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Abstract

We investigate several aspects of solutions to stochastic evolution equations in Hilbert
spaces driven by a standard symmetric α-stable cylindrical noise. Similarly to cylin-
drical Brownian motion or Gaussian white noise, standard symmetric α-stable noise
exists only in a generalised sense in Hilbert spaces. The main results of this work are
the existence of a mild solution, long-term regularity of the solutions via Lyapunov
functional approach, and an Itô formula for mild solutions to evolution equations under
consideration. The main tools for establishing these results are Yosida approximations
and an Itô formula for Hilbert space-valued semi-martingales where the martingale
part is represented as an integral driven by cylindrical α-stable noise. While these
tools are standard in stochastic analysis, due to the cylindrical nature of our noise,
their application requires completely novel arguments and techniques.

Keywords: cylindrical Lévy processes; stable processes; stochastic partial differential equations.
MSC2020 subject classifications: 60H15; 60G20; 60G51; 60G52.
Submitted to EJP on September 8, 2023, final version accepted on April 26, 2024.

1 Introduction

Standard symmetric α-stable distributions are the natural generalisations of Gaussian
distributions for modelling random perturbations of finite dimensional dynamical systems.
They often meet various empirical requests, such as heavy tails, self-similarity and
infinite variance, but are at the same time analytically tractable and well-understood.
The importance of these models is reflected by the available vast literature on dynamical
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SPDEs driven by standard symmetric α-stable cylindrical Lévy processes

systems perturbed by random noises with α-stable distributions in various areas such as
economics, biology etc.

In the infinite dimensional setting of modelling random perturbations of partial
differential equations, much fewer results are known for systems perturbed by α-stable
distributions. In fact, only in the random field approach, based on the seminal work
by Walsh, one can find several publications on stochastic partial differential equations
(SPDEs) driven by multiplicative α-stable noise, e.g. Mueller [27], Mytnik [28], and more
recently Chong [7] and Chong et. al. [8]. However, in the semigroup approach, following
the spirit of Da Prato and Zabczyk, one can find several results for equations only with
additive driving noise distributed according to an α-stable law; see e.g. Brzeźniak
and Zabczyk [6] and Riedle [34]. The only publication in the semigroup approach
for multiplicative α-stable perturbation is Kosmala and Riedle [22], where however
the assumptions are rather restrictive and do not correspond to the natural Lipschitz
continuity and linear growth conditions. The lack of results in the semigroup approach
is due to the fact that a random noise with a standard symmetric α-stable distribution
does not exist as an ordinary Hilbert space-valued process but only in the generalised
sense of Gel’fand and Vilenkin [13] or Segal [38].

In this work, we investigate several aspects of solutions to equations of the form

dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t−)) dL(t), (1.1)

where A is the generator of a C0-semigroup in a separable Hilbert space H, the coeffi-
cients F : H → H and G : H → L2(U,H) are mappings with U being a separable Hilbert
space, and L is a standard symmetric α-stable cylindrical process in U for α ∈ (1, 2).

Analogously to the standard normal distribution, standard symmetric α-stable dis-
tributions in Rd can only be generalised to infinite dimensional spaces as cylindrical
distributions. In particular, this means that the driving noise L in (1.1) exists only in
the generalised sense; see Schwartz [37]. Since such processes do not attain values
in the underlying Hilbert space, standard results for stochastic processes in infinite
dimensional spaces are not applicable. Most notably, complications arise from the
fact that while these processes are cylindrical semi-martingales, see Jakubowski et. al.
[17], they do not enjoy a semi-martingale decomposition in a cylindrical sense, since
semi-martingale decompositions are not invariant under linear transformations, see
Jakubowski and Riedle [18, Re. 2.2]. Nevertheless, the problem of stochastic integration
with respect to cylindrical Lévy processes was solved in Jakubowski and Riedle [18] by
arguments avoiding the usual Lévy-Itô decomposition. This approach has been further
developed for standard symmetric α-stable cylindrical process by two of us in Bodó
and Riedle [5], which enables us to integrate predictable integrands and to derive a
dominated convergence theorem for stochastic integrals.

This work comprises of 3 main results: the existence of a mild solution to Equa-
tion (1.1), a Lypunov functional approach for long-term regularity for solutions to Equa-
tion (1.1), and an Itô formula for mild solutions to Equation (1.1). The main tools for
establishing these results are an Itô formula for Hilbert space-valued semi-martingales
driven by standard symmetric α-stable cylindrical Lévy noise and a Yosida approximation
of solutions to Equation (1.1). While these tools are standard in stochastic analysis, due
to the cylindrical nature of our noise, their application in our setting requires completely
novel arguments and techniques, which we highlight in the following.

A classical Itô formula for semi-martingales in Hilbert spaces is well known and easy
to derive; see e.g. Metivier [26, Th. 27.2]. However, applying this formula often requires
the identification of the martingale and bounded variation components of the process,
which in the classical situation of a semi-martingale driven by an ordinary Hilbert space-
valued process can easily be obtained via the semi-martingale decomposition of the
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driving process. Since in our case, the driving cylindrical process does not enjoy a semi-
martingale decomposition, one needs to identify the martingale part of the stochastic
integral process by carrying out a deep analysis of its jump structure.

The second major tool in our work is a Yosida approximation, which is an often-
utilised device in the classical situation with an ordinary Hilbert space-valued process as
driving noise; see e.g. Peszat and Zabczyk [31]. Convergence of the Yosida approxima-
tion is established by tightness arguments in the space C([0, T ], Lp(Ω, H)) of p-th mean
continuous Hilbert space-valued processes for any p < α. It turns out that the space
C([0, T ], Lp(Ω, H)) is tailor-made for analysing equations driven by a standard symmetric
α-stable cylindrical process. The observation that the solution is continuous in the above
sense, despite having discontinuous paths, lies at the heart of this paper. To the best of
our knowledge, we are the first to use this in the context of SPDEs driven by cylindrical
stable noise.

These two tools, the Itô formula for semi-martingales driven by a standard symmetric
α-stable cylindrical process and convergence of the Yosida approximation, enable us to
establish the 3 main results of our work. For the existence result, we use tightness of
the Yosida approximation to establish existence of a mild solution to Equation (1.1). In
our setting, standard methods for establishing existence of a solution, such as fix point
arguments or Grönwall’s lemma are not applicable, since the integral operator with
a standard symmetric α-stable integrator maps to a larger space than its domain; see
Kosmala and Riedle [22] or Rosinski and Woyczynski [35].

By following the classical approach of Ichikawa in [15], we demonstrate the power
of the established tools by investigating the long-term regularity of the mild solution
to Equation (1.1) via the functional Lyapunov approach. The functional Lyapunov
approach can be used to establish various regularity properties; in this work, we focus on
exponential ultimate boundedness, but other quantitative properties can be investigated
similarly. As the mild solution is not a semi-martingale, the derived Itô formula for
semi-martingales cannot be applied directly. However, we successfully show that the
Yosida approximations are semi-martingales, and thus the Itô formula can be applied to
these, which immediately shows their exponential ultimate boundedness. It remains only
to show that this boundedness property carries over to the limit, for which we establish
convergence of the Markov generators in a suitable sense.

Mild solutions of SPDEs are not semi-martingales, and thus the classical Itô formula
cannot be applied. This lack of a powerful tool is often circumvented by a specific Itô
formula for mild solutions of SPDEs. One of the first versions of such an Itô formula for
mild solutions can be found in Ichikawa [15] for the Gaussian case, and more recent
versions in Da Prato et. al. [9] for the Gaussian case and in Alberverio et. al. [1] for
the case of ordinary Lévy processes. In the last part of our work, we derive such an
Itô formula for mild solutions of equation (1.1) driven by a standard symmetric α-stable
cylindrical process.

We outline the structure of the paper. Selected preliminaries on standard symmetric
α-stable cylindrical processes, integration with respect to them and underlying results
on equations as well as the theory of predictable compensators are collected in Section 2.
In Sections 3 and 4, we identify the predictable compensator and quadratic variation
of the integral process. These observations lead us directly to the Itô formula for semi-
martingales driven by a standard symmetric α-stable cylindrical process in Section 5.
In Section 6, we prove existence of a mild solution under Lipschitz and boundedness
conditions in the space of continuous functions, where the main result is formulated in
Theorem 6.6. In Section 7, we establish conditions for exponential ultimate boundedness
in Theorem 7.1. Finally, in Section 8, an Itô formula for mild solutions is proved.
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2 Preliminaries

2.1 Standard symmetric α-stable cylindrical Lévy processes

Let U and H be separable Hilbert spaces with norm ‖·‖ and scalar product 〈·, ·〉. By
BH(r) we denote the closed ball in H with radius r > 0 and, in the special case when
r = 1, we write BH := BH(1). The space of Hilbert-Schmidt operators Φ: U → H is
denoted by L2(U,H) and equipped with the norm ‖·‖L2(U,H).

Let S be a subset of U . For each n ∈ N, elements u1, ..., un ∈ S and Borel set
A ∈ B(Rn), we define

C(u1, ..., un;A) := {u ∈ U : (〈u, u1〉, ..., 〈u, un〉) ∈ A}.

Such sets are called cylindrical sets with respect to S and the collection of all such
cylindrical sets is denoted by Z(U, S). It is a σ-algebra if S is finite and otherwise an
algebra. We write shortly Z(U) for Z(U,U).

A set function µ : Z(U)→ [0,∞] is called a cylindrical measure on Z(U) if for each
finite subset S ⊆ U , the restriction of µ to the σ-algebra Z(U, S) is a σ-additive measure.
A cylindrical measure is said to be a cylindrical probability measure if µ(U) = 1.

Let (Ω,Σ, P ) be a complete probability space. We will denote by L0
P (Ω, U) the space

of equivalence classes of measurable functions Y : Ω→ U equipped with the topology
of convergence in probability. A cylindrical random variable X in U is a linear and
continuous mapping X : U → L0

P (Ω,R). It defines a cylindrical probability measure µX
by

µX : Z(U)→ [0, 1], µX(Z) = P
(
(Xu1, . . . , Xun) ∈ A

)
,

for cylindrical sets Z = C(u1, ..., un;A). The cylindrical probability measure µX is called
the cylindrical distribution of X. We define the characteristic function of the cylindrical
random variable X by

ϕX : U → C, ϕX(u) = E
[
eiXu

]
.

Let T : U → H be a linear and continuous operator. By defining

TX : H → L0
P (Ω,R), (TX)h = X(T ∗h),

we obtain a cylindrical random variable on H. In the special case when T is a Hilbert-
Schmidt operator and hence 0-Radonifying by [40, Th. VI.5.2], it follows from [40, Pr.
VI.5.3] that the cylindrical random variable TX is induced by a genuine random variable
Y : Ω→ H, that is (TX)h = 〈Y, h〉 for all h ∈ H.

A family (L(t) : t ≥ 0) of cylindrical random variables L(t) : U → L0
P (Ω,R) is called a

cylindrical (Ft)-Lévy process if for each n ∈ N and u1, ..., un ∈ U , the stochastic process((
L(t)u1, ..., L(t)un

)
: t ≥ 0

)
is an (Ft)-Lévy process in Rn and the filtration (Ft)t≥0

satisfies the usual conditions. We denote by Z∗(U) the collection{
{u ∈ U : (〈u, u1〉, ..., 〈u, un〉) ∈ B} : n ∈ N, u1, ..., un ∈ U,B ∈ B(Rn \ {0})

}
of cylindrical sets, which forms an algebra of subsets of U . For fixed u1, ..., un ∈ U ,
let λu1,...,un be the Lévy measure of

(
(L(t)u1, ..., L(t)un) : t ≥ 0

)
. Define a function

λ : Z∗(U)→ [0,∞] by

λ(C) := λu1,...,un(B) for C = {u ∈ U : (〈u, u1〉, ..., 〈u, un〉) ∈ B},

for B ∈ B(Rn). It is shown in [3] that λ is well defined. The set function λ is called the
cylindrical Lévy measure of L.
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In this paper, we restrict our attention to standard symmetric α-stable cylindrical
Lévy processes for α ∈ (1, 2), which we simply call α-stable cylindrical Lévy processes in
the sequel. These are cylindrical Lévy processes with characteristic function φL(t)(u) =

exp(−t ‖u‖α) for each t ≥ 0 and u ∈ U . Let (ek)k∈N be an orthonormal basis of U .
The Lévy measure λ of an α-stable cylindrical Lévy process for α ∈ (1, 2) satisfies(

λ ◦ Φ−1
)

(B
c

H) ≤ cα ‖Φ‖αL2(U,H) , Φ ∈ L2(U,H) (2.1)

for some cα ∈ (0,∞) depending only on α where B
c

H denotes the complement of the
unit ball {h ∈ H : ‖h‖ < 1}; see [22, Le. 1]. This enables us to conclude the following
technical Lemma:

Lemma 2.1. Let λ be the cylindrical Lévy measure of an α-stable cylindrical Lévy
process for α ∈ (1, 2). For every m ∈ N there exists dmα <∞, depending only on α and m,
such that∫

BH(1/m)

||h||2 (λ ◦ Φ−1)(dh) +

∫
BH(m)c

||h|| (λ ◦ Φ−1)(dh) ≤ dmα ||Φ||
α
L2(U,H) (2.2)

for all Φ ∈ L2(U,H). Moreover, we have limm→∞ dmα = 0.

Proof. Let m ∈ N be fixed. We approximate the integrand of the first integral in (2.2) by

fm,n : BH( 1
m )→ R, fm,n(h) :=

m2n−1∑
i=0

(
i

m2n

)2

1( i
m2n ,

i+1
m2n ](‖h‖).

Since λ ◦ Φ−1 is a genuine α-stable measure in H, we have for each r > 0 that

(λ ◦ Φ−1)(B
c

H(r)) = r−α(λ ◦ Φ−1)(B
c

H); (2.3)

see [23, Th. 6.2.7]. This enables us to conclude for each n ∈ N that∫
BH(1/m)

fm,n(h) (λ ◦ Φ−1)(dh)

=
1

m2
(λ ◦ Φ−1)(B

c

H)

m2n−1∑
i=0

(
i

2n

)2
((

i

m2n

)−α
−
(
i+ 1

m2n

)−α)

=mα−2(λ ◦ Φ−1)(B
c

H)

∫ 1

0

(
m2n−1∑
i=0

(
i

2n

)2

1( i
2n ,

i+1
2n ](r)

)
αr−(α+1) dr.

The monotone convergence theorem implies

lim
n→∞

∫
BH(1/m)

fm,n(h) (λ ◦ Φ−1)(dh) = mα−2 α

2− α
(λ ◦ Φ−1)(B

c

H).

Since another application of the monotone convergence theorem shows

lim
n→∞

∫
BH(1/m)

fm,n(h) (λ ◦ Φ−1)(dh) =

∫
BH(1/m)

‖h‖2 (λ ◦ Φ−1)(dh),

we obtain from (2.1) that∫
BH(1/m)

‖h‖2 (λ ◦ Φ−1)(dh) = mα−2 α

2− α
(λ ◦ Φ−1)(B

c

H) ≤ mα−2 α

2− α
cα ‖Φ‖αL2(U,H) .

