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Abstract

Let WN (β) = E0

[
e
∑N
n=1 βω(n,Sn)−Nβ

2/2
]

be the partition function of a two-dimensional

directed polymer in a random environment, where ω(i, x), i ∈ N, x ∈ Z2 are i.i.d.
standard normal and {Sn} is the path of a simple random walk. With β = βN =

β̂
√
π/ logN and β̂ ∈ (0, 1) (the subcritical window), logWN (βN ) is known to converge

in distribution to a Gaussian law of mean −λ2/2 and variance λ2, with λ2 = log(1/(1−
β̂2)) (Caravenna, Sun, Zygouras, Ann. Appl. Probab. (2017) ). We study in this paper
the moments E[WN (βN )q] in the subcritical window, and prove a lower bound that
matches to leading order, for q = O(

√
logN), the upper bound derived by us in Cosco,

Zeitouni, Comm. Math. Phys. (2023). The analysis is based on appropriate decouplings
and a Poisson convergence that uses the method of “two moments suffice”.
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1 Introduction and results

Let ((Sn)n≥0, (Px)x∈Z2) be the simple random walk on Z2. The associated expectation
will be written as Ex. We let pn(x) = P0(Sn = x).

Let ω(n, x), n ∈ N, x ∈ Z2 be a collection of i.i.d. random variables distributed
according to a centered Gaussian of variance one N (0, 1).

Set

βN =
β̂√
RN

, RN = E⊗2
0

[
N∑
n=1

1S1
n=S2

n

]
∼ 1

π
logN,
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Moments of polymers

where the asymptotics on RN follow from the local limit theorem p2n(0) ∼ 1
πn , see e.g.

Appendix A. We define the normalized partition function:

WN = E0

[
e
∑N
n=1 βNω(n,Sn)−N β2

N
2

]
.

It is known, see e.g. [2, Theorem 2.8], that for β̂ < 1, logWN → N (−λ2/2, λ2), where
λ2 = λ(β̂)2 = − log(1− β̂2), and further, from [8, Theorem 1.1], we have that for any fixed
q integer and β̂ < 1,

E[W q
N ]→N→∞ eλ

2(q2). (1.1)

The goal of this paper is to establish a lower bound on the q-th moment of WN when
q can increase as function of N , thus complementing the upper bounds derived in [4], to
which we refer for motivation and applications. Of particular interest is the case of q2 of
order logN . Our starting point is the formula

E[W q
N ] = E⊗q0

[
e
β2
N

∑
(i,j)∈Cq

∑N
n=1 1

Sin=S
j
n

]
, (1.2)

where Cq = {(i, j), 1 ≤ i < j ≤ q}. (See [4] for a proof of (1.2).) Here is our main result.

Theorem 1.1. Suppose that q2 = O(logN). Then there exists εN = εN (β̂) ↘ 0 as

N →∞ such that E[W q
N ] ≥ eλ

2(q2)(1−εN ).

This last bound matches to leading order the upper bound E[W q
N ] ≤ e(

q
2)λ

2(1+εN ) that
we obtained in [4] in the regime q2 ≤ c logN with c = c(β̂).

The main point of Theorem 1.1 is that we allow for q increasing in N . Indeed, for q
independent of N , the result is contained in [8], since the convergence (1.1) yields an
exact equivalence with errors o(1) in the exponents. As shown in [7], the underlying
reason is an asymptotic decoupling for the intersection local time of the walks. In
comparison, we prove a weaker form of decoupling, for a larger number of walks.

Remark 1.2. It was pointed to us by F. Caravenna that in the continuous setup, i.e.
when the random walk Sn is replaced by a Brownian motion, the sum in the definition
of WN is replaced by an integral, and the environment replaced by a regularized white
noise, the result of Theorem 1.1 with εN = 0 follows from a correlation inequality, see
[3] for a similar argument. We do not see how to adapt this to the discrete setup.

We further observe that when q is too large, the behavior changes:

Theorem 1.3. For all β̂ > 0 there exist c0 = c0(β̂) > 0 and c1 = c1(β̂) > 0 such that when

q2 ≥ c1(logN)2, we have E[W q
N ] ≥ ec0(

q
2)N/ logN .

1.1 A high level view of the proof and structure of the paper

We provide in this section a somewhat impressionistic view of the proof, that neglects
important details but captures the main ideas. The starting point is (1.2), that reduces
the computation of moments of the partition function to the evaluation of exponential
moments of the total pairwise intersections of q independent random walk paths. Towards
this end, we introduce certain decoupling times Lk with Lk+1 = Lk + ok and with ok
being a large multiple (ν2) of lk � 1, see (2.3). Very roughly, lk ∼ (clk−1)1+α/ logN , and
we mostly care about lk > N ε for some ε small. Now, within each interval Ik = [Lk, Lk+1),
we only count intersections of paths within a subinterval of length lk that is separated
from both ends, and within this interval we only count the intersections of disjoint
pairs. Using the Markov property, contributions from different Ik’s decouple as long as
we condition on the position of the paths at the beginning and end of Ik (the precise
statement is contained in Proposition 2.3). Crucially, we then reduce the contribution
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within each Ik to paths whose starting points and ending points are “where they should
be” (i.e., within diffusive scaling), and then further reduce it to a moment of a certain
quantity we call ak, see (2.13), which depends only on a pair of random walks, and the
total number of disjoint pairs that intersect, denoted Rk; this is the content of the crucial
Proposition 2.4.

Having obtained the decoupling, there are two tasks remaining. The first is to obtain
a good control on ak, that is the contribution of intersections of a single pair of walks.
This necessitates estimates that are related to those we obtained in [4], with the upshot
being that ak ∼ 1/(1− β̂2(log lk)/(logN)), see Proposition 2.5.

The main innovation of the paper is then to obtain a good control of Rk, the number
of disjoint pair intersections. We prove in Proposition 2.7 that Rk is close in distribution
to a Poisson random variable. The proof of Proposition 2.7, which takes up most of
Section 3, is based on Stein’s method, more specifically on the “two moments suffice”
theorem of Arratia, Goldstein and Gordon [1]. Essentially, we use that disjoint pairs of
path are independent to introduce a notion of neighborhood of dependence between
pairs of indices. Taking parameters in the right order drives the Poisson parameter
(roughly, α) to infinity and completes the proof of Theorem 1.1.

Theorem 1.3 is much easier and obtained by forcing an event where the walks stay
confined to a neighborhood of the origin. See Section 2.3 for the proof.

1.2 Notation

Throughout the paper, constants C are positive universal constants, whose values
may change at different occurrences.

We use various parameters, and limits in a particular order, that we now introduce.
We use the parameters γ, ε0, δ ∈ (0, 1) and α, ν1, ν2,M ∈ N, and the following order of
successive limits: (i) N → ∞, (ii) α → ∞, (iii) ν1 → ∞, (iv) ν2 → ∞, (v) δ → 0, (vi)
M → ∞, (vii) ε0 → 0, γ → 0. (The last limit can be taken simultaneously for ε0 and
γ.) We introduce the collection of variables Γ̂ = (M, δ, ν2, ν1, α), Γ̃ = (γ, ε0,M, δ, ν2, ν1, α)

and Γ′ = (N, Γ̂), Γ = (N, Γ̃). For any function Ψ, we let lim supΓ Ψ(Γ) denote the limsup
obtained after taking successive limsups in the order described above. We define
lim supΓ′ Ψ(·), lim supΓ̃ Ψ(·) and lim supΓ̂ Ψ(·) similarly.

We will use repeatedly that (S1
k − S2

k)
(d)
= (S2k) when S1

n and S2
n are two independent

simple random walks.

B(x, r) denotes the Euclidean ball of radius r centered at x ∈ R2.

2 Proofs

As noted in the introduction, for q = O(1), Theorem 1.1 is proved in [8], and the
main point of this article is allowing for q = qN →N→∞ ∞. For technical reasons, it
is convenient to separate the proof to two cases: log logN = O(q2) (i.e., qN grows not
too slowly, while still q2 = O(logN)) and q <

√
log logN . In the main body of the paper

we deal with the first case, and assume that log logN = O(q2) and q2 = O(logN). In
Appendix B we provide the modifications needed in order to handle the range 1� q2 <

log logN .
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2.1 Preliminaries for the proof of Theorem 1.1

Throughout the paper, we always assume that N, ε−1
0 , δ−1, ν1, ν2,M, α ≥ 100 and in

accordance to the order of the limits, that

(i) δ−2e−
1
2γα ≤ 1, (ii)

log(4ν1)

αγ
< 2−2, (iii) ν−1

1 δ−2ν2 ≤ 2−5,

(iv) ν2e
−γα/2M−2 ≤ 2−4, (v) N > (4ν2) ∨ e2α.

(2.1)

Next, we introduce the times lk, Lk that we use to decompose the process. With

ᾱ = ᾱN = α/ logN and fk = ekᾱ, (2.2)

we set l0 = L1 = 0 and

lk =
⌈
Nγfk

⌉
, ok = ν1lk−1 + (2 + ν2)lk and Lk =

∑
1≤j<k

oj , (2.3)

for all k ∈ J1,KK, where

K = max{k ∈ Z+, Lk+1 ≤ N}. (2.4)

· · ·
ok

0 Tk

Lk−1 Lk

· · ·
ν1lk−1 lk lk ν2lk

Figure 1: Pictorial description of kth intervals

The times Lk and lk satisfy the following straightforward relations:

Lemma 2.1. For all k ≤ K:

(i) eγα/2 ≤ lk+1

lk
≤ eeα, (ii) Lk+1 ≤ 4ν2lk. (2.5)

Moreover, the following bounds on K hold:

ᾱ−1

(
log γ−1 + log

(
1− log(4ν2)

logN

))
≤ K ≤ ᾱ−1 log γ−1. (2.6)

Remark 2.2. It follows from (2.5)-(i) and (2.1)-(ii) that ν1lk−1 ≤ lk. This fact will turn
out useful in several places.

