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Abstract

Let Wx(8) = Eo [ezaV=1 5‘”<”’S")’N62/2} be the partition function of a two-dimensional

directed polymer in a random environment, where w(i,x),i € N,z € Z? are i.i.d.
standard normal and {S,} is the path of a simple random walk. With § = gy =
B\/w/ logN and 3 € (0,1) (the subcritical window), log Wi (8n) is known to converge
in distribution to a Gaussian law of mean —\?/2 and variance A\?, with A\* = log(1/(1 —
Bz)) (Caravenna, Sun, Zygouras, Ann. Appl. Probab. (2017)). We study in this paper
the moments E[Wy(8x~)?] in the subcritical window, and prove a lower bound that
matches to leading order, for ¢ = O(v/log N), the upper bound derived by us in Cosco,
Zeitouni, Comm. Math. Phys. (2023). The analysis is based on appropriate decouplings
and a Poisson convergence that uses the method of “two moments suffice”.
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1 Introduction and results

Let ((Sn)n>0, (Pz)zczz2) be the simple random walk on Z2. The associated expectation
will be written as E,. We let p,(z) = Po(S,, = ).

Let w(n,z), n € N, z € Z? be a collection of i.i.d. random variables distributed
according to a centered Gaussian of variance one A(0,1).

Set

. N
B ®2 1
BN = VRS Ry = Eg ; l1gi_g2| ~ p log N,
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Moments of polymers

where the asymptotics on Ry follow from the local limit theorem po,, (0) ~ % see e.g.

Appendix A. We define the normalized partition function:

B
2

Wy = Eqg 82511 Brw(n,Sn)—N

It is known, see e.g. [2, Theorem 2.8], that for 3 < 1, log Wx — N(—A2/2,A?), where
A2 = \(B)% = —log(1 — (32), and further, from [8, Theorem 1.1], we have that for any fixed
q integer and ,@ <1,

E[WY] —noo e (). (1.1)

The goal of this paper is to establish a lower bound on the ¢g-th moment of Wy when
q can increase as function of N, thus complementing the upper bounds derived in [4], to
which we refer for motivation and applications. Of particular interest is the case of ¢? of
order log N. Our starting point is the formula

E[WY] = Eg@q eﬁ?v Sidyecy net 1gi_si 7 (1.2)

where C, = {(i,7),1 <i < j < g}. (See [4] for a proof of (1.2).) Here is our main result.
Theorem 1.1. Suppose that ¢> = O(log N). Then there exists ex = gN(B) \, 0 as
N — oo such that E[WF] > N () A—en)

This last bound matches to leading order the upper bound E[W}] < e(3)A*(1+en) that
we obtained in [4] in the regime ¢? < clog N with ¢ = C(B)

The main point of Theorem 1.1 is that we allow for ¢ increasing in N. Indeed, for ¢
independent of N, the result is contained in [8], since the convergence (1.1) yields an
exact equivalence with errors o(1) in the exponents. As shown in [7], the underlying
reason is an asymptotic decoupling for the intersection local time of the walks. In
comparison, we prove a weaker form of decoupling, for a larger number of walks.

Remark 1.2. It was pointed to us by F. Caravenna that in the continuous setup, i.e.
when the random walk S, is replaced by a Brownian motion, the sum in the definition
of Wy is replaced by an integral, and the environment replaced by a regularized white
noise, the result of Theorem 1.1 with e = 0 follows from a correlation inequality, see
[3] for a similar argument. We do not see how to adapt this to the discrete setup.

We further observe that when ¢ is too large, the behavior changes:

Theorem 1.3. For all B > 0 there exist ¢y = co(B) > 0andc; = cl(B) > 0 such that when
@ > c1(log N)2, we have E[W%] > e (3)N/loa N,

1.1 A high level view of the proof and structure of the paper

We provide in this section a somewhat impressionistic view of the proof, that neglects
important details but captures the main ideas. The starting point is (1.2), that reduces
the computation of moments of the partition function to the evaluation of exponential
moments of the total pairwise intersections of ¢ independent random walk paths. Towards
this end, we introduce certain decoupling times Lj; with L1 = Ly + o, and with oy,
being a large multiple (1) of I}, > 1, see (2.3). Very roughly, I, ~ (cl_1)'**/1°8N and
we mostly care about [, > N¢ for some e small. Now, within each interval I}, = [Ly, Lxy1),
we only count intersections of paths within a subinterval of length [/, that is separated
from both ends, and within this interval we only count the intersections of disjoint
pairs. Using the Markov property, contributions from different I;’s decouple as long as
we condition on the position of the paths at the beginning and end of /; (the precise
statement is contained in Proposition 2.3). Crucially, we then reduce the contribution
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within each I to paths whose starting points and ending points are “where they should
be” (i.e., within diffusive scaling), and then further reduce it to a moment of a certain
quantity we call a;, see (2.13), which depends only on a pair of random walks, and the
total number of disjoint pairs that intersect, denoted Ry; this is the content of the crucial
Proposition 2.4.

Having obtained the decoupling, there are two tasks remaining. The first is to obtain
a good control on ay, that is the contribution of intersections of a single pair of walks.
This necessitates estimates that are related to those we obtained in [4], with the upshot
being that a; ~ 1/(1 — 3%(loglx)/(log N)), see Proposition 2.5.

The main innovation of the paper is then to obtain a good control of Ry, the number
of disjoint pair intersections. We prove in Proposition 2.7 that Ry, is close in distribution
to a Poisson random variable. The proof of Proposition 2.7, which takes up most of
Section 3, is based on Stein’s method, more specifically on the “two moments suffice”
theorem of Arratia, Goldstein and Gordon [1]. Essentially, we use that disjoint pairs of
path are independent to introduce a notion of neighborhood of dependence between
pairs of indices. Taking parameters in the right order drives the Poisson parameter
(roughly, o) to infinity and completes the proof of Theorem 1.1.

Theorem 1.3 is much easier and obtained by forcing an event where the walks stay
confined to a neighborhood of the origin. See Section 2.3 for the proof.

1.2 Notation

Throughout the paper, constants C' are positive universal constants, whose values
may change at different occurrences.

We use various parameters, and limits in a particular order, that we now introduce.
We use the parameters v,¢0,9 € (0,1) and «, v1,v9, M € IN, and the following order of
successive limits: (i) N — oo, (ii) o — oo, (iii) 1 — 00, (iVv) 9 — 00, (V) § — 0, (vi)
M — oo, (vil) ¢g — 0, — 0. (The last limit can be taken simultaneously for g and
~.) We introduce the collection of variables r= (M, 0,va, 11, ), r= (v,€0, M, 6, 02,11, @)
and I" = (N,I), I = (N,T). For any function ¥, we let lim supp. ¥(T') denote the limsup
obtained after taking successive limsups in the order described above. We define
lim supp, ¥(-), limsupg ¥(-) and lim supg ¥(-) similarly.

We will use repeatedly that (S} — S7) @ (S21) when S} and S? are two independent
simple random walks.

B(z,r) denotes the Euclidean ball of radius r centered at = € R2.

2 Proofs

As noted in the introduction, for ¢ = O(1), Theorem 1.1 is proved in [8], and the
main point of this article is allowing for ¢ = gy —nN_ 0 00. For technical reasons, it
is convenient to separate the proof to two cases: loglog N = O(¢?) (i.e., gnv grows not
too slowly, while still ¢> = O(log N)) and ¢ < v/loglog N. In the main body of the paper
we deal with the first case, and assume that loglog N = O(¢?) and ¢*> = O(log N). In
Appendix B we provide the modifications needed in order to handle the range 1 < ¢° <
loglog N.
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2.1 Preliminaries for the proof of Theorem 1.1

Throughout the paper, we always assume that IV, 551, 0~ v1,v9, M, > 100 and in
accordance to the order of the limits, that
log(4
(i) 52 <1, (i) 2BU) o2y o1y, < 90, o
(iv) voe 72 M 2 <274 (v) N > (4u) V €27,

Next, we introduce the times [, L; that we use to decompose the process. With

a=ay=a/logN and f =", (2.2)
we set [ = L1 =0 and
=[N, op=wvl_1+ @2+l and L= » o (2.3)
1<j<k
for all k € [1, K], where
K =max{k € Z;,Lrt1 < N} (2.4)
vilg—1 Ui Ui voly
Lj—1 Ok Ly
o T

Figure 1: Pictorial description of kth intervals

The times L and [ satisfy the following straightforward relations:
Lemma 2.1. Forallk < K:

l
(i) e7*/? < % <€, (ii) Lygr < 4l (2.5)
k
Moreover, the following bounds on K hold:

log(4
a!(logyt+log(1— log(2) \ _ jr < 51 log v~2. (2.6)
log N

Remark 2.2. It follows from (2.5)-(i) and (2.1)-(ii) that v1l_; < l;. This fact will turn
out useful in several places.