Applying similar arguments for the integrand in the second integral in (2.2) yields∫
BH(m)c

||h|| (ν ◦ Φ−1)(dh) ≤ m1−α α

α− 1
cα ||Φ||αL2(U,H) ,
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for all Φ ∈ L2(U,H), which completes the proof as in (2.2) we can set

dmα := (mα−2 +m1−α)cα → 0, m→∞. (2.4)

If L is an α-stable cylindrical Lévy process and T : H → U a Hilbert-Schmidt operator,
then the cylindrical random variable TL(1) is induced by a genuine stable random
variable on U with Lévy measure λ ◦ T−1. This Lévy measure depends continuously on T
in the following way:

Lemma 2.2. Let λ be the cylindrical Lévy measure of an α-stable cylindrical Lévy process
for α ∈ (1, 2). Then for each r > 0, the mapping Φ 7→ λ ◦ Φ−1|BH(r)c is continuous from

L2(U,H) to the space of Borel measures on BH(r)c equipped with the weak topology.

Proof. If µ is a cylindrical probability measure and (Fn)n∈N is a sequence converging to
F in L2(U,H) then (µ ◦ F−1

n )n∈N converges weakly to µ ◦ F−1 according to [5, Le. 2.1].
From this, the assertion follows from [29, Th. 5.5].

2.2 Stochastic integration

We briefly recall some facts on stochastic integration with respect to an α-stable
cylindrical Lévy process L as introduced in [5]. A process G : Ω × [0, T ] → L2(U,H) is
called adapted and simple if it is of the form

G = Φ01{0} +

N∑
i=1

Φi1(ti−1,ti], (2.5)

where N ∈ N, 0 = t0 < t1 < · · · < tN = T and Φi is an Fti−1 -measurable and L2(U,H)-
valued random variable taking finitely many values. We denote by SHS

adp the class of all

adapted, simple processes. The integral process
∫ ·

0
GdL is defined as the sum of the

Radonified increments∫ t

0

GdL :=

N∑
i=1

Φi
(
L(ti ∧ t)− L(ti−1 ∧ t)

)
, t ∈ [0, T ]. (2.6)

Here, Φi
(
L(ti ∧ t)− L(ti−1 ∧ t)

)
is defined as the H-valued random variable satisfying〈

Φi
(
L(ti ∧ t)− L(ti−1 ∧ t)

)
, h
〉

=
(
L(ti ∧ t)− L(ti−1 ∧ t)

)
(Φ∗i h) for all h ∈ H.

Let S1,op
adp denote the class of adapted, simple L(H)-valued processes bounded in the

operator norm by 1 on [0, T ]. An arbitrary predictable process G : Ω× [0, T ]→ L2(U,H)

is stochastically integrable if there exists a sequence of adapted simple processes
(Gn)n∈N ⊂ SHS

adp such that:

(i) (Gn)n∈N converges to G P ⊗ Leb|[0,T ]-almost everywhere,

(ii) lim
m,n→∞

sup
Γ∈S1,op

adp

E

[∥∥∥∥∥
∫ T

0

Γ(Gm −Gn) dL

∥∥∥∥∥ ∧ 1

]
= 0

In this case,
∫ ·

0
GdL is defined as the limit of

∫ ·
0
Gn dL in the topology of uniform

convergence in probability on [0, T ].
It is shown in [5], that a predictable process G is stochastically integrable if and only

it is an element of L0
P

(
Ω, LαLeb

(
[0, T ],L2(G,H)

))
. It follows from [22, Co. 3] that for every

0 < p < α we have

E

[
sup
t∈[0,T ]

∣∣∣∣∣∣∣∣∫ t

0

GdL

∣∣∣∣∣∣∣∣p
]
≤ ep,α

(
E

[∫ T

0

||G(t)||αL2(U,H) dt

])p/α
, (2.7)
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for every stochastically integrable predictable process G, where ep,α = α
α−pe

p/α
2,α for some

e2,α ∈ (0,∞) that depends only on α.

Lemma 2.3. If G is a predictable stochastic process stochastically integrable with
respect to the α-stable cylindrical Lévy process L for some α ∈ (1, 2) then

∫ ·
0
GdL is a

local martingale.

Proof. Define the predictable stopping times τn = inf
{
t > 0 :

∫ t
0
||G(s)||αL2(U,H) ds > n

}
for n ∈ N. It follows from Proposition 4.22(ii) and Lemma 1.3 in [10] that for each n ∈ N
there exists a sequence of adapted, simple processes (Gn,k)k∈N such that

lim
k→∞

E

[∫ T

0

∣∣∣∣G(s)1[0,τn](s)−Gn,k(s)
∣∣∣∣α
L2(U,H)

ds

]
= 0. (2.8)

Since inequality (2.7) guarantees for each k, n ∈ N that

E

[
sup

0≤t≤T

∣∣∣∣∣∣∣∣∫ t

0

Gn,k dL

∣∣∣∣∣∣∣∣] ≤ e1,α

(
E

[∫ T

0

||Gn,k(s)||αL2(U,H) ds

])1/α

<∞,

the same arguments as in [33, Th. I:51] show that the processes
∫ ·

0
Gn,k dL are mar-

tingales. Equation (2.8) shows that
∫ ·

0
G1[0,τn] dL is a limit of martingales in L1(Ω, H)

by (2.7), and thus a martingale. Since standard arguments, e.g. [33, Th. I.12], establish(∫ ·
0

GdL

)τn
=

∫ ·
0

G1[0,τn] dL a.s., (2.9)

for the stopped integral process, the proof is completed.

Theorem 2.4 (Stochastic Fubini Theorem). Let L be the standard symmetric α-stable
cylindrical Lévy process for α ∈ (1, 2). If G : Ω × [0, T ]2 → L2(U,H) is measurable,

G(t, ·) is predictable for every t ∈ [0, T ], and
∫ T

0

∫ T
0
‖G(t, s)‖αL2(U,H) dtds <∞ a.s. then it

follows:

(a) G(t, ·) is stochastically integrable for every t ∈ [0, T ] and
∫ T

0
G(·, s)dL(s) is a.s.

Bochner integrable;

(b) G(·, s) is a.s. Bochner integrable for every s ∈ [0, T ] and
∫ T

0
G(t, ·) dt is stochastically

integrable;

(c)

∫ T

0

(∫ T

0

G(t, s) dt

)
dL(s) =

∫ T

0

(∫ T

0

G(t, s) dL(s)

)
dt a.s.

Proof. The proof is similar as in finite dimensions; see [43].

2.3 Random measures and compensators

In this section, we briefly recall some results on random measures and their compen-
sators from [16, Ch. II].

Definition 2.5 (Random measure). A family µ = {µ(ω) : ω ∈ Ω} is called a random
measure on [0, T ]×H if µ(ω) is a measure on B([0, T ])⊗ B(H) for each ω ∈ Ω. It is said
to be an integer-valued random measure if moreover, we have

(i) µ({t} ×H) ≤ 1 for all t ∈ [0, T ] P -a.s.;

(ii) µ takes values in N ∪ {∞} P -a.s.
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We denote by P̃ (resp. Õ) the predictable (resp. optional ) σ-algebra on Ω× [0, T ]×H
and call a function W : Ω× [0, T ]×H 7→ R predictable (resp. optional ) if it is P̃ (resp.
Õ) measurable.

If µ is a random measure and W is optional we define(∫ t

0

∫
H

W (s, h)µ(ds,dh)

)
(ω)

:=

{∫ t
0

∫
H
W (ω, s, h)µ(ω)(ds,dh), if

∫ t
0

∫
H
|W (ω, s, h)|µ(ω)(ds,dh) <∞,

∞, otherwise.

A random measure µ is called predictable (resp. optional ) if (
∫ t

0

∫
H
W (s, h)µ(ds,dh) : t ∈

[0, T ]) is predictable (resp. optional) for every predictable (resp. optional) function W .
An optional random measure µ is called σ-finite if there exists a sequence (An)n∈N ⊂ P̃
with

⋃∞
n=1An = Ω × [0, T ] × H, such that E

[∫ T
0

∫
H
1An(s, h)µ(ds,dh)

]
< ∞ for each

n ∈ N.
For each σ-finite, optional measure µ on [0, T ]×H there exists a predictable random

measure ν on B([0, T ])⊗ B(H) such that

E

[∫ t

0

∫
H

W (s, h)µ(ds,dh)

]
= E

[∫ t

0

∫
H

W (s, h) ν(ds,dh)

]
(2.10)

for all t ∈ [0, T ], and any non-negative predictable function W . The measure ν is deter-
mined uniquely up to a set of probability zero by (2.10) and is called the compensator of
µ; see [16, th. II.1.8].

If Y is an H-valued, adapted càdlàg process then the integer-valued random measure
µY characterised by

µY ((0, t]×B) =
∑

0≤s≤t

1B(∆Y (s)), t ∈ (0, T ], B ∈ B(H), 0 /∈ B,

where ∆Y (s) := Y (s)− limh↘0+ Y (s− h) for s ∈ [0, T ], is an optional and σ-finite random
measure on B([0, T ])⊗ B(H). Thus, its compensator exists which we denote by νY .

Example 2.6. Let L be a genuine H-valued Lévy process with Lévy measure λ. Then
the compensator νL of the jump measure µL is given as the extension of µL((s, t]×B) =

(t− s)λ(B), 0 ≤ s < t ≤ T , B ∈ B(H) to B([0, T ])⊗ B(H).

In the sequel, we will make use of another characterisation of compensators of
jump-measures. We denote by C+(H) the class of non-negative, continuous functions
k : H → R bounded on H and vanishing inside a neighbourhood of 0.

Proposition 2.7. The compensator νY of the jump-measure µY of an H-valued càdlàg
semimartingale Y is characterised by being predictable and satisfying either of the
following:

(i) The process(∫ t

0

∫
H

k(h)µY (ds,dh)−
∫ t

0

∫
H

k(h) νY (ds,dh) : t ∈ [0, T ]

)
is a local martingale for every k ∈ C+(H).

(ii) If W is predictable and the process(∫ t

0

∫
H

W (s, h)µY (ds,dh) : t ∈ [0, T ]

)
(2.11)
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is locally integrable, then so is(∫ t

0

∫
H

W (s, h) νY (ds,dh) : t ∈ [0, T ]

)
and (∫ t

0

∫
H

W (s, h)µY (ds,dh)−
∫ t

0

∫
H

W (s, h) νY (ds,dh) : t ∈ [0, T ]

)
is a local martingale.

Proof. The equivalence between (i) and (ii) follows by the same argument as in the proof
of [16, Th. II.2.21.]. The fact that (ii) is an equivalent definition of the compensator is
proved in [16, Th. II.1.8.].

Proposition 2.7 justifies the following standard notation: if W is predictable and
(2.11) is locally integrable, we define the following local martingale∫ t

0

∫
H

W (s, h) (µY − νY )(ds,dh) :=

∫ t

0

∫
H

W (s, h)µY (ds,dh)−
∫ t

0

∫
H

W (s, h) νY (ds,dh)

for each t ∈ [0, T ].

3 Predictable compensator

For an α-stable cylindrical Lévy process L for some α ∈ (1, 2) and a stochastically
integrable predictable process G, we define the integral process X =

∫ ·
0
GdL and

ν ((0, t]×B) :=

∫ t

0

(
λ ◦G(s)−1

)
(B) ds for each t ∈ (0, T ], B ∈ B(H) with 0 /∈ B̄.

(3.1)

The main result of this section is that ν extends to a random measure on B([0, T ])⊗B(H)

and that the extension is the predictable compensator of the jump measure of X. We
will derive this result by a couple of Lemmata.

Lemma 3.1. The set function ν defined in (3.1) is well defined and extends to a pre-
dictable random measure on B([0, T ])⊗ B(H). This extension is unique among the class
of σ-finite random measures on B([0, T ])⊗ B(H) that assign 0 mass to the origin.

Proof. Step 1: We show that for all open sets B ⊆ H with 0 /∈ B̄ the process

f : Ω× [0, T ]→ R, f(ω, t) =
(
λ ◦G(ω, t)−1

)
(B)

is predictable. Since the function h : L2(U,H) → R defined by h(Φ) = (λ ◦ Φ−1)(B) is
lower semicontinuous by Lemma 2.2 and the Portmonteau Theorem as the set B assumed
to be open, h is measurable. Since G : Ω× [0, T ]→ L2(U,H) is predictable, it follows that
f = h ◦G is predictable.
Step 2: We show that f is predictable for all B ∈ B(H \ {0}), which will immediately
imply that (3.1) is almost surely well defined and predictable as it is then just an integral
of a non-negative predictable process. We define

D =
{
B ∈ B(H \ {0}) : λ ◦G(·, ·)−1(B) is predictable

}
,

and claim that D is a λ-system. Continuity of measures implies that H \ {0} ∈ D since,
for all t ∈ (0, T ] and ω ∈ Ω, we have(

λ ◦G(ω, t)−1
)

(H \ {0}) = lim
n→∞

(
λ ◦G(ω, t)−1

) (
B̄H (1/n)

c)
,
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where the right hand side is the limit of processes that are predictable by Step 1. If
B ∈ D then Bc ∈ D since(

λ ◦G(ω, t)−1
)

(Bc) =
(
λ ◦G(ω, t)−1

)
(H \ {0})−

(
λ ◦G(ω, t)−1

)
(B).

The collection D is closed under union of increasing sequences, which follows as above
from continuity of measures and predictability of the pointwise limit. This concludes the
proof of the claim that D is a λ-system.

We define the π-system.

I = {B ∈ B(H \ {0}) : B is open} .

The family I is contained in D, since for each B ∈ D we have(
λ ◦G(ω, t)−1

)
(B) = lim

n→∞

(
λ ◦G(ω, t)−1

) (
B ∩ B̄H(1/n)c

)
,

and the right-hand side is predictable by Step 1. The Dynkin π-λ theorem for sets, see
e.g. [19, Th. 1.1] implies σ(I) ⊆ D, and thus D = B(H \ {0}).
Step 3: Let ω ∈ Ω be such that

∫ T
0
‖G(ω, s)‖αL2(U,H) ds < ∞. Equation (3.1) defines the

set function ν(ω) on the semi-ring

S = {(0, t]×B : t ∈ [0, T ] and B ∈ B(H \ {0})} .

The set function ν(ω) is σ-additive by its very definition and σ-finite, since for n ∈ N we
have by (2.1) and (2.3) that

ν(ω)
(

(0, T ]×BcH (1/n)
)

=

∫ T

0

(
λ ◦G(ω, s)−1

) (
B
c

H (1/n)
)

ds

=nα
∫ T

0

(
λ ◦G(ω, s)−1

) (
B
c

H

)
ds

≤nα cα
∫ T

0

‖G(ω, s)‖αL2(U,H) ds <∞.

