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Abstract

We study the simulated annealing algorithm based on the kinetic Langevin dynamics,
in order to find the global minimum of a non-convex potential function. For both the
continuous time formulation and a discrete time analogue, we obtain the convergence
rate results under technical conditions on the potential function, together with an
appropriate choice of the cooling schedule and the time discretization parameters.
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1 Introduction

Simulated annealing has always been an important method to find the global minimum
of a given function U : Rd −→ R, especially when U is non-convex. Classical studies
on the simulated annealing have been mainly focused on an algorithm based on the
overdamped Langevin dynamic:

dXt = −∇U(Xt)dt+
√

2εtdBt, (1.1)

where (Bt)t≥0 is a standard d-dimensional Brownian motion and (εt)t≥0 is a time-
dependent temperature parameter that turns to 0 as t → ∞. Notice that, with con-
stant temperature εt ≡ ε and under mild conditions on U , the process X in (1.1) is
the standard overdamped Langevin dynamic and has the invariant measure µ∗o,ε(dx) ∝
exp (−U(x)/ε) dx. With small ε > 0, samples from µ∗o,ε would approximately concen-
trate around the global minimum of function U , which is the intuition of the simulated
annealing algorithm.
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Kinetic Langevin simulated annealing

Since the introduction of the simulated annealing algorithm by Kirkpatrick, Gellatt
and Vecchi [23], many works have been devoted to the convergence analysis of (1.1); see
e.g., Geman and Hwang [16], Chiang, Hwang and Sheu [9], Royer [37], Holley, Kusuoka
and Stroock [20], Miclo [29], Zitt [41], Fournier and Tardif [13], Tang and Zhou [39], etc.
It has been shown that, the cooling schedule εt should be at least of the order E

log t as
t→∞ for some constant E > 0, in order to ensure the convergence of Xt to the global
minimum of U as t→∞. Intuitively, this cooling schedule allows the diffusion process to
have enough time to escape from the local minima and at the same time to explore the
whole space in order to find the global minimum of U ; finally, the annealing process will
“freeze” at the global minimum of U as εt → 0. We would like to mention in particular
the recent paper by Tang and Zhou [39], where the authors derived a convergence
rate result of (1.1), where a fine estimation of the log-Sobolev inequality in Menz and
Schlichting [27] for invariant measure µ∗ε,o with low-temperature (small ε > 0) has been
crucially used. Moreover, they have also analyzed a corresponding discrete time scheme
of (1.1) and obtained a convergence rate result. Notice that in practice it is the discrete
time scheme which is implemented to find the optimizer of U , for some sufficient large
constant E > 0.

Motivated by the above works, we will study in this paper the simulated annealing
based on the kinetic (underdamped) Langevin dynamics, that is, the process (X,Y ) =

(Xt, Yt)t≥0 defined by

Xt = X0 +

∫ t

0

Ysds, Yt = Y0 −
∫ t

0

∇xU(Xs)ds−
∫ t

0

θYsds+

∫ t

0

√
2εsdBs, (1.2)

where θ > 0 is a fixed constant and (εt)t≥0 is a cooling schedule satisfying εt → 0 as
t → ∞. Moreover, we will also study a discrete time scheme of (1.2). More precisely,
consider a sequence (∆tk)k≥0 of time steps and define the discrete time grid 0 = T0 <

T1 < · · · by

Tk :=

k−1∑
j=0

∆tj .

The discrete time scheme will be defined on the grid (Tk)k≥0. For ease of presentation and
the convergence analysis later, we will write this scheme as a continuous time process
(X,Y ) = (Xt, Y t)t≥0 by using the time freezing function η(t) :=

∑∞
k=0 Tk1{t∈[Tk,Tk+1)}.

Then, the discrete time scheme process (X,Y ) is defined by

Xt = X0 +

∫ t

0

Y sds, Y t = Y0 +

∫ t

0

(
−∇xU(Xη(s))− θY s

)
ds+

∫ t

0

√
2εη(s)dBs. (1.3)

Notice that the above scheme is the second-order scheme, rather than the Euler scheme
of (1.2). Compare to the Euler scheme, the second-order scheme (1.3) is preferred for its
convenience on both analytical and computational aspects. While (1.3) can be explicitly
re-written on the time grid (Tk)k≥0 and hence is implementable (see (2.3) and (2.4) for
details). This second-order scheme has also been introduced and studied for standard
kinetic Langevin dynamics, i.e., for (1.2) with constant temperature εt ≡ ε0; see, e.g.,
Cheng, Chatterji, Bartlett and Jordan [8], Zou, Xu and Gu [42], Gao, Gürbüzbalaban and
Zhu [14] and Ma, Chatterji, Cheng, Flammarion, Bartlett and Jordan [25].

For the kinetic simulated annealing process (X,Y ) in (1.2), a convergence result
without convergence rate has already been established by Journel and Monmarché
[22]. In the present paper, we aim at obtaining some convergence rate results for both
the simulated annealing process (X,Y ) in (1.2) and the discrete time scheme (X,Y )

EJP 29 (2024), paper 77.
Page 2/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1138
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Kinetic Langevin simulated annealing

in (1.3). To the best of our knowledge, we are the first to study the convergence of
the kinetic simulated annealing algorithm in the discrete time framework. Let us also
mention that, by cooling the parameter θ instead of ε in (1.2), Monmarché [30] studied
an alternative kinetic simulated annealing process and derived a convergence rate for it
(see Remark 2.11 in the following for a detailed comparison of his work and ours).

The remainder of the paper is organized as follows. We first introduce some notations.
In Section 2, we state the assumptions and our main results, and provide the main idea
of the proofs, together with some discussions on the related literature. The proof of the
convergence rate of (1.2) is given in Section 3, and the convergence rate of (1.3) is given
in Section 4.

Notations. (i) Denote by C∞(Rd), or simply C∞, the collection of all smooth (i.e.,
infinitely differentiable) functions f : Rd → R. For f ∈ C∞, let ∇f,∇2

xf , and ∆f

denote the gradient, Hessian, and Laplacian of f , respectively. For a smooth vector field
v : Rd → Rd, ∇ · v denotes the divergence of v. For vectors a, b ∈ Rd, 〈a, b〉 is their inner
product and |a| =

√
〈a, a〉 is the Euclidean norm of a. For two matrices M,N ∈Md×d(R)

their Frobenius inner product is defined as 〈M,N〉F = tr(MTN) =
∑d
i,j=1MijNij , and

‖M‖F =
√
〈M,M〉F is the Frobenius norm of M . A function ε 7−→ w(ε) is said to be

sub-exponential if ε logw(ε)→ 0 as ε→ 0.

(ii) We denote by P(Rd) (resp. P(Rd ×Rd)) the collection of all probability measures on
Rd (resp. Rd ×Rd). For functions f and g defined on R+, the symbol f = O(g) means
that f/g is bounded when some problem parameter tends to 0 or∞.

2 Main results and literature

We will state our main convergence rate results and then discuss the main idea of
proof as well as some related literature.

2.1 Main results

We first provide some conditions on the (potential) function U : Rd → R. Without loss
of generality, we assume that minx∈Rd U(x) = 0 throughout the paper.

Assumption 2.1. (i) The function U ∈ C∞(Rd) and all its derivatives have at most
polynomial growth. The gradient ∇U is L-Lipschitz for constant L > 0. Moreover, U is
(r,m)-dissipative in the sense that for some positive constants r > 0 and m > 0,

∇U(x) · x ≥ r|x|2 −m, for all x ∈ Rd.

(ii) The function U has multiple but a finite number of local minimizers, and ∇2U is
non-degenerate at the local minimizers.

Remark 2.2. (i) In the literature of the standard kinetic (underdamped) Langevin
dynamics (i.e., (1.2) with constant temperature εt ≡ ε0), the dissipative condition on
U is a standard Lyapunov condition to ensure the ergodicity of the process; see e.g.,
Eberle, Guillin and Zimmer [12] and Mattingly, Stuart and Higham [26]. The Lipschitz
condition on ∇U is also usually imposed to obtain quantitative exponential convergence
rate of the law of standard kinetic Langevin dynamics to the invariant measure; see, e.g.,
[12, 14, 25]. In particular, this condition ensures that the process (X,Y ) in (1.2) is well
defined.

(ii) The Lipschitz condition on ∇U , together with the dissipative condition, implies that
U to have quadratic growth at infinity. More precisely, there exists a constant K > 0
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such that
r

3
|x|2 −K ≤ U(x) ≤ L|x|2 +K, for all x ∈ Rd, (2.1)

see e.g. Raginsky, Rakhlin and Telgarsky [36, Lemma 2].

Let mU and MU denote respectively the set of local minima and the set of global
minima of U , so that MU ⊆ mU in particular. We then define the constant E∗ > 0, the
so-called critical depth of U , by

E∗ := max
x∈mU
y∈MU

inf

{
max
s∈[0,1]

U(γ(s))− U(x) : γ ∈ C
(
[0, 1],Rd

)
, γ(0) = x, γ(1) = y

}
.

Assumption 2.3. (i) The initial distribution of (X0, Y0), denoted as µ0 = L (X0, Y0), has

a C∞ density function p0. Moreover, the initial Fisher information
∫
Rd×Rd

|∇p0(x,y)|2
p0(x,y) dxdy

is finite and E[|X0|m + |Y0|m] <∞ for each m ≥ 1.

(ii) The function t 7−→ εt is positive, non-increasing and differentiable. Moreover, for
some time t0 and a constant E > E∗, one has εt = E

log t for all t > t0.

Remark 2.4. (i) For the overdamped Langevin dynamic (1.1), the above logarithmic
cooling schedule has been widely used to obtain the convergence of the simulated anneal-
ing; see, e.g., [16, 9, 37, 20, 29, 39]. In Holley, Kusuoka and Stroock [20], the authors
proved the failure of the simulated annealing algorithm with faster cooling schedule.
For the kinetic simulated annealing process (1.2), such logarithmic cooling schedule
has also been used in Journel and Monmarché [22] to deduce a convergence result,
where it is also proved that the convergence may fail for the cooling schedule faster than
logarithmic. In Monmarché [30], for an alternative kinetic simulated annealing process
with cooling schedule on parameter θ, a similar cooling schedule is also assumed. And
our technical conditions on U in Assumption 2.1 are also generally motivated by those in
[30].

(ii) Nevertheless, the logarithmic cooling schedule seems seldom used in practice be-
cause of its low decreasing speed. In this aspect, some efforts are also devoted to design
better temperature schedule. In Menz, Schlichting, Tang and Wu [28], the authors
used parallel tempering technique to improve the performance of simulated annealing
algorithm. In Gao, Xu, Zhou [15], the authors considered the temperature εt as a control
variable and reformulate the problem of designing the cooling schedule as a solvable
stochastic control problem after suitable regularization.

Let us now provide a first convergence rate result on (X,Y ) defined by (1.2). Recall
that the condition minx∈Rd U(x) = 0 is assumed throughout the paper.

Theorem 2.5. Let Assumptions 2.1 and 2.3 hold true. Then, for any constants δ > 0 and
α > 0, there exists some constant C > 0 such that

P (U(Xt) > δ) ≤ Ct−min( δE ,
1
2 (1−E∗

E ))+α, for all t > 0.