Proof. We first show (2.5). By rounding effects Nγfk ≤ lk ≤ Nγfk(1 +N−γ), hence using

that Nγfk+1

Nγfk
= Nγfk(eᾱ−1), it follows that

(1 +N−γ)−1−(eᾱ−1)l
(eᾱ−1)
k ≤ lk+1

lk
≤ l(e

ᾱ−1)
k (1 +N−γ). (2.7)

As by definition Nγ ≤ lk ≤ N , the usual estimate ᾱ ≤ eᾱ − 1 ≤ ᾱeᾱ and (2.1)-(v) yield

that eγα ≤ l(e
ᾱ−1)

k ≤ ee1/2α. We then bound (1 +N−γ) by 2 and obtain (2.5)-(i) from (2.7)
by using that α and γα are large by (2.1)-(i).
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Now, equation (2.5)-(i) implies that for all j ≤ k, we have lj ≤ e−γα(k−j)/2lk. Therefore,

Lk+1 = (ν1 + 2 + ν2)
∑

1≤j<k

lj + (2 + ν2)lk

≤ (ν1 + 2 + ν2)
∑

1≤j<k

e−γα(k−j)/2lk + (2 + ν2)lk ≤ (η + 2 + ν2)lk,

with η = e−γα/2

1−e−γα/2 (ν1 + 2 + ν2). We find (2.5)-(ii) via (2.1)-(ii).
Regarding (2.6), the upper bound on K is obtained using that Lk ≥ lk. The lower

bound is a consequence of (2.5)-(ii) and (2.1)-(v).

To help us control the positions of the walks at the times (Lk), we define the (random)
set of indices

Gk =
{
i ∈ J1, qK : SiLk ∈ B

(
0, δ−1L

1/2
k

)
and SiLk+1

∈ B
(

0, δ−1L
1/2
k+1

)}
,

where we recall that B(x, r) is the Euclidean ball of radius r centered at x ∈ R2, and
further introduce the event:

Ak = {|Gk| ≥ (1− ε0)q} .

For all m ∈ N and x = (x1, . . . , xm),y = (y1, . . . , yv) ∈ (Z2)m, write x ∼n y whenever
P⊗mx (S1

n = y1, . . . , S
m
n = ym) > 0. When x ∼n y, denote by En,yx the expectation for m

copies of the simple random walk started at x and conditioned on arriving at y at time n,
that is

En,yx [·] = E⊗mx [·|S1
n = y1, . . . , S

m
n = ym].

Further let Bm,k =
(
B
(

0, δ−1L
1/2
k

)
∩Z2

)m
.

We are now ready to decompose the moment of WN as a product of contributions
coming from the different time intervals [Lk, Lk+1]. This is the purpose of the next
proposition.

Proposition 2.3. Let q0 = b(1− ε0)qc and recall K from (2.4). We have:

E [W q
N ] ≥ DN

K∏
k=1

Υk, (2.8)

where DN := E⊗q0

[∏K
k=1 1Ak

]
and

Υk := inf
x∈Bq0,k,y∈Bq0,k+1

x∼oky

Eok,yx

[
e
β2
N

∑ν1lk−1+2lk
n=ν1lk−1

∑
(i,j)∈Cq0

1
Sin=S

j
n

]
. (2.9)

Proof. Let ΨL = e
β2
N

∑
(i,j)∈Cq

∑L
n=1 1

Sin=S
j
n . We will prove by induction that for all l ∈

J0,KK,

Hl : E [W q
N ] ≥ E⊗q0

[
ΨLK+1−l

K∏
k=1

1Ak

]
K∏

k=K+1−l

Υk.

The case l = K will then give the proposition (recall that L1 = 0).
First, H0 holds by (1.2) (we use the convention that an empty product equals 1).

Suppose now that Hl holds for some l < K. Let Sn = (S1
n, . . . , S

q
n) and denote by Ãk the

event Ak shifted in time by −LK−l. By Markov’s property,

E⊗q0

[
ΨLK+1−l

K∏
k=1

1Ak

]
= E⊗q0

[
ΨLK−l

K−l−1∏
k=1

1AkE⊗qSLK−l

[
K∏

k=K−l

1ÃkΨoK−l

]]
(2.10)
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(recall that oK−l = LK+1−l − LK−l). We apply again Markov’s property to find that for
all x = (x1, . . . , xq) ∈ (Z2)q,

E⊗qx

[
K∏

k=K−l

1ÃkΨoK−l

]
= E⊗qx

[
1ÃK−lE

⊗q
x

[
ΨoK−l

∣∣SoK−l]E⊗qSoK−l

[
K∏

k=K−l+1

1Ãk

]]
.

On the event ÃK−l, we let (ir)r≤q0 be the q0 smallest indices such that Sir0 ∈ B(0, δ−1L
1/2
K−l)

and SiroK−l ∈ B(0, δ−1L
1/2
K−l+1) for all r ≤ q0. It follows that on ÃK−l, one has

E⊗qx

[
ΨoK−l

∣∣SoK−l] ≥ ΥK−l by restricting the sum inside the exponential to the walks
indexed by the ir’s and to the time interval Jν1lk−1, ν1lk−1 + 2lkK. In particular, we obtain
from the last display that

E⊗qSLK−l

[
K∏

k=K−l

1ÃkΨoK−l

]
≥ ΥK−lE

⊗q
SLK−l

[
K∏

k=K−l

1Ãk

]
.

This combined with Hl and (2.10) implies that Hl+1 holds.

The goal now is to obtain a good lower bound on the quantity Υk defined in (2.9). For
this purpose, we introduce the time interval Tk as

Tk = Jν1lk−1, ν1lk−1 + lkK, (2.11)

and define Rk as the maximal number of disjoint pairs (i, j) ∈ Cq0 such that Si and Sj

intersect during Tk without leaving some large ball. More precisely, let

σik = inf
{
n ∈ Tk, |Sin| > Ml

1/2
k

}
(2.12)

(we set σik =∞ when the set is empty), define

τ1 = inf
{
n ∈ Tk : ∃(i, j) ∈ Cq0 such that Sin = Sjn and n < σik ∧ σ

j
k

}
as the first time two particles intersect before one of them leaves the ball of radius
Ml

1/2
k , and let (I1, J1) be the two particles involved. (In case more than two particles

participate in the event defining τ1, choose the smallest pair in lexicographic order.) If
the set is empty, we let τ1 =∞. Then, define iteratively:

τr+1 = inf
{
n > τr, n ∈ Tk : ∃(i, j) ∈ Cq0 such that: Sin = Sjn,

n < σik ∧ σ
j
k and ∀s ≤ r, {i, j} ∩ {Is, Js} = ∅

}
as the next time two new particles, distinct from all the previous particles I1, J1, . . . ,
Ir, Jr, meet. We denote by (Ir+1, Jr+1) this new pair. When there is no such time, we set
τr+1 =∞. Finally, denote by

Rk = sup{r ≥ 0 : τr <∞}

the total number of such successive disjoint intersections. Note that the τr depend on k,
however we supress this dependence in the notation. Introduce the expression

ak :=

inf
t∈Tk

inf
x∈B(0,Ml

1/2
k )

y1,y2∈B1,k+1,y1,y2∼(ok−t)x

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

∣∣∣∣S1
ok−t = y1, S

2
ok−t = y2

]
. (2.13)

The quantity ak will serve below as a lower bound on the (multiplicative) contribution of a
couple (Ir, Jr) to the total expectation. Considering that we have Rk such contributions,
we now prove the following result.
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Proposition 2.4. With notation as above, we have that for all k ∈ J1,KK,

Υk ≥ inf
x∈Bq0,k,y∈Bq0,k+1

x∼oky

Eok,yx

[
aRkk

]
.

Proof. As τr ∈ Tk, we have [τr + 1, τr + lk] ⊂ [ν1lk−1, ν1lk−1 + 2lk] (see Figure 1) so that

ν1lk−1+2lk∑
n=ν1lk−1

∑
(i,j)∈Cq0

1Sin=Sjn
≥
Rk∑
r=1

τr+lk∑
n=τr+1

1SIrn =SJrn
.

Therefore, it holds that

Eok,yx

[
e
β2
N

∑ν1lk−1+2lk
n=ν1lk−1

∑
(i,j)∈Cq0

1
Sin=S

j
n

]
≥ Eok,yx

[Rk∏
r=1

f(τr, τr + lk, Ir, Jr)

]
, (2.14)

where f(s, t, i, j) = exp
(
β2
N

∑t
n=s+1 1Sin=Sjn

)
. Recall the definition of ak in (2.13). Our

goal is to show that for all R ≥ 0,

ΦR := Eok,yx

[
R∏
r=1

f(τr, τr + lk, Ir, Jr)1Rk=R

]
≥ aRk Pok,yx (Rk = R). (2.15)

(Again, ΦR depends on k,x,y, but we supress this from the notation.) The equation (2.15)
holds trivially for R = 0. Now suppose R ≥ 1. Let Fn denote the sigma-algebra generated
by the walks until time n and denote by Fτ1 the sigma-field stopped by τ1. Observe that
by independence of the random walks and Markov’s property,

ΦR = Eok,yx

[
1τ1<∞Eok,yx

[
R∏
r=1

f(τr, τr + lk, Ir, Jr)1Rk=R

∣∣∣∣∣Fτ1
]]

= Eok,yx

[
1τ1<∞E⊗2

S
I1
τ1
,S
J1
τ1

[
f (0, lk, 1, 2)

∣∣S1
ok−τ1 = yI1 , S

2
ok−τ1 = yJ1

]
×

E
ok−τ1,(yi)i∈Cq0\{I1,J1}

(Siτ1
)i∈Cq0\{I1,J1}

[
R−1∏
r=1

f(τ̃r, τ̃r + lk, Ĩr, J̃r)1R̃k=R−1

]]
,

where τ̃r, Ĩr, J̃r, R̃k are defined as τr, Ir, Jr,Rk but for q0 − 2 particles and with Tk
replaced by J0, ν1lk−1 + lk − τ1K. As by definition SI1τ1 = SJ1

τ1 ∈ B(0,Ml
1/2
k ) and τ1 ∈ Tk, we

obtain that

ΦR ≥ ak × Eok,yx

[
1τ1<∞E

ok−τ1,(yi)i∈Cq0\{I1,J1}

(Siτ1
)i∈Cq0\{I1,J1}

[
R−1∏
r=1

f(τ̃r, τ̃r + lk, Ĩr, J̃r)1R̃k=R−1

]]

= akEok,yx

[
R∏
r=2

f(τr, τr + lk, Ir, Jr)1Rk=R

]
,

where in the equality we have used Markov’s property as above in the reverse direction.
Iterating this process leads to (2.15). Then, putting together (2.14) and (2.15) and
summing over R entails Proposition 2.4.

