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Abstract

We provide new bounds for the rate of convergence of the multivariate Central Limit
Theorem in Wasserstein distances of order p ≥ 2. In particular, we obtain what we
conjecture to be the asymptotically optimal rate in the identically distributed case
whenever the measure of the summands admits a non-zero continuous component and
has a non-zero third moment.
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1 Introduction and main result

LetX1, . . . , Xn be i.i.d. random variables drawn from a measure µ onRd and such that
E[X1] = 0 and E[X1X

T
1 ] = Id. By the Central Limit Theorem, we know that the measure

µn of Sn = 1√
n

∑n
i=1Xi converges to the d-dimensional standard normal distribution γ.

In this work, we wish to quantify this convergence for the family of Wasserstein distances
of order p ≥ 2, defined between any two measures ν and ν′ on Rd by

Wp(ν, ν
′)p = inf

π

∫
Rd×Rd

‖y − x‖p dπ(x, y),

where π has marginals ν and ν′ and ‖ · ‖ is the traditional Euclidean norm.
In recent years, multiple works provided non-asymptotic bounds for Wp(µn, γ). For

instance as long as E[‖X1‖4] <∞, Theorem 1 [2] gives

W2(µn, γ) ≤ C

√√
d‖E[X1XT

1 ‖X1‖2]‖HS
n

, (1.1)
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Rates of convergence in the CLT in Wasserstein distances

where C > 0 and ‖ · ‖HS denotes the Hilbert-Schmidt norm. Similar results were also
obtained for other Wp distances [2, 5]. However, this bound is not sharp with respect
to the dimension. Indeed, if X1 has i.i.d. components, (1.1) scales with d3/4 while an
optimal bound would scale with

√
d. Sharper bounds have been obtained under additional

assumptions on the measure µ. For instance, if µ satisfies a Poincaré inequality with
constant K ≥ 1, Theorem 4.1 [3] gives

W2(µn, γ) ≤ C
√

(K − 1)d

n
(1.2)

and similar results have been obtained for any Wp distances with p ≥ 1 in Theorem 1.2
[6] under the additional assumption that µ is log-concave. As a consequence of (1.2), if µ
is log-concave then it admits a Poincaré constant K ≤ C

√
log d for some C > 0 [8] and if

the Kannan-Lovász-Simonovits isoperimetric conjecture is true then K ≤ C. Finally, for
uniformly log-concave measures, the optimal dependency on

√
d is obtained in Theorem

3.4 [7] without any further assumptions.

Some insight on the conditions required to obtain this optimal dependency on the
dimension in a more general case can be obtained from Proposition 1.2 [13] which states
that, if X1 takes value in the lattice hZd with h > 0, then

lim inf
n→∞

√
nW2(µn, γ) ≥

√
dh

4
.

In particular, if h is of order
√
d then lim inf

n→∞

√
nW2(µn, γ) ≥ Cd. Therefore, if one wants

W2(µn, γ) to scale with the square root of the dimension, one would require h to be
independent of d, or X1 to not be lattice-distributed. Such a result does not come as
surprising in the light of known asymptotic results obtained in the univariate setting.
Indeed, according to Theorem 1.2 [12], if X1 takes values in {a+ kh | k ∈ Z} for some
a ∈ R, h > 0 and has a finite moment of order p+ 2 with p ∈]1, 2], then

lim inf
n→∞

√
nWp(µn, γ) =

1

6
‖E[X3

1 ](Z2 − 1) + hU‖p, (1.3)

where Z ∼ γ, U is a uniform random variable on [−1/2, 1/2] independent of Z and
‖ · ‖p = E[‖ · ‖p]1/p. On the other hand, as long as X1 is not lattice-distributed, one has

lim inf
n→∞

√
nWp(µn, γ) =

1

6
‖E[X3

1 ](Z2 − 1)‖p. (1.4)

Furthermore, faster rates of convergence have been obtained for all p ≥ 1 whenever the
first moments of µ and γ are equal and µ satisfies the Cramer’s condition [1].

One can thus expect the rate of convergence for the central limit theorem in Wasser-
stein distance in a high-dimensional setting to not only be determined by the moments
of X1 but to also depend on whether the measure is lattice-distributed. In other words,
along with the large-scale behaviour of µ, described by its moments, we expect a tight
bound on Wp(µn, γ) to include a term corresponding to the small-scale behaviour of µ.
In this work, we provide a first instance of such a result in the multidimensional setting.
In particular, we obtain the following asymptotic bound.

