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Abstract

We study the SIRS process—a continuous-time Markov chain modeling the spread
of infections on graphs. In this model, vertices are either susceptible, infected, or
recovered. Each infected vertex becomes recovered at rate 1 and infects each of its
susceptible neighbors independently at rate λ, and each recovered vertex becomes
susceptible at a rate %, which we assume to be independent of the graph size. A central
quantity of the SIRS process is the time until no vertex is infected, known as the
survival time. Surprisingly though, to the best of our knowledge, all known rigorous
theoretical results that exist so far immediately carry over from the related SIS model
and do not completely explain the behavior of the SIRS process. We address this
imbalance by conducting theoretical analyses of the SIRS process via the expansion
properties of the underlying graph.

Our first result shows that the expected survival time of the SIRS process on
stars is at most polynomial in the graph size for any value of λ. This behavior is
fundamentally different from the SIS process, where the expected survival time is
exponential already for small infection rates. This raises the question of which graph
properties result in an exponential survival time. Our main result is an exponential
lower bound of the expected survival time of the SIRS process on expander graphs.
Specifically, we show that on expander graphs G with n vertices, degree close to d,
and sufficiently small spectral expansion, the SIRS process has expected survival
time at least exponential in n when λ ≥ c/d for a constant c > 1. Previous results on
the SIS process show that this bound is almost tight. Additionally, our result holds
even if G is a subgraph. Notably, our result implies an almost-tight threshold for
Erdős–Rényi graphs and a regime of exponential survival time for complex network
models. The proof of our main result draws inspiration from Lyapunov functions used
in mean-field theory to devise a two-dimensional potential function and from applying
a negative-drift theorem to show that the expected survival time is exponential.
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1 Introduction

In the domain of modeling infectious diseases, a vast body of literature studying
various stochastic processes on graphs exists (see, for example, the extensive survey
by Pastor-Satorras, Castellano, Mieghem,26 and Vespignani [31]). In this article, we
focus on the SIRS process—a continuous-time Markov chain where each vertex is either
susceptible, infected, or recovered. Each infected vertex becomes recovered at a
normalized rate of 1 and infects each of its susceptible neighbors independently at an
infection rate λ, while each recovered vertex becomes susceptible at a deimmunization
rate %.

A question central to understanding the SIRS process is how long it takes until no
vertex in the graph is infected, known as the survival time1 of the process. Due to
the relevance of the SIRS process, its survival time has been studied extensively. This
includes empirical results [36, 24, 14], mean-field approaches [2, 33], and results that
consider deterministic variants of the process [34] or generalized models [33]. However,
surprisingly, to the best of our knowledge, all known rigorous theoretical results that
exist so far immediately carry over from the related SIS model and do not completely
explain the behavior of the SIRS process.

This lack of non-trivial theoretical results for the SIRS process stands in stark contrast
to the plethora of theoretical results for a similar but slightly simpler process, known as
the SIS process or contact process. In the SIS process, each vertex is either susceptible
or infected. Each infected vertex becomes susceptible at rate 1 and infects each of
its neighbors independently at an infection rate λ. Thus, with a grain of salt, the
SIS process can be viewed as a special case of the SIRS process in which recovered
vertices turn immediately susceptible (that is, the deimmunization rate % is infinite).
The survival time of the SIS process is well-understood on a variety of graphs. Early
results on the SIS process consider its survival time on Zd [19] and on infinite d-regular
trees [32, 25, 35], while recent breakthroughs characterize the survival time on Galton–
Watson trees [20, 5, 28]. On finite structures, the results of Nam, Nguyen,46 and Sly [28]
consider Erdős–Rényi graphs, while the SIS process has also been studied on scale-free
graphs2 [4, 7]. These results rely on the survival time on simple subgraphs, such as stars.
Further, Ganesh, Massoulié, and Towsley [18] connect the survival time to the spectral
radius and the isoperimetric constant of the host graph, which immediately translates to
a variety of simple graphs.

The vast amount of rigorous results for the SIS process allows to carry over some,
albeit limited, insights to the SIRS process. Most prominently, for the same graph,
the survival time—which is a random variable—of a SIS process is an upper bound for
the survival time of a SIRS process when starting with identical configurations, as the
two processes can be coupled such that an infected vertex in the latter is also always
infected in the former. However, our knowledge about the SIRS process remains in a
very unsatisfactory state for multiple reasons. First, we only have upper bounds on the
survival time for the SIRS process, which begs the question how tight they are. And
second, more importantly, the survival time in the SIS process for a graph G is a lower
bound for any graph H containing G as a subgraph, as adding more vertices does not

1Sometimes also referred to as the extinction time.
2Generated by the preferential-attachment model [3].
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reduce the number of infected vertices at any point in time. In contrast, it is not known
whether the SIRS process also has this property. Adding more vertices to a graph in the
SIRS process can lead to some vertices being earlier infected and thus potentially earlier
recovered, which in turn can block an infection that would have occurred otherwise.
Thus, it is not straightforward to generalize results for the SIRS process to supergraphs.

Our contribution. We conduct the first rigorous, theoretical study of the expected
survival time of the SIRS process on a large variety of graph classes, most prominently
expanders. In all of our results, we assume that the deimmunization rate is independent
of the graph size and that the process starts with at least one infected vertex and no
recovered vertices. Our results showcase the similarities and the differences between the
SIS and the SIRS process, highlighting the impact of the state recovered. Furthermore,
for our lower bounds, we prove that our results carry over to supergraphs of the graphs
we analyze. This makes our results applicable to a great number of different graph
classes.

More specifically, in Section 3, we show that the expected survival time of the SIRS
process on stars is polynomial (in the number of vertices), regardless of the infection
rate (Theorem 1.1). This strongly contrasts the SIS process, where the survival time is
superpolynomial for already very small infection rates [18, Theorem 5.2]. This shows
that recovered vertices can have a huge impact on the survival time. The reason for this
drastic difference in the expected survival time between both processes is that the star
is only connected through a single, central vertex. Thus, if the center is recovered, the
infection only survives if not all leaves become recovered during this time interval. For
the SIRS process, the latter event does not have sufficiently high probability of occurring
for the infection to survive superpolynomially long.

In Section 4, we complement these findings by proving that the expected survival
time of the SIRS process on expanders is at least exponential if the infection rate is
greater than the inverse of the expander’s average degree (Theorem 1.2). This result
holds very similarly for the SIS process [18]. In contrast to stars, expanders have many
edges between arbitrary subsets of vertices. Thus, if the number of infected vertices
is sufficiently high, there exist enough edges between all susceptible and all infected
vertices, regardless of the number of (remaining) recovered vertices. These edges give
the process a high probability not to decrease the number of infected vertices, which
leads to the overall long expected survival time.

Since we prove our result for expanders to carry over to supergraphs, this result
implies respective expected survival times for other well-known graph classes, such
as Erdős–Rényi graphs (Corollary 1.5) and complex networks exhibiting real-world
properties (see, e.g., Corollary 1.6 for hyperbolic random graphs), which we discuss in
Section 5. Combined, our results emphasize that while the SIRS and SIS process behave
very differently on some of their subgraphs (namely stars), they have similar behavior
if the graph is sufficiently connected. In the following, we discuss our results in more
detail.

1.1 Expected survival time on stars

For stars, we prove the following upper bound on the expected survival time of the
SIRS process.

Theorem 1.1. Let G be a star with n ∈ N>0 leaves, and let C be a SIRS process on G

with infection rate λ and with deimmunization rate %. Let T be the survival time of C.
Then for sufficiently large n, it holds that E[T ] ≤

(
ln(n) + 2

)
(4n% + 1) ∈ O(n% ln(n)).

Note that this bound is independent of λ and that it results in a polynomial expected
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survival time as long as % is at most constant with respect to n. Although we only prove
an upper bound, our bound matches, up to a logarithmic factor, empirical investigations
of the star [14], suggesting that our bound is almost tight. Note that these experimental
results consider the infection rate λ to be constant in terms of n, while our results apply
for any λ. Our results also show a behavior similar to the deterministic variant of the
process considered by Saif [34].

The analysis mainly relies on the method of investigating independent phases in
which the center is not infected, bounding the probability of the infection process dying
out during that time, as is common [7, 4]. A phase lasts at most until all leaves triggered
their recovery at least once, which occurs in expectation after a time of about ln(n).
Thus, if the center just recovered, it needs to become susceptible more quickly than that
bound, as otherwise all leaves are recovered. Since deimmunization triggers at rate %,
the probability that the center does not become susceptible in this time interval is about
e−% lnn, resulting in a probability of about n−% that the infection dies out. Since these
phases are independent, the infection process survives, in expectation, about n% of these
trials, each lasting about ln(n) time in expectation. By Markov’s inequality, this bound
on the survival time also holds with high probability.

Note that the deimmunization rate and the state recovered are important for this
argument to hold. Without this additional state, that is, in the SIS process, it is quite
likely that the center becomes quickly reinfected before all leaves are not infected, which
leads to an exponential expected survival time once λ ≥ n−1/2+ε in this setting [18], for
all positive constants ε.

1.2 Expected survival time on expanders

Before we state our main result, we formally introduce the notion of expansion we
use for our results. To this end, let G = (V,E) be a graph with n vertices {vi}ni=1, and
let L be its normalized Laplacian, which is for all i, j ∈ [n] defined as

Li,j =


1 if i = j,

− 1√
deg(vi)deg(vj)

if there is an edge between vi and vj ,

0 otherwise.

(1.1)

Let L have eigenvalues λ1 ≤ ... ≤ λn. The spectral expansion of L is defined as
δ = maxi≥2 |1− λi|. We call G an (n, (1± εd)d, δ)-expander if and only if it has n vertices,
a spectral expansion of δ, and only vertices with degree between (1− εd)d and (1 + εd)d.

As noted above, in contrast to stars, expanders feature many edges between arbitrary
subsets of vertices. The key property we require for our results from (n, (1 ± εd)d, δ)-
expanders is that the number of edges between any two sets X and Y of vertices is close
to d

n |X||Y | (see Theorems 2.6 and 2.7).
Our results hold for any expander G′ that is a subgraph of a graph G that hosts a

SIRS process C. In order to derive such a result, we define the projection C ′ of C onto G′

to be the process on G′ such that, at each point in time, each vertex of G′ in C ′ is in the
same state as it is in C. The survival time of a projected process is the first point in time
that the projected process has no infected vertices. Given these definitions, our main
result follows.