Remark 2.6. The above convergence rate in Theorem 2.5 is the same to that in Miclo
[29] and Tang and Zhou [39] for the simulated annealing using overdamped Langevin
dynamic, and also to that in Chak, Kantas and Pavliotis [7] for the simulated annealing
using generalized Langevin process. While higher order Langevin dynamics are often
used in MCMC as accelerated versions compare to the overdamped Langevin dynamic
(see for instance [25, 14, 32]), this is not the case in the simulated annealing problem.
Indeed, it has been observed that the convergence behavior of the annealed process
will be mainly determined by the potential function U , but not the process used; see for
instance the discussion in [30, Remarks after Theorem 1].
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Remark 2.7. (i) Notice that, by a classical time change argument (with t 7→ τ(t) := t/θ),
one can reduce the same problem to the case with θ = 1 in (1.2). For this readon, we
will directly assume w.l.o.g. that θ = 1 in the proofs.

(ii) However, one cannot reduce the cooling mechanism on parameter ε as in (1.2)
to the setting with cooling mechanism on θ as in Monmarché [30]. Therefore, the
above convergence rate result in Theorem 2.5 is new, although it is formally similar
to Monmarché [30, Theorem 1]. Let us also refer to Remark 2.11 for more detailed
comparison. In fact, our cooling mechanism is the same to that in Journel and Monmarché
[22], where the authors derive a convergence result without convergence rate, but under
considerably weaker conditions on U than those in Assumption 2.1.

We now present the convergence rate result for the discrete time scheme (X,Y ) as
defined in (1.3).

Theorem 2.8. Let Assumptions 2.1 and 2.3 hold true. Assume in addition that ∇2
xU is

L′-Lipschitz, i.e. ‖∇2
xU(x) − ∇2

xU(y)‖F ≤ L′|x − y| for all x, y ∈ Rd, for some constant
L′ > 0. And that the time step size parameters (∆tk)k≥0 satisfies

lim
k→∞

Tk =∞ and lim sup
k→∞

∆tk
√
Tk <∞. (2.2)

Then for all constants δ > 0 and α > 0, there exists a constant C > 0, such that

P
(
U(XTk) > δ

)
≤ CTk−min( δE ,

1
2 (1−E∗

E ))+α, for all k ≥ 1.

Remark 2.9. (i) The additional Lipschitz condition on ∇2
xU will be essentially used to

control the discretization error in the discrete time scheme (1.3).

(ii) We need that ∆tk → 0 as Tk →∞ to control the (cumulative) discretization error in
the scheme (1.3). At the same time, ∆tk should not decrease too fast, so that Tk →∞
as k → ∞ and thus (XTk)k≥0 can reach the global minima of U . This explains the
condition (2.2).

(iii) Let C1 > 0, C2 > 0 be two constants, let us define (∆tk)k≥0 by ∆t0 := C1 and

∆tk := C2T
−1/2
k for k ≥ 1. Then, it is straightforward to check that

T 2
k+1 = (Tk + ∆tk)2 = T 2

k + C2
2/Tk + 2C2T

1/2
k ≥ T 2

k + 2C2C
1/2
1 ,

as T 1/2
k ≥ C1/2

1 . Therefore, Tk →∞ as k →∞, and thus condition (2.2) holds.

(iv) In Tang and Zhou [39], for the discrete simulated annealing based on the overdamped
Langevin dynamic (1.1), the authors required the step size ∆tk satisfying

lim
k→∞

Tk =∞ and lim sup
k→∞

∆tkTk <∞,

which is a little stronger than our condition (2.2). Of course, (2.2) is only a sufficient
condition to ensure the convergence rate result.

Notice that (1.3) is a linear SDE on each time interval [Tk, Tk+1], so we can solve it
explicitly. By Ma, Chatterji, Cheng, Flammarion, Bartlett and Jordan [25, Appendix B],
given the value (XTk , Y Tk), we have for all t ∈ [Tk, Tk+1],{

Xt = XTk +
(
1− e−(t−Tk)

)
Y Tk −

(
t− Tk −

(
1− e−(t−Tk)

))
∇xU(XTk) +Dx(t),

Y t = e−(t−Tk)Y Tk −
(
1− e−(t−Tk)

)
∇xU(XTk) +Dy(t),

(2.3)
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with

Dx(t) =

∫ t

Tk

Dy(s)ds, Dy(t) =
√

2εTk

∫ t

Tk

e−(t−s)dBs,

where Bt is the Brownian motion in (1.3). Therefore, we can implement (X,Y ) on the
discrete time grid (Tk)k≥0 in an exact way. More precisely, by abbreviating (XTk , Y Tk , εTk)

to (Xk, Y k, εk), we have{
Xk+1 = Xk +

(
1− e−∆tk

)
Y k −

(
∆tk −

(
1− e−∆tk

))
∇xU(Xk) +Dx(k),

Y k+1 = e−∆tkY k −
(
1− e−∆tk

)
∇xU(Xk) +Dy(k),

(2.4)

where (Dx(k), Dy(k)) is Gaussian vector in Rd ×Rd independent of (Xk, Y k) with mean
zero and covariance matrix

Σk =

(
Σ11(k)Id Σ12(k)Id
Σ12(k)Id Σ22(k)Id

)
, (2.5)

with Σ11(k) := εk
(
2∆tk − 3 + 4e−∆tk − e−2∆tk

)
, Σ12(k) := εk

(
1− 2e−∆tk + e−2∆tk

)
and

Σ22(k) := εk
(
1− e−2∆tk

)
.

2.2 Main idea of proofs and related literature

Recall that for two probability measures µ, ν ∈ P(Rd) (or in P(Rd ×Rd)) such that
µ� ν, the relative entropy KL(µ|ν) and the Fisher information I(µ|ν) are defined by

KL(µ|ν) :=

∫
log

(
dµ

dν

)
dµ, I(µ|ν) :=

∫ ∣∣∣∣∇ log
dµ

dν

∣∣∣∣2 dµ.

For the simulated annealing process (1.1) using overdamped Langevin dynamic,
let us denote µo,t := L (Xt) and µ∗o,ε(dx) ∝ exp(−U(x)/ε)dx the invariant measure of
standard overdamped Langevin dynamic with constant temperature ε. To deduce their
convergence rate result, Tang and Zhou [39] analyze the evolution of KL(µo,t|µ∗εt,o). A
key step consists in obtaining

d

dt
KL(µo,t|ν)

∣∣
ν=µ∗

o,εt

= − I(µo,t|µ∗o,εt) ≤ − ρ(εt) KL(µo,t|µ∗o,εt) (2.6)

for a good constant ρ(εt) (depending on εt). The equality in (2.6) follows the so-called de
Bruijn’s identity, which is the entropy dissipation equation for the standard overdamped
Langevin dynamic; see for instance Chapter 5.2. in the monograph Bakry, Ledoux and
Gentil [2] or Otto and Villani [33] for a more general setting. The inequality in (2.6)
follows from the log-Sobolev inequality (LSI). This step is also the classical way to
deduce the exponential ergodicity of the standard overdamped Langevin dynamic; see
for instance Arnold, Markowich, Toscani and Unterreiter [1] and Pavliotis [34].

For the kinetic simulated annealing process (1.2) (with θ = 1), let us denote µt :=

L (Xt, Yt) and by

µ∗ε(dx dy) ∝ exp

(
−1

ε

(
U(x) +

|y|2

2

))
dx dy

the invariant measure of standard kinetic Langevin dynamics with constant temperature
ε (i.e. (1.2) with εt ≡ ε). It is, however, no longer helpful to use the relative entropy
KL(µt|µ∗εt) for the convergence analysis. Indeed, because the Brownian motion only
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appears in the y-direction in (1.2), the time derivative of the relative entropy only gives
a part of the Fisher information:

d

dt
KL(µt|ν)

∣∣
ν=µ∗

ε
= −ε

∫ ∣∣∣∣∇y log
dµt
dµ∗ε

∣∣∣∣2 dµt 6= −εI(µt|µ∗ε).

Thus, we cannot use the LSI to proceed as in [39] for the overdamped simulated anneal-
ing.

This is also the main reason why we cannot use the relative entropy to deduce the
exponential ergodicity of the standard kinetic Langevin dynamics, for which a successful
alternative method is the so-called hypocoercivity method, initiated in Desvillettes and
Villani [10], Hérau [18, 19] (see also Villani [40] for a detailed presentation). This
method has also been used recently to derive convergence rates for various kinetic-type
equations to their stationary distributions; see for instance, Baudoin, Gordina and Herzog
[3] and Camrud, Herzog, Stoltz, and Gordina [6] for the convergence of kinetic Langevin
dynamics with singular potentials, Guillin, Liu, Wu and Zhang [17] and Bayraktar, Feng
and Li [4] for the convergence of kinetic Langevin dynamics with mean-field interaction.
Here we will adopt the hypocoercivity method in the entropic sense, as in Monmarché
[30], Monmarché [31] and Camrud, Durmus, Monmarché and Stoltz [5] to study our
kinetic simulated annealing processes (1.2) and (1.3). More precisely, for two probability
measures µ, ν ∈ P(Rd ×Rd), we consider the distorted relative entropy Hγ(µ|ν) defined
by

Hγ(µ|ν) :=

∫ (∣∣∣∣∇x log
dµ

dν
+∇y log

dµ

dν

∣∣∣∣2 + γ log
dµ

dν

)
dµ, (2.7)

where γ > 0 is a constant. To deduce the convergence rate result of our kinetic simulated
annealing process (1.2) by using the hypocoercivity method, we need to choose γ to be a
function of εt, and then analyze the evolution of Hγ(εt)(µt|µ∗εt):

d

dt
Hγ(εt)(µt|µ

∗
εt) = ∂µ,tHγ(εt)(µt|µ

∗
εt) + ∂ε,tHγ(εt)(µt|µ

∗
εt), (2.8)

where

∂µ,tHγ(εt)(µt|µ
∗
εt) :=

d

dt
Hγ(µt|ν)

∣∣∣∣
ν=µ∗

εt
,γ=γ(εt)

(2.9)

and

∂ε,tHγ(εt)(µt|µ
∗
εt) :=

d

dt
Hγ(εt)(µ|µ

∗
εt)

∣∣∣∣
µ=µt

. (2.10)

The term (2.9) is from the (instantaneous) evolution of Hγ(εt)(µt|µ∗εt) along the kinetic
diffusion (1.2) for fixed temperature εt and the term (2.10) arises from the influence of
(instantaneous) invariant measure µ∗εt and γ(εt) on Hγ(εt)(µt|µ∗εt).

For the term (2.9), with a carefully chosen εt 7−→ γ(εt) and by adapting a computation
strategy in Ma, Chatterji, Cheng, Flammarion, Bartlett and Jordan [25] for standard
kinetic Langevin dynamics, we obtain

∂µ,tHγ(εt)(µt|µ
∗
εt) ≤ − c(εt)ρεtHγ(εt)(µt|µ

∗
εt), (2.11)

where c(εt) = γ−1(εt) and ρεt > 0 is the constant in the log-Sobolev inequality (LSI)
satisfied by µ∗εt .

Remark 2.10. As in [30] and [39], it is crucial to use a fine estimation on the constant
ρεt in the LSI for µ∗εt (under Assumption 2.1), in particular for the case with small εt. We
refer to Menz and Schlichting [27], especially, Section 2.3.3 therein, for this issue.
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The treatment of the term (2.10) is classical (see e.g. Holley, Kusuoka and Stroock
[20], Miclo [29], Tang and Zhou [39] in the case of the overdamped simulated annealing,
or Monmarché [30] in the case of an alternative kinetic simulated annealing). First, we
will apply the Lyapunov function technique as in Talay [38] to obtain a uniform bound on
the moment of (Xt, Yt) in (1.2) for all t ≥ 0. Using this uniform moment bound, together
with the explicit expression of µ∗εt for all t ≥ 0, we can directly compute that, for some
sub-exponential ω(ε),

∂ε,tHγ(εt)(µt|µ
∗
εt) ≤ ω(εt)|ε′t|

(
1 +Hγ(εt)(µt|µ

∗
εt)
)
, for all t > 0. (2.12)

where ε′t is the derivative of t 7−→ εt. The term ω(εt)|ε′t| at the right-hand-side (r.h.s.)
of (2.12) is non-negative. In order to make Hγ(εt)(µt|µ∗εt) decrease along the time and
to get an explicit decay rate, we need to make sure that the term c(εt)ρεt in (2.11) is
greater than the term ω(εt)|ε′t| in (2.12). This requires a careful choice of ε 7−→ γ(ε) as
well as some conditions on the cooling schedule t 7−→ εt as in Assumption 2.3.

