time. On one hand, the definition of SVDs is general enough to include all interesting
continuously vertical differentiable functionals (see Example 2.2). On the other hand,
the SVD can be viewed as a pathwise definition for the Malliavin derivative (see e.g.
[42]) on the càdlàg path space (see subsequent Remark 2.2 for details). Secondly, the
existence of the derivative with respect to measure in Lions’ sense usually requires the
separability of the measurable space. However, in view of Dupire’s vertical derivative
and FBSDE theory, we work with the space of càdlàg functions under the uniform norm
instead of Skorokhod norm. This leaves us without the general existence result for
measure derivatives, and consequently we work with smooth coefficients such that we
can construct derivatives via FBSDEs. Thirdly, as mentioned before, although there are
many developments in viscosity solution theory for PPDEs, there is very few tool for
smooth solutions even in the semi-linear case. To study (1.1) via FBSDEs argument, we
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Path-dependent mean-field PDE

propose a novel approach involving a “coefficient frozen” strategy to handle complexities
arising from path-dependent coefficients, contributing to the resolution of PPDEs with
nontrivial coefficients. The argument is general enough to incorporate the mean-field
path-dependent case (see Section 3.3 for details).
A key contribution of the paper lies in establishing the well-posedness of the path-
dependent mean-field equation with path-dependent coefficients, along with introducing
and applying the SVD concept. In addition, the paper provides an Itô formula and partial
Itô formula, which are fundamental in the study of path-dependent mean-field problems.
The “parameter frozen” strategy proves instrumental in handling PPDEs with path-
dependent coefficients. Our results not only help to understand path-dependnent mean-
field equations, but also offer insights on numerical computations and the approximation
of equilibrium in finite systems in view of the corresponding regularity needed (Fischer
[26], Lacker [37]).
The rest of the paper is organized as follows. In Section 2, we introduce notations of
SVD with respect to paths and measures on path space, and build in the framework
functional Itô calculus incorporating paths and path measures. In Section 3, we show
the differentiability and regularity of associated FBSDE solutions. In Section 4, we prove
the existence and uniqueness of smooth solutions for path-dependent mean-field PDEs.

2 Basic setup and Itô calculus for functionals of both path and
path-measure

2.1 The canonical setup

For any fixed T > 0, we denote by CT,d = C([0, T ],Rd) the canonical space and equip
it with the supreme norm ‖ · ‖[0,T ]. W is the canonical process and {FWt }0≤t≤T is the
natural filtration. For any (t, ω) ∈ [0, T ] × CT,d, ωt is the cut-off path, meaning that
ωt ∈ CT,d such that

ωt(r) = ω(r)1[0,t)(r) + ω(t)1[t,T ](r), r ∈ [0, T ]; (2.1)

and ω(t) is the state of ω at time t. Let PC2 be the set of probability measures on
(CT,d,FWT ) with finite second order moments, i.e. µ ∈ PC2 iff |||µ|||2 := Eµ[‖W‖2[0,T ]] <∞.

For µ ∈ PC2 , µt ∈ PC2 is the distribution of stopped process Wt under µ. For any µ, ν ∈ PC2 ,
we define the following classical 2-Wasserstein distance

W2(µ, ν) = inf
P∈P(µ,ν)

(∫
CT,d×CT,d

‖u− v‖2[0,T ] dP (u, v)

) 1
2

, (2.2)

where P(µ, ν) is the set of all probability measures on (CT,d × CT,d,FWT × FWT ) with
marginal measures µ and ν. To introduce functional derivative in the space of paths, we
consider the space of càdlàg paths DT,d := D([0, T ],Rd), which can be equipped with the
uniform topology ‖ · ‖[0,T ], or the Skorohod topology

d(ω, ω′) := inf
λ∈Λ[0,T ]

sup
t∈[0,T ]

(|t− λ(t)|+ |ω(t)− ω′(t)|), (2.3)

where Λ[0,T ] is the set of all strictly increasing continuous mappings on [0, T ] with
λ(0) = 0 and λ(T ) = T . In the following, we equip DT,d with the uniform topology unless
stated otherwise. With the space CT,d being replaced with DT,d, notations such as PD2
and W2(µ, ν) are self-explained.
Suppose that (Ω,F , P ) is an atomless probability space supporting a d-dimensional
Brownian motion B, and {Ft}t∈[0,T ] is the natural augmented filtration. For any t ∈ [0, T ]
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Path-dependent mean-field PDE

and r ∈ [t, T ], we define F tr as the σ-algebra generated by {B(s)− B(t); t ≤ s ≤ r} and
completed under P . For any (stopped up to time t) process Xt, we denote by LXt the law
of the process Xt and LX(t) the law of the random variable X(t). In the following, we use
notation MC

2 (MD
2 , resp.) as the collection of measurable continuous processes (càdlàg

processes, resp.) with laws in PC2 (PD2 , resp.). Since for any µ ∈ PD2 , we can always find
an atomless probability space (Ω,Ft, P ) such that there exists a càdlàg process η on this
probability space with law µ, we will always suppose for any µ ∈ PD2 , (Ω,F , P ) is rich
enough to support a càdlàg process η such that Lη = µ. Moreover, for any progressively
measurable process X and random variable ξ on (Ω,F , P ), we define the following norms
if they are finite: for any t ∈ [0, T ], p ∈ N+,

‖X‖p
Sp,[t,T ] := EP [‖X‖p[t,T ]], ‖X‖

p
Hp,[t,T ] := EP [(

∫ T

t

|X(r)|2dr)
p
2 ], ‖ξ‖pLp := EP [|ξ|p].

(2.4)
We write Sp([t, T ],Rk), Hp([t, T ],Rk) and Lp(FT ,Rk) for spaces of progressively measur-
able processes on [t, T ] and random variables with values in Rk and finite corresponding
norms. Denote by Cn(Rm,Rk) (Cnb (Rm,Rk), resp.) the space of (bounded, resp.) con-
tinuous functions from Rm to Rk with (bounded, resp.) continuous derivatives up to
order n. Usually, we omit Rk in Sp([t, T ],Rk),Hp([t, T ],Rk), Lp(FT ,Rk), C(Rm,Rk) when
k = 1, and also omit the time interval [t, T ] if no confusion raised. Moreover, for
(Y,Z) ∈ Sp([t, T ],Rm)×Hp([t, T ],Rn), we write

‖(Y,Z)‖Sp×Hp := (‖Y ‖pSp + ‖Z‖pHp)
1
p . (2.5)

2.2 Strong vertical derivatives with respect to path and path-measure

Denote by D̂T,d the product space [0, T ]×DT,d × PD2 and by D the space of functionals
on D̂T,d. A functional f ∈ D is said to be non-anticipative if for any (t, ω, µ), f(t, ω, µ) =

f(t, ωt, µt), where µt is the law of ηt with Lη = µ. For non-anticipative f ∈ D , we call
f continuous on D̂T,d and write f ∈ C (D̂T,d) if f is continuous in the product space
[0, T ]×DT,d × PD2 equipped with the premetric:

dp((t, ω, µ), (t′, ω′, µ′)) := |t− t′|+ ‖ωt − ωt′‖+W2(µt, µt′). (2.6)

For any non-anticipative f ∈ D , the horizontal derivative is defined as

∂tf(t, ω, µ) := lim
h→0+

1

h
[f(t+ h, ωt, µt)− f(t, ωt, µt)], ∀ (t, ω, µ) ∈ D̂T,d. (2.7)

For any (t, x) ∈ [0, T ]×Rd, define ωt,x ∈ DT,d by

ωt,x := ω + x1[t,T ]. (2.8)

For any fixed (t, µ) ∈ [0, T ]× PD2 , f(t, ·, µ) : DT,d 7→ R is called vertically differentiable at
(t, ω) (or ωt for short), if f(t, ωt,x, µ) is differentiable at x = 0, i.e. there exits ∂ωf(t, ω, µ) ∈
Rd such that

f(t, ω + x1[t,T ], µ) = f(t, ω, µ) + ∂ωf(t, ω, µ)x+ o(|x|), ∀ x ∈ Rd, (2.9)

and ∂ωf(t, ω, µ) is then called the vertical derivative. Now we introduce the notation of
SVDs for the FBSDE argument in Section 4.

Definition 2.1. Suppose that f : [0, T ] × DT,d 7→ R. For any τ ≤ t, we call f strongly
vertically differentiable at (τ, t, ω) (or ωτ for short), if there exits ∂ωτ f(t, ω) ∈ Rd such
that

f(t, ω + x1[τ,T ]) = f(t, ω) + ∂ωτ f(t, ω)x+ o(|x|), ∀ x ∈ Rd. (2.10)
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Path-dependent mean-field PDE

In this case, ∂ωτ f(t, ω) is called the strong vertical derivative (SVD) of f at (τ, t, ω).
Moreover, if f is strongly vertically differentiable at (τ, t, ω) for any τ ≤ t, we call f
strongly vertically differentiable at (t, ω) (or ωt for short).

Remark 2.1. Indeed, we can consider the SVD for any τ ∈ [0, T ]. For non-anticipating
functionals we care about in this paper, we have

∂ωτ f(t, ω) = ∂ωτ f(t, ω)1[0,t](τ).

Clearly, f is strongly vertical differentiable at ωt if and only if the mapping x 7→ f(t, ωτ,x)

is differentiable at x = 0 for any τ ≤ t. In particular, if f is non-anticipative and strongly
vertically differentiable, f is vertically differentiable and its vertical derivative at (t, x)

agrees with its strong vertical derivative at (t, t, ω). For the SVD ∂ωτ f(t, ω), we can
further define its SVDs in the same spirit: for any τ ′ ≤ t, define ∂ωτ′∂ωτ f(t, ω) as the SVD
of ∂ωτ f(t, ω) at (τ ′, t, ω). In the following, we only need to consider the case τ ′ = τ . We
call f has continuous SVDs or ∂ωτ f(t, ω) is continuous if ∂ωτ f is continuous with respect
to the metric: for any (τ, t, ω) and (τ ′, t′, ω′) with τ ≤ t, τ ′ ≤ t′,

dsp((τ, t, ω), (τ ′, t′, ω′)) := |τ − τ ′|+ |t− t′|+ ‖ωt − ω′t′‖. (2.11)

Here are examples of strongly vertically differentiable functionals.

Example 2.2. Let f : [0, T ]×DT,d 7−→ R and (t, ω) ∈ [0, T ]×DT,d.

(i) If f(t, ω) = F (t, ω(t)) for a function F ∈ C1,k([0, T ]×Rd), then we have that for any
τ1, τ2, · · · , τj ∈ [0, t], j ≤ k,

∂tf(t, ω) = ∂tF (t, ω(t)), ∂ωτj · · · ∂ωτ1 f(t, ω) = Dj
xF (t, ω(t)), (2.12)

and thus f has continuous strong vertical derivatives up to order k.

(ii) Suppose that f(t, ω) =
∫ t

0
F (r, ω(r))dr with F ∈ C1,k([0, T ] × Rd). Then for any

τ1, τ2, · · · , τj ∈ [0, t], j ≤ k,

∂tf(t, ω) = F (t, ω(t)), ∂ωτj · · · ∂ωτ1 f(t, ω) =

∫ t

τ

Dj
xF (r, ω(r))dr, (2.13)

with τ = max1≤i≤j{τi}. Thus f has continuous SVDs up to order k.

(iii) For a partition 0 = t0 < t1 < · · · < tn = T , and a continuously differentiable
function F : Rd ×Rd × · · ·Rd︸ ︷︷ ︸

n

7→ R, let

f(T, ω) := F (ω(t1), ω(t2)− ω(t1), · · · , ω(T )− ω(tn−1)). (2.14)

Then f is strongly vertically differentiable at (T, ω): for t > 0,

∂ωtf(T, ω) =

n∑
j=1

∂xjF (ω(t1), ω(t2)− ω(t1), · · · , ω(T )− ω(tn−1))1(tj−1,tj ](t).

(iv) For fixed t0 ∈ (0, T ) and F ∈ C1(Rd), define f(T, ω) := F (ω(t0)). Thus f has SVDs

∂ωtf(T, ω) = DxF (ω(t0))1[0,t0](t). (2.15)

(v) For a given partition of [0, T ]: 0 = t0 < t1 < · · · < tn = T and smooth functions
{fi}n−1

i=0 on Rd, consider

f(t, ω) :=

n−1∑
i=0

fi(ω(ti))1[ti,ti+1)(t). (2.16)
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Then f is strongly vertically differentiable at ωt with

∂ωτ f(t, ω) =

n−1∑
i=0

Dfi(ω(ti))1[ti,ti+1)(t)1[0,ti](τ), ∀τ ≤ t. (2.17)

Remark 2.2. The relation between vertical derivative and Malliavin derivative is con-
sidered in [18], where an equivalence is built through martingale representation in
both frameworks (see [18, Theorem 6.1]). According to (iii) of Example 2.2, the SVD is
related to Malliavin derivatives restricted in the cylinder random variables or processes.

The following lemma follows immediately from Definition 2.1, and will be frequently
used.

Lemma 2.3. Suppose that f : [0, T ]×DT,d 7→ R is strongly vertically differentiable, and
uniformly Lipschitz continuous in ω:

|f(t, ω)− f(t, ω′)| ≤ C‖ωt − ω′t‖, ∀(t, ω, ω′) ∈ [0, T ]×DT,d ×DT,d. (2.18)

Then we have |∂ωτ f(t, ω)| ≤ C for any (t, ω) ∈ [0, T ]×DT,d and τ ≤ t.
For a non-anticipative functional f ∈ D , consider its lift f : [0, T ]×DT,d ×MD

2 7→ R,

f(t, ω, η) := f(t, ω,Lη). (2.19)

In the spirit of Lions [39] (also see [55] for derivative with respect to measure on the path
space), we call f Fréchet (vertically) differentiable at (t, µ) (or µt for short), if for any
fixed ω, f is Fréchet (vertically) differentiable at (t, η) (or ηt for short) with Lη = µ in the
following sense: there exits Dηf(t, ω, η) ∈ L2

P (Ft,Rd) such that for any ξ ∈ L2
P (Ft,Rd),

f(t, ω, η + ξ1[t,T ]) = f(t, ω, η) + EP [Dηf(t, ω, η)ξ] + o(‖ξ‖L2). (2.20)

In particular, it means that the following Gâteaux derivative exits

lim
h→0

1

h
[f(t, ω, η + hξ1[t,T ])− f(t, ω, η)] = EP [Dηf(t, ω, η)ξ]. (2.21)

Moreover, if there exists a non-anticipative jointly measurable functional ∂µf : D̂T,d ×
DT,d 7→ R, such that

Dηf(t, ω, η) = ∂µf(t, ω, µ, η), P -a.s., (2.22)

we call f vertically differentiable at (t, µ) and ∂µf(t, ω, µ, ω̃) the vertical derivative of
f(t, ω, ·) at (t, µ) (or µt).

Remark 2.4. Consider the validity for notations of Fréchet and Gâteaux differentiability.
Denote by f the lift of f ∈ D . For any ξ ∈ L2

P (Ft,Rd), let F (t, ω, η, ξ) := f(t, ω, η + ξ1[t,T ]).

Then f is Fréchet differentiable at (t, η) in the above sense is equivalent to that F (t, ω, η, ξ)

is Fréchet differentiable at ξ = 0 in the classical sense. Similar argument for Gâteaux
differentiability also holds.

Remark 2.5. Consider the existence of the derivative functional ∂µf . If the lift f(t, ω, η)

of f(t, ω, µ) is Fréchet differentiable at ηt, and the derivative Dηf(t, ω, η) is continuous

in the sense that Dηf(t, ω, η
n)

L2

−→ Dηf(t, ω, η) as ηn
L2

−→ η under the Skorohod topol-
ogy (2.3), then according to [55, Theorem 2.2], ∂µf exists in the sense of (2.22). However,
to build smooth solutions for (1.1), we need our Itô formula (Theorem 2.12 and Corol-
lary 2.13) to be applicable for the larger class of functionals, which only need to be
continuous with respect to the uniform topology. Luckily, we can construct the derivative
directly by corresponding FBSDEs.
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For the uniqueness of ∂µf(t, ω, µ, ·), in view of identity (2.22), we see that it is unique µ-
a.s. inDT,d. Then for any µ ∈ PD2 such that supp(µ) = DT,d, if ∂µf(t, ω, µ, ω̃) is continuous
in ω̃ ∈ DT,d, ∂µf(t, ω, µ, ·) is unique on DT,d. Moreover, suppose that ∂µf(t, ω, ·, ·) is jointly
continuous on PD2 ×DT,d. Then for any µ0 ∈ PD2 , ∂µf(t, ω, µ0, ·) is unique on DT,d. Indeed,
choose any η ∈ MD

2 with Lη = µ0 ∈ PD2 , and any η′ ∈ (MD
2 )′, which is independent of

η, such that supp(Lη′) = DT,d. Then for any ε > 0, the functional ∂µf(t, ω,Lη+εη′ , ·) is
unique on DT,d. It follows from continuity of ∂µf(t, ω, ·, ·) that ∂µf(t, ω, µ0, ω̃) is unique
as the limit of ∂µf(t, ω,Lη+εη′ , ω̃) as ε goes to zero. In conclusion, we have the following
lemma.

Lemma 2.6. Suppose that for any fixed (t, ω) ∈ [0, T ]×DT,d, the functional derivative
∂µf(t, ω, ·, ·) is jointly continuous in PD2 ×DT,d. Then for any (t, ω, µ) ∈ D̂T,d, ∂µf(t, ω, µ, ·)
is unique on DT,d.

Remark 2.7. The definition of vertical derivative given by (2.20) and (2.21) has natural
extension for Banach space valued functionals. For any t ∈ [0, T ], suppose that f(t, ω, µ)

takes values in a (stochastic) Banach space Et (e.g. S2([t, T ]),H2([t, T ]), L2(Ft)). Indeed,
f(t, ω, µ) has the natural lift f(t, ω, η) ∈ Et with Lη = µ. If the mapping from L2(Ft) to Et

f(t, ω, η + ·1[t,T ]) :L2(Ft) 7−→ Et

ξf(t, ω, η + ξ1[t,T ])

is Fréchet (vertical) differentiable with derivative Dηf(t, ω, η) ∈ L(L2(Ft), Et) at ξ = 0,
we call f(t, ω, ·) Fréchet (vertically) differentiable at µt. Moreover, if there exists a jointly
measurable functional U : D̂T,d×DT,d 7→ Et such that for any ξ ∈ L2(Ft), Dηf(t, ω, η)(ξ) =

EP [U(t, ω, µ, η)ξ], we call ∂µf(t, ω, µ, ·) := U(t, ω, µ, ·) the vertical derivative of f(t, ω, ·) at
µt.

Now we introduce SVDs with respect to path-measure.

Definition 2.8. For any τ, t ∈ [0, T ] with τ ≤ t and µ ∈ PD2 , we call a non-anticipative
functional f : [0, T ] × PD2 7→ R Fréchet (strongly vertically) differentiable at (τ, t, µ)

if its lift f(t, η) with Lη = µ is Fréchet (strongly vertically) differentiable: there exits
Dητ f(t, η) ∈ L2

P (Ft,Rd) such that for any ξ ∈ L2
P (Fτ ,Rd),

f(t, η + ξ1[τ,T ]) = f(t, η) + EP [Dητ f(t, η)ξ] + o(‖ξ‖L2). (2.23)

In particular, it means that the following Gâteaux derivative exits,

lim
h→0

1

h
[f(t, η + hξ1[τ,T ])− f(t, η)] = EP [Dητ f(t, η)ξ]. (2.24)

We call f strongly vertically differentiable at (t, µ) or µt, if it is Fréchet differentiable at
(τ, t, µ) for any τ ≤ t, and moreover, there exists a jointly measurable non-anticipative
functional ∂µτ f : [0, T ]× PD2 ×DT,d 7→ Rd such that

Dητ f(t, η) = ∂µτ f(t, µ, η), P -a.s.. (2.25)

∂µτ f(t, µ, ·) is then called the strong vertical derivative of f(t, ·) at (τ, t, µ).

Remark 2.9. For the existence and uniqueness of the SVD at µτ , we have similar results
as Remark 2.5 and Lemma 2.6. In particular, if for any t ∈ [0, T ], ∂µτ f(t, ·, ·) is jointly
continuous on PD2 × DT,d, then the SVD is unique. Moreover, we can extend SVDs in
path-measure to the (stochastic) Banach framework as Remark 2.7.

Given strongly vertically differentiable f : [0, T ] × PD2 7→ R, for any (t, µ, ω̃) ∈ [0, T ] ×
PD2 × DT,d and τ ≤ t, we can further consider SVDs of ∂µτ f with respect to µt and
ω̃t: for any τ ′ ≤ t, consider ∂ω̃τ′∂µτ f(t, µ, ω̃) as the SVD of ∂µτ f(t, µ, ω̃) at (τ ′, t, ω̃);
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∂µτ′∂µτ f(t, µ, ω̃, ω̃′) as the SVD of ∂µτ f(t, µ, ω̃) at (τ ′, t, µ). In the subsequent sections, we
only need to consider the case τ ′ = τ and the second order derivative ∂ω̃τ′∂µτ f(t, µ, ω̃).
Moreover, we call f has continuous SVDs or ∂µτ f(t, µ, ω̃) is continuous if ∂µτ f is con-
tinuous with respect to the following premetric: for any (t, µ, ω̃) and (t′, µ′, ω̃′) with
τ ≤ t, τ ′ ≤ t′,

dsp((τ, t, µ, ω̃), (τ ′, t′, µ′, ω̃′)) := |τ − τ ′|+ |t− t′|+W2(µt, µ
′
t′) + ‖ω̃t − ω̃′t′‖. (2.26)

f is said to have continuous SVDs in path-measure up to order 2, if both ∂µτ f and
∂ω̃τ∂µτ f are continuous with respect to the above topology.

Example 2.3. Here we consider f : [0, T ]× PD2 7→ R and (t, µ) ∈ [0, T ]× PD2 .

(i) Suppose that F ∈ C1,2([0, T ] × Rd) with |D2
xF | being uniformly bounded, and

f(t, µ) := Eµ[F (t,W (t))]. Then we have that

∂tf(t, µ) = Eµ[∂tF (t,W (t))], ∂µτ f(t, µ, ω̃) = DxF (t, ω̃(t)),

and ∂ω̃τ∂µτ f(t, µ, ω̃) = D2
xF (t, ω̃(t)), ∀τ ∈ [0, t].

Thus f has continuous SVDs up to order 2.

(ii) Let F as defined in (i) and f(t, µ) := Eµ[
∫ t

0
F (r,W (r))dr]. Then for any τ ∈ [0, t],

∂tf(t, µ) = Eµ[F (t,W (t))], ∂µτ f(t, µ, ω̃) =

∫ t

τ

DxF (r, ω̃(r))dr,

and ∂ω̃τ∂µτ f(t, µ, ω̃) =

∫ t

τ

D2
xF (r, ω̃(r))dr.

Therefore, the functional f also has continuous SVDs up to order 2.

