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Large-deviation principles of switching Markov
processes via Hamilton-Jacobi equations

Mark A. Peletier* Mikola C. Schlottke†

Abstract

We prove pathwise large-deviation principles of switching Markov processes by ex-
ploiting the connection to associated Hamilton-Jacobi equations, following Jin Feng’s
and Thomas Kurtz’s method [13]. In the limit that we consider, we show how the large-
deviation problem in path-space reduces to a spectral problem of finding principal
eigenvalues. The large-deviation rate functions are given in action-integral form. As
an application, we demonstrate how macroscopic transport properties of stochastic
models of molecular motors can be deduced from an associated principal-eigenvalue
problem. The precise characterization of the macroscopic velocity in terms of principal
eigenvalues confirms that breaking of detailed balance is necessary for obtaining
transport. In this way, we extend and unify several existing results about molecular
motors and place them in the framework of stochastic processes and large-deviation
theory.
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1 Introduction

In this paper we investigate large deviations for switching Markov processes that are
motivated by stochastic models of molecular motors. Molecular motors are proteins that
are capable of moving along filaments in a living cell. Molecular motors such as kinesin
and dynein drag vesicles along while moving and thereby transport them within the cell.
For more background on the phenomenon of molecular motors we refer to a number of
reviews [20, 18, 35, 24, 23].

Molecular motors have a directionality: they typically move in one direction only.
A central challenge in the study of such motors is to understand the origin of this
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LDPs of switching Markov processes

directionality, and characterize the speed of movement. In fact, mathematical models
of molecular motors typically show no energetic benefit in moving in one direction or
the other; the directionality arises from a non-trivial interplay between the microscopic
features of such models and the dynamics of the motor. As a result, understanding how
directionality arises as symmetry breaking in a-directional models is somewhat of a
puzzle.

For certain models this puzzle has been solved, at least partially. Hastings, Kinder-
lehrer and Mcleod studied stationary solutions of certain Fokker-Planck equations and
found sufficient conditions for the occurrence of transport [16, 15]. Vorotnikov proved
sufficient conditions for transport in deterministically switching [40] and randomly
switching systems [41]. Perthame, Souganidis, and Mirrahimi developed a dynamic
point of view on systems of molecular motors [31, 32, 29]. In particular, Mirrahimi and
Souganidis prove convergence of solutions of a Fokker-Planck equation to a ballistically
travelling pulse, with a velocity that is characterized by a periodic cell problem.

In this paper we extend the results of [29] to a much broader class of systems, make
explicit the connection to stochastic processes, and place the treatment squarely in the
context of large-deviation theory. In this way we elaborate on the work by Perthame,
Souganids and Mirrahimi, which appears to be inspired by large-deviation theory, as
evidenced by the title of [31] and the use of terms such as ‘Hamiltonian’.

The larger class of stochastic processes that we consider is that of switching Markov
processes in a periodic setting. This class contains different models of molecular
motors as special cases, including the continuum ratchet and discrete stochastic models
(see [23] and Section 2, as well as [31, 32, 29, 16, 15]).

The first mathematical results of this paper (Theorems 4.2 and 4.3; see Figure 1
below) are large-deviation theorems for such switching Markov processes. These gen-
eralize results by Kumar and Popovic [27] by focusing on pathwise large deviations,
while placing more restrictive assumptions on the microscopic dynamics. Furthermore,
instead of assuming the comparison principle to be satisfied as in [27, Lemma 1], we for-
mulate conditions that imply the comparison principle. Faggionato and Silvestri establish
large-deviation principles for fully discrete, ‘pseudo-one-dimensional’ systems [12].

A related line of research focuses on large-deviation principles for switching diffusions
in a setting where the diffusion potentials do not have small-scale oscillations. Typical
results provide large-deviation rate functionals that are simple sums of small-diffusion
(‘Freidlin-Wentzell’) and occupation (‘Donsker-Varadhan’) rate functionals (see e.g. [14,
17, 19, 3, 26]). The rapid-scale oscillation of the potentials in this paper creates a
stronger intertwining between the diffusion and switching dynamics, and consequently
the rate function is not a simple sum but an expression that fully combines the dynamics
of both components.

Theorems 4.2 and 4.3 recover previous convergence results such as those of Mir-
rahimi and Souganidis [29, Th. 1.1-1.2]. While the methods that Mirrahimi and Sougani-
dis apply are inspired by large-deviation theory, they do not explicitly prove large
deviation principles but convergence statements on the level of Fokker-Planck equations.
By proving large-deviation principles instead, we are able to make a clear distinction
between the contributions that come from general large-deviation theory on the one
hand, and the model-specific contributions on the other hand.

For instance, our results explain from a large-deviation point-of-view why the ve-
locity v can be characterized by a cell problem that can be interpreted as defining a
large-deviation Hamiltonian H, through v = H′(0). The Hamiltonian depends on the
specific model, while the relation v = H′(0) is independent of the microscopic details.
This relation then also explains the well-known fact that detailed balance (microscopic
reversibility) forces zero velocity. Indeed, we prove under general conditions (Theo-
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rem 4.8) that detailed balance leads to a symmetric Hamiltonian. By the characterization
of the velocity as v = H′(0), this means that detailed balance has to be broken in order
for transport to occur.

As another example, the numerical results of Wang, Peskin and Elston suggest that
there is no transport in the limit of large reaction rates [42, Section 4.3, Figure 8(a)].
We also recover this result by proving that in this limit regime the Hamiltonian becomes
symmetric (Theorem 4.9).

Overview of the paper

In Section 2, we illustrate the general results by means of a concrete example of a
stochastic molecular-motor model. This provides a ‘running example’ with which to
interpret the general results that follow. We also outline with this example the relation
to the papers of Perthame, Souganidis and Mirrahimi.

In Section 3, we introduce the concepts that we work with in order to rigorously
formulate our results. In Section 4 we present our main results. Figure 1 summarizes
the relationships between the main theorems. Theorem 4.2 provides general conditions
under which the so-called spatial component of a switching Markov process satisfies a
large-deviation principle. We identify the Hamiltonian H(p), a principal eigenvalue, as
the central ingredient. Under the additional assumption that p 7→ H(p) is convex, Theo-
rem 4.3 establishes an action-integral representation. Theorems 4.2 and 4.3 highlight
the arguments that come from large-deviation theory.

We then specialize to a concrete ratchet model of molecular motors. Theorems 4.6
and 4.7 establish the large-deviation theorems for two limit regimes. While Theorem 4.6
generalizes the results in [29], Theorem 4.7 characterizes yet another limit regime. We
include this result to illustrate how the general structure of proof remains unaffected
by the choice of scaling. Finally, we show the symmetry of Hamiltonians under detailed
balance (Theorem 4.8) and in the regime of scale separation (Theorem 4.9).

Finally, we should point out that there is a sizeable literature on piecewise deter-
ministic Markov processes, which are governed by deterministic ordinary differential
equations with flow fields that jump randomly between a finite set of possibilities (see
e.g. [10, 11]). We expect that the results of this paper might be applicable to this class of
systems, but the verification of properties such as the Comparison Principle will require
different methods.

2 Example—large deviations for molecular motors

2.1 Definition of the system

In this example, we consider a two-component Markov process (Xn, In) with values
in T×{1, 2}, where T = R/Z is the one-dimensional flat torus. We fix the initial condition
(Xn(0), In(0)) = (x0, i0) for some (x0, i0) ∈ T × {1, 2}. Let ψ(·, 1) and ψ(·, 2) be smooth
functions on the torus, and we write ψ′(x, i) for the derivative of x 7→ ψ(x, i). We call
these functions potentials. The evolution of (Xn, In) is characterized by the stochastic
differential equation

dXn
t = −ψ′ (nXn

t , I
n
t ) dt+

1√
n

dBt, (2.1)

where Bt is a standard Brownian motion. The process In is a continuous-time Markov
chain on {1, 2}, which evolves with jump rates rij(·) such that

P
(
In(t+ ∆t) = j | In(t) = i,Xn(t) = x

)
= n · rij (nx) ∆t+O(∆t2), as ∆t→ 0. (2.2)
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LDP for switching
Markov processes

(Theorem 4.2)

Action-Integral
Representation
(Theorem 4.3)

Molecular-motor
model, limit I
(Theorem 4.6)

Molecular-motor
model, limit II
(Theorem 4.7)

Symmetry of
Hamiltonian I
(Theorem 4.8)

Symmetry of
Hamiltonian II
(Theorem 4.9)

Assume H(·) convex

Specific models

Special cases

Figure 1: Overview of the results proven in this paper. From top to bottom, results
become less general and more specific. Arrows indicate restrictions in passing from one
context to the next.

In summary, the spatial component Xn is a drift-diffusion process, the configurational
component In is a continuous-time Markov chain on {1, 2}, and the two are coupled
through their respective rates. For details about the rigorous construction of such
switching drift-diffusion processes, we refer to [43, Chapter 2]. Figure 2 depicts a typical
realization of (Xn, In), where the trajectory of the spatial component is lifted from the
torus to R.

The specific n-scaling may be motivated by starting from a process (Xt, It) that
satisfies

dXt = −ψ′(Xt, It) dt+ dBt,

where the jump process It on {1, 2} evolves according to

P (It+∆t = j | It = i,Xt = x) = rij(x)∆t+O(∆t2), as ∆t→ 0.

The large-scale behaviour of (Xt, It) is studied by considering the rescaled process (Xn
t ,

Int ) defined by Xn
t := 1

nXnt and Int := Int, and characterizing the dynamics of (Xn
t , I

n
t )

for large values of n. This rescaling may be interpreted as zooming out of the x-t phase
space, which is illustrated below in Figure 3. Itô calculus implies that the process
(Xn

t , I
n
t ) satisfies (2.1) and (2.2).

2.2 Large deviations for this example

We are interested in the behaviour of the spatial component Xn as n → ∞. The
behaviour of Xn for large n is shown in Figure 3. This figure suggests that Xn closely
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Figure 2: A typical time evolution of (Xn, In) satisfying (2.1) and (2.2). In the left
diagram, the black bullet represents a particle that moves according to (2.1). A red
arrow indicates the dynamics of the spatial component Xn. A green arrow indicates
a switch of the configurational component In, which switches the potential in which
the particle is diffusing. In the right diagram, the spatial evolution is shown in an
x-t-diagram. The red dots represent the values of Xn, while a green bullet indicates
a switch of the configurational component In. The dynamics of the particle comprises
the following typical phases; 1 and 4: diffusive motion of Xn near a potential minimum;
2 and 5: configurational switch of In with the effect of switching to another potential;
3 and 6: flow of Xn towards a minimum of the other potential. In both diagrams, the
spatial trajectory is shown lifted from the torus T to R.

follows a path with a constant velocity. Indeed, when specifying the results of this paper
to the example at hand—the process (Xn, In) defined by (2.1) and (2.2)—we find that the
spatial component Xn satisfies a pathwise large-deviation principle in the limit n→∞.

To describe this fact more precisely, let X := CT[0,∞) be the set of continuous
trajectories in T, equipped with the topology of uniform convergence on compact
time intervals. The spatial component Xn is a random variable in X , with a path
distribution P(Xn ∈ ·) ∈ P(X ). We will show that there exists a rate function I : X →
[0,∞] with which {Xn}n∈N satisfies a pathwise large-deviation principle in the sense of
Definition 3.2 below. The gist of this statement is that for any trajectory x ∈ X , we have
at least intuitively

P (Xn ≈ x) ∼ e−n I(x), n→∞. (2.3)

The notation “Xn ≈ x” indicates that Xn is close to x with respect to the topology
on X , and “∼ e−n I(x)” indicates a dominant contribution of the exponential. The rate
function I is given by means of a Lagrangian L : R→ [0,∞) as

I(x) = I0(x(0)) +

∫ ∞
0

L(∂tx(t)) dt. (2.4)

Here I0 : T → [0,∞] is the rate function of the initial conditions Xn(0); because of
the deterministic initial condition Xn(0) = x0, this functional is given by I0(x0) = 0

and +∞ otherwise. The Lagrangian is the Legendre dual of a Hamiltonian H : R→ R,
that is L(v) = supp[pv − H(p)], and the Hamiltonian is the principal eigenvalue of an
associated cell problem described in a more general context in Lemma 7.1.

Here, we focus on how this large-deviation result confirms the claim suggested by
Figure 3. The rate function (2.4) has the following properties:

(i) I : X → [0,∞] is nonnegative.

(ii) I(x) = 0 if and only if ∂tx(t) = v, with v = H′(0).
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t

x

t

x

v = H′(0)

n = 1 n� 1

Xn(t) Xn(t)

Figure 3: Two typical realizations of the spatial component Xn of the two-component
process (Xn, In) satisfying (2.1) and (2.2). On the left, a realization is depicted for n of
order one, and on the right for large n. Both graphs depict the lifted trajectory ofXn onR.
For large n, realizations of Xn closely follow a path with a constant velocity v = H′(0),
wherein the Hamiltonian H = H(p) may be derived from large-deviation theory. A more
detailed illustration of the dynamics is shown in Figure 2 further above.

These two properties together characterize the unique minimizer of the rate function,
and thereby in particular the typical behaviour of Xn for large n. Whenever I(x) > 0

for a path x ∈ X , then by (2.3), the probability that a realization of Xn is close to x

on X is exponentially small in n. In fact, the large-deviation principle implies almost-
sure convergence of Xn to the unique minimizer of the rate function (Theorem A.1).
Uniqueness of the minimizer, item (ii), follows by strict convexity of H(p). For the
Hamiltonian of this example, strict convexity can be proven as demonstrated in [29,
Step 4 in Appendix A].