Carathéodory’s extension theorem, see e.g. [19, Th. 2.5], implies that the set function
ν(ω) extends uniquely to a measure on B([0, T ])⊗ B(H \ {0}) which we also denote by
ν(ω).

Step 4: It remains to show that ν is predictable. Applying the monotone class
theorem as above shows that the process

∫ ·
0

(
λ ◦G(s)−1

)
(B) ds is predictable for each

B ∈ B(H \ {0}). Since∫ ·
0

1(s,t](u)1A
(
λ ◦G(u)−1

)
(B)du =

∫ ·
0

(
λ ◦
(
1(s,t](u)1AG(u)

)−1
)

(B)du,

it follows that the process
∫ ·

0

∫
H
W (u, h)ν̃(du,dh)(·) is predictable for all functions W =

1(s,t]1A1B with 0 < s < t ≤ T , A ∈ Fs and B ∈ B(H \ {0}). An application of the
functional monotone class theorem (follows e.g. from [42, Th. 3.14]) extends this result
to all predictable processes W on Ω× [0, T ]×H, which shows predictability of the random
measure ν on B([0, T ]) ⊗ B(H \ {0}). Defining ν((s, t] × {0}) := 0 for any 0 ≤ s < t ≤ T

extends ν to a predictable random measure on B([0, T ])⊗ B(H).

To show that the random measure ν characterised by (3.1) is the compensator of
the jump-measure µX of the integral process X, we first consider the case when the
integrand is an adapted, simple process.
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Lemma 3.2. Suppose that G is an adapted, simple process in SHS
adp. Then the random

measure ν obtained in Lemma 3.1 is the predictable compensator of µX .

Proof. Since Lemma 3.1 guarantees that ν is predictable, it remains to show (2.10),
which by the functional monotone class theorem, e.g. [42, Th. 3.14], reduces to proving

E

1A ∑
s<u≤t

1B(∆X(u))

 = E

[
1A

∫ t

s

(
λ ◦G(u)−1

)
(B) du

]

for any 0 < s < t ≤ T , A ∈ Fs and B ∈ B(H) with 0 6∈ B̄. Let G be of the form (2.5), and
assume that the points of the partition contain s and t; otherwise these can be added.
Then X takes the form (2.6), and it follows

1A
∑
s<u≤t

1B(∆X(u)) = 1A

N∑
i=1

∑
s≤ti−1<u≤ti≤t

1B(∆G(ti)L(u))

= 1A

N∑
i=1

∑
s≤ti−1<u≤ti≤t

1B(∆ΦiL(u)).

For each i ∈ {1, . . . , N}, the random variable Φi is of the form Φi =
∑mi
j=1 1Ai,jφi,j for

some pairwise disjoint sets Ai,j ∈ Fti−1 and φi,j ∈ L2(U,H) for j ∈ {1, . . . ,mi}. Since
0 6∈ B̄, we have

E

1A ∑
ti−1<u≤ti

1B(∆ΦiL(u))

 =

mi∑
j=1

E

1A∩Ai,j ∑
ti−1<u≤ti

1B(∆φi,jL(u))


=

mi∑
j=1

(ti − ti−1)E
[
1A∩Ai,j

(
λ ◦ φ−1

i,j

)
(B)

]
= (ti − ti−1)E

[
1A
(
λ ◦ Φ−1

i

)
(B)

]
,

because A ∩Ai,j ∈ Fti−1
and the compensator of the jump measure of the Lévy process

φi,jL in H is given by
(
λ ◦ φ−1

i,j

)
dhdt since its Lévy measure is

(
λ ◦ φ−1

i,j

)
, see Example 2.6.

Before we show that the result of Lemma 3.2 can be extended to general integrands,
we need to prove some technical Lemmata. Recall the class of functions C+(H) used in
Proposition 2.7 (and defined just before) to determine the compensator.

Lemma 3.3. Let (fn)n∈N be a sequence of càdlàg functions fn : [0, T ]→ H converging
uniformly to f : [0, T ]→ H. Then we have for any k ∈ C+(H) that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

0≤s≤t

k(∆fn(s))−
∑

0≤s≤t

k(∆f(s))

∣∣∣∣∣∣ = 0. (3.2)

Proof. Both sums in (3.2) are finite by the càdlàg property of f, fn and since k vanishes
inside a neighbourhood of 0. The assumed uniform convergence implies

lim
n→∞

sup
t∈[0,T ]

‖∆fn(t)−∆f(t)‖ = 0. (3.3)

Denoting supp(k) := {h ∈ H : k(h) 6= 0} and δ := 1
2dist(0, supp(k)), we obtain that

supp(k)δ := {h ∈ H,dist(h, supp(k)) < δ}, is bounded away from zero, i.e. 0 /∈ supp(k)δ.
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It follows that the set D := {t ∈ [0, T ] : ∆f(t) ∈ supp(k)δ} is finite, which together with
continuity of k and (3.3) implies

lim
n→∞

sup
t∈D
|k(∆fn(t))− k(∆f(t))| = 0. (3.4)

Since (3.3) guarantees that there exists n0 ∈ N such that we have ∆fn(t) /∈ supp(k) for
all n ≥ n0 and t ∈ [0, T ] \D, we conclude from (3.4) for n ≥ n0 that

sup
t∈[0,T ]

∣∣∣∣∣∣
∑

0≤s≤t

k(∆fn(s))−
∑

0≤s≤t

k(∆f(s))

∣∣∣∣∣∣ = sup
t∈[0,T ]

∣∣∣∣∣∣
∑

s∈D∩[0,t]

k(∆fn(s))−
∑

s∈D∩[0,t]

k(∆f(s))

∣∣∣∣∣∣
≤|D| sup

t∈D
|k(∆fn(t))− k(∆f(t))| → 0, n→∞.

The proof is complete.

Lemma 3.4. Let gn, g ∈ LαLeb([0, T ],L2(U,H)), n ∈ N, be such that gn converges to g in
LαLeb([0, T ],L2(U,H)) and pointwise for almost every s ∈ [0, T ]. Then we obtain for each
k ∈ C+(H) that

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H

k(h)
(
λ ◦ gn(s)−1

)
dhds−

∫ t

0

∫
H

k(h)
(
λ ◦ g(s)−1

)
dhds

∣∣∣∣ = 0.

Proof. Lemma 2.2 implies for almost each s ∈ [0, T ] and every n ∈ N that

lim
n→∞

∫
H

k(h)
(
λ ◦ gn(s)−1

)
dh =

∫
H

k(h)
(
λ ◦ g(s)−1

)
dh.

Since k is bounded and vanishes in a neighbourhood of 0, we conclude from inequal-
ity (2.1) ∫

H

k(h)
(
λ ◦ gn(s)−1

)
dh ≤ ck,α ||gn(s)||αL2(U,H) ,

for a constant ck,α independent of s ∈ [0, T ] and n ∈ N. Since for each t ∈ [0, T ] we have

lim
n→∞

∫ t

0

||gn(s)||αL2(U,H) ds =

∫ t

0

||g(s)||αL2(U,H) ds,

the generalised Lebesgue’s dominated convergence theorem, see e.g. [36, Th. 4.19],
implies

lim
n→∞

∫ t

0

∫
H

k(h)
(
λ ◦ gn(s)−1

)
dhds =

∫ t

0

∫
H

k(h)
(
λ ◦ g(s)−1

)
dhds.

As the functions

t 7→
∫ t

0

∫
H

k(h)
(
λ ◦ gn(s)−1

)
dhds

are continuous monotone and converge pointwise to a continuous limit on [0, T ], the
convergence is uniform by [32, p. 81/127] (or deuxième théorème de Dini).

Now we can prove the main result of this section.

Theorem 3.5. Let L be an α-stable cylindrical Lévy process L for some α ∈ (1, 2) and G
a stochastically integrable predictable process. Then the predictable compensator νX of
the jump measure µX of X :=

∫ ·
0
GdL is characterised by (3.1).
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Proof. In light of Proposition 2.7, it suffices to show that the process Mk defined by(
Mk(t) :=

∫ t

0

∫
H

k(h)µX(ds,dh)−
∫ t

0

∫
H

k(h)
(
λ ◦G(s)−1

)
dhds, t ∈ [0, T ]

)
,

is a local martingale for any k ∈ C+(H). Lemma 4.3 in [5] guarantees that there
exists a sequence (Gn)n∈N of adapted, simple processes in SHS

adp converging both in

LαLeb([0, T ], L2(U,H)) a.s. and P ⊗ Leb|[0,T ] − a.e. to G. Letting Xn :=
∫ ·

0
GndL and

denoting the jump-measure of Xn by µXn , we define for each k ∈ C+(H) and n ∈ N a
process Mk

n by(
Mk
n(t) :=

∫ t

0

∫
H

k(h)µXn(ds,dh)−
∫ t

0

∫
H

k(h)
(
λ ◦Gn(s)−1

)
dhds, t ∈ [0, T ]

)
.

Proposition 2.7 and Lemma 3.2 imply that Mk
n is a local martingale for all n ∈ N. Since

for each n ∈ N and t ∈ [0, T ] we have that µXn({t} ×H) ≤ 1 almost surely, it follows that∥∥∥∥∆

(∫ t

0

∫
H

k(h)µXn(dh,ds)

)∥∥∥∥ ≤ ‖k‖∞ a.s.,

which shows
∥∥∆Mk

n(t)
∥∥ ≤ ‖k‖∞ a.s. for all n ∈ N.

Almost sure uniform convergence of Xn and Lemma 3.3 guarantee that there exists
an Ω1 ⊆ Ω with P (Ω1) = 1 such that, for all ω ∈ Ω1, we have

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H

k(h)µXn(ω)(dh,ds)−
∫ t

0

∫
H

k(h)µX(ω)(dh,ds)

∣∣∣∣ = 0. (3.5)

In the same way, by convergence of Gn both in LαLeb([0, T ], L2(U,H)) a.s. and P ⊗
Leb|[0,T ] − a.e. and Lemma 3.4 there exists an Ω2 ⊆ Ω with P (Ω2) = 1 such that, for all
ω ∈ Ω2, we have

lim
n→∞

sup
t∈[0,T ]

∣∣∣∣∫ t

0

∫
H

k(h)
(
λ ◦Gn(ω, s)−1

)
dhds−

∫ t

0

∫
H

k(h)
(
λ ◦G(ω, s)−1

)
dhds

∣∣∣∣ = 0.

(3.6)

Equations (3.5) and (3.6) show that Mk
n converges uniformly to Mk almost surely. As the

jumps of Mk
n are a.s. uniformly bounded by ‖k‖∞, we conclude from [16, Co. IX.1.19]

that Mk is a local martingale and the proof is complete.

4 Quadratic variation of the integral process

The quadratic covariation of two real-valued càdlàg semimartingales V1 and V2

starting from zero is the process [V1, V2] defined by

[V1, V2] (t) := V1(t)V2(t)−
∫ t

0

V1(s−) dV2(s)−
∫ t

0

V2(s−) dV1(s), t ∈ [0, T ].

When V := V1 = V2, we call the process [V ] := [V, V ] the quadratic variation of V . The
continuous part of [V ] is defined by

[V ]
c

(t) = [V ] (t)−
∑

0≤s≤t

(∆V (s))
2 for each t ∈ [0, T ]. (4.1)

If [V ]
c

= 0 we say that V is purely discontinuous; see e.g. [33, Se. II.6].
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The concept of quadratic variation is generalised for a càdlàg semimartingale Z

with values in the separable Hilbert space H in [26, Se. 26]. Let (fi)i∈N denote an
orthonormal basis of H. There exists a unique stochastic process [[Z]] with values in the
Hilbert-Schmidt tensor product of H satisfying

〈[[Z]] , fi ⊗ fj〉 = [Zi, Zj ] for all i, j ∈ N,

where ⊗ denotes the tensor product and Zi(t) = 〈Z(t), fi〉 for t ∈ [0, T ] are the projection
processes of Z; see [26, Se. 21.2] for brief introduction. The process [[Z]] does not
depend on the choice of the orthonormal basis (fi)i∈N. The process [[Z]] is called the
tensor quadratic variation of Z and its continuous part [[Z]]

c is defined by

〈[[Z]]
c

(t), fi ⊗ fj〉 = 〈[[Z]] (t), fi ⊗ fj〉 −
∑

0≤s≤t

∆
(
Zi(s)Zj(s)

)
for all t ∈ [0, T ], i, j ∈ N.

We say that Z is purely discontinuous if [[Z]]
c

= 0.

Proposition 4.1. Let L be an α-stable cylindrical Lévy process for some α ∈ (1, 2) and G
a stochastically integrable predictable process with values in L2(U,H). Then the integral
process X :=

∫ ·
0
GdL is purely discontinuous.

Proof. We proceed in three steps.
Step 1: Assume H = R and U = Rd for some d ∈ N. In this case, L is a U -valued
standard symmetric α-stable Lévy process, and therefore purely discontinuous; see e.g.
[33, p. 71]. Pure discontinuity is preserved also for the integral process; see e.g. [16, Se.
IX.5.5a] or [33, Th. II.29].
Step 2: Assume H = R, but without any further restrictions on U . In that case, by the
identification U ' L2(U,R), the integrand G is a U -valued process satisfying∫ T

0

||G(t)||α dt <∞ a.s. (4.2)

Fix an orthonormal basis (fk)k∈N in U and define for each n ∈ N the projection

πn : U → U, πn(u) =

n∑
k=1

〈u, fk〉fk.

Since the projection πn is a Hilbert-Schmidt operator, there exists a U -valued Lévy pro-
cess Ln with the property 〈Ln, u〉 = L(π∗nu) for all u ∈ U . We define the approximations

Xn :=

∫ ·
0

GdLn, n ∈ N.

Since Ln attains values in a finite-dimensional subspace and is a symmetric α-stable
process by [34, Le. 2.4], it follows that Xn is purely discontinuous by Step 1.

Let M be a real-valued, continuous martingale and define for k ∈ N the stopping
times

τk = inf

{
t > 0 :

∫ t

0

||G(s)||α ds ≥ k
}
∧ inf {t > 0 : |M(t)| ≥ k} ∧ T.

It follows that τk → T as k → ∞ by (4.2). Since Xn is purely discontinuous, it follows
from [16, Le. I.4.14] that (XnM)τk is a local martingale for each k, n ∈ N. Since applying
inequality (2.7) and equality (2.9) shows

E

[
sup

0≤t≤T
|(XnM)τk(t)|

]
= E

[
sup

0≤t≤T
|M(t)τk |

∣∣∣∣∫ t

0

1[0,τk]GdLn

∣∣∣∣]
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≤ kE
[∫ τk

0

||G(s)||αL2(U,H) ds

]
≤ k2 <∞,

we obtain that (XnM)τk is a martingale by [33, Th. I:51].
Noting

∫ ·
0
GdLn =

∫ ·
0
Gπn dL, inequality (2.7) and equality (2.9) establish for each

t ≥ 0 that

E [|(XnM −XM)τk(t)|] ≤ kE
[∣∣∣∣∫ t

0

1[0,τk]G(πn − I) dL

∣∣∣∣]

≤ e1,αk

(
E

[∫ T

0

||G(s)(πn − I)||αL2(U,H) ds

])1/α

→ 0 as n→∞.