(iii) Let F ∈ C1(Rd) such that |DF (x)| ≤ C(1 + |x|) for some C ≥ 0. For fixed t0 ∈
(0, T ), consider Φ(T, µ) := Eµ[F (W (t0))]. Then the SVD at µt is ∂µtΦ(T, µ, ω̃) :=

DxF (ω̃(t0))1[0,t0](t).

Example 2.4. We consider non-anticipative functionals f ∈ D by combining Example 2.2
and Example 2.3. For simplicity take d = 1. Suppose that F ∈ C1,2

b ([0, T ] × R5) and
f1, f2, f3, f5 ∈ C2

b (R). f4 ∈ C2
b (R2). Consider the following functional

f(t, ω, µ) := F
(
t, ω(t),

∫ t
0
f1(ω(r))dr,Eµ[f2(W (t))],Eµ[

∫ t
0
f3(W (r))dr],

Eµ[f4(W (t),
∫ t

0
f5(W (r))dr)]

)
, ∀ (t, ω, µ) ∈ D̂T,d.

Then we check that f has continuous horizontal derivatives and twice continuous SVDs
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in ωt and µt. Indeed, for any τ ≤ t,

∂tf(t, ω, µ) = ∂tF (t, x) + ∂x2F (t, x)f1(ω(t)) + ∂x4F (t, x)Eµ [f3(W (t))]

+ ∂x5
F (t, x)Eµ [∂y2

f4(Y )f5(W (t))] ,

∂ωτ f(t, ω, µ) = ∂x1
F (t, x) + ∂x2

F (t, x)

∫ t

τ

f ′1(ω(r))dr,

∂2
ωτ f(t, ω, µ) = ∂2

x1
F (t, x) + ∂2

x2
F (t, x)

(∫ t

τ

f ′1(ω(r))dr

)2

+ ∂x2F (t, x)

∫ t

τ

f
(2)
1 (ω(r))dr,

∂µτ f(t, ω, µ, ω̃) = ∂x3
F (t, x)f ′2(ω̃(t)) + ∂x4

F (t, x)

∫ t

τ

f ′3(ω̃(r))dr

+ ∂x5F (t, x)
[
∂y1f4(ỹ) + ∂y2f4(ỹ)

∫ t

τ

f ′5(ω̃(r))dr
]
, and

∂ω̃τ∂µτ f(t, ω, µ, ω̃) = ∂x3F (t, x)f
(2)
2 (ω̃(t)) + ∂x4F (t, x)

∫ t

τ

f
(2)
3 (ω̃(r))dr + ∂x5F (t, x)

[
∂2
y1
f4(ỹ),

+ 2∂y2
∂y1

f4(ỹ)

∫ t

τ

f ′5(ω̃(r))dr + ∂2
y2
f4(ỹ)(

∫ t

τ

f ′5(ω̃(r))dr)2
]
,

where

(t, x) =
(
t, ω(t),

∫ t

0

f1(ω(r))dr,Eµ[f2(W (t))],Eµ
[ ∫ t

0

f3(W (r))dr
]
,

Eµ
[
f4(W (t),

∫ t

0

f5(W (r))dr)
])
,

Y =

(
W (t),

∫ t

0

f5(W (r))dr

)
, and ỹ =

(
ω̃(t),

∫ t

0

f5(ω̃(r))dr

)
.

In the following, for any f ∈ D , we use generic notations (∂ωf, ∂
2
ωf) ((∂ωτ f, ∂

2
ωτ f), resp.)

to denote the vertical derivative (SVD, resp.) in path, and (∂µf, ∂ω̃∂µf) ((∂µτ f, ∂ω̃τ∂µτ f),
resp.) to denote the vertical derivative (SVD, resp.) in measure if there is no confusion.
For product spaces D̂T,d×DT,d, [0, T ]× D̂T,d and [0, T ]× D̂T,d×DT,d, we equip them with
the following premetrics respectively: for any x := (τ, t, ω, µ, ω̃), x′ := (τ ′, t′, ω′, µ′, ω̃′) ∈
[0, T ]× D̂T,d ×DT,d,

dm((t, ω, µ, ω̃), (t′, ω′, µ′, ω̃′)) := |t− t′|+ ‖ωt − ω′t′‖+W2(µt, µ
′
t′) + ‖ω̃t − ω̃′t′‖,

dsv((τ, t, ω, µ), (τ ′, t′, ω′, µ′)) := |τ − τ ′|+ |t− t′|+ ‖ωt − ω′t′‖+W2(µt, µ
′
t′),

dsm(x,x′) := |τ − τ ′|+ |t− t′|+ ‖ωt − ω′t′‖+W2(µt, µ
′
t′) + ‖ω̃t − ω̃′t′‖.

(2.27)

Definition 2.10. Denote by C (D̂T,d) (or C when there is no confusion), the subspace of
D which consists of all non-anticipative and continuous functionals with respect to the
metric dp defined by (2.6). Furthermore,

(i) C 1,1,1 (C 1,1,1
s , resp.) is the subset of C whose element is continuously horizontally

differentiable, (strongly, resp.) vertically differentiable w.r.t. both path and mea-
sure, with all derivatives being continuous with respect to the metric introduced
in (2.27);

(ii) C 1,2,1 (C 1,2,1
s , resp.) is the subset of C 1,1,1 (C 1,1,1

s , resp.) whose element’s derivative
∂ωf(t, ·, µ, ω̃) (∂ωτ f(t, ·, µ, ω̃), τ ≤ t, resp.), (t, ω, µ, ω̃) ∈ D̂T,d × DT,d, is further
vertically differentiable (strongly vertically differentiable at (τ, t, ω), resp.), with all
derivatives being continuous;
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(iii) C 1,2,1,1 (C 1,2,1,1
s , resp.) is the subset of C 1,2,1 (C 1,2,1

s , resp.) whose element’s
derivative functional ∂µf(t, ω, µ, ·) (∂µτ f(t, ω, µ, ·), τ ≤ t, resp.), (t, ω, µ, ω̃) ∈ D̂T,d ×
DT,d, is further vertically differentiable (strongly vertically differentiable at (τ, t, ω̃),
resp.), with all derivatives being continuous.

Moreover, denote by C 1,1,1
p the subset of C 1,1,1 such that the functional and all its first

order derivatives have at most polynomial growth in the path variable: there exists
k ∈ Z+, such that for φ = f, ∂tf, ∂ωf , ψ = ∂µf and any K > 0,

|φ(t, ω, µ)| ≤ CK(1 + ‖ωt‖k), |ψ(t, ω, µ, ω̃)| ≤ CK(1 + ‖ωt‖k + ‖ω̃t‖k),

∀(t, ω, µ, ω̃) ∈ D̂T,d ×DT,d such that |||µt||| ≤ K,
(2.28)

for a constant CK depending only on K. Notations such as Cp, C 1,1,1
s,p C 0,1,1 and C 1,2,1,1

p

are defined similarly.

Remark 2.11. Assume that f ∈ D is non-anticipative and has a state-dependent struc-
ture: f(t, ω, µ) = f̃(t, ω(t), µ(t)) for some function f̃ defined on [0, T ]×Rd×P2(Rd). Then
the horizontal differentiability and strongly vertical differentiability of f is reduced to
the differentiability of f̃ on [0, T ]×Rd × P2(Rd). Moreover,

∂tf(t, ω, µ) = ∂tf̃(t, ω(t), µ(t)), ∂ωτ f(t, ω, µ) = Dxf(t, ω(t), µ(t)), and

∂µτ f(t, ω, µ, ω̃) = ∂ν f̃(t, ω(t), µ(t), ω̃(t)), ∀(t, ω, µ) ∈ [0, T ]×DT,d × PD2 , τ ≤ t,

where ∂ν f̃ is the Lions’ derivative (see e.g. [39]).

2.3 Itô-Dupire formula

Suppose that (a, b) is a bounded progressively measurable process on (Ω,F , P ) with
values in Rm ×Rm×d. For any (t, γ) ∈ [0, T ]×DT,d, X is the solution of SDE{

dX(r) = a(r)dr + b(r)dB(r),

Xt = γt, r ≥ t. (2.29)

(Ω′,F ′, P ′) is an atomless probability space with a k-dimensional Brownian motion B′

and (c, d) is a bounded progressively measurable process on (Ω′,F ′, P ′) with values in
Rn ×Rn×k. Given η ∈ (MD

2 )′, let X ′ defined by SDE{
dX ′(r) = c(r)dr + d(r)dB′(r),

X ′t = ηt, r ≥ t. (2.30)

Moreover, let (X̃ ′, c̃, d̃, B̃′, η̃) be an independent copy of (X ′, c, d, B′, η), which means that
(X̃ ′, c̃, d̃, B̃′, η̃) is defined in an independent probability space (Ω̃, F̃ , P̃ ) from (Ω,F , P )

and (Ω′,F ′, P ′), and it has the same law as (X ′, c, d, B′, η). Then we have the following
Itô-Dupire formula.

Theorem 2.12. For any fixed (t, γ, η) ∈ [0, T ] × DT,d × (MD
2 )′, X and X ′ are diffusion

processes defined by (2.29) and (2.30) respectively. Suppose that f ∈ C 1,2,1,1
p (D̂T,d), and

then we have

f(s,X,LX′)− f(t, γ,Lη)

=

∫ s

t

∂rf(r,X,LX′)dr +

∫ s

t

∂ωf(r,X,LX′)dX(r)

+
1

2

∫ s

t

Tr [∂2
ωf(r,Xr,LX′)d〈X〉(r)] + EP̃

′
[

∫ s

t

∂µf(r,X,LX′ , X̃ ′)dX̃ ′(r)] (2.31)

+
1

2
EP̃
′
∫ s

t

Tr [∂ω̃∂µf(r,X,LX′ , X̃ ′)d̃(r)d̃(r)T ]dr, ∀s ≥ t.
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Proof. Without loss of generality, assume d = k = m = n = 1 and s = T . Since both sides
of identity (2.31) depend on (X ′, c, d, η) through its law, we assume that (Ω′,F ′, P ′) is
independent from (Ω,F , P ) for simplicity of notations. Consider the following discretiza-
tion of X and X ′: for any n ≥ 1, take t = t0 < t1 < · · · < tn = T as any partition of [0, T ]

with vanishing modulus δn. Define càdlàg processes Xn, X ′
n with Xn

t = γt, X
′n
t = ηt by

Xn(r) :=

n−1∑
i=0

X(ti)1[ti,ti+1)(r) +X(T )1{T}(r),

X ′
n
(r) :=

n−1∑
i=0

X ′(ti)1[ti,ti+1)(r) +X ′(T )1{T}(r), r ≥ t.

Since (a, b, c, d) is bounded, we see that for any r ∈ [0, T ],

E‖Xn‖pSp ≤ E‖X‖
p
Sp <∞, lim

n→∞
‖Xn

ti −Xr‖ = 0, P -a.s., (2.32)

|||LX′n |||2 = E‖X ′n‖2S2 ≤ E‖X ′‖2S2 <∞, lim
n→∞

‖X ′nti −X
′
r‖ = 0, P ′-a.s., (2.33)

where i above satisfies r ∈ [ti, ti+1). It follows from (2.33) that

lim
n→∞

W2(LX′nti ,LX′r ) = 0. (2.34)

Then we have

f(T,Xn
T ,LX′nT )− f(t, γt,Lηt)

=

n−1∑
i=0

[f(ti+1, X
n
ti+1

,L(X′n)ti+1
)− f(ti, X

n
ti ,L(X′n)ti

)]

=

n−1∑
i=0

[
(f(ti+1, X

n
ti ,LX′nti )− f(ti, X

n
ti ,LX′nti )) + (f(ti+1, X

n
ti+1

,LX′nti )

− f(ti+1, X
n
ti ,LX′nti )) + (f(ti+1, X

n
ti+1

,LX′nti+1
)− f(ti+1, X

n
ti+1

,LX′nti ))
]
.

(2.35)

Since

f(ti+1, X
n
ti ,LX′nti )− f(ti, X

n
ti ,LX′nti ) =

∫ ti+1

ti

∂rf(r,Xn
ti ,LX′nti )dr

=

∫ T

t

∂rf(r,Xn
ti ,LX′nti )1[ti,ti+1)(r)dr,

(2.36)

in view of inequalities (2.32) and (2.34), applying the dominated convergence theorem
and passing to the limit for a subsequence, we have

lim
n→∞

n−1∑
i=0

(
f(ti+1, X

n
ti ,LX′nti )− f(ti, X

n
ti ,LX′nti )

)
=

∫ T

t

∂rf(r,X,LX′)dr, P -a.s.. (2.37)

For the second term on the right hand side of (2.35), since f ∈ C 1,2,1,1
p , we have

that φi(θ) := f(ti+1, X
n
ti + θ1[ti+1,T ),LX′nti ) is twice continuously differentiable in θ, and

moreover,

φ′i(θ) = ∂ωf(ti+1, X
n
ti + θ1[ti+1,T ),LX′nti ), φ′′i (θ) = ∂2

ωf(ti+1, X
n
ti + θ1[ti+1,T ),LX′nti ). (2.38)

In the following, we will write Xi := X(ti) ≡ Xn(ti) and δXi := Xi+1 − Xi. Similar
notations such as X ′i are self-explained. Note that Xn

ti+1
= Xn

ti + (Xi+1 − Xi)1[ti+1,T ).
Using the Itô formula to φ(X(r)−Xi) on r ∈ [ti, ti+1], we have

f(ti+1, X
n
ti+1

,LX′nti )− f(ti+1, X
n
ti ,LX′nti )
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=

∫ ti+1

ti

∂ωf(ti+1, X
n
ti + (X(r)−Xi)1[ti+1,T ),LX′nti )dX(r) (2.39)

+
1

2

∫ ti+1

ti

∂2
ωf(ti+1, X

n
ti + (X(r)−Xi)1[ti+1,T ],LX′nti )d〈X〉(r).

Since ‖Xn
ti + (X(r) − Xi)1[ti+1,T ] − Xr‖ → 0, P -a.s. for any r ∈ [ti, ti+1), we have the

following P -a.s. convergence under the sup norm

n−1∑
i=0

∂ωf(ti+1, X
n
ti + (X(r)−Xi)1[ti+1,T ],LX′nti )1[ti,ti+1)(r)→ ∂ωf(r,X,LX),

n−1∑
i=0

∂2
ωf(ti+1, X

n
ti + (X(r)−Xi)1[ti+1,T ],LX′nti )1[ti,ti+1)(r)→ ∂2

ωf(r,X,LX),

which implies P -a.s.∫ T

t

|
n−1∑
i=0

∂ωf(ti+1, X
n
ti + (X(r)−Xi)1[ti+1,T ],LX′nti )1[ti,ti+1)(r)− ∂ωf(r,X,LX)|2dr → 0,

∫ T

t

|
n−1∑
i=0

∂2
ωf(ti+1, X

n
ti + (X(r)−Xi)1[ti+1,T ],LX′nti )1[ti,ti+1)(r)− ∂2

ωf(r,X,LX)|dr → 0.

In view of the above convergence and identity (2.39), passing to the limit in a subse-
quence, we have

lim
n→∞

n−1∑
i=0

(
f(ti+1, X

n
ti+1

,LX′nti )− f(ti+1, X
n
ti ,LX′nti )

)
=

∫ T

t

∂ωf(r,X,LX′)dX(r) +
1

2

∫ T

t

∂2
ωf(r,X,LX′)d〈X〉(r), P -a.s..

(2.40)

For the last term in the decomposition (2.35), we have

f(ti+1, X
n
ti+1

,LX′nti+1
)− f(ti+1, X

n
ti+1

,LX′nti )

=

∫ 1

0

E′
[
∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti + θ(δX ′i)1[ti+1,T ))(δX

′
i)
]
dθ

=

∫ 1

0

E′
[
∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti )(δX ′i)

]
dθ

+

∫ 1

0

∫ 1

0

E′
[
∂ω̃∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti +λθ(δX ′i)1[ti+1,T ))θ(δX

′
i)

2
]
dθdλ.

Since ‖X ′nti + θ(δX ′i)1[ti+1,T ) −X ′r‖ → 0, P ′-a.s. for any r ∈ [0, T ] with r ∈ [ti, ti+1], we
have

lim
n→∞

W2(LX′nti +θ(δX′i)1[ti+1,T )
,LX′r ) = 0.

In view of (2.32), (2.34) and the dominated convergence theorem, we have

lim
n→∞

n−1∑
i=0

∫ 1

0

[
∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti )(δX ′i)

]
dθ

=

∫ T

t

∂µf(r,Xγt ,LX′ , X ′)dX ′(r), P × P ′-a.s..
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Then, according to Fubini’s theorem, we have

lim
n→∞

n−1∑
i=0

E′
∫ 1

0

[
∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti )(δX ′i)

]
dθ

= E′[

∫ T

t

∂µf(r,X,LX′ , X ′)dX ′(r)], P -a.s..

(2.41)

By a similar argument as above, we have

lim
n→∞

∫ 1

0

∫ 1

0

E′
[
∂ω̃∂µf(ti+1, X

n
ti+1

,LX′nti +θ(δX′i)1[ti+1,T )
, X ′nti + λθ(δX ′i)1[ti+1,T ))θ(δX

′
i)

2
]
dθdλ

= E′[

∫ T

t

∂ω̃∂µf(r,X,LX′ , X ′)dr], P -a.s..

(2.42)

In view of (2.37), (2.40), (2.41) and (2.42), taking n→∞ in (2.35), we obtain the desired
identity.

Note that (ωs)τ = ωs and (µs)τ = µs for any τ ≥ s. In particular, if the non-anticipative
functional f is strongly vertically differentiable, we have the following partial Itô-Dupire
formula.

Corollary 2.13. Suppose that (X,X ′) is defined as in Theorem 2.12 and f ∈ C 0,2,1,1
s,p (D̂T,d).

Then we have that for any t ≤ s ≤ v ≤ T ,

f(v,Xs,LX′s)− f(v, γt,Lηt)

=

∫ s

t

∂ωrf(v,Xr,LX′r )dX(r) +
1

2

∫ s

t

Tr [∂2
ωrf(v,Xr,LX′r )d〈X〉(r)]

+ EP̃
′
[

∫ s

t

∂µrf(v,Xr,LX′ , X̃ ′)dX̃ ′(r)]

+
1

2
EP̃
′
∫ s

t

Tr [∂ω̃r∂µrf(v,Xr,LX′r , X̃
′
r)d̃(r)d̃(r)T ]dr.

Proof. Without loss of generality, assume v = T . For any r ∈ [t, s], let

f̃(r, ω, µ) := f(T, ωr, µr). (2.42)

Obviously, f̃ is non-anticipative, and moreover, we have that for any h ≥ 0,

f̃(r + h, ωr, µr) = f(T, (ωr)r+h, (µr)r+h) = f(T, ωr, µr) = f̃(r, ωr, µr),

which implies ∂rf̃(r, ωr, µr) = 0. Furthermore, it follows from definitions of vertical
derivatives and strongly vertical derivatives that

∂ω f̃(r, ω, µ) = ∂ωrf(T, ωr, µr), ∂2
ω f̃(r, ω, µ) = ∂2

ωrf(T, ωr, µr),

∂µf̃(r, ω, µ, ω̃) = ∂µrf(T, ωr, µr, ω̃), and ∂ω̃∂µf̃(r, ω, µ, ω̃) = ∂ω̃r∂µrf(T, ωr, µr, ω̃r).

Applying Theorem 2.12 to f̃(r,X,LX′) on r ∈ [t, s], and we obtain the desired formula.

3 Solution of semilinear path-dependent master equations

In this section we show the well-posedness of (1.2), during which we will exploit the
regularity of corresponding FBSDEs (see Section 4.2). We leave the detailed proof of
such regularity in Section 4.

EJP 29 (2024), paper 90.
Page 14/55

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1153
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Path-dependent mean-field PDE

To build smooth solutions to path-dependent mean-field PDE

∂tu(t, γ, µ) + 1
2Tr

[
∂2
ωu(t, γ, µ)σ1(γt)σ1(γt)

T
]

+ ∂ωu(t, γ, µ)b1(γt)

+ 1
2Tr

[
EP [∂ω̃∂µu(t, γ, µ, η)]σ2(µt)σ2(µt)

T
]

+ EP [∂µu(t, γ, µ, η)]b2(µt)

+f(t, γ, u(t, γ, µ), σ1(γt)∂ωu(t, γ, µ), µ,Lu(t,η,µ)) = 0,

u(T, γ, µ) = Φ(γT , µT ), (t, γ, µ) ∈ [0, T ]× CT,d × PC2 ,

(3.1)

we firstly need to study the case when (b1, σ1) = (b2, σ2) = (0, I). In the following, we
usually write f(ωt, µt) := f(t, ω, µ) for simplicity when f is non-anticipative.
To consider the regularity of terminal functional Φ. Let product spaces [0, T ]×DT,d×PD2
and [0, T ]×DT,d ×PD2 ×DT,d be equipped with the following metrics respectively: for
any x := (τ, ω, µ, ω̃), x′ := (τ ′, ω′, µ′, ω̃′) ∈ [0, T ]×DT,d × PD2 ×DT,d,

dT,sv((τ, ω, µ), (τ ′, ω′, µ′)) := |τ − τ ′|+ ‖ωT − ω′T ‖+W2(µT , µ
′
T ),

dT,sm(x,x′) := |τ − τ ′|+ ‖ωT − ω′T ‖+W2(µT , µ
′
T ) + ‖ω̃T − ω̃′T ‖.

(3.2)

Definition 3.1. We write Φ ∈ CT (D̂T,d) (or CT if no confusion raised) if Φ : DT,d ×PD2 7→
R is continuous on DT,d × PD2 . Furthermore, we write

(i) Φ ∈ CT,lip if it is uniformly Lipschitz continuous on DT,d × PD2 :

|Φ(ωT , µT )−Φ(ω′T , µ
′
T )| ≤ C(‖ωT −ω′T ‖+W2(µT , µ

′
T )), ∀(ω, µ), (ω′, µ′) ∈ DT,d×PD2 ,

for some constant C ≥ 0;

(ii) Φ ∈ C 1,1
T,lip if Φ ∈ CT,lip and its SVDs ∂ωτΦ and ∂µτΦ is continuous under the metric

introduced in (3.2) respectively. Moreover, SVDs are uniformly Lipschitz continuous
with respect to τ ∈ [0, T ] in (ω, µ) ∈ DT,d × PD2 and (ω, µ, ω̃) ∈ DT,d × PD2 × DT,d,
respectively;

(iii) Φ ∈ C 2,1,1
T,lip if Φ ∈ C 1,1

T,lip and for any (τ, ω, µ, ω̃) ∈ D̂T,d×DT,d, its SVDs ∂ωτΦ(·, µT ) and
∂µτΦ(ωT , µT , ·) are continuously strongly vertically differentiable at (τ, T, ω) and
(τ, T, ω̃) under the metric dT,sv and dT,sm, respectively. Moreover, all second-order
derivatives are uniformly Lipschitz continuous with respect to the time parameter.

To obtain the classical solution to (3.1) with (b1, σ1) = (b2, σ2) = (0, I), we introduce the
following increasingly stringent assumptions.