With the large-deviation principle we can investigate which sets of potentials and
rates {ψ1, ψ2, r12, r21} induce transport, that means a non-zero macroscopic velocity v =

H′(0). We do not find general sufficient conditions for transport, but can draw some
conclusions if the process (Xn, In) satisfies detailed balance, that is r12e

−ψ1 = Cr21e
−ψ2

for some constant C > 0. Detailed balance implies that the Hamiltonian is symmetric
(Theorem 4.8), and therefore v = 0 under detailed balance.

3 Preliminaries

In the previous section we sketched the results of this paper at the hand of an example.
In this section we introduce the concepts that we use in the subsequent sections to
obtain the general results of this paper in a rigorous way.

Large deviations For a Polish space E, let X := DE [0,∞) be the set of trajectories
in E that are right-continuous and have left limits. We equip X with the Skorohod
topology [9, Section 3.5]. We work with the definition of a rate function as given in [2,
Chapter 1].

Definition 3.1 (Rate function). We call a map I : X → [0,∞] a rate function if for
every C ≥ 0, the sub-level set {x ∈ X : I(x) ≤ C} is compact.

In particular, a rate function is lower semi-continuous. For a Borel subset A ⊆ X , we
write int(A) and clos(A) for its interior and closure.

Definition 3.2 (Large-deviation principle). For n = 1, 2, . . . , let Pn be a probability mea-
sure on X , and let I : X → [0,∞] be a rate function. We say that the sequence {Pn}n∈N
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satisfies a large-deviation principle with rate function I if for every Borel subset A ⊆ X ,

− inf
x∈int(A)

I(x) ≤ lim inf
n→∞

1

n
log Pn(A) ≤ lim sup

n→∞

1

n
log Pn(A) ≤ − inf

x∈clos(A)
I(x)

A large-deviation principle provides an estimate of the probabilities Pn(A) on the
logarithmic scale. At least intuitively,

Pn(A) ≈ e−n infx∈A I(x), n→∞.

Illustrating examples of a large-deviation principle can be found for instance in Ellis’
note on Boltzmann’s discoveries [8]. General introductions to the topic are also provided
in [2, Chapter 1] and [13, Chapter 3].

Identifying tractable formulas for a rate function is crucial for drawing conclusions
from a large-deviation principle. In this paper, we shall aim for finding action-integral
representations of rate functions. Let Td := Rd/Zd be the flat d-dimensional torus, and
let AC([0,∞);Td) be the set of absolutely continuous trajectories in Td.

Definition 3.3 (Action-integral form of rate function). We say that a rate function I :

DTd [0,∞)→ [0,∞] is of action-integral form if there is a non-trivial convex map L : Rd →
[0,∞] with which

I(x) =

{
I0(x(0)) +

∫∞
0
L (∂tx(t)) dt if x ∈ AC([0,∞);Td),

+∞ otherwise,

where I0 : Td → [0,∞] is a rate function. We refer to the map L as the Lagrangian.

Switching Markov processes in a periodic setting We shall consider Markov pro-
cesses defined by two-component stochastic processes (Xn, In) taking values in state
spaces En that satisfy the following condition.

Condition 3.4 (Setting). Fix J ∈ N. For n ∈ N, the state space En is a product
space En := EXn ×{1, . . . , J}, where EXn is a compact Polish space satisfying the following:
there are continuous injective maps ιn : EXn → Td such that for all x ∈ Td there
exists xn ∈ EXn with which ιn(xn)→ x as n→∞.

This condition means that the EXn are asymptotically dense in the torus Td. The
typical example is the periodic lattice (n−1Z)d/Zd, where the torus is recovered in the
limit of n to infinity. Another example is simply EXn ≡ Td. When it is clear from the
context, we omit ιn in the notation. In general, for a function f = f(x, i) of a continuous
variable x and a discrete variable i, we shall sometimes write f(x, i) = fi(x) to shorten
the notation.

Let Xn := DEn
[0,∞). For a distribution µ ∈ P(En), we identify an En-valued two-

component process (Xn, In) having initial condition µ with its path distribution Pnµ ∈
P(Xn). In order to define a path distribution, we shall specify a linear map Ln : D(Ln) ⊆
C(En) → C(En) on a domain D(Ln) and assume well-posedness of the martingale
problem of the pair (Ln, µ).

We refer to [9, Chapter 4, Section 3] for a precise treatment of the martingale problem,
but we briefly recall the martingale problem here. Consider a complete separable metric
space Y , a linear operator A ⊂ B(Y )×B(Y ) with domain D(A) in the space of bounded,
Borel-measurable functions B(Y ), and a distribution µ ∈ P(Y ). A process Z is called a
solution to the martingale problem for (A,µ) if for all g ∈ D(A), the process

g (Z(t))− g (Z(0))−
∫ t

0

Ag (Z(s)) ds
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is a martingale and if Z(0) ∼ µ. Uniqueness holds for the martingale problem for (A,µ) if
all finite-dimensional distributions of a solution are unique. A martingale problem for A
is well-posed if existence and uniqueness hold for (A,µ) for any initial distribution µ ∈
P(Y ).

We shall call a linear map Ln as above a generator if it gives rise to a well-posed
martingale problem. We specify the generators Ln of (Xn, In) from the following ingre-
dients:

(1) For i ∈ {1, . . . , J}, we have a map Lin : D(Lin) ⊆ C(EXn ) → C(EXn ) that is the
generator of an EXn -valued Markov process.

(2) For i, j ∈ {1, . . . , J}, we have a continuous map rnij : EXn → [0,∞).

With that, define the map Ln : D(Ln) ⊆ C(En)→ C(En) by

Lnf(x, i) := Linf(·, i)(x) +

J∑
j=1

rnij(x) [f(x, j)− f(x, i)] , (3.1)

where the domain is D(Ln) = {f ∈ C(En) : f(·, i) ∈ D(Lin), i = 1, . . . , J}. For any µ ∈
P(En), we denote by Pnµ the path-distribution of the solution to the martingale problem
for (Ln, µ).

Condition 3.5 (Well-posedness). The martingale problem for Ln is well-posed and the
map En 3 z 7→ Pnδz ∈ P(Xn) is Borel measurable with respect to the weak topology on
P(Xn).

Definition 3.6 (Switching Markov processes in a periodic setting). We call a two-
component Markov process (Xn, In) a switching Markov process if it takes values
in En = EXn ×{1, . . . , J} satisfying Condition 3.4 and if it has a generator Ln that is given
by (3.1) and satisfies Condition 3.5.

Condition 3.5 is the basic assumption on the processes in [13]. We expect the
martingale problem to be well-posed provided that the continuous maps rnij are suf-
ficiently regular. However, we do not investigate conditions on a map Ln that imply
well-posedness, but assume it instead. A sufficient condition for the measurability in
Condition 3.5 is given in [9, Theorem 4.4.6]. The book by Yin and Zhu, in particular
Section 2.2, lists a number of references for such existence and regularity properties for
switching hybrid diffusions [43].

4 Main results

In the previous section we introduced the notion of a large-deviation principle and
defined switching Markov processes in a periodic setting. In this section we present our
main results as depicted in the flow-diagram Figure 1 above. First, we formulate general
conditions for a large-deviation principle of switching Markov processes (Theorem 4.2).
Then we find an action-integral representation of the rate function under an additional
convexity assumption (Theorem 4.3). The remaining theorems arise from specifications of
the general setting to specific models. We prove large-deviation principles for molecular-
motor models in two limit regimes (Theorems 4.6 and 4.7), and derive the fact that
detailed balance and separation of scales imply symmetry of Hamiltonians (Theorems 4.8
and 4.9).

4.1 Large-deviation principle for switching Markov processes

We consider switching Markov processes (Xn, In) in a periodic setting in the sense
of Definition 3.6, with generators of the form (3.1). The essence of this section is
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Theorem 4.2, which provides general conditions that imply a pathwise large-deviation
principle of the spatial component Xn. We state the conditions in terms of nonlinear
generators defined as follows.

Definition 4.1 (Nonlinear generators). Let Ln be the map defined by (3.1). The nonlinear
generator is the map Hn : D(Hn) ⊆ C(En)→ C(En) defined by

Hnf(x) :=
1

n
e−nf(x)Ln(enf(·))(x), (4.1)

on the domain D(Hn) := {f ∈ C(En) : enf(·) ∈ D(Ln)}.
We shall work under the assumption that the nonlinear generators Hn converge

in the limit n → ∞. To formulate this convergence assumption, we need to introduce
an additional state space E′ for collecting up-scaled variables. The following diagram
depicts the relation between the state spaces:

Td × E′

En

Td

proj1

(ηn,η
′
n)

ηn

In the diagram, ηn : En → Td is the projection defined by ηn(x, i) := ιn(x), where ιn :

EXn → Td is the embedding of Condition 3.4. The map η′n : En → E′ is continuous and
injective for every n. We shall assume that the En are asymptotically dense:

(C1) For (x, z′) ∈ Td ×E′ there exists yn ∈ En such that ηn(yn)→ x and η′n(yn)→ z′ as
n→∞.

A limit operator of Hn is defined by a graph H ⊆ C(Td) × C(Td × E′), a multi-valued
operator. We shall assume the following convergence condition:

(C2) The domain D(H) satisfies C∞(Td) ⊆ D(H) ⊆ C1(Td). For (f, g) ∈ H, there exist
functions fn ∈ D(Hn), n ∈ N, such that as n→∞,

‖f ◦ ηn − fn‖L∞(En) → 0 and ‖g ◦ (ηn, η
′
n)−Hnfn‖L∞(En) → 0.

Frequently, for any f in the domain of H, the corresponding image functions g are
naturally parametrized by a set of functions on E′:

(C3) There are a set C ⊆ C(E′;Rk) and functions Hf,ϕ ∈ C(Td × E′) with which

H = {(f,Hf,ϕ) : f ∈ D(H), ϕ ∈ C} .

Specific examples of models satisfying the above conditions will be discussed in Sec-
tions 4.3 and 7.

Theorem 4.2 (Large deviation principle for switching processes). Let (Xn, In) be a
switching Markov process in the sense of Definition 3.6, with nonlinear generators Hn

of Definition 4.1. Let E′ be a compact metric space satisfying (C1), and let H ⊆
C(Td) × C(Td × E′) be a multi-valued operator satisfying (C2) and (C3) from above.
Suppose the following:

(T1) For every ϕ ∈ C there is a map Hϕ : Rd × E′ → R such that for all f ∈ D(H),

Hf,ϕ(x, z′) = Hϕ(∇f(x), z′), (x, z′) ∈ Td × E′.
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(T2) For every p ∈ Rd, there exists a function ϕp ∈ C and a constant H(p) ∈ R such
that Hϕp

(p, z′) = H(p) for all z′ ∈ E′.

Suppose furthermore that {Xn(0)}n∈N satisfies a large-deviation principle in Td with
rate function I0 : Td → [0,∞]. Then the family of processes {Xn}n∈N satisfies a large-
deviation principle in DTd [0,∞) with a rate function I : DTd [0,∞) → [0,∞], and there
exists a semigroup V (t) with which the rate function is given by (5.1).

We give the proof in Section 5. The formula for the rate function I is not important
here, which is why we report it only below in (5.1) in the proof section. Condition (T1)
means that the images depend on the variable x ∈ Td only via the gradients ∇f(x). In
the molecular-motor models, Condition (T2) is verified by solving a principal-eigenvalue
problem, in which the constant H(p) is the unique principal eigenvalue of a certain cell
problem.

4.2 Action-integral representation of the rate function

In the previous section, we formulated general conditions that imply a pathwise
large-deviation principle. The rate function of Theorem 4.2 however is still generic
(equation (5.1) below). The following theorem shows that under an additional convexity
assumption, the rate function is of action-integral form in the sense of Definition 3.3
above.

Theorem 4.3. Consider the setting of Theorem 4.2. For p ∈ Rd, let H(p) be the constant
in (T2) of Theorem 4.2. Suppose further the following:

(T3) The map p 7→ H(p) is convex and H(0) = 0.

Then the rate function of Theorem 4.2 is of action-integral form with the Lagrangian
defined by L(v) = supp∈Rd [p · v −H(p)].

Theorem 4.3 is proven in Section 6.

4.3 Large deviations for models of molecular motors

In the previous two sections we considered general switching Markov processes in
a periodic setting. In this section we further specify to a class of stochastic processes
motivated by molecular motors.

Definition 4.4 (A process modeling molecular motors). The pair (Xn, In) is a Markov
process with values in En = Td × {1, . . . , J} with generator Ln acting on functions f =

f(x, i) as

Lnf(x, i) := bi(nx) · ∇xf(·, i)(x) +
1

n

1

2
∆xf(·, i)(x)

+
∑
j 6=i

γ(n)rij(nx) [f(x, j)− f(x, i)] , (4.2)

where γ(n) > 0, rij(·) ∈ C∞(Td; [0,∞)), and bi(·) ∈ C∞(Td) , for i, j = 1, . . . , J .

The process of Definition 4.4 is an example of a switching Markov process with
generators Lin defined on the core C2(Td) by

Ling(x) := bi(nx) · ∇g(x) +
1

n

1

2
∆g(x),

and rates rnij(x) = γ(n)rij(nx). The domain D(Lin) of the generators Lin contains the
core, but is larger than C2(Td). The domain of Ln is the set given by D(Ln) = {f(x, i) :

f(·, i) ∈ D(Lin)}, and for functions f such that f(·, i) ∈ C2(Td), the generator acts as
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defined in (4.2). The example of Section 2, a stochastic model of molecular motors,
corresponds to the choices d = 1, bi = −ψ′(·, i), J = 2 and γ(n) = n.

The fact that such a process satisfies Condition 3.5 follows from classical theory of
smooth linear parabolic systems of equations, as in e.g. [28, Sec. VII.8-10].

Definition 4.5. Let J ∈ N. We call a matrix A ∈ RJ×J irreducible if there is no
decomposition of {1, . . . , J} into two disjoint sets J1 and J2 such that Aij = 0 whenever
i ∈ J1 and j ∈ J2.