Remark 2.11. (i) The above sketch of proof, as well as the use of the hypocoercivity
method with the distorted entropy (2.7), is similar to that in Monmarché [30] for a
different kinetic annealing process. More precisely, [30] studies the process

Xt = X0 +

∫ t

0

Ysds, Yt = Y0 −
∫ t

0

∇U(Xs)ds−
∫ t

0

1

εs
Ysds+

∫ t

0

√
2dBs, (2.13)

with εs → 0 as s→∞. As our cooling schedule is on the diffusion parameter, we need
to design another function εt 7−→ γ(εt) to compute the distorted entropy Hγ(εt)(µt|µ∗εt).
More importantly, [30] reformulated the problem into a Bakry-Emery framework to
establish a contraction inequality similar to (2.11), while we apply a different computation
strategy adapted from [25]. In particular, as shown in [25], this computation strategy can
be adapted to the discrete time setting for convergence analysis of numerical schemes,
a subject that is not addressed in [30].

(ii) From a numerical point of view, our kinetic annealing process (1.2) seems to be
more convenient for discrete time simulation than that in (2.13). Indeed, as εs → 0,
the Lipschitz constant of the coefficient functions in SDE (2.13) will explode, so the
corresponding time discretization error in the numerical analysis can be much harder to
control.

For the convergence analysis of the discrete time process (X,Y ) in (1.3), the main
idea will be quite similar. Denote µt := L (Xt, Y t). For ease of presentation, let us
abbreviate (εTk , µTk , µ

∗
εTk

) to (εk, µk, µ
∗
k). Then, with the same distorted entropy function

defined by (2.8), we need to compute the difference, for each k ≥ 0,

Hγ(εk+1)(µk+1|µ∗k+1)−Hγ(εk)(µk|µ∗k) = Hγ(εk)(µk+1|µ∗k) − Hγ(εk)(µk|µ∗k) (2.14)

+ Hγ(εk+1)(µk+1|µ∗k+1) − Hγ(εk)(µk+1|µ∗k). (2.15)

For the term (2.14), we can adapt the computation in [25] for the standard kinetic
Langevin process. Concretely, we can interpolate Hγ(εk)(µk|µ∗k) and Hγ(εk)(µk+1|µ∗k) by
the function t 7−→ Hγ(εk)(µt|µ∗k) with t ∈ [Tk, Tk+1]. Notice that (µt)t∈[Tk,Tk+1] satisfies a
Fokker-Planck equation with a (partially) frozen coefficient function. We can then apply
the same computation strategy as in the continuous time setting to obtain a (asymptotic)
contraction estimation.

Similarly, the term (2.15) can be handled by interpolating Hγ(εk)(µk+1|µ∗k) and
Hγ(εk+1)(µk+1|µ∗k+1) with ε 7−→ Hγ(ε)(µk+1|µ∗ε) for ε ∈ [εk+1, εk], together with a uni-
form moment estimation on (X,Y ). Finally, with a good choice of the time step size
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parameters (∆tk)k≥0, we can combine the estimations of (2.14) and (2.15) to obtain a
convergence rate result for the process (X,Y ) on the discrete time grid (Tk)k≥0.

In particular, the above analysis on Hγ(εk)(µk|µ∗k) extends the hypocoercivity method
for discrete time Langevin dynamics in [25] to the setting with time-dependent coeffi-
cient. We also notice that most existing papers on the numerical aspects of kinetic type
equations by hypocoercivity method mainly focused on the discretization of correspond-
ing Fokker-Planck equations, as in Dujardin, Hérau and Lafitte [11] and Porretta and
Zuazua [35].

3 Convergence of the continuous-time kinetic simulated anneal-
ing

The main goal of this section is to prove Theorem 2.5. The idea is similar to that
in Monmarché [30], which is mainly based on hypocoercivity computation with time-
varying coefficients as discussed in Section 2.2. We nevertheless adapt the computation
framework in Ma, Chatterji, Cheng, Flammarion, Bartlett and Jordan [25], which seems
more convenient for the computation in the discrete-time setting in our Section 4.

For simplicity of presentation, we will assume that θ = 1. Denote z = (x, y) as a
single variable and Z = (X,Y ) as the process satisfying (1.2). For each t ≥ 0, denote
by µt = L (Zt) the marginal distribution of Z. Similar to [30, Proposition 4], under the
smoothness and growth conditions of U in Assumption 2.1, µt has a strictly positive
smooth density function on R2d, denoted by pt. Recall also that, for each ε > 0, the
invariant probability measure of (1.2) with constant temperature εt ≡ ε is denoted by µ∗ε,
i.e., with some renormalized constant Cε > 0,

µ∗ε(dz) = p∗ε(z)dz, with p∗ε(x, y) := Cε exp
(
−
(
U(x) + |y|2/2

)
/ε
)
.

3.1 Preliminary analysis of continuous kinetic annealing process

Let us first recall a fine result on the log-Sobolev inequality from [30, Proposition 2],
which is mainly based on Menz and Schlichting [27, Corollary 2.18].

Proposition 3.1. Let U satisfy Assumption 2.1. Then, for all ε > 0,

KL(ν|µ∗ε) ≤ max

{
ε

2
,

1

2ρε

}
I(ν|µ∗ε), for all ν � µ∗ε,

where ρε = χ(ε) exp
(
−E∗

ε

)
and χ(ε) is sub-exponential in the sense that ε logχ(ε)→ 0 as

ε→ 0.

Next, we give a moment estimation on the solution (Xt, Yt)t≥0 to (1.2).

Proposition 3.2. Let Assumptions 2.1 and 2.3 hold. Then,

C0 := sup
t≥0

E
[
U(Xt) + |Yt|2

]
< ∞.

Proof. The proof is very similar to [30, Lemma 7], we consider the Lyapunov function

R(x, y) := U(x) + φ1(x, y) + βφ2(x, y),

where φ1(x, y) := |y|2
2 , φ2(x, y) := x · y, and β := 1

2
1

1+ 1
2r

1
1+ 1√

r/3

< 1
2 with the constant

r > 0 as given in Assumption 2.1.
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For any smooth function φ : Rd ×Rd → R, let Lεφ(x, y) := y · ∇xφ(x, y)− (∇xU + y) ·
∇yφ(x, y) + ε∆yφ(x, y), which corresponds to the generator of the diffusion process (1.2)
at temperature ε > 0. Then

Lε
(
U(x) + φ1(x, y)

)
= −|y|2 + εd.

Further, by Assumption 2.1,

Lεφ2(x, y) = |y|2 − x · y − x · ∇xU(x) ≤
(

1 +
1

2c1

)
|y|2 − r

2
|x|2 +m.

By (2.1) as well as the fact that β < 1
2 , it follows that

LεR(x, y) ≤ −
(

1− β
(

1 +
1

2r

))
|y|2 − β r

2
|x|2 + βm+ εd

≤ −c3β
(
U(x) + |y|2

)
+ c2,

for some positive constants c2, c3 independent of ε. Using again β < 1
2 and that U is of

quadratic growth (see (2.1)), we obtain that

R(x, y) ≤ U(x) +
|y|2

2
+

1

2
x · y ≤ c4

(
1 + U(x) + |y|2

)
,

for some constant c4 > 0. Thus,

LεR(x, y) ≤ − c3β
(
R(x, y)

c4
− 1

)
+ c2 ≤ − c5R(x, y) + c6,

for some positive constants c5 and c6 independent of ε > 0. Notice that R(x, y) does not
depend on ε, so

d

dt
E[R(Xt, Yt)] = E[LεtR(Xt, Yt)] ≤ −c5E[R(Xt, Yt)] + c6.

Now (E[R(Xt, Yt)])t≥0 is uniformly bounded by Grönwall Lemma.

To conclude, by [30, Lemma 7] there is some constant C > 0 such that

U(x) + |y|2 ≤ C
(
R(x, y) + 1

)
, for all (x, y) ∈ Rd ×Rd.

Therefore,

C0 := sup
t≥0

E
[
U(Xt) + |Yt|2

]
≤ C + C sup

t≥0
E
[
R(Xt, Yt)

]
< ∞.

3.2 Estimates of distorted entropy in contimuous-time setting

We now compute the time derivative of Hγ(εt)(µt|µ∗εt), which consists of computing
∂µ,tHγ(εt)(µt|µ∗εt) and ∂ε,tHγ(εt)(µt|µ∗εt), defined in (2.9) and (2.10) respectively. For
simplicity, for a function f : Rd×Rd → R, we abbreviate

∫
Rd×Rd f(z)dz to

∫
fdz. Recalling

that pt (resp. p∗εt) represents the density function of µt (resp. µ∗εt), we also write

Eµt [f ] :=

∫
fptdz, Eµ∗

εt
[f ] :=

∫
fp∗εtdz.
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Computing ∂µ,tHγ(εt)(µt|µ∗εt) can be easily addressed by directly using methods in
[25]. Notice that the marginal distribution pt satisfies the kinetic Fokker-Planck equation

∂tpt = −y · ∇xpt +∇xU · ∇ypt +∇y · (ypt) + εt∆ypt. (3.1)

Denote ∇z = (∇x,∇y)T. Because p∗εt ∝ exp
(
− 1
εt

(
U(x) + |y|2

2

))
, we can rewrite (3.1) as

∂tpt +∇z · (ptvt) = 0, (3.2)

where vt is the vector flow that transports µt towards µ∗εt :

vt = εt

(
0 Id
−Id −Id

)( ∇x log pt
p∗εt

∇y log pt
p∗εt

)
. (3.3)

The same as the technique applied in [25], let ht :=
√

pt
p∗εt

and S :=

(
Id Id
Id Id

)
. Then

the distorted relative entropy Hγ(εt)(µt|µ∗εt) can be written as

Hγ(εt)(µt|µ
∗
εt) = 4 Eµt [〈∇z log ht, S∇z log ht〉] + 2γ(εt) Eµt [log ht] . (3.4)

Denote as∇∗z = (∇∗x,∇∗y) :=
(
−∇x ·+ 1

εt
∇xU · , −∇y ·+ y

εt
·
)

the adjoint operator of∇z
w.r.t. µ∗εt , in the sense that for any f, g ∈ L2(µ∗εt), Eµ∗

εt
[f ·∇zg] = Eµ∗

εt
[g∇∗zf ]. Using (3.2)

and integration by parts, we obtain

∂µ,tHγ(εt)(µt|µ
∗
εt) =

∫
δHγ(µt|ν)

δµt

∣∣∣∣
ν=µ∗

εt
,γ=γ(εt)

∂tpt dz

=

∫
∇z
(
δHγ(εt)(µt|µ∗εt)

δµt

)
· vt ptdz,

where
δHγ(εt)(µt|µ

∗
εt

)

δµt
is the first order variational derivative of Hγ(εt)(µt|µ∗εt) at µt. After a

similar calculation as in [25], we obtain the following result.