Next, we define:

λ2
k = log

1

1− β̂2 log lk
logN

. (2.16)
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Proposition 2.5. We have infk≤K{ak − eλ
2
k} ≥ −∆Γ,2.5, where ∆Γ,2.5 > 0 satisfies

lim supΓ′ |∆Γ,2.5| = 0.

(Recall that lim supΓ′ keeps γ and ε0 fixed when taking the limsup, see Section 1.2.)

Proof. Throughout the proof, we write ∆Γ instead of ∆Γ,2.5. Let t ∈ Tk, x ∈ B(0,Ml
1/2
k )

and y1, y2 ∈ B1,k+1 such that y1, y2 ∼(ok−t) x. Let

W (z1, z2) = E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n1S1

lk
=z11S2

lk
=z2

]
,

where we have supressed the dependence on x and k in the notation. By Markov’s
property,

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n1S1

ok−t
=y1

1S2
ok−t

=y2

]
=

∑
z1,z2∈Z2

W (z1, z2)
∏
i=1,2

pok−t−lk(yi − zi).

(2.17)
We first show that when |z1| ∨ |z2| ≤ 2Ml

1/2
k and zi ∼ok−t−lk yi,∏

i=1,2

pok−t−lk(yi − zi) ≥ e−θΓ
∏
i=1,2

pok−t(yi − x), (2.18)

where, for some εN = εN (Γ̃) that vanishes as N →∞,

θΓ = |εN |+ 8δ−2ν−1
2 + 2b1 − log(1− 6ν−1

2 ), b1 = 20δ−1ν
−1/2
2 M + 10M2ν−1

2 . (2.19)

To show (2.18), we rely on the local central limit theorem given in Appendix A. First
observe that ok − t− lk ≥ ν2lk when t ∈ Tk. We will use this repeatedly. Moreover, for
|z1|∨|z2| ≤ 2Ml

1/2
k and t, x, yi as above, we have that |yi − zi| and |yi − x| are less than

(2δ−1ν
1/2
2 + 2M)l

1/2
k by (2.5)-(ii). Since lk ≥ Nγ , we obtain that |yi − zi| ≤ cN (ok − t− lk)

and |yi − x| ≤ cN (ok − t) with cN vanishing as N →∞. Hence Theorem A.1 applies and
we obtain that

pok−t−lk(yi − zi) = 2p̄ok−t−lk(yi − zi)eO(dk),

pok−t(yi − x) = 2p̄ok−t(yi − x)eO(dk),

where p̄s(z) = 1
πse
−|z|2/s and dk = 1

ν2lk
+

δ−4ν2
2+M4

ν3
2 lk

. Note that dk ≤ cN−γ with a constant

c depending on δ, ν2 and M . Then, one finds by a simple computation that for x = (x, x),

p̄ok−t−lk(y1 − z1)p̄ok−t−lk(y2 − z2)

p̄ok−t(y1 − x)p̄ok−t(y2 − x)

=
(ok − t)2

(ok − t− lk)2
e
−(|y1|2+|y2|2)((ok−t−lk)−1−(ok−t)−1)+

g(z,y)
ok−t−lk

− g(x,y)
ok−t , (2.20)

where g(z,y) = 2〈y1, z1〉 + 2〈y2, z2〉 − |z1|2 − |z2|2. The aboslute value of the first term
in the last exponential is less than (2δ−2Lk+1lk)/(ν2lk)2 ≤ 8δ−2ν−1

2 . Furthermore, by
the Cauchy-Schwarz inequality the absolute value of each of the two last terms in the
exponential is smaller than (recall b1 from (2.19))

(ν2lk)−1
(

10δ−1L
1/2
k+1Ml

1/2
k + 10M2lk

)
≤ b1.

Moreover, ∣∣∣∣ (ok − t)2

(ok − t− lk)2
− 1

∣∣∣∣ =
lk(2(ok − t)− lk)

(ok − t− lk)2
≤ lk(6ν2lk)

(ν2lk)2
≤ 6ν−1

2 .
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Putting things together leads to (2.18).
Coming back to (2.17), the bound (2.18) entails that

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

∣∣∣∣S1
ok−t = y1, S

2
ok−t = y2

]
≥ e−θΓ

∑
z1,z2∈Z2

|z1|∨|z2|≤Ml
1/2
k

W (z1, z2). (2.21)

We have ∑
z1,z2∈Z2

|z1|∨|z2|≤Ml
1/2
k

W (z1, z2)≥E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

]
− 2

∑
z1,z2∈Z2

|z1|>Ml
1/2
k

W (z1, z2), (2.22)

where ∑
z1,z2∈Z2

|z1|>2Ml
1/2
k

W (z1, z2) = E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n1∣∣∣S1

lk

∣∣∣>2Ml
1/2
k

]
.

Recall the definition of λ2
k in (2.16). Given that lk ≥ Nγ , one can see from the proof of

Proposition 3.4 in [4] that there exists ε′N = ε′N (γ)→ 0 as N →∞ such that

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

]
= E0

[
eβ

2
N

∑lk
n=1 1S2n=0

]
≥ (1 + ε′N )eλ

2
k .

Moreover, by Hölder’s inequality with p−1 + (p′)−1 = 1 and p > 1 small enough so that√
pβ̂ < 1,

E⊗2
x

[
e
β2
N

∑lk
i=1 1S1

n=S2
n1|S1

lk
|>2Ml

1/2
k

]
≤ E0

[
epβ

2
N

∑lk
i=1 1S2i=0

] 1
p

Px

(
|Slk | > 2Ml

1/2
k

) 1
p′

≤ C(β̂)e
− c
p′M

2

,

for some c > 0, since E0e
β2
N

∑N
i=1 1S2i=0 = EW 2

N ≤ C(β̂) <∞ for all β̂ < 1, see (1.1). (We
have also relied on Hoeffding’s inequality to bound the probability in the last display,
using that |x| ≤Ml

1/2
k .)

Combining (2.19), (2.21) and (2.22) with the two last displays, we obtain that

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

∣∣∣∣S1
ok−t = y1, S

2
ok−t = y2

]
≥ e−θΓ

(
(1 + ε′N )eλ

2
k − 2C(β̂)e

− c
p′M

2
)

= eλ
2
k − (1− e−θΓ)eλ

2
k + e−θΓ

(
ε′Ne

λ2
k − 2C(β̂)e

− c
p′M

2
)
.

To conclude the proof of the lemma, observe that for all k ≤ K we have λ2
k ≤ λ2, so that

we can choose

∆Γ = (1− e−θΓ)eλ
2

+ e−θΓ
(
|ε′N |eλ

2

+ 2C(β̂)e
− c
p′M

2
)
,

and observe (using (2.19)) that it satisfies lim supΓ′ ∆Γ = 0.

For technical reasons, we will also need a uniform upper bound on ak.

Lemma 2.6. We have

sup
Γ

sup
k≤K

ak ∈ [1,∞). (2.23)
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Proof. Since ak ≥ 1, the lower bound is trivial. To see the upper bound, we proceed as
in the proof of Proposition 2.5 and write as in (2.17):

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n1S1

ok−t
=y1

1S2
ok−t

=y2

]
=

∑
z1,z2∈Z2

W (z1, z2)
∏
i=1,2

pok−t−lk(yi − zi).

Using the expression (2.20), we obtain for |z1| ∨ |z2| ≤ 2Ml
1/2
k and x, yi in the ranges

appearing in the definition of ak that

p̄ok−t−lk(y1 − z1)p̄ok−t−lk(y2 − z2)

p̄ok−t(y1 − x)p̄ok−t(y2 − x)
≤ eθΓ . (2.24)

The estimate of (2.24) actually extends to the range z̄ := |z1| ∨ |z2| ≤ l3/5k in the form

p̄ok−t−lk(y1 − z1)p̄ok−t−lk(y2 − z2)

p̄ok−t(y1 − x)p̄ok−t(y2 − x)

≤ 2
(ok − t)2

(ok − t− lk)2
e
−(|y1|2+|y2|2)((ok−t−lk)−1−(ok−t)−1)+

g(z,y)
ok−t−lk

− g(x,y)
ok−t (2.25)

≤ 2eθΓe−cz̄
2/(ν2lk),

with c a universal constant; for z̄ > l
3/5
k , we use a simple large deviations estimate and

obtain that
p̄ok−t−lk(y1 − z1)p̄ok−t−lk(y2 − z2)

p̄ok−t(y1 − x)p̄ok−t(y2 − x)
≤ e−cl

1/10
k .

We thus obtain, in analogy with (2.21),

E⊗2
x

[
e
β2
N

∑lk
n=1 1S1

n=S2
n

∣∣∣∣S1
ok−t = y1, S

2
ok−t = y2

]
≤ 2eθΓ+4/(δ2ν2)

∑
z1,z2∈Z2

W (z1, z2) (2.26)

which, using [4, Proposition 3.4], is bounded above by a universal constant depending
only on β̂.

Recall that q0 = b(1 − ε0)qc, see (2.3). Our next goal is to show that Rk is close to
a Poisson random variable of parameter α

(
q0
2

)
/ logN by relying on the “two moments

suffice” theorem [1]. To verify the hypothesis of the latter, it is more convenient to work
with the quantity

R̃k =
∑

(i,j)∈Cq0

1
τ

(i,j)
k <∞, τ

(i,j)
k = inf{n ∈ Tk : Sin = Sjn, n < σik ∧ σ

j
k}

(we set τ (i,j)
k =∞ when the set of the infimum above is empty), which counts the number

of all the couples that intersect in the time interval Tk.
Recall ᾱ = ᾱN from (2.2). The next proposition states that the law of R̃k can be

approximated by a Poisson law of mean ᾱ
(
q0
2

)
and thatRk and R̃k are close in distribution.