Theorem 4.6 (Limit I). Let (Xn
t , I

n
t ) be the Markov process of Definition 4.4 with param-

eter γ(n) = n. Assume that the matrix R with entries Rij = supy∈Td rij(y) is irreducible.
Suppose furthermore that the family of initial conditions {Xn(0)}n∈N satisfies a large-
deviation principle in Td with rate function I0 : Td → [0,∞].

Then the family of stochastic processes {Xn}n∈N satisfies a large-deviation principle
in CTd [0,∞) with rate function of action-integral form. The Hamiltonian H(p) is the
principal eigenvalue of an associated cell problem described in Lemma 7.1.

The irreducibility condition is imposed to solve the principal-eigenvalue problem that
we obtain, and is inspired by sufficient conditions for solvability of a coupled system of
elliptic PDEs [38].

The parameter γ(n) allows to model a time-scale separation of the components. The
following theorem shows that if γ(n) scales super-linearly, then the spatial component
is effectively driven by potentials averaged over the stationary measure of the fast
configurational component, and the large-deviation principle is governed by an averaged
Hamiltonian.

Theorem 4.7 (Limit II). Let (Xn
t , I

n
t ) be the Markov process of Definition 4.4, with

parameter γ(n) such that n−1γ(n) → ∞ as n → ∞. Assume that for every y ∈ Td, the
matrix R(y) with entries R(y)ij = rij(y) is irreducible. Suppose furthermore that the
family of random variables {Xn(0)}n∈N satisfies a large-deviation principle in Td with
rate function I0 : Td → [0,∞].

Then {Xn}n∈N satisfies a large-deviation principle in CTd [0,∞) with rate function of
action-integral form. The Hamiltonian H(p) is the principal eigenvalue of an associated
averaged cell problem described in Lemma 7.2.

4.4 Detailed balance implies symmetric Hamiltonians

The large-deviation principles established by Theorems 4.6 and 4.7 can be used to
analyse which sets of potentials and rates induce transport on macroscopic scales. To
that end, we specify to bi(y) = −∇yψi(y) and γ(n) = n in the generators defined in (4.2).

We say that the set of potentials and rates {rij , ψi} satisfies detailed balance if for
all i, j ∈ {1, . . . , J} and y ∈ Td, we have

rij(y)e−2ψi(y) = rji(y)e−2ψj(y). (4.3)

Theorem 4.8 (Detailed balance implies a symmetric Hamiltonian). Consider the same
setting and assumptions of Theorem 4.6. Suppose that the detailed-balance condi-
tion (4.3) is satisfied. Then the Hamiltonian H(p) of Theorem 4.6 satisfies H(p) = H(−p)
for all p ∈ Rd.

We give the proof of Theorem 4.8 here, since it is solely based on a suitable formula
for H(p).

Proof of Theorem 4.8. We prove in Proposition 8.1 that under the detailed-balance con-
dition, the principal eigenvalue H(p) is given by

H(p) = sup
µ∈P

[Kp(µ)−R(µ)] ,
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where P ⊂ P(E′) is a subset of probability measures on E′ = Td ×{1, . . . , J} specified in
Proposition 8.1, R(µ) is the relative Fisher information specified in (8.7), and Kp(µ) is
given by

Kp(µ) = inf
φ

{ J∑
i=1

∫
Td

1

2
|∇φi(x) + p|2 −

J∑
j=1

rij(x)

 dµi(x)

+

J∑
i,j=1

∫
Td

πij(x)
√
µi(x)µj(x)eψj(x)+ψi(x) cosh (φ(x, j)− φ(x, i)) dx

}
,

where πij(x) = rij(x)e−2ψi(x), the infimum is taken over vectors of functions φi = φ(·, i) ∈
C2(Td), and dµi(x) = µi(x)dx.

Let µ ∈ P. We show that Kp(µ) = K−p(µ), which implies H(p) = H(−p). The sum in
which the cosh(·) terms appear is symmetric in the sense that

C(φ) :=

J∑
i,j=1

∫
Td

πij(x)
√
µi(x)µj(x)eψj(x)+ψi(x) cosh (φ(x, j)− φ(x, i)) dx

satisfies C(φ) = C(−φ). The bijective transformation φ→ (−φ) together with the sign
change p → (−p) leaves the infimum in Kp(µ) invariant, and hence symmetry of C(φ)

implies the claimed symmetry Kp(µ) = K−p(µ).

With a similar analysis, we can study the behaviour of molecular motors under
external forces. Let (Xn, In) be the stochastic process of Theorem 4.6 in dimension d = 1

with drift bi(y) = F − ψ′(y, i), where F is a constant (modeling an external force)
and ψ(·, i) ∈ C∞(T) are smooth periodic potentials, i = 1, . . . , J . The process (Xn, In)

is T× {1, . . . , J}-valued and satisfies

dXn
t = (F − ψ′(nXn

t , I
n
t )) dt+

1√
n

dBt,

where Int a jump process on {1, . . . , J} with jump rates nrij (nx).
For example, this model predicts a positive force-velocity feedback under detailed

balance: F > 0 implies ∂pH(0) > 0, and F < 0 implies ∂pH(0) < 0. The positive
force-velocity feedback may be derived from the following properties:

(a) H(−F − p) = H(−F + p) for all p,

(b) H(0) = 0, and

(c) H(·) is strictly convex.

Indeed, specializing (a) to p = F , we find H(−2F ) = H(−F + F ) = H(0) = 0. Since
the Hamiltonian is also strictly convex (c), the Hamiltonian must have a positive slope
at p = 0 if F > 0 and a negative slope at p = 0 if F < 0.

The symmetry property (a) is a consequence of detailed balance and can be shown
similarly as Theorem 4.8; the only difference is that in the formula for Kp(µ), the
term |∇φi(x) + p|2 gets replaced by the term |∇φi(x) + F + p|2, with which we find

H(−F − p) = sup
µ∈P

[K−F−p(µ)−R(µ)] = sup
µ∈P

[K−F+p(µ)−R(µ)] = H(−F + p).

Property (b) is proven further below in Section 7.1 under Verification of (T3) of Theo-
rem 4.3. Property (c) is proven in [29, Lemma 2.1] in a different but similar context. We
do not include a proof of (c) here.
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Theorem 4.9 (Separation of time scales implies a symmetric Hamiltonian). Let the
stochastic process (Xn

t , I
n
t ) of Definition 4.4, with bi = −∇ψi, satisfy the assumptions

of Theorem 4.7. Suppose in addition that the rates rij(·) are constant on Td. Then
H(p) = H(−p), where H(p) is the Hamiltonian in Theorem 4.7.

Since the derivation of the required formula for H(p) is similar to the derivation
of H(p), we omit the details and only give a sketch of the argument here.

Sketch of proof of Theorem 4.9. The principal eigenvalue H(p) is given by

H(p) = sup
µ∈P

[Kp(µ)−R(µ)] , Kp(µ) = inf
ϕ∈C∞(Td)

1

2

∫
Td

|∇ϕ+ p|2 dµ,

with P and R specified below. The bijective transformation ϕ → (−ϕ) leaves the
infimum in Kp(µ) invariant, and therefore we have Kp(µ) = K−p(µ) for all µ ∈ P. This
implies H(p) = H(−p).

In the formula for H(p), the set of probability measures P ⊂ P(Td) is

P =
{
µ ∈ P(Td) : µ� dx and dµ = µdx with ∇ (logµ) ∈ L2

µ(Td)
}
.

The map R is the relative Fisher information; with the stationary measure ν of the jump
process on {1, . . . , J} with rates rij ,

R(µ) =
1

8

∫
Td

∣∣∣∣∇ log

(
µ

e−2ψ

)∣∣∣∣2 dµ, ψ(x) =
∑
i

νi ψi(x).

5 Proof of large-deviation principle for switching Markov pro-
cesses

The main point of this section is to prove Theorem 4.2, the large-deviation principle
for switching Markov processes in a periodic setting. The proof is based on a connection
between large deviations and Hamilton-Jacobi equations that we first make explicit in
Section 5.1 by adapting theorems of [13] to our setting.

5.1 Strategy of proof

Viscosity solutions and the comparison principle We adapt [13, Definitions 6.1
and 7.1] to the compact setting. For a Banach space B, we identify operators with
graphs H ⊆ B × B, with domain D(H) := {f : ∃ (f, g) ∈ H} and range R(H) :=

{g : ∃(f, g) ∈ H}, and refer to them as multi-valued operators. For the following
definition, E and E′ are compact Polish spaces with metrics dE and dE′ , B(E ×E′) is the
set of measurable and bounded functions on E × E′, equipped with the uniform norm,
and M(E × E′) is the set of measurable functions.

Definition 5.1 (Viscosity solutions). Let H ⊆ C(E) × M(E × E′) be a multi-valued
operator with domain D(H) ⊆ C(E). Let h ∈ C(E) and τ > 0.

i) A function u1 : E → R is a viscosity subsolution of (1−τH)u = h if it is bounded and
upper semicontinuous, and if for all (f, g) ∈ H there exists a point (x, z′) ∈ E × E′
such that

(u1 − f)(x) = sup(u1 − f) and u1(x)− τg(x, z′)− h(x) ≤ 0.
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ii) A function u2 : E → R is a viscosity supersolution of (1 − τH)u = h if it is
bounded and lower semicontinuous, and if for all (f, g) ∈ H there exists a point
(x, z′) ∈ E × E′ such that

(f − u2)(x) = sup(f − u2) and u2(x)− τg(x, z′)− h(x) ≥ 0.

iii) A function u1 : E → R is a strong viscosity subsolution of (1 − τH)u = h if it is
bounded and upper semicontinuous, and if for all (f, g) ∈ H and x ∈ E, whenever

(u1 − f)(x) = sup(u1 − f),

then there exists a z′ ∈ E′ such that

u1(x)− τg(x, z′)− h(x) ≤ 0.

Similarly for strong viscosity supersolutions.

A function u ∈ C(E) is called a viscosity solution of (1− τH)u = h if it is both a viscosity
sub- and supersolution.

Let us briefly highlight the adaptations we made with respect to [13]. First, formu-
lating viscosity solutions via sequences as in [13, Definition 7.1] is only required when
working with non-compact spaces, while in the context of this paper we only work in
compact spaces. Second, the product space E × E′ in this paper corresponds to the
set E′ in [13].

Definition 5.2 (Comparison Principle). The comparison principle holds for viscosity sub-
and supersolutions of (1 − τH)u = h if for any viscosity subsolution u1 and viscosity
supersolution u2, we have u1 ≤ u2 on E. For two operatorsH†, H‡ ⊆ C(E)×C(E×E′), we
say that the comparision principle holds if for any viscosity subsolution u1 of (1−τH†)u =

h and viscosity supersolution u2 of (1− τH‡)u = h, we have u1 ≤ u2 on E.

If the comparison principle holds, then viscosity solutions are unique, since two
viscosity solutions u, v satisfy u ≤ v and v ≤ u.

A general large-deviation theorem Just as in Theorem 4.2, we work with compact
Polish spaces En, E and E′ that are related via continuous embeddings ηn and η′n by

E × E′

En

E

proj1

(ηn,η
′
n)

ηn

such that for any x ∈ E, there exist xn ∈ En such that ηn(xn) → x as n → ∞. The
following theorem is an adaptation of [13, Theorem 7.18] to our setting. This adaptation
is obtained by collecting in one place assumptions that are mentioned in several places
in [13], and specializing them to the compact setting.

Theorem 5.3. Let Ln be the generator of an En-valued process Y n such that Con-
dition 3.5 is satisfied, and let Hn be the nonlinear generators defined by Hnf =
1
ne
−nfLne

nf , for n ∈ N. Let the compact Polish spaces En, E and E′ be related as
in the above diagram. In addition, suppose:

(i) (Condition 7.9 of [13] on the state spaces) There exists an index set Q and approxi-
mating state spaces Aqn ⊆ En, q ∈ Q, such that the following holds:

(a) For q1, q2 ∈ Q, there exists q3 ∈ Q such that Aq1n ∪Aq2n ⊆ Aq3n .
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(b) For each x ∈ E, there exists q ∈ Q and yn ∈ Aqn such that ηn(yn) → x as
n→∞.

(c) For each q ∈ Q, there exist compact sets Kq
1 ⊆ E and Kq

2 ⊆ E × E′ such that

sup
y∈Aq

n

inf
x∈Kq

1

dE(ηn(y), x)
n→∞−−−−→ 0,

and

sup
y∈Aq

n

inf
(x,z)∈Kq

2

[dE(ηn(y), x)) + dE′(η
′
n(y), z)]

n→∞−−−−→ 0.

(d) For each compact K ⊆ E, there exists q ∈ Q such that K ⊆ lim inf ηn(Aqn).

(ii) (Convergence Condition 7.11 of [13]) There exist multi-valued operators H†, H‡ ⊆
C(E)× C(E × E′) which are the limit of the Hn’s in the following sense:

(a) For each (f, g) ∈ H†, there exist fn ∈ D(Hn) such that

sup
n

(
sup
x∈En

|fn(x)|+ sup
x∈En

|Hnfn(x)|
)
<∞,

and for each q ∈ Q, limn→∞ supy∈Aq
n
|fn(y)− f(ηn(y))| = 0. Furthermore, for

each q ∈ Q and every sequence yn ∈ Aqn such that ηn(yn) → x ∈ E and
η′n(yn)→ z′ ∈ E′, we have lim supn→∞Hnfn(yn) ≤ g(x, z′).