(H0) (i) The functional Φ ∈ CT,lip(D̂T,d); (ii) f is a non-anticipative continuous function
on [0, T ]×DT,d ×R×Rd × PD2 × P2(R), and for any (t, ω, µ) ∈ [0, T ]×DT,d × PD2 ,
f(t, ω, ·, ·, µ, ·) is continuously differentiable on R×Rd × P2(R). Moreover, for any
t ∈ [0, T ], f(t, ·, ·, ·, ·, ·) and ∂νf(t, ·, ·, ·, ·, ·, ·) are uniformly Lipschitz continuous.

(H1) (i) The functional Φ ∈ C 1,1
T,lip(D̂T,d); (ii) f is a non-anticipative continuous function

on [0, T ]×DT,d ×R×Rd × PD2 × P2(R), and for any (t, ω, µ) ∈ [0, T ]×DT,d × PD2 ,
f(t, ω, ·, ·, µ, ·) is differentiable on R×Rd×P2(R) with bounded derivatives. For any
(y, z, ν) ∈ R×Rd×P2(R), f(t, ω, y, z, ·, ν) is strongly vertically differentiable at µt and
f(t, ·, y, z, µ, ν) is strongly vertically differentiable at ωt. Moreover, ∂(y,z,ν,ωτ ,µτ )f is
continuous, and for any τ ≤ t, (I, ∂(y,z,ν,ωτ ,µτ ))f(t, ·) is uniformly Lipschitz continu-
ous.

(H2) (i) Φ ∈ C 2,1,1
T,lip (D̂T,d); (ii) f : [0, T ] × DT,d × R × Rd × PD2 × P2(R) 7→ R satis-

fies Assumption (H1)(ii). Moreover, for any (t, ω, y, z, µ, ν) ∈ [0, T ] × DT,d × R ×
Rd × PD2 × P2(R), (∂yf(t, ω, ·, ·, µ, ν), ∂zf(t, ω, ·, ·, µ, ν)) is differentiable on R×Rd;
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(∂yf(t, ·, y, z, µ, ν), ∂zf(t, ·, y, z, µ, ν)) is strongly vertically differentiable at (t, ω); for
any τ ≤ t, ∂ωτ f(t, ·, y, z, µ, ν) is differentiable at (τ, t, ω); ∂νf(t, ω, y, z, µ, ν, ·) is differ-
entiable on R; for any ω̃ ∈ DT,d, ∂µτ f(t, ω, y, z, µ, ν, ·) is differentiable at (τ, t, ω̃). All
second order derivatives are continuous and (∂2

y , ∂y∂z, ∂
2
z , ∂

2
ωτ , ∂ỹ∂ν , ∂ω̃τ∂µτ )f(t, ·) is

uniformly Lipschitz continuous.

3.1 The decoupling field and its regularity

Assume that (H2) holds for (Φ, f). Recall for any γ, ω ∈ DT,d, ωγt ∈ DT,d with

ωγt(·) := γt(·) + (ω(·)− ω(t))1[t,T ](·). (3.3)

For any (t, γ, µ) ∈ D̂T,d, let Y γt,ηt solve the path-dependent BSDE

Y γt,ηt(s) = Φ(BγtT ,LBηtT ) +

∫ T

s

f(Bγtr , Y
γt,ηt(r), Zγt,ηt(r),LBηtr ,LY ηt (r))dr

−
∫ T

s

Zγt,ηt(r)dB(r), s ∈ [t, T ],

(3.4)

where Y ηt is the unique solution of the mean-field BSDE

Y ηt(s) = Φ(BηtT ,LBηtT ) +

∫ T

s

f(Bηtr , Y
ηt(r), Zηt(r),LBηtr ,LY ηt (r))dr

−
∫ T

s

Zηt(r)dB(r), s ∈ [t, T ].

(3.5)

According to Lemma 4.3 and Remark 4.4, we know that Y γt,ηt(t) = Y γt,Lηt (t). For any
(t, γ, µ) ∈ D̂T,d with µ = Lη, define the decoupling field

u(t, γ, µ) := Y γt,Lηt (t). (3.6)

By the well-posedness of (3.4) and (3.5), we see that u ∈ D and it is non-anticipative. On
the other hand, for any v ≥ t, (ω, y, z) ∈ DT,d ×R×Rd, denote

Φ̂µt(ωT ) := Φ(ωT ,LBηtT ), f̂µt(v, ω, y, z) := f(v, ω, y, z,LBηtv ,LY ηt (v)). (3.7)

Let Ŷ γv,Lηt is the unique solution of the following (path-dependent) BSDE: for s ≥ v,

Ŷ γv,ηt(s) = Φ̂µt(B
γv
T ) +

∫ T

s

f̂µt(r,B
γv
r , Ŷ γv,ηt(r), Ẑγv,ηt(r))dr −

∫ T

s

Ẑγv,ηt(r)dB(r). (3.8)

According to Remark 4.5 and [46, Theorem 3.9], there exists a non-anticipative mapping
ûµt : [v, T ]×DT,d 7→ R, such that for any s ≥ v,

ûµt(s,B
γv ) = Ŷ γv,µt(s), ∂γv ûµt(s,B

γv ) = Ẑγv,µt(s). (3.9)

Moreover, ûµt is the classical solution of the following semilinear PPDE{
∂vûµt(v, γ) + 1

2Tr [∂2
ωv ûµt(v, γ)] + f̂µt(v, γ, ûµt(v, γ), ∂ωv ûµt(v, γ)) = 0,

ûµt(T, γ) = Φ̂(γ), v ≥ t.
(3.10)

Indeed, denote η̂ := Bηt , and we have

ûµt(v, γ) = Y γv,η̂v (v). (3.11)

Concerning the relation among Y γt,ηt , u(t, γ, µ) and ûµt(v, γ), we have
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Proposition 3.2. Assume that (H2) holds for (Φ, f). For any (t, γ, µ) ∈ D̂T,d and s ≥ t,

u(t, γ, µ) = ûµt(t, γ), (3.12)

u(s, ωγts ,LBηts ) = ûµt(s, ω
γt
s ), ∀ω ∈ CT,d, (3.13)

u(s,Bηts ,LBηts ) = Y ηt(s). (3.14)

Proof. The first identity follows immediately from (3.6) and (3.9). By the uniqueness of
BSDE (3.5), we see that for any t ≤ v ≤ s,

(B
Bηtv
s , Y B

ηt
v (s)) = (Bηts , Y

ηt(s)), (3.15)

and in particular
L

(B
B
ηt
v

s ,Y B
ηt
v (s))

= L(B
ηt
s ,Y ηt (s)). (3.16)

Then in view of the uniqueness of solutions of BSDE (3.8) and definition (3.9), we have

ûµt(s,B
γt
s ) = ûL

B
ηt
v

(s,Bγts ). (3.17)

In particular if v = s, ûµt(s,B
γt
s ) = ûL

B
ηt
s

(s,Bγts ). On the other hand, by relation (3.12),
we have

ûL
B
ηt
s

(s,Bγts ) = u(s,Bγts ,LBηts ), (3.18)

and thus (3.13) in view of the continuity of u(t, ω, µ) in ω ∈ CT,d (see Lemma 4.3) and the
support theorem for diffusion processes. Finally, since

Y ηt(s) = Y γt,ηt(s)|γ=η = ûµt(s,B
γt
s )|γ=η = ûµt(s,B

ηt
s ), (3.19)

identity (3.14) follows from (3.13).

To show that u given by (3.6) provide a smooth solution to the path-dependent mean-
field PDE, we need the following regularity of u, which is a result of regularity of
corresponding BSDEs proved in Section 4.

Proposition 3.3. Suppose that (f,Φ) satisfies Assumption (H2). The decoupling field u
given by (3.6) belongs to C 0,2,1,1

s,p (D̂T,d).

Proof. According to Lemma 4.3, u(t, γ, µ) = Y γt,ηt(t) satisfies the polynomial growth
condition in the sense of (2.28). To prove that u ∈ Cp, we only need to show its continuity
in (t, γ, µ) ∈ D̂T,d. For any (t, γ, µ), (t′, γ′, µ′) ∈ D̂T,d, without loss of generality, assume
t ≥ t′. We have

|u(t, γ, µ)− u(t′, γ′, µ′)| = |Y γt,ηt(t)− Y γ
′
t′ ,η
′
t′ (t′)|

≤ E|Y γt,ηt(t)− Y γ
′
t′ ,η
′
t′ (t)|+ E|Y γ

′
t′ ,η
′
t′ (t)− Y γ

′
t′ ,η
′
t′ (t′)|

≤ E|Y γt,ηt(t)− Y γ
′
t′ ,η
′
t′ (t)|

+ E|
∫ t

t′
f(Θ

γ′
t′ ,η
′
t′

r ,L
Θ
η′
t′
r

)dr −
∫ t

t′
Z ′(r)dB(r)|

≤ E|Y γt,ηt(t)− Y γ
′
t′ ,η
′
t′ (t)|+ C(1 + ‖γt‖+ ‖ηt‖S2)(t− t′) 1

2 .

(3.20)

It remains to prove E|Y γt,ηt(t)−Y γ′t′ ,η′t′ (t)| → 0 as (t, γ, µ)→ (t′, γ′, µ′). Set Y ′ := Y γ
′
t′ ,η
′
t′ ,

Y := Y γt,ηt , and (δY, δZ) := (Y − Y ′, Z − Z ′), and omit subscripts t and t′. Then (δY, δZ)

is the unique solution of BSDE

δY (s) = Φ(Bγ ,LBη )− Φ(Bγ
′
,LBη′ ) +

∫ T

s

[f(Θγ,η
r ,LΘηr )− f(Θγ′,η′

r ,L
Θη
′
r

)]dr
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−
∫ T

s

δZ(r)dB(r)

=: δΦ +

∫ T

s

(
arδY (r) + brδZ(r) + Ẽ[c̃rδỸ (r)] + δhr

)
dr −

∫ T

s

δZ(r)dB(r),

where

ar :=

∫ 1

0

∂yf(Bγr , Y
′ + θ(Y − Y ′), Z,LΘηr )dθ,

br :=

∫ 1

0

∂zf(Bγr , Y
′, Z + θ(Z − Z ′),LΘηr )dθ,

c̃r :=

∫ 1

0

∂νf(Bγr , Y
′, Z ′,LBηr ,LY η′+θ(Y η−Y η′ ), Ỹ

η′ + θ(Ỹ η − Ỹ η
′
))dθ, and

δhr := f(Bγr , Y
′, Z ′,LBηr ,LY η′ )− f(Bγ

′

r , Y
′, Z ′,L

Bη
′
r
,LY η′ ).

Applying Lemma 4.1 to the above BSDE, we have

‖(δY, δZ)‖2S2×H2 ≤ C(‖δΦ‖2L2 + ‖
∫ T

t

|δhr|dr‖2L2)

≤ C(‖‖Bγ −Bγ
′
‖‖2L2 +W2(LBη ,LBη′ )

2)

≤ C(‖γt − γ′t′‖2 +W2(µt, µ
′
t′)

2 + (t− t′)),

where C depends on |||µt|||+ |||µ′t′ |||, ‖γt‖ and ‖γ′t′‖, and thus the continuity of u in view
of (3.20).
Since u(t, γ, µ) = Y γt,ηt(t) = ûµt(t, γ), according to Proposition 4.6, we see that for
any τ ≤ t, u(t, γ, µ) is twice strongly vertically differentiable at (τ, t, γ), and moreover,
∂ωτu(t, γ, µ) = ∂ωτY

γt,ηt(t) satisfies the polynomial growth condition. To show u(t, γ, µ) ∈
C 0,1,0
s,p , we only need to prove that ∂γτu(t, γ, µ) is continuous at any (τ, t, γ, µ). Indeed,

for any (τ, t, γ, µ) and (τ ′, t′, γ′, µ′) with τ ≤ t, τ ′ ≤ t′, denote solutions of equation (4.24)
corresponding to parameters (τ, t, γ, µ) and (τ ′, t′, γ′, µ′) by

(Y,Z) := (∂ωτY
γt,ηt , ∂ωτZ

γt,ηt), (Y ′,Z ′) := (∂ωτ′Y
γ′
t′ ,η
′
t′ , ∂ωτ′Z

γ′
t′ ,η
′
t′ ). (3.21)

Without loss of generality, let t ≥ t′. By inserting the term Y ′(t) and applying Proposi-
tion 4.6, we have

|∂ωτu(t, γ, µ)− ∂ωτ′u(t′, γ′, µ′)|

= |∂ωτY γt,ηt(t)− ∂ωτ′Y
γ′
t′ ,η
′
t′ (t′)|

≤ E|∂ωτY γt,ηt(t)− ∂ωτ′Y
γ′
t′ ,η
′
t′ (t)|+ E|∂ωτ′Y

γ′
t′ ,η
′
t′ (t)− ∂ωτ′Y

γ′
t′ ,η
′
t′ (t′)|

≤ E|∂ωτY γt,ηt(t)− ∂ωτ′Y
γ′
t′ ,η
′
t′ (t)|+ C(t− t′) 1

2 .

Set (δY, δZ) := (Y − Y ′,Z − Z ′). We see that (δY, δZ) is the unique solution of the
following BSDE

δY(s) = [∂ωτΦ− ∂ωτ′Φ
′] +

∫ T

s

[∂ωτ f − ∂ωτ′ f
′]dr +

∫ T

s

∂yfδY(r)dr

+

∫ T

s

(∂yf − ∂yf ′)Y ′(r)dr +

∫ T

s

(∂zf)T δZ(r)dr +

∫ T

s

(∂zf − ∂zf ′)TZ ′(r)dr

−
∫ T

s

δZdB(r),
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Path-dependent mean-field PDE

where

∂ωτΦ := ∂ωτΦ(Bγt ,LBηt ), ∂ωτ′Φ
′ := ∂ωτ′Φ(Bγ

′
t′ ,L

B
η′
t′

),

∂(ωτ ,y,z)f := ∂(ωτ ,y,z)f(Θγt,ηt ,LΘηt ), and ∂(ωτ′ ,y,z)
f ′ := ∂(ωτ′ ,y,z)

f(Θγ′
t′ ,η
′
t′ ,L

Θ
η′
t′

).

In view of estimates in Lemma 4.1 and Proposition 4.6, using Cauchy inequality, we have

|Y(t)− Y ′(t)|2 ≤
[
‖∂ωτΦ− ∂ωτ′Φ

′‖2L2 + ‖
∫ T

t

[∂ωτ f − ∂ωτ′ f
′]dr‖2L2

+ ‖
∫ T

t

[∂yf − ∂yf ′]Y ′dr‖2L2 + ‖
∫ T

t

[∂zf − ∂zf ′]Z ′dr‖2L2

]
≤
[
‖∂ωτΦ− ∂ωτ′Φ

′‖2L2 + E[

∫ T

t

|∂ωτ f − ∂ωτ′ f
′|2dr]

+ E[

∫ T

t

|∂yf − ∂yf ′|4dr] + E[

∫ T

t

|∂zf − ∂zf ′|4dr]
]
.

Then the desired continuity follows from that of (∂ωτΦ, ∂(ωτ ,y,z)f) and the bounded
convergence theorem. Similarly, we have ∂ωτu ∈ C 0,1,0

s,p and therefore u ∈ C 0,2,0
s,p .

For the differentiability with respect to the measure variable, according to Lemmas 4.10
and 4.18, we have that for any x ∈ DT,d,

∂µτu(t, γ, µ, x) = ∂µτY
γt,µt,xt(t), ∂ω̃τ∂µτu(t, γ, µ, x) = ∂ω̃τ∂µτY

γt,µt,xt(t). (3.22)

Here, ∂µτY
γt,µt,xt solves BSDE (4.67) and ∂ω̃τ∂µτY

γt,µt,xt solves BSDE (4.80). Following
a similar argument as above, we see that u(t, γ, µ) ∈ C 0,2,1,1

s,p .

3.2 Solution of BSDEs as solution of path-dependent mean-field PDEs

In this subsection we consider well-posedness of the path-dependent mean-field PDE
∂tu(t, γ, µ) + 1

2Tr
[
∂2
ωu(t, γ, µ)

]
+ 1

2Tr
[∫
CT,d

∂ω̃∂µu(t, γ, µ, ω̃)µ(dω̃)
]

+f(t, γ, u(t, γ, µ), ∂ωu(t, γ, µ), µ,Lu(t,Wµ,µ)) = 0,

u(T, γ, µ) = Φ(γT , µT ), (t, γ, µ) ∈ [0, T ]× CT,d × PC2 ,

(3.23)

where we recall that Wµ is the canonical process under µ. In applications, (γ, µ)

takes values in CT,d × PC2 . Thus we need to give a description of equation (3.23)
restricted on CT,d × PC2 . Denote by ĈT,d the product space [0, T ] × CT,d × PC2 , and
for a n × n matrix A, we write Sym(A) := 1

2 (A + AT ). For any f ∈ D , we write
(∂ωτ , ∂

2
ωτ , ∂µτ , ∂ω̃τ∂µτ )f := (∂ωτ f, ∂

2
ωτ f, ∂µτ f, ∂ω̃τ∂µτ f) if the right hand side exists.

Definition 3.4. Denote by C 1,2,1,1
s,p (ĈT,d) the set of functionals f : ĈT,d 7→ R such that

there exists an extension F ∈ C 1,2,1,1
s,p (D̂T,d) with f = F on ĈT,d. In this case, for any

(t, ω, µ, ω̃) ∈ ĈT,d × CT,d and τ ≤ t, we write

∂tf(t, ω, µ) := ∂tF (t, ω, µ), (∂ωτ , ∂
2
ωτ )f(t, ωτ , µ) := (∂ωτ , ∂

2
ωτ )F (t, ωτ , µ),

and (∂µτ , ∂ω̃τ∂µτ )f(t, ω, µτ , ω̃τ ) := (∂µτ , ∂ω̃τ∂µτ )F (t, ω, µτ , ω̃τ ).
(3.24)

Notations such as C 1,2,1,1(ĈT,d),C 1,2,1,1
p (ĈT,d) and C 0,2,1,1

s,p (ĈT,d) are defined in a similar
way.

In view of Itô-Dupire formulas given in Theorem 2.12 and Corollary 2.13, we have

Corollary 3.5. For any (t, γ, µ, η) ∈ ĈT,d ×MC
2 , X and X ′ are diffusion processes given

by (2.29) and (2.30) respectively.
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Path-dependent mean-field PDE

(i) Suppose that f ∈ C 1,2,1,1
s (ĈT,d) (C 1,2,1,1(ĈT,d), resp.). For any (τ, ω̃) ∈ [0, t]× CT,d,

derivatives ∂tf(t, ω, µ), (∂ωτ , ∂
2
ωτ )f(t, ωτ , µ), ∂µτ f(t, ω, µτ , ω̃τ ), and Sym(∂ω̃τ∂µτ f(t,

ω, µτ , ω̃τ )), (∂tf, (∂ω, ∂
2
ω)f, ∂µf, and Sym(∂ω̃∂µf), resp.) defined as in (3.24) do not

depend on the choice of the extended functional.

(ii) Suppose that f ∈ C 1,2,1,1
p (ĈT,d). For any s ≥ t, we have

f(s,X,LX′)− f(t, γ,Lη)

=

∫ s

t

∂rf(r,X,LX′)dr +

∫ s

t

∂ωf(r,X,LX′)dX(r)

+
1

2

∫ s

t

Tr [∂2
ωf(r,X,LX′)d〈X〉(r)] + EP̃

′
[

∫ s

t

∂µf(r,X,LX′ , X̃ ′)dX̃ ′(r)]

+
1

2
EP̃
′
∫ s

t

Tr [∂ω̃∂µf(r,X,LX′ , X̃ ′)d̃(r)d̃(r)T ]dr.

(3.25)

(iii) Suppose that f ∈ C 0,2,1,1
s,p (ĈT,d). For any t ≤ s ≤ s′, we have the partial Itô-Dupire

formula

f(s′, Xs,LX′s)− f(s′, γt,Lηt)

=

∫ s

t

∂ωrf(s′, Xr,LX′r )dX(r)

+
1

2

∫ s

t

Tr [∂2
ωrf(s′, Xr,LX′r )d〈X〉(r)] + EP̃

′
[

∫ s

t

∂µrf(s′, Xr,LX′r , X̃
′
r)dX̃

′(r)]

+
1

2
EP̃
′
∫ s

t

Tr [∂ω̃r∂µrf(s′, Xr,LX′r , X̃
′
r)d̃(r)d̃(r)T ]dr.

(3.26)

Proof. Since for any n × n matrix A and symmetric n × n matrix B, Tr[AB] depends
only on Sym (A), (ii) and (iii) follow from (i), Theorem 2.12 and Corollary 2.13 directly.
To end the proof, we only need to show (i). Indeed, the uniqueness of ∂tf(t, γ, µ)

follows from its definition. For the uniqueness of (∂γτ , ∂
2
γτ )f(t, γτ , µ), without loss of

generality, assume τ = t. Otherwise consider the non-anticipative path-dependent
function f̃µt(τ, γ) := f(t, γτ , µ) instead of f(t, γτ , µ). For any (γ, µ) ∈ CT,d × PC2 , take
c(·) = d(·) = 0 in equation (2.30) for X ′ and a = 0 in equation (2.29) for X. For any
extension F of f , applying Itô formula (2.31) to F (s,X,Lηt) on s ∈ [t, T ], we have

f(T,X,Lηt)− f(t, γt,Lηt) =

∫ T

t

∂rf(r,X,Lηt)dr +

∫ T

t

∂ωrF (r,X,Lηt)b(r)dB(r)

+
1

2

∫ T

t

Tr [∂2
ωrF (r,X,Lηt)b(r)b(r)T ]dr.

(3.27)

In view of identity (3.27) and the Doob-Meyer theorem for semimartingales, we obtain
the uniqueness of ∂ωtF (t, γt, µt) and Sym(∂2

ωtF (t, γt, µt)). For the uniqueness of ∂µτ f and
Sym(∂ω̃τ∂µτ f), again we assume τ = t. Otherwise consider f̄ωt(τ, µ) = f(t, ω, µτ ), and
then by definition

∂µτ f(t, ω, µτ , ω̃τ ) = ∂µτ f̄ωt(τ, µ, ω̃), Sym(∂ω̃τ∂µτ f(t, ω, µτ , ω̃τ )) = Sym(∂ω̃τ∂µτ f̄ωt(τ, µ, ω̃)).

Then the uniqueness of ∂µf and Sym(∂ω̃∂µf) follows from [55, Theorem 2.9].

Remark 3.6. The uniqueness of ∂ω̃∂µf can be proved via a similar argument as above
from the uniqueness of ∂µf under a stronger assumption on the regularity of f . How-
ever, our Itô-Dupire formulas and analysis below only depend on Sym(∂ω̃∂µf). Indeed,
equation (3.23) also only depends on Sym(∂ω̃∂µu) instead of ∂ω̃∂µu.
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For the case (γ, µ) ∈ CT,d × PC2 , we assume

(A2) Φ : CT,d × PC2 7→ R such that there exists Φ′ satisfying (H2)(i) and Φ = Φ′ on
CT,d × PC2 . f : [0, T ]× CT,d ×R×Rd × PC2 × P2(R) 7→ R such that there exists f ′

satisfying (H2)(ii) and f = f ′ on [0, T ]× CT,d ×R×Rd × PC2 × P2(R).