Before stating the proposition, we introduce a few quantities. For all (i, j) ∈ Cq0 , we let

p(i,j) = Pok,yx (τ
(i,j)
k <∞) and define:

µ =
∑

(i,j)∈Cq0

p(i,j). (2.27)

We also set p(i,j),(i′,j′) = Pok,yx (τ
(i,j)
k < ∞, τ (i′,j′)

k < ∞). Note that all these quantities
depend on k,x,y, but we will show in Section 3 that this dependence can be neglected
asymptotically. In fact, we prove that p(i,j) can be approximated by ᾱ and that µ can
be approximated by ᾱ

(
q0
2

)
. We also recall our conventions concerning the meaning of

lim supΓ′ , and in particular that lim supΓ′ keeps γ and ε0 fixed when taking the limsup,
see Section 1.2.
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Proposition 2.7. There exists ∆Γ,2.7 > 0 such that lim supΓ′ ∆Γ,2.7 = 0, for which ε?N =

q3(1 + ∆Γ,2.7)(ᾱ2 + ᾱ log logN
γ logN + q

Nγ ) satisfies:

sup
k≤K

sup
x∈Bq0,k,y∈Bq0,k+1

x∼oky

dTV

∣∣∣Pok,yx

(
R̃k = ·

)
− P(µ)

∣∣∣ ≤ Cε?N , (2.28)

and
sup
k≤K

sup
x∈Bq0,k,y∈Bq0,k+1

x∼oky

dTV

∣∣∣Pok,yx (Rk = ·)− Pok,yx

(
R̃k = ·

)∣∣∣ ≤ Cε?N , (2.29)

where dTV| · | denotes the distance in total variation and P(µ) is the Poisson distribution
of mean µ from (2.27).

Remark 2.8. Since q2 = O(logN) we have lim supN ε
?
N = 0.

Proof. We first prove (2.28). Following [1], we define B(i,j) = {(i′, j′) ∈ Cq0 : {i′, j′} ∩
{i, j} 6= ∅} and

e1 =
∑

(i,j)∈Cq0

∑
(k,l)∈B(i,j)

p(i,j)p(k,l),

e2 =
∑

(i,j)∈Cq0

∑
(i′,j′)∈B(i,j)\{(i,j)}

p(i,j),(i′,j′).

By Proposition 3.1 and Proposition 3.6, we have e1 ≤ Cq3(1 + ∆Γ,3.1)2ᾱ2 and e2 ≤
C(1 + ∆Γ,3.6)q3ᾱ log logN

γ logN with lim supΓ′ ∆Γ = 0 for both errors. We then obtain (2.28) by
applying [1, Theorem 1], which states that the variation distance in (2.28) is bounded
above (in the notation of [1]) by 2(b1 + b2 + b3), where here b1 = e1, b2 = e2 and b3 = 0 due
to the definition of B(i,j) that ensures that elements of this set are disjoint from (i, j).

We turn to (2.29). By a standard property of the distance in total variation,

dTV

∣∣∣Pok,yx (Rk = ·)− Pok,yx (R̃k = ·)
∣∣∣ ≤ 2Pok,yx (Rk 6= R̃k).

Then, observe that on the event {Rk 6= R̃k}, either there exist two couples (i, j), (i′, j′) ∈
Cq0 such that |{i, j} ∩ {i′, j′}| = 1 with τk(i, j) < ∞ and τk(i′, j′) < ∞, or at least two
distinct couples meet at the same time in Tk. Hence Pok,yx (Rk 6= R̃k) ≤ e2 + e3, where

e3 = q4p
(4)
k with p(4)

k defined in (3.21). This gives (2.29) by Lemma 3.9 below.

In the following proposition, we use a certain constant ∆Γ,3.1 > 0 introduced below
in Proposition 3.1, and which satisfies lim supΓ′ ∆Γ,3.1 = 0.

Proposition 2.9. There exist c > 0, α0 > 0 and N0 = N0(Γ̃) such that for all α > α0 and
N ≥ N0, we have for all k ≤ K,

inf
x∈Bq0,k,y∈Bq0,k+1

x∼oky

Eok,yx

[
aRkk

]
≥ e(

q0
2 )ᾱ(ak−1)(1−∆Γ,3.1)

(
1−∆′Γ,2.9

)
, (2.30)

where ∆′Γ,2.9 ∈ [0, 1
2 ] satisfies lim supΓ′

(
q
2

)−1
K∆′Γ,2.9 = 0.

Proof. Let R be distributed as P(µ) and recall ε?N from Proposition 2.7. For all r0 ∈ N,
we have

Eok,yx

[
aRkk

]
≥ Eok,yx

[
aRkk 1Rk≤r0

]
≥ E

[
aRk 1R≤r0

]
− Car0k ε

?
N

≥ eµ(ak−1)

(
1− µr0+1

(r0 + 1)!
− Car0k ε

?
N

)
,

(2.31)
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where we have used that E[aR] = eµ(a−1), that E[aR1R≥r] ≤ eµ(a−1) µ
r

r! for all a > 0, r ∈ N
and that eµ(ak−1) ≥ 1.

Recall the constants ∆Γ = ∆Γ,3.1 > 0 from Proposition 3.1, which satisfy lim supΓ′ ∆Γ

= 0. Using that |Cq0 | =
(
q0
2

)
, (2.27) and Proposition 3.1, we have that uniformly on x,y, k:∣∣∣∣µ− (q0

2

)
ᾱ

∣∣∣∣ ≤ (q0

2

)
ᾱ∆Γ. (2.32)

Next, define c := supk ak ∈ (1,∞) by (2.23), and

∆′Γ′,2.9 = ∆′Γ := inf
r0∈N

{((
q0
2

)
ᾱ(1 + ∆Γ)

)r0+1

(r0 + 1)!
+ cr0ε?N

}
.

We first show that lim supΓ′
(
q0
2

)−1
K∆′Γ = 0 and then that ∆′Γ ∈ [0, 1

2 ] for α and N

large enough. Together with (2.31) and (2.32), this yields the proposition. Since K ≤
ᾱ−1 log γ−1 by (2.6), we have for all r0 ∈ N,(

q

2

)−1

K

((
q0
2

)
ᾱ(1 + ∆Γ)

)r0+1

(r0 + 1)!
≤ (log γ−1)(1 + ∆Γ)

((
q
2

)
ᾱ(1 + ∆Γ)

)r0
(r0 + 1)!

.

Moreover, lim supN
(
q
2

)
ᾱ ≤ C0α with C0 ∈ (0,∞) by hypothesis. Hence, if we define

∆Γ̃ = lim supN ∆Γ, the supremum limit over Γ′ of the right-hand side of the last display
is less than

lim sup
Γ̂

{
(log γ−1)(1 + ∆Γ̃)

(C0α(1 + ∆Γ̃))
r0

(r0 + 1)!

}
.

(Recall that Γ′ = (N, Γ̂).) If we choose r0 = de2C0α(1 + ∆Γ̃)e and use Stirling’s ap-
proximation r! ≥ (r/e)r valid for all r ∈ N, we find that the last display is smaller
than

lim sup
Γ̂

{
(log γ−1)(1 + ∆Γ̃)e−e

2C0α
}

= 0,

where the equality holds since we take the limit α→∞ with γ fixed. Hence, by choosing
r0 = de2C0α(1 + ∆Γ̃)e we have shown that

lim sup
Γ′

(
q

2

)−1

K∆′Γ ≤ lim sup
Γ′

{(
q

2

)−1

Kcde
2C0α(1+∆Γ̃)eε?N

}
. (2.33)

We now prove that the last limsup vanishes. By definition of ε?N in Proposition 2.7, we
have (

q

2

)−1

Kε?N ≤ Cqᾱ−1 log γ−1ᾱ(1 + ∆Γ)

(
α

logN
+

log logN

γ logN

)
,

Using that lim supN q
2/ logN < ∞, we obtain that lim supN

(
q
2

)−1
Kε?N = 0 and thus

lim supΓ′
(
q
2

)−1
K∆′Γ = 0 by (2.33).

To conclude, we prove that ∆′Γ ≤ 1/2. If we choose again r0 = de2C0α(1 + ∆Γ̃)e, we

find using Stirling’s approximation as before that lim supN ∆′Γ ≤ e−e
2C0α. So if we let α

large enough followed by N large enough (depending on Γ̃) we obtain that ∆′Γ ≤ 1/2.

Here is our last technical estimate. Recall the definition of DN in Proposition 2.3.

Proposition 2.10. There exist c, c′ > 0 such that

DN ≥ 1−Keε0q(c
′ log ε−1

0 −cδ
−2). (2.34)

EJP 29 (2024), paper 96.
Page 12/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1148
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Moments of polymers

Proof. Define Hi
k = {SiLk /∈ B(0, δ−1L

1/2
k ) or SiLk+1

/∈ B(0, δ−1L
1/2
k+1)}. By definition of DN

and the union bound,

DN ≥ 1−
K∑
k=1

P⊗q0 (Ack). (2.35)

Let p = bε0qc. The event Ack implies that there exists i1 < · · · < ip ≤ q such that Hir
k

holds for all r ≤ p. Hence, by independence of the walks,

P⊗q0 (Ack) ≤
(
q

p

)
P0(H1

k)p.

By Hoeffding’s inequality there exists c > 0 such that P0(H1
k) ≤ e−cδ−2

. Since ε0 is small,

we further have that
(
q
p

)
≤ ec′ε0q log ε−1

0 for some c′ > 0 via Stirling’s approximation.