Proposition 3.3. One has

∂µ,tHγ(εt)(µt|µ
∗
εt)

= −8εt Eµt
[
〈∇z∇y log ht, S∇z∇y log ht〉F

]
− 4 Eµt [〈∇z log ht,Mt∇z log ht〉] ,

with Mt =

(
2Id 2Id −∇2

xU

2Id −∇2
xU (2 + γ(εt)εt) Id − 2∇2

xU

)
∈M2d×2d(R).

A sketch of proof could be found in Appendix A.1.

Notice that S =

(
Id Id
Id Id

)
� 0, thus we obtain

∂µ,tHγ(εt)(µt|µ
∗
εt) ≤ −4 Eµt [〈∇z log ht,Mt∇z log ht〉]

= − Eµt
[〈
∇z log

pt
p∗εt

,Mt∇z log
pt
p∗εt

〉]
.

The r.h.s. of the above inequality resembles the Fisher information I(µt|µ∗εt) =

Eµt

[〈
∇z log pt

p∗εt
,∇z log pt

p∗εt

〉]
. In order to use the log-Sobolev inequality satisfied by µ∗εt
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(Proposition 3.1) and connect it to the distorted relative entropy (3.4), we will prove in
Lemma 3.4 that, for sufficiently large t ≥ 0,

Mt � c(εt)ρεt

(
S +

γ(εt)

2ρεt
I2d

)
, (3.5)

where c(εt) := 1
γ(εt)

. It follows that

∂µ,tHγ(εt)(µt|µ
∗
εt)

≤ −c(εt)ρεtEµt
[〈
∇z log

pt
p∗εt

, S∇z log
pt
p∗εt

〉
+
γ(εt)

2ρεt

〈
∇z log

pt
p∗εt

,∇z log
pt
p∗εt

〉]
≤ −c(εt)ρεt Eµt

[〈
∇z log

pt
p∗εt

, S∇z log
pt
p∗εt

〉
+ γ(εt)KL(µt|µ∗εt)

]
= −c(εt)ρεtHγ(εt)(µt|µ

∗
εt).

Lemma 3.4. Let Assumptions 2.1 and 2.3 hold true. Choose γ(εt) := 4
εt

(1 + L2) and

c(εt) := 1
γ(εt)

. Then, for sufficiently large t, Mt satisfies (3.5).

Proof. The proof is very similar to that of [30, Lemma 8], so we only present the main
idea here.

By the choice of γ(εt) and c(εt), we have that (εt, c(εt), ρεt , γ(εt)) → (0, 0, 0,∞) as
t→∞. Thus, it is sufficient to prove that for sufficiently large t ≥ 0,

Mt −
1

2
c(εt)γ(εt)I2d = Mt −

1

2
I2d � 0.

The characteristic equation of Mt − 1
2I2d is:

det

(
Mt −

1

2
I2d − λI2d

)
= det

((
3
2 − λ

)
Id 2Id −∇2

xU

2Id −∇2
xU

(
11
2 − λ+ 4L2

)
Id − 2∇2

xU

)
,

and by direct computation

det

(
Mt −

1

2
I2d − λI2d

)
= det

((
3

2
− λ
)(

11

2
− λ+ 4L2

)
Id − 2

(
3

2
− λ
)
∇2
xU −

(
2Id −∇2

xU
)2)

.

By diagonalizing ∇2
xU , with (∇2

xU)i denoting the i-th eigenvalue of ∇2
xU , we obtain d

quadratic equations on λ in the form

λ2 −
(
7 + 4L2 − 2(∇2

xU)i
)
λ+

(
17

4
+ 6L2 − (∇2

xU)2
i + (∇2

xU)i

)
= 0,

whose roots are the eigenvalues of Mt − 1
2I2d. Using the fact that |(∇2

xU)i| ≤ L (as ∇U
is L-Lipschitz), we can check that all roots of the above equations are positive, so all
eigenvalues of Mt − 1

2I2d are positive. This concludes the proof.

Remark 3.5. The previous lemma only ensures Mt � c(εt)ρεt

(
S + γ(εt)

2ρεt
I2d

)
for suffi-

ciently large t. However, this is sufficient to obtain the convergence of our kinetic anneal-
ing process (1.2), as long as we can ensure the distorted relative entropy Hγ(εt)(µt|µ∗εt)
is finite in any finite time interval (see Lemma 3.8 below). We also want to point out that
the choice of γ(εt) and c(εt) is not unique to ensure that Mt satisfies (3.5).
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We summarize the above results in the following proposition:

Proposition 3.6. Let Assumptions 2.1 and 2.3 hold. Then, for sufficiently large t ≥ 0,
we have

∂µ,tHγ(εt)(µt|µ
∗
εt) ≤ −c(εt)ρεtHγ(εt)(µt|µ

∗
εt),

where c(εt) := εt
4(1+L2) and ρεt is given in Proposition 3.1.

Now for ∂ε,tHγ(εt)(µt|µ∗t ) defined in (2.10), denote ε′t the derivative of t 7−→ εt, Propo-
sition 3.2 together with [30, Lemma 15] give

Lemma 3.7. Let Assumptions 2.1 and 2.3 hold true. Then, there exists some sub-
exponential function ε 7−→ ω(ε), such that

∂ε,tHγ(εt)(µt|µ
∗
εt) ≤ |ε

′
t|ω(εt)

(
Hγ(εt)(µt|µ

∗
εt) + 1 + C0

)
,

where C0 is the upper bound of E[U(Xt) + |Yt|2] defined in Proposition 3.2.

Finally, we claim Hγ(εt)(µt|µ∗εt) is uniformly bounded on any finite time horizon [0, t],
the proof could be found in Appendix A.2.

Lemma 3.8. Let Assumptions 2.1 and 2.3 hold true. Then, for all t ≥ 0, we have

sup
0≤s≤t

Hγ(εs)(µs|µ
∗
εs) <∞.

3.3 Proof of Theorem 2.5

For the estimation of P(U(X̃t) > δ), we have the following classical result (see e.g.
[30, Lemma 3], or [39, Lemma 3]).

Lemma 3.9. Let U satisfy Assumption 2.1. Then, for all constants δ and α > 0, there
exists some constant C > 0 (which depends only on δ, α, U, d) such that

P(U(X̃t) > δ) ≤ Ce−
δ−α
εt .

In particular, let εt satisfy Assumption 2.3. Then for sufficiently large t > 0, we have

P(U(X̃t) > δ) ≤ Ct−
δ−α
E .

Remark 3.10. The proof of Lemma 3.9 relies on the Laplace approximation method
which may fail when both the temperature parameter εt goes to 0 and the dimension d
goes to infinity. In Tang and Zhou [39, Remark 1], the authors got a concrete dependence
of the constant C in above Lemma on d. Their estimates shows the simulated annealing
algorithm is exponentially slow as the dimension increasing. This result is accordance
with Jain and Kar [21] that it is NP-hard for finding the global minimum of a general
non-convex function.

The estimates on Hγ(εt)(µt|µ∗εt) can be obtained by using the same arguments as in
[30, Lemma 19], together with the results in Section 3.2. We conclude them as the
following proposition.

Proposition 3.11. Let Assumptions 2.1 and 2.3 hold and choose γ(εt) = 4
εt

(
1 + L2

)
.

Then, for any α > 0, there exists C > 0, such that for sufficiently large t,

Hγ(εt)(µt|µ
∗
εt) ≤ Ct

−(1−E∗
E −α).
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Proof of Theorem 2.5. For any t ≥ 0, let Z̃t = (X̃t, Ỹt) be a random variable (on the same
initial probability space) following distribution µ∗εt . Then, for any δ > 0,

P(U(Xt) > δ) = P(U(Xt) > δ, U(X̃t) > δ) + P(U(Xt) > δ, U(X̃t) ≤ δ)

≤ P(U(X̃t) > δ) + TV(µt|µ∗εt) ≤ P(U(X̃t) > δ) +
√

2KL(µt|µ∗εt)

≤ P(U(X̃t) > δ) +
√

2Hγ(εt)(µt|µ∗εt), (3.6)

where we have used the Csiszár-Kullback-Pinsker inequality, the definition of the dis-
torted relative entropy (2.7), and the fact that γ(εt) = 4

εt
(1 +L2) ≥ 1 for sufficiently large

t ≥ 0. We then conclude the proof by Lemma 3.9 and Proposition 3.11.

4 Convergence of the discrete-time kinetic simulated annealing

Following the sketch of proof in Section 2.2, we provide in this section the conver-
gence analysis of the discrete time kinetic simulated annealing process (X,Y ) in (1.3)
and prove Theorem 2.8.

Without loss of generality, we assume that the Lipschitz constant of ∇U(x) satisfies
L ≥ 1. We also stay in the context with θ = 1 for the proof. Denote z = (x, y) and
Z := (X,Y ). By the explicit solution of (Xt, Y t) in (2.3), we can see that the marginal
distribution µt := L (Zt) is denoted by pt has a strictly positive and smooth density

function pt(z). Also recall that µ∗ε(dz) = p∗ε(z)dz with p∗ε(x, y) ∝ exp
(
− 1
ε (U(x) + |y|2

2 )
)

dz.

For the ease of notation, we abbreviate

(XTk , Y Tk , ZTk , εTk , µTk , µ
∗
εTk

, pTk , p
∗
εTk

) to (Xk, Y k, Zk, εk, µk, µ
∗
k, pk, p

∗
k).

4.1 Preliminary analysis of discrete kinetic annealing process

We first provide a uniform boundedness result on the moment of (X,Y ). Although
the coupling method (as in [25, Lemma 11]) is widely used for getting the moment
bound of (X,Y ), it could not be used in our problem. Since by using such method, the
log-Sobolev constant ρε will appear in the denominator. By Proposition 3.1, ρε → 0 as
temperature ε→ 0. Thus the moment bound get in this way is too crude to use in our
simulated annealing problem. Instead, a more involved analysis using Lyapunov function
in discrete setting as in [14, Lemma EC.5] will be carried out. To this end, we introduce
two positive constants

η∗ :=
min

{
β̃r
2L , 1−

β̃
r

}
min

{
1− β̃2

r/3 ,
1
2

}
max

{
9L2

r + 4
3 , L+ 6

}
max

{
1 + 3

4r ,
3
2

} , β̃ :=
1

2(1 + 1
r )
(

1 + 1√
r/3

) ,
where r > 0 is the constant given in Assumption 2.1. One can check that β̃ ≤ 1

2 , β̃ < r

and β̃2

r/3 < 1.

Proposition 4.1. Let Assumptions 2.1 and 2.3 hold. Assume that ∆tk ≤ min
{
η∗

2 ,
1
L

}
for

sufficiently large k ≥ 0. Then

C0 := sup
k≥0

E
[
U(Xk) + |Y k|2

]
<∞. (4.1)

Proof. Similar to the proof of Proposition 3.2, we introduce the Lyapunov function
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R̃(x, y) = U(x) + |y|2
2 + β̃x · y for all z = (x, y) ∈ Rd × Rd. Then, to prove (4.1), it is

equivalent to prove that
(
E
[
R̃(Xk, Y k)

])
k≥0

is uniformly bounded.