Theorem 1.2. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be the SIRS process on G with
infection rate λ and with constant deimmunization rate %. Further, let C start with
at least one infected vertex in G′ and no recovered vertices in G′. Last, let C ′ be the
projection of C onto G′, and let T be the survival time of C ′. If λ ≥ c

d for a constant
c ∈ R>1, then for sufficiently large n, it holds that E[T ] = 2Ω(n).
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We note that Theorem 1.2 is almost tight with respect to the range of λ. Ganesh,
Massoulié, and Towsley [18, Theorem 3.1] show that the survival time of the SIS process
is at most logarithmic in n when the spectral radius of a graph is less than 1/λ. Note
that the spectral radius of a graph is bounded from above by the maximum degree
of the graph. This results in a logarithmic expected survival time of the process on
(n, (1±εd)d, δ)-expanders when λ ≤ 1−ε

d , for some constant ε. Recall our discussion earlier
in the introduction that the expected survival time of the SIS process is an upper bound
of the expected survival time of the SIRS process. Hence, the expected survival time of
the SIRS process for λ ≤ 1−ε

d is at most logarithmic in n on (n, (1± εd)d, δ)-expanders.
The proof of Theorem 1.2 consists of two main parts. First, we prove that a linear

number of vertices in G′ becomes infected. Then, we show that the number of infected
vertices stays linear for an expected exponential amount of time. For both parts, we
make use of potential functions, which map the configuration of the process to a single
real number that allows us to quantify how likely the process is to die out. In order to
get the result on the projection of the process, we use that the influence of G \G′ only
increases the rate at which vertices in G′ get infected. In the considered configurations,
this rate increase only helps the process get into the desired region of the potential.

First part: reaching a linear number of infected vertices

For the first part, our key lemma shows that the process reaches a configuration with at
least εn infected vertices with probability at least 1

n+2 . To this end, let Iτt be the number
of infected vertices after the t-th change of the configuration of the process.

Lemma 1.3. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Further, let C start with at
least one infected vertex in G′ and no recovered vertices in G′. Consider the projection
C ′ of C onto G′. If λ ≥ c

d for a constant c ∈ R>1, then there exists a constant ε ∈ R>0

such that for sufficiently large n, the probability that there exists a time step t ∈ N with
Iτt ≥ εn is at least 1

n+2 .

Note that if this event does not occur, then the infection might die out fast. As
the probability of the infection dying out in the first step is roughly 1/2, the event of
Lemma 1.3 does not have a high enough probability to give us super-polynomial survival
time with high probability. To obtain the probabilistic lower bound of Lemma 1.3, we
use a fairly simple potential Ht expressing the number of infected vertices minus ε
times the recovered vertices. We show that Ht is a submartigale and then apply the
optional-stopping theorem to Ht to conclude the proof of Lemma 1.3.

Second part: retaining a linear number of infected vertices for exponential time

For showing that the infection survives exponentially long once at least εn vertices
have been infected, we define a more involved potential function Ft than before, which
increases when the number of infected vertices reduces. Our definition of Ft is based on
a Lyapunov function f used by Korobeinikov and Wake [22], which they utilize in order to
derive results on the global stability of the SIRS process via mean-field theory. We briefly
overview this approach before we explain how we adjust it to our setting. To this end,
let Sτt and Iτt denote the number of susceptible and of infected vertices, respectively, of
the t-th change of the configuration of the process.

Korobeinikov and Wake [22] assume a fully mixed graph, which roughly corresponds
to a clique for our process. In order to show global stability, the authors show a negative
drift towards an equilibrium configuration with I∗ infected and S∗ susceptible vertices.
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To this end, they use an auxiliary function f : R2
>0 → R that satisfies for all x, x∗ ∈ R>0

that f(x∗, x) = x∗
(
x
x∗ − ln x

x∗ − 1
)
. For a fixed x∗, the function has a global minimum at

x∗ and a derivative of 1 − x∗

x , which is important for calculating the drift. They then
define a Lyapunov function F ′(Pτt , Iτt) = f(P ∗, Pτt) + f(I∗, Iτt), where Pτt = Sτt + %

λ and
P ∗ = S∗ + %

λ . Note that they use Pτt instead of Sτt in order for the drift not to be too
large when Sτt is small. This function results in non-positive drift everywhere, which is
enough for the setting of Korobeinikov and Wake [22].

The potential function of Korobeinikov and Wake [22] is not sufficient for our purposes,
as its resulting drift is 0 for some configurations, whereas we require a constant negative
drift in order to derive a rigorous lower bound for the expected survival time. Hence, we
adjust the potential function of Korobeinikov and Wake [22] such that it creates a region
in the potential that has a sufficiently large negative drift. We note that we do not need
negative drift everywhere but only in configurations with less than εn infected vertices.
We achieve this by changing the target of susceptible vertices from the equilibrium point
to n. Further, we use a slightly different shift in our setting to adjust for the base graphs
being expanders instead of cliques. Letting n′ = n+ P ∗ − S∗, we define the potential

Ft = F (Pτt , Iτt) = f(n′, Pτt) + f(I∗, Iτt).

By the definition of f , the potential Ft has a global minimum for n′ = Pτt and I∗ = Iτt ,
which roughly models the idealized (and impossible to reach) configuration of all vertices
being susceptible while the number of infected vertices is as in the equilibrium.

For this new potential, we show that there is a region in which the process is a strict
supermartingale with a constant negative drift. This is formally stated in the following
lemma.

Lemma 1.4. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′

of C onto G′. Let t ∈ N and ε0, ε ∈ (0, 1) be sufficiently small constants. Assume that
ε0n ≥ Iτt ≥ εn. If λ ≥ c

d for a constant c ∈ R>1, then there exists a constant a ∈ R>0

such that Dt ≤ −a for sufficiently large n.

We use the expansion properties of the base graph that guarantee that the infected
vertices always have enough susceptible neighbors such that new vertices get infected
and the potential decreases in expectation. This allows us to apply a concentration
bound by Oliveto and Witt [29] (Theorem 2.2) for strict supermartingales, known as
negative-drift theorem. The negative-drift theorem results in the lower exponential
bound of the expected survival time.

1.3 Applicability of our main result

The generality of Theorem 1.2 makes it applicable to a broad range of graph classes,
as the only requirement is for the base graph to contain a large expander as a subgraph.
We illustrate this generality on the classical model of Erdős–Rényi graphs as well as on
popular complex network models such as hyperbolic random graphs.

Erdős–Rényi graphs

The first random-graph model we are interested in is Gn,p—the classical random-graph
model of Erdős and Rényi [12]. The expansion properties of this model have been
previously studied in literature. As Coja-Oghlan [10, Theorem 1.2] shows, Erdős–Rényi
graphs have a very small spectral expansion. Furthermore, due to Chernoff bounds,
the vertex degrees in Erdős–Rényi graphs are tightly distributed around their average

EJP 29 (2024), paper 83.
Page 6/29

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1140
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Analysis of the survival time of the SIRS process via expansion

degree d. Therefore, Erdős–Rényi graphs fulfill, with high probability, our definition of an
(n, (1± εd)d, δ)-expander. Together with Theorem 1.2 and the upper bound that carries
over from the SIS model (see Ganesh, Massoulié, and Towsley [18, Theorem 5.5]), this
leads to the following corollary.

Corollary 1.5. Let G ∼ Gn,p be an Erdős–Rényi graph with (n− 1)p ∈ ω(lnn). Consider
the SIRS process C on G with constant deimmunization rate %, and let T be the survival
time of C when the process starts with at least one infected vertex. If λ ≥ c

d for a
constant c ∈ R>1, then E[T ] = 2Ω(n) asymptotically almost surely with respect to G. If
λ ≤ c

d for a constant c ∈ (0, 1), then E[T ] ∈ O(log n) asymptotically almost surely with
respect to G.

Comparing Corollary 1.5 with the respective result for the SIS process [18, Theo-
rem 5.5] shows that the two processes, SIS and SIRS, behave similarly on Erdős–Rényi
graphs.

Complex networks

A variety of random-graph models that exhibit properties found in real-world networks
has appeared in network science [6]. Such network models provide a highly relevant
structure for studying the survival time of the SIRS process. We focus our attention on
three such complex network models that exhibit key properties required for applying
Theorem 1.2. These models are Chung–Lu graphs [1], hyperbolic random graphs [23],
and geometric inhomogeneous random graphs [21].

A common characteristic shared by these three network models is that the degrees of
the vertices follow a power-law distribution. The exponent of the power-law is controlled
by a parameter γ. The interesting parameter range is γ ∈ (2, 3), as beyond this range,
these models lose key properties present in real-world networks. When γ ∈ (2, 3), two key
properties hold on all three models, namely, a polynomially-sized clique as a subgraph
and a polylogarithmic upper bound on the network’s diameter. See Chung and Lu [9] for
the proofs for Chung–Lu graphs, Friedrich and Krohmer [17, 16] for hyperbolic random
graphs, and Keusch [21] for geometric inhomogeneous random graphs.

As cliques fulfill the definition of expander required by Theorem 1.2, the aforemen-
tioned results ensure that the expander subgraph is large enough for the SIRS process to
survive superpolynomially long on such graph models. Additionally, the polylogarithmic
bound on the diameter of the graphs generated by these models suffices to show that the
infection reaches a vertex of the expander subgraph with sufficiently high probability for
the expected survival time to be superpolynomial. Following this line of argumentation
on hyperbolic random graphs for example, we arrive at the following result.

Corollary 1.6. Let G be a hyperbolic random graph with n vertices that follows a power-
law degree distribution with exponent γ ∈ (2, 3), and let C be the SIRS process on G

with infection rate λ and with constant deimmunization rate %. Further, let C start with
at least one infected vertex in the giant component and no recovered vertices, and let T
be the survival time of C. Then there exists a constant c ∈ R>0 such that if λ ≥ cn(γ−3)/2,

then E[T ] = 2Ω(n(3−γ)/2).

Similar statements can be shown for the other two models, i.e., Chung–Lu graphs
and geometric inhomogeneous random graphs.

1.4 Outlook

Although our results cover already a great range of interesting graph classes, this
article is just the first step to understanding the SIRS process more thoroughly. Our
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analyses pose exciting new challenges for different scenarios, which we briefly delineate
in the following.