Proof. We first show (2.5). By rounding effects N7+ <[, < N7/*(1 + N~7), hence using

that N;i’}zl — N/ =1 it follows that

& a_ l & _
(14 N7~ ==l o % <1 Va4 N, (2.7)
k
As by definition N7 < [, < N, the usual estimate @ < e* — 1 < ae® and (2.1)-(v) yield
that 7 < l,(f - < ¢/’ We then bound (1+ N~7) by 2 and obtain (2.5)-(i) from (2.7)
by using that « and v« are large by (2.1)-(@).
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Now, equation (2.5)-(i) implies that for all 7 < k, we have [; < e*W(k*j)/Qlk. Therefore,

Lk+1 = (1/1 + 2 + 1/2) Z lj + (2 + I/g)lk
1<j<k
Smi+24w) Y, e FIRL 4 (24wl < (+2+ 1)k,
1<j<k

e—a/2

with n = m(lﬂ + 24 v5). We find (2.5)-(ii) via (2.1)-(ii).
Regarding (2.6), the upper bound on K is obtained using that Ly > l;. The lower
bound is a consequence of (2.5)-(ii) and (2.1)-(v). O

To help us control the positions of the walks at the times (L), we define the (random)
set of indices

G = {z €[l,q] : Si, €B (076‘1L,1C/2) and 5§, €B (0,5‘1L,1€f1)}7

where we recall that B(z,r) is the Euclidean ball of radius r centered at x € R?, and
further introduce the event:

A = {|Gk| > (1 —e0)q} -

Forallm € N and x = (21,...,%m),y = (Y1,---,%») € (Z*)™, write x ~,, y whenever
PE™(SL = 4y,..., 8™ = y,,) > 0. When x ~,, y, denote by E'Y the expectation for m
copies of the simple random walk started at x and conditioned on arriving at y at time n,
that is

ELY[] = B[Sy = 1, Si* = ym].

Further let B,,, j, = (B (0, s 2) n ZZ) )

We are now ready to decompose the moment of Wy as a product of contributions
coming from the different time intervals [Lj, Li41]. This is the purpose of the next
proposition.

Proposition 2.3. Let ¢y = |(1 — ¢9)q| and recall K from (2.4). We have:

K
E (W] > Dy [] s (2.8)
k=1

where Dy = E?q [Hf:l 1Ak:| and

T = inf EgFY [ (2.9)

X€Bgy,k,YE€Bgg, k+1
X~opY

2 vilp—q1+2l
. 1, o
eﬁwznzulzk_,l 2idrecq s;Lszl}

_ 1812\7 E(i,j)ec 25:1 ]‘Si:sj : . :
Proof. Let ¥y = ¢ a »=%_ We will prove by induction that for all | €
[0, K],

H: E[WE]>ES

K K
\I/LK+171 H]'A""| H Tk.

k=1 k=K+1—1
The case | = K will then give the proposition (recall that L, = 0).

First, Hy holds by (1.2) (we use the convention that an empty product equals 1).
Suppose now that H; holds for some [ < K. Let S,, = (S!,...,S%) and denote by Ay, the
event Ay shifted in time by —Lg ;. By Markov’s property,

K K—Il—-1 K
®q _ 17®q ®q _
EG W, ] 14 =B |V, [] 14,.E5! [ 14, Yo, ] (2.10)
k=1 k=1 k=K-—1
EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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(recall that ox_; = Lix4+1-1 — Lx—;). We apply again Markov’s property to find that for
all x = (21,...,24) € (Z*)1,

K
qu[ H 1Ak\IIOK—1

k=K—1

— 7 ®q
_Ex

K
1;, B [\yOK_l\soK_l]Eg@fK_L[ 11 1&“”.

k=K—-I+1

On the event Ax_;, we let (ir)r<q, be the go smallest indices such that S(’f € B(0, 5*1L}£l)
and Sir € B(O,d‘lL}ﬁlH) for all » < ¢o. It follows that on Ax_;, one has

OK—1
EQ7 [Wo,_,|Sox_,] = YTk by restricting the sum inside the exponential to the walks
indexed by the i,’s and to the time interval [v1l;_1, v1lk—1 + 2[;]. In particular, we obtain

from the last display that

K K
® ®
ES! [ I 14, %, | > Tr-iEs) 11 14 .
k=K—1 k=K—1
This combined with #; and (2.10) implies that 7;,; holds. O

The goal now is to obtain a good lower bound on the quantity T defined in (2.9). For
this purpose, we introduce the time interval 7 as

Te = ilk—1, vilg—1 + e, (2.11)

and define R as the maximal number of disjoint pairs (i, j) € C,, such that S and S’
intersect during 7 without leaving some large ball. More precisely, let

a,g:inf{nen,wm >Ml,i/2} (2.12)
(we set ai = oo when the set is empty), define
71 = inf {n € 7i : 3(i,j) € C,, such that S = 7 and n < o, A a;}

as the first time two particles intersect before one of them leaves the ball of radius
Ml,i/Q, and let (I3, J1) be the two particles involved. (In case more than two particles
participate in the event defining 71, choose the smallest pair in lexicographic order.) If
the set is empty, we let 71 = co. Then, define iteratively:

Tr41 = inf {n > 7., n € Tj, : 3(4, j) € Cy, such that: S}, = 57,
n <ol Aol andVs <r {i,j} N {I,J,} = v)}

as the next time two new particles, distinct from all the previous particles I, Jy, ...,
I, J., meet. We denote by (I,41, J,-+1) this new pair. When there is no such time, we set
Tr+1 = 00. Finally, denote by

Ry =sup{r >0:7. < oo}

the total number of such successive disjoint intersections. Note that the 7. depend on £,
however we supress this dependence in the notation. Introduce the expression

af ‘=

. : 2| BE Tk 1a e |ol 2 _

tl€n7£k eB(z)annw) E? [e ) e Sok*t - yleok—t =Yz - (2.13)
T )

y1,yzeBl,kJrhyhl)ij(ok—t)ﬂi
The quantity a;, will serve below as a lower bound on the (multiplicative) contribution of a
couple (I, J,.) to the total expectation. Considering that we have R such contributions,
we now prove the following result.
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Proposition 2.4. With notation as above, we have that for all k € [1, K],

XEBgg,k,YEBgy,k+1
X0, Y

Ty > inf EJEY {a?k} .

Proof. As 7, € Ty, we have [r. + 1,7 + l] C [v1lk—1,1lk—1 + 2li] (see Figure 1) so that

vilp—1+2lg Ri Tr+lk
)IREED DR FIRTED DD DR
n=vilg—1 (4,j)€Cq, r=1n=7,+1

Therefore, it holds that

2 Vilk—1+20 ) Ri
B [ff” Lnvil1 2G9)eCq 15;-154 > EgY [H Fo e+ Ly I, JJ] . (2.19)
r=1

where [(s,t,4,5) = exp (8% Sh_si1 lg: _gi ). Recall the definition of a; in (2.13). Our

goal is to show that for all R > 0,

R
Op = Ef{kyy |J:[ f(Tra Tr + U, Ir, J7‘)1Rk=R] > afpi’“y(Rk = R) (2.15)

r=1

(Again, @ depends on k, x,y, but we supress this from the notation.) The equation (2.15)
holds trivially for R = 0. Now suppose R > 1. Let F,, denote the sigma-algebra generated
by the walks until time n and denote by F, the sigma-field stopped by 7;. Observe that
by independence of the random walks and Markov’s property,

le] ‘|

17'1<00E®2 [f (Ovlkv 132)|S;k—7-1 = yhaSgk_Tl = le] X

I oJ
Sri St

R—1
Eok*‘rly(yl)iecqo\{ll,‘h} [H f(i—r’ﬁ. —+ lk,fr, jT')lﬁk,RI] ] )

(8%, )iecgo\ (11,71}

R
dp = Eik’y |\1T1<OCEfck$y lH f('rr,’rr + U, I, Jr)le:R

r=1

— FOk:Y
,Ex7

r=1

where 7,, I}, j,},fzk are defined as 7., I, J,., Ry but for ¢y — 2 particles and with 7
replaced by [0, v1lx—1 + I, — 71]. As by definition St = 571 € B(0, Ml,lg/z) and 7, € T, we
obtain that

Dr > ap x E2Y ;
R =% x (5%, )iecqg\{11.71}

R—-1
17’1<()0E0k_7-17(y1)’iEqu\{Il’J1} [H f(%’r‘) %’r‘ + lk’f’!" jT)]-'}ik—31‘| ‘|

r=1

— akE,O(k’y

R
H f(TT7TT + lk; Ir» Jr)le—R] )

r=2

where in the equality we have used Markov’s property as above in the reverse direction.
Iterating this process leads to (2.15). Then, putting together (2.14) and (2.15) and
summing over R entails Proposition 2.4. O

Next, we define:

A2 = log (2.16)

_ Q2logly ”
1 6 log N

EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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Proposition 2.5. We have infy<x{ar — e’\i} > —Ars, where Aros > 0 satisfies
limsupp |Ap2.5| = 0.