Denote θk := 1− e−∆tk ≤ ∆tk, so that the discrete time scheme (2.4) can be rewritten
as {

Xk+1 = Xk + θkY k − (∆tk − θk)∇xU(Xk) +Dx(k),

Y k+1 = e−∆tkY k − θk∇xU(Xk) +Dy(k),

where (Dx(k), Dy(k)) is a Gaussian vector in Rd ×Rd with mean zero and covariance
matrix Σk given by (2.5). Then,

E
[
U(Xk+1)

]
= E

[
U(Xk)

]
+ E

[∫ 1

0

∇xU
(
Xk + t(Xk+1 −Xk)

)
· (Xk+1 −Xk)dt

]
= E

[
U(Xk)

]
+ E

[∫ 1

0

∇xU(Xk) · (Xk+1 −Xk)dt

]
+E

[∫ 1

0

(
∇xU

(
Xk + t(Xk+1 −Xk)

)
−∇xU(Xk)

)
· (Xk+1 −Xk)dt

]

Then by the Lipschitz property of ∇xU , we derive

E
[
U(Xk+1)

]
≤ E

[
U(Xk)

]
+
L

2
E
[∣∣Xk+1 −Xk

∣∣2]+ E
[
∇xU(Xk) · (Xk+1 −Xk)

]
= E

[
U(Xk)

]
+
L

2
θ2
kE
[
|Y k|2

]
+
(L(∆tk − θk)2

2
− (∆tk − θk)

)
E
[∣∣∇xU(Xk)

∣∣2]
+ (θk − Lθk(∆tk − θk))E

[
Y k · ∇xU(Xk)

]
+
L

2
Σ11(k)d.

Further, we compute directly that

E
[∣∣Y k+1

∣∣2] = E
[∣∣e−∆tkY k − θk∇xU(Xk) +Dy(k)

∣∣2]
= e−2∆tkE

[∣∣Y k∣∣2]+ θ2
kE
[∣∣∇xU(Xk)

∣∣2]
−2θke

−∆tkE
[
Y k · ∇xU(Xk)

]
+ Σ22(k)d

and

E
[
Xk+1 · Y k+1

]
= E

[
(Xk + θkY k − (∆tk − θk)∇xU(Xk)

+Dx(k)) ·
(
e−∆tkY k − θk∇xU(Xk) +Dy(k)

)]
= e−∆tkE

[
Xk · Y k

]
− θkE

[
Xk · ∇xU(Xk)

]
+ θke

−∆tkE
[∣∣Y k∣∣2]

−
(
θ2
k + (∆tk − θk)e−∆tk

)
E
[
Y k · ∇xU(Xk)

]
+θk(∆tk − θk)E

[∣∣∇xU(Xk)
∣∣2]+ Σ12(k)d.

EJP 29 (2024), paper 77.
Page 15/31

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1138
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Kinetic Langevin simulated annealing

Therefore, by the definition of R̃, it follows that

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ 1

∆tk

((
L

2
θ2
k +

1

2
(e−2∆tk − 1) + β̃θke

−∆tk

)
E
[∣∣Y k∣∣2]+ β̃

(
e−∆tk − 1

)
E
[
Xk · Y k

]
+

(
L(∆tk − θk)2

2
− (∆tk − θk) +

1

2
θ2
k + β̃θk(∆tk − θk)

)
E
[∣∣∇xU(Xk)

∣∣2]
+
(
θk − Lθk(∆tk − θk)− θke−∆tk − β̃

(
θ2
k + (∆tk − θk)e−∆tk

))
E
[
Y k · ∇xU(Xk)

]
−β̃θkE

[
Xk · ∇xU(Xk)

]
+
L

2
Σ11(k)d+

1

2
Σ22(k)d+ β̃Σ12(k)d

)
.

Using the fact that β̃ ≤ 1
2 , θk ≤ ∆tk ≤ 1

L ≤ 1, and the expressions of Σij(k) in (2.5), we
have

L

2
θ2
k +

1

2
(e−2∆tk − 1) + β̃θke

−∆tk ≤ −1

2
∆tk +

(
L

2
+ 2− 3

2
β̃

)
∆t2k,

L(∆tk − θk)2

2
− (∆tk − θk) +

1

2
θ2
k + β̃θk(∆tk − θk) ≤ 1

6
∆t3k +

L

8
∆t4k,

θk−Lθk(∆tk−θk)− θke−∆tk − β̃
(
θ2
k + (∆tk − θk)e−∆tk

)
≤
(

1− 3

2
β̃

)
∆t2k+

(
2β̃ − L

2

)
∆t3k,

and

L

2
Σ11(k)d+

1

2
Σ22(k)d+ β̃Σ12(k)d ≤ 5

2
εk∆tkd.

Thus, by (r,m)-dissipativity of U and the L-Lipschitz of ∇xU , one has

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ 1

∆tk

{(
−1

2
∆tk +

(
L

2
+ 2−3

2
β̃

)
∆t2k

)
E
[∣∣Y k∣∣2]+

(
1

6
∆t3k+

L

8
∆t4k

)
E
[∣∣∇xU(Xk)

∣∣2]
((

1− 3

2
β̃

)
∆t2k +

(
2β̃ − L

2

)
∆t3k

) E [∣∣Y k∣∣2]+ E
[∣∣∇xU(Xk)

∣∣2]
2

+β̃

(
−∆tk +

∆t2k
2

)
E
[
Xk · Y k

]
− β̃

(
∆tk −

1

2
∆t2k

)(
rE
[∣∣Xk

∣∣2]−m)+
5

2
εk∆tkd

}
and hence there exists some constant b such that

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ −β̃rE

[∣∣Xk

∣∣2]− 1

2
E
[∣∣Y k∣∣2]− β̃(1− 1

2
∆tk

)
E
[
Xk · Y k

]
+

((
L2 +

1

2
β̃r

)
∆tk + L2

(
2β̃ + 1

)
∆t2k

)
E
[∣∣Xk

∣∣2]
+

(
L+ 5

2
∆tk + β̃∆t2k

)
E
[∣∣Y k∣∣2]+ b

≤ −β̃rE
[∣∣Xk

∣∣2]− 1

2
E
[∣∣Y k∣∣2]+ β̃

(
cE
[∣∣Xk

∣∣2]+
1

4c
E
[∣∣Y k∣∣2])

+∆tk

(
L+ 6

2
E
[∣∣Y k∣∣2]+

(
3L2 +

r

4

)
E
[∣∣Xk

∣∣2])+ b
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for arbitrary c. Now choose c = r
2 . Notice that β̃ < r by its definition, then

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ −1

2
β̃rE

[∣∣Xk

∣∣2]− 1

2

(
1− β̃

r

)
E
[∣∣Y k∣∣2]

+∆tk

(
L+ 6

2
E
[∣∣Y k∣∣2]+

(
3L2 +

r

4

)
E
[∣∣Xk

∣∣2])+ b.

Using (2.1), we derive

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ − β̃r

2L
E
[
U(Xk)

]
− 1

2

(
1− β̃

r

)
E
[∣∣Y k∣∣2]

+∆tk

((
9L2

r
+

3

4

)
E
[
U(Xk)

]
+
L+ 6

2
E
[∣∣Y k∣∣2])+ b3

≤ −b1
(
E
[
U(Xk)

]
+

1

2
E
[∣∣Y k∣∣2])+ b2∆tk

(
E
[
U(Xk)

]
+

1

2
E
[
|Y k|2

])
+ b3,

where b1 := min
{
β̃r
2L , 1−

β̃
r

}
, b2 := max

{
9L2

r + 4
3 , L+ 6

}
, and b3 := b+ β̃rK

2L +
(

9L2

r + 4
3

)
K.

Set b4 := max
{

1 + 3
4r ,

3
2

}
and b5 := min

{
1
2 , 1−

β̃3

r/3

}
> 0. Then, we have

b5

(
U(x) +

1

2
|y|2
)
− 3β̃2K

r
≤ R̃(x, y) ≤ b4

(
U(x) +

1

2
|y|2
)

+
3K

4r
.

We thus obtain

1

∆tk

(
E
[
R̃(Xk+1, Y k+1)

]
− E

[
R̃(Xk, Y k)

])
≤ −b1

b4

(
E
[
R̃(Xk, Y k)

]
− 3K

4r

)
+ ∆tk

b2
b5

(
E
[
R̃(Xk, Y k)

]
+

3β̃2K

r

)
+ b3.

Rearrange the above, we derive, for some constant C > 0, that

E
[
R̃(Xk+1, Y k+1)

]
≤
(

1− b1
b4

∆tk +
b2
b5

∆t2k

)
E
[
R̃(Xk, Y k)

]
+ C∆tk.

When ∆tk ≤ η∗

2 , we have 1 − b1
b4

∆tk + b2
b5

∆t2k ≤ 1 − b1
2b4

∆tk, which implies that(
E
[
R̃(Xk, Y k)

])
k≥0

is uniformly bounded.

Remark 4.2. Under the conditions in Theorem 2.8, we have

lim
k→∞

Tk =∞ and lim
k→∞

∆tk = 0,

so the conditions of Proposition 4.1 hold.

By Proposition 4.1, we can easily obtain that
(
E
[
|Y t|2

])
t≥0

is also uniformly bounded.

Moreover, we have the following fine estimation on the increment of X:

Proposition 4.3. There exists a constant C > 0, such that

sup
t∈[Tk,Tk+1]

E
[∣∣Xt −Xk

∣∣2] ≤ C∆t2k, for all k ≥ 0.
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Proof. For t ∈ [Tk, Tk+1], notice that Xt = Xk +
∫ t
Tk
Y sds. It then follows by Cauchy-

Schwarz inequality that

E
[∣∣Xt −Xk

∣∣2] = E

[∣∣∣∣∫ t

Tk

Y sds

∣∣∣∣2
]
≤ (t− Tk)

∫ t

Tk

E
[∣∣Y s∣∣2] ds ≤ C∆t2k

for some constant C independent of k ≥ 0.

4.2 One-step entropy evolution with fixed temperature

In this subsection, we aim at adapt the method in [25] to estimate the difference
term (2.14), which is the one-step evolution of Hγ(ε) (µt|µ∗ε) with fixed ε. The computation
framework is similar to what we have done in Section 3 for continuous-time setting.
Though there are some differences, the computation details in this subsection is similar
to [25, Section 4]. We leave most of the proof in the Appendix B for completeness.

We first provide the Fokker-Planck equation satisfied by µt on each interval [Tk, Tk+1].
Recall that pt denotes the density function of µt. For t ∈ [Tk, Tk+1] and zk ∈ Rd × Rd,
denote by

z 7−→ pt|Tk (z|zk) the density function of L (Zt|ZTk = zk),

that is, the conditional distribution of Zt knowing ZTk = zk. Further, similar to (3.3),
define

vt,k(z) :=

(
y

−∇xU(x)− y − εk∇y log pt

)
and v̂t,k(z) :=

(
y

−∇xU(xk)− y − εk∇y log pt

)
.

Lemma 4.4. For all k ≥ 0, pt satisfies

∂tpt = −∇z · (ptvt,k)−
∫ [
∇z ·

(
pt|Tk (·|zk) (v̂t,k − vt,k)

)]
dµk(zk), t ∈ [Tk, Tk+1].

Proof. Conditioned on the σ-field FTk := σ(Zt : 0 ≤ t ≤ Tk), Z follows a linear SDE with
deterministic parameters on [Tk, Tk+1] (see (1.3)). Thus, the conditional density function
z 7→ p(z | zk) satisfies the Fokker-Planck equation

∂tpt|Tk(z|zk) = −∇z ·
(
pt|Tk(z|zk)v̂t,k(z)

)
= −∇z ·

(
pt|Tk(z|zk)vt,k(z)

)
−∇z ·

(
pt|Tk(z|zk)(v̂t,k(z)− vt,k(z))

)
.

Notice that vt,k is independent of zk. We can then complete the proof by integrating both
sides of the above equality with respect to zk under the measure µk(zk).