Our upper bound of the expected survival time on stars (Theorem 1.1) is off from
empirical results [14] by a logarithmic factor. This shows that there is potential for
improvement in the analysis. Ideally, proving a matching lower bound would answer the
question for the exact expected survival time.

Combined, our results for stars (Theorem 1.1) and expanders (Theorem 1.2) show
that adding edges to a graph leads, eventually, from a polynomial expected survival time
to an exponential one. However, it is not clear so far when this transition happens. An
interesting next step is to look into connected stars instead of single stars. Connected
stars appear as subgraphs in important real-world network models, most prominently,
the preferential-attachment model [3], but also in Chung–Lu graphs [9], for which our
initial results could be improved, motivating this research question.

With respect to expanders with vertex degrees concentrated around d, our result
(Theorem 1.2) implies that 1/d is the threshold for the infection rate λ at which the
expected survival time transitions from logarithmic to exponential. However, our bounds
require λ to be bounded away from 1/d by a constant. It is not clear, given a sequence
of values εn ∈ o(1), what happens if λ = 1±εn

d . A more detailed analysis could provide
insights into how rapidly the transition at the threshold occurs.

A different extension of our results is to consider deimmunization rates that are
dependent on the graph size. Comparing the behavior of the SIS and the SIRS process
on stars suggests that an increased deimmunization rate leads to far longer expected
survival times. Thus, an interesting question is whether the survival time exhibits a
threshold behavior with respect to the deimmunization rate.

Multi-dimensional potentials, as the one we use for the SIRS process on expanders,
are rare in the analysis of stopping times of stochastic processes. Our approach draws
inspiration from Lyapunov stability to devise a potential function for the stochastic
process under study and then applies drift theory to convert this into a rigorous proof.
Lyapunov functions are used in mean-field theory to show stable points of dynamical
systems [26], and epidemic processes constitute only a glimpse of their applicability. We
believe that our approach might inspire further rigorous results of determining stopping
times of other stochastic processes, not limited to epidemic models.

2 Preliminaries

We study the SIRS process, which is a continuous-time Markov chain on graphs
in which the vertices change between different states, following events triggered by
Poisson processes. We analyze how this process behaves asymptotically in the number
of vertices n of the graph. Especially, when we use big-O notation or refer to variables
as constants, this is with respect to n. When we use big-O notation inside of a term in a
relation, this means that there exists a function from the big-O expression such that the
relation holds, for example, the equation a = 2Ω(n) means that there exists a function
f ∈ Ω(n) such that a = 2f(n) holds. If not stated otherwise, all variables we consider may
depend on n. Whenever we talk about Poisson processes, we refer to one-dimensional
Poisson point processes that output a random subset of the non-negative real numbers.

We first define our infection models and some related terms that we use throughout
the paper. We then state the probabilistic tools we use in the proofs.

2.1 Infection processes

Let G = (V,E) be a finite graph with vertex set V and edge set E. Further, let
λ, % ∈ R>0. In the SIRS process, for each edge e ∈ E, we define a Poisson process Me
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with parameter λ, and for each vertex v ∈ V , we define the two Poisson processes Nv
with parameter 1 and Ov with parameter %. We refer to these processes as clocks, and
when an event occurs in one of them, we say that the relevant clock triggers. We use Z
to denote the set of all of these clocks, that is, Z =

(⋃
e∈E {Me}

)
∪
(⋃

v∈V {Nv, Ov}
)
. Let

P denote the stochastic process in which all of the clocks in Z evolve simultaneously
and independently, starting at time 0. Note that almost surely there is no time point at
which two clocks trigger at once. There are almost surely a countably infinite number of
trigger times in P , which we index by the increasing sequence {γi}i∈N≥0

, where γ0 = 0.

A SIRS process C = (Ct)t∈R≥0
has an underlying graph G = (V,E), an infection

rate λ, a deimmunization rate %, and an initial partition of V into susceptible, infected,
and recovered vertices with the respective sets S′0, I

′
0, and R′0. Note that we do not

need to specify a healing rate as we normalized that to 1. At every time t ∈ R≥0, the
configuration Ct is a partition of V into S′t, I

′
t, and R′t. The configuration only changes at

times in P . Let i ∈ N>0. We consider the following configuration transitions in γi:

• If for some e = {u, v} ∈ E we have γi ∈ Me, u ∈ I ′γi−1
, and v ∈ S′γi−1

, then
S′γi = S′γi−1

\ {v}, I ′γi = I ′γi−1
∪ {v}, and R′γi = R′γi−1

. We say that v gets infected at
time point γi by u.

• If for some v ∈ V we have γi ∈ Nv and v ∈ I ′γi−1
then S′γi = S′γi−1

, I ′γi = I ′γi−1
\ {v}

and R′γi = R′γi−1
∪ {v}. We say that v recovers at time point γi.

• If for some v ∈ V we have γi ∈ Ov and v ∈ R′γi−1
, then S′γi = S′γi−1

∪ {v}, I ′γi = I ′γi−1

and R′γi = R′γi−1
\ {v}. We say that v gets susceptible at time point γi.

If none of the above three cases occurs, the configuration of C at γi is the same as the
configuration of C at γi−1. Note that at all times between γi−1 and γi, C retains the same
configuration as in γi−1.

In our proofs, we only consider the time points in P at which the configuration
changes. To this end, let P ′ = {γ0} ∪ {γi | i ∈ N>0 ∧ Cγi 6= Cγi−1}. We index the times
in P ′ by the increasing sequence {τi}i∈N. For all i ∈ N, we call τi the i-th step of the
process.

If at any point in time no vertex is infected, then from that point onward, no vertex is
infected. We say that the infection dies out or goes extinct at the first (random) time T
with I ′T = ∅. We call T the survival time of the SIRS process.

We only keep track of the number of vertices in each of the sets. To this end, we
define for all t ∈ R≥0 the random variables St = |S′t|, It = |I ′t|, and Rt = |R′t|. These
random variables change depending on the clocks in P . We say that an event happens at
a rate of r ∈ R>0 if and only if the set of clocks that cause this event when they trigger
has a sum of rates equal to r.

We define the projection C ′ of C onto G′ as the process on G′ such that, at each point
in time, each vertex of G′ in C ′ is in the same state as it is in C. When considering such
a projection, we use St, It, and Rt to only count the vertices of C ′ in the corresponding
state. Also {τi}i∈N only contains times at which the state of a vertex in C ′ changes. The
survival time of a projected process is the first point in time that the projected process
has no infected vertices. Note that the survival time T ′ of C ′ is a lower bound for the
survival time T of C, as all infected vertices of C ′ are also infected in C.

We use stochastic domination to transfer results from one random variable to another.
We say that a random variable (Xt)t∈R dominates another random variable (Yt)t∈R if
and only if there exists a coupling (X ′t, Y

′
t )t∈R in a way such that for all t ∈ R≥0 we have

X ′t ≥ Y ′t .
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2.2 Probabilistic tools

We use general concepts from probability theory (see for example [13, 27]). In
addition, we use the following theorems.

We use the optional-stopping theorem for submartingales to bound the probability of
reaching a specific configuration. For an event E, the symbol 1E denotes the indicator
random variable that is 1 if E is true and 0 otherwise.

Theorem 2.1 (Optional stopping [27, Theorem 13.2]). Let (Xt)t∈N be a submartingale
and T a stopping time, both with respect to a filtration (Ft)t∈N. Assume that the following
two conditions hold:

1. E[T ] <∞.

2. There is a c ∈ R such that for all t ∈ N we have E[|Xt+1 −Xt| | Ft ] ·1t<T ≤ c ·1t<T .

Then E[XT ] ≥ E[X0].

We use the following theorem in order to show an exponential expected survival time
for the SIRS process. We state it in a fashion that better suits our purposes.

Theorem 2.2 (Negative drift [29, Theorem 4] [30]). Let (Xt)t∈N be a random process
over R, adapted to a filtration (Ft)t∈N. Let there be an interval [a, b] ⊆ R, two constants
δ, ε ∈ R>0 and, possibly depending on l := b − a, a function r(l) satisfying 1 ≤ r(l) ∈
o(l/ log(l)). Let T = inf{t ∈ N | Xt ≥ b}. Suppose that for all t ∈ N the following two
conditions hold:

1. E[Xt+1 −Xt | Ft ] · 1a<Xt<b ≤ −ε · 1a<Xt<b.
2. For all j ∈ R≥0 we have Pr[|Xt+1 −Xt| ≥ j | Ft ] · 1t<T ≤ r(l)

(1+δ)j · 1t<T .

Then there exists a constant c ∈ R>0 such that

Pr
[
T ≤ 2cl/r(l)

∣∣ F0

]
· 1X0≤a = 2−Ω(l/r(l)) · 1X0≤a.

The following theorem bounds the expected value of the maximum of n exponentially
distributed random variables.

Theorem 2.3 ([27, Lemma 2.10]). Let n ∈ N>0, and let {Xi}i∈[n] be independent random
variables that are each exponentially distributed with parameter λ ∈ R>0. Let Y =

maxi∈[n]Xi, and let Hn be the n-th harmonic number. Then

E[Y ] =
Hn

λ
<

1 + ln(n)

λ
.

We use the following version of Wald’s equation, which does not require the addends
to be independent.

Theorem 2.4 (Generalized Wald’s equation [11, Theorem 5]). Let c, c′ ∈ R, and let
(Xt)t∈N be a random process over R≥c such that

∑
i∈[S]Xi has a finite expectation.

Furthermore, let (Ft)t∈N be a filtration, and let S be a stopping time with respect to
(Ft)t∈N. If for all i ∈ N, it holds that E[Xi+1 | Fi ] ≤ c′, then

E

[∑
i∈[S]

Xi

∣∣∣∣ F0

]
= E

[∑
i∈[S]

E[Xi | Fi−1 ]

∣∣∣∣ F0

]
.

2.3 Expander graphs

There are many notions of how to define expander graphs. We use algebraic ex-
panders in which all but one of the eigenvalues of the normalized Laplacian of the graph
are very close to 1. These graphs have some nice properties that let us bound the
number of edges between infected and susceptible vertices. Formally, let G = (V,E)
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be a graph with n vertices {vi}ni=1, and let L be its normalized Laplacian as defined in
Equation (1.1). Let L have eigenvalues λ1 ≤ ... ≤ λn. The spectral expansion of L is
defined as δ = maxi≥2 |1− λi|. We call G an (n, (1± εd)d, δ)-expander if and only if it has
n vertices, a spectral expansion of δ and only vertices with degree between (1− εd)d and
(1 + εd)d.