A functional u ∈ C 1,2,1,1
p (ĈT,d) is called a classical solution to equation (3.23) if it

satisfies equation (3.23). The following theorem states the uniqueness of solutions for
equation (3.23).

Theorem 3.7. Suppose that u1 and u2 are two classical solutions to the path-dependent
master equation (3.23). Then u1 = u2.

Proof. Apply Itô formula (3.25) to ui(r,Bγt ,LB̃η̃t ) on r ∈ [t, s], i = 1, 2, and we obtain that

dui(r,B
γt ,LB̃η̃t ) = ∂rui(r,B

γt ,LB̃η̃t )dr + ∂ωui(r,B
γt ,LB̃η̃t )dB(r)

+
1

2
Tr[∂2

ωui(r,B
γt ,LB̃η̃t )]dr

+
1

2
Ẽ
[
Tr[∂ω̃∂µui(r,B

γt ,LB̃η̃t , B̃
η̃t)dr]

]
.

In view of equation (3.23), we have

dui(r,B
γt ,LB̃η̃t ) = − f(r,Bγt , ui(r,B

γt ,LB̃η̃t ), ∂ωui(r,B
γt ,LB̃η̃t ),LB̃η̃t ,Lui(r,Bηt ,LB̃η̃t ))dr

+ ∂ωui(r,B
γt ,LB̃η̃t )dB(r).

Then processes (Y γt,ηt , Zγt,ηt) and (Y ηt , Zηt) given by

(Y γt,ηt(s), Zγt,ηt(s)) := (ui(s,B
γt ,LB̃η̃t ), ∂ωui(s,B

γt ,LB̃η̃t )), and

(Y ηt(s), Zηt(s)) := (ui(s,B
ηt ,LB̃η̃t ), ∂ωui(s,B

ηt ,LB̃η̃t )), s ≥ t,

define solutions to equations (3.4) and (3.5), respectively. By the uniqueness of solutions
for BSDEs (3.4) and (3.5), our conclusion follows.

Now we show the existence of a classical solution to (3.23) via FBSDEs.

Theorem 3.8. Suppose that (f,Φ) satisfies Assumption (A2) and u is given by (3.6).
Then u restricted on ĈT,d is a classical solution of (3.23).

Proof. In view of Proposition 3.3, we have u ∈ C 0,2,1,1,
s,p (ĈT,d). For any (t, γ, µ) ∈ ĈT,d and

h > 0,

u(t+ h, γt, µt)− u(t, γ, µ)

= u(t+ h, γt, µt)− E [u(t+ h,Bγt ,LBηt )] + E [u(t+ h,Bγt ,LBηt )]− u(t, γ, µ).
(3.28)

Applying partial Itô formula (3.26) to u(t+ h,Bγtr ,LBηtr ) on r ∈ [t, t+ h], we have

u(t+ h, γt, µt)− u(t+ h,Bγt ,LBηt )

= −
∫ t+h

t

∂ωru(t+ h,Bγtr ,LBηtr )dB(r)− 1

2

∫ t+h

t

Tr [∂2
ωru(t+ h,Bγtr ,LBηtr )]dr

− 1

2
Ẽ

∫ t+h

t

Tr [∂ω̃r∂µru(t+ h,Bγtr ,LBηtr , B̃
η̃t
r )]dr.

(3.29)

On the other hand, in view of identities (3.13), (3.9), and BSDE (3.4)

u(t+ h,Bγt ,LBηt )− u(t, γ, µ) = Y γt,ηt(t+ h)− Y γt,ηt(t)

= −
∫ t+h

t

f(r,Bγt , Y γt,ηt , Zγt,ηt ,LBηt ,LY ηt )dr +

∫ t+h

t

Zγt,ηt(r)dB(r).
(3.30)
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Putting (3.29) and (3.30) to (3.28), and taking expectation E, we obtain

u(t+ h, γt, µt)− u(t, γ, µ) = −1

2

∫ t+h

t

E
[
Tr[∂2

ωru(t+ h,Bγtr ,LBηtr )]
]
dr

− 1

2

∫ t+h

t

E
[
ẼTr[∂ω̃r∂µru(t+ h,Bγtr ,LBηtr , B̃

η̃t
r )]
]
dr

−
∫ t+h

t

E [f(r,Bγt , Y γt,ηt , Zγt,ηt ,LBηt ,LY ηt )] dr.

(3.31)

Moreover, in view of (3.9), (3.13) and (3.14), we have

Y γt,ηt(r) = u(r,Bγt ,LBηt ), Zγt,ηt(r) = ∂γtu(r,Bωt ,LBηt ), (3.32)

and Y ηt(r) = u(r,Bηt ,LBηt ). (3.33)

Then dividing both sides of (3.31) by h and taking h→ 0+, according to the dominated
convergence theorem and Proposition 3.3, we obtain

∂tu(t, γ, µ) = −1

2
Tr
[
∂2
ωu(t, γ, µ)

]
− 1

2
Tr [Eµ[∂ω̃∂µu(t, γ, µ,W )]]

− f
(
t, γ, u(t, γ, µ), ∂ωu(t, γ, µ), µ,Lu(t,Bηt ,µ)

)
.

3.3 Classical solution of semi-linear path-dependent PDEs

As stated in the introduction, a classical solution to a semi-linear equation (1.1) suffers
from several problems if one tries to build the solution via the classical argument of
FBSDE theory. In the following, we approximate the classical solution to (1.1) via a
sequence of solutions to corresponding “coefficient frozen” equations. For simplicity
of technique and notations, here we only consider the measure independent case and
assume f is independent of z-variable, which is also new even restricted in the path-
dependent setting,

∂tu(t, ω) + 1
2Tr [∂2

ωu(t, ω)σ(ωt)σ(ωt)
T ] + ∂ωu(t, ω)b(ωt) + f(t, ω, u(t, ω)) = 0,

u(T, ω, µ) = Φ(ω), (t, ω) ∈ [0, T ]× CT,d.
(3.34)

However, see Remark 3.15 for the general and mean-field case. Instead of considering a
forward SDE, we consider the following “coefficient frozen” SDE{

Xε,γt(s) := γ(t) + b(γt−ε)(s− t) + σ(γt−ε)(Bs −Bt), s ≥ t > 0,

Xε,γt
t = γt.

(3.35)

Here and in the following ε > 0 is a small parameter. According to the above definition,
we have that Xε,γt is independent of Ft, and for any strongly vertically differentiable
functional Φ : DT,d → R,

∂γτ [Φ(Xε,γt)] = ∂ωτΦ(Xε,γt), ∀τ ∈ (t− ε, t]. (3.36)

In view of the FBSDE argument, we consider the following path-dependent BSDE,

Y ε,γt(s) = Φ(Xε,γt
T ) +

∫ T

s

f(r,Xε,γt
r , Y ε,γt(r))dr −

∫ T

t

Zε,γt(r)dB(r), s ≥ t. (3.37)

In view of (3.36), the following result follows from the differentiability of the correspond-
ing BSDEs shown in Proposition 4.6.

EJP 29 (2024), paper 90.
Page 22/55

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1153
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Path-dependent mean-field PDE

Corollary 3.9. Assume that (f,Φ) satisfies assumption (A2) and fix t ∈ (0, T ]. For any
(τ, γ) ∈ (t − ε, t] ×DT,d, Y ε,γt(s) is twice strongly vertically differentiable at (τ, t, γ) for
any s ≥ t. Moreover, derivatives ∂γτY

ε,γt and ∂2
γτY

ε,γt are solutions to (3.38) and (3.39)
respectively.

∂γτY
ε,γt(s) = ∂ωτΦ(Xε,γt

T ) +

∫ T

s

[
∂ωτ f(r,Xε,γt

r , Y ε,γt(r))

+ ∂yf(r,Xε,γt
r , Y ε,γt(r))∂γτY

ε,γt(r))
]
dr −

∫ T

s

∂γτZ
ε,γt(r)dB(r).

(3.38)

∂2
γτY

ε,γt(s) = ∂2
ωτΦ(Xε,γt

T ) +

∫ T

s

[
∂yf(r,Xε,γt

r , Y ε,γt(r))∂2
γτY

ε,γt(r)

+ ∂ωτ∂yf(r,Xε,γt
r , Y ε,γt(r))∂γτY

ε,γt(r)) + ∂2
ωτ f(r,Xε,γt

r , Y ε,γt(r))
]
dr

−
∫ T

s

∂2
γτZ

ε,γt(r)dB(r).

(3.39)

Let
uε(t, γ) := Y ε,γt(t), ∀(t, γ) ∈ [0, T ]×DT,d, (3.40)

and it follows from the above corollary that uε(t, γ) is twice strongly vertically differen-
tiable at (τ, t, γ) for any τ ∈ (t − ε, t]. Then according to Itô’s formula (3.26), we have
that for any h ∈ (0, ε),

uε(t+ h,Xε,γt
t+h)− uε(t+ h, γt)

=

∫ t+h

t

∂ωru(t+ h,Xε,γt
r )b(γt−ε)dr +

∫ t+h

t

∂ωru(t+ h,Xε,γt
r )σ(γt−ε)dB(r)

+
1

2
Tr

∫ t+h

t

∂2
ωru(t+ h,Xε,γt

r )σ2(γt−ε)dr.

(3.41)

Here and in the following we assume d = 1 for simplicity. On the other hand, according
to a classical argument as in [46, Lemma 4.4] (also see Proposition 3.2), we have

uε(s,Xε,γt
s ) = Y ε,γt(s), a.s., ∀s ≥ t. (3.42)

Then in view of (3.41) and (3.42), we have

uε(t+ h, γt)− uε(t, γt) = uε(t+ h, γt)− Euε(t+ h,Xε,γt
t+h) + Euε(t+ h,Xε,γt

t+h)− uε(t, γt)

= −E
∫ t+h

t

[
∂ωru

ε(t+ h,Xε,γt
r )b(γt−ε) +

1

2
∂2
ωru

ε(t+ h,Xε,γt
r )σ2(γt−ε)

]
dr

− E
∫ t+h

t

f(r,Xε,γt
r , Y ε,γt(r))dr.

(3.43)

Divide by h both sides of the above identity and take h to zero, we have

∂tu
ε(t, γ) = −∂ωuε(t, γ)b(γt−ε)−

1

2
uε(t, γt)σ

2(γt−ε)− f(t, γt, u
ε(t, γ)). (3.44)

To build a solution to (3.34), we only need to show (b, σ)(γt−ε) converges to (b, σ)(γt),
and (I, ∂ω, ∂

2
ω, ∂t)u

ε also converges to a limit as ε vanishes. In the following we denote by
“.” that the left hand is bounded by the right hand side up to a generic constant. Firstly
we show that uε converges to a limit u. To this end, we assume that
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(A3) (i). (b, σ) : DT,d → Rd ×Rd×d is locally Lipschitz continuous, i.e. for φ = b or σ,

|φ(ω1)− φ(ω2)| ≤ (1 + ‖ω1‖k + ‖ω2‖k)‖ω1 − ω2‖, (3.45)

for some k ≥ 1. Moreover, b and σ are predictable in the sense of

(b, σ)(γt) = (b, σ)(γt−), for any (t, γ) ∈ (0, T ]×DT,d, (3.46)

where γt−(s) = γt(s−) for any s ∈ (0, T ].

(ii). (f,Φ) : [0, T ]×DT,d ×R→ R satisfies assumption (A2), and moreover, for any
(t, ω, y) ∈ [0, T ]× CT,d ×R and {τ, τ ′} ∈ [t, T ], we have

|∂ωτΦ(ω)− ∂ωτ′Φ(ω)|+ |∂2
ωτΦ(ω)− ∂2

ωτ′
Φ(ω)| . (1 + ‖ω‖k)ρ(|τ − τ ′|),

|∂ωτ f(t, ω, y)−∂ωτ′ f(t, ω, y)|+|∂2
ωτ f(t, ω, y)−∂2

ωτ′
f(t, ω, y)|.(1+‖ω‖k + |y|)ρ(|τ − τ ′|),

where ρ : [0,∞)→ [0,∞) is continuous at 0 with ρ(0) = 0.

Example 3.1. For a functional g on DT,d with property (3.46), we must have g(ωt) =

G(ωt−) for a path functional G and vice versa. The benchmark example is g(ω) =∫ T
0
F (r, ω(r))dr for a continuous function F on [0, T ]×R.

Let

Xγt := X0,γt , Y γt := Y 0,γt , and u(t, γ) := Y γt(t), ∀(t, γ) ∈ [0, T ]×DT,d. (3.47)

Firstly we show that uε converges to u as ε goes to null. In the following we denote by

Osc(γ, t, ε) := sup
u,v∈[t−ε,t)

|γ(u)− γ(v)|, ∀ (t, γ) ∈ [0, T ]×DT,d.

Lemma 3.10. Suppose that (b, σ, f,Φ) satisfies assumption (A3). Then for any (t, γ) ∈
[0, T ]×DT,d, we have

E‖Xε,γt −Xγt‖2 + E‖Y ε,γt − Y γt‖2 . (1 + ‖γt‖k)2Osc(γ, t, ε)2 (3.48)

In particular, for any (t, γ) ∈ [0, T ]× CT,d,

|uε(t, γ)− u(t, γ)| . (1 + ‖γt‖k)Osc(γ, t, ε).

Proof. Note that

Xε,γt(s)−Xγt(s) = (b(γt−ε)− b(γt))(s− t) + (σ(γt−ε)− σ(γt))(W (s)−W (t)).

It follows from the Burkholder-Davis-Gundy inequality that

E‖Xε,γt −Xγt‖2 . (1 + ‖γt‖k)2‖γt−ε−γt‖2 . (1 + ‖γt‖k)2 sup
u,v∈[t−ε,t)

|γ(u)−γ(v)|2. (3.49)

According to Lemma 4.1, we have the estimate for E‖Y ε,γt − Y γt‖2.

Next we show u(t, γ) is vertically differentiable. Indeed, in view of [46, Theorem 4.5]
and Remark 4.5, thanks to the predictable assumption (3.46), we have that Y γt is twice
vertically differentiable at (t, γ) following similar argument. Remark that Y γt may not be
strongly vertically differentiable. Then u(t, γ) is twice vertically differentiable and its
derivatives (∂ωu, ∂

2
ωu)(t, ω) satisfy

(∂ωu, ∂
2
ωu)(t, γ) = (∂γtY

γt(t), ∂2
γtY

γt(t)), (3.50)

where ∂γtY
γt and ∂2

γtY
γt are solutions to (3.38) and (3.39) respectively with ε = 0. In

conclusion, we have
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Lemma 3.11. u is continuously twice vertically differentiable. Moreover, for any (t, γ) ∈
[0, T ]×DT,d,

(∂ωu
ε(t, γ), ∂2

ωu
ε(t, γ))→ (∂ωu(t, γ), ∂2

ωu(t, γ)), as ε→ 0. (3.51)

Proof. The first part of this theorem follows from the argument above this lemma. For
the second part, in a similar spirit as the proof of (4.25) of Proposition 4.6, we have

‖∂ωuε(t, γ)− ∂ωu(t, γ)‖ ≤ ‖Xε,γt −Xγt‖S2 . (1 + ‖γt‖k)Osc(γ, t, ε), (3.52)

which converges to zero as ε goes to null since γ ∈ DT,d. Then convergence of ∂2
ωu

follows similarly.

It remains to prove the horizontal differentiability of u. To this end, we need the following
estimates.

Lemma 3.12. For any {t, t′} ∈ (0, T ], and {γ, γ′} ∈ DT,d, we have for any p ≥ 2,

‖Xε,γt −Xε,γ′
t′‖Sp ≤ C(1 + ‖γt‖k+1 + ‖γ′t′‖k+1)(‖γt − γ′t′‖+ |t− t′| 12 ), (3.53)

‖Y ε,γt − Y ε,γ
′
t′‖Sp ≤ C(1 + ‖γt‖k+1 + ‖γ′t′‖k+1)(‖γt − γ′t′‖+ |t− t′| 12 ), (3.54)

where the generic constant C is independent of ε.

Proof. We only show the first estimate and the second one follows from the first and
classical argument as shown in Lemma 4.3. Without loss of generality, assume t′ > t.
Indeed, for s ≤ t, |Xε,γt(s)−Xε,γ′

t′ (s)| = |γ(s)− γ′(s)|. For s ∈ [t, t′)

|Xε,γt(s)−Xε,γ′
t′ (s)| ≤ |γ(t)− γ′(s)|+ |b(γt−ε)|(t′ − t) + |σ(γt−ε)| |Ws −Wt|

. ‖γt − γ′t′‖+ (1 + ‖γt‖k+1)(|t′ − t|+ |Ws −Wt|).
(3.55)

For s ∈ [t′, T ],

|Xε,γt(s)−Xε,γ′
t′ (s)|

≤ |γ(t)− γ′(t′)|+ |b(γt−ε)|(t′ − t) + |σ(γt−ε)| |Wt′ −Wt|
+ (b(γt−ε)− b(γ′t′−ε))(s− t′) + (σ(γt−ε)− σ(γ′t′−ε))|Ws −Wt′ |

. (1 + ‖γt‖k+1 + γ′t′‖k+1)(|t′ − t|+ |Wt′ −Wt|+ ‖γt − γ′t′‖(1 + |Ws −Wt′ |)),

(3.56)

which implies (3.53) by Burkholder-Davis-Gundy inequality.

Proposition 3.13. Suppose that (b, σ, f,Φ) satisfies assumption (A3). For any τ ∈ (t−
ε, t], let ∂γτY

ε,γt and ∂2
γτY

ε,γt be solutions of linear BSDEs (3.38) and (3.39) respectively.
Then for any γ, γ′ ∈ DT,d, t, t′ ∈ (0, T ], τ ∈ (t− ε, t], and τ ′ ∈ (t′ − ε, t′], we have

‖∂γτY ε,γt − ∂γ′τ′Y
ε,γ′

t′‖S2,[t′∨t,T ] (3.57)

≤ C(1 + ‖γ‖` + ‖γ′‖`)(‖γt − γ′t′‖+ |t− t′| 12 + ρ(|τ − τ ′|)),

‖∂2
γτY

ε,γt − ∂2
γ′
τ′
Y ε,γ

′
t′‖S2,[t′∨t,T ] (3.58)

≤ C(1 + ‖γ‖` + ‖γ′‖`)(‖γt − γ′t′‖+ |t− t′| 12 + ρ(|τ − τ ′|)),

where ` > k + 1 and the generic constant C is independent of ε.

Proof. Without loss of generality, assume t ≤ t′. In the following we write (X,X ′, Y, Y ′,

Z, Z ′) short for (Xε,γt , Xε,γ′
t′ , Y ε,γt , Y ε,γ

′
t′ , Zε,γt , Zε,γ

′
t′ ). For any s ≥ t′, let

(δy(s), δz(s)) := (∂γτY (s)− ∂γ′
τ′
Y ′(s), ∂γτZ(s)− ∂γ′

τ′
Z ′(s)),

EJP 29 (2024), paper 90.
Page 25/55

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1153
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Path-dependent mean-field PDE

and it is the solution to linear BSDE

δy(s) = [∂ωτΦ(X)− ∂ωτ′Φ(X ′)] +

∫ T

s

[ (
∂ωτ f(r,X(r), Y (r))− ∂ωτ′ f(r,X ′(r), Y ′(r))

)
+ ∂yf(r,X(r), Y (r))δy(r) + (∂yf(r,X(r), Y (r))− ∂yf(r,X ′(r), Y ′(r)))Y ′(r)

]
dr

−
∫ T

s

δz(r)dB(r).

(3.59)

In view of Lemma 4.1, we have

‖δy‖2S2,[t′,T ] . ‖∂ωτΦ(X)− ∂ωτ′Φ(X ′)‖2L2

+ E

[∫ T

t′
|∂ωτ f(r,X(r), Y (r))− ∂ωτ′ f(r,X ′(r), Y ′(r))|dr

]2

+ E

[∫ T

t′
|∂yf(r,X(r), Y (r))− ∂yf(r,X ′(r), Y ′(r))||Y ′(r)|dr

]2

. (3.60)

For the first term on the right hand side of the above inequality, we have

‖∂ωτΦ(X)− ∂ωτ′Φ(X ′)‖2L2

. ‖∂ωτΦ(X)− ∂ωτ′Φ(X)‖2L2 + ‖∂ωτ′Φ(X)− ∂ωτ′Φ(X ′)‖2L2

. (1 + ‖γt‖k+1 + ‖γ′t′‖k+1)2(ρ(|τ − τ ′|)2 + ‖γt − γ′t′‖2 + |t− t′|),
(3.61)

where we apply assumption (A3) and Lemma 3.12 in the last inequality. Similarly, we
have

E

[∫ T

t′
|∂ωτ f(r,X(r), Y (r))− ∂ωτ′ f(r,X ′(r), Y ′(r))|dr

]2

. (1 + ‖γt‖k+1 + ‖γ′t′‖k+1)2(ρ(|τ − τ ′|)2 + ‖γt − γ′t′‖2 + |t− t′|).

(3.62)

For the last term on the right hand side of (3.60), by the Cauchy-Schwartz inequality, we
have

E

[∫ T

t′
|∂yf(r,X(r), Y (r))− ∂yf(r,X ′(r), Y ′(r))||Y ′(r)|dr

]2

.
[
E[‖X −X ′‖4 + ‖Y − Y ′‖4]

] 1
2 [E‖Y ′‖4]

1
2

. (1 + ‖γt‖` + ‖γ′t′‖`)(ρ(|τ − τ ′|)2 + ‖γt − γ′t′‖2 + |t− t′|),

(3.63)

with an integer `. Then inequality (3.57) is implied by the above estimates. (3.58) follows
similarly.

Now we are ready to give the main theorem of this subsection. To have the uniqueness
of solutions for (3.34), we assume that

(A4) (b, σ) is Lipschitz on DT,d, i.e. for φ = b, σ, |φ(γ)− φ(γ′)| . ‖γ − γ′‖.

Theorem 3.14. Suppose assumption (A3) holds. Then there exists a classical solution
to equation (3.34). Moreover, if (A4) also holds for (b, σ), the solution is unique on
C 1,2
p (CT,d).
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Proof. Firstly we show that u given by (3.47) is a classical solution to (3.34). In view of
Lemma 3.11, we need to show u is horizontally differentiable. Recall that uε is given
by (3.40). For any h > 0,

u(t+ h, γt)− u(t, γt)

= [u(t+ h, γt)− uε(t+ h, γt)] + [uε(t+ h, γt)− uε(t, γt)] + [uε(t, γt)− u(t, γt)].
(3.64)

According to Lemma 3.10, we have

|u(t+ h, γt)− uε(t+ h, γt)| . (1 + ‖γt‖k)Osc(γt, t+ h, ε) = 0, (3.65)

whenever ε < h. Similarly, for the third term on the right hand side of (3.64),

|uε(t, γt)− u(t, γt)| . (1 + ‖γt‖k)Osc(γt, t, ε) (3.66)

Since γ ∈ DT,d, for any h, we can choose ε small such that Osc(γt, t, ε) = o(h). Since uε

is horizontally differentiable, in view of (3.44), we have

uε(t+ h, γt)− uε(t, γt) = h

∫ 1

0

∂tu
ε(t+ λh, γt)dλ

=h

∫ 1

0

[
− ∂ωuε(t+ λh, γt)b(γt−ε)−

1

2
∂2
ωu

ε(t+ λh, γt)σ(γt−ε)
2 − f(γt, u

ε(t+ λh, γt))
]
.