For t ∈ [Tk, Tk+1], let h̃t =
√

pt
p∗k

, we write the distorted relative entropy

Hγ(εk)(µt|µ∗k) = 4 Eµt

[〈
∇z log h̃t, S∇z log h̃t

〉]
+ 2γ(εk) Eµt

[
log h̃t

]
.

Denote (∇̃z)∗ = (∇̃∗x, ∇̃∗y) :=
(
−∇x ·+ 1

εk
∇xU · , −∇y ·+ y

εk
·
)

as the adjoint operator of

∇z w.r.t. µ∗k, in the sense that for any f, g ∈ L2(µ∗k), Eµ∗
k
[f · ∇zg] = Eµ∗

k
[g∇̃∗zf ]. Then, for
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t ∈ [Tk, Tk+1], by Lemma 4.4, we have

d

dt
Hγ(εk)(µt|µ∗k) =

∫
δHγ(εk)(µt|µ∗k)

δ µt
∂tpt dz

=

∫ 〈
∇z
(
δHγ(εk)(µt|µ∗k)

δ µt

)
, vt,k

〉
pt dz (4.2)

+

∫ 〈
∇z
(
δHγ(εk)(µt|µ∗k)

δ µt

)
,

∫
pt|Tk(z|zk)(v̂t,k − vt,k)(z) pk(zk)dzk

〉
dz. (4.3)

Computing (4.2) is very similar to Proposition 3.3 in continuous-time setting. And we
mimic the proof of [25, Lemma 3] to compute (4.3). We summarize the result as follows,
and the proof can be found in Appendix B.1.

Let Mk :=

(
2Id 2Id −∇2

xU

2Id −∇2
xU (2 + γ(εk)εk) Id − 2∇2

xU

)
∈M2d×2d(R), and

At(z) :=
1

pt(z)

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk. (4.4)

Proposition 4.5. One has

d

dt
Hγ(εk)(µt|µ∗k)

=− 4 Eµt

[〈
∇z log h̃t,Mk∇z log h̃t

〉]
− 8εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+ 4

∫ 〈
∇z∇y log h̃t, S∇zAt(z)

〉
F

dµt(z) (4.5)

+

∫ 〈
4

εk
∇x log h̃t +

(
2γ(εk) +

4

εk

)
∇y log h̃t,∫

(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz, (4.6)

By properly estimate terms (4.5) and (4.6) in above proposition, we could get the
following estimates.

Proposition 4.6.

d

dt
Hγ(εk)(µt|µ∗k) ≤ − Eµt

[〈
∇z log

pt
p∗k
, M̃k∇z log

pt
p∗k

〉]
+

144d
3
2L2

εk
∆t2k

+

(
(L′)2

εk
+

4L2

ε2
k

(
2 +

1

2
εkγ(εk)

))
E
[∣∣Xt −Xk

∣∣2] ,
with

M̃k :=

(
7
4Id 2Id −∇2

xU

2Id −∇2
xU

(
7
4 + 7

8γ(εk)εk
)
Id − 2∇2

xU

)
∈M2d×2d(R).

The main idea of the proof is borrowed from the proof of [25, Lemma 4]. We
nevertheless sketch it in Appendix B.2 for completeness.

Recall that ρk is the constant in the LSI satisfied by µ∗k in Proposition 3.1. As the
discrete time analogue to Lemma 3.4, we have the following inequality for M̃k. The proof
is omitted because it is similar to that of Lemma 3.4.

Lemma 4.7. Let (εk)k≥0 be given as in Assumption 2.3 and ∇xU be L-Lipschitz. Choose
γ(εk) := 4

εk

(
1 + L2

)
and c(εk) := 1

γ(εk) . Then, for sufficiently large k ≥ 0, we have

M̃k � c(εk)ρk

(
S + γ(εk)

2ρk
I2d

)
.
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We finally present the main result in this subsection.

Proposition 4.8. Let Assumptions 2.1, 2.3 hold. Suppose in addition that ∇2
xU is L′-

Lipschitz and ∆tk ≤ min
{
η∗

2 ,
1
L

}
for sufficiently large k ≥ 0. Further choose γ(εk) =

1
c(εk) = 4

εk
(1 + L2). Then, there exist some constants C1 > 0 and C2 > 0 such that, for

sufficiently large k ≥ 0 and for all α > 0,

Hγ(εk)(µk+1|µ∗k) ≤
(

1− C1∆tk T
−(E∗

E +α)
k

)
Hγ(εk)(µk|µ∗k) + C2∆t3k (log Tk)

2
.

Proof. First, for sufficiently large k ≥ 0, it follows from Lemma 4.7 that

− Eµt

[〈
∇z log

pt
p∗k
, M̃k∇z log

pt
p∗k

〉]
≤ −c(εk)ρk Eµt

[〈
∇z log

pt
p∗k
, S∇z log

pt
p∗k

〉
+
γ(εk)

2ρk

∣∣∣∣∇z log
pt
p∗k

∣∣∣∣2
]
.

Using the LSI satisfied by µ∗k in Proposition 3.1, we obtain that

− Eµt

[〈
∇z log

pt
p∗k
, M̃k∇z log

pt
p∗k

〉]
≤ −c(εk)ρkHγ(εk)(µt|µ∗k). (4.7)

Next, plugging (4.7) into the estimate of d
dtHγ(εk)(µt|µ∗k) in Proposition 4.6 and

recalling Proposition 4.3, we derive

d

dt
Hγ(εk)(µt|µ∗k) ≤ −c(εk)ρkHγ(εk)(µt|µ∗k) + Cε−2

k ∆t2k.

Recall that εk = E
log Tk

with E > E∗ for sufficiently large k ≥ 0 and that ρk = χ(εk)e
−E∗
εk ,

where εk logχ(εk)→ 0 as k →∞. Then, for sufficiently large k ≥ 0 and for all α > 0, we
have

d

dt
Hγ(εk)(µt|µ∗k) ≤ −CT−(E∗

E +α)
k Hγ(εk)(µt|µ∗k) + C∆t2k(log Tk)2.

By computing d
dt

(
eC t T

−(E∗
E

+α)
k Hγ(εk)(µt|µ∗k)

)
and then integrating it from Tk to Tk+1,

we obtain

Hγ(εk)(µk+1|µ∗k)

≤ e−C∆tkT
−(E∗

E
+α)

k Hγ(εk)(µk|µ∗k) + C∆t2k(log Tk)2 T
(E∗
E +α)

k

(
1− e−C∆tkT

−(E∗
E

+α)
k

)
≤

(
1− C1∆tkT

−(E∗
E +α)

k

)
Hγ(εk)(µk|µ∗k) + C2∆t3k (log Tk)2,

where C1 > 0 and C2 > 0 are some constants independent of k. The proof then
completes.

4.3 One-step entropy evolution with cooling temperature

Next, we compute the term in (2.15), which is the one-step change of Hγ(ε)

(
µk+1|µ∗ε

)
when the temperature ε in the discrete scheme (1.3) is updated from εk to εk+1 in the
k-th step.

Lemma 4.9. Let Assumptions 2.1 and 2.3 hold. Then, there exists a constant C > 0 such
that for sufficiently large k ≥ 0 and for all α > 0,

Hγ(εk+1)(µk+1|µ∗k+1) ≤ Hγ(εk)(µk+1|µ∗k) + C∆tkT
−1+α
k .
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Proof. The proof is a discrete time analogue of Lemma 3.7. We use C > 0 to denote a
generic constant whose value may change from line to line. First, use similar arguments
to the ones in the proof of Lemma 3.7, we obtain

∂ε Eµk+1

[〈
∇z log

pk+1

p∗ε
, S∇z log

pk+1

p∗ε

〉]
≤ Eµk+1

[〈
∇z log

pk+1

p∗ε
, S∇z log

pk+1

p∗ε

〉]
+ Cε−4(1 + C0)

and

∂ε

(
γ(ε) Eµk+1

[
log

pk+1

p∗ε

])
≤ Cε−2 Eµk+1

[
log

pk+1

p∗ε

]
+ Cε−3(1 + C0).

It follows that

∂εHγ(ε)

(
µk+1|µ∗ε

)
≤ (1 + ε−1)Hγ(ε)(µk+1|µ∗ε) + Cε−4 (1 + C0).

Recall that εt = E
log t with E > E∗ for large t. Then, for any sufficiently large k and

t ∈ [Tk, Tk+1], we have εt ∈ [εk+1, εk] and

∂εHγ(εt)(µk+1|µ∗εt) ≤ C log Tk+1 Hγ(εt)(µk+1|µ∗εt) + C(log Tk+1)4 (1 + C0).

It follows by Grönwall lemma that

Hγ(εk+1)(µk+1|µ∗k+1) ≤ eC(εk+1−εk) log Tk+1Hγ(εk)(µk+1|µ∗k) + C(εk − εk+1)(log Tk+1)4.

Notice that eC(εk+1−εk) log Tk+1 ≤ 1 and εk − εk+1 ≤ C∆tkT
−1
k (log Tk)−2. As a result, for

any α > 0, we have

Hγ(εk+1)(µk+1|µ∗k+1) ≤ Hγ(εk)(µk+1|µ∗k) + C∆tkT
−1
k (log Tk+1)4(log Tk)−2

≤ Hγ(εk)(µk+1|µ∗k) + C3∆tkT
−1+α
k .

4.4 Proof of Theorem 2.8

For each k ≥ 0, let Z̃k = (X̃k, Ỹk) be a random variable with distribution µ∗k in the
same probability space supporting (X,Y ). Similar to (3.6), we can show that, for each
δ > 0,

P
(
U(Xk) > δ

)
≤ P

(
U(X̃k) > δ

)
+
√

2Hγ(εk)(µk|µ∗k). (4.8)

The term P
(
U(X̃k) > δ

)
can be handled by Lemma 3.9 to obtain the desired conver-

gence rate. For the convergence of
√

2Hγ(εk)(µk|µ∗k), we can apply Proposition 4.8 and
Lemma 4.9 to show that there are some positive constants c1, c′1, c2, and k0 ≥ 0 such that

Hγ(εk+1)(µk+1|µ∗k+1)−Hγ(εk)(µk|µ∗k)

≤ −c1∆tkT
−(E∗

E +α)
k Hγ(εk)(µk|µ∗k) + c′1∆t3k(log Tk)2 + c2∆tkT

−1+α
k ,

for all k ≥ k0. Because lim supk→∞∆tk
√
Tk <∞, we can find some positive constant c3

such that

Hγ(εk+1)(µk+1|µ∗k+1) ≤
(

1− c1∆tkT
−(E∗

E +α)
k

)
Hγ(εk)(µk|µ∗k) + c3∆tkT

−1+α
k .
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It is sufficient to consider α < 1
2

(
1− E∗

E

)
. Then,

Hγ(εk+1)(µk+1|µ∗k+1)− 2c3
c1
T
−(1−E∗

E −2α)
k+1

≤
(

1− c1∆tkT
−(E∗

E +α)
k

)(
Hγ(εk)(µk|µ∗k)− 2c3

c1
T
−(1−E∗

E −2α)
k

)
,

which implies that, for k ≥ k0,

Hγ(εk)(µk|µ∗k) ≤ 2c3
c1
T
−(1−E∗

E −2α)
k

+

k−1∏
j=k0

(
1− c1 ∆tjT

−(E∗
E +α)

j

)
·
(
Hγ(εk0 )(µk0 |µ

∗
k0)− 2c3

c1
T
−(1−E∗

E −2α)
k0

)
.

Further, for all k ≥ k0, by the definition of Riemann integral,∫ Tk

Tk0

z−(E∗
E +α)dz <

Tk∑
j=k0

∆tjT
−(E∗

E +α)
j .