For two vertex sets X,Y ⊆ V , let E(X,Y ) denote the number of edges between X

and Y . For a vertex set X, let vol(X) denote the sum of the vertex degrees of all vertices
in X. Using this notation, we have the following theorem

Theorem 2.5 ([8, Theorem 5.2]). Let G = (V,E) be a graph with spectral expansion δ
and let X,Y ⊆ V . Then

∣∣∣∣|E(X,Y )| − vol(X) · vol(Y )

vol(V )

∣∣∣∣ ≤ δ ·
√

vol(X)vol(X)vol(Y )vol(Y )

vol(V )
.

Applying Theorem 2.5 to expanders, we get the following two corollaries..

Corollary 2.6. Let G = (V,E) be a (n, (1± εd)d, δ)-expander, and let X ⊆ V . Then

|E(X,X)| ≥ (1− δ)(1− 3εd)d
|X| · |X|

n
.

Proof. Because the vertex degrees of all vertices in G are bounded, we know that for
each S ⊆ V holds

(1− εd)d|S| ≤ vol(S) ≤ (1 + εd)d|S|. (2.1)

Plugging that into the result of Theorem 2.5 gives us

|E(X,X)| ≥ vol(X) · vol(X)

vol(V )
− δ ·

√
vol(X)vol(X)vol(X)vol(X)

vol(V )

= (1− δ)vol(X) · vol(X)

vol(V )

≥ (1− δ) (1− εd)d|X| · (1− εd)d|X|
(1 + εd)dn

≥ (1− δ)(1− 3εd)d
|X| · |X|

n
.

Corollary 2.7. Let G = (V,E) be a (n, (1 ± εd)d, δ)-expander, and let X,Y ⊆ V . If
εd ≤ 1/5, then ∣∣∣∣|E(X,Y )| − d |X| · |Y |

n

∣∣∣∣ ≤ 4εdd
|X| · |Y |

n
+ 2δd

√
|X| · |Y |.

Proof. Because the vertex degrees of all vertices in G are bounded, we know that for
each S ⊆ V , Equation (2.1) holds. Theorem 2.5 gives us both an upper and a lower bound
for |E(X,Y )|− vol(X)·vol(Y )

vol(V ) . We solve them for |E(X,Y )| and bound them separately using

that εd ≤ 1/5.

|E(X,Y )| ≥ vol(X) · vol(Y )

vol(V )
− δ ·

√
vol(X)vol(X)vol(Y )vol(Y )

vol(V )

≥ vol(X) · vol(Y )

vol(V )
− δ ·

√
vol(X)vol(Y )
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≥ (1− εd)d|X| · (1− εd)d|Y |
(1 + εd)dn

− δ(1 + εd)d
√
|X| · |Y |

≥ (1− 4εd)d
|X| · |Y |

n
− 2δd

√
|X| · |Y | as well as

|E(X,Y )| ≤ vol(X) · vol(Y )

vol(V )
+ δ ·

√
vol(X)vol(X)vol(Y )vol(Y )

vol(V )

≤ vol(X) · vol(Y )

vol(V )
+ δ ·

√
vol(X)vol(Y )

≤ (1 + εd)d|X| · (1 + εd)d|Y |
(1− εd)dn

+ δ(1 + εd)d
√
|X| · |Y |

=

(
1 +

3εd + ε2d
1− εd

)
d
|X| · |Y |

n
+ δ(1 + εd)d

√
|X| · |Y |

≤ (1 + 4εd)d
|X| · |Y |

n
+ 2δd

√
|X| · |Y |.

Subtracting d |X|·|Y |n from both inequalities and combining them proves the corollary.

3 SIRS on stars

We show that the expected survival time of the SIRS process on stars is bounded
from above by a polynomial in the number of vertices that is independent of the infection
rate (Theorem 1.1). To this end, we bound the number of times that the center gets
infected and the time between two infections of the center. We use that while the center
is not infected, no leaf gets infected. Hence, if all of the leaves recover before the center
gets susceptible after it recovered, the infection dies out.

We first bound the expected time that it takes for all of the leaves to recover. We
refer to each clock at a vertex whose rate is the recovery (of 1) rate as recovery clock.

Lemma 3.1. Let G be a star with n ∈ N>0 leaves, and let C be a SIRS process on G with
infection rate λ and with deimmunization rate %. Let T be the time that it takes for all
recovery clocks of the leaves to trigger at least once. Then E[T ] ≤ ln(n) + 1.

Proof. The star has n leaves, which all have a clock that recovers them at a rate of 1. For
each of the clocks, the time until the first trigger happens is exponentially distributed with
parameter 1. Hence, T is calculated as the maximum of the n exponential distributions
of the independent clocks. By Theorem 2.3, E[T ] ≤ ln(n) + 1.

We now use Lemma 3.1 to bound the time it takes from one infection of the center
until it gets infected again or until the infection dies out.

Lemma 3.2. Let G be a star with n ∈ N>0 leaves, and let C be a SIRS process on G with
infection rate λ and with deimmunization rate %. Let t0 ∈ R≥0 be a time at which the
infection has not died out yet. Further, let T ∈ R≥0 be the first time after t0 at which
either the center gets infected after being susceptible or the infection dies out. Then
E[T − t0] ≤ ln(n) + 2.

Proof. If the center starts infected, in order for either the center to get infected again
after being susceptible or the infection to die out, the center has to recover first. Let
T ′ ∈ R be the first time after t0 at which the center recovers. As all vertices recover at a
rate of 1, the random variable T ′ − t0 is exponentially distributed with a parameter of 1.

Between T ′ and T , no leaf gets infected, as the center is not infected and all edges are
incident to the center. Hence, when all recovery clocks of the leaves trigger in this time
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interval at least once, the infection dies out. Therefore, the first point in time after T ′ at
which all of these recovery clocks triggered at least once is an upper bound for T . By
Lemma 3.1, the expected time for this last trigger to happen is at most ln(n) + 1. That
gives us

E[T − t0] = E[T − T ′ + T ′ − t0]

= E[T − T ′] + E[T ′ − t0]

≤ ln(n) + 2.

Next, we bound the probability from below that when starting with an infected center,
the infection dies out before the center gets infected again. We use this later to get an
upper bound on the number of times that the center gets infected in total.

Lemma 3.3. Let G be a star with n ∈ N>0 leaves, and let C be a SIRS process on G with
infection rate λ and with deimmunization rate %. Let t0 ∈ R≥0 be a time at which the
center is infected. Further, let E0 be the event that the infection dies out after t0 before
the center gets infected again (after being recovered in between). Then for sufficiently
large n, it holds that Pr[E0] ≥ 1

4n
−%.

Proof. In order for either the center to get infected again after being susceptible or
for the infection to die out, the center has to recover first. Let t1 ∈ R be the first time
after t0 at which the center recovers. As long as the center is in the recovered state, no
vertex gets infected, as all edges of the graph are incident to the center. If all leaves
recover before the center gets susceptible, the infection dies out. In order to bound the
probability of this event, we consider the first time T ∈ R after t1 at which the center
gets susceptible, and we also consider the first time T ′ ∈ R after t1 at which all of the
recovery clocks of the leaves trigger at least once in the interval (t1, T

′]. In particular,
we use that all leaves recover before the center gets susceptible if T ′ − t1 < ln(n) and
T − t1 ≥ ln(n).

Each vertex recovers after a time that is exponentially distributed with parameter 1.
By definition of T ′, it is the maximum of n exponentially distributed random variables. In
order for T ′ − t1 < ln(n), all of those random variables have to be smaller than ln(n). As
all of them are independent, we get that, for sufficiently large n,

Pr[T ′ − t1 < ln(n)] = Pr[Exp(1) < ln(n)]
n

=
(

1− e−1 ln(n)
)n

=

(
1− 1

n

)n
≥ 1

4
.

All vertices lose their immunity at a rate of %. Hence, T−t1 is exponentially distributed
with parameter %. Using the exponential probability distribution, we get

Pr[T − t1 ≥ ln(n)] = e−% ln(n)

= n−%.

Now using the fact that the infection dies out when all leaves recover before the
center gets susceptible and that T − t1 and T ′ − t1 are independent, we get

Pr[E0] ≥ Pr[T ′ − t1 < T − t1]

≥ Pr[T ′ − t1 < ln(n) ∧ T − t1 ≥ ln(n)]
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= Pr[T ′ − t1 < ln(n)] · Pr[T − t1 ≥ ln(n)]

≥ 1

4
n−%.

Using the previous bounds, we now derive an upper bound on the expected survival
time of a SIRS process on a star.

Theorem 1.1. Let G be a star with n ∈ N>0 leaves, and let C be a SIRS process on G

with infection rate λ and with deimmunization rate %. Let T be the survival time of C.
Then for sufficiently large n, it holds that E[T ] ≤

(
ln(n) + 2

)
(4n% + 1) ∈ O(n% ln(n)).

Proof. Let S be the random variable that counts the number of times that the center
gets infected before the infection dies out. For all i ∈ N≤S+1, let Xi be the i-th time at
which either the center gets infected or the infection dies out (we define X0 = 0). It then
holds that T = XS+1 =

∑S
i=0Xi+1 −Xi. We aim to bound the expectation of this value

using the generalized Wald’s equation (Theorem 2.4).
Let (Ft)t∈R≥0

be the natural filtration of C. By Lemma 3.2, it holds for all i ∈ N≤S
that 0 ≤ E[Xi+1 −Xi | FXi ] ≤ ln(n) + 2. Hence, the expectations of all of the summed
random variables are bounded. By Lemma 3.3, for all i ∈ N≥1, the i-th infection of the
center has a probability of at least 1

4n
−% to be the last one if there is an i-th infection of

the center. Therefore, S is dominated by a geometrically distributed random variable
A ∼ Geom( 1

4n
−%). Hence,

∑S
i=0Xi+1 −Xi is integrable. By Theorem 2.4, we get

E[T | F0 ] = E

[
S∑
i=0

Xi+1 −Xi

∣∣∣∣∣ F0

]

= E

[
S∑
i=0

E[Xi+1 −Xi | FXi ]

∣∣∣∣∣ F0

]

≤ E

[
S∑
i=0

ln(n) + 2

∣∣∣∣∣ F0

]

= (ln(n) + 2)E

[
S∑
i=0

1

∣∣∣∣∣ F0

]
≤ (ln(n) + 2)(4n% + 1).

