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Abstract

We present a coupling framework to upper bound the total variation mixing time of
various Metropolis-adjusted, gradient-based Markov kernels in the ‘high acceptance
regime’. The approach uses a localization argument to boost local mixing of the
underlying unadjusted kernel to mixing of the adjusted kernel when the acceptance
rate is suitably high. As an application, mixing time guarantees are developed for a
non-reversible, adjusted Markov chain based on the kinetic Langevin diffusion, where
little is currently understood.
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1 Introduction

A nearly universal ingredient to gradient-based Markov chain Monte Carlo (MCMC)
kernels are time discretizations of measure-preserving SDEs or PDMPs such as the
kinetic Langevin diffusion and Andersen dynamics [74, 28, 60, 37, 11, 42, 26, 52, 7].
These kernels are gradient-based in the sense that they incorporate and rely on eval-
uation of the gradient of the log-density of the target distribution. In practice, the
asymptotic bias due to time discretization is either incurred (leading to unadjusted
kernels) or eliminated by a Metropolis-Hastings filter (leading to adjusted kernels). In
either case, a question that is both fundamental mathematically and crucial to appli-
cations is [29, 63, 27, 57, 83, 68, 30]: Starting from a distribution ν, how many steps
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Mixing of Metropolis-adjusted Markov chains

n ∈ N are sufficient for the n-step distribution of the Markov chain to be an ε-accurate
approximation of the stationary distribution in total variation? The smallest such number
of steps is the so-called ε-mixing time of the Markov chain from the initial distribution ν.

Recently, there has been significant progress in quantifying the mixing time of
unadjusted, gradient-based kernels including the unadjusted Langevin algorithm [33, 23,
34, 43], unadjusted HMC [12, 8, 67], and various unadjusted chains based on the kinetic
Langevin diffusion [21, 24, 65, 67]; see [31] for a unified and comprehensive treatment
of unadjusted MCMC methods. These works give explicit upper bounds on the mixing
time and complexity, which reveal that the time step size required to adequately resolve
the asymptotic bias depends substantially on the accuracy ε. This potentially costly
dependence motivates Metropolis adjustment, which eliminates the asymptotic bias by
employing a Metropolis-Hastings filter. Intuitively speaking, it ensures the proportion
of steps the adjusted chain spends in a given region equals the measure of that region
with respect to the stationary distribution [62, 49, 29, 82, 4, 27, 2]. As a consequence,
though, the adjusted chain involves a complex interplay between the transition step of
the unadjusted kernel and the stationary distribution; to quote Bilera & Diaconis [2001],
“for many people... the Metropolis-Hastings algorithm seems like a magic trick. It is hard
to see where it comes from or why it works.” Needless to say, the mixing time analysis
of adjusted kernels is mathematically more delicate than of unadjusted kernels.

Intrinsically capturing the interplay described above, the notion of conductance has
played a significant role in quantifying the mixing time of adjusted kernels. Classical
conductance arguments are commonly used to identify bottlenecks, which yield mixing
time lower bounds [54, 53, 22]. For adjusted kernels that in addition are reversible,
conductance arguments can be adapted to obtain mixing time upper bounds; see, e.g., for
MALA and HMC [22, 85, 19]. While these works make mild assumptions on the stationary
distribution (e.g. isoperimetric inequalities) and often yield sharp mixing time upper
bounds, a warm start assumption is inevitable. In particular, these mixing time upper
bounds typically depend logarithmically on the L∞-norm of the relative density of the
initial to the stationary distribution; see [18, 53] for progress towards double-logarithmic
dependence and [1] for sampling from a warm start. Beyond asymptotic scaling limits
[71], current mathematical tools are limited in their ability to obtain rigorous quantitative
mixing time upper bounds for non-reversible adjusted kernels, even from warm starting
distributions.

As a step towards filling the gap in capability outlined above, in this work we introduce
a new coupling framework to obtain mixing time guarantees for Metropolis-adjusted,
gradient-based Markov chains. Let ε > 0 be the desired total variation (TV) accuracy. The
underlying idea is to fix an epoch E > 0 of steps such that two copies of the unadjusted
chain given by the kernel πu starting from different initial conditions x and x̃ meet with
probability at least 1− (3e)−1 after E steps, i.e.,

‖δx(πu)E − δx̃(πu)E‖TV ≤ (3e)−1 , (1.1)

where we used the coupling characterization of the TV distance ‖ · ‖TV. A standard way
to ensure (1.1) is to use a contractive coupling for E− 1 steps, followed by a one-shot
coupling [72, 59, 42, 65, 8]. The time step size is then tuned such that the probability of
a rejection occurring in this epoch is at most 2(3e)−1, and crucially, this tuning is at most
logarithmic in 1/ε. Hence, after one epoch, the adjusted kernel π satisfies

‖δxπE − δx̃πE‖TV ≤ e−1 . (1.2)

Therefore, after dlog(1/ε)e epochs, it immediately follows that there exists a coupling of
the adjusted kernel which meets with probability at least 1− ε. Iterating the epochs is an
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Mixing of Metropolis-adjusted Markov chains

important step in this new coupling approach, and without this iteration, as Monmarché
noted in [65], the aforementioned proof fails to capture a logarithmic scaling of the
mixing time with respect to 1/ε.

Stated precisely in Theorem 2.3, the main result of this paper provides a broadly ap-
plicable coupling framework to obtain mixing time upper bounds for Metropolis-adjusted,
gradient-based Markov chains without imposing restrictive assumptions on either the
stationary or the starting distribution. In essence, the theorem uses a localization argu-
ment to boost local mixing of the unadjusted kernel to mixing of the adjusted kernel when
the Metropolis filter intervenes over each epoch with sufficiently low probability, i.e., in
the high acceptance regime: a notion that is made precise in §2.1. The low acceptance
regime, allowing for more frequent rejection, falls beyond the scope of this work. As a
nontrivial application of Theorem 2.3, in §3 we develop mixing time upper bounds for a
non-reversible, adjusted Markov chain based on the kinetic Langevin diffusion.

Complementary literature

Here we briefly highlight some complementary literature on related but different prob-
abilistic techniques for mixing time analysis. In recent years, there has been progress
in developing couplings for a variety of Metropolis-adjusted, gradient-based chains
whose stationary distributions display high-dimensionality and/or non-logconcavity. In
particular, dimension-free upper bounds in Wasserstein distance have been developed
for a variant of MALA suitable for perturbations of Gaussian measures in high dimen-
sions [38]. Moreover, a coupling of adjusted HMC that is contractive in non-logconcave
settings was introduced in [9]; this coupling offers flexibility for extensions/applications
[50, 6, 12]. For MALA and related Markov chains, coupling-based contractivity results
are also available in distances that interpolate between L1-Wasserstein and TV [42].
Moreover, a variety of couplings tailored to Metropolis-Hastings kernels, including max-
imal couplings, have recently been proposed for MCMC convergence analysis in high
dimensions [50, 51, 84, 70]. In addition, there is a considerable and growing body of
work devoted to Harris Ergodic Theorem, which is a very powerful tool for verifying
geometric ergodicity of Markov chains [63, 64, 76, 73, 45, 36]; for a simple and elegant
proof see [46]. Over the years there have been many successful applications of this
tool including [61, 75, 60, 81, 10, 48, 15, 32, 58, 36], just to cite a few. There have also
been significant advances in refining Harris Ergodic Theorem to obtain more explicit
quantitative bounds under more easily verifiable conditions [47, 41, 25, 35, 86].

2 Main result

Let (Ω,A,P) be a probability space and let S be a Polish state space with metric
d and Borel σ-algebra B. Denote by P(S) the set of probability distributions on (S,B).
Let µ ∈ P(S). A standard way to construct a gradient-based, ergodic Markov chain
with stationary distribution µ is to first construct a µ-preserving, ergodic Markov chain
with transition kernel πexact from the exact flow of a µ-preserving SDE or PDMP. Both
for theoretical purposes and for implementability in applications, it can be desirable
to replace the exact flow in πexact by an approximate flow based on time-discretization,
which yields an unadjusted Markov transition kernel πu. However, this unadjusted kernel
has the significant drawback that µπu 6= µ. Resolving the resulting asymptotic bias in
applications can be infeasible. Metropolis-adjustment provides a tool for correcting the
stationary distribution and produces an adjusted transition kernel π satisfying µπ = µ.
More precisely, we consider transition steps X ∼ π(x, ·) that for ω ∈ Ω are of the general
form

X(ω) = Φ(ω, x)1A(x)(ω) + Ψ(ω, x)1A(x)c(ω) , (2.1)
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where Φ,Ψ : Ω × S → S are product measurable and such that Φ(·, x) ∼ πu(x, ·) and
Ψ(·, x) ∼ πr(x, ·) for all x ∈ S, where πr, like πu, is a probability kernel on (S,B).
Hereafter, we omit ω from the notation, writing Φ(·, x) = Φ(x) and Ψ(·, x) = Ψ(x). The
indicator function of the event A(x) = {U ≤ α(x,Φ(x))} ⊆ Ω with an independent
U ∼ Unif(0, 1) indicates that the proposal Φ(x) is accepted. Otherwise the proposal is
rejected, in which case the chain is allowed to move according to Ψ.