2.2 Proof of Theorem 1.1

By Proposition 2.3, we have(
q

2

)−1

logE [W q
N ] ≥

(
q

2

)−1

logDN +

(
q

2

)−1 K∑
k=1

log Υk. (2.36)

We first observe that

lim sup
Γ

(
q

2

)−1

(− logDN ) = 0. (2.37)

Since log logN = O(q), we can find c0 > 0 such that q ≥ c0 log logN for N large
enough. Now, because we take the limit δ → 0 before ε0 → 0, we can assume
that in (2.34) we have ε0(c′ log ε−1

0 − cδ−2) < −2c−1
0 , so that using (2.6) we have

DN ≥ 1− log γ−1α−1 logNe−2 log logN which converges to 1 as N →∞. This gives (2.37).
Next, by Proposition 2.4 and Proposition 2.9,(
q

2

)−1 K∑
k=1

log Υk ≥
(
q

2

)−1(
q0

2

)
(1−∆Γ,3.1)ᾱ

K∑
k=1

(ak−1)+

(
q

2

)−1

K log(1−∆′Γ,2.9). (2.38)

Since ∆′Γ,2.9 ≤ 1/2, we have that −
(
q
2

)−1
K log(1 − ∆′Γ,2.9) ≤ C

(
q
2

)−1
K∆′Γ,2.9. Hence by

the definition of ∆′Γ,2.9 and (2.6), lim supΓ

(
q
2

)−1
K
(
− log(1−∆′Γ,2.9)

)
= 0. This deals with

the second term of the right-hand side of (2.38). Concerning the first term, we will show
that

lim inf
Γ

(
q

2

)−1(
q0

2

)
(1−∆Γ,3.1)ᾱ

K∑
k=1

(ak − 1) ≥ λ(β̂)2. (2.39)

First, we rely on Proposition 2.5 to find that

ᾱ

K∑
k=1

(ak − 1) ≥ ᾱ
K∑
k=1

(
eλ

2
k − 1

)
− ᾱK∆Γ,2.5,

where lim supΓ ᾱK|∆Γ,2.5| ≤ lim supΓ log γ−1|∆Γ,2.5| = 0 by (2.6) and the definition of
∆Γ,2.5. Now, recalling the definition of λ2

k in (2.16), observe that

ᾱ

K∑
k=1

(
eλ

2
k − 1

)
≥ ᾱ

K∑
k=1

β̂2γekᾱ

1− β̂2γekᾱ
.
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Therefore, by Riemann sum approximation and the lower bound on K in (2.6) (recall
that q0 = b(1− ε0)qc):

lim inf
N

(
q

2

)−1(
q0

2

)
ᾱ

K∑
k=1

(
eλ

2
k − 1

)
≥ (1− ε0)2

∫ log γ−1

0

β̂2γex

1− β̂2γex
dx = (1− ε0)2

(
log(1− γβ̂2)− log(1− β̂2)

)
,

where the last quantity converges to λ(β̂2) as γ, ε0 → 0. This gives (2.39).

Putting everything together yields the lower bound lim infΓ

(
q
2

)−1
logE [W q

N ] ≥ λ(β̂)2,

that is lim infN
(
q
2

)−1
logE [W q

N ] ≥ λ(β̂)2.

2.3 Proof of Theorem 1.3

Introduce the event

A = {Si2k = 0, k = 0, . . . , bN/2c, i = 1, . . . , q}.

Note that P(A) ≥ (1/4)qbN/2c. On the event A we have a total of at least (N/2)
(
q
2

)
intersections. Substituting in (1.2) then yields that

E[W q
N ] ≥ eβ

2
N (N/2)(q2)(1/4)qbN/2c.

This proves Theorem 1.3.

3 Estimates for “two moments suffice”

3.1 Two-particle intersection probability

The goal of this section is to give an estimate on p(i,j) = Pok,yx (τ
(i,j)
k < ∞) used

in the proof of Proposition 2.7. To simplify future notations, we write τk = τ
(1,2)
k and

pw,z = Pok,zw (τk < ∞) for w ∼ok z ∈ Z2 × Z2. The following proposition provides the
desired asymptotics. (Note that p(i,j) = p(xi,xj),(yi,yj).)

Proposition 3.1. There exists ∆Γ,3.1 > 0 such that lim supΓ′ ∆Γ,3.1 = 0 and

sup
k≤K

sup
x∈B2,k,y∈B2,k+1

x∼oky

|px,y − ᾱ| ≤ ᾱ∆Γ,3.1. (3.1)

The proof of Proposition 3.1 is given at the end of this section, building on a sequence
of lemmas that we now present and prove. As a first step, we show that px,y in (3.1)
can be replaced by px = P⊗2

x (τk < ∞), i.e. px is defined as px,y except there is no
conditioning on the endpoint.

Lemma 3.2. There exists ∆Γ,3.2 > 0 satisfying lim supΓ′ ∆Γ,3.2 = 0 such that for all k ≤ K
and all x ∈ B2,k,

sup
y∈B2,k+1
y∼okx

|px,y − px| ≤ px∆Γ,3.2. (3.2)

Proof. By Markov’s property, we have

px,y − px = E⊗2
x

[
1τk<∞1S1

ok
=y1,S2

ok
=y2

]
P⊗2
x (S1

ok
= y1, S

2
ok

= y2)−1 − px

= E⊗2
x

1τk<∞
P⊗2

S1
τk
,S2
τk

(S1
ok−τk = y1, S

2
ok−τk = y2)

P⊗2
x (S1

ok
= y1, S2

ok
= y2)

− 1

 .
EJP 29 (2024), paper 96.

Page 14/26
https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1148
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Moments of polymers

Define:

Vk = sup
z∈B(0,Ml

1/2
k )

z∼(ok−t)y1,y2

sup
t∈Tk

∣∣∣∣pok−t(y1 − z)pok−t(y2 − z)
pok(y1 − x1)pok(y2 − x2)

− 1

∣∣∣∣ .
Since by definition S1

τk
, S2
τk
∈ B(0,Ml

1/2
k ) when τk <∞, we have |px,y − px| ≤ pxVk. It is

thus enough to prove that

Vk ≤ Ce|εN |+b0+b1
(
|εN |+ b0 + b1 + 12ν−1

2

)
=: ∆Γ,3.2, (3.3)

where εN = εN (Γ̃)→ 0 as N →∞ and

b0 = 8ν−1
2 δ−2, b1 = 4

(
δ−1Mν

−1/2
2 +M2ν−1

2 + 2δ−2e−
1
2γα/4

)
, (3.4)

since then lim supΓ′ ∆Γ,3.2 = 0. Similarly to the proof of Proposition 2.5, the argument
leading to (3.3) relies on the local central limit theorem. In the following we assume that
z ∈ B(0,Ml

1/2
k ), x ∈ B2,k and y ∈ B2,k+1. We first note that ok − t ≥ ν2lk. By (2.5)-(ii),

it further holds that |yi − z| ≤ (2δ−1ν
1/2
2 + M)l

1/2
k and |yi − xi| ≤ 4δ−1ν

1/2
2 l

1/2
k . Hence

|yi − z| ≤ cN (ok − t) and |yi − xi| ≤ cNok with cN → 0, so Theorem A gives:

pok−t(yi − z) = 2p̄ok−t(yi − z)eO(dk),

pok(yi − xi) = 2p̄ok(yi − xi)eO(dk),

where p̄s(x) = 1
πse
−|x|2/s and dk = 1

ν2lk
+

δ−4ν2
2+M4

ν3
2 lk

≤ cN−γ with c = c(δ, ν2,M). We now

come back to Vk. Letting z = (z, z), we find that

p̄ok−t(y1 − z)p̄ok−t(y2 − z)
p̄ok(y1 − x1)p̄ok(y2 − x2)

=
o2
k

(ok − t)2
e
−(|y1|2+|y2|2)((ok−t)−1−o−1

k )+
g(z,y)
ok−t

−2
g(x,y)
ok ,

where g(x,y) = 2〈y1, x1〉+ 2〈y2, x2〉 − |x1|2 − |x2|2. Recall b0 and b1 in (3.4). The absolute
value of the first term in the exponential above is and smaller than

(
|y1|2 + |y2|2

) t

ok(ok − t)
≤ δ−2Lk+1(ν1lk−1 + lk)

ν2
2 l

2
k

≤ b0,

by (2.5)-(ii) and Remark 2.2. The sum of the absolute values of the two other terms in
the exponential is smaller than

(ν2lk)−1
(

4δ−1L
1/2
k+1Ml

1/2
k + 2M2lk + 4δ−2L

1/2
k+1L

1/2
k + 2δ−2Lk

)
≤ b1,

by the Cauchy-Schwarz inequality and (2.5)-(i),(ii). Moreover,∣∣∣∣ o2
k

(ok − t)2
− 1

∣∣∣∣ =
t(2ok − t)
(ok − t)2

≤ (2lk)(6ν2lk)

(ν2lk)2
≤ 12ν−1

2 .

Combining these estimates entails (3.3) using that |ex − 1| ≤ |x|e|x| for all x ∈ R.

Next, we show that we can neglect the condition n < σ1
k ∧ σ2

k in the definition of
τk = τ1,2

k . Thus, we define:

τ̃k = inf
{
n ∈ Tk|S1

n = S2
n

}
and p̃x = P⊗2

x (τ̃k <∞). (3.5)

Lemma 3.3. There exists c > 0 such that

sup
k≤K

sup
x∈B2,k

|px − p̃x| ≤ C
e−cM

2

γ logN
. (3.6)
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Proof. We have:

px = P⊗2
x (τ̃k <∞, τ̃k < σ1

k ∧ σ2
k) = P⊗2

x (τ̃k <∞)− P⊗2
x (τ̃k <∞, σ1

k ∧ σ2
k ≤ τ̃k),

hence, by the union bound,

|px − p̃x| ≤
∑
i=1,2

P⊗2
x (τ̃k <∞, σik ≤ τ̃k).

We will bound from above the term corresponding to i = 1 in the sum. The other term is
treated in the same way. Since Tk = Jν1lk−1, ν1lk−1 + lkK,

P⊗2
x (τ̃k <∞, σ1

k ≤ τ̃k) ≤ P⊗2
x

(
σ1
k ≤ τ̃k,∃n ∈ Jσ1

k, σ
1
k + lkK : S1

n = S2
n

)
,

hence by Markov’s property,

P⊗2
x (τ̃k <∞, σ1

k ≤ τ̃k) ≤
∑
m∈Tk

E⊗2
x

[
1σ1

k=mP⊗2
S1
m,S

2
m

(
∃n ≤ lk : S1

n = S2
n

)]
=
∑
m∈Tk

∑
x,y∈Z2

Ex1

[
1σ1

k=m1S1
m=x

]
pm(y − x2)hk(x− y), (3.7)

where hk(z) = Pz(∃n ≤ lk : S2n = 0). It follows from [6, Théorème 3.6] that

(log lk)hk(z) ≤ C
(
log
{
lk|z|−2

})
+

+ C1|z|2≥lk .