4 SIRS on expanders

We consider the SIRS process on graphs that have expanders as subgraphs. In
particular, we show an exponential expected survival time for the projection of the SIRS
process onto the expander when the deimmunization rate is constant and the infection
rate is sufficiently high (Theorem 1.2). Note that the exponential expected survival
time and the required infection rate depend only on the size and vertex degrees of the
expander. In Section 4.1, we begin by analyzing basic properties of the process, such as
the transition rates between all of the states.

In Section 4.2, we show that the expected survival time of the considered SIRS
processes is exponential if λ ≥ c

d for a constant c ∈ R>1. We first prove that the
process reaches a configuration with at least εn infected vertices with sufficiently high
probability. We then provide a lower bound for the expected survival time starting at
such a configuration. To this end, we define a potential over the configuration space that
has in a specific region a constant negative drift away from the configuration with no
infected vertices. We then translate this region into bounds for the potential, allowing
us to apply the negative-drift theorem (Theorem 2.2) to get an exponential expected
survival time.
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4.1 The SIRS process

Let G = (V,E) be a graph and let G′ = (V ′, E′) be a subgraph of G that is an
(n, (1 ± εd)d, δ)-expander. Let C be a SIRS process with infection rate λ ≥ c

d for a
constant c ∈ R>1 and deimmunization rate % on G. Consider the projection C ′ of C
onto G′. We define for all t ∈ N the random variable Pτt = Sτt + %

cn. We use Pτt to
define the potential later. Roughly, using Pτt instead of Sτt has the effect that changes
of Sτt have a lower impact on the potential. Note that, at all times t, it holds that
Sτt + Iτt +Rτt = n, since every vertex of G is always in exactly one of these three sets.
Additionally, Pτt + Iτt +Rτt = n+ %

cn = n′.
For all t ∈ N, t < T , one of the following four events occurs at step t+ 1 (i.e., τt+1):

either a susceptible vertex is infected through an edge outside of G′, which we call Eo,t;
or a susceptible vertex is infected through an edge inside of G′, which we call Esi,t; or
an infected vertex recovers in the event Eir,t; or a recovered vertex loses its immunity,
which we call Ers,t.

For each time point τt, let Eτt(I, S) be the number of edges from the infected to the
susceptible vertices in G′ and let Eτt(I +R,S) be the number of edges from the infected
and recovered to the susceptible vertices in G′. At the time point τt, vertices get infected
by other vertices via edges inside G′ at a rate of rsi,t = λEτt(I, S), because every infected
vertex infects each susceptible vertices at a rate of λ. Vertices recover from an infection
at a rate of rir,t = Iτt and get susceptible at a rate of rrs,t = %Rτt . As we only consider
the states of the vertices in G′, we cannot calculate the rate ro,t at which susceptible
vertices get infected through edges outside of G′, we only know that it is non-negative.
Now let rt = ro,t + rsi,t + rir,t + rrs,t. We get

po,t = Pr[Eo,t] =
ro,t
rt
≥ 0,

psi,t = Pr[Esi,t] =
rsi,t
rt

=
λEτt(I, S)

rt
,

pir,t = Pr[Eir,t] =
rir,t
rt

=
Iτt
rt
, and

prs,t = Pr[Ers,t] =
rrs,t
rt

=
%Rτt
rt

.

Note that we only consider these probabilities in configurations in which at least one
vertex is infected, hence rt 6= 0 and the above probabilities are well-defined. We now
define

I∗ =
%(c− 1)

(1 + %)c
n.

This value is the number of infected vertices in an equilibrium configuration of a SIRS
process on a clique with n vertices and an infection rate of c

n . The equilibrium configura-
tion is obtained by making the probabilities of infecting, healing and deimmunizing a
vertex equally large. The process tends to drift towards that configuration. A clique and
the expanders we consider behave very similarly, thus, I∗ is also a good estimate for the
number of infected vertices that C tends to have on G′.

4.2 Exponential survival time

We now show that the infection becomes epidemic if λ ≥ c
d for a constant c ∈ R>1.

We start by proving that, when starting with one infected vertex inside of the expander,
the infection reaches a configuration with at least εn infected vertices with sufficiently
large probability.
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Lemma 1.3. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Further, let C start with at
least one infected vertex in G′ and no recovered vertices in G′. Consider the projection
C ′ of C onto G′. If λ ≥ c

d for a constant c ∈ R>1, then there exists a constant ε ∈ R>0

such that for sufficiently large n, the probability that there exists a time step t ∈ N with
Iτt ≥ εn is at least 1

n+2 .

Proof. Let c′ = c−1. Note that c′ is positive because c > 1. Let εH , εS ∈ R>0 be constants
that we specify later. We define for all t ∈ N the potential Ht = H(Iτt , Rτt) = Iτt − εHRτt .
Additionally, we define the stopping time T = inf{t ∈ N | Ht ≤ 0 ∨ Sτt < (1− εS)n} and
the natural filtration (Ft)t∈R≥0

of C. We aim to show that (Ht)t∈N is a sub-martingale
until T . This allows us to apply the optional-stopping theorem (Theorem 2.1) to bound
E[HT ] from below. The law of total expectation then yields a lower bound of 1

n+2 for
Pr[HT > 0]. We conclude the proof by showing that if HT > 0, then IτT ≥ εn.

We first bound rsi,t using Theorem 2.6 for all times t < T . We get

rsi,t = λEτt(I, S)

≥ λ(Eτt(I +R,S)− (1 + εd)dRτt)

≥ λ
(

(1− δ)(1− 3εd)
d(Iτt +Rτt)Sτt

n
− (1 + εd)dRτt

)
≥ λ((1− δ)(1− 3εd)(1− εS)d(Iτt +Rτt)− (1 + εd)dRτt)

≥ c

d
((1− δ − 3εd − εS)d(Iτt +Rτt)− (1 + εd)dRτt)

≥ cIτt − (δ + 4εd + εs)c(Iτt +Rτt).

We now bound for all t ∈ N the drift E[(Ht+1 −Ht) · 1t<T | Fτt ]. To improve readabil-
ity, we omit the multiplicative 1t<T in all of the terms.

E[Ht+1 −Ht | Fτt ] = (psi,t + po,t) · (H(Iτt + 1, Rτt)−Ht)

+ pir,t(H(Iτt − 1, Rτt + 1)−Ht) + prs,t(H(Iτt , Rτt − 1)−Ht)

= psi,t + po,t − pir,t(1 + εH) + prs,tεH

≥ psi,t − pir,t(1 + εH) + prs,tεH

≥ (cIτt − (δ + 4εd + εs)c(Iτt +Rτt)− Iτt(1 + εH) + %RτtεH)/rt

=
(c′ − εH − (δ + 4εd + εS)c)Iτt + (%εH − (δ + 4εd + εS)c)Rτt

rt

≥ 0.

The last inequality holds by first choosing εH such that εH < c′ and εH ≤ 1 and then
choosing εS small enough. Then for sufficiently small δ and εd, both of the summands
are positive. Note that we do not need εH ≤ 1 here, but we use that later to bound the
change of H in one step.

Note that E[T ] < ∞ because in each step t ∈ N<T , there is a non-zero probability
(independent of t) to recover a vertex, hence there is always a non-zero probability to
recover all vertices within the next n steps, which stops the process. Therefore, by
applying the optional-stopping theorem (Theorem 2.1), we get E[HT ] ≥ E[H0].

By the law of total expectation, we get that

E[HT ] = E[HT | HT ≤ 0 ] · Pr[HT ≤ 0] + E[HT | HT > 0 ] · Pr[HT > 0]

= E[HT | HT ≤ 0 ] · (1− Pr[HT > 0]) + E[HT | HT > 0 ] · Pr[HT > 0].
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Because of the definition of T and the fact that H changes by at most 1 + εH ≤ 2 in
one step, we get that HT ≥ −2. We also know that HT ≤ n as IτT ≤ n. By definition of C,
it holds that H0 ≥ 1. By substituting E[HT ] in E[HT ] ≥ E[H0] and solving for Pr[HT > 0],
we get

Pr[HT > 0] ≥ 1− E[HT | HT ≤ 0 ]

E[HT | HT > 0 ]− E[HT | HT ≤ 0 ]

≥ 1

n+ 2
.

Now assume HT > 0. By the definition of T , it then holds that SτT < (1 − εS)n.
Therefore,

IτT +RτT = n− SτT > εSn.

With HT > 0, we then get IτT > εHRτT , which implies(
1 + ε−1H

)
IτT > εSn.

Choosing ε accordingly concludes the proof.

Note that the proof of the previous lemma does not directly use that d→∞. However,
that is a necessary condition for δ → 0, so we included it into the lemma statement to
make sure that the lemma does not work for constant d. We do the same in following
lemmas.

To show that the infection survives long from that point onward, we define a potential
function that assigns a real number to each configuration of the process, and we analyze
its drift. The potential function is an adjusted version of the Lyapunov function of
Korobeinikov and Wake [22]. We first define an auxiliary function f .

Definition 4.1. Let f : (R>0)2 → R be such that, for all x, x∗ ∈ R>0, we have

f(x∗, x) = x∗
( x
x∗
− ln

x

x∗
− 1
)
.

Note that the derivative df(x∗,x)
dx = 1 − x∗

x . Hence, for a given x∗ ∈ R>0, the value
x = x∗ is the only local optimum of f(x∗, x), and it is a global minimum. The x∗ therefore
acts like a target value and f(x∗, x) gets larger the further x is away from that target.
We now define the potential function that we use in the following lemmas.

Definition 4.2. Let G be a graph and let G′ be a subgraph of G that is an (n, (1±εd)d, δ)-
expander. Let C be a SIRS process on G with infection rate λ ≥ c

d for a constant
c ∈ R>1 and with deimmunization rate %. Consider the projection C ′ of C onto G′. Let
n′ =

(
1 + %

c

)
n. For all t ∈ N, we define Ft as

Ft = F (Pτt , Iτt) = f(n′, Pτt) + f(I∗, Iτt).

Further, let (Ft)t∈R≥0
be the natural filtration of C. We define for all t ∈ N the drift Dt as

Dt = E[Ft+1 − Ft | Fτt ].