2.1 The high acceptance regime

We now introduce the high acceptance regime, in which acceptance occurs sufficiently
often such that the adjusted kernel inherits mixing properties of the exact kernel. The
TV-mixing time of πexact started in the distribution η ∈ P(S) to a specified accuracy δ > 0

is defined by

τexactmix (δ, η) = inf
{
n ≥ 0 : ‖η(πexact)n − µ‖TV ≤ δ

}
. (2.2)

The high acceptance regime is characterized by the reject probabilities being suitably
controlled over a time scale set by the mixing time of the exact kernel. By comparison,
this will yield a mixing time upper bound for the adjusted kernel.

Definition 2.1. On a collection C ⊆ P(S) such that {ηπ : η ∈ C} ⊆ C, π is in the high
acceptance regime, if

sup
η∈C

τexactmix

(
(3e)−1, η

)
· sup
η∈C

Px∼η
(
A(x)c

)
≤ (3e)−1 , (2.3)

where we integrate over both x ∼ η and U in Px∼η.

A key feature of Definition 2.1 is that the restrictiveness of the condition (2.3) strongly
depends on the choice of C: the larger the collection C, the more restrictive (2.3) becomes.
In one extreme C = {µ}, the adjusted kernel is always in the high acceptance regime
since the left hand side of (2.3) trivially vanishes. This work is concerned with the other
extreme: cold start distributions corresponding to C including distributions which may
not even be absolutely continuous with respect to µ. This feature of the definition is
what motivates formulating the high acceptance regime in terms of πexact.

2.2 Mixing in the high acceptance regime

Assumption 2.2 stated below is geared towards the high acceptance regime defined
in Definition 2.1 with C including cold start distributions. Under Assumption 2.2, Theo-
rem 2.3 gives mixing time upper bounds for the adjusted kernel. To better understand
Assumption 2.2, a brief description is provided.

The possibility of cold start distributions motivates using pointwise acceptance prob-
ability bounds for the adjusted chain. However, since such bounds often degenerate at
infinity, Assumption 2.2 (iv) is introduced to localize the adjusted chain to a bounded do-
main D ⊆ S with sufficiently high probability. By association, the underlying unadjusted
chain is similarly localized to D.

In this domain, and intuitively speaking, Assumption 2.2 (i) and (ii) require that
the underlying unadjusted kernel admits a locally successful coupling. More precisely,
Assumption 2.2 (i) assumes there exists a coupling for πu that is locally contractive in D;
and Assumption 2.2 (ii) assumes there exists a local one-shot coupling for πu in D.

Although stated in a slightly different way, the main idea underlying Assumption 2.2
(iii) is (2.3). Indeed, the epoch E of transition steps appearing in (iii) is defined in such
a way that by (i) and (ii), there exists a coupling of two copies of the unadjusted chain
starting at two different initial conditions within D that induces meeting with probability
at least 1− (3e)−1; therefore, this epoch E is analogous to supη∈C τ

exact
mix

(
(3e)−1, η

)
in (2.3).
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Denote by ∆ the diagonal in the product space S × S. The couplings appearing in
Assumption 2.2 are all assumed to be faithful. Recall that a coupling Π is faithful if
Π((x, x),∆) = 1 for all x ∈ S. Couplings of the adjusted kernel inherit this property from
couplings of the unadjusted kernel if a synchronous coupling of the underlying uniform
random variables in the Metropolis filter is used.

Similarly to (2.2), define the TV-mixing time of the adjusted kernel with initial
distribution η ∈ P(S) and accuracy δ > 0 to be

τmix(δ, η) = inf
{
n ≥ 0 : ‖ηπn − µ‖TV ≤ δ

}
. (2.4)

We are now prepared to state Assumption 2.2 and then immediately afterwards the
main result of the paper, followed by its proof.

Assumption 2.2. Let ε > 0 be the accuracy, ν ∈ P(S) be the initial distribution, and
D ⊆ S be a domain such that diamd(D) ≤ R for some R > 0.

Regarding the unadjusted transition kernel, we require:

(i) There exists ρ > 0 and for all x, x̃ ∈ D a coupling Πu
Contr((x, x̃), ·) of πu(x, ·) and

πu(x̃, ·) such that the contractivity

Ed(Xu, X̃u) ≤ (1− ρ)d(x, x̃)

holds for (Xu, X̃u) ∼ Πu
Contr((x, x̃), ·).

(ii) There exists CReg > 0 and for all x, x̃ ∈ D a coupling Πu
Reg((x, x̃), ·) of πu(x, ·) and

πu(x̃, ·) satisfying the regularization

Πu
Reg

(
(x, x̃),∆c

)
≤ CRegd(x, x̃) .

Regarding the adjusted transition kernel, we require:

(iii) Set the length of an epoch of transition steps at

E =
⌈
ρ−1 log(3eCRegR)

⌉
+ 1

and suppose

E sup
x∈D

P(A(x)c) ≤ (3e)−1 .

(iv) To reduce to the local properties fixed hitherto, we require control of the exit
probability from D over the total number of transition steps

H = E dlog(2/ε)e

consisting of sufficiently many epochs to conclude mixing to ε accuracy. Therefore
let T = inf{k ≥ 0 : Xk /∈ D} and presume

P
(
T ≤ H

)
≤ ε/4

both for X0 ∼ ν and X0 ∼ µ.

Theorem 2.3. Suppose Assumption 2.2 holds for ε > 0 and ν ∈ P(S). Then

τmix(ε, ν) ≤ H .
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Remark 2.4 (Scope of Coupling Framework). A remarkable feature of the coupling
framework presented in this section is that it uses localization to boost local mixing
of the unadjusted kernel to mixing of the adjusted kernel. This feature is enabled
by Assumption 2.2 (iv) which localizes the entire coupling argument to the domain
D. The assumption that the unadjusted kernel admits a locally contractive coupling
and a local one-shot coupling (i.e., Assumption 2.2 (i) and (ii) ) does not impose global
restrictions, such as regularity or convexity, on the stationary distribution. Therefore,
this new coupling framework is broadly applicable including, in particular, to stationary
distributions whose log-density is non-globally gradient or Hessian Lipschitz, non-globally
concave, or even singular, e.g., potentials of Coulomb-type.

Remark 2.5. Denoting the L1-Wasserstein distance based on d byW1
d , Assumption 2.2

(i) and (ii), respectively, can be alternatively written as

W1
d(πu(x, ·), πu(x̃, ·)) ≤ (1− ρ)d(x, x̃)

and

‖πu(x, ·)− πu(x̃, ·)‖TV ≤ CRegd(x, x̃)

for ρ, CReg > 0 and all x, x̃ ∈ D.

Proof of Theorem 2.3. It is notationally convenient to introduce the epoch m+ 1 = E of
transition steps and the total number of epochs k = dlog(2/ε)e that will be needed to
attain ε accuracy. The total number of transitions hence amounts to k(m+ 1) = H.

On the same probability space, consider two copies of the adjusted chain Xn ∼ νπn
and X̃n ∼ µπn = µ, one of which in stationarity. The copies are coupled via the couplings
in Assumption 2.2 (i) and (ii) of the unadjusted kernels extended to the adjusted kernels
by synchronously coupling the Metropolis-steps. One then composes epochs of m
transitions of the former followed by one transition of the latter, c.f. (2.7). Denote by T ,
T̃ the first exit times from D of Xn and X̃n respectively, and let T = min(T, T̃ ).

To see that k(m+ 1) transition steps of the adjusted chain do indeed suffice, below
we will use Assumption 2.2 (i) – (iii) to prove that over each epoch the following bound
holds for all x, x̃ ∈ D:

P(x,x̃)

(
{Xm+1 6= X̃m+1} ∩

m⋂
l=0

{Xl, X̃l ∈ D}
)
≤ e−1 , (2.5)

where P(x,x̃) is the distribution conditioned on X0 = x and X̃0 = x̃. Iterating (2.5) k
times will then yield the desired TV-convergence to ε-accuracy. Indeed, by the coupling
characterization of the TV-distance, note that the TV-distance to stationarity after
k(m+ 1) transition steps satisfies

‖νπk(m+1) − µ‖TV ≤ P
(
Xk(m+1) 6= X̃k(m+1)

)
≤ P

(
Xk(m+1) 6= X̃k(m+1),T ≥ k(m+ 1)

)
+ P

(
T ≤ k(m+ 1)

)
. (2.6)

The second term in (2.6) describes the probability that at least one copy exits D within
k(m+ 1) transition steps, and by Assumption 2.2 (iv) satisfies

P
(
T ≤ k(m+ 1)

)
≤ P

(
T ≤ k(m+ 1)

)
+ P

(
T̃ ≤ k(m+ 1)

) (iv)

≤ ε/2 .