We thus split the sum that appears in (3.7) into Q1 +Q2, where Q1 contains the terms
for which |x− y|2 ≥ lk. Then Q1 ≤ C(log lk)−1Px1

(
σ1
k ∈ Tk

)
, where by (2.5) and (2.1)-(iv),

we have

|x1| ≤ δ−1L
1/2
k ≤ 2ν

1/2
2 e−

1
2γα/2l

1/2
k ≤ M

2
l
1/2
k , (3.8)

so that,

Q1 ≤
C

log lk
P0

(
sup
n∈Tk

|Sn| ≥Ml
1/2
k − |x1|

)
≤ C

log lk
e
−c (

Ml
1/2
k
−|x1|)

2

ν1lk−1+lk ≤ C e
−cM2

8

log lk
,

for some c > 0, by Doob’s inequality and Hoeffding’s lemma. (Note that for the last
inequality, we have used Remark 2.2). Then,

Q2 ≤
C

log lk

∑
m∈Tk

∑
x∈Z2

Ex1

[
1σ1

k=m1S1
m=x

]
Am(x), (3.9)

with

Am(x) =
∑

y∈Z2,y 6=x,
|x−y|2<lk

pm(y − x2) log
lk

|x− y|2
.

Since m = σ1
k implies that S1

m lies outside the ball B(0,Ml
1/2
k ), we can restrict the sum

in (3.9) to |x| > Ml
1/2
k . Then, as |x2| satisfies the same bound as |x1| in (3.8), we get that

|x − x2| ≥ M
2 l

1/2
k , which implies that |y − x2| ≥ M

4 l
1/2
k under the condition |x − y|2 < lk.

Thus, given that m ≥ ν1lk−1, we can apply the local limit theorem (Theorem A.1) to
obtain that

Am(x) ≤ C

m

∑
z∈Z2,

0<|z|2<lk

e−
M2

16

lk
m log

lk
|z|2

,
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and hence

Am(x) ≤ C

m
e−

M2

16

lk
m

bl1/2
k c∑
r=1

r log
lk
r2
≤ C lk

m
e−

M2

16

lk
m ≤ Ce−M

2

32

lk
m ,

where in the second inequality, we have used a comparison to an integral where
C
∫ 1

0
u log u−2du < ∞. Using that in the last exponential term we have m ≤ 2lk, we

get via (3.9) that Q2 ≤ C
log lk

e−
M2

64 . This gives (3.6) since lk ≥ Nγ .

We introduce the shorthand notation gk(x) = Px(∃n ∈ Tk : S2n = 0) that satisfies

p̃x = gk(x1 − x2), (3.10)

recall (3.5). Our aim is to use the KMT coupling (see [11] and references therein) to
estimate gk(x). The KMT coupling ensures that one can couple, with high probability, the
random walk (S2n) to a standard 2-dimensional Brownian motion (Bt) with an error term
∆n = maxt≤n |S2t − Bt| satisfying ∆n = O(log n). We will use the coupling to compare
the hitting time of 0 of the random walk to the entry time of Brownian motion in a ball of
radius c logN . This will turn out helpful as there are good estimates by Spitzer [10] on
the probability of the last event.1

Let t1 = ν1lk−1 and t2 = t1 + lk denote the boundaries of Tk and t′2 = t1 + lk/2. We
define:

Gk,c0 =

{
inf

t∈[t1,t2]
|Bt| ≤ c0 logN

}
and G′k,c0 =

{
inf

t∈[t1,t′2]
|Bt| ≤ c0 logN

}
. (3.11)

Lemma 3.4. There exists c0, c1, c′1, c2, cγ > 0 such that for all x ∈ B
(

0, 2δ−1L
1/2
k

)
and all

k ≤ K,(
1− cγ

log logN

logN

)(
Px(G′k,c0)− c2N−c

′
1

)
≤ gk(x) ≤ Px(Gk,c0) +N−c1 . (3.12)

Proof. We first set the values of c0 and c1. By [11, Theorem 1.3] and Markov’s property,
we can, for all x ∈ Z2, find a coupling ((S2n), (Bt),Px) and a c0 large enough independent
of x, such that Px(∆N > c0 logN) ≤ N−c1 with c1 > 0 independent of x. We choose c0, c1
as such.

We start with the upper bound in (3.12). With Fk = {∃n ∈ Tk|S2n = 0},

gk(x) = Px(Fk,∆N ≤ c0 logN) + Px(Fk,∆N > c0 logN) ≤ Px(Gk,c0) +N−c1 .

We continue with the lower bound. In this case, unfortunately, knowing that the
Brownian motion enters the ball of radius c logN does not imply necessarily that the
random walk hits the origin. However, the random walk will be close enough to the
origin so that its probability to hit the origin soon after is high. Denote by T = min{n ∈
[t1, t

′
2] ∩N, |Bn| ≤ c0 logN} and T0 = inf{n ≥ 1|S2n = 0}. Let also θk stand for the shift

in time of 2k steps for the random walk. Since t′2 = t1 + lk/2, we have that on the event
T <∞, {T0 ◦ θT < lk/2} ⊂ Fk. Hence,

gk(x) ≥ Px (T <∞, T0 ◦ θT < lk/2,∆T ≤ c0 logN)

= Ex [1T<∞1∆T≤c0 logNPS2T
(T0 < lk/2)] ,

1There exist similar estimates for the random walk itself, such as [9], but unfortunately they are not sharp
enough to estimate gk(x) directly in our context.
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where we have used Markov’s property. Since on {T < ∞,∆T ≤ c0 logN} we have
|S2T | ≤ |BT |+ c0 logN ≤ 3c0 logN , we obtain that

gk(x) ≥ inf
|y|≤3c logN

Py (T0 < lk/2) Px (T <∞,∆T ≤ c0 logN) .

Observe that on {T <∞}, one has T ≤ N and thus ∆T ≤ ∆N , so that

Px (T <∞,∆T ≤ c0 logN) ≥ Px(T <∞)−N−c1 .

The lower bound is thus proven if we show that

Px(T <∞) ≥ Px(G′k,c0)−N−c
′
, (3.13)

for some c′ > 0, and that

inf
|y|≤2c logN

Py (T0 < lk/2) ≥ 1− cγ log logN/ logN. (3.14)

For (3.13), we let ΩN = sup{|Bs −Bt|, |t− s| ≤ 1, s, t ≤ N} and decompose

Px(G′k,c0) = Px(G′k,c0 ,ΩN < c0 logN) + Px(G′k,c0 ,ΩN > c0 logN)

≤ Px(T <∞) + Px(ΩN > c0 logN),

so that (3.13) follows from the fact that Px(ΩN > c0 logN) ≤ N−c
′

for c′ > 0, see
[5, Theorem 3.2.4]. We now prove (3.14). We first use that since lk ≥ Nγ , we have
Py(T0 ≥ lk/2) ≤ Py(T0 ≥ Nγ/2). Then, by [9, Theorem 1], the last probability is smaller
than cγ log(2c0 logN)/ logN uniformly for |y| ≤ 2c0 logN .

Lemma 3.5. Let c0 be as in Lemma 3.4. There exists N0 = N0(Γ̃) and ∆Γ,3.5 > 0 such
that ∆Γ,3.5 < 1 for all N > N0, lim supΓ′ ∆Γ,3.5 = 0 and for all k ≤ K,

ᾱ (1−∆Γ,3.5) ≤ inf
x∈B(0,2δ−1L

1/2
k )

Px(G′k,c0) (3.15)

≤ sup
x∈B(0,2δ−1L

1/2
k )

Px(Gk,c0) ≤ ᾱ(1 + ∆Γ,3.5). (3.16)

Proof. Let x ∈ B(0, 2δ−1L
1/2
k ). We begin with the second inequality (upper bound)

in (3.16). (The first inequality in (3.16) is immediate). With r1 = c0
logN√
t1

, we have

Px(Gk,c0) ≤ P0(Gk,c0) = P0

(
inf

s∈[1,t2/t1]
|Bs| ≤ r1

)
, (3.17)

where the first inequality follows from the fact that the modulus of the Brownian motion
is a Bessel process and one can couple a Bessel process Xx

t = |Bxt | started at x to B0
t so

that |Bxt | ≥ |B0
t | for all t, and the equality follows from Brownian scaling. In [10], it is

shown that

hr(t) =
(
log r−2

)
P0

(
inf

s∈[1,t]
|Bs| ≤ r

)
,

satisfies hr(t) → log t as r → 0 for all fixed t ≥ 1. Since t → hr(t) is increasing and
t→ log t is continuous, this convergence can be extended to a uniform convergence on
each compact subset of [1,∞). By (2.5) we have

t2/t1 = (ν1lk−1 + lk)/(ν1lk−1) ≤ 1 + eeα,
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hence by the equality in (3.17),∣∣(log r−2
1

)
P0(Gk,c0)− log t2/t1

∣∣ ≤ sup
t∈[1,1+eeα]

|hr1(t)− log t| =: εN , (3.18)

where εN = εN (α, γ, ν1)→ 0 as N →∞ since r1 vanishes as N →∞. Moreover, by (2.7),
there exists ε′N = ε′N (α, γ)→ 0 as N →∞ such that ε′N > 0 and

log t2/t1 = log(lk/(ν1lk−1)) + log(1 + ν1lk−1/lk) ≤ (eᾱ − 1) log lk−1 + log 2 + ε′N ,

where we have used that ν1lk−1/lk ≤ 1 (Remark 2.2). Hence, by (3.18), we find that

P0(Gk,c0) ≤ (eᾱ − 1) log lk−1 + log 2 + εN + ε′N
log lk−1 + log(ν1/(c20(logN)2))

≤ (eᾱ − 1)

(
1 +

log 2+εN+ε′N
(eᾱ−1) log lk−1

)
1− 2 log(c0 logN)

log lk−1

.

Since log lk−1 ≥ γ logN , the numerator is smaller than 1 +
log 2+εN+ε′N

γα and for α, γ and
ν1 fixed, the denominator writes as (1 + oN (1)). This gives (3.16).