It follows that the process (XM)τk as a limit of martingales is itself a martingale. Since
X is a local martingale according to Lemma 2.3 and M is an arbitrary real-valued
continuous martingale, it follows from [16, Le. I.4.14] that X is purely discontinuous.
Step 3: For the general case, we fix an orthonormal basis (ei)i∈N in H and choose
any i, j ∈ N. Since 〈X(t), ei〉 =

∫ t
0
G∗ei dL for every t ≥ 0, the polarisation formula for

real-valued covariation shows

〈[[X]] , ei ⊗ ej〉 =

[∫ ·
0

G∗ei dL,

∫ ·
0

G∗ej dL

]
=

1

2

([∫ ·
0

G∗(ei + ej) dL

]
−
[∫ ·

0

G∗ei dL

]
−
[∫ ·

0

G∗ej dL

])
.

Linearity of the integral and binomial formula enable us to conclude∑
0≤s≤t

∆〈X(s), ei〉〈X(s), ej〉

=
∑

0≤s≤t

∆

(∫ s

0

G∗ei dL

)(∫ s

0

G∗ej dL

)

=
∑

0≤s≤t

1

2

(
∆

(∫ s

0

G∗(ei + ej) dL

)2

−∆

(∫ s

0

G∗ei dL

)2

−∆

(∫ s

0

G∗ej dL

)2
)
.

The very definition (4.1) of the continuous part leads us to

〈[[X]]
c
, ei ⊗ ej〉 = 〈[[X]] , ei ⊗ ej〉 −

∑
0≤s≤t

∆〈X(s), ei〉〈X(s), ej〉

=
1

2

([∫ ·
0

G∗(ei + ej) dL

]c
−
[∫ ·

0

G∗ei dL

]c
−
[∫ ·

0

G∗ej dL

]c)
.

Since Step 2 guarantees that the processes
∫ ·

0
G∗(ei + ej) dL,

∫ ·
0
G∗ei dL and

∫ ·
0
G∗ei dL

are purely discontinuous, it follows that 〈[[X]]
c
, ei ⊗ ej〉 = 0 for all i, j ∈ N which

completes the proof.

5 Strong Itô formula

In this section, we establish an Itô formula for processes that are given by a differen-
tial driven by a standard symmetric α-stable cylindrical Lévy process L for α ∈ (1, 2) and
are of the form

dX(t) = F (t) dt+G(t) dL(t) for t ∈ [0, T ], (5.1)
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where F : Ω× [0, T ]→ H, G : Ω× [0, T ]→ L2(U,H) are predictable and satisfy∫ T

0

‖F (t)‖+ ‖G(t)‖αL2(U,H) dt <∞ a.s. (5.2)

We denote by C2
b (H) the space of continuous functions f : H → R having bounded first

and second Fréchet derivatives, which are denoted by Df and D2f , respectively.

Theorem 5.1. Let X be a stochastic process of the form (5.1). It follows for each
f ∈ C2

b (H) and t ∈ [0, T ] that

f(X(t)) = f(X(0)) +

∫ t

0

〈Df(X(s−)), F (s)〉ds+

∫ t

0

〈G(s)∗Df(X(s−)), ·〉dL(s) +Mf (t)

+

∫ t

0

∫
H

(
f(X(s−) + g)− f(X(s−))− 〈Df(X(s−)), g〉

) (
λ ◦G(s)−1

)
(dg) ds,

where Mf :=
(
Mf (t) : t ∈ [0, T ]

)
is a local martingale defined by

Mf (t) :=

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

)
(µX − νX)(ds,dh).

Lemma 5.2. Let λ be the cylindrical Lévy measure of an α-stable cylindrical Lévy
process for α ∈ (1, 2). Then we have for each f ∈ C2

b (H), h ∈ H, and Φ ∈ L2(U,H) that∫
H

∣∣f(h+g)−f(h)−〈Df(h), g〉
∣∣ (λ ◦ Φ−1

)
(dg) ≤ d1

α

(
2 ||Df ||∞ +

1

2

∣∣∣∣D2f
∣∣∣∣
∞

)
‖Φ‖αL2(U,H) ,

where d1
α is a constant depending only on α as defined in Inequality (2.2).

Proof. Taylor’s remainder theorem in the integral form, see [2, Th. 5.8], and Inequal-
ity (2.2) imply ∫

BH

∣∣f(h+ g)− f(h)− 〈Df(h), g〉
∣∣ (λ ◦ Φ−1

)
(dg)

=

∫
BH

∣∣∣∣∫ 1

0

〈D2f(h+ θg)g, g〉(1− θ) dθ

∣∣∣∣ (λ ◦ Φ−1
)

(dg)

≤
∣∣∣∣D2f

∣∣∣∣
∞

∫
BH

(∫ 1

0

‖g‖2 (1− θ) dθ

) (
λ ◦ Φ−1

)
(dg)

=
1

2

∥∥D2f
∥∥
∞

∫
BH

‖g‖2
(
λ ◦ Φ−1

)
(dg)

≤ d1
α

1

2

∥∥D2f
∥∥
∞ ‖Φ‖

α
L2(U,H) . (5.3)

Similarly, Taylor’s remainder theorem in the integral form and Inequality 2.2 show∫
B
c
H

|f(h+ g)− f(h)|
(
λ ◦ Φ−1

)
(dg) =

∫
B
c
H

∣∣∣∣∫ 1

0

〈Df(h+ θg), g〉dθ
∣∣∣∣ (λ ◦ Φ−1

)
(dg)

≤ ||Df ||∞
∫
B
c
H

(∫ 1

0

||g|| dθ

) (
λ ◦ Φ−1

)
(dg)

≤ d1
α ||Df ||∞ ||Φ||

α
L2(U,H) . (5.4)

Another application of Inequality 2.2 shows∫
B
c
H

|〈Df(h), g〉|
(
λ ◦ Φ−1

)
(dg) ≤ ||Df ||∞

∫
B
c
H

||g||
(
λ ◦ Φ−1

)
(dg)

≤ d1
α ||Df ||∞ ||Φ||

α
L2(U,H) . (5.5)

Combining inequalities (5.3) to (5.5) completes the proof.
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Proof of Theorem 5.1. The stochastic process X given by (5.1) is purely discontinuous
as it is the sum of a finite-variation process and a purely discontinuous process according
to Proposition 4.1. The Itô formula in [26, Th. 27.2] takes for all t ∈ [0, T ] the form

df(X(t)) = 〈Df(X(t−)), ·〉dX(t)

+

∫
H

(
f(X(t−) + h)− f(X(t−))− 〈Df(X(t−)), h〉

)
µX(dt,dh). (5.6)

One can show by approximating with simple integrands that

〈Df(X(t−)), ·〉dX(t) = 〈Df(X(t−)), F (t)〉dt+ 〈G(t)∗Df(X(t−)), ·〉 dL(t),

where both integrals are well defined since (5.2) guarantees∫ T

0

|〈Df(X(t−)), F (t)〉|+ ‖〈G(t)∗Df(X(t−)), ·〉‖αL2(U,R) dt

≤‖Df‖∞
∫ T

0

‖F (t)‖ dt+ ‖Df‖α∞
∫ T

0

‖G(t)‖αL2(U,H) dt <∞ a.s.

The definition of the compensator νX and Lemma 5.2 imply

E

[∫ T

0

∫
H

∣∣f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉
∣∣µX(ds,dh)

]

= E

[∫ T

0

∫
H

∣∣f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉
∣∣ νX(ds,dh)

]

≤ d1
α

(
2 ||Df ||∞ +

1

2

∣∣∣∣D2f
∣∣∣∣
∞

)
E

[∫ T

0

‖G(s)‖αL2(U,H) ds

]
. (5.7)

The stopping times τn := inf
{
t > 0 :

∫ t
0
||G(s)||αL2(U,H) ds ≥ n

}
∧ T satisfy τn → T as

n→∞ by (5.2). Since inequality (5.7) guarantees for all n ∈ N that

E

[∫ T∧τn

0

∫
H

|f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉|µX(ds,dh)

]
<∞,

Proposition 2.7 shows that Mf is a local martingale. This concludes the proof, since the
claimed formula is just a different form of (5.6).

6 Mild solutions for stochastic evolution equations

We recall that U and H are separable Hilbert spaces with norms ‖·‖ and L is a
standard symmetric α-stable cylindrical (Ft)-Lévy process in U with α ∈ (1, 2). In this
section we consider the mild solution of the stochastic evolution equation:

dX(t) =
(
AX(t) + F (X(t))

)
dt+G(X(t−)) dL(t) for t ∈ [0, T ],

X(0) = x0, (6.1)

where A is a generator of a C0-semigroup (S(t))t≥0 in H, x0 is an F0-measurable H-
valued random variable, F : H → H and G : H → L2(U,H) are measurable mappings
and T > 0.

Definition 6.1. An H-valued predictable process X is a mild solution to (6.1) if

X(t) = S(t)x0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)G(X(s−))dL(s) for every t ∈ [0, T ].
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We work under the following assumptions:

(A1) The C0-semigroup (S(t))t≥0 is compact, analytic and a semigroup of contractions
and 0 is an element of the resolvent set of A.

(A2) The mapping F is Lipschitz and bounded, i.e. there exists KF ∈ (0,∞) such that

‖F (h1)− F (h2)‖ ≤ KF ‖h1 − h2‖ , ‖F (h)‖ ≤ KF (6.2)

for every h1, h2, h ∈ H.
(A3) The mapping G is Lipschitz and bounded, i.e. there exists KG ∈ (0,∞) such that

‖G(h1)−G(h2)‖L2(U,H) ≤ KG ‖h1 − h2‖ , ‖G(h)‖L2(U,H) ≤ KG (6.3)

for every h1, h2, h ∈ H.
(A4) The initial condition x0 has finite p-th moment for every p < α.

Remark 6.2. We shall use the notation Dδ := Dom((−A)δ) for the domain of the frac-
tional generator (−A)δ for δ ∈ [0, 1], and equip Dδ with the norm ||h||δ :=

∣∣∣∣(−A)δh
∣∣∣∣. It

follows from Assumption (A1) that the embedding of Hilbert spaces Dδ ↪→ Dγ is dense
and compact for every 0 ≤ γ < δ ≤ 1, cf. [4, Cor. 3.8.2].

Remark 6.3. Assumption (A1) implies, cf. [21, p. 289], that for every δ ≥ 0 there exists
a cδ ∈ (0,∞) depending only on δ such that

‖S(t)‖L(H,Dδ) ≤ cδt
−δ for every t > 0. (6.4)

Remark 6.4. By considering the cases ‖h1 − h2‖ ≤ 1 and ‖h1 − h2‖ > 1 separately, we
conclude from Assumptions (A2) and (A3) that there exist KF ,KG ∈ (0,∞) such that for
any β ∈ (0, 1) we have

‖F (h1)− F (h2)‖ ≤ KF ‖h1 − h2‖β , ‖F (h)‖ ≤ KF , (6.5)

and

‖G(h1)−G(h2)‖L2(U,H) ≤ KG ‖h1 − h2‖β , ‖G(h)‖L2(U,H) ≤ KG, (6.6)

for every h1, h2, h ∈ H.

Example 6.5. The most important example of Equation (6.1) is a non-linear heat equa-
tion. For this purpose, the generator A is chosen as the Laplace operator ∆ and
H = L2(O) for a bounded domain O ⊆ Rd with smooth boundaries. Then the semigroup
generated by A satisfies Condition (A1) above.

Simple examples of the coefficients F and G meeting Conditions (A2) and (A3) are
provided by some diagonal operators along an arbitrary orthonormal basis (ek)k∈N of H.
Let gk : H → U be functions satisfying that for each k ∈ N there exits ck > 0 with

‖gk(h1)− gk(h2)‖ ≤ ck ‖h1 − h2‖ , ‖gk(h)‖ ≤ ck for every h1, h2, h ∈ H.

Assuming square-summability of (ck)k∈N enables us to define

G(h)u =

∞∑
k=1

〈gk(h), u〉ek for all h ∈ H,u ∈ U.

Since for all h ∈ H we have

‖G(h)‖2L2(U,H) =

∞∑
k=1

‖gk(h)‖2 ,

Condition (A3) is satisfied. This and other examples are extensively studied in [24].
In a similar way, an example for F can be constructed. Other possible examples for

the coefficients F and G are Nemytskii or superposition operators.
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The first main theorem of this article is the following existence result, which also
includes properties on the path regularity of the solution.

Theorem 6.6. Under the assumptions (A1)-(A4), there exists a mild solution X to (6.1).
The mild solution X is an element of C([0, T ], Lp(Ω, H)) for every p < α and has càdlàg
paths in H.

We will obtain the solution to (6.1) by using the Yosida approximations. For this
purpose, we define Rn = n (nI−A)

−1 for n ∈ N and denote by Xn the mild solution to

dXn(t) =
(
AXn(t) +RnF (Xn(t))

)
dt+RnG(Xn(t−)) dL(t),

Xn(0) = Rnx0. (6.7)

Before we establish existence of a mild solution to (6.7) we remark the following:

Remark 6.7. We recall that under Assumption (A1) we have for all δ ∈ [0, 1] that

‖Rn‖L(Dδ) ≤ 1, n ∈ N.

This follows from the fact, that if an operator commutes with A then it commutes with
Aγ , see e.g. [14, Pr. 3.1.1], which enables us to conclude for every n ∈ N that

‖Rn‖L(Dγ) = sup
‖(−A)γh‖≤1

∥∥n(n−A)−1(−A)γh
∥∥ ≤ sup

‖h‖≤1

∥∥n(n−A)−1h
∥∥ = ‖Rn‖L(H) .

Since (S(t))t≥0 is a contraction semigroup, Theorem 1.3.1 in [30] guarantees ‖Rn‖L(H) ≤
1 for all n ∈ N.

Existence of the mild solution Xn to (6.7) is guaranteed by the following result, which
is based on [22, Th. 12].

Lemma 6.8. Under the Assumptions (A1), (A2) and (A3), there exists a mild solution
to (6.7) with cádlág paths.

Proof. We need to verify the 3 conditions in [22, Th. 12] which we denote by (B1), (B2)
and (B3) in the following.