Notice that E∗
E + α < 1, then

∞∑
j=k0

∆tjT
−(E∗

E +α)
j >

∫ ∞
Tk0

z−(E∗
E +α)dz =∞, and hence

∞∏
j=k0

(
1− c1 ∆tjT

−(E∗
E +α)

j

)
= 0.

Finally, by Lemma 4.10 which will be presented and shown momentarily, we know that
Hγ(εk0 )(µk0 |µ

∗
k0

) is finite. Then, there exists a positive constant C > 0 such that

Hγ(εk)(µk|µ∗k) ≤ CT−(1−E∗
E −2α)

k .

This completes the proof.

We finally provide a discrete time analogue of the result in Lemma 3.8, which is
needed in the proof of Theorem 2.8.

Lemma 4.10. For every k ≥ 0, the distorted entropy Hγ(εk) (µk|µ∗k) is finite.

Proof. As in the proof of Lemma 3.8, it suffices to prove that the Fisher information
I(µk|µ∗k) is finite for every finite k ≥ 0. Again, we use C to denote a generic positive
constant whose value may change from line to line.

For t ∈ [Tk, Tk+1], with h̃t =
√

pt
p∗k

, recall that

I(µt|µ∗k) = Eµt

[∣∣∣∣∇z log
pt
p∗k

∣∣∣∣2
]

= 4 Eµt

[∣∣∣∇z log h̃t

∣∣∣2] .
Using a similar computation to the one in the calculation of Hγ(εk) (µt|µ∗k) in Section 4.2,
we can obtain that

d

dt
I(µt|µ∗k) =

∫ 〈
∇z
(
δI(µt|µ∗k)

δ µt

)
, vt,k

〉
pt(z) dz

+

∫ 〈
∇z
(
δI(µt|µ∗k)

δ µt

)
,

∫
pt|Tk(z|zk)(v̂t,k − vt,k)pk(zk)dzk

〉
dz,

where
δI(µt|µ∗k)

δ µt
=

4

h̃t
∇̃∗z∇zh̃t.
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Following the same steps as in (A.1), (A.2) and (A.3), we further obtain that∫ 〈
∇z
(
δI(µt|µ∗k)

δ µt

)
, vt,k

〉
pt(z) dz (4.9)

= −4 Eµt

[〈
∇z log h̃t,MI∇z log h̃t

〉]
− 8εk Eµt

[∥∥∥∇z∇y log h̃t

∥∥∥
F

]
,

where MI =

(
0 Id −∇2

xU

Id −∇2
xU 2Id

)
. Further, by similar arguments to the ones in

Lemma B.1, and with At(z) as given by (4.4), we have∫ 〈
∇z
(
δI(µt|µ∗k)

δ µt

)
,

∫
pt|Tk(z|zk)(v̂t,k − vt,k)pk(zk)dzk

〉
dz (4.10)

=
4

εk

∫ 〈
∇y log h̃t,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

+4

∫ 〈
∇z∇y log h̃t,∇zAt(z)

〉
F

dµt(z).

Following the same arguments as in Lemma B.2 and B.3, we can further obtain the
inequalities

4

εk

∫ 〈
∇y log h̃t,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

≤ Eµt

[∥∥∥∇y log h̃t

∥∥∥2
]

+
4L2

ε2
k

E
[∣∣Xt −Xk

∣∣2] ,
and

4

∫ 〈
∇z∇y log h̃t,∇zAt(z)

〉
F

dµt(z)

≤ 8εk Eµt

[∥∥∥∇z∇y log h̃t

∥∥∥2

F

]
+

(L′)2

εk
E
[∣∣Xt −Xk

∣∣2]+
72

εk
dL2∆t2k.

Next, by Proposition 4.3, (4.9) and (4.10), it follows that

d

dt
I(µt|µ∗k) ≤ − Eµt

[〈
∇z log

pt
p∗k
, M̃I∇z log

pt
p∗k

〉]
+ Cε−2

k ∆t2k,

where M̃I =

(
0 Id −∇2

xU

Id −∇2
xU

7
4Id

)
� −(1 +L)I2d due to the L-Lipschitz of ∇xU . Then,

d

dt
I(µt|µ∗k) ≤ (1 + L)I(µt|µ∗k) + Cε−2

k ∆t2k,

which implies that
I(µk+1|µ∗k) ≤ e(1+L)∆tkI(µk|µ∗k) + C∆t3k. (4.11)

Finally, following similar computation steps to the ones in Lemma 4.9, we obtain that,
for all ε > 0,

∂εI
(
µk+1|µ∗ε

)
= ∂εEµk+1

[∣∣∣∣∇z log
pk+1

p∗ε

∣∣∣∣2
]
≤ I(µk+1|µ∗ε) + Cε−4.

The above, together with (4.11), implies that

I(µk+1|µ∗k+1) ≤ e(εk+1−εk)I(µk+1|µ∗k) + Ceεk+1

∫ εk+1

εk

ε−4e−εdε

≤ e(1+L)∆tkI(µk|µ∗k) + C∆t3k

≤ e(1+L)Tk+1I(µ0|µ∗ε0) + e(1+L)Tk+1

k∑
i=0

∆t3i ,
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where the r.h.s. of the last inequality in the above is clearly finite for every k ≥ 0.

Appendix A Proof in Section 3

A.1 Proof of Proposition 3.3

By Proposition 2.22 in [24], we have

δHγ(εt)(µt|µ∗εt)
δµt

=
4

ht
∇∗zS∇zht + 2γ(εt) log ht + γ(εt).

Then using (3.3) and (3.4), a simple calculation leads to

∂µ,tHγ(εt)(µt|µ
∗
εt)

=

∫
∇z
(

4

ht
∇∗zS∇zht + 2γ(εt) log ht

)
· vt ptdz

= −4εtγ(εt)

∫ 〈
∇zht ,

(
0 −Id
Id Id

)
∇zht

〉
p∗εtdz (A.1)

+8εt

∫ 〈
∇zht ,

(
0 −Id
Id Id

)
∇zht

〉
∇∗zS∇zht

ht
p∗εtdz (A.2)

−8εt

∫ 〈
∇z∇∗zS∇zht ,

(
0 −Id
Id Id

)
∇zht

〉
p∗εtdz. (A.3)

For (A.1), it equals to

−4εtγ(εt) Eµ∗
εt

[∣∣∇yht∣∣2] = − εtγ(εt) Eµt

[∣∣∣∇y log
pt
p∗εt

∣∣∣2]. (A.4)

In addition, (A.2) can be simplified as

8εt

∫ 〈
∇zht ,

(
0 −Id
Id Id

)
∇zht

〉
∇∗zS∇zht

ht
p∗εtdz

= 8εt Eµ∗
εt

[
|∇yht|2

ht
∇∗zS∇zht

]
= 8εt Eµ∗

εt

[〈
∇z|∇yht|2

ht
, S∇zht

〉]
− 8εt Eµ∗

εt

[〈
|∇yht|2

h2
t

∇zht , S∇zht
〉]

= 16εt Eµ∗
εt

[〈
∇zht
ht

(∇yht)T , S∇z∇yht
〉
F

]
(A.5)

−8εt Eµ∗
εt

[〈
∇zht
ht

(∇yht)T , S
∇zht
ht

(∇yht)T

〉
F

]
.

For (A.3), we write it as the sum of the following three terms:

I1 := −8εt Eµ∗
εt

[〈
∇z(∇∗x∇y +∇∗y∇x)ht ,

(
0 −Id
Id Id

)
∇zht

〉]
,

I2 := −8εt Eu∗
εt

[〈
∇z∇∗x∇xht ,

(
0 −Id
Id Id

)
∇zht

〉]
,

I3 := −8εt Eµ∗
εt

[〈
∇z∇∗y∇yht ,

(
0 −Id
Id Id

)
∇zht

〉]
.
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Further, by [25, Lemma 9], we have

I1 = 8 Eµ∗
εt

[
〈∇yht,∇2

xU∇yht〉 − 〈∇xht,∇xht +∇yht〉
]

−16εt Eµ∗
εt

[
〈∇y∇xht,∇2

yht〉F
]
,

I2 = 8 Eµ∗
εt

[
〈∇xht,∇2

xU∇yht〉
]
− 8εt Eµ∗

εt
[〈∇x∇yht,∇x∇yht〉F ] ,

I3 = −8 Eµ∗
εt

[
〈∇xht +∇yht,∇yht〉+ εt〈∇2

yht,∇2
yht〉F

]
.

Consequently, we obtain that (A.3) equals to

− 8 Eµ∗
εt

[〈
∇xht,∇xht + (2Id −∇2

xU)∇yht
〉]

− 8 Eµ∗
εt

[
εt 〈∇z∇yht, S∇z∇yht〉F +

〈
∇yht, (Id −∇2

xU)∇yht
〉]
.

Combining the above with (A.4) and (A.5), we derive

∂µ,tHγ(εt)(µt|µ
∗
εt)

= −8εt Eµ∗
εt

[〈
∇z∇yht − (∇z log ht)(∇yht)T, S

(
∇z∇yht − (∇z log ht)(∇yht)T

) 〉
F

]
−4 Eµ∗

εt
[〈∇zht,Mt∇zht〉]

= −8εt Eµt
[
〈∇z∇y log ht, S∇z∇y log ht〉F

]
− 4 Eµt [〈∇z log ht,Mt∇z log ht〉] ,

which is the desired result.

A.2 Proof of Lemma 3.8

Recall Hγ(εt)(µt|µ∗εt) = Eµt

[∣∣∣∇x log dµt
dµ∗
εt

+∇y log dµt
dµ∗
εt

∣∣∣2 + γ(εt) log dµt
dµ∗
εt

]
, and notice

that

Eµt

[∣∣∣∣∇x log
dµt
dµ∗εt

+∇y log
dµt
dµ∗εt

∣∣∣∣2
]
≤ 2I(µt|µ∗εt).

Then, by the log-Sobolev inequality, it suffices to prove that I(µt|µ∗εt) is uniformly bounded
on any finite horizon.

As in (2.8), we write

d

dt
I(µt|µ∗εt) = ∂µ,tI(µt|µ∗εt) + ∂ε,tI(µt|µ∗εt), (A.6)

where

∂µ,tI(µt|µ∗εt) :=
d

dt
I(µt|ν)

∣∣∣∣
ν=µ∗

εt

and ∂ε,tI(µt|µ∗εt) :=
d

dt
I(ν|µ∗εt)

∣∣∣∣
ν=µt

.

Similar to the computation in Section 3.2, for ht =
√
pt/p∗εt , we have

I(µt|µ∗εt) = 4 Eµt [〈∇z log ht,∇z log ht〉].

Then,

∂µ,tI(µt|µ∗εt) =

∫
∇z
(

4

ht
∇∗z∇zht

)
· vtptdz

= −8εt Eµ∗
εt

[∣∣∇z∇yht − (∇z log ht)(∇yht)T
∣∣2]

−4 Eµ∗
εt

[
〈∇zht, M̃∇zht〉

]
≤ −4 Eµ∗

εt

[
〈∇zht, M̃∇zht〉

]
,
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where vt satisfies (3.3) and M̃ =

(
0 Id −∇2

xU

Id −∇2
xU 2Id

)
. Using the fact that ∇U is

L-Lipschitz, it is easy to show that M̃ � −(L+ 1)I2d and thus

∂µ,tI(µt|µ∗εt) ≤ (L+ 1)I(µt|µ∗εt). (A.7)

Further, a similar calculation to the one in the proof of Lemma 3.7 yields that, for
some constant C > 0,

∂εI(µt|µ∗ε) ≤ I(µt|µ∗ε) + Cε−4(1 + C0).