(3.67)

Take (3.65), (3.66) and (3.67) to (3.64), and divide both sides by h. Then we have

u(t+ h, γt)− u(t, γt)

h
= o(1) +

∫ 1

0

[
− ∂ωuε(t+ λh, γt)b(γt−ε)−

1

2
∂2
ωu

ε(t+ λh, γt)σ(γt−ε)
2

− f(t, γt, u
ε(t+ λh, γt))

]
.

(3.68)

Let h go to zero, and then ε go to zero. According to Lemma 3.10 and Lemma 3.11, the
right hand side of the above identity converges to −∂ωu(t, γt)b(γt)− 1

2∂
2
ωu(t, γt)σ(γt)

2 −
f(t, γt, u(t, γt)), which implies u is horizontally differentiable and u satisfy PPDE (3.34).
Now we show the uniqueness of equation (3.34). Suppose that ū ∈ C 1,2

p is a classical
solution. Consider a path-dependent SDE{

X̄(s) := γ(t) +
∫ s
t
b(X̄r)dr +

∫ s
t
σ(X̄r)dB(r), s ≥ t > 0,

X̄t = γt.
(3.69)

According to assumption (A4), the last equation has a unique solution X̄. Applying
functional Itô’s formula to ū(s, X̄s), we have

dū(s, X̄s) = [∂sū(s, X̄s) + ∂ωū(s, X̄s)b(X̄s) +
1

2
∂2
ωū(s, X̄s)σ

2(X̄s)]ds

+ ∂ωū(s, X̄s)σ(X̄s)dB(s),

= − f(s, X̄s, ū(s, X̄s))ds+ ∂ωū(s, X̄s)σ(X̄s)dB(s).

(3.70)

Let
(Y,Z)(s) := (ū(s, X̄s), ∂ωū(s, X̄s)σ(X̄s)), (3.71)

and it gives a solution to the following BSDE,

dY (s) = −f(s, X̄s, Y (s))ds+ Z(s)dB(s), Y (T ) = Φ(X̄T ). (3.72)

According to the well-posedness of the above BSDE, for any classical solution ũ, ũ(s, X̄s)

= Y (s). In particular, ũ(t, γt) = Y (t) = ū(t, γt) which concludes the uniqueness.
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Remark 3.15. (i) For the general case when f depends also on ∂ωu, in view of (3.9) and
regularity results on Z of BSDEs (see [40]), a smooth solution can be constructed in a
similar spirit under the condition that Z has continuous paths. (ii) For the mean-field
equation (1.1), similar as shown in Section 3.2, we can introduce the following diffusion{

X(s) = η(t) + b2(µt)(s− t) + σ2(µt)(B(s)−B(t)),

Xt = ηt.
(3.73)

Similarly as the pure path-dependent case above, we apply the approximation argument
with “coefficient frozen” process{

Xε,µt(s) = η(t) + b2(µt−ε)(s− t) + σ2(µt−ε)(B(s)−B(t)),

Xt = ηt,
(3.74)

where L(η) = µ. Under similar assumptions as (A3) and (A4) with adaptation in a
mean-field setting, one can construct a unique classical solution to (1.1).

3.4 Some typical cases

In view of Remark 2.11, the path-dependent mean-field equation (3.23) involves many
interesting special cases. In the following we list some typical ones, where we always
assume that (f,Φ) satisfies Assumption (A2) and (t, ω, y, z, µ, ν) ∈ [0, T ] × CT,d × R ×
Rd × PC2 × P2(R).
(i) The state-dependent master equation. Suppose that (f,Φ) has a state-dependent
form:

f(t, ω, y, z, µ, ν) = F (t, ω(t), y, z, µ(t), ν), (3.75)

Φ(T, ω, µ) = G(ω(T ), µ(T )), (3.76)

for functional F : [0, T ]×Rd ×R×Rd × P2(Rd)× P2(R) 7→ R and G : Rd × P2(Rd) 7→ R.
In this case, the differentiability of (f,Φ) is equivalent to the differentiability of (F,G) in
its corresponding domain, and path-dependent equation (3.23) has the form

∂tu(t, γ, µ) + 1
2Tr [∂2

ωu(t, γ, µ)] + 1
2Tr

[∫
CT,d

∂ω̃∂µu(t, γ, µ, ω̃)µ(dω̃)
]

+F (t, γ(t), u(t, γ, µ), ∂ωu(t, γ, µ), µ(t),Lu(t,Wµ,µ)) = 0,

u(T, γ, µ) = G(γ(T ), µ(T )), (t, γ, µ) ∈ ĈT,d.

(3.77)

Since the corresponding FBSDE is Markovian, we see that u(t, γ, µ) = U(t, γ(t), µ(t)) for
a smooth (indeed C 1,2,1,1 in view of Definition 2.10 with obvious adjustment) functional
U : [0, T ]×Rd ×P2(Rd) 7→ R thanks to Remark 2.11. Then we obtain well-posedness of
the (state-dependent) master equation considered in [9], [12],

∂tU(t, a, λ) + 1
2Tr [∂2

aU(t, a, λ)] + 1
2

∫
Rd
∂ã∂λU(t, a, λ, ã)λ(dã)

+F (t, a, U(t, a, λ), ∂aU(t, a, λ), λ,Lu(t,ξ,λ)) = 0,

U(T, a, λ) = G(a, λ), (t, a, λ) ∈ [0, T ]×Rd × P2(Rd),

(3.78)

where ξ is a random variable on Rd with law λ.
(ii) The PPDE. Suppose that (f,Φ) does not depend on measures:

f(t, ω, y, z, µ, ν) = H(t, ω, y, z), (3.79)

Φ(T, ω, µ) = I(ωT ), (3.80)
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with H : [0, T ]×CT,d ×R×Rd 7→ R and I : CT,d 7→ R. Then equation (3.23) is written as
PPDE, 

∂tu(t, γ) + 1
2Tr [∂2

ωu(t, γ)] +H(t, γ, u(t, γ), ∂ωu(t, γ)) = 0,

u(T, γ) = I(γT ), (t, γ) ∈ [0, T ]× CT,d.
(3.81)

Then Theorem 3.8 recovers the well-posedness of PPDEs shown in [46, Theorem 4.5]
under a stronger assumption in view of the integrability of BSDE (3.5).
(iii) The measure-dependent master equation. Suppose that (f,Φ) does not depend
on the path/state variable and has the following structure

f(t, ω, y, z, µ, ν) = J(t, y, µ), (3.82)

Φ(T, ω, µ) = K(µT ), (3.83)

where J : [0, T ] × R × PC2 7→ R and K : PC2 7→ R. In this case our path-dependent
mean-field equation is reduced to

∂tu(t, µ) + 1
2Tr

[∫
CT,d

∂ω̃∂µu(t, µ, ω̃)µ(dω̃)
]

+ J(t, u(t, µ), µ) = 0,

u(T, µ) = K(µT ), (t, µ) ∈ [0, T ]× PC2 .
(3.84)

Such form of master equation is introduced in [55] for a closed-loop control problem
with control being the form of αt = α(t,LXt).
(iv) Path-state mixed cases. Suppose that (f,Φ) has the following form

f(t, ω, y, z, µ, ν) = L(t, ω, y, z, µ(t)), (3.85)

Φ(T, ω, µ) = M(ωT , µ(T )), (3.86)

where L : [0, T ] × CT,d × R × Rd × P2(Rd) 7→ R and M : CT,d × P2(Rd) 7→ R. Then we
have a unique smooth solution for the following mean-field equation

∂tu(t, γ, µ) + 1
2Tr [∂2

ωu(t, γ, µ)] + 1
2Tr

[∫
CT,d

∂ω̃∂µu(t, γ, µ, ω̃)µ(dω̃)
]

+L(t, γ, u(t, γ, µ), ∂ωu(t, γ, µ), µ(t)) = 0,

u(T, γ, µ) = M(γT , µ(T )), (t, γ, µ) ∈ ĈT,d.

(3.87)

In view of the corresponding FBSDE (3.4), we see that u(t, γ, µ) = U(t, γ, µ(t)) for a
functional U : [0, T ] × CT,d × P2(Rd) 7→ R. Since u ∈ C 1,2,1,1, U is the unique classical
solution to the master equation

∂tU(t, γ, λ) + 1
2Tr [∂2

ωU(t, γ, λ)] + 1
2Tr

[∫
Rd
∂ã∂λU(t, γ, λ, ã)λ(dã)

]
+L(t, γ, U(t, γ, λ), ∂ωU(t, γ, λ), µ(t)) = 0,

U(T, γ, λ) = M(γT , λ), (t, γ, λ) ∈ [0, T ]× CT,d × P2(Rd).

(3.88)

On the other hand, if (f,Φ) has the the following structure

f(t, ω, y, z, µ, ν) = N(t, ω(t), y, z, µ, ν) and (3.89)

Φ(T, ω, µ) = P (ω(T ), µT ) (3.90)

for some functionals N : [0, T ]×Rd ×R×Rd × PC2 × P2(R) 7→ R and P : Rd × PC2 7→ R,
then u(t, ω, µ) = V (t, ω(t), µt) for a functional V : [0, T ]×Rd × PC2 → R. Then, V is the
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unique smooth solution to the master equation
∂tV (t, a, µ) + 1

2Tr [∂2
aV (t, a, µ)] + 1

2Tr
[∫
CT,d

∂ω̃∂µV (t, x, µ, ω̃)µ(dω̃)
]

+N(t, a, V (t, a, µ), ∂aV (t, a, µ), µ,LV (t,Wµ(t),µ)) = 0,

V (T, a, µ) = P (a, µT ), (t, a, µ) ∈ [0, T ]×Rd × PC2 .

(3.91)

(v) A non-smooth case. For any t0 ∈ (0, T ) and F ∈ C3
b (Rd), consider PPDE{

∂tu(t, ω) + 1
2Tr

[
∂2
ωu(t, ω)

]
= 0,

u(T, ω) = F (ω(t0)), (t, ω) ∈ [0, T ]× CT,d.
(3.92)

In this case we have

∂ωtF (ω(t0)) = DF (ω(t0))1[0,t0](t), ∀(t, ω) ∈ [0, T ]× CT,d,

which is not continuous on [0, T ]×DT,d. Therefore, (A2) is not satisfied and the preceding
PPDE has no smooth solution. In particular, when F (x) = ax for some a ∈ Rd, by
resolvability of the corresponding BSDE, the functional u(t, ω) := aω(t ∧ t0), (t, ω) ∈
[0, T ]× CT,d, is the unique viscosity solution in the sense of [23].
In a similar way, for any (F,G) ∈ C3

b (Rd) × C3
b (Rd,Rd), the path-dependent master

equation {
∂tu(t, µ) + 1

2Tr [∂ω′∂µu(t, µ, ω′)] = 0,

u(T, µ) = F (Eµ[G(W (t0))]) , (t, µ) ∈ [0, T ]× PC2
(3.93)

has no smooth solution. In particular, if Φ(T, µ) = Eµ[aW (t0)], u(t, µ) := Eµ[aW (t ∧ t0)]

is the unique viscosity solution of equation (3.93) in the sense of [55].

4 Differentiability of solutions of path-dependent mean-field BS-
DEs

In the following, for any process (X,Y, Z) on the probability space (Ω,F , P ), we denote
by (X̃, Ỹ , Z̃) an independent copy of (X,Y, Z), which means that (X̃, Ỹ , Z̃) is defined in an
independent probability space (Ω̃, F̃ , P̃ ) and has the same law as (X,Y, Z). The following
linear mean-field BSDEs and estimates are frequently used in subsequent discussions.
Different from a classical linear BSDE, all linear coefficients are not necessarily bounded.
For simplicity, we only address the one-dimensional case. Similar assertions in this
section are still true in the multi-dimensional case.

Lemma 4.1. Let ξ ∈ L2(FT ) and t ∈ [0, T ). Suppose that (α, β) ∈ H2([t, T ],R × Rd) is
bounded, c ∈ H2([t, T ],Rk), and h is a real valued progressively measurable process

such that
∫ T
t
|h(r)|dr ∈ L2(FT ). For any (r, x) ∈ [t, T ] ×Rk, g(·, x) ∈ H2([t, T ]) and g(r, ·)

is uniformly Lipschitz continuous:

sup
r∈[t,T ]

|g(r, x)− g(r, y)| ≤ L|x− y|, ∀y ∈ Rk, P -a.s.

for a constant L. Then the following linear mean-field BSDE: s ∈ [t, T ],

Y (s) = ξ+

∫ T

s

(
α(r)Y (r) +β(r)Z(r) + Ẽ[g(r, c̃(r))Ỹ (r)] +h(r)

)
dr−

∫ T

s

Z(r)dB(r), (4.1)

with (c̃, Ỹ ) being an independent copy of (c, Y ), has a unique solution (Y, Z) ∈ S2([t, T ])×
H2([t, T ],Rd). Moreover, we have

‖(Y, Z)‖2S2×H2 ≤ C(‖ξ‖2L2 + ||
∫ T

t

|h(r)|dr||2L2)eC(‖c‖
H2+‖g(·,0)‖

H2 ) (4.2)

EJP 29 (2024), paper 90.
Page 30/55

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1153
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Path-dependent mean-field PDE

for a constant C depending on the bound of α, β and L. In particular, if g is uniformly
bounded, we have

‖(Y, Z)‖2S2×H2 ≤ C(‖ξ‖2L2 + ||
∫ T

t

|h(r)|dr||2L2). (4.3)

Remark 4.2. Since neither of g(t, x) and g(r, c(r)) is bounded or uniformly integrable for
any c(r) ∈ H2([t, T ],Rk), the well-posedness of the mean-field BSDE is not an immediate
consequence of existing works such as [8].

Proof. For any y ∈ H2, consider the following classical linear BSDE

Y (s) = ξ+

∫ T

s

(
α(r)Y (r) +β(r)Z(r) + Ẽ[g(r, c̃(r))ỹ(r)] +h(r)

)
dr−

∫ T

s

Z(r)dB(r), (4.4)

where (c̃, ỹ) is an independent copy of (c, y). To prove that it is well-posed on [t, T ], we
only need to show

E

[∫ T

t

∣∣∣Ẽ[g(r, c̃(r))ỹ(r)]
∣∣∣dr]2

<∞. (4.5)

Indeed, by the uniformly Lipschitz continuity of g, we have

E

∣∣∣ ∫ T

t

|Ẽ[g(r, c̃(r))ỹ(r)]|dr
∣∣∣2 ≤ CE[ ∫ T

t

|Ẽ|g(r, 0)ỹ(r)|dr + Ẽ|c̃(r)ỹ(r)|dr
]2

≤ CE
[ ∫ T

t

|g(r, 0)Ẽ[ỹ(r)]|dr
]2

+ C
[ ∫ T

t

Ẽ[|c̃(r)ỹ(r)|]dr
]2

≤ C
[
(E

∫ T

t

|g(r, 0)|2dr)(
∫ T

t

[Ẽ|ỹ(r)|]2dr) + (

∫ T

t

Ẽ|c̃(r)|2dr)(
∫ T

t

Ẽ|ỹ(r)|2dr)
]

≤ C
[
‖g(·, 0)‖2H2‖y‖2H2 + ‖c‖2H2‖y‖2H2

]
≤ C(‖g(·, 0)‖2H2 + ‖c‖2H2)‖y‖2H2 ,

(4.6)

where we have used in the third inequality the Hölder inequality to integrals over [t, T ]

and [t, T ]× Ω. Then for any y ∈ H2, BSDE (4.4) has a unique solution (Y,Z) ∈ H2 ×H2.
The solution mapping Φ : y 7→ Y defines a transformation on H2, and turns out to be a
contraction under the following equivalent norm

‖Y ‖2 := E

∫ T

t

eAs−
∫ T
s

(‖g(r,0)‖2
L2+‖c(r)‖2

L2 )dr|Y (s)|2ds, Y ∈ H2 (4.7)

with A being a constant to be determined later. In fact, take any y(j) ∈ H2 and denote
by (Y (j), Z(j)) the corresponding solution of classical BSDE (4.4), with j = 1, 2. Set
(∆Y,∆Z) := (Y (1)−Y (2), Z(1)−Z(2)), ∆y := y(1)− y(2), and f(r) := ‖g(r, 0)‖2L2 + ‖c(r)‖2L2 .

Applying Itô’s formula to eAs−
∫ T
s
f(r)dr|∆Y (s)|2 on s ∈ [t, T ], we have

−eAt−
∫ T
t
f(r)dr|∆Y (t)|2 =

∫ T

t

(A+ f(s))eAs−
∫ T
s
f(r)dr|∆Y (s)|2ds

+ 2

∫ T

t

eAs−
∫ T
s
f(r)dr∆Y d(∆Y ) +

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Z|2ds.

Therefore,

eAt−
∫ T
t
f(r)dr|∆Y (t)|2 +

∫ T

t

(A+ f(s))eAs−
∫ T
s
f(r)dr|∆Y (s)|2dr

+

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Z(s)|2dr
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= 2

∫ T

t

eAs−
∫ T
s
f(r)dr∆Y [α∆Y + β∆Z + Ẽ[g(s, c̃(s))∆ỹ]]ds

− 2

∫ T

t

eAs−
∫ T
s
f(r)dr∆Y∆ZdW (s)

≤ C

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Y |2ds+ C

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Y |2ds

+
1

2

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Z|2ds+ 2

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Y ||g(s, 0)|‖∆ỹ‖L2ds

+ 2

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Y |‖c‖L2‖∆ỹ‖L2ds− 2

∫ T

t

eAs−
∫ T
s
f(r)dr∆Y∆ZdB(s)

≤ C

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Y |2ds+

1

2

∫ T

t

eAs−
∫ T
s
f(r)dr|∆Z|2ds

− 2

∫ T

t

eAs−
∫ T
s
f(r)dr∆Y∆ZdB(s) + 2

∫ T

t

eAs−
∫ T
s
f(r)dr(|∆Y ||g(s, 0)|‖∆ỹ‖L2)ds

+

∫ T

t

eAs−
∫ T
s
f(r)dr(|∆Y |2‖c‖2L2 + ‖∆ỹ‖2L2)ds.

Taking expectation on both sides of the above inequality, we have

∫ T

t

(A− C + f(s))eAs−
∫ T
s
f(r)dr‖∆Y (s)‖2L2dr

≤ 2

∫ T

t

eAs−
∫ T
s
f(r)drE[|∆Y ||g(s, 0)|]‖∆ỹ‖L2ds

+

∫ T

t

eAs−
∫ T
s
f(r)dr(‖∆Y ‖2L2‖c‖2L2 + ‖∆ỹ‖2L2)ds

≤
∫ T

t

eAs−
∫ T
s
f(r)dr

[(
E[|∆Y ||g(s, 0)|]

)2

+ ‖∆ỹ‖2L2

]
ds

+

∫ T

t

eAs−
∫ T
s
f(r)dr(‖∆Y ‖2L2‖c‖2L2 + ‖∆ỹ‖2L2)ds

≤
∫ T

t

eAs−
∫ T
s
f(r)dr

(
‖g(s, 0)‖2L2 + ‖c‖2L2

)
‖∆Y ‖2L2ds

+

∫ T

t

eAs−
∫ T
s
f(r)dr‖∆ỹ‖2L2ds.

Therefore, choosing a sufficiently large number A such that A − C > 1, we obtain a
contraction and then the well-posedness of (4.1).

Now BSDE (4.1) can be written as the following classical BSDE

Y (s) = ξ +

∫ T

s

(
α(r)Y (r) + β(r)Z(r) + h′(r)

)
dr −

∫ T

s

Z(r)dB(r), (4.8)

with h′(r) = Ẽ[g(r, c̃(r))Ỹ (r)] + h(r). Thus it is standard that

‖Y ‖2S2 + ‖Z‖2H2 ≤ C(‖ξ‖2L2 + ‖
∫ T

t

|h′(r)|dr‖2L2)

≤ C(‖ξ‖2L2 + ‖
∫ T

t

|h(r)|dr‖2L2 + ‖
∫ T

t

|Ẽ[g(r, c̃(r))Ỹ (r)]|dr‖2L2).

(4.9)
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Furthermore, similar to the proof of inequality (4.6), we have

‖
∫ T

t

|Ẽ[g(r, c̃(r))Ỹ (r)]|dr‖2L2 ≤ C[

∫ T

t

‖g(r, 0)‖2L2‖Y ‖2S2,[t,r]dr +

∫ T

t

‖c(r)‖2L2‖Y ‖2S2,[t,r]dr].

(4.10)
Then, using Gronwall’s inequality, we obtain the desired estimate (4.2).

To study the differentiability of corresponding FBSDEs, for any (t, η) ∈ [0, T ]×MD
2 , we

denote by (Y ηt , Zηt) the solution of the following path-dependent mean-field BSDE, for
s ∈ [t, T ],

Y (s) = Φ(BηtT ,LBηtT ) +

∫ T

s

f(Bηtr , Y (r), Z(r),LBηtr ,LY (r))dr −
∫ T

s

Z(r)dB(r). (4.11)

On the other hand, for any γ ∈ DT,d, let (Y γt,ηt , Zγt,ηt) solve the associated path-
dependent BSDE: for s ∈ [t, T ],

Y(s) = Φ(BγtT ,LBηtT ) +

∫ T

s

f(Bγtr ,Y(r),Z(r),LBηtr ,LY ηt (r))dr −
∫ T

s

Z(r)dB(r). (4.12)

Note that under Assumption (H0), the functional

f̂(r, y, z, ν) := f(Bηtr , y, z,LBηtr , ν), (r, y, z, ν) ∈ [t, T ]×R×Rd × P2(R), (4.13)

is uniformly Lipschitz continuous in (y, z) ∈ R × Rd. According to [13, Theorem
4.23], BSDE (4.11) is well posed with (Y ηt , Zηt ,LY ηt ) ∈ S2 × H2 × P2(R). Then (4.12)
is a well-defined classical BSDE with (Y γt,ηt , Zγt,ηt) ∈ Sp × Hp for any p ≥ 1. In
the following, we write Θηt

r := (Bηtr , Y
ηt(r), Zηt(r)),Θγt,ηt

r := (Bγtr , Y
γt,ηt(r), Zγt,ηt(r)),

LΘ
ηt
r

:= (LBηtr ,LY ηt (r)) and (Y,Z) := (Y (t), Z(t)) if no confusion is raised. Then we have
the following basic estimates for BSDEs (4.11) and (4.12).