(Recall that lim supy, keeps v and ¢ fixed when taking the limsup, see Section 1.2.)

Proof. Throughout the proof, we write Ar instead of Ars5. Lett € Ty, « € B(0, Mli/Q)
and y1,ys € Bl,k-‘rl such that y1, yo ~(op—t) Z- Let

Iy 1

2
W (z1,22) = EZ? {eﬁN Lo

sh=s21 1
n n 1 2 _
S} =z1+S57 =z2 |
I 1 I~ ~2

where we have supressed the dependence on x and k in the notation. By Markov’s
property,

[ SRS T
ES? [e N2 tsy Sz‘lsik—t—yllsik—t—yz} = D> Wen2) [] pocr-n(vi —2).
21,Z2€Z2 1=1,2
(2.17)
We first show that when |z;1| V |z3] < 2Ml,1€/2 and z; ~o,—t—1, Yis
11 por—t-1.(wi — 2:) = e [ por—t(vi — ), (2.18)

i=1,2 i=1,2

where, for some ey = en(I') that vanishes as N — oo,

Or = len| + 85 2wy +2by —log(l — 605 %), by =205 vy V2M 4+ 10M2v5 ', (2.19)
To show (2.18), we rely on the local central limit theorem given in Appendix A. First
observe that o — ¢t — I, > 1l when t € T,. We will use this repeatedly. Moreover, for

|21|V]22| < 2Ml,lc/2 and t, z,y; as above, we have that |y; — z;| and |y; — z| are less than

(26~ 1wA/? + 2M)1}/? by (2.5)-(ii). Since I;, > N, we obtain that |y; — 2| < e (ok — t — I1,)
and |y; — z| < en (o — t) with ¢y vanishing as N — co. Hence Theorem A.1 applies and
we obtain that

Por—t—1 (Ui = i) = 2Pog—t—1,, (i — 2:)e” ™),

pOk—t(yi - x) - Qﬁok—t(yi — x)eo(dk)’
674V§+M4
Bz

. Note that d;, < ¢N ™7 with a constant
¢ depending on §, v, and M. Then, one finds by a simple computation that for x = (z, z),

where ps(z) = %e"zws and dj, = Vgllk +

Dop—t—15, (Y1 — 21)Poj—t—1, (Y2 — 22)
ﬁokft(yl - x)pokft(yZ - (L‘)

_ Ok =) (i Pua ) (o —t—ta) T = (o —t) T+ 2 2 (2.20)

o —t—lp  op—t

n (Ok—t—lk)Q ’

where g(z,y) = 2(y1, 21) + 2(y2, 22) — |21]* — |22/>. The aboslute value of the first term
in the last exponential is less than (26 2Ly1lx)/(v2lk)? < 86 2w, '. Furthermore, by
the Cauchy-Schwarz inequality the absolute value of each of the two last terms in the
exponential is smaller than (recall b; from (2.19))

(va)™* (1067 L2 MG/ + 10020, ) < by,

Moreover, )
(Ok - t) _ 1l = lk(Q(Ok - t) - lk) < lk(GVQZk) < 6V2_1.
(Ok —t—1Ig)? (0}€ —t—1Ig)? (Vglk)Q
EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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Putting things together leads to (2.18).
Coming back to (2.17), the bound (2.18) entails that

2 i
E§2 [651\1 i 1s1_s2

Set =Y, 50 = yz] >efr W (21, 22). (2.21)
21,20 €72
21|V |22 | <ML/

We have
2 Ly 1 i
E W (21, 20) >ES? [eﬁN 2int Sisi] -2 E W (21, 22), (2.22)
21,22 €72 21,22 €72
|21|V|za| <M1L/? |z1|>M1/?
where

2 Uy
1o
E W (z1,2) = ES? [eﬁN Loz lsi=szq
21,22 €72
|z1]>2M1}/?

12| -
|st, |>2m, }

Recall the definition of )\% in (2.16). Given that [, > N7, one can see from the proof of
Proposition 3.4 in [4] that there exists e’y = &’y (y) — 0 as N — oo such that

1

ES? [eﬁ?v PEES 15;15%} —E, {eﬁ% T 152,1:0} > (14 &y )et.

Moreover, by Holder’s inequality with p~! + (p')~! = 1 and p > 1 small enough so that
VP8 <1,

1
7

A . »
E;@z |:eﬁN Sk 13711’:5721 1‘51 |>21\/111/2:| < E, [epﬁzg\r ik 152i=o:| F P, (|Slk| > 2Ml]1€/2> P
Ik

k

<C@B)e M,

for some ¢ > 0, since Eoeﬁf2V Yili Lsy=0 — EW% < C’(B) < oo for all ,3 <1, see (1.1). (We
have also relied on Hoeffding’s inequality to bound the probability in the last display,
using that |z| < MZ,?Q.)

Combining (2.19), (2.21) and (2.22) with the two last displays, we obtain that

2 i
E®2 [eﬁ N a1 lst sz

S;kft = Y1, Sgkft = 92]
> e ((1+ep)e —20(B)e M)
=M — (1-— e‘ar)e’\i +e7fr (Eﬁve’\i - 2C(B)e_ﬁMz) .

To conclude the proof of the lemma, observe that for all £ < K we have )\i < A2, so that
we can choose

Ap = (1 —e )X 4 e0r <|5§V|e’\2 + 20(B)e*ﬁM?‘) ,
and observe (using (2.19)) that it satisfies lim supp Ap = 0. O

For technical reasons, we will also need a uniform upper bound on ay.
Lemma 2.6. We have

sup sup ay, € [1,00). (2.23)
T k<K
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Proof. Since a; > 1, the lower bound is trivial. To see the upper bound, we proceed as
in the proof of Proposition 2.5 and write as in (2.17):

ol = W) T] o)

2 Iy
I S
E?Q eﬁwzn_1 S}L_s,%lsl
21,22 €723 i=1,2

Using the expression (2.20), we obtain for |z1| V |z2]| < 2Ml,1€/2 and z,y; in the ranges

appearing in the definition of a; that
ﬁokft*lk (yl - Zl)pokftflk (y2 - Z2) < BGF
pok—t(yl - I)ﬁok—t(yQ - fE)

(2.24)

The estimate of (2.24) actually extends to the range z := |z1| V |z2| < 12/5 in the form
Dor—t—1 (Y1 — 21) Doy —t—15, (Y2 — 22)
Por—t(y1 — 2)Po,—t(y2 — @)

_ +\2 — — 9(z,y 9%y
S ™
k — U=k

< 2691"67622/(1/2lk)

)

with ¢ a universal constant; for z > li/ 5, we use a simple large deviations estimate and
obtain that
Doy —t—1, (Y1 — 21)Dop —t—1, (Y2 — 22)
pokft(yl - x)ﬁokft(y2 - .’L’)
We thus obtain, in analogy with (2.21),

1/10
< efcl,c

Sk =y, 82 =y <2V NN W) 2)  (2.26)

2 Ik
E§2 |:6ﬂN 2y 13711:37%
21,22€22

which, using [4, Proposition 3.4], is bounded above by a universal constant depending
only on £. O