The potential F becomes very large when the infection is close to dying out. We aim
to show that the process tends to drift away from that high-potential region when we
ignore the impact of the vertices outside of the considered subgraph and that there is a
region in which the extra vertices only enlarge that drift. To calculate the differences of
the F values in the drift, we first have a look at f .
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Lemma 4.3. Let x∗ ∈ R>0 and x ∈ R>2. Then

f(x∗, x+ 1)− f(x∗, x) ≤ 1− x∗

x
+

x∗

x(x+ 1)
and

f(x∗, x− 1)− f(x∗, x) ≤ −
(

1− x∗

x
− x∗

x(x− 1)

)
.

Proof. We use that for all y ∈ R>1, it holds that

1

y + 1
< ln(y + 1)− ln(y) <

1

y
.

Together with the definition of f , we have

f(x∗, x+ 1)− f(x∗, x) = x∗
(
x+ 1

x∗
− ln

x+ 1

x∗
− 1

)
− x∗

( x
x∗
− ln

x

x∗
− 1
)

= 1− x∗
(
ln(x+ 1)− lnx

)
≤ 1− x∗

x+ 1
.

For the second part, we get

f(x∗, x− 1)− f(x∗, x) = x∗
(
x− 1

x∗
− ln

x− 1

x∗
− 1

)
− x∗

( x
x∗
− ln

x

x∗
− 1
)

= −1 + x∗
(
lnx− ln(x− 1)

)
≤ −

(
1− x∗

x− 1

)
.

Noting that x∗

x+1 = x∗

x −
x∗

x(x+1) and x∗

x−1 = x∗

x + x∗

x(x−1) concludes the proof.

To bound the drift, we first show that there is an ε ∈ R>0 such that if there are less
than εn infected vertices, the drift is upper bounded by a term that is independent of
ro,t. That is needed as we do not assume any information about ro,t other than it being
non-negative.

Lemma 4.4. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let C be a SIRS process on G with infection rate λ and with constant
deimmunization rate %. Consider the projection C ′ of C onto G′. Let E(I, S) be the
amount of edges between the infected and the susceptible vertices at time t, and let
r′t = c

dE(I, S) + rir,t + rrs,t. If λ ≥ c
d for a constant c ∈ R>1, then there exists a constant

ε ∈ R>0 such that, for all t ∈ N and sufficiently large n, if 2 ≤ Iτt ≤ εn, then

r′t ·Dt ≤
c

d
E(I, S) · (F (Pτt − 1, Iτt + 1)− F (Pτt , Iτt))

+ rir,t · (F (Pτt , Iτt − 1)− F (Pτt , Iτt))

+ rrs,t · (F (Pτt + 1, Iτt)− F (Pτt , Iτt)).

Proof. Let t ∈ N. For easier notation, we first define

Fsi,t = F (Pτt − 1, Iτt + 1)− F (Pτt , Iτt),

Fir,t = F (Pτt , Iτt − 1)− F (Pτt , Iτt)

and Frs,t = F (Pτt + 1, Iτt)− F (Pτt , Iτt).

We know that rsi,t = λE(I, S) = c
dE(I, S) + rc,t for some rc,t ∈ R≥0. By the definition

of Dt and the fact that rt = r′t + ro,t + rc,t, we get that

r′t ·Dt = r′t ·
ro,tFsi,t + rsi,tFsi,t + rir,tFir,t + rrs,tFrs,t

rt
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= r′t ·
ro,tFsi,t + rc,tFsi,t + c

dE(I, S)Fsi,t + rir,tFir,t + rrs,tFrs,t

rt

=
c

d
E(I, S)Fsi,t + rir,tFir,t + rrs,tFrs,t

+
ro,t + rc,t

rt

(
r′tFsi,t −

c

d
E(I, S)Fsi,t − rir,tFir,t − rrs,tFrs,t

)
As ro,t+rc,t

rt
is non-negative, to prove the lemma it is sufficient to show that

r′tFsi,t −
c

d
E(I, S)Fsi,t − rir,tFir,t − rrs,tFrs,t ≤ 0.

By Lemma 4.3, we know that for all x∗ ∈ R>0 and x ∈ R>2 holds

1− x∗

x
≤ f(x∗, x+ 1)− f(x∗, x) ≤ 1− x∗

x+ 1
.

Using these bounds, we get that

−Fir,t = −(F (Pτt , Iτt − 1)− F (Pτt , Iτt))

= −(f(I∗, Iτt − 1)− f(I∗, Iτt))

≤ 1− I∗

Iτt
, that

−Frs,t = −(F (Pτt + 1, Iτt)− F (Pτt , Iτt))

= −(f(n′, Pτt + 1)− f(n′, Pτt))

≤ n′

Pτt
− 1, and that

Fsi,t = F (Pτt − 1, Iτt + 1)− F (Pτt , Iτt)

= f(n′, Pτt − 1)− f(n′, Pτt) + f(I∗, Iτt + 1)− f(I∗, Iτt)

≤ 1− I∗

Iτt + 1
−
(

1− n′

Pτt − 1

)
=

n′

Pτt − 1
− I∗

Iτt + 1
.

Note that n′ is in Θ(n) and Pτt is bounded from below by %
cn, therefore n′

Pτt−1
is

bounded from above by a constant a. Assume that Iτt + 1 ≤ εn. Let b = %(1−c)
(1+%)c . Note that

b > 0 is constant and I∗ = bn. Using the bounds from above we get

r′tFsi,t −
c

d
E(I, S)Fsi,t − rir,tFir,t − rrs,tFrs,t

= (rir,t + rrs,t)Fsi,t − rir,tFir,t − rrs,tFrs,t

≤ (rir,t + rrs,t)

(
a− bn

εn

)
+ rir,t

(
1− bn

εn

)
+ rrs,t(a− 1)

≤ (rir,t + rrs,t)

(
2a− b

ε

)
.

We know that (rir,t + rrs,t) is non-negative, therefore we can choose ε small enough
such that the right-hand side of the previous equation is always at most 0, which
concludes the proof.

We now show that the drift Dt is bounded from above by a negative constant for
configurations in which the number of infected vertices is very small but still linear in n.
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Lemma 1.4. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′

of C onto G′. Let t ∈ N and ε0, ε ∈ (0, 1) be sufficiently small constants. Assume that
ε0n ≥ Iτt ≥ εn. If λ ≥ c

d for a constant c ∈ R>1, then there exists a constant a ∈ R>0

such that Dt ≤ −a for sufficiently large n.

Proof. Let E(I, S) be the amount of edges between the infected and the susceptible
vertices at time t, and let r′t = c

dE(I, S) + rir,t + rrs,t. For this proof, we first use the
law of total expectation and Lemma 4.3 to get a large formula as an upper bound for
r′tDt. We split this bound into multiple parts and bound each part separately. We show
that, with the given conditions, one of the parts is bounded from above by −mn for a
constant m ∈ R>0, and the other part is in o(n), so it is asymptotically much smaller in
absolute values than the other part. We conclude the proof by bounding r′t and dividing
the obtained bound for r′tDt by it.

Using Lemma 4.4 and Lemma 4.3, we get

r′t ·Dt ≤
c

d
E(I, S) · (F (Pτt − 1, Iτt + 1)− F (Pτt , Iτt))

+ rir,t · (F (Pτt , Iτt − 1)− F (Pτt , Iτt))

+ rrs,t · (F (Pτt + 1, Iτt)− F (Pτt , Iτt))

≤ c

d
E(I, S) ·

((
1− I∗

Iτt
+

I∗

Iτt(Iτt + 1)

)
−
(

1− n′

Pτt
− n′

Pτt(Pτt − 1)

))
+ rir,t ·

(
−
(

1− I∗

Iτt
− I∗

Iτt(Iτt − 1)

))
+ rrs,t ·

(
α

(
1− n′

Pτt
+

n′

Pτt(Pτt + 1)

))
=

(
1− I∗

Iτt

)( c
d
E(I, S)− rir,t

)
+

(
1− n′

Pτt

)(
rrs,t −

c

d
E(I, S)

)
+

c
dE(I, S)I∗

Iτt(Iτt + 1)
+

c
dE(I, S)n′

Pτt(Pτt − 1)
+

rir,tI
∗

Iτt(Iτt − 1)
+

rrs,tn
′

Pτt(Pτt + 1)
.

Note that with the given conditions, all values of Pτt , Iτt , n
′, and I∗ are in Θ(n). All of

c
dE(I, S), rir,t, and rrs,t are in O(n). Therefore, the terms in the second row of the last
sum are in O(1), thus we only need to bound the first part.

We know the exact values of rrs,t and rir,t. However, the value of c
dE(I, S) depends

on which vertices are infected. We use the expander properties of G′ and Theorem 2.7

to bound this number. Note that both
(

1− I∗

Iτt

)
and

(
1− n′

Pτt

)
are negative and lower

bounded by some constant. We get for sufficiently large n that(
1− I∗

Iτt

)( c
d
E(I, S)− rir,t

)
+

(
1− n′

Pτt

)(
rrs,t −

c

d
E(I, S)

)
≤
(

1− I∗

Iτt

)( c
n
IτtSτt − rir,t − 4εd

c

n
IτtSτt − 2cδ

√
IτtSτt

)
+

(
1− n′

Pτt

)(
rrs,t −

c

n
IτtSτt − 4εd

c

n
IτtSτt − 2cδ

√
IτtSτt

)
≤
(

1− I∗

Iτt

)( c
n
IτtSτt − rir,t

)
+

(
1− n′

Pτt

)(
rrs,t −

c

n
IτtSτt

)
+

(
I∗

Iτt
+

n′

Pτt

)(
2cδ
√
IτtSτt + 4εd

c

n
IτtSτt

)
.
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Note that I∗

Iτt
+ n′

Pτt
is in Θ(1), hence the last part of the last sum is in O((δ + εd)n).