Contractivity of the semigroup and the fact that zero is in the resolvent set of the
generator A is assumed directly. To show compactness of the embedding D1 ⊆ H, we
observe that

{h ∈ D1 : ‖h‖1 ≤ 1} = {h ∈ D1 : ‖Ah‖ ≤ 1}
=
{

(−A)−1h : h ∈ H and ‖Ah‖ ≤ 1
}

⊆
{

(−A)−1h ∈ H : ‖h‖ ≤
∥∥(−A)−1

∥∥} .
As (−A)−1 is a compact operator on H according to [30, Co. 2.3.5], the set in the last
line is compact in H, establishing compactness of the embedding D1 ⊆ H. Finally, by
the analyticity of the semigroup we have by [30, Th. 2.5.2] that there exists ω̃ ∈ (0, π2 )

such that {λ ∈ C : |argλ| < π
2 + ω̃} is contained in the resolvent set of A and thus

{−λ ∈ C : |argλ| < π
2 + ω̃} = {λ ∈ C : ω < |argλ| ≤ π}

with ω = π
2 − ω̃ is contained in the resolvent set of −A and Condition (B1) is shown.

To verify Condition (B2), we conclude from contractivity of S and (A2), using similar
arguments as in Remark 6.7, that, for any n ∈ N, δ ∈ (0, 1], t > 0 and h ∈ H, we have

‖S(t)RnF (h)‖δ ≤ ‖S(t)‖L(Dδ) ‖Rn‖L(H,Dδ) ‖F (h)‖ ≤ ‖Rn‖L(H,Dδ)KF .

Similarly, by using (A3), we obtain

‖S(t)RnG(h)‖L2(U,Dδ) ≤ ‖S(t)‖L(Dδ) ‖Rn‖L(H,Dδ) ‖G(h)‖L2(U,H) ≤ ‖Rn‖L(H,Dδ)KG,
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which verifies (B2).
By very similar arguments, we obtain, for any n ∈ N, δ ∈ (0, 1], t > 0 and h1, h2 ∈ H, that

‖S(t)Rn(F (h1)− F (h2))‖δ ≤ ‖Rn‖L(H,Dδ)KF ‖h1 − h2‖ ,

‖S(t)Rn(G(h1)−G(h2))‖L2(U,Dδ) ≤ ‖Rn‖L(H,Dδ)KG ‖h1 − h2‖ ,

establishing (B3) and completing the proof.

The solution to (6.1) will be constructed as a limit of Xn in C([0, T ], Lp(Ω, H)) for an
arbitrary but fixed p < α. In the first three Lemmata, we establish relative compactness
of the Yosida approximation {Xn : n ∈ N} in the space C([0, T ], Lp(Ω, H)).

Lemma 6.9. The set {Xn(t) : n ∈ N} is tight in H for every t ∈ [0, T ].

Proof. The case t = 0 follows immediately from the strong convergence of Rn. For the
case t ∈ (0, T ] we first prove that for every 1 ≤ q < α, and 0 ≤ δ < 1/α we have

sup
n∈N

E [‖Xn(t)‖qδ] <∞. (6.8)

Applying Hölder’s inequality and inequality (2.7) shows for every n ∈ N that

E [‖Xn(t)‖qδ] ≤ 3q−1

(
E [‖S(t)Rnx0‖qδ] + tq−1E

[∫ t

0

‖S(t− s)RnF (Xn(s))‖qδ ds

]
+eq,α

(
E

[∫ t

0

‖S(t− s)RnG(Xn(s))‖αL2(U,Dδ) ds

]) q
α

)
.

Commutativity of S and Rn, Remark 6.3 and Remark 6.7 verify

E [‖S(t)Rnx0‖qδ] ≤ c
q
δt
−qδ sup

n∈N
‖Rn‖qL(Dδ)E [‖x0‖q] <∞.

Assumption (A2) on boundedness of F together with Remark 6.3 and Remark 6.7 yield

E

[∫ t

0

‖S(t− s)RnF (Xn(s))‖qδ ds

]
≤ cqδ

t1−qδ

1− qδ
sup
n∈N
‖Rn‖qL(Dδ)K

q
F <∞.

Similarly, Assumption (A3) on boundedness of G implies(
E

[∫ t

0

‖S(t− s)RnG(Xn(s))‖αL2(U,Dγ) ds

]) q
α

≤ cqδ

(
t1−αδ

1− αδ

) q
α

sup
n∈N
‖Rn‖qL(Dδ)K

q
G <∞.

Combining the above estimates establishes (6.8), which in turn gives the statement of
the Lemma. Indeed, choose any δ ∈ (0, 1/α) and use Markov’s inequality and (6.8) for
q = 1 to obtain for each N > 0 that

sup
n∈N

P (‖Xn(t)‖δ > N) ≤ c

N

for some constant c ∈ (0,∞). Since the embedding Dδ ↪→ H is compact according to
Remark 6.2, we obtain tightness of {Xn(t) : n ∈ N} by Prokhorov’s theorem.

Lemma 6.10. The sequence {Xn(t) : n ∈ N} is relatively compact in L0
P (Ω, H) for every

t ∈ [0, T ].

EJP 29 (2024), paper 79.
Page 20/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1136
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SPDEs driven by standard symmetric α-stable cylindrical Lévy processes

Proof. First, we impose the additional assumption that

T122e2,α (Kα
F +Kα

G) < 1, (6.9)

where KF ,KG come from (6.5), (6.6) and e2,α is defined just below (2.7). For 1 < p < α

and m,n ∈ N we estimate the p-th moment of the difference Xm(t)−Xn(t) by

E [‖Xm(t)−Xn(t)‖p] ≤3p−1

(
E [‖S(t)(Rm −Rn)x0‖p]

+ E

[∥∥∥∥∫ t

0

S(t− s)(RmF (Xm(s))−RnF (Xn(s)))ds

∥∥∥∥p
]

+ E

[∥∥∥∥∫ t

0

S(t− s)(RmG(Xm(s−))−RnG(Xn(s−)))dL(s)

∥∥∥∥p
])

≤6p−1

(
E [‖S(t)(Rm −Rn)x0‖p]

+ E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p
]

+ E

[∥∥∥∥∫ t

0

S(t− s)Rn(F (Xm(s))− F (Xn(s)))ds

∥∥∥∥p
]

+ E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p
]

+ E

[∥∥∥∥∫ t

0

S(t− s)Rn(G(Xm(s−))−G(Xn(s−)))dL(s)

∥∥∥∥p
])

.

(6.10)

Furthermore, using Hölder’s inequality, inequality (2.7), Remark 6.7, (A1) and esti-
mates (6.5) and (6.6) we obtain

E

[∥∥∥∥∫ t

0

S(t− s)Rn(F (Xm(s))− F (Xn(s)))ds

∥∥∥∥p ]
≤ T 1−pE

[∫ t

0

‖S(t− s)Rn(F (Xm(s))− F (Xn(s)))‖p ds

]
≤ T p−

p
α

(
E

[∫ t

0

‖S(t− s)Rn(F (Xm(s))− F (Xn(s)))‖α ds

]) p
α

≤ T p−
p
αKp

F

(
E

[∫ t

0

‖Xm(s)−Xn(s)‖p ds

]) p
α

and

E

[∥∥∥∥∫ t

0

S(t− s)Rn(G(Xm(s−))−G(Xn(s−)))dL(s)

∥∥∥∥p ]

≤ ep,α
(
E

[∫ t

0

‖S(t− s)Rn(G(Xm(s))−G(Xn(s)))‖α ds

]) p
α

≤ ep,αKp
G

(
E

[∫ t

0

‖Xm(s)−Xn(s)‖p ds

]) p
α

,
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which together with (6.10) yield

E [‖Xm(t)−Xn(t)‖p] ≤6p−1

(
E [‖S(t)(Rm −Rn)x0‖p]

+ E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p
]

+ T p−
p
αKp

F

(
E

[∫ t

0

‖Xm(s)−Xn(s)‖p ds

]) p
α

+ E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p
]

+ ep,αK
p
G

(
E

[∫ t

0

‖Xm(s)−Xn(s)‖p ds

]) p
α

)
.

(6.11)

If we define

un,m,p(t) := (E [‖Xm(t)−Xn(t)‖p])
α
p

u0
n,m,p := 5

α
p−16

α
p (p−1)

(
sup
t∈[0,T ]

‖S(t)‖αL(H) (E [‖(Rm −Rn)x0‖p])
α
p

+

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p
])α

p

+

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p
])α

p
)

wp := 5
α
p−16

α
p (p−1)

(
Tα−1Kα

F + e
α
p
p,αK

α
G

)
for t ∈ [0, T ], then after raising both sides of (6.11) to the power of α/p and simple
algebraic steps we obtain

un,m,p(t) ≤ u0
n,m,p + wp

∫ t

0

(un,m,p(s))
p
α ds,

which in turn by Gronwall’s inequality in [41, Th. 2] gives

un,m,p(t) ≤ 2
α
α−p−1

(
u0
n,m,p +

(
α− p
α

twp

) α
α−p
)
≤ 2

α
α−pu0

n,m,p + 2
α
α−p

(
α− p
α

twp

) α
α−p

(6.12)

If we show that

lim
p→α−

2
α
α−p

(
α− p
α

twp

) α
α−p

= lim
p→α−

(
2
α− p
α

twp

) α
α−p

= 0, (6.13)

and for any 1 < p < α

lim
m,n→∞

u0
n,m,p = 0, (6.14)

then by (6.12), for each ε ∈ (0, 1) we can find p∗ ∈ (1, α) such that

2
α

α−p∗

(
α− p∗

α
twp∗

) α
α−p∗

<
εα+1

2
,
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and an N ∈ N such that for all m,n ≥ N

2
α

α−p∗ u0
n,m,p∗ ≤

εα+1

2
.

Thus, for any m,n ≥ N we obtain

P (‖Xm(t)−Xn(t)‖ ≥ ε) ≤ 1

εp∗
E
[
‖Xm(t)−Xn(t)‖p

∗]
=

1

εp∗
(un,m,p∗(t))

p∗
α

≤ ε
p∗
α (α+1)−p∗ = ε

p∗
α ≤

√
ε,

which concludes the proof under the additional assumption (6.9).
Argument for (6.13): Recall that 1 < p and ep,α = α

α−pe
p/α
2,α for some e2,α ∈ (0,∞)

independent of p. Thus, if p is sufficiently close to α we have Tα−1 ≤ e
α
p
p,α and estimate(

2
α− p
p

twp

) α
α−p

=

(
2
α− p
α

t5
α−p
p 6

α
p (p−1)

(
Tα−1Kα

F + e
α
p
p,αK

α
G

)) α
α−p

≤ 5
α
p

(
2
α− p
α

t62

(
α− p
α

)−αp
e2,α (Kα

F +Kα
G)

) α
α−p

≤ 5α
(
α− p
α

)−αp (
t122e2,α (Kα

F +Kα
G)
) α
α−p

≤ 5α
(
α− p
α

)−2 (
T122e2,α (Kα

F +Kα
G)
) α
α−p .

Thus, (6.13) follows from

lim
y→∞

y2
(
T122e2,α (Kα

F +Kα
G)
)y

= 0

by L’Hospital’s rule and (6.9).
Argument for (6.14): Let p ∈ (1, α) be fixed. By strong convergence of Rn and Lebesgue’s
dominated convergence theorem we have

lim
m,n→∞

E [‖(Rm −Rn)x0‖p] = 0. (6.15)

Moreover, by Hölder’s inequality, strong convergence of Rn, Lemma 9.1 and Lebesgue’s
dominated convergence theorem we have

lim
m,n→∞

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)F (Xm(s))ds

∥∥∥∥p
])

≤T p−1 sup
t∈[0,T ]

‖S(t)‖pL(H) lim
m,n→∞

(
E

[∫ T

0

‖(Rm −Rn)F (Xm(s))‖p ds

])
= 0,

(6.16)

where the assumptions of Lemma 9.1 are satisfied by boundedness of F , see (6.2), and
tightness of {F (Xn(s)),m ∈ N} implied by Lemma 6.9 and continuity of F . Similarly,
using inequality (2.7) and (6.6), we obtain

lim
m,n→∞

(
sup
t∈[0,T ]

E

[∥∥∥∥∫ t

0

S(t− s)(Rm −Rn)G(Xm(s−))dL(s)

∥∥∥∥p
])

≤ep,α sup
t∈[0,T ]

‖S(t)‖pL(H) lim
m,n→∞

(
E

[∫ T

0

‖(Rm −Rn)G(Xm(s))‖α ds

]) p
α

= 0.

(6.17)
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To prove the general case without the assumption (6.9), we argue as follows. Fix a
time

T0 ∈
(

0,
1

122e2,α (Kα
F +Kα

G)

)
. (6.18)

If t ∈ [0, T0], relative compactness in L0
P (Ω, H) follows from the previous arguments

and (6.18). On the other hand, when t ∈ (T0, 2T0] we write

Xm(t)−Xn(t) = S (t− T0)

(
S (T0) (Rm −Rn)x0

+

∫ T0

0

S (T0 − s) (RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ T0

0

S (T0 − s) (RmG(Xm(s−)−RnG(Xn(s−))) dL(s)

)

+

∫ t

T0

S(t− s)(RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ t

T0

S(t− s)(RmG(Xm(s−)−RnG(Xn(s−))) dL(s)

= S (t− T0) (Xm (T0)−Xn (T0))

+

∫ t

T0

S(t− s)(RmF (Xm(s)−RnF (Xn(s))) ds

+

∫ t

T0

S(t− s)(RmG(Xm(s−)−RnG(Xn(s−))) dL(s).

Since our choice of T0 implies that {S(t − T0)Xn(T0), n ∈ N} is relatively compact in
L0
P (Ω, H), and by Equation (6.18) we have (t− T0) 122e2,α (Kα

F +Kα
G) < 1, we can use

the same argument as before to obtain relative compactness of (Xn(t))n∈N in L0
P (Ω, H)

for each t ∈ (T0, 2T0]. Using a standard induction argument, we can now cover intervals
of arbitrary length. This concludes the proof of the general case.

We now step from relative compactness of {Xn(t) : n ∈ N} in L0
P (Ω, H) for fixed

time t to relative compactness of the processes {Xn : n ∈ N} using the Arzelà–Ascoli
Theorem.

Lemma 6.11. The collection {Xn : n ∈ N} is relatively compact in C([0, T ], Lp(Ω, H)) for
any 0 < p < α.

Proof. We consider the case 1 < p < α as the case p ≤ 1 follows from the fact that relative
compactness in C([0, T ], Lp(Ω, H)) implies relative compactness in C([0, T ], Lp

′
(Ω, H)) for

p > p′. In light of the Arzelà–Ascoli Theorem, cf. e.g. [20, Th. 7.17]), it suffices to show
that

(a) {Xn(t) : n ∈ N} ⊂ Lp(Ω, H) is relatively compact for each t ∈ [0, T ];

(b) {Xn : n ∈ N} ⊂ C([0, T ], Lp(Ω, H)) is equicontinuous.