Corollary 1.1. Let p ≥ 2 and X1, . . . , Xn be i.i.d. centered random variables drawn from
a measure µ on Rd with identity covariance matrix and finite moment of order p + 2.
Suppose there exists h > 0 such that the matrix

E[(X2 −X1)(X2 −X1)T 1‖X2−X1‖≤h]
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is positive-definite. Then, the measure µn of Sn = 1√
n

∑n
i=1Xi verifies

√
nWp(µn, γ) ≤ 1

6
‖E[X⊗3

1 ](Z⊗2 − Id)‖p + Cph
√
d+ Cd,p,µO

(
log(n)−1/p

)
,

where C > 0 is a generic constant, Cd,p,µ is a constant depending on d, p and µ, Z is
drawn from the d-dimensional standard normal distribution γ and E[X⊗3

1 ](Z⊗2 − Id) is a
vector whose i-th coordinate is given by

(E[X⊗3
1 ](Z⊗2 − Id))i :=

∑
j,k

E[(X1)i(X1)j(X1)k](ZjZk − 1j=k).

Furthermore, if µ has a non-zero absolutely continuous component with respect to the
Lebesgues measure then,

√
nWp(µn, γ) ≤ 1

6
‖E[X⊗3

1 ](Z⊗2 − Id)‖p + Cd,p,µo (1) . (1.5)

Whenever µ admits a non-zero continuous component and has a non-zero third
moment, we conjecture our result to be asymptotically optimal as it is a natural multidi-
mensional generalization of (1.4). In particular, if X1 has i.i.d. components we recover
the correct dependency on

√
d since, by Lemma 6.2,

√
nWp(µn, γ) ≤

E[(X1)3
1]
√

(p− 1)d

3
√

2
+ Cd,p,µo (1) .

Our bound is also asymptotically sharper than known existing bounds. Indeed, using
Lemma 6.2 and Lemma 6.5, we obtain

‖E[X⊗3
1 ](Z⊗2 − Id)‖p ≤

√
2(p− 1)

√
d‖E[X1XT

1 ‖X1‖2]‖HS ,

thus recovering (1.1) in the asymptotic setting. In particular, this means that if ‖X1‖ ≤M
almost surely then, for any p ≥ 1,

√
nWp(µn, γ) ≤M

√
(p− 1)d

18
+ Cd,p,µo (1) .

Remark that this bound scales with at least d as M must be of order at least
√
d. On the

other hand, if µ admits a Stein kernel τ as defined in [9], combining Lemmas 6.2 and 6.6
gives

‖E[X⊗3
1 ](Z⊗2 − Id)‖p ≤ 2

√
2(p− 1)E[‖τ − Id‖2].

Hence, following the work of [3], if µ admits a Poincaré constant K ≥ 1 we can generalize
(1.2) to all p ≥ 1:

√
nWp(µn, γ) ≤

√
2(p− 1)(K − 1)d

3
+ Cd,p,µo (1) .

Let us note that, asymptotically, this bound depends only on
√
p− 1, thus improving on

the bound obtained in Theorem 1.2 [6] which scales with p2 while lifting the requirement
for µ to be log-concave.

For lattice-distributed measures, our bound is close to matching a multidimensional
equivalent of (1.3) but still requires improvements. However, obtaining the optimal rate
of convergence for discrete but non lattice-distributed random variables is still an open
issue. In any case, let us note that the remainder term is likely sub-optimal.

Corollary 1.1 is derived from a non-asymptotic bound obtained in Theorem 3.1 which
also deals with non-identically distributed random variables. Our result is derived
through refinements on a variant of Stein’s method used in [2] which might be of interest
in other contexts.
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2 Notations

Let d be a positive integer. For any k ∈ N, let (Rd)⊗k be the set of elements of the

form (xj)j∈{1,...,d}k ∈ Rd
k

. For x ∈ Rd and k ∈ N, we denote by x⊗k the element of
(Rd)⊗k such that

∀j ∈ {1, . . . , d}k, (x⊗k)j =

k∏
i=1

xji .

For any x, y ∈ (Rd)⊗k, we denote by < x, y > the Hilbert-Schmidt scalar product between
x and y defined by

< x, y >=
∑

i∈{1,...,d}k
xiyi,

and, by extension, we write
‖x‖2 =< x, x > .

Furthermore, for any x ∈ (Rd)⊗(k+1) and y ∈ (Rd)⊗k, let xy be the vector defined by

∀i ∈ {1, . . . , d}, (xy)i =
∑

j∈{1,...,d}k
xi,jyj .

For any k ∈ N, any function φ with partial derivatives of order k and any x ∈ Rd, we
denote by ∇kφ(x) ∈ (Rd)⊗k the k-th gradient of φ at x:

∀j ∈ {1, . . . , d}k, (∇kφ(x))j =
∂kφ

∂xj1 . . . ∂xjk
(x).