We turn to (3.15). For r1 = c0 logN/
√
t1, by Brownian scaling and Markov’s property,

Px(G′k,c0) = Px/
√
t1

(
inf

s∈[1,t′2/t1]
|Bs| ≤ r1

)
=

∫
R2

p̄1(z − x/
√
t1)Pz

(
inf

s∈[0,t′2/t1−1]
|Bs| ≤ r1

)
dz, (3.19)

where p̄t(x) = 1
πte
−|x|2/t. Then, we have:

p̄1(z − w) ≥ p̄1(z)e−2|w||z|−|w|2 ≥ p̄1(z)e−|w|(|z|
2+1)−|w|2 ,

by the Cauchy-Schwarz inequality and the bound |z| ≤ (|z|2 + 1)/2 valid for all z. This

implies that for all x ∈ B(0, 2δ−1L
1/2
k ), with ξ2 = 4δ−2Lk/t1,

p̄1(z − x/
√
t1) ≥ p̄1(z)e−ξ|z|

2

e−ξ
2−ξ = (1 + ξ)−1p̄ 1

1+ξ
(z)e−ξ

2−ξ.

Plugging the last inequality in the integral in (3.19), we obtain that for u1 = (1 + ξ)−1

and u2 = t′2/t1 − ξ/(1 + ξ),

Px(G′k,c0) ≥ e−ξ
2−ξ

1 + ξ
P0

(
inf

s∈[u1,u2]
|Bs| ≤ r1

)
. (3.20)

By (2.5)-(ii), we see that ξ2 ≤ 16ν−1
1 δ−2ν2, in particular ξ2 ≤ 1/2 by (2.1)-(iii). Similarly

to (3.18), we obtain that∣∣∣∣log(r1/u1)P0

(
inf

s∈[u1,u2]
|Bs| ≤ r1

)
− log(u2/u1)

∣∣∣∣ ≤ εN ,
where εN = εN (α, γ, ν1, ν2, δ)→ 0 as N →∞. As u2/u1 = (1 + ξ)t′2/t1 − ξ,

log u2/u1 = log t′2/t1 + log (1 + ξ − ξt1/t′2)

≥ log(lk/(2ν1lk−1)) + log(1− ξ)
≥ (eᾱ − 1) log lk−1 − log(2ν1)− log 2− ε′N ,

where we have used (2.7) and that ξ2 ≤ 1/2. Thus, as (eᾱ − 1) ≥ ᾱ,

P0

(
inf

s∈[u1,u2]
|Bs| ≤ r1

)
≥ log(u2/u1)− εN

log r1 − log u1

≥ ᾱ log lk−1 − log(4ν1)− εN − ε′N
log lk−1 + log(2ν1/(c20(logN)2))

≥ ᾱ
1− log(4ν1)+εN+ε′N

ᾱ log lk−1

1 + log(2ν1)
log lk−1

.
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For fixed ν1, α, γ, the denominator is 1 + oN (1) as N →∞. As ᾱ log lk−1 ≥ γα, we obtain
from (3.20) that

Px(G′k,c0) ≥ ᾱe−ξ
2−ξ 1

1 + ξ

1− log(4ν1)+εN+ε′N
γα

1 + oN (1)
.

This implies (3.15) since ξ2 ≤ 16ν−1
1 δ−2ν2. The condition ∆Γ,3.5 < 1 for N large enough

is ensured by (2.1)-(ii).

We are now ready to complete the proof of Proposition 3.1.

Proof of Proposition 3.1. The result follows from combining Lemma 3.2, Lemma 3.3,
Lemma 3.4 (with (3.10)) and Lemma 3.5.

3.2 Three-particle intersection probability

In this section, we derive an upper bound on the probability p(i,j);(i′,j′) = Pok,yx (τ
(i,j)
k <

∞, τ (i′,j′)
k < ∞) when {i, j} ∩ {i′, j′} = 1, x ∈ Bq0,k and y ∈ Bq0,k+1. By symmetry, it is

enough to control p(3)
w,z := Pok,zw (τ

(1,2)
k <∞, τ (1,3)

k <∞) for w ∈ B3,k and z ∈ B3,k+1.
The result is the following.

Proposition 3.6. There exists C > 0 and ∆Γ,3.6 > 0 satisfying lim supΓ′ ∆Γ,3.6 = 0 such
that for all k ≤ K, x ∈ B3,k,y ∈ B3,k+1,

p(3)
x,y ≤ Cᾱ

log logN

γ logN
(1 + ∆Γ,3.6).

Before turning to the proof of Proposition 3.6, we state a few lemmas. As in the
previous section, we first observe that we can forget about the conditioning on the
endpoints. Letting p(3)

x = Px(τ
(1,2)
k <∞, τ (1,3)

k <∞) for x ∈ B3,k, we have:

Lemma 3.7. There exists ∆Γ,3.7 > 0 satisfying lim supΓ′ ∆Γ,3.7 = 0 such that for all

k ≤ K, x ∈ B3,k and y ∈ B3,k+1, we have p(3)
x,y ≤ p(3)

x (1 + ∆Γ,3.7).

We omit the proof which is very similar to the one of Lemma 3.2.
Next, we let T0 = inf{n ≥ 0 : S2n = 0}. The following holds.

Lemma 3.8. Let hk(x) = Px(T0 ≤ `k). There exists c = c(γ, α, ν1) > 0 such that

sup
n∈Tk

sup
x∈Z2

E0[hk(S2n − x)] ≤ c(logN)−4 + C
log logN

γ logN
.

Proof. Let n ∈ Tk and x ∈ Z2. By [6, Théorème 3.6], we have that (log lk)hk(z) ≤
C
(
log(lk|z|−2)

)
+

+ C1|z|2≥lk . Hence we decompose

E0[hk(S2n − x)]

=
∑

|z−x|≤(logN)−2
√
lk

p2n(z)hk(z − x) +
∑

|z−x|>(logN)−2
√
lk

p2n(z)hk(z − x)

≤ C

ν1lk−1
(logN)−4lk +

C log logN

log lk
+

C

log lk
,

where in the first sum we have bounded hk by 1 and used that p2n(z) ≤ C
n (Corollary A.2)

with n ≥ ν1lk−1. The proof is completed using (2.5)-(i) and lk ≥ Nγ .

Proof of Proposition 3.6. Let τ̃ (i,j)
k = inf{n ∈ Tk : Sin = Sjn} and p̃

(3)
x = Px(τ̃

(1,2)
k <

∞, τ̃ (1,3)
k <∞). It then trivially holds that p(3)

x ≤ p̃(3)
x . Furthermore, by symmetry,

p̃(3)
x ≤ 2P⊗3

x

(
τ̃

(1,2)
k ≤ τ̃ (1,3)

k <∞
)
≤ 2P⊗3

x

(
τ̃

(1,2)
k <∞, T (1,3) ◦ θ

τ̃
(1,2)
k

≤ `k
)
,
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where T (1,3) = inf{n ≥ 0|S1
n = S3

n} and θk denotes shift in time of k steps. Let T0 =

inf{n ≥ 0 : S2n = 0} and hk(x) = Px(T0 ≤ `k). By Markov’s property,

p̃(3)
x ≤ E⊗3

x

[
1
τ̃

(1,2)
k <∞ hk

(
S1

τ̃
(1,2)
k

− S3

τ̃
(1,2)
k

)]
= E⊗3

x

[
1
τ̃

(1,2)
k <∞ E⊗3

x

[
hk

(
S1

τ̃
(1,2)
k

− S3

τ̃
(1,2)
k

)∣∣∣S1, S2
]]
.

Then, combine Lemma 3.8 with the identity Ex(τ̃
(1,2)
k <∞) = gk(x2 − x1) and the upper

bounds in Lemma 3.4 and Lemma 3.5 to obtain that

p̃(3)
x ≤

(
ᾱ(1 + ∆Γ,3.5) +N−c1

)(
C

log logN

γ logN
(1 + oN (1))

)
,

with lim supΓ′ ∆Γ,3.5 = 0. We conclude with Lemma 3.7.

3.3 Four-particle intersection

Define

p
(4)
k = sup

k≤K
sup

x∈B4,k,y∈B4,k+1

Pok,yx

(
∃n ∈ Tk : S1

n = S2
n, S

3
n = S4

n

)
. (3.21)

We have the following:

Lemma 3.9. There exists C > 0 and ∆Γ,3.9 > 0 satisfying lim supΓ′ ∆Γ,3.9 = 0 such that

p
(4)
k ≤

C
Nγ (1 + ∆Γ,3.9).

Proof. As in Lemma 3.7 of the last section, we can forget about the conditioning on the
endpoint (ok,y) up to a (1 + ∆Γ,3.7) factor. Then for all k ≤ K, x ∈ B4,k,

Px

(
∃n ∈ Tk : S1

n = S2
n, S

3
n = S4

n

)
≤
∑
n∈Tk

p2n(0)2 ≤ C/lk−1,

since p2n(0) ≤ C/n by Corollary A.2. We conclude by using that lk−1 ≥ Nγ .

A Local central limit theorem

Let pt(x) be the probability transition function of the simple random walk on Zd and

p̄t(x) =
(
d

2πt

)d/2
e−

d|x|2
2t . We say that x ∼t y when x and y have the same parity, that

is pt(x − y) > 0. The following theorem can be obtained from Theorem 2.3.11 in [5].
(See also the proof of [5, Theorem 2.1.3] and the paragraph above the statement of that
theorem.)

Theorem A.1 (Local central limit theorem). There exists ρ > 0 such that for all t ≥ 0 and
all x ∈ Zd with |x| < ρt and x ∼t 0,

pt(x) = 2p̄t(x) exp

{
O

(
1

t
+
|x|4

t3

)}
, (A.1)

where O(g) satisfies |O(g)| ≤ C|g| for some universal constant C > 0.

Since p2n(x) is maximal at x = 0 (this is a direct consequence of the Cauchy-Schwarz
inequality), the theorem implies the next general bound:

Corollary A.2. Let d = 2. There exists C > 0 such that for all n ≥ 1, supx∈Z2 pn(x) ≤ C
n .
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B The case 1� q2 ≤ log logN

In the regime 1 � q2 ≤ log logN , the error in Proposition 2.10 becomes too large.
The reason is that we ask for many particles to meet in a ball at each time Lk, and there
are around logN such times. This event has a cost which is too big compared to the
value of the moment E[W q

N ] when q ≤ log logN . To fix this issue, we can divide [0, N ] into
fewer intervals [Lk, Lk+1) by defining ᾱ = α

(q2)
instead of ᾱ = α

logN . With this change, the

error term in Proposition 2.10 can be neglected. However, when choosing ᾱ = α

(q2)
, the

quantity t2/t1 diverges in the proof of Lemma 3.5, so that we cannot resctrict ourselves
to a compact set in order to extend the pointwise convergence of [10] to a uniform one
in the argument for (3.18). Hence, we need to extend the main result in [10] to allow for
a uniform control on time and space. There exist uniform results by Ridler and Rowe [9],
both for the random walks and the Brownian motion, but they are given for the quantity
Px(T > n) (where T is the first return time to 0) instead of Px(T < n) that we need, and
unfortunately the error term given is not enough to go from one quantity to the other in
our case.