As δ + εd goes towards 0, this is asymptotically smaller than the rest of the drift, which
we show now.(

1− I∗

Iτt

)( c
n
IτtSτt − rir,t

)
+

(
1− n′

Pτt

)(
rrs,t −

c

n
IτtSτt

)
=

(
1− I∗

Iτt

)( c
n
IτtPτt − %Iτt − Iτt

)
+

(
1− n′

Pτt

)(
%Rτt −

c

n
IτtPτt + %Iτt

)
=

(
1− I∗

Iτt

)( c
n
IτtPτt − (1 + %)Iτt

)
+

(
1− n′

Pτt

)(
%n′ − %Pτt −

c

n
IτtPτt

)
=
c

n
IτtPτt − (1 + %)Iτt −

c

n
I∗Pτt + (1 + %)I∗ + 2%n′ − %Pτt −

c

n
IτtPτt − %

n′2

Pτt
+
c

n
Iτtn

′

= (c− 1)Iτt −
%(c− 1)

1 + %
Pτt +

%(c− 1)

c
n+ 2%n′ − %Pτt − %

n′2

Pτt

= %

(
(c− 1)Iτt

%
+
c− 1

c+ %
n′ + 2n′ − c+ %

1 + %
Pτt −

n′2

Pτt

)
.

We aim to bound this term from above. To this end, we bound − (c+%)
1+% Pτt −

n′2

Pτt
from

above. This term has exactly one maximum for positive Pτt which is at Pτt = n′
√

1+%
c+% .

We also bound Iτt ≤ ε0c
c+%n

′ from above. We get

%

(
(c− 1)Iτt

%
+
c− 1

c+ %
n′ + 2n′ − c+ %

1 + %
Pτt −

n′2

Pτt

)
≤ %n′

(
(c− 1)c

%(c+ %)
ε0 +

c− 1

c+ %
+ 2− 2

√
c+ %

1 + %

)
.

The expression in the brackets is a constant, and we aim to show that it is negative

for sufficiently small ε0. We achieve this by showing that c−1
c+% + 2− 2

√
c+%
1+% is negative

and then choosing ε0 small enough. As both % and c− 1 are positive, we get

c− 1

c+ %
+ 2− 2

√
c+ %

1 + %
< 0

⇔ c− 1

c+ %
+ 2 < 2

√
c+ %

1 + %

⇔ (c− 1)2

(c+ %)2
+ 4

c− 1

c+ %
+ 4 < 4

c+ %

1 + %

⇔ (c− 1)2

(c+ %)2
+ 4

c− 1

c+ %
< 4

c− 1

1 + %

⇔ (c− 1)2

(c+ %)2
< 4

(c− 1)2

(1 + %)(c+ %)

⇔ 1 + % < 4(c+ %).

The last line holds because c > 1. Taking everything together, we get that r′t · Dt is
bounded from above by the sum of a constant, a term that is in Θ((δ + εd)n), and −b%n′,
where b is a positive constant for sufficiently small ε0.

We know that r′t = c
dE(I, S) + Iτt + %Rτt ≤ cn(1 + εd) + n+ %n = (c(1 + εd) + 1 + %)n.

As also r′t ≥ Iτt ≥ εn > 0, by dividing the inequality for r′t ·Dt by r′t, we get that there
exists a constant a ∈ R>0 such that Dt ≤ −a, concluding the proof.
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We aim to apply the negative-drift theorem (Theorem 2.2) to bound the expected
survival time of the infection. In Lemma 1.4, we showed a constant negative drift of
the potential in a region of the configuration space. To apply the drift theorem, we
first transform the configuration space restrictions into restrictions on the value of the
potential. The first lemma shows that if there is at least a constant amount of infected
vertices, the potential does not get too large.

Lemma 4.5. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′

of C onto G′. Let t ∈ N and ε ∈ (0, 1) be constants such that Iτt ≥ εn. If λ ≥ c
d for a

constant c ∈ R>1, then Ft ∈ O(n).

Proof. We aim to bound Ft from above by writing it as a sum and bounding the individual
summands. To this end, we first bound the terms that appear in the summands. By the
definition of our random variables and the fact that there are only n vertices, we get

max(Pτt , Iτt , I
∗) ≤ n′,

min(Pτt , Iτt) ≥ min(ε, %/c)n.

Applying these bounds to Ft results in

Ft = f(n′, Pτt) + f(I∗, Iτt)

= n′
(
Pτt
n′
− ln

Pτt
n′
− 1

)
+ I∗

(
Iτt
I∗
− ln

Iτt
I∗
− 1

)
≤ Pτt + n′ ln

n′

Pτt
+ Iτt + I∗ ln

I∗

Iτt

≤ 2 ·
(
n′ + n′ ln

n′

min(ε, %/c)n

)
.

As n′ = (1+%/c)n, the calculated upper bound for Ft is linear in n. Thus, Ft ∈ O(n).

The next lemma shows that when the number of vertices becomes small, the potential
gets rather large. Together with the previous lemma, this shows that having few infected
vertices and having a high drift is more or less the same.

Lemma 4.6. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′ of
C onto G′. Let t ∈ N and ε ∈ (0, I∗/n) be constants such that 1 ≤ Iτt ≤ εn. If λ ≥ c

d for a
constant c ∈ R>1, then

Ft ≥ I∗
(

ln
1

ε
+ ln

I∗

n
− 1

)
.

Proof. We aim to bound Ft from below by bounding the f values in its definition. Recall
that for a given x∗ ∈ R>0, the function f(x∗, x) is minimized for x = x∗, which is the only
local extreme value for x ∈ R>0. Therefore, we get for all x, x∗ ∈ R>0

f(x∗, x) ≥ f(x∗, x∗) = 0.

Using 1 ≤ Iτt ≤ εn and that for all x∗ ∈ R>0, the function f(x∗, x) decreases
monotonically in x while x < x∗, we conclude

Ft = f(n′, Pτt) + f(I∗, Iτt)
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≥ 0 + f(I∗, εn)

≥ I∗
(εn
I∗
− ln

εn

I∗
− 1
)

≥ I∗
(

ln
1

ε
+ ln

I∗

n
− 1

)
.

The next lemma shows that while the process has at least a constant fraction of
vertices in the infected state, each potential next step only changes the potential by at
most a constant.

Lemma 4.7. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′

of C onto G′. Let t ∈ N and ε ∈ (0, %/c) be constants. Assume that Iτt ≥ εn. Further, let
∆P,∆I ∈ {−1, 0, 1}. If λ ≥ c

d for a constant c ∈ R>1, then for sufficiently large n, it holds
that

|F (Pτt + ∆P, Iτt + ∆I)− F (Pτt , Iτt)| ≤ 2
(
1 + 2(1 + %/c)ε−1

)
.

Proof. We aim to use the triangle inequality to bound the absolute change in the F -
values from above by the sum of the absolute changes in the f -values. We use that for
all x ∈ R>1 holds that

1

x+ 1
< ln

(
x+ 1

x

)
<

1

x
.

Further, for all x, x∗ ∈ R>2 and ∆x ∈ {−1, 0, 1} holds that

|f(x∗, x+ ∆x)− f(x∗, x)| =
∣∣∣∣x∗(x+ ∆x

x∗
− ln

x+ ∆x

x∗
− 1

)
− x∗

( x
x∗
− ln

x

x∗
− 1
)∣∣∣∣

=

∣∣∣∣∆x− x∗ ln

(
x+ ∆x

x

)∣∣∣∣
≤ |∆x|+

∣∣∣∣x∗ ln

(
x+ ∆x

x

)∣∣∣∣
≤ 1 +

x∗

x− 1
.

We apply this inequality to bound the absolute change in potential from above. Note
that by the choice of ε it holds min(Pτt , Iτt) ≥ εn. Hence, for sufficiently large n, it holds
that min(Pτt − 1, Iτt − 1) ≥ εn/2. We conclude

|F (Pτt + ∆P, Iτt + ∆I)− F (Pτt , Iτt)|
= |f(n′, Pτt + ∆P ) + f(I∗, Iτt + ∆I)− f(n′, Pτt)− f(I∗, Iτt)|
≤ |f(n′, Pτt + ∆P )− f(n′, Pτt)|+ |f(I∗, Iτt + ∆I)− f(I∗, Iτt)|

≤
(

1 +
n′

Pτt − 1

)
+

(
1 +

I∗

Iτt − 1

)
≤ 2(1 +

n′

εn/2
)

≤ 2(1 + 2(1 + %/c)ε−1).

We now have the tools to apply the negative-drift theorem (Theorem 2.2) to bound
the survival time of the infection.
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Lemma 4.8. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be a SIRS process on G with
infection rate λ and with constant deimmunization rate %. Consider the projection C ′

of C onto G′. Let ε0 ∈ (0, 1) be a constant and let Eε0 be the event that there exists a
time step t ∈ N such that Iτt ≥ ε0n. Let T be the first time after τt with Iτt = 0. If λ ≥ c

d

for a constant c ∈ R>1, then E[T | Eε0 ] = 2Ω(n).

Proof. We assume that Eε0 occurs. Let (Ft)t∈R≥0
be the natural filtration of C, and let

t ∈ N be such that Iτt ≥ ε0n. We aim to apply the negative-drift theorem (Theorem 2.2)
to get the desired bound. To this end, we define a stopping time that is dominated by
the number of steps until T , and we use the previous lemmas to show that all of the
conditions for the drift theorem are satisfied. Note that we shift the time to start at t
instead of 0. We then translate the bound on the number of steps into a bound on the
survival time.

As Iτt ≥ ε0n, by Lemma 4.5, there exists a constant a0 ∈ R>0 such that Ft ≤ a0n. Let
εc be the minimum of the ε’s from Lemma 4.4 and Lemma 1.4. By the contraposition of
Lemma 4.5, there exists a constant a1 ∈ R>0 such that Ft ≥ a1n implies that Iτt ≤ εcn.
We define a = max(a0, a1) and T1 = inf{i ∈ N≥t | Fi > 2an}.

We first show that for all i ∈ N with t ≤ i < T1 holds that Iτi is large enough such
that Lemma 4.7 is applicable. Let ε1 ∈ (0, I∗/n) be a constant low enough such that
I∗

n

(
ln 1

ε1
+ ln I∗

n − 1
)
> 2a. Such an ε1 exists, as I∗

n and a are positive constants. Then

by the contraposition of Lemma 4.6, for all i ∈ N, it follows that Fi ≤ 2an implies that
Iτi ≥ ε1n.