Recall that ¢o = [(1 — &¢)q], see (2.3). Our next goal is to show that R}, is close to
a Poisson random variable of parameter a(‘é") /log N by relying on the “two moments
suffice” theorem [1]. To verify the hypothesis of the latter, it is more convenient to work
with the quantity

Ry = Z Lo o ) —inf{n € T : 5 = S n < of Aol
(,5)€Cqq
(we set T,EiJ ) — oo when the set of the infimum above is empty), which counts the number
of all the couples that intersect in the time interval 7.
Recall @ = ay from (2.2). The next proposition states that the law of 7~€k can be
approximated by a Poisson law of mean 64(‘120) and that R, and R, are close in distribution.
Before stating the proposition, we introduce a few quantities. For all (i, j) € C,,, we let

D(ij) = P;’“y(T,gi’j) < 00) and define:

p= > P (2.27)
(4,4)€Cqq
We also set p(; j),iv,j) = pgk,y(TlgiJ) < 0077_]51",]") < 00). Note that all these quantities

depend on k,x,y, but we will show in Section 3 that this dependence can be neglected
asymptotically. In fact, we prove that p(; ;) can be approximated by @ and that x can
be approximated by @(‘120). We also recall our conventions concerning the meaning of
lim supy, and in particular that lim supy, keeps v and ¢y fixed when taking the limsup,
see Section 1.2.
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Proposition 2.7. There exists Ar 57 > 0 such that limsupp Ar o7 = 0, for which e}, =
(1 + Arpr)(a® +aleleel 4 4y satisfies:

vlog N
sup sup dry [POY (’]é]~C = ) _ P(M)’ < CE?V, (2.28)
k<K x€Bgy,k,yEBgg,k+1
X0 Y
and
sup sup drv ‘Pik’y(Rk =) =P (Rk - )’ < Ceh (2:29)
E<K x€Byy k,YEBgq . k+1
X~op Y

where drv| - | denotes the distance in total variation and P(u) is the Poisson distribution
of mean p from (2.27).

Remark 2.8. Since ¢?> = O(log N) we have limsupy €% = 0.

Proof. We first prove (2.28). Following [1], we define B; ;) = {(i', ') € Cy, : {',j'} N
i.j} 0} and

er = Z Z P(i,5)P(k,l)»

(i7j)€cq0 (k’l)eB(iJ’)

ez = Z Z P(i,j),(,5")-

(8,)€Cqq (¥/,5")EBi, ) \{(4:9)}

By Proposition 3.1 and Proposition 3.6, we have e; < Cq¢®(1 + Arz1)%a? and ey <

c(1+ Apﬁg‘ﬁ)qu% with lim supp, Ar = 0 for both errors. We then obtain (2.28) by

applying [1, Theorem 1], which states that the variation distance in (2.28) is bounded

above (in the notation of [11) by 2(b; + b + b3), where here by = e1, by = e5 and b3 = 0 due

to the definition of B(; ;) that ensures that elements of this set are disjoint from (3, j).
We turn to (2.29). By a standard property of the distance in total variation,

dpy |[POY (R = -) — PPY (R = )| < 2P%Y (R, # Ri).

Then, observe that on the event {R; # Ry}, either there exist two couples (i, 5), (i’, j') €
Cy, such that [{7,j} N {#,5'} = 1 with 7(¢,j) < oo and 7(¢',j’) < oo, or at least two
distinct couples meet at the same time in 7. Hence P%Y (R # 7@;@) < ey + e3, where
es = q4p,(€4) with p,(f) defined in (3.21). This gives (2.29) by Lemma 3.9 below. O

In the following proposition, we use a certain constant Ar 3 ; > 0 introduced below
in Proposition 3.1, and which satisfies lim supy Ar 3.1 = 0.

Proposition 2.9. There exist ¢ > 0, ap > 0 and Ny = Ny(I") such that for all « > a and
N > Ny, we have forallk < K,

inf Foky [ Rk} > o(®)aar—1)(1-Arsa) (1 _ A/ 2.
XGBqO,klai’lquo,k+l x ~ |G | Z€ ( r29) (2.30)
X6, Y

where A} , 4 € [0, 3] satisfies lim supy (g)_lKA’F’zig =0.

Proof. Let R be distributed as P(u) and recall €} from Proposition 2.7. For all ry € IN,
we have
by [] 2 B0 [of 1,

R
> E [af1r<r,| — Ca)ley (2.31)
ro+1
>emla—1) (1 B ggrogx
- (ro + 1)! RN
EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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where we have used that E[a®] = e#(*~1, that E[aR1g>,] < e#* D& foralla > 0,7 € N
and that e#(ax—=1) > 1,

Recall the constants Ar = Ar 3; > 0 from Proposition 3.1, which satisfy lim supr, Ar
= 0. Using that |Cy,| = (q20), (2.27) and Proposition 3.1, we have that uniformly on x,y, k:

qo0\ _ qo\ _
— < . .
Next, define ¢ := sup,, ai € (1,00) by (2.23), and

(B)a(t+ )™
(To + 1)' N '

/ — A/ — 3
’ = = inf
T7,2.9 r roeN

We first show that limsupy. (q;)flKA’F = 0 and then that A} € [0,1] for « and N
large enough. Together with (2.31) and (2.32), this yields the proposition. Since K <
a 'logy~! by (2.6), we have for all ry € IN,

A\ (B)aa+ap)”"
(2> K (ro + 1)!

(Ha(1+Ap)"™
(’I"() + 1)'

< (logy™")(1+ Ar)
Moreover, limsupy ({)@ < Coa with Cy € (0,00) by hypothesis. Hence, if we define

Ag =limsupy Ar, the supremum limit over I of the right-hand side of the last display

is less than .
(Coa(l + Ap))” }
(ro +1)!

lim sup {(1og Y H(1+ Af)
T
(Recall that T = (N,T).) If we choose 7y = [¢2Cpa(l + Az)] and use Stirling’s ap-
proximation r! > (r/e)” valid for all r € IN, we find that the last display is smaller
than
2
lim sup {(1og Y (1 + Ag)e ¢ CW} =0,
r
where the equality holds since we take the limit a — oo with y fixed. Hence, by choosing
ro = [e?Coa(l + Ar)] we have shown that

I I

—1 —1
lim sup (g) KAL <limsup { ((2]) Kc[ezc"a(l*'Afﬂs?V} . (2.33)

We now prove that the last limsup vanishes. By definition of ¢}, in Proposition 2.7, we
have

-t « loglog N
(g) Key < Cga'logyta(l + Ar) ( 898 ) ;

log N vlog N
Using that limsupy ¢?/log N < oo, we obtain that limsup, (g)_lKe}‘V = 0 and thus
limsupy (4) "' KA} = 0 by (2.33).

To conclude, we prove that A < 1/2. If we choose again o = [e?Cha(l + Af)], we

find using Stirling’s approximation as before that limsupy Af < e—*Coa 3o if we let a
large enough followed by N large enough (depending on I') we obtain that Al <1/2. O

Here is our last technical estimate. Recall the definition of Dy in Proposition 2.3.
Proposition 2.10. There exist c,c’ > 0 such that

Dy > 1 — Kefoa(e'logeg ' —ed™?) (2.34)
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Proof. Define Hj, = {S}, ¢ B(0, 5*1L,1§/2) or 7, .. ¢ B(0, 6*1L,1€f1)}. By definition of Dy
and the union bound,
K

Dy >1-Y PJI(A). (2.35)
k=1

Let p = |eoq]. The event A§ implies that there exists i; < --- < i, < ¢ such that H, ,ir
holds for all » < p. Hence, by independence of the walks,

PEI(Af) < (§>P0<H;>p.