(b) For each (f, g) ∈ H‡, there exist fn ∈ D(Hn) (not necessarily the same as
above in (a)) such that

sup
n

(
sup
x∈En

|fn(x)|+ sup
x∈En

|Hnfn(x)|
)
<∞,

and for each q ∈ Q, limn→∞ supy∈Aq
n
|fn(y)− f(ηn(y))| = 0. Furthermore, for

each q ∈ Q and every sequence yn ∈ En such that ηn(yn) → x ∈ E and
η′n(yn)→ z′ ∈ E′, we have lim infn→∞Hnfn(yn) ≥ g(x, z′).

(iii) (Comparison principle) For each h ∈ C(E) and τ > 0, the comparison principle
holds for viscosity subsolutions of (1− τH†)u = h and viscosity supersolutions of
(1− τH‡)u = h.

Let Xn
t := ηn(Y nt ) be the corresponding E-valued process. Suppose that {Xn(0)}n∈N

satisfies a large-deviation principle in E with rate function I0 : E → [0,∞].

Then {Xn}n∈N satisfies the large-deviation principle with a rate function I : CE [0,∞)

→ [0,∞]. Furthermore, there exists a semigroup V (t) : C(E) → C(E) with which the
rate function is given by

I(x) = I0(x(0)) + sup
k∈N

sup
(t1,...,tk)

k∑
i=1

Iti−ti−1
(x(ti)|x(ti−1)), (5.1)

where for z, y ∈ E,

It(z|y) = sup
f∈C(E)

[f(z)− V (t)f(y)] . (5.2)

The semigroup V (t) is defined via the Crandall-Liggett Theorem—for details we refer
to [13, Chapter 5].
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5.2 Proof of Theorem 4.2

We prove Theorem 4.2 by verifying the conditions of Theorem 5.3, which are conver-
gence of nonlinear generators (Proposition 5.4) and the comparison principle (Proposi-
tion 5.5). The rest of this section below the proof of Theorem 4.2 is devoted to proving
the propositions. We point out that the main challenge is to prove the comparison
principle using only (T1) and (T2) of Theorem 4.2. In the following propositions and
lemmas, we assume that conditions (C1), (C2), and (C3) are satisfied, as in the setting of
Theorem 4.2.

Proposition 5.4. In the setting of Theorem 4.2, condition (i) of Theorem 5.3 is satisfied.
Let H ⊆ C1(Td)×C(Td×E′) be a multi-valued operator satisfying (T1). Then H satisfies
the convergence condition (ii) of Theorem 5.3.

Proposition 5.5. In the setting of Theorem 4.2, let H ⊆ C1(Td)×C(Td×E′) be a multi-
valued operator satisfying conditions (T1) and (T2). Then for τ > 0 and h ∈ C(Td), the
comparison principle is satisfied for viscosity sub- and supersolutions of (1− τH)u = h.

Proof of Theorem 4.2. By Proposition 5.4, conditions (i) and (ii) of Theorem 5.3 hold
with the single operator H = H† = H‡. By Proposition 5.5, the comparison principle
is satisfied for (1 − τH)u = h, and hence condition (iii) of Theorem 5.3 holds with
a single operator H = H† = H‡. Therefore the large-deviation principle follows by
Theorem 5.3.

Proof of Proposition 5.4. We recall that with En = EXn × {1, . . . , J} and ιn : EXn → Td of
Condition 3.4, the state spaces are related as in the following diagram,

Td × E′

En

Td

proj1

(ηn,η
′
n)

ηn

where ηn : En → Td is defined by ηn(x, i) = ιn(x) and η′n : En → E′ is a continuous map.
In the notation of Theorem 5.3, we have E = Td.

For verifying the general condition (i) of Theorem 5.3 on the approximating state
spaces Aqn, we take the singleton Q = {q} and set Aqn := En. Then part (a) holds, and
parts (b) and (d) are a consequence of Condition 3.4 on En, which says that for any
x ∈ Td, there exist xn ∈ EXn such that ιn(xn)→ x. Part (c) follows by taking the compact
sets Kq

1 := Td and Kq
2 := Td × E′ , because then

inf
x∈Kq

1

dE(ηn(y), x) = inf
x∈Td

dE(ηn(y), x) = 0

for any n ∈ N and any y ∈ En. Hence, for all n ∈ N ,

sup
y∈En

inf
x∈Kq

1

dE(ηn(y), x) = 0.

The other convergence condition in part (c) follows similarly.
We verify the convergence Condition (ii) of Theorem 5.3. By (T1), part (C2), there

exist fn ∈ D(Hn) such that

‖f ◦ ηn − fn‖L∞(En)
n→∞−−−−→ 0 and ‖Hf,ϕ ◦ (ηn, η

′
n)−Hnfn‖L∞(En)

n→∞−−−−→ 0.

With these fn, both conditions (ii)(a) and (ii)(b) are simultaneously satisfied for the
operator H = H† = H‡. For example, regarding (ii)(a):
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• The existence of fn with the required boundedness,

sup
n∈N

(
sup
y∈En

|fn(y)|+ sup
y∈En

|Hnfn(y)|
)
<∞,

follows from the uniform-convergence condition (C2). We have a singleton Q = {q}
and Aqn = En, so that

sup
y∈Aq

n

|fn(y)− f(ηn(y))| = ‖fn − f ◦ ηn‖L∞(En)
n→∞−−−−→ 0,

also by condition (C2).

• Condition (C1) guarantees that for any point (x, z′) ∈ Td × E′ there exist yn ∈ En
such that both ηn(yn) → x and η′n(yn) → z′ For any such sequence yn, the
bound lim supn→∞Hnfn(yn) ≤ g(x, z′) follows as well from the uniform-convergence
condition (C2), where g = Hf,ϕ.

Part (ii)(b) follows analogously.

For proving Proposition 5.5, we use two operators H1, H2 that are derived from a
multi-valued limit H. Define H1, H2 : C(E)→M(E) by

H1f(x) := inf
ϕ

sup
z′∈E′

Hf,ϕ(x, z′) and H2f(x) := sup
ϕ

inf
z′∈E′

Hf,ϕ(x, z′),

with equal domains D(H1) = D(H2) := D(H). Since the images of H are of the form
Hf,ϕ(x, z′) = Hϕ(∇f(x), z′), the operators H1 and H2 are as well of the form H1f(x) =

H1(∇f(x)) and H2f(x) = H2(∇f(x)), with two maps H1,H2 : Rd → R. We prove
Proposition 5.5 with the following lemmas.

Lemma 5.6 (Local operators admit strong solutions). Let H ⊆ C1(Td)× C(Td × E′) be
a multi-valued limit operator satisfying (T1) of Theorem 4.2. Then for any τ > 0 and
h ∈ C(Td), viscosity solutions of (1− τH)u = h coincide with strong viscosity solutions
in the sense of Definition 5.1.

Lemma 5.7 (H1 and H2 are viscosity extensions). Let H be a multi-valued operator
satisfying (T1) and (T2) of Theorem 4.2. For all h ∈ C(Td) and τ > 0, strong viscosity
subsolutions u1 of (1− τH)u = h are strong viscosity subsolutions of (1− τH1)u = h, and
strong viscosity supersolutions u2 of (1− τH)u = h are strong viscosity supersolutions
of (1− τH2)u = h.

Lemma 5.8 (H1 and H2 are ordered). Let H be a multi-valued operator satisfying (T1)
and (T2) of Theorem 4.2. Then H1(p) ≤ H2(p) for all p ∈ Rd.

The lemmas are proven further below.

Proof of Proposition 5.5. Let u1 be a subsolution and u2 be a supersolution of the equa-
tion (1 − τH)u = h. By Lemma 5.6, u1 is a strong subsolution and u2 a strong super-
solution of (1 − τH)u = h, respectively. By Lemma 5.7, u1 is a strong subsolution of
(1− τH1)u = h, and u2 is a strong supersolution of H2.

With that, we establish below the inequality

max
Td

(u1 − u2) ≤ τ [H1(pδ)−H2(pδ)] + h(xδ)− h(x′δ), (5.3)

with some xδ, x′δ ∈ Td such that dist(xδ, x′δ)→ 0 as δ → 0, and certain pδ ∈ Rd. Then using
that h ∈ C(Td) is uniformly continuous since Td is compact, and that H1(pδ) ≤ H2(pδ)

by Lemma 5.8, we can further estimate as

max
Td

(u1 − u2) ≤ h(xδ)− h(x′δ) ≤ ωh(dist(xδ, x
′
δ)),
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where ωh : [0,∞) → [0,∞) is a modulus of continuity satisfying ωh(rδ) → 0 for rδ → 0.
Then (u1 − u2) ≤ 0 follows by taking the limit δ → 0.

We are left with proving (5.3). Define Φδ : Td ×Td → R by

Φδ(x, x
′) := u1(x)− u2(x′)− Ψ(x, x′)

2δ
,

where

Ψ(x, x′) :=

d∑
j=1

sin2
(
π(xj − x′j)

)
, for all x, x′ ∈ Td. (5.4)

Then Ψ ≥ 0, and Ψ(x, x′) = 0 holds if and only if x = x′, and

∇1 [Ψ(·, x′)] (x) = −∇2 [Ψ(x, ·)] (x′) for all x, x′ ∈ Td. (5.5)

By boundedness and upper semicontinuity of u1 and (−u2), and compactness of Td ×Td,
for each δ > 0 there exists a pair (xδ, x

′
δ) ∈ Td ×Td such that

Φδ(xδ, x
′
δ) = max

x,x′
Φδ(x, x

′).

Since Φδ(xδ, xδ) ≤ Φδ(xδ, x
′
δ) and u2 is bounded, we obtain

Ψ(xδ, x
′
δ) ≤ 2δ (u2(xδ)− u2(x′δ)) ≤ 4δ‖u2‖L∞(Td) = O(δ).

Hence Ψ(xδ, x
′
δ)→ 0 as δ → 0. In order to use the sub- and supersolution properties of

u1 and u2, introduce the smooth test functions fδ1 and fδ2 as

fδ1 (x) := u2(x′δ) +
Ψ(x, x′δ)

2δ
and fδ2 (x′) := u1(xδ)−

Ψ(xδ, x
′)

2δ
.

Since Ψ is smooth, fδ1 , f
δ
2 ∈ C∞(Td) ⊆ D(H) are both in the domain of H, and hence in

the domain of H1 and H2, respectively. Furthermore, (u1 − fδ1 ) has a maximum at x = xδ,
and (fδ2 − u2) has a maximum at x′ = x′δ, by definition of (xδ, x

′
δ) and Φδ. Since u1 is a

strong subsolution of (1− τH1)u = h,

u1(xδ)− τH1f
δ
1 (xδ)− h(xδ) ≤ 0,

and since u2 is a strong supersolution of (1− τH2)u = h,

u2(x′δ)− τH2f
δ
2 (x′δ)− h(x′δ) ≥ 0.

Thereby, we can estimate max(u1 − u2) as

max
Td

(u1 − u2) = max
x∈Td

Φδ(x, x)

≤ Φδ(xδ, x
′
δ) = u1(xδ)− u2(x′δ)−

Ψ(xδ, x
′
δ)

2δ

≤ u1(xδ)− u2(x′δ)

≤ τ
[
H1f

δ
1 (xδ))−H2f

δ
2 (x′δ)

]
+ h(xδ)− h(x′δ)

= τ
[
H1(∇fδ1 (xδ))−H2(∇fδ2 (x′δ))

]
+ h(xδ)− h(x′δ).

By (5.5), ∇fδ1 (xδ) = ∇fδ2 (x′δ) =: pδ ∈ Rd, which establishes (5.3), and thereby finishes
the proof.

The rest of the section, we prove lemmas 5.6, 5.7 and 5.8. Regarding Lemma 5.6, a
proof for single valued operators is given in [13, Lemma 9.9].
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Proof of Lemma 5.6. Let τ > 0, h ∈ C(Td). We verify that subsolutions are strong
subsolutions. Let u1 be a subsolution of (1− τH)u = h and (f,Hf,ϕ) ∈ H, and let x ∈ Td
be such that (u1 − f)(x) = sup(u1 − f).

The function f̃ defined by f̃(x′) := Ψ(x′, x), with Ψ(x′, x) defined by (5.4), is smooth
and therefore f̃ is in the domainD(H). Then x is the unique maximal point of (u1−(f+f̃)),

(u1 − (f + f̃))(x) = sup
Td

(u1 − (f + f̃)).

Since u1 is a subsolution, there exists a point z′ ∈ E′ such that

u1(x)− τHf+f̃ ,ϕ(x, z′)− h(x) ≤ 0.

Using ∇f̃(x) = 0 and that H depends only on gradients by (T1), we obtain

Hf+f̃ ,ϕ(x, z′) = Hϕ

(
(∇f +∇f̃)(x), z′

)
= Hϕ(∇f(x), z′) = Hf,ϕ(x, z′).

Hence
u1(x)− τHf,ϕ(x, z′)− h(x) ≤ 0.

Thus u1 is a strong subsolution. The argument is similar for the supersolution case,
where one can use (−f̃).

Vice versa, when given a strong sub- or supersolution u1 or u2, for every f ∈ D(H),
(u1 − f) and (f − u2) attain their suprema at some x1, x2 ∈ Td due to the continuity
assumptions on the domain of H, the semi-continuity properties of u1 and u2, and
compactness of Td. By the strong solution properties, the sub- and supersolution
inequalities follow.

Proof of Lemma 5.7. Let u1 be a strong subsolution of (1 − τH)u = h, that is for any
(f,Hf,ϕ), if (u1 − f)(x) = sup(u1 − f) for a point x ∈ Td, then there exists a point z′ ∈ E′
such that

u1(x)− τHf,ϕ(x, z′)− h(x) ≤ 0. (5.6)

Let f ∈ D(H1) = D(H) and x ∈ Td be such that (u1−f)(x) = sup(u1−f). For any ϕ there
exists a point z′ ∈ E′ such that the above subsolution inequality (5.6) holds. Therefore
for all x,

u1(x)− h(x) ≤ τ sup
z′∈E′

Hf,ϕ(x, z′).