Lemma 4.3. Assume that (Φ, f) satisfies (H0). For any K > 0 and (γ, η), (γ′, η′) ∈
DT,d ×MD

2 such that |||Lηt |||, |||Lη′t ||| ≤ K, we have for any p ≥ 1,

‖(Y ηt , Zηt)‖S2×H2 ≤ C(1 + ‖ηt‖S2), (4.14)

‖(Y γt,ηt , Zγt,ηt)‖Sp×Hp ≤ Cp(1 + ‖γt‖+ ‖ηt‖S2), (4.15)

‖(Y ηt − Y η
′
t , Zηt − Zη

′
t)‖S2×H2 ≤ CK‖ηt − η′t‖S2 , and (4.16)

‖(Y γt,ηt − Y γ
′
t,η
′
t , Zγt,ηt − Zγ

′
t,η
′
t)‖Sp×Hp ≤ CK,p(‖γt − γ′t‖+W2(Lηt ,Lη′t)),(4.17)

where (C,Cp) does not depend on (γ, η), and (CK , CK,p) does not depend on (γ, γ′).

Remark 4.4. According to inequality (4.17), (Y γt,ηt , Zγt,ηt) and (Y γt,η
′
t , Zγt,η

′
t) are indis-

tinguishable if Lηt = Lη′t , which implies the following definition is well-posed

(Y γt,Lηt , Zγt,Lηt ) := (Y γt,ηt , Zγt,ηt). (4.18)

The proof of Lemma 4.3 is rather lengthy, which follows from Lemma 4.1 and is left in
the appendix.

4.1 First-order differentiability

In this subsection we assume that (H1) holds for (Φ, f). For any (γ, η) ∈ [0, T ]×MD
2 , we

consider the first order differentiability of Y γt,ηt = Y γt,Lηt with respect to γt and Lηt .
For the differentiability in γt, let

f̂(ωs, y, z) := f(ωs, y, z,LBηts ,LY ηt (s)),

Φ̂(ωT ) := Φ(ωT ,LBηtT ), ∀(s, ω, y, z) ∈ [t, T ]×DT,d ×R×Rd,
(4.19)
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and then the solution Y γt,ηt(s) to equation (4.12) solves the following path-dependent
BSDE

Ŷ (s) = Φ̂(BγtT ) +

∫ T

s

f̂(Bγtr , Ŷ (r), Ẑ(r))dr −
∫ T

s

Ẑ(r)dB(r). (4.20)

Define ûηt(t, γ) := Y γt,ηt(t). If f and Φ are regular enough, according to [46, Theorem
4.5], ûηt(t, γ) is twice vertically differentiable at (t, γ), and moreover for any s ≥ t,

ûηt(s,B
γt) = Y γt,ηt(s), ∂γt ûηt(s,B

γt) = Zγt,ηt(s). (4.21)

Furthermore, ûηt(t, γ) is the unique solution to the following semilinear PPDE{
∂tûηt(t, γ) + 1

2Tr
[
∂2
ωûηt(t, γ)

]
+ f̂(γt, ûηt(t, γ), ∂ωûηt(t, γ)) = 0,

ûηt(T, γ) = Φ̂(γ), (t, γ) ∈ [0, T ]× CT,d.
(4.22)

In the following, we denote by ∂(t,ω,y,z,µ,ν,ωτ ,µτ )f the derivative vector

(∂tf, ∂ωf, ∂yf, ∂zf, ∂µf, ∂νf, ∂ωτ f, ∂µτ f).

Remark 4.5. Assume that Φ : DT,d 7→ R is twice continuously strongly vertically dif-
ferentiable and satisfies the following locally Lipschitz continuous condition: for any
t ∈ [0, T ] and φ = Φ, ∂ωtΦ, ∂

2
ωtΦ,

|φ(ωT )− φ(ω′T )| ≤ C(1 + ‖ωT |k + ‖ω′T ‖k)‖ωT − ω′T ‖, ∀ (ω, ω′) ∈ D2
T,d. (4.23)

Then, the main result [46, Theorem 4.5] is still true. For the reader’s convenience, the
proof is sketched in the appendix, using our partial Itô-Dupire formula.

Proposition 4.6. Let (f,Φ) satisfy Assumption (H1). Then for any τ ≤ t, (Y γt,ηt(s),

Zγt,ηt(s)) is strongly vertically differentiable at (τ, t, γ). The derivative (∂ωτY
γt,ηt , ∂ωτ

Zγt,ηt) ∈ Sp([t, T ],Rd)×Hp([t, T ],Rd×d), ∀ p ≥ 1, is the unique solution to BSDE

Y(s) = ∂ωτΦ(Bγt ,LBηt ) +

∫ T

s

∂ωτ f(Θγt,ηt
r ,LΘ

ηt
r

)dr +

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)Y(r)dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)Z(r)dr −
∫ T

s

Z(r)dB(r), s ∈ [t, T ].

(4.24)

Furthermore, since (∂ωτY
γt,ηt , ∂ωτZ

γt,ηt) is independent of Ft, we have that for any
K > 0, and any (γ, η), (γ′, η′) ∈ DT,d ×MD

2 such that |||Lηt |||, |||Lη′t ||| ≤ K,

‖(∂ωτY γt,ηt , ∂ωτZγt,ηt)‖Sp×Hp < Cp,

‖(∂ωτY γt,ηt − ∂ωτY γ
′
t,η
′
t , ∂ωτZ

γt,ηt − ∂ωτZγ
′
t,η
′
t)‖Sp×Hp < CK,p(‖γt − γ′t‖+W2(Lηt ,Lη′t)),

(4.25)

for some positive constants Cp and CK,p.

Proof. In view of Assumption (H1) and Lemma 4.1, we see that equation (4.24) has a
unique solution (∂ωτY, ∂ωτZ) ∈ Sp ×Hp, ∀p ≥ 1. Here, we consider the one-dimensional
case for simplicity. For any h > 0, recall that γτ,h = γ + h1[τ,T ]. Set

γ′ := γτ,h, ∆hY :=
1

h
(Y ′ − Y ) :=

1

h
(Y γ

τ,h
t ,ηt − Y γt,ηt), and

∆hZ :=
1

h
(Z ′ − Z) :=

1

h
(Zγ

τ,h
t ,ηt − Zγt,ηt).

(4.26)
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Then we know that (∆hY,∆hZ) solves the following BSDE

∆hY (s) =
1

h
(Φ′ − Φ) +

1

h

∫ T

s

[f(Θγ′,η
r ,LΘηr )− f(Θγ,η

r ,LΘηr )]dr −
∫ T

s

∆hZ(r)dB(r)

=: ∆hΦ +

∫ T

s

(
ar∆hY (r) + br∆hZ(r) + ∆hf

)
dr −

∫ T

s

∆hZ(r)dB(r),

where

Φ′ := Φ(Bγ
′
,LBη ), Φ := Φ(Bγ ,LBη ), ∆hΦ :=

∫ 1

0

∂γτΦ(Bγ
τ,hθ

,LBη ) dθ,

ar :=

∫ 1

0

∂yf(Bγ
′

r , Y + θ(Y ′ − Y ), Z ′,LΘηr ) dθ,

br :=

∫ 1

0

∂zf(Bγ
′

r , Y, Z + θ(Z ′ − Z),LΘηr ) dθ,

and ∆hf :=
1

h
f(Bωr , Y, Z,LBηr ,LY )

∣∣∣ω=γ′

ω=γ
=

∫ 1

0

∂ωτ f(Bγ
τ,hθ

, Y, Z,LBηr ,LY ) dθ.

Then (δY, δZ) := (∆hY − ∂ωτY,∆hZ − ∂ωτZ) satisfies BSDE

δY (s) = (∆hΦ− ∂ωτΦ) +

∫ T

s

(
arδY + brδZ + (∆hf − ∂ωτ f(Θγt,ηt

r ,LΘ
ηt
r

))
)
dr

+

∫ T

s

[(ar − ∂yf(Θγt,ηt
r ,LΘ

ηt
r

))∂ωτY+(br − ∂zf(Θγt,ηt
r ,LΘ

ηt
r

))∂ωτZ]dr−
∫ T

s

δZdB(r).

According to standard estimate for BSDEs (or Lemma 4.1 for p = 2) and Lemma 4.3, we
have

‖δY ‖pSp + ‖δZ‖pHp ≤ C‖∆hΦ− ∂ωτΦ‖pLp + ‖
∫ T

t

|∆hf − ∂ωτ f(Θγt,ηt
r ,LΘ

ηt
r

)|dr‖pLp +O(|h|)

≤ O(|h|),

and thus the strongly vertical differentiability.

To show the differentiability of Y γt,ηt with respect to ηt, we follow a similar argument as
in the state-dependent case for SDEs made in [9]. Firstly we show that Y γt,ηt is Gâteaux
differentiable in ηt in the sense of (2.21) and Remark 2.7. To this end, we need to prove
that for any ξ ∈ L2(Ft,Rd) and ηλξt := ηt + λξ1[t,T ], λ > 0, the following limit exits in
S2([t, T ],Rd),

∂ηY
γt,ηt(ξ) := lim

λ→0

1

λ
(Y γt,η

λξ
t − Y γt,ηt). (4.27)

Then we show that ∂ηY γt,ηt(·) : L2(Ft,Rd) 7→ S2([t, T ],Rd) is a bounded linear oper-
ator, and moreover, it is continuous in the following sense: for any ζ ∈ L2(Ft,Rd),
∂ηY

γt,ηt+ζ1[t,T ] converges to ∂ηY
γt,ηt in the sense of operators as ζ goes to zero. In

view of Remark 2.4, we see that Y γt,ηt is Fréchet (vertically) differentiable in the sense
of (2.20) and Remark 2.7. To this end, consider the following linear BSDE

Yγt,ηt,ξ(s) = Ẽ[∂µtΦ(Bγt ,LBηt , B̃η̃t)ξ̃] +

∫ T

s

Ẽ[∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)Yγt,ηt,ξ(r)dr +

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)Zγt,ηt,ξ(r)dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωt Ỹ

η̃t,Lηt ξ̃ + Ỹ η̃t,ξ̃)(r)]dr
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−
∫ T

s

Zγt,ηt,ξ(r)dB(r), s ∈ [t, T ]. (4.28)

Here, (B̃, η̃, ξ̃, Ỹ η̃, ∂ωt Ỹ
η̃t,Lηt , Ỹ η̃t,ξ̃) is an independent copy of (B, η, ξ, Y ηt , ∂ωtY

γt,Lηt |γ=η,

Yηt,ξ), and Yηt,ξ satisfies the following linear mean-field BSDE

Yηt,ξ(s) = Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̃t)ξ̃] +

∫ T

s

Ẽ[∂µtf(Θηt
r ,LΘ

ηt
r
, B̃η̃tr )ξ̃]dr

+

∫ T

s

∂yf(Θηt
r ,LΘ

ηt
r

)Yηt,ξ(r)dr +

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)Zηt,ξ(r)dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωt Ỹ

η̃t,Lηt ξ̃ + Ỹ η̃t,ξ̃)(r)]dr

−
∫ T

s

Zηt,ξ(r)dB(r), s ∈ [t, T ].

(4.29)

Lemma 4.7. For any ξ ∈ L2(Ft,Rd), there exits a unique solution (Yηt,ξ,Zηt,ξ) ∈
S2([t, T ]) × H2([t, T ],Rd) to BSDE (4.29). Moreover, (Yηt,ξ,Zηt,ξ) is linear in ξ, and
we have

‖(Yηt,ξ,Zηt,ξ)‖S2×H2 ≤ C‖ξ‖L2 (4.30)

for some constant C.

Proof. By Lipschitz continuity of (∂µtΦ, ∂µtf), we have

Ẽ[∂µtΦ(BηtT ,LBηtT , B̃
η̃t
T )ξ̃] ∈ L2(FT ), Ẽ[∂µtf(Θηt

r ,LΘ
ηt
r
, B̃η̃tr )ξ̃] ∈ L2(Fr).

Since f is uniformly Lipschitz continuous in (y, z), ∂(y,z)f(Θηt
r ,LΘ

ηt
r

) is uniformly bounded.
Set g(r, x) := ∂νf(Θηt

r ,LΘ
ηt
r
, x). In view of Lemma 4.3 and Assumption (H1), we see

that g(·, 0) ∈ H2. Then by Lemma 4.1, to show the well-posedness of linear mean-field
BSDE (4.29), we only need to check the following∫ T

t

∣∣∣Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωt Ỹ

η̃t,Lηt ξ̃)]
∣∣∣ dr ∈ L2(FT ).

Let
F2(t, x, y, z, µ, ν) := Ẽ[∂νf(t, x, y, z, µ, ν, Ỹ η̃t(r))(∂ωt Ỹ

η̃t,Lηt (r)ξ̃)]. (4.31)

Then by Lipschitz continuity of ∂νf and Proposition 4.6, we have

F2(t, x, y, z, µ, ν)

= Ẽ
[
ẼF̃t [∂νf(t, x, y, z, µ, ν, Ỹ γt,Lηt (r))(∂ωt Ỹ

γt,Lηt (r))]
∣∣∣
γt=η̃t

ξ̃
]

≤ CẼ
[
ẼF̃t [|Ỹ

γt,Lηt ||∂ωt Ỹ γt,Lηt (r)|] |γt=η̃t ξ̃
]

+ ∂νf(t, x, y, z, µ, ν, 0)Ẽ
[
ẼF̃t [Ỹ

γt,Lηt (r)|] |γt=η̃t ξ̃
]

≤ CẼ
[
ẼF̃t [(1 + ‖γt‖)]

∣∣∣
γt=η̃t

ξ̃

]
+ C∂νf(t, x, y, z, µ, ν, 0)

≤ C + C∂νf(t, x, y, z, µ, ν, 0),

where we have applied Lemmas 4.3 in the second inequality. Then according to
Lemma 4.3 again, we have ∂νf(Θηt

r ,LΘ
ηt
r
, 0) ∈ H2, and thus the well-posedness of (4.29).

For inequality (4.30), similar to the proof of Lemma 4.3, we have

‖Yηt,ξ‖2S2 + ‖Zηt,ξ‖2H2
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≤ CE
[
|Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̃t)ξ̃]|2 +

∫ T

s

|Ẽ[∂µtf(Θηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃]|2dr

+

∫ T

s

|Ẽ∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωt Ỹ

η̃t,Lηt ξ̃)|2dr
]

≤ C
(

(Ẽ‖B̃η̃t‖ |ξ̃|)2 + ‖ξ‖2L2E|∂µtΦ(Bηt ,LBηt , 0)|2

+ ‖ξ‖2L2E

∫ T

s

|∂µtf(Θηt
r ,LΘ

ηt
r
, 0)|2dr + E

∫ T

s

|Ẽ[Ỹ η̃t∂ωt Ỹ
η̃t,Lηt ξ̃]|2dr

+ ‖ξ‖2L2E

∫ T

s

|∂νf(Θηt
r ,LΘ

ηt
r
, 0)|2dr

)
≤ C‖ξ‖2L2 .

Since BSDE (4.29) is well-posed, so is BSDE (4.28). In conclusion, we have

Corollary 4.8. There exits a unique solution (Yγt,ηt,ξ,Zγt,ηt,ξ) ∈ S2([t, T ])×H2([t, T ],Rd)

to BSDE (4.28). Moreover,

(Yηt,ξ,Zηt,ξ) = (Yγt,ηt,ξ,Zγt,ηt,ξ)|γ=η. (4.32)

Lemma 4.9. The map ξ 7→ Yγt,ηt,ξ is a bounded linear operator from L2(Ft,Rd) to
S2([t, T ]). Moreover, it is the Gâteaux derivative of Y γt,ηt with respect to ηt in the
following sense

Yγt,ηt,ξ = lim
λ→0

1

λ
(Y γt,η

λξ
t − Y γt,ηt) strongly in S2([t, T ]). (4.33)

In particular, Yγt,ηt,ξ(s) is the Gâteaux derivative of Y γt,ηt(s) in the sense of (2.21).

Proof. Since Yηt,ξ is linear in ξ, we see that (Yγt,ηt,ξ, Zγt,ηt,ξ) is also linear in ξ. Moreover,
we have the following estimate

‖(Yγt,ηt,ξ,Zγt,ηt,ξ)‖S2×H2 ≤ C‖ξ‖L2 . (4.34)

Therefore, we have the first assertion.
In the following, we omit the fixed subscript t and write (Y, Z) := (Y (r), Z(r)) if no
confusion raised. Besides, the constant C may change from line to line. Set

∆λY :=
1

λ
(Y γ,η

λξ

− Y γ,η), ∆λZ :=
1

λ
(Zγ,η

λξ

− Zγ,η), and

∆λΦ :=
1

λ
[Φ(BγT ,LBηλξT

)− Φ(BγT ,LBηT )].
(4.35)

Then according to Lemma 4.3, we have

‖∆λY ‖S2 + ‖∆λZ‖H2 ≤ C 1

λ
‖ηλξt − ηt‖S2 ≤ C‖ξ‖L2 . (4.36)

In view of BSDE (4.12), we see that (∆λY,∆λZ) satisfies the following linear mean-field
BSDE

∆λY = ∆λΦ +

∫ T

s

[
α(r)∆λY + β(r)∆λZ + Ẽ[g̃(r)

1

λ
(Ỹ η̃

λξ̃

− Ỹ η̃)] + ∆λf

]
dr

−
∫ T

s

∆λZdB(r),

(4.37)
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where

α(r) :=

∫ 1

0

∂yf(Bγr , Y
γ,η + θ(Y γ,η

λξ

− Y γ,η), Zγ,η
λξ

,L
Θη

λξ
r

)dθ,

β(r) :=

∫ 1

0

∂zf(Bγr , Y
γ,η, Zγ,η + θ(Zγ,η

λξ

− Zγ,η),L
Θη

λξ
r

)dθ,

g̃(r) :=

∫ 1

0

∂νf(Θγ,η,L
Bη

λξ ,L
Y η+θ(Y η

λξ−Y η)
, Ỹ η̃ + θ(Ỹ η̃

λξ̃

− Ỹ η̃))dθ, and

∆λf(r) :=
1

λ
[f(Θγ,η,L

Bη
λξ
r

,LY η )− f(Θγ,η,LBηr ,LY η )].

According to estimate (4.16) in Lemma 4.3, we have

‖∆λỸ
η̃‖S2 := ‖ 1

λ
(Ỹ η̃

λξ̃

− Ỹ η̃)‖S2 ≤ C 1

λ
‖ηλξt − ηt‖S2 ≤ C‖ξ‖L2 . (4.38)

Then, in view of Assumption (H1), we have

‖
∫ T

t

Ẽ[g̃(r)∆λỸ
η̃]dr‖L2 + ‖

∫ T

t

∆λfdr‖L2 ≤ C‖ξ‖L2 . (4.39)

Thus BSDE (4.37) has a unique solution (∆λY,∆λZ), and then (∆λY − Yγt,ηt,ξ,∆λZ −
Zγt,ηt,ξ) is the unique solution of the following BSDE

Y (s) = (∆λΦ− Ẽ[∂µtΦ(Bγt ,LBηt , B̃η̃t)ξ̃]) +

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)Y dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)Z(r)dr +

∫ T

s

(∆λf − Ẽ[∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃])dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∆λỸ

η̃ − ∂ωt Ỹ η̃t,Lηt ξ̃ − Ỹ η̃t,ξ̃)]dr

+

∫ T

t

R1(r)dr −
∫ T

s

ZdB(r)

with

R1(r) :=
(
α(r)− ∂yf(Θγt,ηt

r ,LΘ
ηt
r

)
)

∆λY +
(
β(r)− ∂zf(Θγt,ηt

r ,LΘ
ηt
r

)
)

∆λZ

+ Ẽ
[
(g̃(r)− ∂νf(Θγt,ηt

r ,LΘ
ηt
r
, Ỹ η̃t))∆λỸ

η̃
]
.

Since ∂(y,z)f is bounded, from the standard estimate for solutions of BSDEs, we have

‖∆λY − Yγt,ηt,ξ‖2S2 ≤ C(‖A1‖2L2 + ‖A2‖2L2 + ‖A3‖2L2 + ‖A4‖2L2) (4.40)

with

A1 := ∆λΦ− Ẽ[∂µtΦ(Bγt ,LBηt , B̃η̃t)ξ̃], A2 :=

∫ T

t

|R1(r)|dr,

A3 :=

∫ T

t

∣∣∣(∆λf − Ẽ[∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃])

∣∣∣ dr, and

A4 :=

∫ T

t

∣∣∣Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∆λỸ

η̃ − ∂ωt Ỹ η̃t,Lηt ξ̃ − Ỹ η̃t,ξ̃)(r)]
∣∣∣ dr.

For A1, according to the Lipschitz continuity of ∂µtΦ, we have

E|A1|2 = E

∣∣∣ ∫ 1

0

Ẽ[∂µtΦ(Bγ ,L
Bη+θ(Bη

λξ−Bη)
, B̃η̃ + θ(B̃η̃

λξ̃

− B̃η̃))ξ̃

− ∂µtΦ(Bγt ,LBηt , B̃η̃t)ξ̃]dθ
∣∣∣2

≤ C
(

[Ē‖B̄η̄
λξ̄

− B̄η̄‖2]
1
2 ‖ξ‖L2 + Ẽ[‖B̃η̃

λξ̃

− B̃η̃‖|ξ̃|]
)2

≤ Cλ2‖ξ‖4L2 ,

(4.41)
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for a constant C independent of γ and η. Term A2 is estimated as follows:

|A2|2 ≤ C
∣∣∣ ∫ T

t

(α(r)− ∂yf(Θγt,ηt
r ,LΘ

ηt
r

))∆λY dr
∣∣∣2

+ C
∣∣∣ ∫ T

t

(
β(r)− ∂zf(Θγt,ηt

r ,LΘ
ηt
r

)
)

∆λZdr
∣∣∣2

+ C
∣∣∣ ∫ T

t

Ẽ[(g̃(r)− ∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t))∆λỸ

η̃]dr
∣∣∣2.

(4.42)

For the first two terms on the right hand side of the above inequality, by the Lipschitz
continuity of ∂(y,z)f and inequality (4.36), we obtain

E

∣∣∣ ∫ T

t

(
α(r)− ∂yf(Θγt,ηt

r ,LΘ
ηt
r

)
)

∆λY dr
∣∣∣2

+
∣∣∣ ∫ T

t

(
β(r)− ∂zf(Θγt,ηt

r ,LΘ
ηt
r

)
)

∆λZdr
∣∣∣2 ≤ Cλ2‖ξ‖4L2 .