By Hoeffding’s inequality there exists ¢ > 0 such that Po(H ,%) < e~ Since €g is small,
we further have that (g) < e¢'c0qlogeg " for some ¢’ > 0 via Stirling’s approximation. O

2.2 Proof of Theorem 1.1

By Proposition 2.3, we have

—1 -1 -1 K
(g) log E[W] > (g) log Dy + (g) > log Y. (2.36)

k=1
We first observe that

-1

limrsup (g) (=logDy) =0. (2.37)

Since loglog N = O(q), we can find ¢y > 0 such that ¢ > c¢ploglog N for N large

enough. Now, because we take the limit 6 — 0 before ¢y — 0, we can assume

that in (2.34) we have eo(c log»sa1 — 072 < —2051, so that using (2.6) we have

Dy >1—logy ta~!log Ne~21°81oe N which converges to 1 as N — oo. This gives (2.37).
Next, by Proposition 2.4 and Proposition 2.9,

-1 K —1 K 1
(2) ;logm > <2> (2) 1-Arsi1)a ’; ap—1 ( ) Klog(1— A ). (2.38)

Since Af, 4 < 1/2, we have that —(9) ' K log(1 — Al ,4) < C(g)_lKA’F’z.g. Hence by

the definition of Af. , 4 and (2.6), lim supr, (g)_lK (—log(1 — AL 54)) = 0. This deals with
the second term of the right-hand side of (2.38). Concerning the first term, we will show
that

—1 K
.. q q0 A
lim nf <2> (2) (1-Arg)a) (ax—1) > A(B) (2.39)
k=1
First, we rely on Proposition 2.5 to find that
K K
@Z ak—l > Z(A"—1>—5£KAF72.5,
k=1 k=1

where limsupp @K |Ar 25| < limsupplogy~|Ar2s| = 0 by (2.6) and the definition of
Ar 5. Now, recalling the definition of )\i in (2.16), observe that

ai(’\k—l) gﬁ.

k=1 2yeka
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Therefore, by Riemann sum approximation and the lower bound on K in (2.6) (recall
that qo = I_(l — 80)L]J):

lim in (g) - (?) a kz (e*i - 1)

> =

log~y~ 2., N ~
>(1- 50)2/0 %dx =(1—¢p)? <log(1 —3?) —log(1 — 52)) ,

where the last quantity converges to A(32) as v, 9 — 0. This gives (2.39).
Putting everything together yields the lower bound lim infr (£) “ogE (W] > A(B)?,
that is liminfy (9) " log B [W3] > A(B)2. O

2.3 Proof of Theorem 1.3
Introduce the event
A={Si, =0,k=0,...,|[N/2|,i=1,...,q}
Note that P(A4) > (1/4)71V/2]. On the event A we have a total of at least (N/2)(%)
intersections. Substituting in (1.2) then yields that

E[W{] > eﬁ?v(N/2)(§)(1/4)qLN/2J.

This proves Theorem 1.3. O

3 Estimates for “two moments suffice”

3.1 Two-particle intersection probability

The goal of this section is to give an estimate on p; ;) = P;’(kvy(r,ii’j) < o0) used
in the proof of Proposition 2.7. To simplify future notations, we write 7, = 7,51’2) and
Pwz = PU%(1p < 00) for w ~,, z € Z* x Z?. The following proposition provides the
desired asymptotics. (Note that p(; j) = Dz, 2;),(yi,y,)")

Proposition 3.1. There exists Ar 31 > 0 such that limsupr, Ar 31 = 0 and

sup sup Ipx,y — @] < &Ar .. (3.1)
k<K XGBQYk,yGBgyk_*_l
X~or Y

The proof of Proposition 3.1 is given at the end of this section, building on a sequence
of lemmas that we now present and prove. As a first step, we show that px y in (3.1)
can be replaced by px = P%%(1, < o0), i.e. py is defined as Dx,y except there is no
conditioning on the endpoint.

Lemma 3.2. There exists Ar 3.2 > 0 satisfying lim supy, Ar 3.0 = 0 such that forallk < K
and allx € By,
sup |px,y - px| < prF,3.2~ (3.2)

yEB2 ki1
Y™~op X

Proof. By Markov’s property, we have

Px,y — Px = ES?Q [1Tk<0015},k:y1,53k:y2 P;?Q(Solk = Y1, Sgk = y2)_1 — Px

P®12 |52 (Sikﬂ—k =1, Sgkfrk = 92)
= ES?Q 1, <oo = 7%2 1 5 -1
Px (Sok = Y1, Sok = y2)
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Define:

Vi = sup sup Por—t(y1 — 2)Po,—t(y2 — 2) _1l.

ceB.M1Y/?) €T | Por (Y1 = 21)Poy (Y2 — 22)
2N (o, —t)Y1,Y2

Since by definition S} , SZ € B(0, Ml,lc/Q) when 75, < co, we have |pxy — px| < pxVi. Itis

Tk

thus enough to prove that

Vi, < CelenIHbotbu (|0 4 by + by + 1205 1) =: Ar 3.9, (3.3)

where ey = en(I') - 0as N — oo and
bo = 8uy 672, by =4 (5*1My2_1/2 + M2yt 4 25*26*%&/4) , (3.4)

since then limsup, Ar 3.2 = 0. Similarly to the proof of Proposition 2.5, the argument
leading to (3.3) relies on the local central limit theorem. In the following we assume that
2 € B(0,MI,’*), x € By and y € By yy1. We first note that o, — t > vpli. By (2.5)-(i),
it further holds that |y; — z| < (26—1u21/2 + M)l,lc/2 and |y; — ;] < 46‘1v§/2l,1€/2. Hence
ly; — 2| < en(or —t) and |y; — 2;| < eyog with ey — 0, so Theorem A gives:

eo(dk)7

(dk)’

pokft(yi - Z) = 2]50k7t(yi - Z)
Doy, (yz - xz) = Qﬁok (yz - xi)eo

_ —lz|? R\
where p,(z) = Se 1"/ and dj, = - + %
© ¢ 2

come back to Vj. Letting z = (z, z), we find that

< e¢N~7 with ¢ = ¢(6, va, M). We now

= = 2
Por—t(1 = 2)or—t(y2 = 2) _  Oh  —(yn*+lgal)(on—t) "m0y )+ LR 2 2Le)

Doy, (yl - ml)ﬁok (y2 - 1‘2) (Ok - t)z ’

where g(x,y) = 2{y1,71) + 2(y2, 22) — |21]*> — |22|?. Recall by and b, in (3.4). The absolute
value of the first term in the exponential above is and smaller than

t < 8 2Lyy1(1li—1 + )
or(op —t) — vz

(ly1? + |y=2l?) < by,

by (2.5)-(ii) and Remark 2.2. The sum of the absolute values of the two other terms in
the exponential is smaller than

(valiy) " (45—1L,1/+21Mz,1/ 2 4 oMy + 4672 LA LY + 26‘2Lk) < by,

by the Cauchy-Schwarz inequality and (2.5)-(i),(ii). Moreover,

2 _
0k | _ 1ok —t) _ (2h)(6ralk) _ 12057,
(o — t)? (o, —t)2 = (wlp)? —
Combining these estimates entails (3.3) using that |e* — 1| < |z|el*! for all z € R. O

Next, we show that we can neglect the condition n < o A o} in the definition of
T = 7,1’2. Thus, we define:

7 =inf{n € Tx|Sy = S2}  and  px = PL*(F < ). (3.5)
Lemma 3.3. There exists ¢ > 0 such that

6761\/12

sup sup |px —px| < C (3.6)

k<K x€Ba ylog N
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Proof. We have:
px = P2%(F), < 00,7 < 0 Aop) = PE2(F, < 00) — P2%(F, < 00,04 Aop < 1),
hence, by the union bound,

|px _ﬁx‘ < Z P§2(7~—k < O0,0'i < %k)
i=1,2

We will bound from above the term corresponding to ¢ = 1 in the sum. The other term is
treated in the same way. Since Ty, = [v1lk—1, v1lk—1 + ],

P2%(7, < 00,01 < 7) < P®? (0,1 <, In € o}, 0k + 1] : SE = SEL) ,
hence by Markov’s property,

PE2(F, < 00,0k ST < Y B (1512 PE g0 (< lh: S} = 52)]
meTy

= Z Z Eﬂll {1ai:m15}n:w:| pm(y - x2)hk(x - y), (3.7)

meTy, x,y€Z?

where hi(z) =P, (In <l : S, = 0). It follows from [6, Théoréme 3.6] that

(loglx)hi(2) < C (1og {lk|z|_2})+ + C1. 25y, -

We thus split the sum that appears in (3.7) into Q; + @2, where ; contains the terms
for which |z — y|*> > . Then Q1 < C(logly) P, (o} € Ti), where by (2.5) and (2.1)-(iv),
we have

1 M
1] < 67102 < 2y Pem el < S, (3.8)
so that,
1/2 2 M2
C C 7C(Aﬂk \x1|) _eM2
Q1< ——Po [ sup [Su| > MIY? —[ay] ) < ——¢ Al <0t
log Iy, neTh log I, log I,

for some ¢ > 0, by Doob’s inequality and Hoeffding’s lemma. (Note that for the last
inequality, we have used Remark 2.2). Then,