Since the point x ∈ Td is independent of ϕ, we obtain

u1(x)− τH1f(x)− h(x)
def
= u1(x)− τ inf

ϕ
sup
z′∈E′

Hf,ϕ(x, z′)− h(x) ≤ 0.

The argument is similar for supersolutions.

Proof of Lemma 5.8. By assumption, for every p ∈ Rd there exists a function ϕp ∈ C(E′)

such that for all z′ ∈ E′,
Hϕp

(p, z′) = H(p).

Thus
sup
z′∈E′

Hϕp
(p, z′) = H(p) = inf

z′∈E′
Hϕp

(p, z′).

Taking the infimum and supremum over ϕ, we find

H1(p) = inf
ϕ

sup
z′
Hϕ(p, z′)

≤ sup
z′
Hϕp(p, z′) = H(p) = inf

z′
Hϕp(p, z′)

≤ sup
ϕ

inf
z′
Hϕ(p, z′) = H2(p),

which finishes the proof.
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6 Proof of action-integral representation

In this section we prove Theorem 4.3, the action-integral representation of the rate
function of Theorem 4.2, by following the strategy outlined in [13, Chapter 8]. We first
briefly summarize the strategy in Section 6.1, specialized to our setting.

6.1 Strategy of proof

Let H = H(p) be the Hamiltonian of Theorem 4.3 and let L = L(v) be the associated
Lagrangian defined by

L(v) := sup
p∈Rd

[p · v −H(p)] . (6.1)

Define VNS(t) : C(Td)→ C(Td) by

VNS(t)f(x) = sup
γ∈AC

Td
[0,∞)

γ(0)=x

[
f(γ(t))−

∫ t

0

L(∂sγ(s)) ds

]
, (6.2)

where ACTd [0,∞) is the set of absolutely continuous paths in the torus. The map VNS(t)

is the Nisio semigroup with cost function L. In Definition 8.1 and Equation (8.10)
in [13], the Nisio semigroup is defined by means of relaxed controls in order to cover
a general class of possible cost functions. Since the Lagrangian L(v) is convex, the
semigroup VNS(t) equals the semigroup given in (8.10) of [13], which can be seen by
using that λs = δ∂sx(s) is an admissible control and by applying Jensen’s inequality. Such
an argument is given for example in Theorem 10.22 in [13].

The rate function I of Theorem 4.2 is given in terms of a limiting semigroup V (t) as
shown in equations (5.1) and (5.2). The desired action-integral representation follows
if the semigroup V (t) of Theorem 4.2 is equal to the Nisio semigroup VNS(t) defined
by (6.2). In [13, Chapter 8], the equality of semigroups is traced back to conditions on
their generators. In our case, the generator of the limiting seimgroup is the limiting
multi-valued operator H of Theorem 4.2, and the generator of the Nisio semigroup is an
operator H defined by the Hamiltonian H(p). We summarize in Proposition 6.1 below
that the generators satisfy the required conditions of [13, Chapter 8] and show that
these conditions suffice to prove the action-integral representation.

6.2 Proof of Theorem 4.3

In this section, we first prove Theorem 4.3 by means of Proposition 6.1 below. The
rest of the section is then devoted to proving Proposition 6.1.

Proposition 6.1. Under the same assumptions of Theorems 4.2 and 4.3, define the
operator H : D(H) ⊆ C1(Td)→ C(Td) on the domain D(H) = D(H) by setting Hf(x) :=

H(∇f(x)). Let τ > 0 and h ∈ C(Td). Then:

(i) The Lagrangian (6.1) and the operator H satisfy Conditions 8.9, 8.10 and 8.11
of [13], with the set of controls U = Rd, operator Af(x, u) = ∇f(x) · u, cost
function L(x, u) = L(u), and H† = H‡ = H.

(ii) The comparison principle (Definition 5.2) holds for viscosity sub- and supersolutions
of (1− τH)u = h.

(iii) Every viscosity solution u of (1−τH)u = h is also a viscosity solution of (1−τH)u =

h.

Proof of Theorem 4.3. Let V (t) be the semigroup obtained in Theorem 4.2 and let VNS(t)

bet the Nisio semigroup (6.2). We shall verify that V (t) = VNS(t). Then by [13, The-
orem 8.14], the rate function of Theorem 4.2 (given by (5.1)) satisfies the control
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representation (8.18) of [13]. The action-integral representation follows from this control
representation by applying Jensen’s inequality.

By [13, Theorem 8.27], we obtain VNS(t) = V(t), where the semigroup V(t) is defined
by

V(t) = lim
m→∞

[(
1− t

m
H

)−1
]m

. (6.3)

The conditions of Theorem 8.27 are satisfied since Conditions 8.9, 8.10 and 8.11 of [13]
are satisfied by Item (i), and since the comparison principle holds by Item (ii).

By [13, Corollary 8.29], we obtain V (t) = V(t). The conditions of Corollary 8.29
are satisfied: Item (iii) above corresponds to Item a) of Corollary 8.29, the conditions
of [13, Theorem 6.14] are satisfied under the assumptions of our Theorem 4.2, the
conditions of [13, Theorem 8.27] are satisfied for the same reasons as mentioned above,
and Dα = D(H).

Proof of (i) in Proposition 6.1. We first show that the following Items (a), (b), (c) imply
Conditions 8.9, 8.10 and 8.11 of [13], which are formulated in order to cover a more
general and non-compact setting.

(a) The function L : Rd → [0,∞] is lower semicontinuous and for every C ≥ 0, the level
set {v ∈ Rd : L(v) ≤ C} is relatively compact in Rd.

(b) For all f ∈ D(H) there exists a right continuous, nondecreasing function ψf :

[0,∞)→ [0,∞) such that for all (x0, v) ∈ Td ×Rd,

|∇f(x0) · v| ≤ ψf (L(v)) and lim
r→∞

ψf (r)

r
= 0.

(c) For each x0 ∈ E and every f ∈ D(H), there exists an absolutely continuous path
x : [0,∞)→ Td such that∫ t

0

H(∇f(x(s))) ds =

∫ t

0

[∇f(x(s)) · ẋ(s)− L(ẋ(s))] ds. (6.4)

Regarding Items (1)-(5) of [13, Condition 8.9], the operator Af(x, v) := ∇f(x) · v defined
on the domain D(A) = D(H) satisfies Item (1). For Item (2), we can take Γ = Td ×Rd,
and for x0 ∈ Td, take the pair (x, λ) with x(t) = x0 and λ(dv × dt) = δ0(dv)× dt. Item (3)
is a consequence of the above Item (a). Item (4) holds since Td is compact. Item (5) is
implied by the above Item (b). Condition 8.10 is implied by Condition 8.11 and the fact
that H1 = 0, see Remark 8.12 (e) in [13]. Finally, Condition 8.11 is implied by the above
Item (c), with the control λ(dv × dt) = δ∂tx(t)(dv)× dt.

We turn to verifying Items (a), (b) and (c). Since H(0) = 0, we have L ≥ 0. The
Legendre-transform L is convex, and lower semicontinuous since the map H(p) is convex
and finite-valued, hence in particular continuous. For C ≥ 0, we prove that the set
{v ∈ Rd : L(v) ≤ C} is bounded, and hence is relatively compact. For any p ∈ Rd and
v ∈ Rd, we have p · v ≤ L(v) + H(p). Thereby, if L(v) ≤ C, then |v| = sup|p|=1 p · v ≤
sup|p|=1 [L(v) +H(p)] ≤ C + C1, where C1 exists due to continuity of H. Then for

R := C + C1, {v : L(v) ≤ C} ⊆ {v : |v| ≤ R}, thus {L ≤ C} is a bounded subset in Rd.

Item (b) can be proven as in [13, Lemma 10.21]. We give the proof here. Let f ∈ D(H).
There exists a constant Cf such that for all (x0, v), we have

|∇f(x0) · v| ≤ Cf · |v|.

EJP 29 (2024), paper 88.
Page 21/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1144
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


LDPs of switching Markov processes

For s ≥ 0, define the map ϕ(s) by

ϕ(s) := s inf
|v|≥s

L(v)

|v|
.

Let ψf (r) := Cf · ϕ−1(r) with ϕ−1(r) = inf{w : ϕ(w) ≥ r}. By monotonicity of ϕ,

ϕ(C−1
f |∇f(x0) · v|) ≤ ϕ(|v|) ≤ L(v).

Hence by monotonicity of ψf , we find |∇f(x0) · v| ≤ ψf (L(v)). The map L(v) is su-
perlinear, because H(p) is convex. Therefore s−1ϕ(s) → +∞ as s → ∞, and conse-
quently r−1ψf (r)→ 0 as r →∞.

We finish the proof by verifying Item (c). This is shown in [25, Lemma 3.2.3] under
the assumption of continuous differentiability of H(p), by solving a differential equation
under a global-boundedness assumption. Here, we verify Item (c) under the milder
assumption of convexity of H(p) by solving a suitable subdifferential equation. For p0 ∈
Rd, define the subdifferential ∂H(p0) at p0 as the set

∂H(p0) := {ξ ∈ Rd | ∀p ∈ Rd : H(p) ≥ H(p0) + 〈ξ, p− p0〉}.

We shall solve for any f ∈ C1(Td) the subdifferential equation ẋ ∈ ∂H(∇f(x)). This
means we show that for any initial condition x0 ∈ Td, there exists an absolutely continu-
ous path x : [0,∞)→ Td satisfying both x(0) = x0 and ẋ(t) ∈ ∂H(∇f(x(t))) almost every-
where on [0,∞). Then (6.4) follows by noting that H(∇f(y)) ≥ ∇f(y) · v−L(v) for all y ∈
Td and v ∈ Rd, by convex duality. In particular, H(∇f(x(s))) ≥ ∇f(x(s)) · ẋ(s)− L(ẋ(s)),
and integrating gives one inequality in (6.4). Regarding the other inequality, since
ẋ ∈ ∂H(∇f(x)), we know that for almost every t ∈ [0,∞) and for all p ∈ Rd, we have
H(p) ≥ H(∇f(x(t))) + ẋ(t) · (p−∇f(x(t))). Therefore, a.e. on [0,∞),

H(∇f(x(t))) ≤ ∇f(x(t)) · ẋ(t)− sup
p∈Rd

[p · ẋ(t)−H(p)]

= ∇f(x(t)) · ẋ(t)− L(ẋ(t)),

and integrating gives the other inequality.
For solving the subdifferential equation, define F : Rd → 2R

d

by F (x) := ∂H(∇f(x)),
where the function f ∈ C1(Td) is regarded as a periodic function on Rd. We apply
Lemma 5.1 in [4] for solving ẋ ∈ F (x). The conditions of Lemma 5.1 in the case of Rd

are satisfied if the following holds: supx∈Rd ‖F (x)‖ is finite, for all x ∈ Rd, the set F (x) is
non-empty, closed and convex, and the map x 7→ F (x) is upper semicontinuous.

For ξ ∈ F (x), note that for all p ∈ Rd ξ · (p−∇f(x)) ≤ H(p)−H(∇f(x)). Therefore, by
shifting p = p′ +∇f(x), we obtain for all p′ ∈ Rd that ξ · p′ ≤ H(p′ +∇f(x))−H(∇f(x)).
By continuous differentiability and periodicity of f , and continuity of H, the right-hand
side is bounded in x, and we obtain

sup
x∈Rd

sup
ξ∈F (x)

|ξ| = sup
x∈Rd

sup
ξ∈F (x)

sup
|p′|=1

ξ · p′

≤ sup
x∈Rd

sup
ξ∈F (x)

sup
|p′|=1

[H(p′ +∇f(x))−H(∇f(x))] <∞.

For any x ∈ Rd, the set F (x) is non-empty, since the subdifferential of a proper convex
function H(·) is nonempty at points where H(·) is finite and continuous (see e.g. [36,
Th. 23.4]). Furthermore, F (x) is convex and closed, which follows from the properties of
a subdifferential set.

Regarding upper semicontinuity, recall the definition from [4]: the map F : Rd →
2R

d \ {∅} is upper semicontinuous if for all closed sets A ⊆ Rd, the set F−1(A) ⊆ Rd is
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closed, where F−1(A) = {x ∈ Rd | F (x) ∩ A 6= ∅}. Let A ⊆ Rd be closed and xn → x

in Rd, with xn ∈ F−1(A). That means for all n ∈ N that the sets ∂H(∇f(xn)) ∩ A are
non-empty, and consequently, there exists a sequence ξn ∈ F (xn) ∩A. We proved above
that the set F (y) ∩A is uniformly bounded in y ∈ Rd. Hence the sequence ξn is bounded,
and passing to a subsequence if necessary, it converges to some ξ. By definition of F (xn),
for all p ∈ Rd,

ξn(p−∇f(xn)) ≤ H(p)−H(∇f(xn)).

Passing to the limit, we obtain that for all p ∈ Rd,

ξ(p−∇f(x)) ≤ H(p)−H(∇f(x)).

This implies by definition that ξ ∈ ∂H(∇f(x)). Since ξn ∈ A and A is closed, we have
ξ ∈ A. Hence x ∈ F−1(A), and F−1(A) is indeed closed.

Proof of (ii) in Proposition 6.1. The comparison principle for the operator H follows from
the fact that Hf = H(∇f) depends on x only via gradients. Indeed, for subsolutions
u1 and supersolutions u2 of (1 − τH)u = h, we have max(u1 − u2) ≤ τ [H (∇f1(xδ)) −
H (∇f2(x′δ))] + h(xδ) − h(x′δ), with test functions f1, f2 ∈ D(H) satisfying ∇f1(xδ) =

∇f2(x′δ), and dist(xδ, x′δ) → 0 as δ → 0. Therefore H (∇f1(xδ)) − H (∇f2(x′δ)) = 0,
and max(u1 − u2) ≤ 0 follows by taking the limit δ → 0.