The claim in (a) follows from [12, Cor. 3.3] by Lemmata 6.9, 6.10 and the fact that
Equation (6.8) with δ = 0 and any q ∈ (p, α) implies via the Vallee-Poussin Theorem [11,
Th. II.22] that the collection {Xn(t) : n ∈ N} is p-uniformly integrable and bounded
in Lp(Ω, H). Hence, it remains only to prove (b). To that end, we take t ∈ [0, T ] and
h ∈ (0, T − t], and estimate

‖Xn(t+ h)−Xn(t)‖p
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≤ 5p−1

(
‖(S(h)− I)S(t)Rnx0‖p +

∥∥∥∥∥
∫ t+h

t

S(t+ h− s)RnF (Xn(s)) ds

∥∥∥∥∥
p

+

∥∥∥∥∥
∫ t+h

t

S(t+ h− s)RnG(Xn(s−)) dL(s)

∥∥∥∥∥
p

+

∥∥∥∥∫ t

0

(S(h)− I)S(t− s)RnF (Xn(s)) ds

∥∥∥∥p

+

∥∥∥∥∫ t

0

(S(h)− I)S(t− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p
)
. (6.19)

Commutativity of Rn and S and contractivity of S implies

E [‖(S(h)− I)S(t)Rnx0‖p] ≤ sup
n∈N
‖Rn‖pL(H)E [‖(S(h)− I)x0‖p] . (6.20)

Applying Hölder’s inequality, boundedness of F in Assumption (A2) and contractivity of
S we get

E

[∥∥∥∥∥
∫ t+h

t

S(t+ h− s)RnF (Xn(s)) ds

∥∥∥∥∥
p]
≤ hp sup

n∈N
‖Rn‖pL(H)K

p
F . (6.21)

We conclude from Inequality (2.7) by using boundedness of G in Assumption (A3) and
contractivity of S that

E

[∥∥∥∥∥
∫ t+h

t

S(t+ h− s)RnG(Xn(s−)) dL(s)

∥∥∥∥∥
p]

(6.22)

≤ ep,α

(
E

[∫ t+h

t

‖S(t+ h− s)G(Xn(s))‖αL2(U,H) ds

])p/α
≤ ep,α sup

n∈N
‖Rn‖pL(H)K

p
Gh

p/α.

It follows from Lemma 6.9 that {Xn(s) : n ∈ N} is tight in H for every s ∈ [0, t].
Lemma 9.1 implies

lim
h↘0

sup
n∈N

E [‖(S(h)− I)S(t− s)RnF (Xn(s))‖p] = 0.

Lebesgue’s dominated convergence theorem shows

lim
h↘0

∫ t

0

sup
n∈N

E [‖(S(h)− I)S(t− s)RnF (Xn(s))‖p] ds = 0. (6.23)

In the same way, after applying Inequality (2.7), we obtain from Lemma 9.1

lim
h↘0

sup
n∈N

E

[∥∥∥∥∫ t

0

(S(h)− I)S(t− s)RnG(Xn(s−)) dL(s)

∥∥∥∥p
]

= 0. (6.24)

Applying (6.20) − (6.24) to Inequality (6.19) shows uniform continuity from the right.
Similar arguments establish uniform continuity from the left, which proves (b), and thus
completes the proof.

Proof of Theorem 6.6. It is enough to consider the case p ≥ αβ where β is the Hölder
exponent from (6.6). Lemma 6.11 guarantees that there is a subsequence (nk)∞k=1 such
that

lim
k→∞

sup
t∈[0,T ]

E [||Xnk(t)− Z(t)||p] = 0 (6.25)
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for some Z ∈ C([0, T ], Lp(Ω, H)). The proof will be complete if we show that Z is a mild
solution to (6.1). Letting c := 1 ∧ 3p−1, we conclude for each k ∈ N and t ∈ [0, T ] from
Lipschitz continuity of F and Hölder continuity of G in (6.2) and (6.6) and contractivity
of S by applying Hölder’s inequality and Inequality (2.7) that

E

[∣∣∣∣∣∣∣∣Z(t)− S(t)x0 −
∫ t

0

S(t− s)F (Z(s)) ds−
∫ t

0

S(t− s)G(Z(s−)) dL(s)

∣∣∣∣∣∣∣∣p
]

≤ c

(
E [||Z(t)−Xnk(t)||p] + E

[∣∣∣∣∣∣∣∣∫ t

0

S(t− s)
(
F (Z(s))− F (Xnk(s))

)
ds

∣∣∣∣∣∣∣∣p
]

+ E

[∣∣∣∣∣∣∣∣∫ t

0

S(t− s)
(
G(Z(s−))−G(Xnk(s−))

)
dL(s)

∣∣∣∣∣∣∣∣p
])

≤ c

(
E [||Z(t)−Xnk(t)||p] + T p−1E

[∫ t

0

∣∣∣∣S(t− s)
(
F (Z(s))− F (Xnk(s))

)∣∣∣∣p ds

]

+ ep,α

(
E

[∫ t

0

∣∣∣∣S(t− s)
(
G(Z(s))−G(Xnk(s))

)∣∣∣∣α
L2(U,H)

ds

])p/α)

≤ c

(
E [‖Z(t)−Xnk(t)‖p] + T p−1Kp

F sup
t∈[0,T ]

‖S(t)‖pL(H)E

[∫ t

0

‖Z(s)−Xnk(s)‖p ds

]

+ ep,αK
p
G sup
t∈[0,T ]

‖S(t)‖pL(H)

(
E

[∫ t

0

‖Z(s)−Xnk(s)‖αβL2(U,H) ds

])p/α)

≤ c

(
(1 + T pKp

F ) sup
t∈[0,T ]

E [‖Z(t)−Xnk(t)‖p]

+ ep,αK
p
GT

p/α sup
t∈[0,T ]

(E [‖Z(t)−Xnk(t)‖p])β
)
.

As the last line tends to 0 as k →∞ by (6.25), it follows that Z is a mild solution to (6.1).
It remains to establish that Z has càdlàg paths, but this follows immediately from the

following corollary as Xn has càdlàg paths.

At the end of this section, we present a stronger convergence result for Yosida
approximations that not only completes the proof of Theorem 6.6 but also turns out to
be useful in applications as will be seen in the following sections.

Corollary 6.12. For all 0 < p < α there exists a subsequence (Xnk)k∈N of the Yosida
approximations, which converges to a solution to (6.1) both in C([0, T ], Lp(Ω, H)) and
uniformly on [0, T ] almost surely.

Proof. Lemma 6.11 enables us to choose a subsequence (Xn)n∈N of the Yosida approxi-
mations which converges in C([0, T ], Lp(Ω, H)) to the mild solution X. To prove almost
sure convergence, we fix an arbitrary r > 0 and estimate

P

(
sup
t∈[0,T ]

‖X(t)−Xn(t)‖ > r

)
≤ P

(
sup
t∈[0,T ]

‖S(t)(I −Rn)x0‖ >
r

3

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)
(
F (X(s))−RnF (Xn(s))

)
ds

∥∥∥∥ > r

3

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)
(
G(X(s−))−RnG(Xn(s−))

)
dL(s)

∥∥∥∥ > r

3

)
.

(6.26)
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For the following arguments, we define m := supt∈[0,T ] ‖S(t)‖L(H). As I −Rn converges
to zero strongly as n→∞ we obtain

P

(
sup
t∈[0,T ]

‖S(t)(I −Rn)x0‖ >
r

3

)
≤ P

(
m ‖(I −Rn)x0‖ >

r

3

)
→ 0.

For estimating the second term in (6.26), we apply Markov’s inequality and Lipschitz
continuity of F in (A2) to obtain

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)
(
F (X(s))−RnF (Xn(s))

)
ds

∥∥∥∥ > r
3

)

≤ P

(
m

∫ T

0

‖F (X(s))−RnF (Xn(s))‖ ds > r
3

)

≤ P

(∫ T

0

‖(I −Rn)F (X(s))‖ds > r
6m

)
+ P

(∫ T

0

‖Rn(F (X(s))− F (Xn(s)))‖ ds > r
6m

)

≤ 6m
r E

[∫ T

0

‖(I −Rn)F (X(s))‖ ds

]
+ 6m

r E

[∫ T

0

‖Rn(F (X(s))− F (Xn(s)))‖ ds

]

≤ 6m
r E

[∫ T

0

‖(I −Rn)F (X(s))‖ ds

]
+ 6m

r TKF sup
n∈N
‖Rn‖L(H) sup

t∈[0,T ]

E [‖X(t)−Xn(t)‖] .

We conclude from the last inequality by Lebesgue’s dominated convergence theorem
and convergence of Xn to X in C([0, T ], L1(Ω, H)) that

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)(F (X(s))−RnF (Xn(s))) ds

∥∥∥∥ > r

3

)
= 0.

To estimate the last term in (6.26), we apply the dilation theorem for contraction semi-
groups, see [39, Th. I.8.1]): there exists a C0-group (Ŝ(t))t∈R of unitary operators Ŝ(t) on
a larger Hilbert space Ĥ in which H is continuously embedded satisfying S(t) = πŜ(t)i

for all t ≥ 0, where π is the projection from Ĥ to H and i is the continuous embedding of

H into Ĥ. Thus, if we denote m = supt∈[0,T ]

∥∥∥πŜ(t)
∥∥∥
L(Ĥ,H)

, k = sups∈[−T,0]

∥∥∥Ŝ(s)i
∥∥∥
L(H,Ĥ)

,

we may estimate using Markov’s inequality, Inequality (2.7) and Hölder continuity of G
in (6.6)

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s) (G(X(s−))−RnG(Xn(s−))) dL(s)

∥∥∥∥ > r

3

)

≤ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s) (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)Rn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)

= P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

πŜ(t− s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

πŜ(t− s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)

= P

(
sup
t∈[0,T ]

∥∥∥∥πŜ(t)

∫ t

0

Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥ > r

6

)
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+ P

(
sup
t∈[0,T ]

∥∥∥∥πŜ(t)

∫ t

0

Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥ > r

6

)

≤ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥
Ĥ

>
r

6m

)

+ P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥
Ĥ

>
r

6m

)

≤ 6m

r
E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Ŝ(−s)i (I −Rn)G(X(s−))dL(s)

∥∥∥∥
Ĥ

]

+
6m

r
E

[
sup
t∈[0,T ]

∥∥∥∥∫ t

0

Ŝ(−s)iRn (G(X(s−))−G(Xn(s−))) dL(s)

∥∥∥∥
Ĥ

]

≤ e1,α
6m

r

(
E

[∫ T

0

∥∥∥Ŝ(−s)i (I −Rn)G(X(s−))
∥∥∥α
L2(U,Ĥ)

ds

])1/α

+ e1,α
6m

r

(
E

[∫ T

0

∥∥∥Ŝ(−s)iRn (G(X(s−))−G(Xn(s−)))
∥∥∥α
L2(U,Ĥ)

ds

])1/α

≤ e1,α
6m

r
k

(
E

[∫ T

0

‖(I −Rn)G(X(s−))‖αL2(U,Ĥ) ds

])1/α

+ e1,α
6m

r
kKGT

1/α

(
sup
t∈[0,T ]

E
[
‖(X(t))−Xn(t)‖αβ

])1/α

.

We conclude from the last inequality by Lebesgue’s dominated convergence, strong
convergence of Rn to I, boundedness G in (6.6) and convergence of Xn to X in
C([0, T ], Lαβ(Ω, H)) that

lim
n→∞

P

(
sup
t∈[0,T ]

∥∥∥∥∫ t

0

S(t− s)(G(X(s−))−RnG(Xn(s−))) dL(s)

∥∥∥∥ > r

3

)
= 0,

We have shown that all the terms on the right hand side of (6.26) converge to zero as
n tends to infinity which gives uniform convergence of Xn to X in probability on [0, T ].
This concludes the proof, since uniform convergence in probability implies the existence
of a desired subsequence.

7 Moment boundedness for evolution equations

In this section, we investigate stability properties of the solution for the stochastic
evolution equation (6.1) by applying the Itô’s formula derived in Theorem 5.1. More
precisely, we shall derive conditions on the coefficients such that the mild solution X

is ultimately exponentially bounded in the p-th moment, that is there exist constants
m1,m2,m3 > 0 such that

E [‖X(t)‖p] ≤ m1e
−tm2E [‖x0‖p] +m3 for all t ≥ 0.

Recall that C2
b (H) denotes the space of continuous real-valued functions defined on H

with bounded first and second Fréchet derivatives. In what follows, our goal is to derive
a Lyapunov-type criterion using the following operator on C2

b (H):

Lf(h) = 〈Df(h), Ah+ F (h)〉

+

∫
H

(
f(h+ g)− f(h)− 〈Df(h), g〉

) (
λ ◦G(h)−1

)
(dg), h ∈ D1 (7.1)
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for f ∈ C2
b (H). Note that the right hand side of (7.1) is well defined by Lemma 5.2. We

can now state the main result of this section, the following general moment boundedness
criterion.

Theorem 7.1. Let p ∈ (0, 1) be fixed and V be a function in C2
b (H) satisfying for some

constants β1, β2, β3, k1, k3 > 0 the inequalities

β1 ||h||p − k1 ≤ V (h) ≤ β2 ||h||p for all h ∈ H, (7.2)

LV (h) ≤ −β3V (h) + k3 for all h ∈ D1. (7.3)

Then the solution X to (6.1) is exponentially ultimately bounded in the p-th moment:

E [||X(t)||p] ≤ β2

β1
e−β3tE [‖x0‖p] +

1

β1

(
k1 +

k3

β3

)
.

Before we prove Theorem 7.1 we demonstrate its application by deriving conditions
for moment boundedness in terms of the coefficients of Equation (6.1).

Corollary 7.2. Suppose that there exists ε > 0 such that

〈Ah+ F (h), h〉 ≤ −ε ||h||2 for all h ∈ D1,

then the solution to (6.1) is exponentially ultimately bounded in the p-th moment for
every p ∈ (0, 1).

Proof. Fix p ∈ (0, 1) and let ζ be a function in C2([0,∞)) satisfying ζ(x) = xp/2 for x ≥ 1

and ζ(x) ≤ 1 for x < 1. By defining V (h) = ζ(‖h‖2) for all h ∈ H, we obtain V ∈ C2
b (H)

and

V (h) = ||h||p for all h ∈ BcH and 0 ≤ V (h) ≤ 1 for all h ∈ BH .

It follows that (7.2) holds with β1 = β2 = k1 = 1. We show that (7.3) also holds. By the
definition of V , it follows for each h ∈ D1 ∩BcH that

〈DV (h), Ah+ F (h)〉 = p ||h||p−2 〈h,Ah+ F (h)〉 ≤ −εp ||h||p = −εpV (h).

For h ∈ D1 ∩BH , one obtains by boundedness of F in Assumption (A2) that

〈DV (h), Ah+ F (h)〉 ≤ ||DV ||∞
(
||A||L(D1) +KF

)
.