To show that condition 2 of Theorem 2.2 is satisfied, let s = 2(1 + 2(1 + %/c)ε−11 ). For
all i ∈ N with t ≤ i < T1 holds Fi ≤ 2an and therefore Iτi ≥ ε1n. Hence, by Lemma 4.7,
for all i ∈ N≥t holds that |Fi+1 − Fi| · 1i<T1 ≤ s · 1i<T1 . Thus, for all i ∈ N≥t and j ∈ R>0

holds that Pr[|Fi+1 − Fi| ≥ j | Fτi ] · 1i<T1 ≤ 2s

2j · 1i<T1 . This is true as for j > s the
probability is zero, so the inequality holds and for j ≤ s the term 2s

2j is at least one, which
is a trivial upper bound for a probability. Note that 2s is a constant.

We now show that condition 1 is satisfied as well. We already showed that for all
i ∈ N with an < Fi < 2an holds ε1n ≤ Iτt ≤ εcn. Hence, the conditions for Lemma 1.4
are satisfied, and we get that there exists a constant r ∈ R>0 such that for all i ∈ N
holds that E[Fi+1 − Fi | Fτi ] · 1an<Fi<2an ≤ −r · 1an<Fi<2an.

Now all of the conditions of Theorem 2.2 are satisfied, and we get that there exists a
constant c∗ ∈ R>0 such that

Pr
[
T1 − t ≤ 2c

∗an/2s
∣∣∣ Fτt ] · 1Ft≤an = 2−Ω(an/2s) · 1Ft≤an.

Note that this probability goes towards 0 as n goes towards infinity. Hence, we get
E[T1 | Fτt ] · 1Ft≤an = 2Ω(n) · 1Ft≤an. Remember that Iτt ≥ ε0n implies Ft ≤ an. We
therefore get E[T1 | Fτt ] · 1Iτt≥ε0n = 2Ω(n) · 1Iτt≥ε0n.

We showed that for all i ∈ N with t ≤ i < T1 holds that Iτi ≥ ε1n > 0. Thus, T
dominates τT1

. Note that clocks in C trigger at an arbitrarily high rate, as we do not have
an upper bound on rt. However, the amounts of recovery triggers, infection triggers,
and deimmunization triggers that occur until τT1

differ by at most n, pairwise by type, so
each of them also has an exponentially large expectation. As we only consider n recovery
clocks, they trigger at a rate of at most n, and the expected time between each trigger is
at least 1

n . By Wald’s equation (Theorem 2.4), we get that

E[T | F0 ] · 1Eε0 ≥ E[τT1
| F0 ] · 1Eε0

≥ 1

n
2Ω(n) · 1Eε0 .
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We now prove our main result.

Theorem 1.2. Let G be a graph, and let G′ be a subgraph of G that is an (n, (1± εd)d, δ)-
expander. Let d → ∞ and δ, εd → 0 as n → ∞. Let C be the SIRS process on G with
infection rate λ and with constant deimmunization rate %. Further, let C start with
at least one infected vertex in G′ and no recovered vertices in G′. Last, let C ′ be the
projection of C onto G′, and let T be the survival time of C ′. If λ ≥ c

d for a constant
c ∈ R>1, then for sufficiently large n, it holds that E[T ] = 2Ω(n).

Proof. For all constants ε ∈ (0, 1), let Eε be the event that there exists a time step t ∈ N
such that Iτt ≥ εn. By Lemma 1.3, there exists an ε ∈ R>0 such that for sufficiently large
n holds that Pr[Eε] ≥ 1

n+2 . By Lemma 4.8, it holds that E[T | Eε ] = 2Ω(n). Using the law
of total expectation, we get

E[T ] = Pr[Eε]E[T | Eε ] + Pr
[
Eε
]
E
[
T
∣∣ Eε]

≥ Pr[Eε]E[T | Eε ]

≥ 1

n+ 2
2Ω(n)

= 2Ω(n).

5 Applications

We illustrate the applicability of our theorem by considering the SIRS process on
Erdős–Rényi graphs as well as models of real-wold networks.

5.1 Erdős–Rényi graphs

In order to apply Theorem 1.2 to Erdős–Rényi graphs, we make use of the following
result.

Theorem 5.1 ([10, Theorem 1.2]). Let G ∼ Gn,p be an Erdős–Rényi graph with (n−1)p ≥
c1 ln(n) for a sufficiently large constant c1 ∈ R>0. Then asymptotically almost surely, for
the spectral expansion δ of the Laplacian of G holds δ ∈ O

(
(p(n− 1))−1/2)

)
.

By Chernoff bounds, it holds that the vertex degrees in Erdős–Rényi graphs are tightly
distributed around the average degree d if d ∈ ω(lnn). Therefore, Erdős–Rényi graphs
satisfy with high probability our definition of an (n, (1 ± εd)d, δ)-expander. Combining
this with Theorem 1.2 and the upper bound that carries over from the SIS model (see
Ganesh, Massoulié, and Towsley [18, Theorem 5.5]), we obtain the following corollary.

Corollary 1.5. Let G ∼ Gn,p be an Erdős–Rényi graph with (n− 1)p ∈ ω(lnn). Consider
the SIRS process C on G with constant deimmunization rate %, and let T be the survival
time of C when the process starts with at least one infected vertex. If λ ≥ c

d for a
constant c ∈ R>1, then E[T ] = 2Ω(n) asymptotically almost surely with respect to G. If
λ ≤ c

d for a constant c ∈ (0, 1), then E[T ] ∈ O(log n) asymptotically almost surely with
respect to G.

5.2 Complex networks

A variety of random graph models that exhibit properties found in real-world networks
has appeared in network science [6]. To apply Theorem 1.2 in such models, we require
that the graph has a large expander as a subgraph and that the infection reaches a vertex
of this subgraph with sufficiently high probability. To this end, two key properties have
been shown to hold on popular complex network models, namely, a polynomially-sized
clique as a subgraph and a polylogarithmic diameter, both in terms of the number of
vertices of the graph. These two properties hold for example on Chung–Lu graphs [9],
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on hyperbolic random graphs (Theorems 5.2 and 5.3) and on geometric inhomogeneous
random graphs [21].

We formally prove our claim for hyperbolic random graphs. The following two
theorems state the two key properties we require.

Theorem 5.2 ([17, Theorem 1]). Let G be a hyperbolic random graph with n vertices
that follows a power-law degree distribution with exponent γ ∈ (2, 3). Then the diameter
of the giant component of G is O

(
(log n)2/(3−γ)

)
with probability 1−O

(
n−3/2

)
.

Theorem 5.3 ([16]). Let G be a hyperbolic random graph with n vertices that follows
a power-law degree distribution with exponent γ ∈ (2, 3). Then the size of the largest
clique of G is in Θ

(
n(3−γ)/2

)
with high probability.

We first use the poly-logarithmic diameter to show that the infection reaches the
largest clique with a sufficient probability when the process starts with at least one
infected vertex.

Lemma 5.4. Let G be a hyperbolic random graph with n vertices that follows a power-
law degree distribution with exponent γ ∈ (2, 3), and let C be an SIRS process on G

with infection rate λ and with constant deimmunization rate %. Further, let C start with
at least one infected vertex in the giant component and no recovered vertices in the
giant component. If λ ≥ cn(γ−3)/2 for a constant c ∈ R>0, then the probability that the
infection reaches a configuration in which a vertex in the largest clique is infected is at
least exp

(
−(lnn)3/(3−γ)

)
for sufficiently large n.

Proof. Let v be a vertex that starts infected, and let d be the shortest distance from v to
any vertex of the largest clique. Note that d is bounded from above by the diameter of
the giant component. Therefore, by Theorem 5.2, there exists a constant a ∈ R>0 such
that for sufficiently large n with a probability of at least 1

2 , it holds that d ≤ a(lnn)2/(3−γ).
For all i ∈ N, let Ei be the event that C reaches a configuration with an infected vertex

that has a distance of i to the largest clique. Consider for all i ∈ N<d the probability
Pr[Ei | Ei+1 ]. Each vertex with a distance of i+ 1 to the largest clique has a neighbor
that has a distance of i to the clique. With a probability of λ

1+λ , an infected vertex infects

a specific neighbor before recovering. Therefore, Pr[Ei | Ei+1 ] ≥ λ
1+λ ≥

c
2n

(γ−3)/(2) for
sufficiently large n.

With a probability of at least 1
2 , it holds that d ≤ a(lnn)2/(3−γ). This yields for

sufficiently large n that

Pr[E0] =

d−1∏
i=0

Pr[Ei | Ei+1 ]

≥
d−1∏
i=0

c

2
n
γ−3
2

=
( c

2
n
γ−3
2

)d
≥
( c

2

)d(
n
γ−3
2

)a(lnn) 2
3−γ

= e
γ−3
2 a(lnn)

5−γ
3−γ +d ln(c/2)

≥ e−(lnn)
3

3−γ
.

When the infection reaches the largest clique of a hyperbolic random graph, Theo-
rem 1.2 yields an exponential expected survival time for a sufficiently large infection
rate.
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Corollary 1.6. Let G be a hyperbolic random graph with n vertices that follows a power-
law degree distribution with exponent γ ∈ (2, 3), and let C be the SIRS process on G

with infection rate λ and with constant deimmunization rate %. Further, let C start with
at least one infected vertex in the giant component and no recovered vertices, and let T
be the survival time of C. Then there exists a constant c ∈ R>0 such that if λ ≥ cn(γ−3)/2,

then E[T ] = 2Ω(n(3−γ)/2).

Proof. Let k be the size of the largest clique of G. By Theorem 5.3, there exists a constant
a ∈ R>0 such that with high probability it holds that k ≥ an(3−γ)/2. Let c = a−1 + 1 such
that with high probability it holds that λ ≥ 1+a

k . Let E be the event that there exists a
configuration in which a vertex in the largest clique of G is infected. By Lemma 5.4, it
holds that Pr[E] ≥ exp

(
− (lnn)3/(3−γ)

)
for sufficiently large n. Note that a clique with

k vertices is a (k, (1± k−1)k, (k − 1)−1)-expander. Hence, by Theorem 1.2, it holds that
E[T | E ] = 2Ω(k), as the infection survives that long on the clique alone after its first
vertex gets infected.

By the law of total expectation and that with high probability k ≥ an(3−γ)/2, we
conclude

E[T ] ≥ Pr[E] · E[T | E ]

≥ e−(lnn)
3

3−γ · 2Ω(n(3−γ)/2)

= 2Ω(n(3−γ)/2).

Note that similar statements can be proven for Chung–Lu graphs and geometric
inhomogeneous random graphs for an appropriate choice of the respective parameters
of these models.
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