For the third term, we claim that

E

∣∣∣ ∫ T

t

Ẽ
[
(g̃(r)− ∂νf(Θγt,ηt

r ,LΘ
ηt
r
, Ỹ η̃t))∆λỸ

η̃
]
dr
∣∣∣2 ≤ Cλ2‖ξ‖4L2 , (4.43)

with C depending only on ‖ηt‖S2 , and therefore we have

E|A2|2 ≤ Cλ2‖ξ‖4L2 , (4.44)

in view of (4.42) and above estimates. Indeed, by the Hölder inequality and esti-
mate (4.38), we have

E

∣∣∣ ∫ T

t

Ẽ[(g̃(r)− ∂νf)∆λỸ
η̃]dr

∣∣∣2 ≤ E[

∫ T

t

Ẽ|g̃ − ∂νf |2dr]
∫ T

t

Ẽ|∆λỸ
η̃|2dr

≤ C‖ξ‖2L2E

∫ T

t

Ẽ

∣∣∣ ∫ 1

0

(∂νf(Θγ,η,L
Bη

λξ ,L
Y η+θ(Y η

λξ−Y η)
, Ỹ η̃ + θ(Ỹ η̃

λξ̃

− Ỹ η̃))

− ∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t))dθ

∣∣∣2dr
≤ C‖ξ‖2L2(‖Ỹ η̃

λξ̃

− Ỹ η̃‖S2 + ‖Bη
λξ

−Bη‖S2)2 ≤ Cλ2‖ξ‖4L2 .

For A3, from Lipschitz continuity of ∂µtf in (µ, ν, ω̃), we have

E|A3|2 = E
∣∣ ∫ T

t

∫ 1

0

Ẽ[∂µtf(Θγt,ηt ,L
Bη+θ(ηλξ−η) ,LY η , B̃η̃+θ(η̃λξ̃−η̃))

− ∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃η̃t)]ξ̃dθdr

∣∣2
≤ C

∣∣∣Ẽ[(‖ηλξt − ηt‖S2 + ‖η̃λξ̃ − η̃‖)|ξ̃|]
∣∣∣2

≤ C
∣∣∣Ẽ[λ‖ξ‖L2 ξ̃ + λ|ξ̃|2]

∣∣∣2 ≤ Cλ2‖ξ‖4L2 .

(4.45)

We now estimate A4. Since

∆λỸ
η̃ − ∂ωt Ỹ η̃t,Lηt ξ̃ − Ỹ η̃t,ξ̃ = A41 +A42 (4.46)

with

A41 := [
1

λ
(Ỹ

η̃λξ̃,L
η̃λξ̃ − Ỹ η̃,Lη̃λξ̃ )− ∂ωt Ỹ η̃t,Lηt ξ̃], and

A42 := [
1

λ
(Ỹ

η̃,L
η̃λξ̃ − Ỹ η̃,Lη̃ )− Ỹ η̃t,ξ̃],

(4.47)
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then, from boundedness of ∂νf , we have

E|A4|2 = E

∣∣∣ ∫ T

t

Ẽ
[
∂νf(Θγt,ηt

r ,LΘ
ηt
r
, Ỹ η̃t)(A41(r) +A42(r))

]
dr
∣∣∣2

≤ C
(∣∣∣ ∫ T

t

Ẽ[A41]dr
∣∣∣2 +

∣∣∣ ∫ T

t

Ẽ[A42]dr
∣∣∣2). (4.48)

From Proposition 4.6, we have∣∣∣∣∣
∫ T

t

Ẽ[A41]dr

∣∣∣∣∣
2

≤ C
∫ T

t

[
Ẽ

∫ 1

0

|(∂ωt Ỹ
η̃λθξ̃,L

ηλξ − ∂ωt Ỹ η̃,Lη )ξ̃|dθ
]2

dr

≤ C‖ξ‖2L2

∫ T

t

∫ 1

0

Ẽ|∂ωt Ỹ
η̃λθξ̃,L

ηλξ − ∂ωt Ỹ η̃,Lη |2dθdr

≤ C‖ξ‖2L2

∫ T

t

∫ 1

0

Ẽ(‖η̃λθξ̃t − η̃t‖)2dθdr ≤ Cλ2‖ξ‖4L2

(4.49)

for a constant C only depending on ‖ηt‖S2 . Since∣∣∣∣∣
∫ T

t

Ẽ[A42]dr

∣∣∣∣∣
2

≤
∫ T

t

Ẽ|A42|2dr ≤ C sup
γt

∫ T

t

Ẽ|∆λY − Yγt,ηt,ξ|2dr, (4.50)

for a constant C independent of (γ, η), we have

E|A4|2 ≤ C

(
λ2‖ξ‖4L2 + sup

γt

∫ T

t

Ẽ|∆λY − Yγt,ηt,ξ|2dr

)
. (4.51)

Finally, in view of inequalities (4.41), (4.44), (4.45), (4.51) and (4.40), we have

‖∆λY − Yγt,ηt,ξ‖2S2 ≤ C(λ2‖ξ‖4L2 + sup
γt

∫ T

t

‖∆λY − Yγt,ηt,ξ‖2S2dr),

where C only depends on ‖ηt‖S2 . Then, using Gronwall’s inequality, we have

‖∆λY − Yγt,ηt,ξ‖2S2 ≤ Cλ2‖ξ‖4L2 → 0, as λ→ 0. (4.52)

To show the strongly vertical differentiability of Y γt,ηt in ηt, in view of Definition 2.8,
for any τ ≤ t and ξ ∈ L2(Fτ ,Rd), consider ητ,λξt := ηt + λξ1[τ,T ]. Similar as the vertical
differentiable case, we firstly need to show the following limit exits in S2([t, T ]),

∂ητY
γt,ηt,ξ := lim

λ→0

1

λ
(Y γt,η

τ,λξ
t − Y γt,ηt). (4.53)

Indeed, ∂ητY
γt,ηt,ξ is the unique solution of the following BSDE: for s ∈ [t, T ],

∂ητY
γt,ηt,ξ(s) = Ẽ[∂µτΦ(Bγt ,LBηt , B̃η̃t)ξ̃] +

∫ T

s

Ẽ[∂µτ f(Θγt,ηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)∂ητY
γt,ηt,ξ(r)dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωτ Ỹ

η̃t,Lηt ξ̃ + ∂ητ Ỹ
η̃t,ξ̃)(r)]dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)∂ητZ
γt,ηt,ξ(r)dr

−
∫ T

s

∂ητZ
γt,ηt,ξ(r)dB(r),

(4.54)
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where ∂ητY
ηt,ξ solves the following mean-field BSDE

∂ητY
ηt,ξ(s) = Ẽ[∂µτΦ(Bηt ,LBηt , B̃η̃t)ξ̃] +

∫ T

s

Ẽ[∂µτ f(Θηt
r ,LΘ

ηt
r
, B̃η̃t)ξ̃]dr

+

∫ T

s

∂yf(Θηt
r ,LΘ

ηt
r

)∂ητY
ηt,ξ(r)dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)(∂ωτ Ỹ

η̃t,Lηt ξ̃ + ∂ητ Ỹ
η̃t,ξ̃)(r)]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)∂ητZ
ηt,ξ(r)dr −

∫ T

s

∂ητZ
ηt,ξ(r)dB(r).

(4.55)

According to Assumption (H1), we see that BSDEs (4.55) and (4.54) are well-posed.
Moreover, following a similar argument as in Lemma 4.9, for the Gâteaux strong vertical
differentiability, we have

Lemma 4.10. ∂ητY
γt,ηt,· is a bounded linear operator from L2(Fτ ,Rd) to S2([t, T ]). More-

over, ∂ητY
γt,ηt,ξ is the Gâteaux strong vertical derivative of Y γt,ηt at (τ, t, η):

∂ητY
γt,ηt,ξ = lim

λ→0

1

λ
(Y γt,η

τ,λξ
t − Y γt,ηt), strongly in S2([t, T ]). (4.56)

In particular, ∂ητY
γt,ηt,·(s) is the Gâteaux derivative of Y γt,ηt(s) at (τ, t, η) in the sense

of (2.24).

To give an explicit representation of the vertical derivative Y γt,Lηt (·) with respect to
Lηt in view of (2.22), we need to find out a measurable random field Uγt,Lηt (·) : DT,d 7→
S2([t, T ],Rd), such that for any s ≥ t and ξ ∈ L2(Ft,Rd),

Yγt,ηt,ξ(s) = Ē[Uγt,Lηt (η̄t)(s)ξ̄], (4.57)

where (η̄, ξ̄) is an independent copy of (η, ξ). If (4.57) holds and moreover we show that
Y γt,ηt is Fréchet differentiable with respect to ηt in the sense of (2.20) and Remark 2.7,
we have that

∂µtY
γt,Lηt (xt) := Uγt,Lηt (xt), ∀ x ∈ DT,d, (4.58)

is the vertical derivative of Y γt,Lηt at Lηt . Here and in the following, we write ∂µ instead
of ∂Lη . In view of (4.28) and (4.57), we formally deduce that (Uγt,Lηt (xt), V

γt,Lηt (xt))

solves the following BSDE: for any s ∈ [t, T ],

Uγt,ηt,xt(s) = Ẽ[∂µtΦ(Bγt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)Uγt,ηt,xt(r)dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωt Ỹ

xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)Ũ η̃t,xt(r)]dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)V γt,ηt,xt(r)dr −
∫ T

s

V γt,ηt,xt(r)dB(r),

(4.59)
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where Uηt,xt solves the associated mean-field BSDE:

Uηt,xt(s) = Ẽ[∂µtΦ(Bηt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂µtf(Θη
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θη
r ,LΘ

ηt
r

)Uηt,xt(r)dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωt Ỹ

xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)Ũ η̃t,xt)(r)]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)V ηt,xt(r)dr −
∫ T

s

V ηt,xt(r)dB(r).

(4.60)

According to Lemma 4.1, we see that mean-field BSDE (4.60) is well posed with
(Uηt,xt , V ηt,xt) ∈ S2([t, T ],Rd) × H2([t, T ],Rd×d). Then BSDE (4.59) also has a unique
solution (Uγt,ηt,xt , V γt,ηt,xt) ∈ S2([t, T ],Rd)×H2([t, T ],Rd×d). Moreover, according to the
uniqueness of solutions for BSDEs (4.60), we see Uηt,xt = Uγt,ηt,xt |γ=η. Concerning the
regularity of Uγt,ηt,xt and Uηt,xt with respect to (γ, η, x), we have

Lemma 4.11. For any x, x′, γ, γ′ ∈ DT,d, and η, η′ ∈MD
2 , we have

‖Uηt,xt − Uη
′
t,x
′
t‖S2 ≤ C(‖ηt − η′t‖S2 + ‖xt − x′t‖), (4.61)

‖Uγt,ηt,xt − Uγ
′
t,η
′
t,x
′
t‖S2 ≤ C(‖γt − γ′t‖+W2(Lηt ,Lη′t) + ‖xt − x′t‖), (4.62)

with C only depending on ‖ηt‖S2 + ‖η′t‖S2 .

Proof. In the following we omit the subscript t and write (U, V, Y, Z) := (U(r), V (r), Y (r),

Z(r)). Moreover, we only show the proof for (4.61) since (4.62) follows from (4.61) in a
similar way. Set

(∆U,∆V ) := (Uη,x − Uη
′,x′ , V η,x − V η

′,x′),

∆∂µΦ := ∂µtΦ(Bη,LBη , Bx)− ∂µtΦ(Bη
′
,LBη′ , B

x′),

∆∂µf := ∂µtf(Θη
r ,LΘηr , B̃

xt)− ∂µtf(Θη′

r ,LΘη
′
r
, B̃x

′
t),

∆∂νf
(1) := ∂νf(Θη

r ,LΘηr , Ỹ
xt,Lηt )− ∂νf(Θη′

r ,LΘη
′
r
, Ỹ

x′t,Lη′t ),

∆∂νf
(2) := ∂νf(Θη

r ,LΘηr , Ỹ
η̃t)− ∂νf(Θη′

r ,LΘη
′
r
, Ỹ η̃

′
t),

∆∂(y,z)f := ∂(y,z)f(Θη
r ,LΘηr )− ∂(y,z)f(Θη′

r ,LΘη
′
r

),

∆∂ωỸ := ∂ωt Ỹ
xt,Lηt − ∂ωt Ỹ

x′t,Lη′t .

Then, (∆U,∆V ) is the unique solution of BSDE

∆U(s) = ∆∂µΦ +

∫ T

s

Ẽ[∆∂µf ]dr +

∫ T

s

Ẽ[∂νf(Θη
r ,LΘηr , Ỹ

η̃)∆Ũ ]dr

+

∫ T

s

(∂yf(Θη
r ,LΘηr )∆U + ∂zf(Θη

r ,LΘηr )∆V )dr −
∫ T

s

∆V dB(r)

+

∫ T

s

Ẽ[(∆∂νf
(1))∂ωỸ

x′,η̃′ + (∆∂νf
(2))Ũ η̃

′,x′ ]dr

+

∫ T

s

Ẽ[∂νf(Θη
r ,LΘηr , Ỹ

x,Lη )∆∂ωỸ
x,Lη ]dr

+

∫ T

s

(
(∆∂yf)Uη

′,x′ + (∆∂zf)V η
′,x′
)
dr.

(4.63)
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By Lipschitz continuity of (∂(µ,ν,y,z)f, ∂µΦ), and boudnedness of ∂(y,z)f , we see that

‖∆∂µΦ‖2L2 + ‖
∫ T

t

Ẽ[∆∂µf ]dr‖2L2 + E[

∫ T

t

Ẽ(|∆∂νf (1)|2 + |∆∂νf (2)|2)dr]

+E[

∫ T

t

|∆∂yf |2dr] + E[

∫ T

t

|∆∂zf |2dr] (4.64)

≤ C(‖ηt − η′t‖2S2 + ‖xt − x′t‖2).

Moreover, since ∂ωỸ x
′,η̃′ , Ũη

′,x′ , Ỹ x,Lη , Ỹ η̃ ∈ S2, and V η
′,x′ ∈ H2, from the above estimate

and the Cauchy-Schwartz inequality, we obtain

‖
∫ T

s

Ẽ
[
(∆∂νf

(1))∂ωỸ
x′,η̃′ + (∆∂νf

(2))Ũ η̃
′,x′
]
dr‖L2

+ ‖
∫ T

s

(
(∆∂yf)Uη

′,x′ + (∆∂zf)V η
′,x′
)
dr‖L2

≤ C(‖ηt − η′t‖S2 + ‖xt − x′t‖).

(4.65)

According to estimates given in Lemma 4.6 and boundedness of ∂νf , we check that

‖
∫ T

s

|Ẽ[∂νf(Θη
r ,LΘηr , Ỹ

x,Lη )∆∂ωỸ
x,Lη ]|dr‖L2 ≤ C(‖ηt − η′t‖S2 + ‖xt − x′t‖). (4.66)

Then in view of Lemma 4.1, inequalities (4.64), (4.65) and (4.66), we obtain the desired
inequality (4.61).

Remark 4.12. Similar to Lemma 4.3, according to estimate (4.62), Uγt,Lηt ,xt := Uγt,ηt,xt

is well-defined.

Concerning the SVD ∂µτY
γt,ηt,· of Y γt,Lηt at (τ, t,Lη), τ ≤ t, in view of Definition 2.8 and

BSDE (4.54), we deduce that it is the unique solution of the following BSDE: for any
x ∈ DT,d, s ∈ [t, T ],

∂µτY
γt,ηt,xt(s) = Ẽ[∂µτΦ(Bγt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂µτ f(Θγt,ηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)∂µτY
γt,ηt,xt(r)dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂µτ Ỹ

η̃t,xt(r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωτ Ỹ

xt,Lηt (r)]dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)∂µτZ
γt,ηt,xt(r)dr

−
∫ T

s

∂µτZ
γt,ηt,xt(r)dB(r),

(4.67)
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where ∂µτY
ηt,xt sloves the mean-field BSDE below

∂µτY
ηt,xt(s) = Ẽ[∂µτΦ(Bηt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂µτ f(Θη
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θη
r ,LΘ

ηt
r

)∂µτY
ηt,xt(r)dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωτ Ỹ

xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂µτ Ỹ

η̃t,xt)(r)]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)∂µτZ
ηt,xt(r)dr −

∫ T

s

∂µτZ
ηt,xt(r)dB(r).

(4.68)

Thanks to Lemma 4.1 again, mean-field BSDE (4.68) has a unique solution (∂µτY
ηt,xt , ∂µτ

Zηt,xt) ∈ S2×H2. Then the well-posedness of equation (4.67) follows similarly. Moreover
we have that if τ = t,

∂µtY
γt,ηt,xt = Uγt,ηt,xt , ∂µtY

ηt,xt = Uηt,xt , (4.69)

and ∂µτY
ηt,xt = ∂µτY

γt,Lηt ,xt |γ=η. Thus the following lemma follows similarly as
Lemma 4.11.

Lemma 4.13. For any x, x′, γ, γ′ ∈ DT,d, and η, η′ ∈MD
2 , we have

‖∂µτY ηt,xt − ∂µτY η
′
t,x
′
t‖S2 ≤ C(‖ηt − η′t‖S2 + ‖xt − x′t‖), (4.70)

‖∂µτY γt,ηt,xt − ∂µτY γ
′
t,η
′
t,x
′
t‖S2 ≤ C(‖γt − γ′t‖+W2(Lηt ,Lη′t) + ‖xt − x′t‖), (4.71)

with C only depending on ‖ηt‖S2 + ‖η′t‖S2 .

Recall that Yγt,ηt,ξ is the solution of BSDE (4.28) and Uγt,ηt,xt solves equation (4.59).
The following lemma implies that Uγt,Lηt ,· := Uγt,ηt,· is the derivative of Y γt,Lηt with
respect to Lηt .
Lemma 4.14. For any ξ ∈ L2(Ft,Rd), we have

Yγt,ηt,ξ(s) = Ē[Uγt,Lηt ,η̄t(s)ξ̄], (4.72)

where (η̄, ξ̄) is an independent copy of (η, ξ).

Proof. Substitute η̄t for xt in equation (4.60) and multiply the equation by ξ̄. Then we
take the expectation Ē on both sides of the relation, and obtain

Ē[Uηt,η̄t(s)ξ̄] = Ē
[
Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̄t)]ξ̄

]
+

∫ T

s

Ē
[
Ẽ[∂µtf(Θη

r ,LΘ
ηt
r
, B̃η̄t)]ξ̄

]
dr

+

∫ T

s

∂yf(Θη
r ,LΘ

ηt
r

)Ē[Uηt,η̄t(r)ξ̄]dr

+

∫ T

s

Ē[Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̄t,Lηt )∂ωt Ỹ

η̄t,Lηt (r)]ξ̄]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)Ē[Ũ η̃t,η̄t(r)ξ̄]]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)Ē[V ηt,η̄t(r)ξ̄]dr −
∫ T

s

Ē[V ηt,η̄t(r)ξ̄]dB(r).

(4.73)
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Since random vectors (η̄, ξ̄), (B̃, Ỹ , Ũ), (B, Y, Z, η) are mutually independent, and (Bγt ,
Y γt,Lηt , ∂xtY

γt,Lηt ) is independent of Ft, we have

Ē
[
Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̄t)]ξ̄

]
= Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̃t)ξ̃],

Ē
[
Ẽ[∂µtf(Θη

r ,LΘ
ηt
r
, B̃η̄t)]ξ̄

]
= Ẽ[∂µtf(Θη

r ,LΘ
ηt
r
, B̃η̃t)ξ̃], and

Ē
[
Ẽ[∂νf(Θηt

r ,LΘ
ηt
r
, Ỹ η̄t,Lηt )∂xt Ỹ

η̄t,Lηt (r)]ξ̄
]

= Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂xt Ỹ

η̃t,Lηt (r)ξ̃].

Then identity (4.73) is equivalent to

Ē[Uηt,η̄t(s)ξ̄] =Ẽ[∂µtΦ(Bηt ,LBηt , B̃η̃t)ξ̃] +

∫ T

s

Ẽ[∂µtf(Θη
r ,LΘ

ηt
r
, B̃η̃t)ξ̃]dr

+

∫ T

s

∂yf(Θη
r ,LΘ

ηt
r

)Ē[Uηt,η̄t(r)ξ̄]dr −
∫ T

s

Ē[V ηt,η̄t(r)ξ̄]dB(r)

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ωt Ỹ

η̃t,Lηt (r)ξ̃]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)Ē[Ũ η̃t,η̄t(r)ξ̄]]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)Ē[V ηt,η̄t(r)ξ̄]dr,

and therefore (Ē[Uηt,η̄t(s)ξ̄], Ē[V ηt,η̄t(s)ξ̄]) satisfies BSDE (4.29). In view of uniqueness
of solutions of BSDE (4.29), we see Yηt,ξ = Ē[Uηt,η̄t(s)ξ̄]. Then identity (4.72) follows in
a similar way.

Theorem 4.15. Suppose that (Φ, f) satisfies Assumption (H1). For any (t, γ, η) ∈ [0, T ]×
DT,d ×MD

2 , Y γt,ηt is Fréchet differentiable with respect to ηt in the sense of (2.20) and
Remark 2.7. Moreover, the Fréchet derivative DηtY

γt,ηt has the following representation:
for any ξ ∈ L2(Ft,Rd),

DηtY
γt,ηt(s)(ξ) = Yγt,ηt,ξ(s) = Ē[Uγt,Lηt ,η̄t(s)ξ̄], (4.74)

where Yγt,ηt,ξ is the solution of BSDE (4.28) and Uγt,Lηt ,xt , x ∈ DT,d, is the solution of
BSDE (4.59). In particular, Uγt,Lηt ,· is the vertical derivative of Y γt,Lηt at Lηt in the
sense of (2.22) and Remark 2.7.

Proof. According to inequality (4.34) and argument therein, we see that Yγt,ηt,· is a
bounded linear operator from L2(Ft,Rd) to S2([t, T ]). Moreover, in view of Lemma 4.9,
for any ξ ∈ L2(Ft,Rd), Yγt,ηt,ξ is the Gâteaux derivative of Y γt,ηt with respect to ηt.
To show Yγt,ηt,· is the Fréchet derivative of Y γt,ηt , it suffices to prove that Yγt,ηt,· is
continuous in ηt ∈ S2([0, t]) as a linear bounded operator from L2(Ft) to S2([t, T ]). Indeed,
due to the representation (4.72) and estimate (4.62), we have that for any η, η′ ∈MD

2 ,

‖Yγt,ηt,ξ − Yγt,η
′
t,ξ‖2S2 = E‖Ē[Uγt,Lηt ,η̄t(s)ξ̄]− Ē[U

γt,Lη′t ,η̄
′
t(s)ξ̄]‖2 ≤ C‖ξ̄‖2L2‖η̄t − η̄′t‖2S2 .

Thus we have the following estimate and complete our proof

‖Yγt,ηt,· − Yγt,η
′
t,·‖L(L2(Ft),S2) ≤ C‖η̄t − η̄′t‖2S2 .
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For the strong vertical differentiability of Y γt,ηt at (τ, t,Lη), similar as the proof of
Lemma 4.14, we have that for any ξ ∈ L2(Fτ ,Rd),

∂ητY
γt,ηt,ξ(s) = Ē[∂µτY

γt,Lηt ,η̄t(s)ξ̄]. (4.75)

Moreover, the following proposition implies that ∂µτY
γt,Lηt ,· is the SVD of Y γt,ηt at

(τ, t,Lη), the proof of which follows from Lemma 4.10, Lemma 4.13 and identity (4.75).