Since Lemma 5.2 together with boundedness of G in Assumption (A3) implies for each
h ∈ H that∫
H

(
V (h+ g)− V (h)− 〈DV (h), g〉

) (
λ ◦G−1(h)

)
(dg) ≤ d1

α

(
2 ||DV ||∞ + 1

2

∣∣∣∣D2V
∣∣∣∣
∞

)
Kα
G,

we have verified Condition (7.3).

In the remaining of this section, we prove Theorem 7.1 using the Yosida approxi-
mations established in the previous sections. For this purpose, let Xn denote the mild
solution to the approximating equations (6.7) for each n ∈ N. We may assume due
to Corollary 6.12, by passing to a subsequence if necessary, that Xn converges to the
solution X of (6.1) uniformly almost surely on [0, T ]. In what follows, we will routinely
pass on to a subsequence without changing the indices.

Proposition 7.3. The mild solution Xn of (6.7) is a strong solution attaining values in
D1, that is, for each t ∈ [0, T ], it satisfies

Xn(t) = Rnx0 +

∫ t

0

(
AXn(s) +RnF (Xn(s))

)
ds+

∫ t

0

RnG(Xn(s−)) dL(s).
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Proof. Our argument will follow closely the proof of [1, Th.2]. As mild solution, Xn

satisfies

Xn(t) = S(t)Rnx0 +

∫ t

0

S(t− s)RnF (Xn(s)) ds+

∫ t

0

S(t− s)RnG(Xn(s−)) dL(s). (7.4)

The process Xn is (Ft)-measurable with càdlàg paths and attains values in D1. First, we
obtain from (7.4) by interchanging integrals and A ∈ L(D1) for t ≥ 0 that

AXn(t) = AS(t)Rnx0 +

∫ t

0

AS(t− s))RnF (Xn(s)) ds

+

∫ t

0

AS(t− s)RnG(Xn(s−)) dL(s). (7.5)

Each term on the right hand side of (7.5) is almost surely Bochner integrable. Indeed,
integrability of the first term is immediate from the uniform boundedness principle. For
the second term, boundedness of F in Condition (A2) and commutativity of S and Rn
implies∫ t

0

∫ s

0

‖AS(s− r)RnF (Xn(r))‖1 dr ds

≤ ‖A‖L(D1) ‖Rn‖L(H,D1)

∫ t

0

∫ s

0

‖S(s− r)F (Xn(s))‖ dr ds <∞ a.s.

Almost sure Bochner integrability of the stochastic integral in (7.5) follows from bound-
edness of G in Assumption(A3), commutativity of S and Rn, and Theorem 2.4 via the
estimate

E

[∫ t

0

∫ s

0

‖AS(s− r)RnG(Xn(r))‖αL2(U,D1) dr ds

]
≤ ‖A‖αL(D1) ‖Rn‖

α
L(H,D1)E

[∫ t

0

∫ s

0

‖S(s− r)G(Xn(r))‖αL2(U,H) dr ds

]
<∞.

Integrating both sides of (7.5) results in the equality∫ t

0

AXn(s) ds =

∫ t

0

AS(s)Rnx0 ds+

∫ t

0

∫ s

0

AS(s− r)RnF (Xn(r)) dr ds

+

∫ t

0

∫ s

0

AS(s− r)RnG(Xn(r−)) dL(r) ds.

Applying Fubini’s theorems, see Theorem 2.4 for the stochastic version, and the equality∫ t
0
AS(s)Rnhds = S(t)Rnh−Rnh for all h ∈ H enable us to conclude∫ t

0

AXn(s) ds =

∫ t

0

AS(s)Rnx0 ds+

∫ t

0

∫ t

r

AS(s− r)RnF (Xn(r)) dsdr

+

∫ t

0

∫ t

r

AS(s− r)RnG(Xn(r−)) dsdL(r)

= S(t)Rnx0 −Rnx0 +

∫ t

0

S(t− r)RnF (Xn(r)) dr −
∫ t

0

RnF (Xn(r)) dr

+

∫ t

0

S(t− r)RnG(Xn(r−)) dL(r)−
∫ t

0

RnG(Xn(r−)) dL(r)

= Xn(t)−Rnx0 −
∫ t

0

RnF (Xn(r)) dr −
∫ t

0

RnG(Xn(r−)) dL(r),

which verifies Xn as a strong solution to (6.1).

EJP 29 (2024), paper 79.
Page 30/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1136
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SPDEs driven by standard symmetric α-stable cylindrical Lévy processes

We denote by Ln the usual generator associated with the Yosida approximations Xn,
n ∈ N, defined for f ∈ C2

b (H) and h ∈ D1 by

Lnf(h) = 〈Df(h), Ah+RnF (h)〉

+

∫
H

(
f(h+Rng)− f(h)− 〈Df(h), Rng〉

) (
λ ◦G(h)−1

)
(dg). (7.6)

The right hand side of (7.6) is well defined by Lemma 5.2. Recall that the counterpart to
Ln for the mild solution X denoted by L was introduced in (7.1). The generators Ln and
L are related by the following crucial convergence result.

Lemma 7.4. Let (Xn)n∈N be solutions of (6.7) which a.s. converges uniformly to the
solution of (6.1). It follows for each f ∈ C2

b (H) that

lim
n→∞

E

[∫ T

0

∣∣∣∣Lnf(Xn(s)) −Lf(Xn(s))

∣∣∣∣ds] = 0.

Proof. Denoting λG(h) := λ ◦G(h)−1 for each h ∈ D1, we obtain

|Lf(h)− Lnf(h)| ≤ ||Df ||∞ ||(I −Rn)F (h)||

+

∫
BH

∣∣f(h+ g)− f(h+Rng)− 〈Df(h), (I −Rn) g〉
∣∣λG(h)(dg) (7.7)

+

∫
B
c
H

∣∣f(h+ g)− f(h+Rng)
∣∣λG(h)(dg) +

∫
B
c
H

∣∣〈Df(h), (I −Rn) g〉
∣∣λG(h)(dg).

Taylor’s remainder theorem in the integral form implies∫
BH

∣∣f(h+ g)− f(h+Rng)− 〈Df(h), (I −Rn) g〉
∣∣λG(h)(dg)

≤
∫
BH

∫ 1

0

∣∣〈D2f(h+ θ (I −Rn) g) (I −Rn) g, (I −Rn) g〉(1− θ)
∣∣ dθ λG(h)(dg)

≤ 1

2

∣∣∣∣D2f
∣∣∣∣
∞

∫
BH

||(I −Rn) g||2 λG(h)(dg).

In the same way, we obtain∫
B
c
H

∣∣f(h+ g)− f(h+Rng)
∣∣λG(h)(dg) ≤ ||Df ||∞

∫
B
c
H

||(I −Rn) g|| λG(h)(dg).

and also∫
B
c
H

∣∣〈Df(h), (I −Rn) g〉
∣∣λG(h)(dg) ≤ ||Df ||∞

∫
B
c
H

||(I −Rn) g|| λG(h)(dg).

Applying the last three estimates to (7.7) and taking expectation on both sides, it follows
from Inequality (2.2) and for each n ∈ N that

E

[∫ T

0

∣∣Lnf(Xn(s))− Lf(Xn(s))
∣∣ds]

≤ ||Df ||∞E

[∫ T

0

||(I −Rn)F (Xn(s))|| ds

]
+ cE

[∫ T

0

||(I −Rn)G(Xn(s))||αL2(U,H) ds

]
,

where c := d1
α

(
2 ||Df ||∞ + 1

2

∣∣∣∣D2f
∣∣∣∣
∞

)
.
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To complete the proof, it remains to show that both

lim
n→∞

E

[∫ T

0

||(I −Rn)F (Xn(s))||ds

]
= 0, (7.8)

lim
n→∞

E

[∫ T

0

||(I −Rn)G(Xn(s))||αL2(U,H) ds

]
= 0. (7.9)

Let t ∈ [0, T ] be arbitrary but fixed, and recall that we chose Xn(t) almost surely
convergent and thus {Xm(t)(ω) : m ∈ N} ⊂ H is compact for almost all ω ∈ Ω. Strong
convergence of I−Rn to zero, see [30, Le. 1.3.2], continuity of F and G and the fact that
continuous mapping converging pointwise to a continuous mapping converge uniformly
over compacts together imply for each t ∈ [0, T ] that, almost surely, we obtain

lim
n→∞

||(I −Rn)F (Xn(t))|| ≤ lim
n→∞

sup
m∈N

||(I −Rn)F (Xm(t))|| = 0,

lim
n→∞

||(I −Rn)G(Xn(t))||αL2(U,H) ≤ lim
n→∞

sup
m∈N

||(I −Rn)G(Xm(t))||αL2(U,H) = 0.

Since the boundedness conditions in (A2) and (A3) guarantee

||(I −Rn)F (Xn(t))|| ≤
(

sup
n∈N
||I −Rn||L(H)

)
KF a.s.,

||(I −Rn)G(Xn(t))||αL2(U,H) ≤
(

sup
n∈N
||I −Rn||αL(H)

)
Kα
G a.s.

an application of Lebesgue’s dominated convergence theorem verifies (7.8) and (7.9),
which completes the proof.

Proof of Theorem 7.1. Let (Xn)n∈N be the solutions of (6.7). Because of Corollary 6.12,
we can assume that (Xn)n∈N converges uniformly to the solution of (6.1) a.s. Propo-
sition 7.3 enables us to apply the Itô formula in Theorem 5.1 to Xn, which results
in

V (Xn(t)) = V (Xn(0) +

∫ t

0

LnV (Xn(s))ds+

∫ t

0

〈G(Xn(s−))∗R∗nDV (Xn(s−)), ·〉dL(s)

+

∫ t

0

∫
H

V (Xn(s−) + h)− V (Xn(s−))− 〈DV (Xn(s−)), h〉(µXn − νXn) (ds,dh) (7.10)

almost surely for all t ≥ 0. Applying the product formula to the real-valued semi-
martingale V (Xn(·)) and the function t 7→ eβ3t and taking expectations on both sides
of (7.10) shows

eβ3tE [V (Xn(t))] =E [V (Xn(0))] + E

[∫ t

0

eβ3s (β3V (Xn(s)) + LnV (Xn(s))) ds

]
. (7.11)

Here, we used the fact that the last two integrals in (7.10) define martingales, and thus
have expectation zero. This follows from the observation that they are local martingales
according to Lemma 2.3 and Theorem 5.1 and are uniformly bounded. The latter is
guaranteed by the boundedness of G in (A3), since

E

[∫ t

0

||〈G(Xn(s))∗R∗nDV (Xn(s)), ·〉||αL2(U,R) ds

]
= E

[∫ t

0

||G(Xn(s))∗R∗nDV (Xn(s))||α ds

]
≤ ||Rn||αL(H) ||DV ||

α
∞ TKα

G <∞,
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and similarly, by using Lemma 5.2,

E

[∫ t

0

∫
H

|V (Xn(s−) + h)− V (Xn(s−))− 〈DV (Xn(s−), h〉| νXn(ds,dh)

]
≤ d1

α

(
2 ||DV ||∞ +

1

2

∣∣∣∣D2V
∣∣∣∣
∞

)
||Rn||αL(H)E

[∫ t

0

||G(Xn(s))||αL2(U,H) ds

]
<∞.

The first term on the right hand side in (7.11) is finite since

E [V (Xn(0))] ≤ β2 ‖Rn‖pL(H)E [‖x0‖p] <∞.

The same holds for the second term, which can be shown using the same arguments as
in the proof of Lemma 7.4. By applying Inequality (7.3) to (7.11), we conclude

eβ3tE [[V (Xn(t))] ≤ E [V (Xn(0))] + E

[∫ t

0

eβ3s

(
− LV (Xn(s)) + LnV (Xn(s)) + k3

)
ds

]

≤ E [V (Xn(0))] + eβ3TE

[∫ t

0

∣∣∣∣LnV (Xn(s))− LV (Xn(s))

∣∣∣∣ds
]

+
k3

β3

(
eβ3t − 1

)
.

Lemma 7.4 together with Fatou’s lemma implies

E [V (X(t))] ≤ lim inf
n→∞

E [V (Xn(t))] ≤ e−β3tE [V (x0)] +
k3

β3
.

Applying Assumption (7.2) completes the proof.

8 Mild Itô formula

In this section, we prove an Itô formula for mild solutions of Equation (6.1) and
mappings f ∈ C2

b (H) such that the second derivative D2f is not only continuous but
satisfies

lim
n→∞

‖gn − g‖ = 0 =⇒ lim
n→∞

sup
h∈BH

∥∥D2f(gn + h)−D2f(g + h)
∥∥
L(H)

= 0. (8.1)

The subspace of all these functions is denoted by C2
b,u(H).

Theorem 8.1 (Itô formula for mild solutions). A mild solution X of (6.1) satisfies for each
f ∈ C2

b,u(H) and t ≥ 0 that

f(X(t)) = f(x0) +

∫ t

0

〈G(X(s−)∗Df(X(s−))), ·〉dL(s) (8.2)

+

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

) (
µX − νX

)
(ds,dh)

+ lim
n→∞

(∫ t

0

〈Df(Xn(s)), AXn(s)〉ds
)

+

∫ t

0

〈Df(X(s)), F (X(s))〉ds

+

∫ t

0

∫
H

(
f(X(s) + h)− f(X(s))− 〈Df(X(s)), h〉

) (
λ ◦G(X(s))−1

)
(dh) ds,

where the limit is taken in L0
P (Ω,R).

Remark 8.2. Note that while X may not be a semimartingale, the compensated measure
µX − νX in (8.2) still exists as X is both adapted and càdlàg; see [16, Chap. II].

EJP 29 (2024), paper 79.
Page 33/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1136
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SPDEs driven by standard symmetric α-stable cylindrical Lévy processes

Remark 8.3. Unlike in similar situation with the driving noise being Gaussian e.g. in
[25] we do not identify the limit in (8.2) as then the imposed assumptions on f are very
restrictive. In many applications (see e.g. [1]), it is enough to identify some bound on

lim
n→∞

(∫ t

0

〈Df(Xn(s)), AXn(s)〉ds
)

which leads to natural assumptions on the generator A.

We divide the proof of the above theorem in some technical lemmas. To simplify the
notation, we introduce the function Tf : H ×H → R for f ∈ C2

b,u(H) defined by

Tf (g, h) = f(g + h)− f(g)− 〈Df(g), h〉, g, h ∈ H.

Lemma 8.4. Let λ be the cylindrial Lévy measure of L. It follows for every f ∈ C2
b (H),

φ ∈ L2(U,H) and g, h ∈ H that∫
H

|Tf (g, b)− Tf (h, b)|
(
λ ◦ φ−1

)
(db)

≤ 2d1
α ‖φ‖

α
L2(U,H)

(
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

+
∥∥D2f

∥∥
∞ ‖g − h‖

)
.