For any k ∈ N, let Hk be the d-dimensional Hermite polynomial, defined by

∀x ∈ Rd, Hk(x) = (−1)ke
‖x‖2

2 ∇ke−
‖x‖2

2 .

Finally, for any random variable X on Rd, we denote by ‖X‖p the Lp-norm of X, that is

‖X‖p := E[‖X‖p]1/p.

3 Main result

Let n > 0 and W1, . . . ,Wn be independent centered random variables on Rd such
that W =

∑n
i=1Wi has identity covariance matrix and maxi∈{1,...,n} ‖E[W⊗2

i ]‖ < 1. We
denote by ν the measure of W . For any i ∈ {1, . . . , n}, let Di = W ′i −Wi, where W ′i is
an independent copy of Wi. Let us define a set of features describing the large-scale
behaviour of the variables (Wi)1≤i≤n:

• ∀i ∈ {1, . . . , n}, ξi = − log(‖E[W⊗2
i ]‖);

• ∀q > 0, Lq =
∑n
i=1E[‖Wi‖q];

• ∀q > 2, Nq =
∑n
i=1

1
ξi
E[‖Di‖q(1‖Di‖2≥ξi‖E[W⊗2

i ]‖2/3 + ξ−1
i )q/2−1];

• N ′4 =
∑n
i=1

‖E[D⊗2
i ‖Wi‖‖Di‖]‖√
‖E[W⊗2

i ]‖ξi
.

Now, for any β > 0, let Di,β = Di1‖Di‖≤β. If E
[∑n

i=1D
⊗2
i,β

]
is positive-definite, we

consider the following small-scale feature:

∀q ≥ 0, βq =

n∑
i=1

E

∥∥∥∥∥∥E
[

n∑
i=1

D⊗2
i,β

]−1

Di,β

∥∥∥∥∥∥
q .
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Theorem 3.1. Let p ≥ 2 such that p ≤ mini∈{1,...,n} ‖E[W⊗2
i ]‖−1 and suppose Lp+2 <∞.

Let ε := maxi∈{1,...,n} ‖E[W⊗2
i ]‖2/3. If there exists 0 < β <

√
ε such that E

[∑n
i=1D

⊗2
i,β

]
is

positive-definite, then, for any q, r > p such that 1
q + 1

r = 1
p , we have

Wp(ν, γ) ≤ ‖E[W⊗3]H2(Z)‖p
6

+ C

(
βp
√
d+

(2r − 1)3/2‖E[W⊗3]‖Wq(ν, γ)√
(p− 1)ε

)
+ Cp

(
ε
(√

p(
√
β2 +

√
d) + p

(
β1/p
p + L1/p

p

))
+
√
N4 + (pNp+2)1/p +N ′4

)
.

In order to prove Corollary 1.1 from this result, we take

∀i ∈ {1, . . . , n},Wi =
Xi√
n

and β = h√
n

and let us assume n is sufficiently large so that β <
‖E[X⊗2

1 ]‖2/3

n2/3 = d1/3

n2/3 . In
the following, we denote by C a positive constant depending on properties of µ but
independent of n. First, we have

√
p(
√
β2 +

√
d) + p

(
β1/p
p + L1/p

p

)
≤ C

and, since ε = C
n2/3 ,

ε
(√

p(
√
β2 +

√
d) + p

(
β1/p
p + L1/p

p

))
≤ C

n2/3
.

Then,

N ′4 =
C√

n log(n)

and, since we have lim
n→∞

nεξ1 = +∞,

p
√
N4 + p1+1/pN

1/p
p+2 = o

(
1√

n log(n)1/p

)
.

Furthermore, since X1 has finite moment of order p+ 2, we can use Theorem 6 from [2]
to obtain

Wp+1/2(µn, γ) ≤ C

n1/2−1/4p
≤ C

n3/8
.

Thus, since ‖E[W⊗3]‖ = C√
n

,

‖E[W⊗3]‖Wp+1/2(µn, γ)
√
ε

≤ C

n13/24
.

which concludes the proof whenever µ does not admit an absolutely continuous com-
ponent with respect to the Lebesgues measure. If it does, let us denote by µc this
continuous component. For any h > 0, there must exist a ball B with radius h and
non-zero mass for µc. Remark that∫

B2

(x′ − x)⊗2dµc(x)dµc(x
′)

must be positive definite. Otherwise the dimension of the support of µc on this ball would
be lower than d which is impossible since µc is absolutely continuous with respect to the
Lebesgues measure. Thus,

∀h, q > 0, βq(h) =
1

nq/2−1
E
[∥∥∥E [(X ′i −Xi)

⊗21‖X′i−Xi‖≤h
]−1

(X ′i −Xi)1‖X′i−Xi‖≤h

∥∥∥q]
EJP 29 (2024), paper 78.
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must be finite. Therefore, for n sufficiently large, we can take hn as

hn = inf

{
h ≥ 1

n
:
√
β2(h) + βp(h)1/p ≤ n1/7

}
.