Proof of (iii) in Proposition 6.1. Let u ∈ C(Td) be a viscosity solution of the equation (1−
τH)u = h. By Lemmas 5.6 and 5.7, u is a strong viscosity subsolution of (1− τH1)u = h

and a strong viscosity supersolution of (1 − τH2)u = h. In the proof of Lemma 5.8 we
obtained H1 ≤ H ≤ H2, which in particular implies the inequalities −H1 ≥ −H ≥ −H2.
With that, we find that u is both a strong viscosity sub- and supersolution of (1− τH)u =

h.

7 Proof of large deviations for molecular motors

In this section, we consider the stochastic process (Xn, In) of Definition 4.4 and
prove Theorems 4.6 and 4.7. The generator Ln of (Xn, In) is given by

Lnf(x, i) =
1

n

1

2
∆f(·, i)(x) + bi(nx) · ∇f(·, i)(x) +

J∑
j=1

γ(n)rij(nx) [f(x, j)− f(x, i)] ,

with state space En = Td × {1, . . . , J} = {(x, i)}, drifts bi ∈ C∞(Td), jump rates
rij ∈ C∞(Td; [0,∞)), and γ(n) > 0. We frequently write f(x, i) = fi(x). The nonlin-
ear generators defined by Hnf = 1

ne
−nfLne

nf(·) are given (for f ∈ C2(Td) ⊂ D(Hn))
by

Hnf(x, i) =
1

n

1

2
∆fi(x) +

1

2
|∇fi(x)|2 + bi (nx)∇fi(x)

+
1

n
γ(n)

J∑
j=1

rij (nx)
[
en(f(x,j)−f(x,i)) − 1.

]
. (7.1)
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7.1 Proof of Theorem 4.6

Verification of (T1) of Theorem 4.2. We have the scaling γ(n) = n. Choosing the func-
tions fn(x, i) = f(x) + 1

n ϕ (nx, i), we find

Hnfn(x, i) =
1

n

1

2
∆f(x) +

1

2
∆yϕi (nx) +

1

2

∣∣∇f(x) +∇yϕi (nx)
∣∣2

+ bi (nx) (∇f(x) +∇yϕi (nx)) +

J∑
j=1

rij (nx)
[
eϕ(nx,j)−ϕ(nx,i) − 1

]
,

where ∇y and ∆y denote the gradient and Laplacian with respect to the variable y = nx,
instead of the variable x. The only term of order 1

n that remains is 1
n ∆f(x)/2. This

suggests to take the remainder terms as the definition of the multi-valued operator H.
In the notation of Theorem 4.2, we choose E′ = Td × {1, . . . , J} as the state space of the
macroscopic variables, and define

H :=
{

(f,Hf,ϕ) : f ∈ C2(Td), Hf,ϕ ∈ C(Td × E′) and ϕ ∈ C2(E′)
}
, (7.2)

with the image functions Hf,ϕ : Td × E′ → R defined by

Hf,ϕ(x, y, i) :=
1

2
∆yϕi(y) +

1

2

∣∣∇f(x) +∇yϕi(y)
∣∣2 + bi(y)(∇f(x) +∇yϕi(y))

+

J∑
j=1

rij(y)
[
eϕ(y,j)−ϕ(y,i) − 1

]
, (7.3)

where we write ϕ = (ϕ1, . . . , ϕJ) via the identification C2(E′) ' (C2(Td))J .

Verification of (C1), (C2) and (C3). For verifying (C1), define the maps η′n : En → E′ by
η′n(x, i) := (nx, i), and recall that the maps ηn : En → Td are the projections ηn(x, i) := x.
For any (x, y, i) ∈ Td×E′, we search for elements (yn, in) ∈ Td×{1, . . . , J} such that both
ηn(yn, in) → x and η′n(yn, in) → (y, i) as n → ∞. For d = 1, the point yn := 1

n (bnxc + y)

satisfies yn → x and nyn = y in Td (i.e. modulo 1). For d ≥ 2 this construction can be
done for each coordinate. Therefore, (C1) holds with yn = 1

n (bnxc+ y) and in = i.
Regarding (C2), let (f,Hf,ϕ) ∈ H. The function fn defined by fn(x, i) := f(x) +

1
n ϕ (nx, i) satisfies

‖f ◦ ηn − fn‖L∞(En) = sup
(x,i)∈En

|f(x)− fn(x, i)| = 1

n
· ‖ϕ‖L∞(En)

n→∞−−−−→ 0,

and

‖Hf,ϕ ◦ (ηn, η
′
n)−Hnfn‖L∞(En) = sup

(x,i)∈En

|Hf,ϕ(x, nx, i)−Hnfn(x, i)|

=
1

n

1

2
sup

(x,i)∈En

| ∆f(x)| ≤ 1

n

1

2
sup |∆f | n→∞−−−−→ 0.

Regarding (C3), the fact that the images Hf,ϕ depend on x only via the gradients of f ,
can be recognized in (7.3).

Verification of (T2) of Theorem 4.2. Let f be a function in D(H) = C2(Td) and x ∈ Td.
We establish the existence of a vector function ϕ = (ϕ1, . . . , ϕJ) ∈ (C2(Td))J such that
for all (y, i) ∈ E′ = Td × {1, . . . , J} and some constant H(∇f(x)) ∈ R, we have

Hϕ(∇f(x), y, i) = H(∇f(x)).
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For the flat torus E = Td, this means that for fixed ∇f(x) = p ∈ Rd, we search for a
vector function ϕp such that H̃ϕp

(p, y, i) = H(p) becomes independent of the variables
(y, i) ∈ E′. We can find this vector function by solving a principal eigenvalue problem.
We prove Item (T2) by the following lemma.

Lemma 7.1. Let E′ = Td × {1, . . . , J} and H be the limit operator (7.2). Then:

(a) For f ∈ D(H), the limiting images Hϕ(∇f(x), y, i) are of the form

Hϕ(∇f(x), y, i) = e−ϕ(y,i) [(Bp + Vp +R)eϕ] (y, i),

with p = ∇f(x) ∈ Rd, and operators Bp, Vp, R : C2(E′)→ C(E′) defined as

(Bph)(y, i) :=
1

2
∆yh(y, i) + (p+ bi(y)) · ∇yh(y, i)

(Vph)(y, i) :=

(
1

2
p2 + p · bi(y)

)
h(y, i),

(Rh)(y, i) :=

J∑
j=1

rij(y) [h(y, j)− h(y, i)] .

(b) For any p ∈ Rd, there exists an eigenfunction gp = (g1
p, . . . , g

J
p ) ∈ (C2(Td))J with

strictly positive component functions, gip > 0 on Td for i = 1, . . . , J , and an eigen-
value H(p) ∈ R such that

[Bp + Vp +R] gp = H(p) gp. (7.4)

Now (T2) follows by (a) and (b) in Lemma 7.1, since with ϕp := log gp,

Hϕp
(p, y, i)

(a)
= e−ϕp(y,i) [Bp + Vp +R] eϕp(y,i)

=
1

gp(y, i)
[Bp + Vp +R] gp(y, i)

(b)
= H(p).

Proof of Lemma 7.1. Writing p = ∇f(x), Item (a) follows directly by regrouping the
terms in (7.3). Regarding Item (b), [Bp + Vp +R] gp = H(p)gp is a system of weakly-
coupled nonlinear elliptic PDEs on the flat torus. They are weakly coupled in the
sense that the component functions gip are only coupled in the lowest order terms by
means of the operator R, while the operators Bp and Vp act solely on the diagonal. By
Proposition B.2, there exists a λ(p) and gp > 0 such that [−Bp − Vp −R] gp = λ(p)gp.
Thereby, [Bp + Vp +R] gp = H(p)gp follows with the same eigenfunction gp > 0 and the
principal eigenvalue H(p) = −λ(p). This finishes the verification of (T2).

Verification of (T3) of Theorem 4.3. We prove that the principal eigenvalue H(p) of Lem-
ma 7.1 is convex in p ∈ Rd and satisfies H(0) = 0. By Proposition B.2, the eigenvalue
H(p) = −λ(p) admits the representation

H(p) = − sup
g>0

inf
z′∈E′

{
1

g(z′)
[(−Bp − Vp −R)g] (z′)

}
= inf
g>0

sup
z′∈E′

{
1

g(z′)
[(Bp + Vp +R)g] (z′)

}
= inf

ϕ
sup
z′∈E′

{
e−ϕ(z′) [(Bp + Vp +R)eϕ] (z′)

}
=: inf

ϕ
sup
z′∈E′

F (p, ϕ)(z′),
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with a map F defined by

F (p, ϕ)(y, i) :=
1

2
∆yϕi(y) +

1

2
|∇yϕi(y) + p|2 + bi(y)(∇yϕi(y) + p)

+

J∑
j=1

rij(y)
[
eϕj(y)−ϕi(y) − 1

]
.

The map F is jointly convex in p and ϕ. For the eigenfunction ϕ = ϕp, equality holds
in the sense that for any z ∈ E′, we have H(p) = F (p, ϕp)(z). Therefore, we obtain for
τ ∈ [0, 1] and any p1, p2 ∈ Rd with corresponding eigenfunctions g1 = eϕ1 and g2 = eϕ2

that

H(τp1 + (1− τ)p2) = inf
ϕ

sup
E′

F (τp1 + (1− τ)p2, ϕ)

≤ sup
E′

F (τp1 + (1− τ)p2, τϕ1 + (1− τ)ϕ2)

≤ sup
E′

[τF (p1, ϕ1) + (1− τ)F (p2, ϕ2)]

≤ τ sup
E′

F (p1, ϕ1) + (1− τ) sup
E′

F (p2, ϕ2)

= τH(p1) + (1− τ)H(p2).

Regarding the claim H(0) = 0, we choose the constant function ϕ = (1, . . . , 1) in the
variational representation of H(p). Thereby, we obtain the estimate H(0) ≤ 0. For the
opposite inequality, we show that for any ϕ ∈ C2(E′)

λ(ϕ) := sup
z′∈E′

{
e−ϕ(z′) [(B0 + V0 +R)eϕ] (z′)

}
≥ 0,

which then implies H(0) = infϕ λ(ϕ) ≥ 0. Let ϕ ∈ C2(E′); the continuous function ϕ on
the compact set E′ admits a global minimum zm = (ym, im) ∈ E′. Thereby, noting that
V0 ≡ 0, we find

λ(ϕ) ≥ e−ϕ(zm)(B0 +R)eϕ(zm) =
1

2
∆yϕ(ym, im)︸ ︷︷ ︸
≥ 0

+
1

2
| ∇yϕ(ym, im)︸ ︷︷ ︸

= 0

|2

+ bim(ym) · ∇yϕ(ym, im)︸ ︷︷ ︸
= 0

+
∑
j 6=i

rij(ym)
[
eϕ(ym,j)−ϕ(ym,im) − 1

]
︸ ︷︷ ︸

≥ 0

≥ 0.

This finishes the verification of (T3), and thereby the proof of Theorem 4.6.

7.2 Proof of Theorem 4.7

In this section, we consider the process (Xn, In) of Definition 4.4 in the limit
regime 1

nγ(n) → ∞ as n → ∞. As above in the proof of Theorem 4.6, we start with
the nonlinear generator Hn given by (7.1), and verify conditions (T1), (T2) and (T3)
of Theorems 4.2 and 4.3. Conditions (C1), (C2) and (C3) can be shown similarly as in
Section 7.1.

Verification of (T1) of Theorem 4.2. We choose functions fn(x, i) of the form

fn(x, i) = f(x) +
1

n
ϕ (nx) +

1

γ(n)
ξ (nx, i) .
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We abbreviate y = nx in the following equation. Computing Hnfn results in

Hnfn(x, i) =
1

n

1

2
∆f(x) +

1

2

[
∆yϕ(y) +

n

γ(n)
∆yξi(y)

]
+

1

2

∣∣∇f(x) +∇yϕ(y) +
n

γ(n)
∇yξi(y)

∣∣2 + bi(y)

(
∇f(x) +∇yϕ(y) +

n

γ(n)
∇yξi(y)

)
+

1

n
γ(n)

J∑
j=1

rij(y)
[
en(ξ(y,j)−ξ(y,i))/γ(n) − 1

]
.

The n/γ(n) terms vanish as n→∞. The last term satisfies

1

n
γ(n)

J∑
j=1

rij(y)
[
en(ξj−ξi)/γ(n) − 1

]
=

J∑
j=1

rij(y) [ξj(y)− ξi(y)] + on→∞(1).

Therefore, we choose again E′ := Td × {1, . . . , J} as the state space of the macroscopic
variables, and use the following limit operator H,

H :=
{

(f,Hf,ϕ,ξ) : f ∈ C2(Td) and Hf,ϕ,ξ ∈ C(Td × E′)
}
, (7.5)

with functions ϕ ∈ C2(Td) and ξ = (ξ1, . . . , ξj) ∈ C2(E′) ' (C2(Td))J . In the notation
of (C3), with k = 2, the set C ⊂ C(E′;Rk) is

C =
{
α ∈ C(E′;R2) : α(x, i) = (ϕ(x), ξ(x, i)) , ϕ ∈ C2(Td), ξ ∈ C2(E′)

}
.

The image functions Hf,ϕ,ξ : Td × E′ → R are

Hf,ϕ,ξ(x, y, i) :=
1

2
∆yϕ(y) +

1

2
|∇f(x) +∇yϕ(y)|2 + bi(y) (∇f(x) +∇yϕ(y))

+

J∑
j=1

rij(y) [ξ(y, j)− ξ(y, i)] . (7.6)

Then H satisfies (T1), which is shown by the same line of argument as above in the proof
of Theorem 4.6, with the same maps ηn and η′n. The image functions depend only on
gradients, Hf,ϕ,ξ(x, y, i) = Hϕ,ξ(∇f(x), y, i).