Proof. Taylor’s remainder theorem in the integral form and Inequality (2.2) imply∫
BH

|Tf (g, b)− Tf (h, b)|
(
λ ◦ φ−1

)
(db)

=

∫
BH

∣∣∣∣∫ 1

0

〈(D2f(g + θb)−D2f(h+ θb))b, b〉(1− θ) dθ

∣∣∣∣ (λ ◦ φ−1
)

(db)

≤ 1

2
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

∫
BH

‖b‖2
(
λ ◦ φ−1

)
(db)

≤ 1

2
d1
α

(
sup
b∈BH

∥∥D2f(g + b)−D2f(h+ b)
∥∥
L(H)

)
‖φ‖αL2(U,H) . (8.3)

A similar argument yields∫
B
c
H

|Tf (g, b)− Tf (h, b)|
(
λ ◦ φ−1

)
(db)

≤
∫
B
c
H

∣∣∣∣∫ 1

0

〈Df(g + θb)−Df(h+ θb), b〉dθ
∣∣∣∣ (λ ◦ φ−1

)
(db)

+

∫
B
c
H

|〈Df(g)−Df(h), b〉|
(
λ ◦ φ−1

)
(db)

≤
(

sup
b∈H
‖Df(g + b)−Df(h+ b)‖+ ‖Df(g)−Df(h)‖

)∫
B
c
H

‖b‖
(
λ ◦ φ−1

)
(db)

≤ 2d1
α

∥∥D2f
∥∥
∞ ‖g − h‖ ‖φ‖

α
L2(U,H) . (8.4)

Combining Inequalities (8.3) and (8.4) completes the proof.

Lemma 8.5. Let (Xn)n∈N be a sequence of càdlàg processes in H which converges to
a process X both in C([0, T ], Lp(Ω, H)) and uniformly on [0, T ] almost surely. Then it
follows for any f ∈ C2

b,u(H) and t ∈ [0, T ] that

lim
n→∞

∫ t

0

∫
H

Tf (Xn(s−), h)µXn(ds,dh) =

∫ t

0

∫
H

Tf (X(s−), h)µX(ds,dh) in L0
P (Ω,R).
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Proof. Theorem 3.5 guarantees for each n ∈ N that

E

[∣∣∣∣∫ t

0

∫
H

(
Tf (Xn(s−), h)− Tf (X(s−), h)

)
µXn(ds,dh)

∣∣∣∣]
≤ E

[∫ t

0

∫
H

∣∣Tf (Xn(s−), h)− Tf (X(s−), h)
∣∣µXn(ds,dh)

]
= E

[∫ t

0

∫
H

∣∣Tf (Xn(s), h)− Tf (X(s), h)
∣∣ νXn(ds,dh)

]
= E

[∫ t

0

∫
H

∣∣Tf (Xn(s), h)− Tf (X(s), h)
∣∣ (λ ◦ (RnG(Xn(s−)))−1

)
(dh) ds

]
. (8.5)

Since Remark 6.7 guarantees c := 2d1
αK

α
G supn∈N ‖Rn‖

α
L(H) < ∞, we obtain from

Lemma 8.4 for P ⊗ Leb-a.a. (ω, s) ∈ Ω× [0, T ] that∫
H

|Tf (Xn(s)(ω), h)− Tf (X(s)(ω), h)|
(
λ ◦ (RnG(Xn(s−)(ω)))−1

)
(dh)

≤ c

(
sup
b∈BH

∥∥D2f(Xn(s)(ω) + b)−D2f(X(s)(ω) + b)
∥∥
L(H)

+
∥∥D2f

∥∥
∞ ‖f(Xn(s)(ω))− f(X(s)(ω))‖

)
.

Since f satisfies (8.1), Lebesgue’s dominated convergence theorem implies

lim
n→∞

E

[∣∣∣∣∫ t

0

∫
H

(
Tf (Xn(s−), h)− Tf (X(s−), h)

)
µXn(ds,dh)

∣∣∣∣] = 0. (8.6)

For the next step, fix ε, ε′ > 0, and use for any m,n ∈ N the decomposition(∣∣∣∣∫ t

0

∫
H

Tf (X(s−), h)
(
µXn(ds,dh)− µX(ds,dh)

)∣∣∣∣ > ε

)
≤ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds,dh)

∣∣∣∣∣ > ε

3

)

+ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µX(ds,dh)

∣∣∣∣∣ > ε

3

)

+ P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds,dh)− µX(ds,dh)

)∣∣∣∣∣ > ε

3

)
. (8.7)

Since Taylor’s remainder theorem in the integral form gurantees that |Tf (X(s−), h)| ≤
1
2

∥∥D2f
∥∥
∞ ‖h‖

2 for all h ∈ H, we obtain by applying Theorem 3.5 and Inequality (2.2)
that

E

[∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds,dh)

∣∣∣∣∣
]

≤ 1

2

∥∥D2f
∥∥
∞E

[∫ t

0

∫
BH(1/m)

‖h‖2
(
λ ◦ (RnG(Xn(s)))

−1
)

(dh)ds

]
≤ dmαKα

G

1

2

∥∥D2f
∥∥
∞ T.

Since the last line is independent of n ∈ N and dmα → 0 as m → ∞ according to
Inequality (2.2), Markov’s inequality implies that there exists m1 ∈ N such that for all
m ≥ m1 and all n ∈ N

P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µXn(ds,dh)

∣∣∣∣∣ > ε

3

)
≤ ε′. (8.8)
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Exactly the same arguments establish that for all m ≥ m1

P

(∣∣∣∣∣
∫ t

0

∫
BH(1/m)

Tf (X(s−), h)µX(ds,dh)

∣∣∣∣∣ > ε

3

)
≤ ε′. (8.9)

For the last term in (8.7) we calculate for each m,n ∈ N that∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds,dh)− µX(ds,dh)

)
=
∑

0≤s≤t

Tf (X(s−),∆Xn(s))1BH(1/m)c(∆Xn(s))

−
∑

0≤s≤t

Tf (X(s−),∆X(s))1BH(1/m)c(∆X(s))

=
∑

0≤s≤t

Tf (X(s−),∆Xn(s))
(
1BH(1/m)c(∆Xn(s))− 1BH(1/m)c(∆X(s))

)
+
∑

0≤s≤t

(
Tf (X(s−),∆Xn(s))− Tf (X(s−),∆X(s))

)
1BH(1/m)c(∆X(s)). (8.10)

For estimating the first term in the last line, we use the equality 1A(x) − 1A(y) =

1A(x)1Ac(y) − 1Ac(x)1A(y). For the first term, resulting from the application of this
identity, we conclude from Taylor’s remainder theorem in the integral form that∣∣∣∣∣∣

∑
0≤s≤t

Tf (X(s−) ,∆Xn(s))1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

∣∣∣∣∣∣
≤
∑

0≤s≤t

∣∣Tf (X(s−),∆Xn(s))
∣∣1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

≤ 1

2

∥∥D2f
∥∥
∞

∑
0≤s≤t

‖∆Xn(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s))

≤ cf
∑

0≤s≤t

(
‖∆X(s)‖2 + ‖∆Xn(s)−∆X(s)‖2

)
1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)),

(8.11)

where we used the notation cf :=
∥∥D2f

∥∥
∞. Applying Theorem 3.5 and using the

boundedness assumption on G in (A3) result in

E

 ∑
0≤s≤t

‖∆X(s)‖2 1BH(1/m)(∆X(s))

 = E

[∫ t

0

∫
BH(1/m)

‖h‖2 µX(ds,dh)

]

= E

[∫ t

0

∫
BH(1/m)

‖h‖2
(
λ ◦G(X(s−))−1

)
(dh,ds)

]
≤ dmα TKα

G.

Since dmα → 0 as m → ∞, Markov’s inequality implies that there exists m2 ∈ N with
m2 ≥ m1 such that for all m ≥ m2 and all n ∈ N

P

 ∑
0≤s≤t

‖∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf

 ≤ ε′

8
. (8.12)

In the remaining part of the proof fix m ≥ m2 ≥ m1 such that (8.12) is satisfied. There
exists n1 ∈ N such that the set An := {sups∈[0,t] ‖∆Xn(s)−∆X(s)‖ ≤ 1

2m} satisfies
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P (Acn) ≤ ε′

16 for all n ≥ n1. If sups∈[0,t] ‖∆Xn(s)‖ ≥ 1
m then we obtain on An for n ≥ n1

that

sup
s∈[0,t]

‖∆X(s)‖ ≥ − sup
s∈[0,t]

‖∆X(s)−∆Xn(s)‖+ sup
s∈[0,t]

‖∆Xn(s)‖ ≥ 1

2m
.

Consequently, we obtain for all n ≥ n1 that

P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf


≤ P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/2m)c(∆X(s)) ≥ ε

24cf

+
ε′

16
.

Since X has only finitely many jumps in BH(1/2m)c on [0, t] and ∆Xn(s) converges to
∆X(s) for all s ∈ [0, t], there exists n2 such that for all n ≥ n2

P

 ∑
0≤s≤t

‖∆Xn(s)−∆X(s)‖2 1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

24cf

 ≤ ε′

8
.

Applying this together with (8.12) to Inequality (8.11) proves that for m ≥ m2 there
exists n2 such that for all n ≥ n2

P

 ∑
0≤s≤t

Tf (X(s−) ,∆Xn(s))1BH(1/m)c(∆Xn(s))1BH(1/m)(∆X(s)) ≥ ε

12

 ≤ ε′

4
.

(8.13)

As ∆Xn converges to ∆X uniformly on [0, T ] almost surely we obtain that for almost all
ω ∈ Ω we have

1BH(1/m)(∆Xn(s)(ω))1BH(1/m)c(∆X(s)(ω)) = 0

if n is large enough. Therefore

lim
n→∞

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))1BH(1/m)(∆Xn(s))1BH(1/m)c(∆X(s))

 = 0 a.s.

and thus we obtain that there exists n3 such that for all n ≥ n3 we have

P

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))1BH(1/m)(∆Xn(s))1BH(1/m)c(∆X(s)) ≥ ε

12

 ≤ ε′

4
.

Combining this with (8.13) shows that for m ≥ m2 and n ≥ max{n2, n3} we have

P

 ∑
0≤s≤t

Tf (X(s−),∆Xn(s))
(
1BH(1/m)c(∆Xn(s))− 1BH(1/m)c(∆X(s))

)
≥ ε

6

 ≤ ε′

2
.

(8.14)

Since X has only finitely many jumps in BH(1/m)c on [0, t] and ∆Xn(s) converges to
∆X(s) for all s ∈ [0, t], there exits n4 such that for all n ≥ n4

P

 ∑
0≤s≤t

(
Tf (X(s−),∆Xn(s))− Tf (X(s−),∆X(s))

)
1BH(1/m)c(∆X(s)) ≥ ε

6

 ≤ ε′

2
.
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Applying this together with (8.14) to (8.10) shows

P

(∫ t

0

∫
BH(1/m)c

Tf (X(s−), h)
(
µXn(ds,dh)− µX(ds,dh)

∣∣ ≥ ε

3

)
≤ ε′. (8.15)

By applying Equations (8.8), (8.9) and (8.15) to (8.7), the proof is now complete.

Proof of Theorem 8.1. Let (Xn)n∈N be the solutions to (6.7). According to Corollary 6.12,
we can assume that (Xn)n∈N converges both in C([0, T ], Lp(Ω, H)) and uniformly on [0, T ]

almost surely to the mild solution X, which has càdlàg paths. Since Xn is a strong
solution to (6.7) according to Proposition 7.3, the Itô formula in Theorem 5.1 implies for
all t ≥ 0 and n ∈ N that

f(Xn(t)) = f(Rnx0) +

∫ t

0

〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s)

+

∫ t

0

〈Df(Xn(s)), AXn(s)〉ds+

∫ t

0

〈Df(Xn(s)), RnF (Xn(s))〉ds (8.16)

+

∫ t

0

∫
H

(
f(Xn(s−) + h)− f(Xn(s−))− 〈Df(Xn(s−)), h〉

)
µXn(ds,dh).

Continuity of f shows that f(Xn(t))→ f(X(t)) and f(Rnx0)→ f(x0) a.s. Inequality (2.7)
implies for the first integral in (8.16) that

E

[∥∥∥∥∫ t

0

〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s)−
∫ t

0

〈G(X(s−))∗Df(X(s−)), ·〉 dL(s)

∥∥∥∥]
≤ e1,α

(
E

[∫ t

0

‖G(Xn(s))∗R∗nDf(Xn(s))−G(X(s))∗Df(X(s))‖αL2(U,R) ds

])1/α

,

which tends to zero by a similar argument as in the proof of Lemma 7.4. It follows in
L1
P (Ω,R) that

lim
n→∞

∫ t

0

〈G(Xn(s−))∗R∗nDf(Xn(s−)), ·〉dL(s) =

∫ t

0

〈G(X(s−))∗Df(X(s−)), ·〉dL(s).

Lemma 8.5 implies in L0
P (Ω,R) that

lim
n→∞

∫ t

0

∫
H

(
f(Xn(s−) + h)− f(Xn(s−))− 〈Df(Xn(s−)), h〉

)
µXn(ds,dh)

=

∫ t

0

∫
H

(
f(X(s−) + h)− f(X(s−))− 〈Df(X(s−)), h〉

)
µX(ds,dh).

Convergence of (Xn)n∈N and Lebesgue’s dominated convergence theorem yields

lim
n→∞

∫ t

0

〈Df(Xn(s)), RnF (Xn(s))〉ds =

∫ t

0

〈Df(X(s)), F (X(s))〉ds a.s.

As all terms in (8.16) converge in L0
P (Ω,R), it follows that the remaining term∫ t

0

〈Df(Xn(s)), AXn(s) 〉ds

also converges in L0
P (Ω,R), which completes the proof.

EJP 29 (2024), paper 79.
Page 38/41

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1136
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


SPDEs driven by standard symmetric α-stable cylindrical Lévy processes

9 Appendix

Lemma 9.1. Let V be a separable Hilbert space with the norm ‖·‖V and let Am ∈ L(V )

be a sequence of operators converging strongly to 0. If (Bn)n∈N is a tight sequence of
uniformly bounded V -valued random variables, then it follows for all p > 0 that

lim
m→∞

sup
n∈N

E [‖AmBn‖pV ] = 0.

Proof. Let ε > 0 be fixed. Our assumptions guarantee that there exists a constant
c > 0 such that supn,m∈N ‖AmBn‖

p
V ≤ c a.s. and a compact set Kε ⊆ V satisfying

P (Bn /∈ Kε) < ε
c for every n ∈ N. Since continuous mapping converging to zero

converges uniformly on compacts there exists m1 ∈ N such that for all m ≥ m1 we have

sup
n∈N

∫
{Bn∈Kε}

‖AmBn(ω)‖pV P (dω) < ε.

It follows for all n ∈ N and m ≥ m1 that

E [‖AmBn‖pV ] ≤
∫
{Bn∈Kε}

‖AmBn(ω)‖pV P (dω) +

∫
{Bn /∈Kε}

‖AmBn(ω)‖pV P (dω) ≤ 2ε,

which completes the proof.
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