On the other hand, in the first term in (2.6) neither chain exits D. Denote by Fn the
σ-algebra generated by both copies up to transition step n. Now, by (2.5) and the Markov
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property, it holds that

P
(
Xk(m+1) 6= X̃k(m+1),T ≥ k(m+ 1)

)
= E

[
P
(
{Xk(m+1) 6= X̃k(m+1)} ∩

m⋂
l=0

{X(k−1)(m+1)+l, X̃(k−1)(m+1)+l ∈ D}
∣∣∣

F(k−1)(m+1)

)
; X(k−1)(m+1) 6= X̃(k−1)(m+1),T ≥ (k − 1)(m+ 1)

]
= E

[
P(X(k−1)(m+1),X̃(k−1)(m+1))

(
{Xm+1 6= X̃m+1} ∩

m⋂
l=0

{Xl, X̃l ∈ D}
)

;

X(k−1)(m+1) 6= X̃(k−1)(m+1),T ≥ (k − 1)(m+ 1)
]

(2.5)
≤ e−1P

(
X(k−1)(m+1) 6= X̃(k−1)(m+1),T ≥ (k − 1)(m+ 1)

)
≤ · · · ≤ e−k P(X0 6= X̃0) ≤ e−k ≤ ε/2 ,

where we used {Xk(m+1) 6= X̃k(m+1)} ⊆ {X(k−1)(m+1) 6= X̃(k−1)(m+1)} in the first equation,
which holds by faithfulness, and the choice of k in the last. Since the TV-distance to
stationarity ‖νπk(m+1)−µ‖TV is non-increasing, this shows that k(m+ 1) transition steps
of the adjusted chain suffice for ε accuracy.

We are left to show (2.5) by using Assumption 2.2 (i) – (iii). Let x, x̃ ∈ D. Denote
the accept events in the (n + 1)-th transition, i.e. from Xn to Xn+1 and X̃n to X̃n+1,
by An+1 and Ãn+1 respectively. Let Xu

n and X̃u
n be the corresponding copies of the

underlying unadjusted chain and note that Xn = Xu
n on

⋂n−1
l=0 Al+1. Considering just one

epoch consisting of m + 1 transition steps, (iii) allows to restrict to the case that the
Metropolis filter does not intervene over the epoch so that the probability that there
exists a coupling of the adjusted chains which induces meeting is determined by the
corresponding probability for the underlying unadjusted chains. More precisely,

P(x,x̃)

(
{Xm+1 6= X̃m+1} ∩

m⋂
l=0

{Xl, X̃l ∈ D}
)

≤ P(x,x̃)

(
{Xu

m+1 6= X̃u
m+1} ∩

m⋂
l=0

(Al+1 ∩ Ãl+1) ∩
m⋂
l=0

{Xl, X̃l ∈ D}
)

+

m∑
l=0

[
Px
(
Acl+1 ∩ {Xl ∈ D}

)
+ Px̃

(
Ãcl+1 ∩ {X̃l ∈ D}

)]
with the second term bounded by 2(m + 1) supx∈D P(A(x)c) ≤ 2(3e)−1 by (iii). For the
first term, we employ m steps of the contractive coupling in (i) which brings the two
copies of the unadjusted chain sufficiently close together for one step of the regularizing
coupling in (ii) to induce exact meeting. This yields

P(x,x̃)

(
{Xu

m+1 6= X̃u
m+1} ∩

m⋂
l=0

(Al+1 ∩ Ãl+1) ∩
m⋂
l=0

{Xl, X̃l ∈ D}
)

(2.7)

≤ P(x,x̃)

(
Πu
Reg

(
(Xu

m, X̃
u
m),∆c

)
;

m⋂
l=0

{Xu
l , X̃

u
l ∈ D}

)
(ii)

≤ CReg E(x,x̃)

(
d(Xu

m, X̃
u
m) ;

m−1⋂
l=0

{Xu
l , X̃

u
l ∈ D}

)
(i)

≤ CReg e
−ρmd(x, x̃) ≤ CReg Re

−ρm ≤ (3e)−1 ,
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where in the last two steps diam(D) ≤ R and the definition of m were used respectively.

Remark 2.6. A key ingredient in the proof of Theorem 2.3 is a multi-step (local) minori-
sation condition for the adjusted kernel. Moreover, Assumption 2.2 (iv) – that the chain
is likely to remain in the domain D for long times with high probability – is ultimately
proven with a Lyapunov-type argument, which is closely related to drift conditions.
This use of drift and minorisation techniques is reminiscent of Harris ergodic theorem
[63, 64, 76, 73, 45, 36]. However, there are two differences that are worth highlighting.
First, the so-called “small set” for the multi-step minorization condition consists of the
entire domain D. Second, the drift condition needed for the exit probability estimate
given in Assumption 2.2 (iv) is very mild; e.g. in the application considered in this work,
a Foster-Lyapunov function that does not diverge too fast suffices; c.f. §4.4.

3 Application to a non-reversible, adjusted Markov chain

Although there are numerous non-asymptotic convergence results for kinetic Langevin
diffusions [21, 20, 24, 40, 17] and their unadjusted discretizations [21, 20, 24, 80, 65],
quantitative mixing time guarantees for adjusted discretizations are comparatively
scarce. In view of this underdevelopment, and as an application of Theorem 2.3, mixing
time guarantees for a non-reversible, adjusted Markov chain based on a discretization of
the kinetic Langevin diffusion are given in Theorem 3.6 of this section.

3.1 Metropolis-adjusted kinetic Langevin algorithm (MAKLA)

Consider an absolutely continuous probability distribution on Rd of the form

µtarget(dx) ∝ e−U(x)dx ,

where U : Rd → R is a continuously differentiable potential energy function. Here we
analyze the mixing of an MCMC method aimed at µtarget based on the kinetic Langevin
diffusion

dXt = Vt dt , dVt = −∇U(Xt) dt− γVt dt+
√

2γ dBt , (3.1)

where Bt is a standard d-dimensional Brownian motion and γ > 0 is the friction. Let
Id be the d × d identity matrix. A key property of (3.1) is that it leaves invariant the
probability measure

µ(dz) = µtarget ⊗N (0, Id)(dx dv) ∝ e−H(z) dz (3.2)

on phase space z = (x, v) ∈ R2d with energy

H(z) =
1

2
|v|2 + U(x) .

A variety of discretizations of (3.1) can be Metropolis-adjusted [79, 56, 13, 5, 71] and
fit the framework (2.1). Here we focus on a symmetric Strang splitting [14, 5, 3], where
the splitting components are given by

1. the Ornstein-Uhlenbeck (OU) flow

dXt = 0 , dVt = −γVt dt+
√

2γ dBt ,

2. the purely potential flow

dXt = 0 , dVt = −∇U(Xt) dt , and
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3. the purely kinetic flow
dXt = Vt dt , dVt = 0 .

The corresponding discretized flows are for

1. the OU-substep

Oh(b)(x, v) = (x, e−γhv + (1− e−2γh)
1
2 b) , b ∈ Rd , (3.3)

2. the B-substep for the kick due to the potential part

θ
(B)
h (x, v) =

(
x, v − h∇U(x)

)
, and (3.4)

3. the A-substep for the drift due to the kinetic part

θ
(A)
h (x, v) =

(
x+ hv, v

)
. (3.5)

Combining these flow maps in the following palindromic fashion yields the unadjusted
kinetic Langevin algorithm (UKLA) with transition step given by

(Xu
1 , V

u
1 ) = Oh/2(ξ2) ◦ θ(A)

h/2 ◦ θ
(B)
h ◦ θ(A)

h/2 ◦Oh/2(ξ1)(Xu
0 , V

u
0 ) , (3.6)

where ξ1, ξ2 are i.i.d. random variables with distribution N (0, Id). This discretization is
commonly referred to as “OABAO” where each letter refers to either (3.3), (3.4) or (3.5).
For the sequel, it is convenient to introduce

θh = θ
(A)
h/2 ◦ θ

(B)
h ◦ θ(A)

h/2 . (3.7)

By construction, θh is both volume-preserving and reversible [44, 11]. The transition
kernel of UKLA is given by πu = ΞΘΞ, where

Ξ((x, v), · ) = δx ⊗N
(
e−γh/2v, (1− e−γh) Id

)
,

Θ((x, v), · ) = δθh(x,v) .

Due to asymptotic bias, UKLA does not leave µ invariant, i.e., µπu 6= µ. This failure is not
surprising, since although the OU steps leave µ invariant and θh is volume-preserving,
the time discretization induces an energy error under θh, i.e., (H ◦ θh −H) 6≡ 0, which is
the root cause of the asymptotic bias.

The OABAO scheme can be readily Metropolis-adjusted by simply adjusting θh, which
is possible since θh is both volume-preserving and reversible [11, Prop. 5.1]; see also [82,
Theorem 2]. The resulting algorithm is called the Metropolis-adjusted kinetic Langevin
algorithm (MAKLA) with transition step

(X1, V1) = Oh/2(ξ2) ◦ θ̂h(U) ◦Oh/2(ξ1)(X0, V0) , (3.8)

where U ∼ Unif(0, 1) is independent of the other random variables and the state of the
chain, and the Metropolis-adjusted integrator is defined through the mapping

θ̂h(u)(x, v) =

{
θh(x, v) if u ≤ α((x, v), θh(x, v)),

S(x, v) else,
(3.9)

where α((x, v), (x′, v′)) = exp(−(H(x′, v′)−H(x, v))+) is the accept probability, S(x, v) =

(x,−v) is the velocity flip involution, and [·]+ = max(0, ·). The transition kernel of MAKLA
is π = ΞΘ̃Ξ with

Θ̃((x, v), dx′ dv′) = α((x, v), (x′, v′)) δθh(x,v)(dx
′ dv′)

+
(
1− α((x, v), (x′, v′))

)
δS(x,v)(dx

′ dv′) .