Verification of (T2) of Theorem 4.2. For any p ∈ Rd, we establish the existence of func-
tions ϕp ∈ C2(Td) and ξ ∈ C2(E′) such that Hϕ,ξ(p, ·) becomes constant on E′ =

Td × {1, . . . , J}. To that end, we find a constant H(p) ∈ R and ϕp and ξp such that
for all (y, i) ∈ E′, we have

Hϕp,ξp(p, y, i) = H(p).

We reduce the problem to finding a principal eigenvalue.

Lemma 7.2. Let E′ = Td × {1, . . . , J} and let H be the operator (7.5). Then:

(a) For f ∈ D(H), the images Hϕ,ξ are given by

Hϕ,ξ(p, y, i) = e−ϕ(y) [(Bp,i + Vp,i)e
ϕ] (y) +

J∑
j=1

rij(y) [ξ(y, j)− ξ(y, i)] ,

where p = ∇f(x) ∈ Rd, Bp,i = 1
2∆y + (p + bi(y)) · ∇y, and Vp,i(y) = p2/2 + p · bi(y)

is a multiplication operator.
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(b) For any ϕ and y ∈ Td, there exists a function ξ(y, ·) on {1, . . . , J} such that ξ ∈
C2(E′) and for all i = 1, . . . , J ,

e−ϕ [(Bp,i + Vp,i)e
ϕ] (y) +

J∑
j=1

rij(y) [ξ(y, j)− ξ(y, i)] = e−ϕ(y) [Bp + Vp] e
ϕ(y),

where Bp = 1
2∆y + (p + b(y)) · ∇y, Vp(y) = p2

2 + p · b(y). In the operators, b(y) :=∑J
i=1 µy(i)bi(y) is the average drift with respect to the stationary measure µy ∈

P({1, . . . , J}) of the jump process with frozen jump rates rij(y).

(c) There exists a strictly positive eigenfunction gp and an eigenvalue H(p) ∈ R such
that

[Bp + Vp] gp = H(p)gp. (7.7)

By (a), (b) and (c), taking ϕp = log gp and the corresponding ξ(y, i), we obtain (T2) via

Hϕp,ξ(p, y, i)
(a)
= e−ϕp(y) [Bp,i + Vp,i] e

ϕp(y) +
∑
j∈J

rij(y) [ξ(y, j)− ξ(y, i)]

(b)
= e−ϕp(y) [(Bp + Vp)e

ϕ] (y)
(c)
= H(p).

Proof of Lemma 7.2. Regarding (a), writing ξ(y, i) = ξy(i) and p = ∇f(x) ∈ Rd, for all
(y, i) ∈ E′ we find

Hϕ,ξ(p, y, i) =
1

2
∆yϕ+

1

2

∣∣p+∇yϕ
∣∣2 + bi(p+∇yϕ)︸ ︷︷ ︸

= e−ϕ(Bp,i + Vp,i)e
ϕ

+

J∑
j=1

rij(y) [ξ(y, j)− ξ(y, i)]︸ ︷︷ ︸
=: Ryξ(y, ·)(i)

,

with a generator Ry of a jump process with frozen jump rates rij(y).
For (b), let ϕ ∈ C2(Td) and y ∈ Td. We wish to find a function ξy(·) = ξ(y, ·) ∈

C({1, . . . , J}) such that
e−ϕ [Bp,i + Vp,i] e

ϕ +Ryξy(i)

becomes constant in i = 1, . . . , J . By the Fredholm alternative, for any vector v ∈
C({1, . . . , J}), the equation Ryξy = v has a solution ξy(·) ∈ C({1, . . . , J}) if and only if v ⊥
ker(R∗y). Since Ry is the generator of a jump process on the finite discrete set {1, . . . , J}
with rates rij(y), the null space ker(R∗y) is one-dimensional and spanned by the unique
stationary measure µy ∈ P({1, . . . , J}), which exists by our irreducibility assumption of
Theorem 4.7 (e.g. [22, Theorem 17.51]). Hence e−ϕ [Bp,i + Vp,i] e

ϕ +Ryξy(i) = h(p, y) is
independent of i ∈ {1, . . . , J} if and only if

J∑
i=1

µy(i)
[
(h(p, y)− e−ϕ [Bp,i + Vp,i] e

ϕ
]

= 0.

This solvability condition leads to

J∑
i=1

µy(i)
[
(h(p, y)− e−ϕ (Bp,i + Vp,i) e

ϕ
]

= h(p, y)− e−ϕ(y) (Bp + Vp) e
ϕ(y) = 0.

Hence for h(p, y) := e−ϕ(y) [Bp + Vp] e
ϕ(y), there exists ξ(y, i) solving the equation Ryξ(y, ·)

= h. Furthermore, since the stationary measure is an eigenvector of a one-dimensional
eigenspace, and the rates rij(·) are smooth by assumption, the eigenfunctions ξy depend
smoothly on y as well, and (b) follows.
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For proving (c) in Lemma 7.2, we note that Equation (7.7) corresponds to a principal-
eigenvalue problem for a second-order uniformly elliptic operator. By Proposition B.1,
the principal eigenvalue problem [−Bp − Vp] gp = λ(p)gp has a solution gp > 0, with
eigenvalue λ(p) ∈ R. The same function gp and the eigenvalue H(p) = −λ(p) solve (7.7).

Verification of (T3) of Theorem 4.3. The principal eigenvalue H(p) is of the form

H(p) = inf
ϕ

sup
y∈Td

F (p, ϕ) (y),

with F jointly convex in p and ϕ. Convexity of H(p) and H(0) = 0 follow as above in the
proof of Theorem 4.6.

8 Proof of symmetry of Hamiltonians

Theorem 4.8 shows that detailed balance implies symmetric Hamiltonians. The proof
was based on a suitable variational representation of the Hamiltonian. In this section,
we show in Proposition 8.1 how to obtain this representation.

Before giving the rigorous proof, we sketch the argument. To that end, we recall
the setting. We work with E′ = Td × {1, . . . , J} and denote by P(E′) the set of prob-
ability measures on E′. The Hamiltonian H(p) is the principal eigenvalue of the cell
problem (7.4) described in Lemma 7.1, and satisfies

H(p) = sup
µ∈P(E′)

[∫
E′
Vp(z) dµ(z)− Ip(µ)

]
. (8.1)

In this formula, we have the continuous map Vp given by

Vp(x, i) :=
1

2
p2 − p · ∇ψi(x), (8.2)

and the Donsker-Varadhan functional

Ip(µ) := − inf
u>0

∫
E′

Lpu

u
dµ, (8.3)

where the infimum is over strictly positive u ∈ C2(E′) and the operator Lp is

Lpu(x, i) :=
1

2
∆xu(x, i) + (p−∇ψi(x)) · ∇xu(x, i) +

J∑
j=1

rij(x) [u(x, j)− u(x, i)] . (8.4)

The variational representation (8.1) is a special case of Donsker’s and Varadhan’s
representation theorem on principal eigenvalues [6]. Under their general conditions,
the infimum is taken over functions that are in the domain of the infinitesimal generator
of the semigroup generated by Lp. Pinsky showed that the infimum can be taken
over C2 functions if the coefficients appearing in the operator Lp are sufficiently regular
(Theorem 1.4 in [33], Equation (3.1) in [34]).

Since it is not clear from (8.1) that H(p) is symmetric under the detailed-balance
condition, we shall perform a suitable shift in the infimum of the functional (8.3) to obtain
a suitable representation. Rewriting in (8.3) the strictly positive functions as u = exp(ϕ)

(with ϕ = log u, so ϕ has the same regularity as u), we find

Ip(µ) = − inf
ϕ∈C2

∑
i

∫ (
1

2
∆ϕi +

1

2
|∇ϕi|2 + (p − ∇ψi)∇ϕi +

∑
j

rij
(
eϕj−ϕi − 1

))
dµi.

(8.5)
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Suppose that dµi = µi dx with a function µi that is bounded away from zero, where dx

is the Lebesgue measure on the torus. Then shifting in the infimum by setting ϕi =

φi + ψi + 1
2 logµi, we find by calculation that

Ip(µ) = R(µ) +

∫
E′
Vp dµ−Kp(µ), (8.6)

where R(µ) is the Fisher information given by

R(µ) :=
1

8

∑
i

∫
Td

∣∣∣∣∇(log
µi

e−2ψi

)∣∣∣∣2 dµi, (8.7)

and Kp(µ) is given by

Kp(µ) = inf
φ

{ J∑
i=1

∫
Td

1

2
|∇φi(x) + p|2 −

J∑
j=1

rij(x)

 dµi(x)

+

J∑
i,j=1

∫
Td

rij(x)e−2ψi(x)
√
µi(x)µj(x)eψj(x)+ψi(x)eφ(x,j)−φ(x,i) dx

}
. (8.8)

Plugging formula (8.6) into the variational representation (8.1) leads to the desired
representation of the Hamiltonian as used at the beginning of the proof of Theorem 4.8
in Section 4.4. The transformation we used is equivalent to shifting by (1/2) log(µi/πi),
where πi = e−2ψi is the stationary measure up to multiplicative constant. This transfor-
mation is reminiscent of a symmetrization discussed in Touchette’s notes [39, Eq. (36)].
Also when formulating the detailed-balance condition with additional constants in (4.3),
that is when not shifting the potentials by constants to renormalize, one can include
these constants in the shift to arrive at the same conclusions.

In order to make the strategy as outlined above rigorous, we prove that we can
restrict to measures µ having the required regularity properties. The central step is to
exploit the fact that Ip(µ) is finite sinceH(p) is finite. By a result of Stroock [37, Theorem
7.44], finiteness of the Donsker-Varadhan functional implies certain regularity properties
in case the generator is reversible. Since the generator Lp is not reversible, we further
bound Ip by a suitable Donsker-Varadhan functional Irev corresponding to a reversible
process in order to be able to apply [37, Theorem 7.44].

Proposition 8.1. The Hamiltonian H(p) given by (8.1) satisfies the following:

(a) The supremum in (8.1) can be taken over a smaller set P of measures, that is

H(p) = sup
µ∈P

[∫
E′
Vp dµ− Ip(µ)

]
,

where P ⊂ P(E′) are the probability measures µ = (µ1, . . . , µJ) such that:

(P1) Each µi is absolutely continuous with respect to the uniform measure on Td.

(P2) For each i, we have ∇(logµi) ∈ L2
µi

(Td), where dµi(x) = µi(x)dx.

(b) We have

H(p) = sup
µ∈P

[Kp(µ)−R(µ)] , (8.9)

with the maps R and Kp given by (8.7) and (8.8) above. In Kp(µ), the infimum
should be taken over vectors of functions φi = φ(·, i) in C2(Td).
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(c) Under the detailed balance condition (4.3), for any µ ∈ P,

Kp(µ) = inf
φ

{ J∑
i=1

∫
Td

1

2
|∇φi(x) + p|2 −

J∑
j=1

rij(x)

 dµi(x)

+

J∑
i,j=1

∫
Td

rij(x)e−2ψi(x)
√
µi(x)µj(x)eψj(x)+ψi(x) cosh (φ(x, j)− φ(x, i)) dx

}
.

(8.10)

The representation (8.10) follows from (8.8) by rewriting the sums appearing therein
as
∑
ij aij = 1

2

∑
ij(aij + aji), where

aij =

∫
Td

rije
−2ψi

√
µi(x)µj(x)eψ

j(x)+ψi(x)eφ(x,j)−φ(x,i) dx.

This leads to the cosh(·) terms in (8.10), and proves (c). We now give the proof of (a) and
(b) of Proposition 8.1.

Proof of (a) in Proposition 8.1. Let p ∈ Rd. The supremum in (8.1) can be taken over
measures µ such that Ip(µ) is finite, because H(p) is finite and Vp(·) is bounded. We show
that finiteness of Ip(µ) implies that µ must satisfy (P1) and (P2). To that end, define the
map Lrev : D(Lrev) ⊆ C(E′)→ C(E′) by setting D(Lrev) := C2(E′) and

Lrevf(x, i) :=
1

2
∆xf(x, i)−∇ψi(x) · ∇xf(x, i) + γ

∑
j 6=i

sij(x) [f(x, j)− f(x, i)] ,

with jump rates sij defined as sij ≡ 1 and sji ≡ e2ψj−2ψi , for i ≤ j, and with γ :=

supTd (rij/sij) < ∞, where rij(·) are the jump rates appearing in Lp. Furthermore,
define ILrev : P(E′)→ [0,∞] by

ILrev
(µ) := − inf

ϕ∈C2(E′)

∫
E′
e−ϕLrev(eϕ) dµ. (8.11)

We shall prove two statements:

(I) If ILrev
(µ) is finite, then the measure µ satisfies (P1) and (P2).

(II) If Ip(µ) is finite, then ILrev(µ) is finite.

The two statements combined finish the proof.
Regarding (I), suppose ILrev(µ) is finite. Since sije−2ψi = sjie

−2ψj , the operator Lrev

admits a reversible measure νrev in P(E′) given by

νrev(A1, . . . , AJ) =
1

Z

J∑
i=1

νirev(Ai), where dνirev = e−2ψidx and Z =
∑
i

νirev(Td).

The measure νrev is reversible for Lrev in the sense that for all f, g ∈ D(Lrev),

〈Lrevf, g〉νrev = 〈f, Lrevg〉νrev , where 〈f, h〉νrev =
1

Z
∑
i

∫
Td

fi(x)hi(x) dνirev(x).