C
@2 = 0 > > Ea [1ai=m15,}n:x Ap (), (3.9)
&Lk meTy €72
with
l
yEZ? yHa, |z~ ]
lz—y|* <l

Since m = o}, implies that S}, lies outside the ball B(0, Ml,lg/2), we can restrict the sum

in (3.9) to |z| > MZ,IC/Q. Then, as |z2| satisfies the same bound as |z;| in (3.8), we get that

|z — x5 > M1,/?, which implies that |y — 5| > 21,/* under the condition |z — y|2 < Ij.
Thus, given that m > 14l;_1, we can apply the local limit theorem (Theorem A.1) to
obtain that

C M2l i
Ap(x) < — Z e~ 16 m log W’

m
2€72,
0<|z)2< g
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and hence
1)
lp M2 M2 g

Ap(z) < Tom < Ce 32 m,

C M2 g Ui
—e 16 m rlog— <C
. > rlog 5 <

r=1

—€
m

where in the second inequality, we have used a comparison to an integral where
Cfol ulogu~2du < oco. Using that in the last exponential term we have m < 2[, we

2
get via (3.9) that ()5 < log%e*%. This gives (3.6) since I, > N". O
We introduce the shorthand notation gx(z) = P, (3In € T : Sa, = 0) that satisfies

Dx = gr(x1 — x2), (3.10)

recall (3.5). Our aim is to use the KMT coupling (see [11] and references therein) to
estimate g (z). The KMT coupling ensures that one can couple, with high probability, the
random walk (S2,,) to a standard 2-dimensional Brownian motion (B;) with an error term
A,, = max;<y |So: — By satisfying A,, = O(logn). We will use the coupling to compare
the hitting time of 0 of the random walk to the entry time of Brownian motion in a ball of
radius clog N. This will turn out helpful as there are good estimates by Spitzer [10] on
the probability of the last event.!

Let t; = 11lx_1 and t5 = ¢; + I, denote the boundaries of Ty and t, = ¢, + I}, /2. We
define:

Greo = { inf |B| < ¢ logN} and G}, ., = { inf |By| <o logN}. (3.11)
tE(t1,ta] ’ tE[tl,t.’z]
Lemma 3.4. There exists cy, ¢, ¢}, c2, ¢, > 0 such that for all x € B (0, 26—1L,1€/2) and all
k<K,
loglog N ¢ —c
<1 - C”logzv> (Px( o) — N ) < gu(@) < Py(Goeg) + N0 (3.12)

Proof. We first set the values of ¢y and ¢;. By [11, Theorem 1.3] and Markov’s property,
we can, for all z € Z?, find a coupling ((S2,), (B;), P.) and a ¢q large enough independent
of z, such that P, (Ay > ¢glog N) < N~ with ¢; > 0 independent of 2. We choose cp, ¢1
as such.

We start with the upper bound in (3.12). With Fj, = {3n € T;|S2, = 0},

9x(2) = Po(Fi, An < cologN) + P (Fr, An > colog N) < P, (Gge,) + N

We continue with the lower bound. In this case, unfortunately, knowing that the
Brownian motion enters the ball of radius clog N does not imply necessarily that the
random walk hits the origin. However, the random walk will be close enough to the
origin so that its probability to hit the origin soon after is high. Denote by 7' = min{n €
[t1,t5] "IN, |B,| < ¢plog N} and Ty = inf{n > 1|Ss, = 0}. Let also 6, stand for the shift
in time of 2k steps for the random walk. Since t} = ¢; + l/2, we have that on the event
T < o0, {Tp o 1 < l,/2} C Fy. Hence,

gr(x) > P (T < 00, Ty 00 < /2, Ar < ¢olog N)
= Ez [1T<001AT§00 lOgNPSQT (TO < lk:/Q)] 3

IThere exist similar estimates for the random walk itself, such as [9], but unfortunately they are not sharp
enough to estimate g (x) directly in our context.

EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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where we have used Markov’s property. Since on {7 < oo, Ar < ¢glog N} we have
|Sar| < |Br| + ¢olog N < 3cplog N, we obtain that

grla) > b Py (Ty < 1/2)Pe (T < 00, Ar < cglog V).

Observe that on {T < oo}, one has T' < N and thus Ar < Ay, so that
P, (T <00, Ar < cglogN) > P, (T < 00) — N~
The lower bound is thus proven if we show that

P.(T < 00) > P (Gl . ) — N, (3.13)

k,co

for some ¢’ > 0, and that

inf P, (To <x/2) > 1—c,loglog N/log N. (3.14)
ly|<2clog N

For (3.13), we let Qn = sup{|Bs — B/, |t — s| < 1,s,t < N} and decompose

ng( 2},60) =
<

o(Glocor N < colog N) + P, (G}, .., v > colog N)
(T < 00)+Pr(Qn > colog N),

so that (3.13) follows from the fact that P, (Qny > c¢ologN) < N— for ¢ > 0, see
[5, Theorem 3.2.4]. We now prove (3.14). We first use that since [, > N”, we have
Py (To > lx/2) < P,(Tp > N7/2). Then, by [9, Theorem 1], the last probability is smaller
than ¢, log(2¢¢ log N)/log N uniformly for |y| < 2¢qlog N. O

Lemma 3.5. Let ¢y be as in Lemma 3.4. There exists Ny = No(f‘) and Ar 35 > 0 such
that Ar 35 < 1 forall N > Ny, limsupp, Ar 35 =0 and forall k < K,

a (1 - A[‘,3.5) S inf Px( ;ﬁco) (315)
z€B(0,26-1L;/?) '
< sup Py(Greo) < @(l+4 Apgss). (3.16)

z€B(0,26-1L}/?)
Proof. Let z € B(0,25*1L,1€/ 2). We begin with the second inequality (upper bound)

in (3.16). (The first inequality in (3.16) is immediate). With r; = ¢g 105%\[' we have

Pz(Gk,CO) < P()(Gk,co) = P() ( inf ] |Bs| < Tl) 5 (317)

s€[l,t2/t1
where the first inequality follows from the fact that the modulus of the Brownian motion
is a Bessel process and one can couple a Bessel process X7 = | B¥| started at x to BY so
that |Bf| > |B?| for all ¢, and the equality follows from Brownian scaling. In [10], it is
shown that
hy(t) = (logr=2) P inf |Bs|<r],
(6= (togr) Po ( inf 1B.] <)

satisfies h,(t) — logt as r — 0 for all fixed ¢ > 1. Since ¢t — h,(t) is increasing and

t — logt is continuous, this convergence can be extended to a uniform convergence on
each compact subset of [1,00). By (2.5) we have

to/t1 = (Vilp—1 + )/ (n1lp—1) < 1+ €°%,

EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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hence by the equality in (3.17),

|(log 1) Po(Ghre,) — log ta/t1] < te[ﬂ? . |hy () — logt| =: en, (3.18)

where ey = en(a,y,v1) = 0 as N — oo since r; vanishes as N — oo. Moreover, by (2.7),
there exists ¢y = ¢/y(a,v) = 0 as N — oo such that ¢y > 0 and

logts/t1 = log(l/(vilk—1)) +log(1 + vilp_1/l;) < (e —1)loglx_1 + log2 + €y,
where we have used that v41;_1/l; <1 (Remark 2.2). Hence, by (3.18), we find that

log 2+en+ely
1+ oDty

(e® —1)loglp—1 +log2 +en + €y - 1)(

Po(Griey) < =l
0(G,eo) log lx—1 + log(11/(c2(log N)?)) (e

1_9 log(09 log N)
logli—1

Since logl;_1 > «vlog N, the numerator is smaller than 1 + 10g2—',:y++5}\, and for «, v and
11 fixed, the denominator writes as (1 + onx(1)). This gives (3.16).
We turn to (3.15). For r; = ¢y log N/+/t1, by Brownian scaling and Markov’s property,

P.(G, =P inf B <
( k,co) z/\/t1 (86[11,1}2/751” | S Tl)

= / p1(z —z/Vt)P. < inf | |Bs| < r1> dz, (3.19)
R2

s€l0,th/t1—1
where j;(z) = e 1#I°/*. Then, we have:
pi(z —w) > pr(2)e 2AEI 10l > 5y () lwl=Fn-lul®)

by the Cauchy-Schwarz inequality and the bound |z| < (|z|? + 1)/2 valid for all z. This
implies that for all z € B(0,251L,/?), with £€2 = 4672L; /t,,
pi(z—a/Vi) 2 pi(z)e e = (14 ) Mp L (2)e 8.