It is easily verified that π leaves µ invariant, i.e., µπ = µ, and therefore, the x-marginal
of the corresponding Markov chain can be used to sample from µtarget.
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3.2 Assumptions & additional notation

For simplicity, we focus on strongly log-concave target distributions with gradient
Lipschitz log-densities. More precisely, we fix the following assumptions:

Assumption 3.1. Suppose U is K-strongly convex, i.e., there exists K > 0 such that(
∇U(x)−∇U(y)

)
· (x− y) ≥ K|x− y|2 for all x, y ∈ Rd.

Assumption 3.2. Suppose U has a global minimum at 0, U(0) = 0, and U is L-gradient
Lipschitz continuous, i.e., there exists L > 0 such that∣∣∇U(x)−∇U(y)

∣∣ ≤ L |x− y| for all x, y ∈ Rd.

Below it is sometimes convenient to write the results and conditions in terms of the
condition number of the target distribution defined in the usual way by κ = L/K. Define
the third derivative via the trilinear product

∇3U(x)(a⊗ b⊗ c) =
∑d

i,j,k=1
∂3
ijkU(x) aibjck for x, a, b, c ∈ Rd.

Assumption 3.3. Suppose U ∈ C3(Rd) is LH -Hessian Lipschitz, i.e., there exists LH ≥ 0

such that ∣∣∇3U(x)(a⊗ b⊗ c)
∣∣ ≤ LH |a| |b| |c| for all x, a, b, c ∈ Rd.

Define the sets of model parameters and user-specified hyperparameters to be
M = {d,K,L, LH} and H = {ε, ν, γ, h}, respectively. Since we mainly care about the
non-logarithmic dependencies of the mixing time on the underlying model parameters,
and for the sake of legibility of expressions, we often suppress logarithmic dependencies
on parameters inM by using the notation: for two quantities x, y ∈ R, we write x = Õ(y)

if there exists C > 0 depending at most logarithmically on any parameter in M such
that x ≤ Cy. The symbol O is defined similarly except that it expresses all logarithmic
dependencies.

Assumption 3.4. Regarding the user-tuned hyperparameters, let 0 < ε ≤ 1/2 and
suppose ν ∈ P(Rd) such that log ν(eH/8) depends at most polynomially on the model
parameters, i.e., there exist constants n1, n2, n3, n4 ∈ Z such that

log ν(eH/8) = Õ
(
dn1Kn2Ln3Ln4

H

)
. (3.10)

Further, let γ, h > 0 satisfy

L1/2γ−1 ≤ 1/10 and 2γh ≤ 1.5936 ,

as well as log(1/h) = Õ(1).

Note that (3.10) and the last part of 3.4 pose no relevant restriction because expo-
nential dependencies on model parameters of the quantities of interest are unrealistic.

Remark 3.5 (Possibilities to Relax the Assumptions). There are several possibilities the
assumptions made above can be relaxed while sustaining the mixing guarantees of
Theorem 3.6. First, the global strong convexity assumption in 3.1 can be relaxed to
asymptotic strong convexity by employing a more sophisticated coupling in Assump-
tion 2.2 (i) as developed in [9, 20, 12]. However, the resulting contraction rates will
depend on underlying parameters in a more intricate way. Second, as emphasized in
Remark 2.4, both the global gradient and Hessian Lipschitz continuity in 3.2 and 3.3
as well as the global convexity in 3.1 can be replaced with local versions. In particular,
convexity in a suitable shell suffices.
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3.3 Mixing guarantees for MAKLA

We are now in position to state upper bounds on the mixing time of MAKLA as defined
in (2.4) with µ given by (3.2).

Theorem 3.6. Suppose Assumptions 3.1-3.4 hold. Then there exists h̄ > 0 with

(h)−1 = Õ
[
(L1/2γ−1)−1/2κ log(1/ε)

×
(
L

1/2
H K−1/4d3/4 max

(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)3/4
+ L1/2d1/2 max

(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)1/2)]
such that for all h ≤ h, it holds that

τmix(ε, ν) = Õ
(
h−1K−1γ log(1/ε)

)
.

For a fixed step size h ≤ h, Theorem 3.6 guarantees that starting in ν, τmix(ε, ν)

transition steps of MAKLA suffice to ensure ε-accuracy in TV. The assumptions on the
initial distribution are minimal. In particular, cold start distributions are covered, i.e.,
ν = δz for some z ∈ R2d.

Remark 3.7 (Mixing Guarantee). Note that if

γ = O(L1/2) and log ν(eH/8) = Õ(κd) ,

Theorem 3.6 asserts that for h = h,

τmix(ε, ν) = Õ
[
κ3/2 max

(
L

1/2
H (d/K)3/4, L1/2(d/K)1/2

)
log2(1/ε)

]
(3.11)

since in this case

(h)−1 = Õ
[
κ1/2L1/2 max

(
L

1/2
H (d/K)3/4, L1/2(d/K)1/2

)
log(1/ε)

]
. (3.12)

This choice of γ minimizes the mixing time upper bound while still satisfying 3.4. More-
over, the assumption on ν is mild; e.g., it is satisfied by all cold starts in z ∈ R2d such
that H(z)/8 = log δz(e

H/8) = O(κd). To put this in perspective, note that the Gaussian
measure ν = N (0, A−1) ⊗ N (0, Id) with energy H(z) = 1

2 |v|
2 + 1

2 |A
1/2x|2 amounts to

log ν(eH/8) = d log(8/7).

Remark 3.8 (Dimension Dependence). Remarkably, the dimension scaling obtained
in (3.11) is optimal in the high acceptance regime, cf. Definition 2.1, from a cold start
distribution as illustrated by

U(x) =
1

2
x · diag

(
2, 1, . . .

)
x− sin(x1) . (3.13)

Denote by e1 the unit vector in the first component and consider the collection C =

{δ(0,d1/2e1)π
n : n ≥ 0} corresponding to a cold start in (0, d1/2e1) ∈ R2d. According

to (2.3), π being in the high acceptance regime on C requires

h−1P
(
A(0, d1/2e1)c

)
= O(1) , (3.14)

where we used that the mixing time τexactmix , cf. (2.2), of the transition kernel of the kinetic
Langevin diffusion over time h is of order h−1. Expanding (4.34) shows that the energy
error to leading order is

(H ◦ θh −H)(x, v) =
h3

24

(
∇3U(x)v⊗3 − 6v · ∇2U(x)∇U(x)

)
+O(h4) .
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For U as in (3.13), it hence holds that

(H ◦ θh −H)(0, d1/2e1) =
h3

24

(
d3/2 + 12d1/2

)
+O(h4) .

Since the reject probability from cold start in (0, d1/2e1) is given by

P
(
A(0, d1/2e1)c

)
= 1− Ee−(H◦θh−H)◦Oh/2(ξ1)(0,d1/2e1)+ ,

and the OU step to leading order in h equals the identity, (3.14) implies

h2d3/2 = O(1) .

Remark 3.9 (Condition Number Dependence). In Lemma 4.1, UKLA is shown to converge
to its stationary distribution with rate ρ ∝ Kγ−1h, which under 3.4 is at best κ−1 for h−1

of order L1/2. This rate differs from the optimal rate obtained for the kinetic Langevin
diffusion under warm start [17]. Passing to MAKLA via Theorem 2.3 further increases
scaling in condition number. In (3.11), the additional κ1/2 in front of the maximum
is expected for Assumption 2.2 (iii) to hold with ρ and the energy error bounds of
Lemma 4.6. However, due to the linear appearance of γhH in (3.15) (cf. Remark 4.8),
Assumption 2.2 (iii) requires the extra K−3/4 and K−1/2 inside the maximum. At present,
the optimal condition number dependence for either UKLA or MAKLA from a cold start
distribution is not known.

Proof of Theorem 3.6. To invoke Theorem 2.3, it suffices to verify Assumption 2.2 for
MAKLA, which as described below, relies on ingredients developed in §4.

Let S = R2d with metric induced by the twisted norm ‖·‖tw defined in (4.1). Define
the domain D = {E(z) ≤ RU} for some RU ≥ 2 to be determined momentarily and where
E is the energy-like function defined in (4.33). Note that K|x| ≤ |∇U(x)| by 3.1 and 3.2,
and hence,

‖z‖2tw
(4.5)
≤ 17

16

(
|v|2 + γ2|x|2

)
≤ 17

16

Lγ2

K2
E(z) ,

where in the last step we used 3.4 to factor out Lγ2/K2 ≥ 36κ2 ≥ 1. Thus,

diam‖·‖tw(D) ≤ 2 sup
z∈D
‖z‖tw ≤ 3

L1/2γ

K
R

1/2
U =: R ,

which specifies R in Assumption 2.2.
Regarding the unadjusted transition kernel,

• Assumption 2.2 (i) holds by Lemma 4.1 and 3.4 with rate

ρ =
γh

34
√
e

min
(
Kγ−2, 1

)
=

Kγ−1h

34
√
e

; and,

• Assumption 2.2 (ii) holds by Lemma 4.2 and (4.5) with

CReg = 14
(
(γh)−3/2 + γ−1LHd

1/2h2
)
.

This completes the verification of Assumption 2.2 (i) and (ii).
It remains to verify Assumption 2.2 (iii) and (iv), which concern the adjusted transition

kernel. To this end, the epoch of transition steps E and the total number of transition
steps H play a pivotal role. Assumption 3.4 implies log(γCReg) = Õ(1). Thus,

E = Õ
(
K−1γh−1 logRU

)
and H = Õ

(
K−1γh−1 logRU log(1/ε)

)
.