By Stroock’s result [37, Theorem 7.44],

ILrev(µ) =

{
−〈fµ, Lrevfµ〉νrev , fµ =

√
gµ ∈ D1/2 := D

(√
−Lrev

)
and gµ = dµ

dνrev
,

+∞, otherwise,
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where dµ/dνrev is the Radon-Nikodym derivative. In particular, since ILrev
(µ) is finite,

we find that µ� νrev and that ILrev
(µ) is explicitly given by

ILrev(µ) = −〈f, Lrevf〉νrev

=
1

Z

J∑
i=1

∫
Td

|∇fi(x)|2 dνirev(x) + γ

J∑
j=1

∫
Td

sij(x)|fj(x)− fi(x)|2 dνirev(x)

 , (8.12)

where we write fi = (dµi/dνirev)1/2. Furthermore, µi is absolutely continuous with
respect to νi = e−2ψidx. Since e−2ψidx � dx, we find that µi is absolutely continuous
with respect to the volume measure on Td. Hence (P1) holds true.

We verify (P2) by showing that the integral
∫
Td |∇(logµi)|2 dµi is finite. Let giµ :=

dµi/dνirev be the density of µi with respect to νirev. Then the densities µi = dµi/dx

satisfy giµ = µie2ψi , because

µi =
dµi

dνirev

dνirev

dx
=

dµi

dνirev

e−2ψi .

Let f iµ :=
√
giµ. By (8.12),

∫
Td |∇f iµ|2dνirev is finite for every i = 1, . . . , J . Hence with the

estimate

∫
Td

|∇f iµ|2dνirev ≥
∫
Td

|∇f iµ|21{µi>0}dν
i
rev =

1

4

∫
Td

|∇giµ|2

giµ
1{µi>0}dν

i
rev

=
1

4

∫
Td

|e2ψi∇µi + 2µi∇ψie2ψi |2

µi
e−4ψi1{µi>0}dx

=
1

4

∫
Td

|∇(logµi) + 2∇ψi|21{µi>0}dµ
i

≥ 1

8

∫
Td

|∇(logµi)|21{µi>0}dµ
i −
∫
Td

|∇ψi|21{µi>0}dµ
i,

we find ∇(logµi) ∈ L2
µi(Td).

Regarding (II), we start from Ip(µ) as given in (8.5). Suppose that Ip(µ) is finite. We
estimate rij/sij from above by γ = supTd(rij/sij) to find

Ip(µ) ≥ sup
ϕ

∑
i

∫
Td

−
[

1

2
∆ϕi(x) +

1

2
|∇ϕi(x)|2 + (p−∇ψi(x))∇ϕi(x)

+ γ
∑
j 6=i

sij(x)(eϕ(x,j)−ϕ(x,i) − 1)

]
dµi − s0(µ),

where s0(µ) =
∑
ij

∫
Td [γ sij(x)− rij(x)] dµi is finite.

For p = 0, this means that I0(µ) ≥ ILrev
(µ)− s0(µ), which follows from writing out the

definition of ILrev
(µ) given in (8.11). Hence, ILrev

(µ) is finite.

For p 6= 0, the additional p-term can be dealt with by Young’s inequality applied as
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−p · ∇φi ≥ −p2/(2ε)− ε
2 |∇φ

i|2 , with ε > 0. Thereby,

Ip(µ) ≥ sup
ϕ

∑
i

∫
Td

−
[

1

2
∆ϕi(x) +

1 + ε

2
|∇ϕi(x)|2 −∇ψi(x)∇ϕi(x)

+ γ
∑
j 6=i

sij(x)(eϕ(x,j)−ϕ(x,i) − 1)

]
dµi − p2

2ε
− s0(µ)

=
1

λ
sup
ϕ

∑
i

∫
Td

−
[

1

2
∆ϕi(x) +

1

2
|∇ϕi(x)|2 +−∇ψi(x)∇ϕi(x)

+ λγ
∑
j 6=i

sij(x)(e(ϕ(x,j)−ϕ(x,i))/λ − 1)

]
dµi − p2

2ε
− s0(µ),

where the last equality follows by rescaling ϕ→ ϕ/λ, with λ = 1 + ε > 1.
Therefore, apart from the factor 1/λ in the exponential term and the multiplicative

factor λγ, we obtain the same estimate as above in the p = 0 case. Denoting the
supremum term in the last line by IλLrev

, we found the estimate

Ip(µ) ≥ 1

λ
IλLrev

(µ)− sp(µ), (8.13)

where sp(µ) = (2ε)−1p2 + s0(µ). Hence IλLrev
(µ) is finite.

We show that this enforces finiteness of ILrev(µ), by proving that ILrev(µ) = ∞ im-
plies IλLrev

(µ) =∞.
So, suppose that ILrev(µ) = ∞. Then by definition of ILrev in (8.11), there exist

functions ϕn such that

a(ϕn) := −
J∑
i=1

∫
Td

[
1

2
∆ϕin+

1

2
|∇ϕin|2−∇ψi∇ϕin+γ

∑
j 6=i

sij

(
eϕn(x,j)−ϕn(x,i) − 1

)]
dµi(x)

diverges, that is a(ϕn)→∞ as n→∞. Write

aλ(ϕn) := −
∑
i

∫
Td

[
1

2
∆ϕin +

1

2
|∇ϕin|2 −∇ψi∇ϕin

+ λγ
∑
j 6=i

sij(e
(ϕn(x,j)−ϕn(x,i))/λ − 1)

]
dµi(x)

for the according evaluation of ϕn in IλLrev
(µ). By definition, IλLrev

(µ) ≥ aλ(ϕn). We shall
prove that with a finite constant C = C(µ) and sequences an and aλn, we have the
estimates

a(ϕn)
(1)

≤ an
(2)

≤ aλn
(3)

≤ aλ(ϕn) + C.

That finishes the proof, since then

IλLrev
(µ) ≥ aλ(ϕn) ≥ [a(ϕn)− C]

n→∞−−−−→ +∞.

Define the sequences an and aλn by

an := −
J∑
i=1

∫
Td

[
1

2
∆ϕin +

1

2
|∇ϕin|2 −∇ψi∇ϕin

+ γ
∑
j 6=i

sij

(
eϕn(x,j)−ϕn(x,i)1{ϕn(x,j)−ϕn(x,i)≥0} − 1

)]
dµi(x),
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and

aλn := −
∑
i

∫
Td

[
1

2
∆ϕin +

1

2
|∇ϕin|2 −∇ψi∇ϕin

+ λγ
∑
j 6=i

sij

(
e(ϕn(x,j)−ϕn(x,i))/λ1{ϕn(x,j)−ϕn(x,i)≥0} − 1

)]
dµi(x).

Define the constant C by

C := λγ
∑
ij;j 6=i

∫
E

sij(x) dµi(x),

Regarding inequality (1),

an − a(ϕn) = γ
∑
i,j;j 6=i

∫
Td

sije
ϕn(x,j)−ϕn(x,i)

[
1− 1{ϕn(x,j)−ϕn(x,i)}

]
dµi(x) ≥ 0.

Regarding inequality (2), writing δϕn(x, j, i) := ϕn(x, j)− ϕn(x, i), we find

aλn − an = γ
∑
i,j;j 6=i

∫
Td

sij

[
eδϕn(x,j,i)1δϕn(x,j,i)≥0} − 1

]
dµi(x)

− λγ
∑
i,j;j 6=i

∫
Td

sij

[
eδϕn(x,j,i)/λ1{δϕn(x,j,i)≥0} − 1

]
dµi(x)

= γ
∑
i,j;j 6=i

∫
Td

sij

[
eδϕn(x,j,i) − λeδϕn(x,j,i)/λ

]
1{δϕn(x,j,i)≥0} dµi(x)

+ γ(λ− 1)
∑
i,j;j 6=i

∫
Td

sij dµi(x)

≥ 0,

using in the last estimate λ = 1 + ε > 1 and ez − λez/λ ≥ (1− λ) for z ≥ 0.

Regarding inequality (3), using ez/λ(1z≥0 − 1) ≥ −1 for z ∈ R, we find

aλ(ϕn)− aλn = λγ
∑
i,j;j 6=i

∫
Td

sije
(ϕn(x,j)−ϕn(x,i))/λ

[
1{ϕn(x,j)−ϕn(x,i)} − 1

]
dµi

≥ −λγ
∑
i,j;j 6=i

∫
Td

sij dµi = −C.

Proof of (b) of Proposition 8.1. It is sufficient to show that for any µ ∈ P the Donsker-
Varadhan functional Ip(µ) satisfies (8.6). Integrating by parts in (8.5) gives

Ip(µ) = − inf
ϕ∈C2

∑
i

∫
Td

[
− 1

2
∇ϕi∇(logµi) +

1

2
|∇ϕi|2 + (p−∇ψi)∇ϕi

+
∑
j

rij
(
eϕj−ϕi − 1

) ]
dµi,

where we write dµi = µidx. Now shifting in the infimum as ϕi = φi + 1
2 log(µi) + ψi, we
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find after some algebra that

Ip(µ) = − inf
φ∈− 1

2 log µ+C2

∑
i

∫
Td

[
1

2
|∇φi + p|2 − 1

2

∣∣∣(p−∇ψi)− 1

2
∇ logµi

∣∣∣2
+
∑
j

rij

√µj

µi
eψj−ψieφj−φi − 1

]dµi.

The term containing the square roots is not singular since it is integrated against dµi.

By using the usual methods of approximation by truncation in Sobolev spaces (see
e.g. [1, Prop. 9.5]) the infimum above can be replaced by an infimum over all φ ∈
− 1

2 logµ + C2 that are bounded, and by subsequent regularization by convolution the
infimum can be taken over C2.

Now writing out the terms and reorganizing them leads to the claimed equality.

A Large-deviation principle implies almost-sure convergence

It is a well-known fact that a large-deviation principle implies a strong type of
convergence of random variables [5, at the end of Section I.2]. We provide a proof
here since we know of no reference in the literature providing an explicit proof of the
well-known fact. Let I : X → [0,∞] be a rate function. We denote by {I = 0} the set of
its global minimizers.

Theorem A.1. For n = 1, 2 . . . , let Xn be a random variable taking values in a Polish
space (X , d). Suppose that {Xn}n∈N satisfies a large-deviation principle with rate
function I. Then d(Xn, {I = 0})→ 0 almost surely as n→∞.

We point out that as specified in Definition 3.1, the rate function in Theorem A.1 is
assumed to have compact sub-level sets.

Proof of Theorem A.1. For k, n ∈ N, let Ank be the event

Ank := {d(Xn, {I = 0}) ≥ 1/k} ,

and write

Ank i.o. :=
⋂
N≥1

⋃
n≥N

Ank .

Let k ∈ N. By the large-deviation upper bound, there exists a δ > 0 such that for all n
sufficiently large,

P (Ank ) ≤ e−nδ.

Therefore
∑∞
n=1P (Ank ) is finite, and by the Borel-Cantelli Lemma,

P (Ank i.o.) = 0.

With that, almost-sure convergence follows by noting that

P
(
{d(Xn, {I = 0}) n→∞−−−−→ 0} is not true

)
≤
∞∑
k=1

P (Ank i. o.) = 0.
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B Principal eigenvalues

In this section we collect results on principal-eigenvalue problems that we encounter
in the proofs of the molecular-motor models.

Proposition B.1. Let P be a second-order uniformly elliptic operator given by

P = −
d∑

k,`=1

ak`(·)
∂2

∂xk∂x`
+

d∑
k=1

bk(·) ∂

∂xk
+ c(·), (B.1)

with smooth coefficients ak`, bk, c ∈ C∞(Td). Then there exists a strictly positive func-
tion u ∈ C∞(Td) and a unique λ ∈ R such that Pu = λu, and λ is given by

λ = sup
g>0

inf
x∈Td

[
Pg(x)

g(x)

]
= inf
µ∈P(Td)

sup
g>0

[∫
Td

Pg

g
dµ

]
. (B.2)

Here µ is the unique stationary measure.

The existence of the principal eigenvalue λ and the associated positive eigenfunction
u for second-order elliptic operators on closed manifolds, such as the torus Td, is given
for instance by Padilla [30, Th. 6.1]; note that we do not assume a sign on c, and therefore
we do not obtain a sign on λ either. The characterization (B.2) is given by Donsker and
Varadhan [6, 7].

Proposition B.2. Let L : C2(Td)J → C(Td)J be a J × J diagonal matrix of uniformly
elliptic operators,

L =

L
(1) 0

. . .

0 L(J)

 , L(i) = −
d∑

k,`=1

a
(i)
k` (·) ∂2

∂xk∂x`
+

d∑
k=1

b
(i)
k (·) ∂

∂xk
+ c(i)(·), (B.3)

with a
(i)
k` (·), b(i)k (·), c(i)(·) ∈ C∞(Td), and let R = R(y) be a J×J -matrix-valued function

with non-negative off-diagonal elements,

R =

R11 ≥ 0
. . .

≥ 0 RJJ

 , Rij ≥ 0 for all i 6= j.

Suppose that the matrix R with entries Rij := supy∈Td Rij(y) is irreducible. Then for
the operator P := L−R, there exists a unique λ ∈ R and a vector-valued function u ∈(
C∞(Td)

)J
, ui(·) > 0 for all i = 1, . . . , J , such that Pu = λu. Furthermore, λ is given by

λ = sup
g>0

inf
z∈E′

[
Pg(z)

g(z)

]
= inf
µ∈P(E′)

sup
g>0

[∫
E′

Pg

g
dµ

]
.

(recall that E′ = Td × {1, . . . , J}).
Kifer proves this result in [21, Lemma 2.1 and Proposition 2.2], for the case in which

all off-diagonal elements Rij are strictly positive. Sweers [38, Th. 1.1] proves a similar
result, relaxing Rij > 0 to the combination of Rij ≥ 0 with irreducibility, but for domains
with Dirichlet boundary conditions. The method of Sweers also applies to the case of
periodic boundary conditions as for Td. We omit the details.
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