Proposition 4.16. For any (t, γ, η) ∈ [0, T ]×DT,d ×MD
2 and τ ∈ [0, t], Y γt,ηt is Fréchet

differentiable with respect to ητ in the sense of (2.23) and Remark 2.9. Moreover, the
Fréchet derivative DητY

γt,ηt has the representation: for any ξ ∈ L2(Fτ ,Rd)

DητY
γt,ηt(s)(ξ) = ∂ητY

γt,ηt,ξ(s) = Ē[∂µτY
γt,Lηt ,η̄t(s)ξ̄], (4.76)

where ∂ητY
γt,ηt,ξ is the solution of BSDE (4.54) and ∂µτY

γt,Lηt ,xt , x ∈ DT,d, is the solution
of BSDE (4.67).

4.2 Second-order differentiability

In this section, results are written in d = 1 case for simplicity of notations. For the
second order differentiability of Y γt,ηt , we assume that (Φ, f) satisfies assumption (H2).

According to Proposition 4.6, Y γt,ηt is strongly vertically differentiable at (t, γ), and
the derivative ∂ωτY

γt,ηt at (τ, t, γ) solves the linear BSDE (4.24). Similarly, in view of
(H2), we see that ∂ωτY

γt,ηt is strongly vertically differentiable at (τ, t, γ), and moreover,
the derivative ∂2

ωτY
γt,ηt is the unique solution of BSDE in the form of (4.1). To apply

Theorem 2.12 on Y γt,ηt , it remains to study the differentiability of ∂µtY
γt,ηt(xt) = Uγt,ηt,xt

with respect to xt ∈ DT,d. Since Uγt,ηt,xt is the unique solution of BSDE (4.59), by
formally taking vertical derivative at (t, x), we obtain the following linear BSDE: for
s ∈ [t, T ],

∂ω̃tU
γt,ηt,xt(s)

= Ẽ[∂ω̃t∂µtΦ(Bγt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂ω̃t∂µtf(Θγt,ηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)∂ω̃tU
γt,ηt,xt(r)dr

+

∫ T

s

Ẽ[∂ỹ∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωt Ỹ

xt,Lηt (∂ωt Ỹ
xt,Lηt )T (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂2

ωt Ỹ
xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ω̃tŨ

η̃t,xt(r)]dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)∂ω̃tV
γt,ηt,xt(r)dr −

∫ T

s

∂ω̃tV
γt,ηt,xt(r) dB(r), (4.77)
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where ∂ω̃tU
ηt,xt solves a mean-field linear BSDE

∂ω̃tU
ηt,xt(s)

= Ẽ[∂ω̃t∂µtΦ(Bηt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂ω̃t∂µtf(Θηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θηt
r ,LΘ

ηt
r

)∂ω̃tU
ηt,xt(r)dr

+

∫ T

s

Ẽ[∂ỹ∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωt Ỹ

xt,Lηt (∂ωt Ỹ
xt,Lηt )T (r)]dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂2

ωt Ỹ
xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ω̃tŨ

η̃t,xt(r)]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)∂ω̃tV
ηt,xt(r)dr −

∫ T

s

∂ω̃tV
ηt,xt(r) dB(r).

(4.78)

Lemma 4.17. There exist unique solutions (∂ω̃tU
ηt,xt , ∂ω̃tV

ηt,xt) ∈ S2([t, T ])×H2([t, T ])

and (∂ω̃tU
γt,ηt,xt , ∂ω̃tV

γt,ηt,xt) ∈ Sp([t, T ]) ×Hp([t, T ]) of equations (4.78) and (4.77), re-
spectively. Moreover, ∂ω̃tU

γt,ηt,xt is the vertical derivative of Uγt,ηt,xt at (t, x), and for
any K > 0 and (γ, η, x), (γ′, η′, x′) ∈ DT,d ×MD

2 ×DT,d such that |||Lηt |||, |||Lη′t ||| ≤ K,

‖(∂ω̃tUγt,ηt,xt , ∂ω̃tV γt,ηt,xt)‖Sp×Hp ≤ Cp,

‖(∂ω̃tUγt,ηt,xt − ∂ω̃tUγ
′
t,η
′
t,x
′
t , ∂ω̃tV

γt,ηt,xt − ∂ω̃tV γ
′
t,η
′
t,x
′
t)‖Sp×Hp

≤ CK,p(‖xt − x′t‖+W2(Lηt ,Lη′t) + ‖γt − γ′t‖),
(4.79)

with some constants Cp and CK,p.

Proof. To show the well-posedness of (4.78), according to Lemma 4.1, it remains to
check the following terms belong to L2(FT ),∣∣∣Ẽ[∂ω̃t∂µtΦ(Bηt ,LBηt , B̃xt)]

∣∣∣, ∫ T

t

∣∣∣Ẽ[∂ω̃t∂µtf(Θηt
r ,LΘ

ηt
r
, B̃xt)]

∣∣∣dr,∫ T

t

∣∣∣Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂2

ωt Ỹ
xt,Lηt (r)]

∣∣∣dr, and∫ T

t

∣∣∣Ẽ[∂ỹ∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωt Ỹ

xt,Lηt (∂ωt Ỹ
xt,Lηt (r))T ]

∣∣∣,
which follows easily by the boundedness of (∂ω̃t∂µtΦ, ∂ω̃t∂µtf, ∂νf, ∂ỹ∂νf) and Proposi-
tion 4.6. Moreover, we have

‖∂ω̃tUηt,xt‖S2 + ‖∂ω̃tV ηt,xt‖H2 ≤ Cp,

‖∂ω̃tUηt,xt − ∂ω̃tUη
′
t,x
′
t‖S2 + ‖∂ω̃tV ηt,xt − ∂ω̃tV η

′
t,x
′
t‖H2 ≤ CK,p(‖xt − x′t‖+ ‖ηt − η′t‖S2).

Concerning the well-posedness of (4.77), since (∂ω̃tU
ηt,xt , ∂ω̃tV

ηt,xt) ∈ S2 ×H2, we have∫ T

t

∣∣∣Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ω̃tŨ

η̃t,xt(r)]
∣∣∣dr ∈ Lp(FT ),

and therefore, there exists a unique solution (∂ω̃tU
γt,ηt,xt , ∂ω̃tV

γt,ηt,xt) ∈ Sp × Hp. In
view of the boundedness of (∂ω̃t∂µtΦ, ∂ω̃t∂µtf, ∂ỹ∂νf, ∂yf, ∂zf) and standard estimate for
BSDEs, we have our desired estimates.
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Recall that ∂µτY
γt,ηt,xt is the solution of BSDE (4.67). To prove the strong vertical

differentiability of ∂µτY
γt,ηt,xt at (τ, t, x), we consider BSDE

∂ω̃τ∂µτY
γt,ηt,xt(s)

= Ẽ[∂ω̃τ∂µτΦ(Bγt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂ω̃τ∂µτ f(Θγt,ηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θγt,ηt
r ,LΘ

ηt
r

)∂ω̃τ∂µτY
γt,ηt,xt(r)dr

+

∫ T

s

Ẽ[∂ỹ∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ωτ Ỹ

xt,Lηt (∂ωτ Ỹ
xt,Lηt (r))T ]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂2

ωτ Ỹ
xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θγt,ηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ω̃τ∂µτ Ỹ

η̃t,xt(r)]dr

+

∫ T

s

∂zf(Θγt,ηt
r ,LΘ

ηt
r

)∂ω̃τ∂µτZ
γt,ηt,xt(r)dr

−
∫ T

s

∂ω̃τ∂µτZ
γt,ηt,xt(r) dB(r), s ∈ [t, T ],

(4.80)

where ∂ω̃τ∂µτY
ηt,xt solves the following mean-field linear BSDE

∂ω̃τ∂µτY
ηt,xt(s)

= Ẽ[∂ω̃τ∂µτΦ(Bηt ,LBηt , B̃xt)] +

∫ T

s

Ẽ[∂ω̃τ∂µτ f(Θηt
r ,LΘ

ηt
r
, B̃xt)]dr

+

∫ T

s

∂yf(Θηt
r ,LΘ

ηt
r

)∂ω̃τ∂µτY
ηt,xt(r)dr

+

∫ T

s

Ẽ[∂ỹ∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂ω̃τ Ỹ

xt,Lηt (∂ω̃τ Ỹ
xt,Lηt (r))T ]dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ xt,Lηt )∂2

ωτ Ỹ
xt,Lηt (r)]dr

+

∫ T

s

Ẽ[∂νf(Θηt
r ,LΘ

ηt
r
, Ỹ η̃t)∂ω̃τ∂µτ Ỹ

η̃t,xt(r)]dr

+

∫ T

s

∂zf(Θηt
r ,LΘ

ηt
r

)∂ω̃τ∂µτZ
ηt,xt(r)dr −

∫ T

s

∂ω̃τ∂µτZ
ηt,xt(r) dB(r).

(4.81)

Then we have the following lemma via a similar proof of Lemma 4.17.

Lemma 4.18. There exists a unique solution (∂ω̃τ∂µτY
γt,ηt,xt , ∂ω̃τ∂µτZ

γt,ηt,xt) of
BSDE (4.80). Moreover, ∂ω̃τ∂µτY

γt,ηt,xt is the SVD of ∂µτY
γt,ηt,xt at (τ, t, x), and for

any K > 0,

‖(∂ω̃τ∂µτY γt,ηt,xt , ∂ω̃τ∂µτZγt,ηt,xt)‖Sp×Hp ≤ Cp,

‖(∂ω̃τ∂µτY γt,ηt,xt − ∂ω̃τ∂µτY γ
′
t,η
′
t,x
′
t , ∂ω̃τ∂µτZ

γt,ηt,xt − ∂ω̃τ∂µτZγ
′
t,η
′
t,x
′
t)‖Sp×Hp

≤ CK,p(‖xt − x′t‖+W2(Lηt ,Lη′t) + ‖γt − γ′t‖),
∀ (γ, η, x), (γ′, η′, x′) ∈ DT,d ×MD

2 ×DT,d such that |||Lηt |||, |||Lη′t ||| ≤ K,

(4.82)

with some constants Cp and CK,p.
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5 Appendix

5.1 Proof of Lemma 4.3

We omit the proof of inequality (4.14) since it is similar to that of (4.15) for p = 2. Now
suppose that (4.14) is true, and we show inquality (4.16) first. In what follows, we write
(Y,Z) := (Y ηt , Zηt) and notations such as (Y ′,Z ′) and (Φ,Φ′) are defined in a similar way.
Set (δY, δZ) := (Y − Y ′,Z − Z ′). We see that (δY, δZ) solves the following linearized
BSDE

δY(s) = Φ− Φ′ +

∫ T

s

[f(Θη
r ,LΘηr )− f(Θη′

r ,LΘη
′
r

)]dr −
∫ T

s

δZ(r)dB(r)

=: δΦ +

∫ T

s

(
arδY(r) + brδZ(r) + Ẽ[c̃rδỸ(r)] + δhr

)
dr −

∫ T

s

δZ(r)dB(r),

(5.1)

where

ar :=

∫ 1

0

∂yf(Bηtr ,Y ′ + θ(Y − Y ′),Z,LΘηr )dθ,

br :=

∫ 1

0

∂zf(Bηtr ,Y ′,Z ′ + θ(Z − Z ′),LΘ
ηt
r

)dθ,

c̃r :=

∫ 1

0

∂νf(Bηtr ,Y ′,Z ′,LBηtr ,LY′+θ(Y−Y′), Ỹ
′ + θ(Ỹ − Ỹ ′))dθ, and

δhr := f(Bηtr ,Y ′,Z ′,LBηtr ,LỸ′)− f(B
η′t
r ,Y ′,Z ′,L

B
η′t
r

,LỸ′).

Let

F (Θη
t , y1, y2) :=

∫ 1

0

∂νf(Bηtr ,Y ′,Z ′,LBηtr ,LY′+θ(Y−Y′), y1 + θy2)dθ.

Then, F is uniformly Lipschitz continuous in (y1, y2) in view of Assumption (H0). On the
other hand, since Y ′,Z ′ ∈ H2, we deduce that F (Θη

t , 0, 0) ∈ H2, and moreover, we have

‖Y‖H2 + ‖Y ′‖H2 + ‖F (Θη
t , 0, 0)‖H2 ≤ C(1 + ‖ηt‖S2 + ‖η′t‖S2). (5.2)

Then applying estimates of Lemma 4.1 to BSDE (5.1), we have

‖δY‖2S2 + ‖δZ‖2H2 ≤ C(‖Φ− Φ′‖2L2 + ‖δh‖2H2)eC(‖F (Θηt ,0,0)‖
H2+‖(Y,Y′)‖

H2 ). (5.3)

Furthermore, using the Lipschitz continuity of Φ and f , we have

‖Φ− Φ′‖L2 + ‖δh‖H2 ≤ C‖ηt − η′t‖S2 , (5.4)

and thus the desired estimate (4.16) in view of inequality (5.3).
Now we show inequalities (4.15). In what follows, we omit the superscript (γt, ηt) for
simplicity. Without loss of generality, we assume p = 2q, q ∈ Z+. Otherwise, we replace
|Y | with (|Y |2 + ε)

1
2 in the following argument and then take the limit ε→ 0. Applying

Itô’s formula to |Y |p on [s, T ], we have

|Y (s)|p +
1

2
p(p− 1)

∫ T

s

|Y |p−2|Z|2dr

= |Φ(BγtT ,LBηtT )|p + p

∫ T

s

|Y (r)|p−1f(Θγt,ηt
r ,LΘ

ηt
r

)dr − p
∫ T

s

|Y (r)|p−1Z(r)dB(r).

(5.5)

Since Φ and f are Lipschitz continuous, we have

Φ(BγtT ,LBηtT ),

∫ T

t

f(Bγtr , 0, 0,LBηtr ,LY ηt (r))dr ∈ L
q(FT ), ∀q ≥ 1.
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Then, using standard estimates of BSDEs, we obtain ‖Y ‖Sq + ‖Z‖Hq < ∞. Taking the
expectation on both sides of identity (5.5), we have

E[|Y (s)|p+
1

2
p(p−1)

∫ T

s

|Y |p−2|Z|2dr] ≤ E[|Φ|p]+p

∫ T

s

|Y (r)|p−1f(Θγt,ηt
r ,LΘ

ηt
r

)dr. (5.6)

Applying Young’s inequality to the last integral, we have

∫ T

s

|Y (r)|p−1f(Θγt,ηt
r ,LΘ

ηt
r

)dr

≤
∫ T

s

[
|Y |p−1f(Bγtr , 0, 0,LBηtr , δ0)dr + C|Y |p + C|Y |p−1[Ẽ[|Ỹ η̃t(r)|2]]

1
2 + C|Y |p−1|Z|

]
dr

≤ (Cp +
C

ε
)

∫ T

s

|Y |pdr +
1

p

∫ T

s

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr

+ εC

∫ T

s

|Y |p−2|Z|2dr +
C

2p

∫ T

s

‖Ỹ η̃t(r)‖pL2dr, ∀ε > 0.

(5.7)

Then by choosing a small enough ε such that 1
2p(p− 1)− εC > 0, we obtain

E[|Y (s)|p + Cp

∫ T

s

|Y (r)|p−2|Z(r)|2dr]

≤ E[|Φ(BγtT ,LBηtT )|p] + Cp

∫ T

s

[|f(Bγtr , 0, 0,LBηtr , δ0)|pdr +

∫ T

s

|Y |pdr]

+

∫ T

s

‖Ỹ η̃t(r)‖pL2dr.

(5.8)

Apply Gronwall’s inequality to (5.8), and we obtain

E[|Y (s)|p + Cp

∫ T

s

|Y (r)|p−2|Z(r)|2dr]

≤ CpE[|Φ(BγtT ,LBηtT )|p +

∫ T

s

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr] +

∫ T

s

‖Ỹ η̃t(r)‖pL2dr.

(5.9)

Then in view of inequalities (5.7) and (5.5), choosing ε sufficiently small, we have

|Y (s)|p ≤ |Φ(BγtT ,LBηtT )|p + Cp

[ ∫ T

s

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr

+

∫ T

s

|Y (r)|pdr +

∫ T

s

‖Y ηt(r)‖pL2
dr
]
− p

∫ T

s

|Y |p−1Z(r)dB(r).

(5.10)

Applying Burkholder-Davis-Gundy inequality to the right hand side of inequality (5.10),
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we obtain

E[ sup
s∈[t,T ]

|Y (s)|p] ≤ E
[
|Φ(BγtT ,LBηtT )|p

]
+ CpE

∫ T

t

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr

+ CpE

∫ T

s

‖Y ηt(r)‖pL2
dr + CpE

∫ T

t

|Y (r)|pdr

+ CpE

[(∫ T

t

|Y |2p−2|Z|2dr
) 1

2

]

≤ E
[
|Φ(BγtT ,LBηtT )|p

]
+ CpE

∫ T

t

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr

+ CpE

∫ T

s

‖Y ηt(r)‖pL2
dr + CpE

∫ T

t

|Y (r)|pdr

+ εE

[
sup
s∈[t,T ]

|Y (s)|p
]

+
1

4ε
E

[∫ T

t

|Y |p−2|Z|2dr

]
.

(5.11)

Then in view of (5.9), (4.14) and (5.11), for sufficiently small ε, we have

E

[
sup
s∈[t,T ]

|Y (s)|p
]

≤ CpE
[
|Φ(BγtT ,LBηtT )|p

]
+ CpE

∫ T

t

|f(Bγtr , 0, 0,LBηtr , δ0)|pdr

+ CpE

[∫ T

s

‖Y ηt(r)‖pL2
dr

]
≤ Cp

(
1 + E[‖Bγt‖p] + ‖‖Bηt‖‖pL2

+ ‖‖ηt‖‖pL2

)
≤ Cp

(
1 + E [(‖B‖+ ‖γt‖)p] + E

[
(‖B‖+ ‖ηt‖)2

] p
2 + ‖‖ηt‖‖pL2

)
≤ Cp

(
1 + ‖γt‖p + ‖‖ηt‖‖pL2

)
.

(5.12)

Let f̃(Y, Z) := f(Bγtr , Y, Z,LBηtr ,LY ηt (r)). Using a standard argument of BSDEs, we have

E[|
∫ T

t

|Z|2dr|
p
2 ] ≤CpE

[
|Φ(BγtT ,LBηtT )|p +

∫ T

t

|f̃(0, 0)|pdr + Cp

∫ T

s

‖Y (r)‖pL2
dr

]

+ CpE

[
sup
s∈[t,T ]

|Y (s)|p
]
≤ Cp(1 + ‖γt‖p + ‖‖ηt‖‖pL2

),

and thus (4.15).
It remains to prove (4.17). Note that (δY, δZ) := (Y − Y ′, Z − Z ′) solves the following
linearized BSDE

δY (s) = Φ− Φ′ +

∫ T

s

[f(Θr,LΘ
ηt
r

)− f(Θ′r,LΘ
η′t
r

)]dr −
∫ T

s

δZ(r)dB(r)

=: δΦ +

∫ T

s

(
αrδY (r) + βrδZ(r) + δhr + δfr

)
dr −

∫ T

s

δZ(r)dB(r),

(5.13)

where

αr :=

∫ 1

0

∂yf(Bγtr , Y
′ + θ(Y − Y ′), Z,LΘr )dθ,
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βr :=

∫ 1

0

∂zf(Bγtr , Y
′, Z + θ(Z − Z ′),LΘr )dθ, δỸ η := Ỹ η̃ − Ỹ η̃

′
,

δhr := f(Bγtr , Y
′, Z ′,LBηtr ,LY ηt )− f(Bγtr , Y

′, Z ′,LBηtr ,LY η′t ), and

δfr := f(Bγtr , Y
′, Z ′,LBηtr ,LY η′t )− f(B

γ′t
r , Y

′, Z ′,L
B
η′t
r

,L
Y η
′
t
).

Using the Lipschitz continuity of f in (y, z) and standard estimate for linear BSDEs (see
e.g. [4]), we have

E
[

sup
s∈[t,T ]

|δY (s)|p + (

∫ T

t

|δZ(s)|2ds)
p
2

]
≤ Cp

(
E|δΦ|p + E

∣∣∣ ∫ T

t

(δhr + δfr)dr
∣∣∣p). (5.14)

Then, in view of estimate (4.16), we have

E|δΦ|p + E|
∫ T

t

δhrdr|p + E|
∫ T

t

δfrdr|p ≤ CK(‖γt − γ′t‖p +W2(Lηt ,Lη′t)
p), (5.15)

and thus the desired estimate (4.17).

5.2 An extension of [46, Theorem 4.5] without assumption of local Lipschitz
continuity in time

Lemma 5.1. Let non-anticipative functional f : [0, T ]×DT,d ×R×Rd 7→ R lie in C 0,2,2,2
s .

Assume that for any t ∈ [0, T ] and τ ≤ t, f and all its derivatives are locally Lipschitz
continuous on DT,d: for φ(t, ·) = (I, ∂ωτ , ∂

2
ωτ )f(t, ·, 0, 0),

|φ(t, ω)− φ(t, ω′)| ≤ C(1 + ‖ωt‖k + ‖ω′t‖k)(‖ωt − ω′t‖), ∀ (ω, ω′) ∈ D2
T,d, (5.16)

for some constant C and integer k. Moreover, suppose that the first-order derivatives in
(y, z), as well as their first-order derivatives w.r.t. (ωτ , y, z) are uniformly bounded. If Φ

satisfies (4.23), there is a unique classical solution of the following PPDE
∂tu(t, γ) + 1

2Tr [∂2
ωu(t, γ)] + f(t, γ, u(t, γ), ∂ωu(t, γ)) = 0,

u(T, γ) = Φ(γT ), (t, γ) ∈ [0, T ]× CT,d.
(5.17)

Proof. The uniqueness is a consequence of that of the following non-Markovian BSDE

Y γt(s) = Φ(BγtT ) +

∫ T

s

f(r,Bγt , Y γt(r), Zγt(r))dr −
∫ T

s

Zγt(r)dB(r). (5.18)

We now sketch the proof of the existence. Set

u(t, γ) := Y γt(t). (5.19)

Similar to that of [46, Theorems 3.9 and 3.10], we have u ∈ C 0,2
s,p and moreover,

u(s,Bγt) = Y γt(s), ∂ωtu(s,Bγt) = Zγt(s), s ≥ t. (5.20)

Then, applying the partial Itô formula (3.26), we have that for any δ > 0,

u(t+ δ, γt)− u(t, γt)

= u(t+ δ, γt)− E[u(t+ δ,Bγt)] + E[u(t+ δ,Bγt)]− u(t, γt)

= E

[
−
∫ t+δ

t

∂ωru(t+ δ,Bγtr )dB(r)− 1

2

∫ t+δ

t

Tr[∂2
ωru(t+ δ,Bγtr )]dr

]

+ E

[
−
∫ t+δ

t

f(r,Bγt , Y γt(r), Zγt(r))dr

]
.

Dividing both sides of the above identity by δ and taking δ → 0, we complete the proof.
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