This inequality, together with Proposition 3.2, yields the existence of some sub-exponential
ω̃(·), such that

∂ε,tI(µt|µ∗εt) ≤ |ε
′
t|ω̃(εt)(1 + I(µt|µ∗εt)). (A.8)

Plugging (A.7) and (A.8) into (A.6), we obtain

d

dt
I(µt|µ∗εt) ≤ (1 + L)I(µt|µ∗εt) + |ε′t|ω̃(εt)(1 + I(µt|µ∗εt)).

Because ω̃(εt) and |ε′t| are all bounded on any finite time interval, there exists C > 0,
such that

d

dt
I(µt|µ∗εt) ≤ C(I(µt|µ∗εt) + 1).

Finally, by Assumption 2.3, we conclude I(µ0|µ∗ε0) is finite. The proof then completes.

Appendix B Proof in Section 4

B.1 Proof of Proposition 4.5

The first order variational derivative of Hγ(εk)(µt|µ∗k) is given by

δHγ(εk)(µt|µ∗k)

δ µt
=

4

h̃t
∇̃∗zS∇zh̃t + 2γ(εk) log h̃t + γ(εk).

We then follow the same computation steps as in (A.1), (A.2) and (A.3) to obtain that
the term (4.2) is equal to

− 4 Eµt

[〈
∇z log h̃t,Mk∇z log h̃t

〉]
− 8εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
. (B.1)

Because v̂t,k(z)− vt,k(z) =

(
0

∇xU(x)−∇xU(xk)

)
, term (4.3) can be directly com-

puted as ∫ 〈
∇z
(

4

h̃t
∇̃∗zS∇zh̃t

)
+ 2γ(εk)∇z log h̃t,∫

(v̂t,k − vt,k)(z) pt|Tk(z|zk) pk(zk)dzk

〉
dz (B.2)

=

∫ 〈
2γ(εk)∇y log h̃t,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

+

∫ 〈
∇y
(

4

h̃t
∇̃∗zS∇zh̃t

)
,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz.

Notice that ∇̃∗zS∇zh̃t = ∇̃∗x∇xh̃t + ∇̃∗x∇yh̃t + ∇̃∗y∇xh̃t + ∇̃∗y∇yh̃t, in the same spirit of
[25, Lemma 3], we have the following results:
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Lemma B.1. For # ∈ {x, y},

4

∫ 〈
∇y

(
∇̃∗x∇#h̃t

h̃t

)
,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk) dzk

〉
dz

= 4

∫ 〈
∇y∇# log h̃t,∇xAt(z)

〉
F

dµt(z) + 4

∫ 〈
∇y∇#h̃t, At(z)(∇xh̃t)T

〉
F

dµ∗k(z)

−4

∫ 〈
∇x∇yh̃t, At(z)(∇#h̃t)

T
〉
F

dµ∗k(z),

and

4

∫ 〈
∇y

(
∇̃∗y∇#h̃t

h̃t

)
,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

= 4

∫ 〈
∇y∇# log h̃t,∇yAt(z)

〉
F

dµt(z) + 4

∫ 〈
∇y∇#h̃t, At(z)(∇yh̃t)T

〉
F

dµ∗k(z)

+
4

εk

∫ 〈
∇# log h̃t,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

−4

∫ 〈
∇2
yh̃t, At(z)(∇#h̃t)

T
〉
F

dµ∗k(z).

Consequently, (4.3) is equal to

4

∫ 〈
∇z∇y log h̃t, S∇zAt(z)

〉
F

dµt(z) +

∫ 〈
4

εk
∇x log h̃t +

(
2γ(εk) +

4

εk

)
∇y log h̃t,∫

(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz.

Now combine (B.1) and Lemma B.1, we complete the proof.

B.2 Proof of Proposition 4.6

The Proposition 4.6 is proved as long as we have the following two lemmas.

Lemma B.2. It holds that∫ 〈
4

εk
∇x log h̃t +

(
2γ(εk) +

4

εk

)
∇y log h̃t,∫

(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

≤ Eµt

[∣∣∣∇x log h̃t

∣∣∣2]+

(
1 +

1

2
εkγ(εk)

)
Eµt

[∣∣∣∇y log h̃t

∣∣∣2]
+

4L2

ε2
k

(
2 +

1

2
εkγ(εk)

)
E
[∣∣Xt −Xk

∣∣2] .
Lemma B.3. Assume that ∆tk ≤ 1/L for every k and ∇2

xU is L′-Lipschitz. Then

4

∫ 〈
∇z∇y log h̃t, S∇zAt(z)

〉
F

dµt(z) (B.3)

≤ 8εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+

(L′)2

εk
E
[∣∣Xt −Xk

∣∣2]+
144

εk
d3/2L2∆t2k.

Proof of Lemma B.2. Using a · b ≤ εk
4 |a|

2 + 1
εk
|b|2 and pt|Tk(z|zk)pk(zk) = pt(z)pTk|t(zk|z)

where the backward conditional density function pTk|t(zk|z) := p(Zk = zk|Zt = z), and
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by Jensen’s inequality, we can show that

4

εk

∫ 〈
∇x log h̃t,

∫
(∇xU(x)−∇xU(xk)) pt|Tk(z|zk) pk(zk)dzk

〉
dz

=
4

εk

∫ 〈
∇x log h̃t,

∫
(∇xU(x)−∇xU(xk))pTk|t(zk|z)dzk

〉
pt(z)dz

≤ Eµt

[∣∣∣∇x log h̃t

∣∣∣2]+
4

ε2
k

E
[∣∣∇xU(Xt)−∇xU(Xk)

∣∣2]
≤ Eµt

[∣∣∣∇x log h̃t

∣∣∣2]+
4L2

ε2
k

E
[∣∣Xt −Xk

∣∣2] .
The ∇y log h̃t term can be treated similarly. The proof then completes.

Proof of Lemma B.3. Without loss of generality, we assume L ≥ 1. Using the same proof
as the one of [25, Lemma 10], we can show that

∇zAt(z) =

∫ (
∇2
xU(x)−∇2

xU(xk)−∇2
xU(xk)

(
(Id +$(t)∇2

xU(xk))−1 − Id
)(

et−Tk − 1
)
∇2
xU(xk)(Id +$(t)∇2

xU(xk))−1

)
pTk|t(zk|z)dzk, (B.4)

where $(t) = et−Tk − 1− (t− Tk). As a result,

4

∫ 〈
∇z∇y log h̃t, S∇zAt(z)

〉
F

dµt(z)

= 4E

[〈
∇z∇y log h̃t, S

(
∇2
xU(Xt)−∇2

xU(Xk)

0

)〉
F

]
+4E

[〈
∇z∇y log h̃t, S

(
−∇2

xU(Xk)
(
(Id +$(t)∇2

xU(Xk))−1 − Id
)(

et−Tk − 1
)
∇2
xU(Xk)(Id +$(t)∇2

xU(Xk))−1

)〉
F

]
.

On the one hand,

4E

[〈
∇z∇y log h̃t, S

(
∇2
xU(Xt)−∇2

xU(Xk)

0

)〉
F

]
≤ 4εk

∫ 〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

dµt(z)

+
1

εk
E

[〈(
∇2
xU(Xt)−∇2

xU(Xk)

0

)
, S

(
∇2
xU(Xt)−∇2

xU(Xk)

0

)〉
F

]
= 4εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+

1

εk
E
[∥∥∇2

xU(Xt)−∇2
xU(Xk)

∥∥2

F

]
≤ 4εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+

(L′)2

εk
E
[∣∣Xt −Xk

∣∣2] ,
where the last inequality is the case due to the L′-Lipschitz of ∇2

xU . On the other hand,

denoting Jt(Xk) :=

(
−∇2

xU(Xk)
(
(Id +$(t)∇2

xU(Xk))−1 − Id
)(

et−Tk − 1
)
∇2
xU(Xk)(Id +$(t)∇2

xU(Xk))−1

)
, we have

4 E

[〈
∇z∇y log h̃t, S

(
−∇2

xU(Xk)
(
(Id +$(t)∇2

xU(Xk))−1 − Id
)(

et−Tk − 1
)
∇2
xU(Xk)(Id +$(t)∇2

xU(Xk))−1

)〉
F

]
≤ 4εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+

1

εk
Eµk

[〈
Jt(Xk), SJt(Xk)

〉
F

]
.
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As a result, we derive,

4

∫ 〈
∇z∇y log h̃t, S∇zAt(z)

〉
F

dµt(z)

≤ 8εk Eµt

[〈
∇z∇y log h̃t, S∇z∇y log h̃t

〉
F

]
+

(L′)2

εk
E
[∣∣Xt −Xk

∣∣2]
+

1

εk
Eµk

[〈
Jt(Xk), SJt(Xk)

〉
F

]
.

Comparing the above inequality with (B.3), to complete the proof of the lemma, we only
need to prove

Eµk

[〈
Jt(Xk), SJt(Xk)

〉
F

]
≤ 144d3/2L2∆t2k. (B.5)

By Cauchy-Schwarz inequality and matrix norm inequality, we have

Eµk

[〈
Jt(Xk), SJt(Xk)

〉
F

]
≤ Eµk

[∥∥Jt(Xk)
∥∥
F

∥∥SJt(Xk)
∥∥
F

]
≤ Eµk

[
‖S‖F · rank

(
Jt(Xk)

) ∥∥Jt(Xk)
∥∥2

2

]
≤ 2d

3
2 Eµk

[∥∥Jt(Xk)
∥∥2

2

]
. (B.6)

It is straightforward to see that∥∥Jt(Xk)
∥∥

2
≤
√

2 max
{∥∥∇2

xU(Xk)
(
(Id +$(t)∇2

xU(Xk))−1 − Id
)∥∥

2
,∥∥(et−Tk − 1

)
∇2
xU(Xk)(Id +$(t)∇2

xU(Xk))−1
∥∥

2

}
.

Because
∥∥∇2

xU
∥∥

2
≤ L, which is due to the L-Lipschitz of ∇xU , and because ∆tk ≤ 1/L,

we have $(t) ≤ ∆t2k and
(
Id +$(t)∇2

xU(Xk)
)−1 � Id−$(t)∇2

xU(Xk)+
(
$(t)∇2

xU(Xk)
)2

.
Consequently, ∥∥∇2

xU(Xk)
(
(Id +$(t)∇2

xU(Xk))−1 − Id
)∥∥

2

≤
∥∥∇2

xU(Xk)
∥∥

2
·
(∥∥$(t)∇2

xU(Xk)
∥∥

2
+
∥∥$(t)∇2

xU(Xk)
∥∥2

2

)
≤ 2L2∆t2k,

and ∥∥∥(et−Tk − 1
)
∇2
xU(Xk)

(
Id +$(t)∇2

xU(Xk)
)−1
∥∥∥

2

≤ 2∆tk
∥∥∇2

xU(Xk)
∥∥

2
·
∥∥∥(Id +$(t)∇2

xU(Xk)
)−1
∥∥∥

2

≤ 2L∆tk

(
‖Id‖2 +

∥∥$(t)∇2
xU(Xk)

∥∥
2

+
∥∥$(t)∇2

xU(Xk)
∥∥2

2

)
≤ 2L∆tk

(
1 + L∆t2k + L2∆t4k

)
≤ 6L∆tk.

As a result,
∥∥Jt(Xk)

∥∥
2
≤
√

2 max
{

2L2∆t2k, 6L∆tk
}

= 6
√

2L∆tk. This, together with (B.6),
immediately leads to (B.5).
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