Since (iii) depends on RU , which needs to be chosen sufficiently large for the exit
probability bound in (iv) to hold, we first verify (iv).
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• To verify Assumption 2.2 (iv), we invoke Lemma 4.7 as follows. By Lemma 4.6,
C∆H = 4L and k = 2 in Lemma 4.7. Moreover, (4.41) holds due to 3.4. Define
h1 > 0 to saturate the bound 400LHh2 ≤ 1 and let h ≤ h1. We now select RU to
counter-saturate the bound

RU ≥ 32
[
γhHd+ log

(4

ε
max

(
ν(eH/8), (2κ)d/2

))]
, (3.15)

where we inserted µ(eH/8) ≤ (2κ)d/2 by 3.1 and 3.2. By Lemma 4.7, this choice of
RU ensures Assumption 2.2 (iv) to hold starting from both ν and µ. Since the right
hand side of (3.15) depends logarithmically on RU , note that

RU = Õ
(

max
(
K−1γ2d, log ν(eH/8)

)
log(1/ε)

)
,

which implies (h1)−1 = Õ
(
κγ logRU log(1/ε)

)
= Õ

(
κγ log(1/ε)

)
.

• Finally, we verify Assumption 2.2 (iii). Leveraging: (a) the higher order bound of
Lemma 4.6; (b) the bounds

E E(Oh/2(ξ1)(z)) ≤ E(z) + γhd , as well as

E E(Oh/2(ξ1)(z))3/2 ≤ 4
(
E(z)3/2 + 3(γhd)3/2

)
that each hold for all z ∈ R2d; and (c) the definition of D yields

E sup
z∈D

P(A(z)c) ≤ E sup
z∈D

E|∆H ◦Oh/2(ξ1)(z)|

≤ Eh3 sup
z∈D

(
2LHE E(Oh/2(ξ1)(z))3/2 + L3/2E E(Oh/2(ξ1)(z))

)
≤ Eh3

(
8LH

(
R

3/2
U + 3(γhd)3/2

)
+ L3/2

(
RU + γhd

))
.

Inserting E and RU , and using that γhd = O(K−1γ2d) which holds by 3.4 and
K ≤ L, shows that there exists h2 > 0 such that the last display is bounded by
(3e)−1 for all h ≤ h2 with

(h2)−1 = Õ
[
L

1/2
H K−1/4κd3/4 log3/4(1/ε)(L1/2γ−1)−1/2

×max
(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)3/4
+ L1/2κd1/2 log1/2(1/ε)(L1/2γ−1)−1/2

×max
(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)1/2]
.

This completes the verification of Assumption 2.2 (iii) and (iv). To finish, set h =

min(h1, h2) which satisfies, by 3.4,

(h)−1 = Õ
[
(L1/2γ−1)−1/2κ log(1/ε)

×
(
L

1/2
H K−1/4d3/4 max

(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)3/4
+ L1/2d1/2 max

(
(L1/2γ−1)−2, (κd)−1 log ν(eH/8)

)1/2)]
.

Since Assumption 2.2 holds, Theorem 3.6 now follows by invoking Theorem 2.3.

4 Key ingredients of the Proof of Theorem 3.6

The ingredients needed in the proof of Theorem 3.6 are developed in this section.
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4.1 Verifying Assumption 2.2 (i) : contractive coupling for UKLA

Here we use a coupling Πu
Contr of two copies of UKLA starting from different initial

distributions to demonstrate L1-Wasserstein contractivity with respect to a twisted
metric induced by the twisted norm on R2d

‖(x, v)‖2tw := α |x|2 + β〈x, v〉+ |v|2 where α =
β

h
sinh(

γh

2
) and β =

γ

4
. (4.1)

By using the elementary inequality

x ≤ sinh(x) ≤ 6

5
x valid for all x ∈ [0, 1], (4.2)

note that
1

8
γ2 ≤ α ≤ 3

20
γ2 . (4.3)

Hence, the twisted norm compares to the untwisted norm

‖(x, v)‖2 := γ2|x|2 + |v|2 (4.4)

via
1

16
‖(x, v)‖2 ≤ ‖(x, v)‖2tw ≤

17

16
‖(x, v)‖2 . (4.5)

Lemma 4.1. Suppose that Assumptions 3.1, 3.2, and 3.4 hold. Then, for all z = (x, v), z̃ =

(x̃, ṽ) ∈ R2d and a1, a2 ∈ Rd, it holds that∥∥Oh/2(a2) ◦ θh ◦Oh/2(a1)(z)−Oh/2(a2) ◦ θh ◦Oh/2(a1)(z̃)
∥∥
tw

≤ (1− c h) ‖z − z̃‖tw where c =
1

34e
1
2

min
(
Kγ−1, γ

)
.

Under similar assumptions, variants of Lemma 4.1 have beeen proven elsewhere
in the literature; see, e.g., [65, 78, 55]. For the convenience of the reader, however, a
complete proof is given below. As emphasized in previous works, a key ingredient in the
proof of Lemma 4.1 is the co-coercivity property of ∇U , which in terms of the potential
force F can be written as

|F (x1)− F (x2)|2 ≤ −L 〈F (x1)− F (x2), x1 − x2〉 for all x1, x2 ∈ Rd . (4.6)

This holds if U is continuously differentiable, convex, and L-gradient Lipschitz [69,
Theorem 2.1.10]. Additionally, the following elementary inequality is used

e−x ≤ 1− x

2
valid for all x ∈ [0, 1.5936]. (4.7)

Proof. It is notationally convenient to define

Z := Oh/2(a2) ◦ θ̃h ◦Oh/2(a1)(z) , Z̃ := Oh/2(a2) ◦ θ̃h ◦Oh/2(a1)(z̃) ,

∆ := ‖Z − Z̃‖2tw − ‖z − z̃‖2tw , ζ := x− x̃ , ω := v − ṽ ,

vO := e−
γh
2 v +

√
1− e−γha1 , ṽO := e−

γh
2 ṽ +

√
1− e−γha1 , ω̂ := e−

γh
2 ω ,

ζ? := ζ +
h

2
ω̂ , ∆F ? := F (x+

h

2
vO)− F (x̃+

h

2
ṽO) , and Φ? := −〈∆F ?, ζ?〉 .

By definition of the OABAO scheme in (3.6),

Z − Z̃ =
(
ζ + hω̂ +

h2

2
∆F ?, e−

γh
2 (ω̂ + h∆F ?)

)
.
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Inserting this difference into ∆ yields

∆ = α

(
−h2Φ? + h2|ω̂|2 +

h3

2
〈ω̂,∆F ?〉+

h4

4
|∆F ?|2

)
+ βe−

γh
2

(
−hΦ? + h|ω̂|2 + h2〈ω̂,∆F ?〉+

h3

2
|∆F ?|2

)
+ e−γh

(
(e−γh − eγh)|ω|2 + 2h〈ω̂,∆F ?〉+ h2|∆F ?|2

)
.

(4.8)

Note that the cross-terms involving 〈ζ, ω〉 vanish by definition of α in (4.1). Applying
Young’s inequality with parameters δ1, δ2, δ3 > 0 yields

∆ ≤ α

(
−h2Φ? +

(
h2 +

h3

4δ1

)
|ω̂|2 +

(
h3δ1

4
+
h4

4

)
|∆F ?|2

)
+ βe−

γh
2

(
−hΦ? +

(
h+

h2

2δ2

)
|ω̂|2 +

(
h2δ2

2
+
h3

2

)
|∆F ?|2

)
+ e−γh

(
(e−γh − eγh)|ω|2 +

h

δ3
|ω̂|2 +

(
hδ3 + h2

)
|∆F ?|2

)
.

(4.9)

By the co-coercivity property in (4.6) evaluated at x1 = x+ h
2 vO and x2 = x̃+ h

2 ṽO, it
holds that |∆F ?|2 ≤ LΦ?. Inserting this bound into (4.9) yields

∆ ≤ I + II + III + IV , where (4.10)

I := −1

2
βhe−

γh
2 Φ? − sinh(γh)|ω̂|2 ,

II := α

(
Lh4

4
+
Lh3δ1

4
− h2

)
Φ? ,

III :=

(
βe−

γh
2

2

(
Lh3 + Lh2δ2

)
+ e−γhL(h2 + hδ3)− 1

2
βhe−γh/2

)
Φ? ,

IV :=

(
α

(
h2 +

h3

4δ1

)
+ βe−

γh
2

(
h+

h2

2δ2

)
+ e−γh

h

δ3
− sinh(γh)

)
|ω̂|2 .

Below in (4.11)-(4.13), we show that II-IV are non-positive, and hence, ∆ ≤ I. In
particular, choosing δ1 = h yields

II = αh2

(
Lh2

(
1

4
+
δ1
2h

)
− 1

)
Φ?

3.4
≤ αh2

(
1

6

(
1

4
+

1

2

)
− 1

)
Φ? ≤ 0 . (4.11)

Choosing δ2 = 2h, δ3 = 2γ−1, and by definition of α and β in (4.1),

III ≤ γh

4
e−γh/2

(
3

2
Lh2 + 4Lγ−2(γh+ 2)− 1

2

)
Φ?

3.4
≤ γh

4
e−γh/2

(
Lγ−2

(
3

2
+ 12

)
− 1

2

)
Φ?