Plugging the last inequality in the integral in (3.19), we obtain that for u; = (1 + ¢)~!
and uz = t5/t1 — §/(1+€),

1+¢ [u1,u2]

By (2.5)-(ii), we see that ¢2 < 16v; '~ 2w, in particular ¢2 < 1/2 by (2.1)-(iii). Similarly
to (3.18), we obtain that

—£—¢
P, (Gyo) > ——Pg (geinf B,| < ﬁ) . (3.20)

§€N7

log(r1/u1)Po < inf |Bs| < 7"1> — log(ua/u1)

s€fu,uz]

where ey = en(a,y,v1,v2,0) = 0as N — co. As ug/uy = (1 + &)th/t1 — &,
log ug /uy = logty/ty +log (1+ & — &t /t)
> log(lg/(2v1lg—1)) + log(1 — &)
> (e® —1)logly_1 —log(2v1) — log2 — €Yy,
where we have used (2.7) and that £? < 1/2. Thus, as (e® — 1) > @,

1 _
Po( inf |By|<r)> log(ua/u1) —en
s€[u1,uz] log r— IOgu1

1— log(4v1)+en+ely

alogly_1 —log(dry) —eny — ey - alogln_1
= loglp—1 +log(2v1/(ci(log N)?)) — 14 7110‘%([2"1)
Oglg—1
EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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For fixed 14, «, 7y, the denominatoris 1 + on(1) as N — oco. As alogl;_1 > yo, we obtain

from (3.20) that
1 — log(4v1)+en+ely

1
P.(G] > ae €8 s
( )z 14¢ 1+on(1)
This implies (3.15) since ¢2? < 161/1_15*%2. The condition Ar 35 < 1 for N large enough
is ensured by (2.1)-(ii). O

We are now ready to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. The result follows from combining Lemma 3.2, Lemma 3.3,
Lemma 3.4 (with (3.10)) and Lemma 3.5. O

3.2 Three-particle intersection probability

In this section, we derive an upper bound on the probability p(; ;1) = Pf(kvy(r,ii’j ) <
OOangi,7jl) < oo) when {i,j} N{#,j'} =1, x € By, 1 and y € By, k+1. By symmetry, it is
enough to control pg?z = P&“Z(Tém) < 00, 7151’3)

The result is the following.

< oo) forw € By and z € B j11.

Proposition 3.6. There exists C > 0 and Ar 3¢ > 0 satisfying limsupp, Ar 3.6 = 0 such
that forallk < K, x € B3 1,y € B3 j4+1,

28) < Oaloglog]\f

1+ A .
X,y — ’YlOgN ( + F,S.G)

Before turning to the proof of Proposition 3.6, we state a few lemmas. As in the
previous section, we first observe that we can forget about the conditioning on the

endpoints. Letting p,(f’) = PX(T,EM) < oo,T,gl’S) < o0) for x € Bs i, we have:

Lemma 3.7. There exists Ar 37 > 0 satisfying limsupp, Ar s = 0 such that for all
k<K,x¢c Bs,andy € B3+, we have pfg, < p,(f)(l + Ar37).
We omit the proof which is very similar to the one of Lemma 3.2.
Next, we let Ty = inf{n > 0 : Sy, = 0}. The following holds.
Lemma 3.8. Let hy(z) = P,(To < {x). There exists ¢ = ¢(v,«,v1) > 0 such that
loglog N

sup sup Eo[hi(San — )] < c(logN)~™4 4+ C .
ne€Ty x€Z2 O[ (52 )] ( ) vlog N

Proof. Let n € T; and x € Z2. By [6, Théoréme 3.6], we have that (logl;)hi(z) <
C (log(lk|2|7?)) , + C1.25,,. Hence we decompose

EO[hk(SZn - 1‘)]
= z pon(2)hi(z — ) + Z pan(2)hi(z — )

|z—=2|<(log N)=2+/T) |z—=|>(log N) =2/
C'loglog N c

< )
log I, log I,

log N)~4
_V1lk71(0g )l +

where in the first sum we have bounded & by 1 and used that pa,,(2) < % (Corollary A.2)
with n > v1l;_1. The proof is completed using (2.5)-(i) and [, > N7. O

Proof of Proposition 3.6. Let 7"/} = inf{n € T : Si = 51} and 5%’ = Py(F"? <

00, 7~_}£1,3) < 00). It then trivially holds that pﬁf’) < ]55(3). Furthermore, by symmetry,

B < 2P (A < 7 < o0) < 2PP (A1 <00, TP 000 < £4),
k

EJP 29 (2024), paper 96. https://www.imstat.org/ejp
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where T3 = inf{n > 0|S! = S2} and 6 denotes shift in time of k steps. Let Ty =
inf{n > 0: 52, =0} and hy(z) = P,(Ty < {). By Markov’s property,

]5,((3) < ES??’ [1,;(1~2)<Oo hk (S}(Lz) - S?(1.2))i|
k Tk Tk

= E;?g |:17:<1'2)<oo E§3 |:hk (S}(LQ) - S?(l_g)) ‘51752:H .
k Tk Tk

Then, combine Lemma 3.8 with the identity Ex(%,glg) < 0) = gg(x2 — x1) and the upper
bounds in Lemma 3.4 and Lemma 3.5 to obtain that

- _ e loglog N
G < (@14 Apss)+ N~ ([C—=—=>2(1 1
px — (Ot( + F’3~0) + ) ’}/IOgN ( + ON( )) ’
with lim supp, Ap 3.5 = 0. We conclude with Lemma 3.7. O
3.3 Four-particle intersection
Define
p,(:l) = sup sup PYY (3IneTp: Sy =828 =51). (3.21)

k<K x€B4 1, yEB4,r+1

We have the following:

Lemma 3.9. There exists C > 0 and Ar 39 > 0 satisfying lim supr, Ar 3.9 = 0 such that
p;(f) < Z (14 Argo).

Proof. As in Lemma 3.7 of the last section, we can forget about the conditioning on the
endpoint (og,y) up to a (1 + Ar 3.7) factor. Then for all k < K, x € By,

Py (3n€Ti: Sy =52,55=81) <> p2n(0)? < C/li_s,
n€Tk

since py,(0) < C/n by Corollary A.2. We conclude by using that I,y > N7. O

A Local central limit theorem

Let p;(z) be the probability transition function of the simple random walk on Z? and

|2

pe(r) = (%rt)d/2 e~ %55 . We say that  ~; y when = and y have the same parity, that
is pi(x — y) > 0. The following theorem can be obtained from Theorem 2.3.11 in [5].
(See also the proof of [5, Theorem 2.1.3] and the paragraph above the statement of that

theorem.)

Theorem A.1 (Local central limit theorem). There exists p > 0 such that for allt > 0 and
all z € Z? with |z| < pt and x ~; 0,

pe(z) = 2Py (x) exp {O (1 + |:§3|)4> } , (A.1)

where O(g) satisfies |O(g)| < Clg| for some universal constant C > 0.

Since po, (x) is maximal at = 0 (this is a direct consequence of the Cauchy-Schwarz
inequality), the theorem implies the next general bound:

Corollary A.2. Let d = 2. There exists C' > 0 such that for alln > 1, sup, ¢z pn(z) < €.

EJP 29 (2024), paper 96. https://www.imstat.org/ejp
Page 21/26


https://doi.org/10.1214/24-EJP1148
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Moments of polymers

B The case 1 < ¢*> <loglog N

In the regime 1 < ¢? < loglog N, the error in Proposition 2.10 becomes too large.
The reason is that we ask for many particles to meet in a ball at each time L, and there
are around log N such times. This event has a cost which is too big compared to the
value of the moment E[IW};] when ¢ < loglog N. To fix this issue, we can divide [0, N] into
fewer intervals Ly, Ly+1) by defining & = ﬁ instead of & = logLN. With this change, the

2
error term in Proposition 2.10 can be neglected. However, when choosing a = 0 the

(07
q
2

quantity ¢o/t, diverges in the proof of Lemma 3.5, so that we cannot resctrict ours)elves
to a compact set in order to extend the pointwise convergence of [10] to a uniform one
in the argument for (3.18). Hence, we need to extend the main result in [10] to allow for
a uniform control on time and space. There exist uniform results by Ridler and Rowe [9],
both for the random walks and the Brownian motion, but they are given for the quantity
P, (T > n) (where T is the first return time to 0) instead of P, (7' < n) that we need, and
unfortunately the error term given is not enough to go from one quantity to the other in
our case.