The following lemma deals with this problem. It is obtained by adapting the argu-
ments of Spitzer [10] and Ridler-Rowe [9]. Consider the Bessel process Rt = |Bt| and
define Ta = inf{t ≥ 0 : Rt = a}.
Lemma B.1. For all c > 0, it holds that

Pr(Ta ≤ t) =
log(t/r2)

log(t/a2)
(1 + o(1)),

where the error term o(1) vanishes as r2/t→ 0 uniformly for a < r.

Proof. The goal is to deduce bounds on Pr(Ta ≤ t) from its Laplace transform

A(a, r, λ) =

∫ ∞
0

e−λtPr(Ta ≤ t)dt, a < r, λ > 0.

We follow closely the approach used in [9, Main Proof and Proof of Theorem 2] which is
based on a Karamata method of obtaining Tauberian theorems. The starting point is the
next formula, proved in [10, (1.4)],

A(a, r, λ) =
K0

(
r
√

2λ
)

λK0

(
a
√

2λ
) , with K0(u) = − log u+ C +O(u) as u→ 0. (B.1)

In particular, it holds that

A(a, r, λ) =
1

λ

log(r2λ)

log(a2λ)
(1 + o(1)), (B.2)

where o(1) vanishes as r2λ→ 0 uniformly for a < r. Then, the idea is to relate Pr(T ≤ t)
to its Laplace transform via the formula

B(a, r, λ−1) :=

∫ λ−1

0

Pr(Ta ≤ t)dt =

∫ ∞
0

e−λtg(e−λt)Pr(Ta ≤ t)dt, (B.3)

where g(u) = u−1 when e−1 ≤ u ≤ 1 and 0 otherwise. We will first obtain bounds on
B(a, r, t) and deduce a bound on its t-derivative Pr(Ta ≤ t) in a second step. Let ε ∈ (0, 1)

and

Q(u) =

m∑
n=0

anu
n and R(u) =

l∑
n=0

bnu
n,
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be two polynomials satisfying

Q ≤ g ≤ R on [0, 1] and ‖Q−R‖1,[0,1] =

∫ ∞
0

e−t
(
R(e−t)−Q(e−t)

)
dt < ε. (B.4)

By (B.3), we have

B(a, r, λ−1) ≥
∫ ∞

0

e−λtQ(e−λt)Pr(Ta ≤ t)dt

=

m∑
n=0

an

∫ ∞
0

e−(n+1)λtPr(Ta ≤ t)dt

=

m∑
n=0

anA(a, r, (n+ 1)λ).

Now by (B.2), we can find δε > 0 such that whenever r2λ ≤ δε, we have

∀n ≤ m, λ−1(1− ε) ≤ log(a2λ)

log(r2λ)
A(a, r, (n+ 1)λ) ≤ λ−1(1− ε), (B.5)

uniformly for all a < r. This implies that

log(a2λ)

log(r2λ)
B(a, r, λ−1) ≥ (1− ε)λ−1

m∑
n=0

an
n+ 1

≥ (1− ε)2λ−1, (B.6)

where in the second inequality we have used (B.4) and
∫∞

0
e−tg(e−t)dt = 1 to obtain

m∑
n=0

an
n+ 1

=

∫ ∞
0

e−t
m∑
n=0

ane
−ntdt =

∫ ∞
0

e−tQ(e−t)dt ≥ 1− ε.

A similar computation leads to an upper bound in (B.6), with 1 − ε replaced by 1 + ε.
Hence, setting λ−1 = t, we obtain that for all a < r and r2/t ≤ δε,

t(1− ε) ≤ log(t/a2)

log(t/r2)
B(a, r, t) ≤ t(1 + ε). (B.7)

Now, since t→ Pr(Ta ≤ t) is non-decreasing, we have for all δ > 0,

B(a, r, t)

t
≤ Pr(Ta ≤ t) ≤

B(a, r, t1+δ)−B(a, r, t)

t1+δ − t
.

By (B.7), this leads to the following bound valid for r2/t ≤ δε and a < r,

1− ε ≤ log(t/a2)

log(t/r2)
Pr(Ta ≤ t) ≤ 1 + ε

1 + t−δ

1− t−δ
+ δ(1 + ε)

(log t)/ log(t/r2)

1− t−δ
.

We thus choose δ = ε log(t/r2)
log t and observe that t−δ = e−ε log(t/r2) so that

1− ε ≤ log(t/a2)

log(t/r2)
Pr(Ta ≤ t) ≤ 1 + 3ε,

when r2/t ≤ δε up to choosing δε smaller.

Building up on Lemma B.1, we can deduce the following.
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Lemma B.2. There exists a constant C0 > 0 such that

P0

(
inf

t∈[t1,t2]
Rt ≤ a

)
=

log(t2/t1)

log(t2/a2)
(1 + o(1)) + h0(t1, t2, a),

where the error term o(1) vanishes as t2/t1 →∞ uniformly for a2 < t1 and |h0(t1, t2, a)| ≤
a2/t1.

Proof. Let ε and δ in (0, 1). (We choose below δ small as function of ε.) By Markov’s
property,

P0

(
inf

t∈[t1,t2]
Rt ≤ a

)
=

1

t1

∫ a

0

re−r
2/(2t1)dr (B.8)

+
1

t1

∫ √δ−1t1

a

re−r
2/(2t1)Pr (Ta ≤ t2 − t1) dr (B.9)

+
1

t1

∫ ∞
√
δ−1t1

re−r
2/(2t1)Pr (Ta ≤ t2 − t1) dr, (B.10)

where
√
δ−1t1 > a since a2 < t1 by assumption. First observe that the integral on the

right-hand side of (B.8) is smaller than a2/t1. Next, let δ be small enough so that by
Lemma B.1, we have for all r2/(t2 − t1) ≤ δ that

Pr(Ta ≤ t2 − t1) =
log((t2 − t1)/r2)

log((t2 − t1)/a2)
(1 + et1,t2,a,r), (B.11)

with |et1,t2,a,r| ≤ ε uniformly for a < r. We now assume that t1 ≤ M−1t2 with M > Mδ

large enough so that t1/(t2−t1) < δ2 (we also require M to be large enough so that (B.12)
below holds). It then holds that r2/(t2 − t1) ≤ δ in the integral (B.9), which is thus equal
to

(1 + et1,t2,a,δ)
1

t1

∫ √δ−1t1

a

re−r
2/(2t1) log((t2 − t1)/r2)

log((t2 − t1)/a2)
dr,

where |et1,t2,a,δ| ≤ ε. Write the last integral as I1 − I2, where

I1 =
1

t1

∫ ∞
a

re−r
2/(2t1) log((t2 − t1)/r2)

log((t2 − t1)/a2)
dr,

and I2 is the same integral between
√
δ−1t and +∞. By integration by part,

log

(
t2 − t1
a2

)
I1 = e−

a2

2t1 log
t2 − t1
a2

−
∫ ∞
a2

2t1

e−v

v
dv

= e−
a2

2t1 log
t2 − t1
a2

+ log
a2

2t1
+ γ +O

(
a2

t1

)
= log

t2 − t1
t1

+ C0 +O

(
a2

t1
log

t2 − t1
a2

)
,

where γ is the Euler constant and C0 = γ − log 2. Therefore,

I1 =
log((t2 − t1)/t1) + C0

log((t2 − t1)/a2)
+O

(
a2

t1

)
.

Note that the implicit constant in the error term O(a2/t1) does not depend on δ.
Next, there exists c > 0 such that

I2 =
1

t1

∫ ∞
√
δ−1t1

re−r
2/(2t1) log((t2 − t1)/r2)

log((t2 − t1)/a2)
dr ≤ e−cδ

−1 log((t2 − t1)/t1)

log((t2 − t1)/a2)
,
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The integral in (B.10) can be bounded in the same way using that for all r >
√
δ−1t1 we

have Pr(Ta ≤ t2 − t1) ≤ P
t
1/2
1

(Ta ≤ t2 − t1) and applying (B.11). Finally, note that for M

large enough,
log((t2 − t1)/t1) + C0

log((t2 − t1)/a2)
=

log(t2/t1)

log(t2/a2)
(1 + et1,t2,a), (B.12)

where |et1,t2,a| ≤ ε uniformly for a2 < t1. Putting everything together, we find that

P0

(
inf

t∈[t1,t2]
Rt ≤ a

)
=

log(t2/t1)

log(t2/a2)
(1 + et1,t2,a − e′t1,δ,a) +O

(
a2

t1

)
,

where |e′t1,δ,a| ≤ e−cδ
−1

. This concludes the proof since ε, and then δ, can be taken
arbitrary small, as long as t2/t1 > Mδ.

Adapting the proof of Lemma 3.5. With the last lemma, we can adapt the proof of
Lemma 3.5 to the case ᾱ = α/

(
q
2

)
with 1� q2 ≤ log logN as follows. For simplicity, we

consider Px(Gk,c0) for x = 0, the reduction from x in the ball to x = 0 can be done as in
the proof of the Lemma 3.5. Recall that t1 = ν1lk−1 and t2 = t1 + lk. We have

P0(Gk,c0) = P0

(
inf

t∈[t1,t2]
|Bt| ≤ c0 logN

)
with t2/t1 ≥ Nγᾱ ≥ eγα logN/ log logN

and t1 ≥ Nγ , so that Lemma B.2 applies. Moreover,

log(lk/lk−1) ∼ ᾱeᾱ(k−1)γ logN and log lk ∼ eᾱkγ logN, N →∞. (B.13)

We obtain that

P0(Gk,c0) =
log(t2/t1)

log(t2/a2)
(1 + o(1)) +O(a2/t1)

=
log(lk/lk−1)

log lk
(1 + o(1)) +O

(
(logN)2/Nγ

)
= ᾱ+ o(ᾱ),

by (B.13). This recovers Lemma 3.5.
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