3.4
≤ γh

4
e−γh/2

(
1

36

27

2
− 1

2

)
Φ? ≤ 0 , (4.12)

as well as

IV
(4.3)
≤ γh

(
3

20
γh

(
1 +

h

4δ1

)
+

1

4

(
1 +

h

2δ2

)
+
γ−1

δ3
− 1

)
|ω̂|2

≤ γh

(
3

20
γh

(
1 +

1

4

)
+

1

4

(
1 +

1

4

)
− 1

2

)
|ω̂|2

3.4
≤ 0 . (4.13)
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Combining the above, and by definition of β in (4.1),

∆ ≤ I
3.1
≤ −1

2
βhe−

γh
2 K|ζ?|2 − sinh(γh)e−γh|ω|2

(4.7)
≤ −min

(
Kγ−1he−

γh
2 , γh

)
(
1

8
γ2|ζ?|2 +

1

2
|ω|2)

≤ −min
(
Kγ−1he−

γh
2 , γh

)
(

1

16
γ2|ζ|2 +

(
1

2
− 1

16
γ2h2

)
|ω|2)

3.4
≤ − 1

16
e−1/2 min

(
Kγ−1h, γh

)
(γ2|ζ|2 + |ω|2)

(4.5)
≤ − 1

17
e−1/2 min

(
Kγ−1, γ

)
h ‖(ζ, ω)‖2tw . (4.14)

Thus,
∥∥∥Z − Z̃∥∥∥

tw
≤ (1− c h) ‖z − z̃‖tw with c = (1/34)e−1/2 min

(
Kγ−1, γ

)
— as required.

4.2 Verifying Assumption 2.2 (ii) : one-shot coupling for UKLA

By using a one-shot coupling Πu
Reg, cf. [72, 59, 42, 65, 8], the next lemma proves

that the transition kernel of UKLA has a regularizing effect. Throughout this section,
for any z = (x, v), z̃ = (x̃, ṽ) ∈ R2d, a1, a2 ∈ Rd, let Φ : R2d → R2d be the one-shot map
Φ : (a1, a2) 7→ (ã1, ã2) implicitly defined by

Oh/2(a2) ◦ θh ◦Oh/2(a1)(z) = Oh/2(ã2) ◦ θh ◦Oh/2(ã1)(z̃) . (4.15)

Note that Φ depends on both z and z̃.

Lemma 4.2. Suppose Assumptions 3.2, 3.3, and 3.4 hold. Let ξ1, ξ2 ∼ N (0, Id) be
independent. Then, for all z, z̃ ∈ R2d, it holds that

‖δzΠu
Reg − δz̃Πu

Reg‖TV ≤ ‖Law(ξ1, ξ2)− Law(Φ(ξ1, ξ2))‖TV (4.16)

≤ 7

2

(
1

(γh)3/2
+ d1/2LHh

3

γh

)
‖z − z̃‖ . (4.17)

A closely related one-shot coupling result has recently been developed for an “OBABO”
discretization of kinetic Langevin dynamics; see Proposition 3 and Proposition 22 of
[65], and for extensions see [66, 16]. Although the upper bound in (4.17) degenerates as
h ↘ 0, this degeneration manifests only logarithmically in the mixing time results for
MAKLA; see Assumption 2.2 (iii).

Proof. Since the map (ξ1, ξ2) 7→ Oh/2(ξ2)◦θh◦Oh/2(ξ1)(z) is deterministic and measurable
[59, Lemma 3],

‖δzΠu
Reg − δz̃Πu

Reg‖TV ≤ ‖Law(ξ1, ξ2)− Law(Φ(ξ1, ξ2))‖TV ,

which gives (4.16). Inserting Lemmas 4.3, 4.4, and 4.5 into (4.16) gives (4.17).

As already indicated, the following lemmas are used in the proof of Lemma 4.2.

Lemma 4.3. Let ξ ∼ N (0,Σ) where Σ is an n× n matrix and suppose that F : Rn → Rn

is an invertible and differentiable map. Then

‖Law(ξ)− Law(F(ξ))‖TV ≤
1

2

√
E
[
|Σ− 1

2 (F(ξ)− ξ)|2 + 2 tr(DF(ξ)− In)− 2 log |detDF(ξ)|
]
.

(4.18)
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Proof of Lemma 4.3. The proof of this result is an extension of the proof of Lemma 15
in [8] to the case where the covariance matrix of the reference Gaussian measure is Σ.
Since this is a small modification, a proof is omitted.

Lemma 4.4. Suppose Assumptions 3.2, 3.3, and 3.4 hold. Then, for any z = (x, v), z̃ =

(x̃, ṽ) ∈ R2d and a1, a2 ∈ Rd,

|Φ(a1, a2)− (a1, a2)|2 ≤ 44

γ3h3
‖z − z̃‖2 . (4.19)

Lemma 4.5. Suppose Assumptions 3.2, 3.3, and 3.4 hold. Then, for any z = (x, v), z̃ =

(x̃, ṽ) ∈ R2d and a1, a2 ∈ Rd,

tr(DΦ(a1, a2)− I2d)− log |detDΦ(a1, a2)| ≤ 2d
(LHh

3)2

γ2h2
‖z − z̃‖2 . (4.20)

For the proofs of Lemmas 4.4 and 4.5, it is notationally convenient to define

ζ := x− x̃ , ω := v − ṽ ,

vO := e−
γh
2 v +

√
1− e−γha1 , ṽO := e−

γh
2 ṽ +

√
1− e−γhã1 ,

x? := x+
h

2
vO , x̃? := x+

h

2
vO , ζ? := x? − x̃? .

This elementary inequality is used in the proofs: by 3.4 and (4.7),

1− e−γh ≥ γh

2
=⇒ (1− e−γh)−1 ≤ 2

γh
. (4.21)

Since ζ? = ζ + h
2 e
− γh2 ω + h

2

√
1− e−γh(a1 − ã1),

|ζ?|2 ≤ 3

(
|ζ|2 +

h2

4
|ω|2 +

h2

4
(1− e−γh)|a1 − ã1|2

)
. (4.22)

By inserting (4.24) from the calculation below into (4.22), and using the elementary
inequality 1− e−x ≤ x valid for x > −1, we obtain

|ζ?|2 ≤ 3

(
|ζ|2 +

h2

4
|ω|2 +

γh3

4
|a1 − ã1|2

)
3.4
≤ 8γ−2

(
γ2|ζ|2 + |ω|2

)
. (4.23)

Proof of Lemma 4.4. By definition of the one-shot map in (4.15),

|a1 − ã1|2 =
1

1− e−γh
| 1
h
ζ + e−

γh
2 ω − h

2
H?
Uζ

?|2

≤ 3

1− e−γh

(
1

h2
|ζ|2 + |ω|2 +

h2

4
‖H?

U‖
2
op |ζ

?|2
)

3.2
≤ 3

1− e−γh

(
1

h2
|ζ|2 + |ω|2 +

L2h2

4
|ζ?|2

)
(4.22),(4.21)
≤

(
6

γ3h3
+

9

2
L2hγ−3

)
γ2|ζ|2 +

(
6

γh
+

9

8
L2h3γ−1

)
|ω|2 +

9

16
L2h4|a1 − ã1|2

3.4
=⇒ |a1 − ã1|2 ≤

181

30γ3h3

(
γ2|ζ|2 + |ω|2

)
(4.24)
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Similarly, from (4.15),

|a2 − ã2|2 =
1

1− e−γh
∣∣∣e− γh2 (e− γh2 ω + h

√
1− e−γh(a1 − ã1)− hH?

Uζ
?
)∣∣∣2

≤ 3

1− e−γh
(
|ω|2 + (1− e−γh)|a1 − ã1|2 + h2|H?

Uζ
?|2
)

3.2
≤ 3

1− e−γh
(
L2h2|ζ?|2 + |ω|2

)
+ 3|a1 − ã1|2

(4.23)
≤ 3

1− e−γh
(
8L2h2γ−2

(
γ2|ζ|2 + |ω|2

)
+ |ω|2

)
+ 3|a1 − ã1|2

(4.21)
≤ 6

γh

(
8L2h2γ−2

(
γ2|ζ|2 + |ω|2

)
+ |ω|2

)
+ 3|a1 − ã1|2

(4.24)
≤ 6

γh

(
8L2h2γ−2

(
γ2|ζ|2 + |ω|2

)
+ |ω|2

)
+

181

10γ3h3

(
γ2|ζ|2 + |ω|2

)
3.4
≤ 25

γ3h3

(
γ2|ζ|2 + |ω|2

)
. (4.25)

Combining (4.24) and (4.25) yields,

|a1 − ã1|2 + |a2 − ã2|2 ≤
44

γ3h3

(
γ2|ζ|2 + |ω|2

)
as required.

Proof of Lemma 4.5. Since, by definition of the one-shot map in (4.15),

∂ã2

∂a2
= Id and

∂ã1

∂a2
= 0 ,

it follows that DΦ =

(
∂ã1
∂a1

0
∂ã2
∂a1

Id

)
, and hence,

detDΦ(a1, a2) = det
∂ã1

∂a1
· det

∂ã2

∂a2
= det

∂ã1

∂a1
, and (4.26)

tr(DΦ(a1, a2)− I2d) = tr(
∂ã1

∂a1
− Id) . (4.27)

Combining (4.26) and (4.27) yields

tr(DΦ(a1, a2)− I2d)− log |detDΦ(a1, a2)|

= tr(
∂ã1

∂a1
− Id)− log |det

∂ã1

∂a1
| .