The following lemma deals with this problem. It is obtained by adapting the argu-
ments of Spitzer [10] and Ridler-Rowe [9]. Consider the Bessel process R; = |B;| and
define T, = inf{t > 0: R; = a}.

Lemma B.1. For all ¢ > 0, it holds that

log(t/7?)
log(/a?)

where the error term o(1) vanishes as r?/t — 0 uniformly for a < r.

P (To <t) = (1+0(1)),

Proof. The goal is to deduce bounds on P,.(T, < ¢) from its Laplace transform
Ala,r, ) = / e MP(T, <t)dt, a<r\>0.
0
We follow closely the approach used in [9, Main Proof and Proof of Theorem 2] which is

based on a Karamata method of obtaining Tauberian theorems. The starting point is the
next formula, proved in [10, (1.4)],

Ko (rv2))
A(a,r,\) = ————~—, with Ky(u) = —logu+C+O(u) asu— 0. (B.1)
Ao (av/2X)
In particular, it holds that
1 log(12))
A g >\ = - 1 ]. B'2
(0,7, ) )\log(O/QA)( +O( ))’ ( )

where o(1) vanishes as 2\ — 0 uniformly for a < r. Then, the idea is to relate P,.(T < t)
to its Laplace transform via the formula

At [e's)
B(a,r,\7Y) := / P (T, < t)dt = / e Mg(e MP(T, < t)dt, (B.3)
0 0

where g(u) = u~! when e7! < u < 1 and 0 otherwise. We will first obtain bounds on
B(a,r,t) and deduce a bound on its ¢-derivative P,.(T, < t) in a second step. Let ¢ € (0,1)
and

Qu) = i apu” and R(u) = Z bpu”,
n=0
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be two polynomials satisfying

Q<g<Ron[0,1]and||Q — R

1,01 = / e " (Rle™) —Qe™))dt <e. (B.4)
0
By (B.3), we have

BmmA”uz/“e*%xa“ﬁ»a;gwm
0

=> an / e (MTONP(T, < t)dt
n=0 0

= Z anA(a,r, (n+1)N).
n=0
Now by (B.2), we can find §. > 0 such that whenever 2\ < §., we have

_ log(a?)) _
1 1
uniformly for all a < r. This implies that

log(a?)\)
log(r2\)

Bla,r, A7) > (1 -t Y M > (12 (B.6)
where in the second inequality we have used (B.4) and fooo e*tg(e*t)dt =1 to obtain

~ dp Ooftm —nt < —t
= e ape” "tdt = e e dt>1—e.
>t |y | eaenar>

n=0

A similar computation leads to an upper bound in (B.6), with 1 — ¢ replaced by 1 + €.
Hence, setting \~! = ¢, we obtain that for all @ < r and r%/t < &,

log(t/a®)
< WB(G,T, t) <t(l+e). (B.7)

Now, since ¢t — P,.(T, < t) is non-decreasing, we have for all 6 > 0,

t(l1—e)

B(a,r,t)
t

Bl(a,r,t'*%) — B(a,r,t)

<P (T, <t) < T

By (B.7), this leads to the following bound valid for 72/t < §. and a < r,

I 2 1 —9 I I 2
PR E N 011 Ul

o< BN
L= E = fog(e/r?)

2
We thus choose § = e% and observe that t =0 = e~<1°8(t/™*) g0 that

2
| log(t/a?)

OB ) p (T, <) <1+ 3e,
~ log(t/r?) ( ) +oe

when 72/t < 6. up to choosing J. smaller. O

Building up on Lemma B.1, we can deduce the following.
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Lemma B.2. There exists a constant Cy > 0 such that

. log(t2/t1)
P f < = ——"(1 1
0 (te%tri,tz] R, < a) log(tg/az)( +0(1)) + ho(t1, t2, a),

where the error term o(1) vanishes as t,/t; — oo uniformly for a? < t; and |ho(t1,t2,a)| <
2
a /tl.

Proof. Let € and ¢ in (0,1). (We choose below § small as function of £.) By Markov's
property,

1 a
Py < inf R; < a) = —/ re~ /(20 4y (B.8)
te(ty,ta] 1 Jo
Vo 1ty
1 re " /WP (T, <ty —t1)dr (B.9)
t1 Ja
1
+— re=" /P (T, <ty —t;)dr, (B.10)
tl /6—1t1

where /0~1t; > a since a? < t; by assumption. First observe that the integral on the
right-hand side of (B.8) is smaller than a?/t;. Next, let § be small enough so that by
Lemma B.1, we have for all 72/(t, — t;) < § that
log((t2 — t1)/r°)
P.(T,<tg—t1)= ————2——=(1 ar)s B.11

( 2= ) log((t2 —tl)/a2)( * Cutaar) ( :
with |es, t5.0.+| < € uniformly for a < r. We now assume that t; < M~'t; with M > M;
large enough so that ¢; /(to —t1) < 6% (we also require M to be large enough so that (B.12)
below holds). It then holds that r2/(t, — t;) < J in the integral (B.9), which is thus equal
to

1 a,0) 7
(14 ety 1, ’5)t1 ; log((t2 —t1)/a?) '

where |ey, +,,4,5] < €. Write the last integral as I; — I, where

—1
1 /V‘S " oo ot — t)/1%) |

2
I = 1 (7 e log((t2 — tl)/TQ)dr,
t J, log((t2 — t1)/a?)

and I is the same integral between v§—1t and +oco. By integration by part,

to —t _a% to —t e
10g(2a21>11:e 2tllog2 1—/26 dv

a2 a v

t1
_aZ tgftl a2 a2
=e 2] log — o—
e 1 log P +og2t1—|—7+ <t1

to —t a? ty —t
= log Qt 1+C0+O<tlog 2 1),
1 1 Qa

where 7 is the Euler constant and Cy = v — log 2. Therefore,
log((ta —t1)/t1) + C 2

11:08;((2 1)/1)42r °+O<a>.

log((tg — tl)/a ) tl

Note that the implicit constant in the error term O(a?/t;) does not depend on 6.
Next, there exists ¢ > 0 such that

A T erem08((ta —t)/r?) | esr log((t2 — 1) /1) ,
t )\ /o1t log((t2 —t1)/a®) ~ — log((t2 — t1)/a?)
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The integral in (B.10) can be bounded in the same way using that for all » > \/0—1#; we
have P,.(T, <ts —t1) < Pt1/2(Ta <ty — t1) and applying (B.11). Finally, note that for M
1

large enough,

log((t2 —t1)/t) + Co _ log(ta/t1) |
log((t2 — t1)/a?) 1og(t2/a2)(1+ i tz,a); (B.12)

where |et, 1, o < € uniformly for a® < ¢;. Putting everything together, we find that

. log(ta/t1) a?
P f R < == (] a—€45.)+0— 1,
0 (te%ﬂ,tﬂ t = a) 10g(t2/a2) ( T €ty,ta, € 11,6, ) + 4
where |€/y, 5.4] < e~ This concludes the proof since ¢, and then §, can be taken
arbitrary small, as long as t2/t1 > Mj;. O

Adapting the proof of Lemma 3.5. With the last lemma, we can adapt the proof of
Lemma 3.5 to the case a = a/(g) with 1 < ¢% < loglog N as follows. For simplicity, we
consider P, (G,,) for z = 0, the reduction from z in the ball to z = 0 can be done as in
the proof of the Lemma 3.5. Recall that t; = v1l;_1 and t5 = ¢t + ;. We have

Po(Gh.co) = Po ( inf ] |B;| < colog N) with t5/t; > N7& > gY@ log N/loglog N

te(ty,t2
and t; > N7, so that Lemma B.2 applies. Moreover,
log(le/li—1) ~ ae®*Drylog N and logly, ~ e**ylog N, N — cc. (B.13)

We obtain that

(L+0(1)) + O ((log N)?/N7) = & + o(@),

,_.
]
o
—_
—~
=
~
-~
T
-
~

by (B.13). This recovers Lemma 3.5.
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