(4.28)

This observation motivates estimating
∥∥∥∂ã1∂a1

− Id
∥∥∥2

op
.

From (4.15), note that

∂ã1

∂a1
− Id =

1√
1− e−γh

∂

∂a1

[
−h

2
(∇U(x?)−∇U(x̃?))

]
= −h

2

4

(
D2U(x?)−D2U(x̃?)

∂ã1

∂a1

)
= −h

2

4

(
D2U(x?)−D2U(x̃?)

)
+
h2

4
D2U(x̃?)

(
∂ã1

∂a1
− Id

)
. (4.29)
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On the one hand, by 3.2,∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

≤ 3h4

16
sup
x

∥∥D2U(x)
∥∥2

op

(
2 +

∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

)
3.2
≤ 3(Lh2)2

16

(
2 +

∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

)
3.4

=⇒
∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥
op

≤ 1

2
. (4.30)

On the other hand, by 3.3,∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

3.3
≤ h4

8

(
L2
H |ζ?|2 + sup

x

∥∥D2U(x)
∥∥2

op

∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

)
3.2
≤ 1

8

(
L2
Hh

4|ζ?|2 + (Lh2)2

∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

)
3.4

=⇒
∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

≤ 1

7
L2
Hh

4|ζ?|2
(4.23)
≤ 8

7

(LHh
3)2

γ2h2

(
γ2|ζ|2 + |ω|2

)
. (4.31)

Combining (4.30) and (4.31) yields∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥
op

≤ min

(
1

2
,

√
8

7

LHh
3

γh
‖z − z̃‖

)
.

Since
∥∥∥∂ã1∂a1

− Id
∥∥∥
op
≤ 1/2, the spectral radius of ∂ã1

∂a1
− Id does not exceed 1/2. Therefore,

we can invoke Theorem 1.1 of [77], to obtain

tr(
∂ã1

∂a1
− Id)− log |det

∂ã1

∂a1
| ≤

∥∥∥∂ã1∂a1
− Id

∥∥∥2

F
/2

1−
∥∥∥∂ã1∂a1

− Id
∥∥∥
op

≤
∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

F

≤ d
∥∥∥∥∂ã1

∂a1
− Id

∥∥∥∥2

op

≤ 2d
(LHh

3)2

γ2h2
‖z − z̃‖2 , (4.32)

where in the second to last step we used
∥∥∥∂ã1∂a1

− Id
∥∥∥
F
≤
√
d
∥∥∥∂ã1∂a1

− Id
∥∥∥
op

. Inserting (4.32)

into (4.28) gives the required result.

4.3 Verifying Assumption 2.2 (iii) : energy error estimates

The following Lemma provides upper bounds for the energy error in terms of the
energy-like function E : R2d → R defined by

E(z) = |v|2 + L−1|∇U(x)|2 . (4.33)

As the isotropic Gaussian case suggests, where U(x) = (L/2)|x|2, the scaling in (4.33)
is natural, since in that case: if (X,V ) ∼ µ then L−1/2∇U(X) = L1/2X and V are both
standard normally distributed.

Lemma 4.6. Suppose that Assumption 3.2 holds and let Lh2 ≤ 1. Then, the energy error
∆H = H ◦ θh −H with θh as in (3.7) satisfies

|∆H(z)| ≤ 4Lh2E(z) for all z ∈ R2d.

If additionally Assumption 3.3 holds, then

|∆H(z)| ≤ 2LHh
3E(z)3/2 + L3/2h3E(z) for all z ∈ R2d.
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Proof. For t ∈ [0, h], introduce the linear interpolation

(xt, vt) =
(
x+ tv − th

2
∇U(x∗), v − t∇U(x∗)

)
,

where x∗ = x + h
2 v. Note that (x0, v0) = (x, v) and (xh, vh) = θh(x, v). Therefore, the

energy error can be written as

∆H(x, v) = (H ◦ θh −H)(x, v) =

∫ h

0

d

dt
H(xt, vt) dt . (4.34)

Expanding the integrand using H(x, v) = |v|2/2 + U(x) yields

d

dt
H(xt, vt) = vt ·

d

dt
vt +∇U(xt) ·

d

dt
xt

= −
(
v − t∇U(x∗)

)
· ∇U(x∗) +∇U

(
x+ tv − th

2
∇U(x∗)

)
·
(
v − h

2
∇U(x∗)

)
. (4.35)

Let t ≥ 0 and a ∈ Rd. To further simplify the last display, we expand

∇U(x+ ta) = ∇U(x) +

∫ t

0

∇2U(x+ sa)ads

and

∇U(x+ ta) = ∇U(x) + t∇2U(x)a+

∫ t

0

(t− s)∇3U(x+ sa) : a⊗2 ds .

In particular,

∇U(x∗) = ∇U(x) + I∗1 (4.36)

with I∗1 = 1
2

∫ h
0
∇2U

(
x+ s

2v
)
v ds satisfying |I∗1 | ≤ 1

2Lh|v|, and

∇U(x∗) = ∇U(x) +
h

2
∇2U(x)v + I∗2 (4.37)

with I∗2 = 1
4

∫ h
0

(h− s)∇3U
(
x+ s

2v
)

: v⊗2 ds satisfying |I∗2 | ≤ 1
8LHh

2|v|2. Further,

∇U
(
x+ tv − th

2
∇U(x∗)

)
= ∇U(x) + I1(t) (4.38)

with I1(t) =
∫ t

0
∇2U

(
x + sv − sh

2 ∇U(x∗)
)(
v − h

2∇U(x∗)
)

ds satisfying |I1(t)| ≤ Lt
∣∣v −

h
2∇U(x∗)

∣∣, and

∇U
(
x+ tv − th

2
∇U(x∗)

)
= ∇U(x) + t∇2U(x)

(
v − h

2
∇U(x∗)

)
+ I2(t) (4.39)

with I2(t) =
∫ t

0
(t − s)∇3U

(
x + sv − sh

2 ∇U(x∗)
)

:
(
v − h

2∇U(x∗)
)⊗2

ds satisfying |I2(t)| ≤
1
2LHt

2
∣∣v − h

2∇U(x∗)
∣∣2.

Using the higher and lower order expansions will give the higher and lower order
bound, respectively, due to more or less cancellation. For the lower order bound,
inserting (4.36) and (4.38) into (4.35) yields

d

dt
H(xt, vt) = (t− h/2)|∇U(x)|2 − I∗1 ·

(
v +

1

2
(h− 4t)∇U(x)

)
+ t|I∗1 |2

+ I1(t)·
(
v − h

2
∇U(x∗)

)
.
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Inserting this expression and the bounds on I∗1 and I1(t) back into (4.34) shows

|∆H(x, v)| ≤ 1

2
Lh2|v|

∣∣v − h

2
∇U(x)

∣∣+
1

8
L2h4|v|2 +

1

2
Lh2

∣∣v − h

2
∇U(x∗)

∣∣2
≤ 4Lh2E(z) ,

where, besides Lh2 ≤ 1, we used that due to (4.36)∣∣v − h

2
∇U(x∗)

∣∣ ≤ |v|+ h

2
|∇U(x∗)|

(4.36)
≤

(
1 +

1

4
Lh2

)
|v|+ h

2
|∇U(x)| ≤ 2E(z)1/2

and that a similar bound holds for
∣∣v − h

2∇U(x)
∣∣. Repeating the calculation with the

higher order expansions (4.37) and (4.39) gives

|∆H(x, v)| ≤ − h
(
v − h

2
∇U(x∗)

)
· I∗2 −

h3

4
v · ∇2U(x)∇U(x∗)

+
h4

8
∇U(x∗) · ∇2U(x)∇U(x∗) +

∫ h

0

I2(t) dt·
(
v − h

2
∇U(x∗)

)
≤
(4

3
+

1

4

)
LHh

3E(z)3/2 +
1

4
Lh3

(
|v|+ h

2
|∇U(x∗)|

)
|∇U(x∗)|

≤ 2LHh
3E(z)3/2 + L3/2h3E(z) ,

as required.

4.4 Verifying Assumption 2.2 (iv) : exit probability estimates for MAKLA

We now turn to the exit probability bound required in Assumption 2.2 (iv). For some
suitably large RU and E as in (4.33), we show that the exit probability from

D =
{
E(z) ≤ RU

}
is small over the total number of steps H required to attain the desired TV convergence.
More precisely, let (Zk)k≥0 be a copy of MAKLA started in an initial distribution ν and
define the first exit time of the chain from D to be

T = inf
{
k ≥ 0 : Zk /∈ D

}
.

The following lemma is general in the sense that it only assumes an energy error bound
satisfied by, amongst other discretizations, θh as in (3.7).

Lemma 4.7. Suppose Assumptions 3.1 and 3.2 hold and that the energy error ∆H =

H ◦ θh −H satisfies
|∆H(z)| ≤ C∆Hh

kE(z) (4.40)

for some C∆H > 0, k ≥ 2 and all z ∈ R2d. Let h, γ > 0 be such that

(1 + 25C∆Hh
k)2 max(γh, 1) ≤ 4 . (4.41)

Then, for H, RU > 0, it holds that

P
(
T ≤ H

)
≤ exp

(1 + 25C∆Hh
k

4
γhHd− 1− 50C∆HHhk

16
RU

)
ν
(
eH/8

)
. (4.42)

If additionally 100C∆HHhk ≤ 1, then P(T ≤ H) ≤ ε/4 for ε > 0 if

RU ≥ 32
[
γhHd+ log

(
4ν(eH/8)/ε

)]
. (4.43)

Although the energy error bound (4.40) is assumed to hold globally for simplicity, it
can be relaxed to hold in a neighborhood of D; cf. Remark 2.4.
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Remark 4.8 (Effect of Velocity Flip). The MAKLA transition step involves a velocity flip
involution in the event of a rejection; cf. (3.8). This makes it tricky to construct a Foster-
Lyapunov function exploiting the contractivity of the unadjusted kernel by incorporating
a cross-term x · v. The function used below does not involve such a cross-term, and as a
consequence, the time horizon hH enters linearly into (4.43). In contrast, similar bounds
for the MALA transition step only require the radius to depend logarithmically on the
time horizon [38, §6]. However, due to the wide availability of energy error bounds such
as (4.40), the Foster-Lyapunov function presented here is a robust alternative.

Proof. Below, we will show that the Lyapunov function eH/8 solves{
LheH(z)/8 ≤

(
eλ − 1

)
eH(z)/8 for z ∈ D,

eH(z)/8 ≥ eRU/16 for z ∈ ∂D,
(4.44)

where Lh = π − id is the generator of MAKLA and

λ =
1

8
[2(1 + 25C∆Hh

k)γhd+ 25C∆Hh
kRU ] .

By Chernoff’s inequality,

P
(
T ≤ H

)
≤ E exp

(
− λ(T − H)

)
≤ exp

(
λH−RU/16

)
ν
(
eH/8

)
≤ exp

(1

4
(1 + 25C∆Hh

k)γhHd− 1

16
(1− 50C∆HHhk)RU

)
ν
(
eH/8

)
,

where in the second to last step we used a maximum principle to upper bound the
Laplace transform of the first exit time T by the solution eH/8 of the boundary value
problem in (4.44), i.e., Ee−λT eRU/16 ≤ ν(eH/8); for details see, e.g., [39]. Therefore, if
100C∆HHhk ≤ 1, it follows that P(T ≤ H) ≤ ε/4 if

RU ≥ 32
[
γhHd+ log

(
4ν(eH/8)/ε

)]
.

We now turn to the proof that eH/8 solves (4.44). On ∂D, the lower bound holds since
U(x) ≥ 1

2L |∇U(x)|2 by 3.2, and hence,

eH(z)/8 = e(|v|2/2+U(x))/8 ≥ eE(z)/16 = eRU/16 .

Let z = (x, v) ∈ D and set δ = 1/8. Then

LheH(z)/8 =
[
E exp

(
δ
[
H ◦Oh/2(ξ2) ◦ θ̂h(U) ◦Oh/2(ξ1)(z)−H(z)

])
− 1
]
eH(z)/8 .

Therefore, the upper bound in (4.44) holds if

E exp
(
δ
[
H ◦Oh/2(ξ2) ◦ θ̂h(U) ◦Oh/2(ξ1)(z)−H(z)

])
≤ exp

(
δ
[
2
(
1 + (1 + 3/δ)C∆Hh

k
)
γhd+ (1 + 3/δ)C∆Hh

kRU
])

= eλ .
(4.45)

Treating the two outcomes of the Metropolis step separately yields

E exp
(
δ
[
H ◦Oh/2(ξ2) ◦ θ̂h(U) ◦Oh/2(ξ1)(z)−H(z)

]) (3.8)
≤ I + II where (4.46)

I = E exp
(
δ
[
H ◦Oh/2(ξ2) ◦ θh ◦Oh/2(ξ1)(z)−H(z)

])
II = E

[
exp
(
δ
[
H ◦Oh/2(ξ2) ◦ S ◦Oh/2(ξ1)(z)−H(z)

])
; A
(
Oh/2(ξ1)(z)

)c]
.
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To bound I in (4.46), we use the elementary bound

Eξ∼N (0,Id) exp
(
b · ξ + c|ξ|2

)
≤ exp

(
|b|2 + 2cd

)
(4.47)

valid for c ∈ [0, 1/4] and b ∈ Rd. In particular, applying (4.47) with c = γhδ which is
possible since c ≤ 1/4 by (4.41), implies that for all z′ = (x′, v′) ∈ R2d and for ξ ∼ N (0, Id)

E exp
(
δ
[
H ◦Oh/2(ξ)(z′)−H(z′)

])
= E exp

(
δ
[
− 1

2
(1− e−γh)|v′|2 + e−γh/2

√
1− e−γhv′ · ξ +

1

2
(1− e−γh)|ξ|2

])
(4.47)
≤ exp

(
δ
[
− 1

2
(1− 2δe−γh)(1− e−γh)|v′|2 + (1− e−γh)d

])
≤ eδγhd . (4.48)

Therefore, using ∆H = H ◦ θh −H,

I = E exp
(
δ
[
H ◦Oh/2(ξ2) ◦ θh ◦Oh/2(ξ1)(z)−H ◦ θh ◦Oh/2(ξ1)(z)

+ ∆H ◦Oh/2(ξ1)(z) +H ◦Oh/2(ξ1)(z)−H(z)
])

(4.48)
≤ eδγhdE exp

(
δ
[
∆H ◦Oh/2(ξ1)(z) +H ◦Oh/2(ξ1)(z)−H(z)

])
. (4.49)

Inserting the energy error bound (4.40) into the exponent of (4.49) then yields,

∆H ◦Oh/2(ξ1)(z) +H ◦Oh/2(ξ1)(z)−H(z)

≤ C∆Hh
kE(Oh/2(ξ1)(z)) +H ◦Oh/2(ξ1)(z)−H(z)

≤ C∆Hh
kE(z)− 1

2
(1− e−γh)|v|2 + (1 + 2C∆Hh

k)e−γh/2
√

1− e−γhv · ξ1

+
1

2
(1 + 2C∆Hh

k)γh|ξ1|2 .

Hence, inserting this bound back into (4.49), using E(z) ≤ RU , and applying (4.47) with
c = δ(1 + 2C∆Hh

k)γh/2 which is possible since c ≤ 1/4 holds by (4.41), shows

I ≤ exp
(
δ
[
2(1 + C∆Hh

k)γhd+ C∆Hh
kRU

− 1

2

(
1− 2δ(1 + 2C∆Hh

k)2e−γh
)
(1− e−γh)|v|2

])
≤ exp

(
δ
[
2(1 + C∆Hh

k)γhd+ C∆Hh
kRU

])
(4.50)

since 2δ(1 + 2C∆Hh
k)2 ≤ 1 by (4.41). For II in (4.46), using H ◦ S = H,

II = E
[
Eξ2 exp

(
δ
[
H ◦Oh/2(ξ2)

(
S ◦Oh/2(ξ1)(z)

)
−H

(
S ◦Oh/2(ξ1)(z)

)])
× exp

(
δ
[
H(Oh/2(ξ1)(z))−H(z)

])
; A
(
Oh/2(ξ1)(z)

)c]
(4.48)
≤ eδγhdE

[
exp
(
δ
[
H(Oh/2(ξ1)(z))−H(z)

])
; A
(
Oh/2(ξ1)(z)

)c]
.

We continue estimating the last display using Cauchy-Schwarz inequality combined with
P(A(z)c) = 1− e∆H(z)+ ≤ |∆H(z)|, (4.48), and (4.40) to obtain

II ≤ eδγhd
(
Ee2δ[H(Oh/2(ξ1)(z))−H(z)]

)1/2(
E|∆H(Oh/2(ξ1)(z))|2

)1/2
(4.48)
≤ e2δγhdC∆Hh

k
(
E E(Oh/2(ξ1)(z))2

)1/2 ≤ 3e2δγhdC∆Hh
k(RU + 2γhd) , (4.51)
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where in the last step we used

E E(Oh/2(ξ1)(z))2 ≤ 4E
(
E(z) + γh|ξ1|2

)2 ≤ 8
(
R2
U + 3(γhd)2

)
.

Inserting (4.50) and (4.51) into (4.46) and simplifying yields

E exp
(
δ
[
H ◦Oh/2(ξ2) ◦ θ̂h(U) ◦Oh/2(ξ1)(z)−H(z)

])
≤ exp

(
δ
[
2(1 + C∆Hh

k)γhd+ C∆Hh
kRU

])
+ 3e2δγhdC∆Hh

k(RU + 2γhd)

≤ exp
(
δ
[
2(1 + C∆Hh

k)γhd+ C∆Hh
kRU

])
·
(
1 + 3C∆Hh

k(RU + 2γhd)
)

≤ exp
(
δ
[
2(1 + C∆Hh

k)γhd+ C∆Hh
kRU

]
+ log

(
1 + 3C∆Hh

k(RU + 2γhd)
))

≤ exp
(
δ
[
2
(
1 + (1 + 3/δ)C∆Hh

k
)
γhd+ (1 + 3/δ)C∆Hh

kRU
])

= eλ ,

where we used log(1 + x) ≤ x valid for x ≥ 0. This proves (4.45) holds, and hence,
exp(H(z)/8) solves (4.44), as required.
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