Then lim
n→∞

hn = 0 and

ε
(√

p(
√
β2(hn) +

√
d) + p

(
βp(hn)1/p + L1/p

p

))
= O

(
n1/7−2/3

)
= o

(
1√
n

)
,

which yields the desired result.

Remark 3.2. Note that we restricted ourselves to the existence of a moment of order
p + 2 for the summands to simplify computations. Let us note that one could only
consider existence of a moment of order p+ l with l < 2 only in order to obtain the rate
o
(
n−1/2+1/p−l/2p log(n)−l/2p

)
for the i.i.d. case which would slightly improve on Theorem

6 [2] in which the rate O
(
n−1/2+1/p−l/2p) was obtained. Our approach would also be

able to deal with varying moment assumption where each variable Wi admits a finite
moment of order p+ li for non identically distributed summands.

4 Diffusion interpolation approach

Let p > 0 and W be a random variable drawn from a measure ν on Rd. In the
following, we assume ν admits a density h with respect to the Gaussian measure which
is both bounded and with bounded gradient. These additional assumptions can later be
lifted to obtain Theorem 3.1 using approximation arguments similar to those developed
in Section 8 [2].

Let t > 0 and let us consider the random variable Ft := e−tW +
√

1− e−2tZ, where Z
is a random variable drawn from the d-dimensional standard Gaussian measure γ and
independent of W . We denote by νt the measure of Ft. Due to our assumptions on h, νt
admits a smooth density ht with respect to γ. We can thus consider the score function of
Ft defined by

ρt := ∇ log ht(Ft).

Then, by Equation (3.8) [9], we have

Wp(ν, νt) ≤
∫ t

0

‖ρt‖p dt

and, since lim
t→∞

νt = γ,

Wp(ν, γ) ≤
∫ ∞

0

‖ρt‖p dt.

We are thus left with bounding ‖ρt‖p for all t ≥ 0.
One can first remark that this score function verifies the following formula (see e.g.

Lemma IV.1 [10]):

ρt = e−tE

[
W − Z√

∆(t)
| Ft

]
a.s., (4.1)

where ∆(t) := e2t − 1. A first, somewhat trivial, bound on ‖ρt‖p can then be obtained by
applying Jensen’s and the triangular inequalities:

‖ρt‖p ≤ e−t
(
‖E[W | Ft]‖p +

‖E[Z | Ft]‖p√
∆(t)

)
≤ e−t

(
‖W‖p +

‖Z‖p√
∆(t)

)
. (4.2)

EJP 29 (2024), paper 78.
Page 6/18

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1134
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rates of convergence in the CLT in Wasserstein distances

Note that this bound can still be nearly optimal for small values of t. Indeed, whenever
W takes values in hZd, one has, for small enough values of t� h,

W2(ν, νt) ≈ ‖Ft−W‖2 = (1−e−t) ‖W‖2 +
√

1− e−2t ‖Z‖2 =

∫ t

0

e−t

(
‖W‖2 +

‖Z‖2√
∆(t)

)
dt.

However, for continuous measures ν or for higher values of t, it is usually possible to
obtain better bounds on ‖ρt‖p. For instance, (1.1) is obtained by combining (4.2) with
another bound on ‖ρt‖p which holds for large values of t. A similar approach was used
in [5] to provide quantitative results for normal approximation in various frameworks
such as Wiener chaos or homogeneous sums. In this work, we refine this approach by
using three different bounds: (4.2) for small values of t, a bound for medium values of
t highlighting the small-scale behaviour of the measure ν and a last bound for larger
values of t which depends on the large-scale structure of ν through its moments.

5 Bounding ‖ρt‖p
5.1 Small times

Let p ≥ 2 and let W =
∑n
i=1Wi where the (Wi)1≤i≤n are centered and independent

random variables on Rd with finite moment of order p. If E[W⊗2] = Id, there exists C > 0

such that

‖ρt‖p ≤ Ψ1(t) := Ce−t

(√
dp

(
1 +

1√
∆(t)

)
+ pL1/p

p

)
. (5.1)

Indeed, since the (Wi)1≤i≤n are independent and centered, we can use Rosenthal’s
inequality (see Lemma 6.1) to obtain

‖W‖p ≤ C
(√

dp+ pL1/p
p

)
.

On the other hand, by Lemma 6.2,

‖Z‖p ≤
√
d(p− 1).

Injecting these bounds into (4.2) then yields (5.1).

5.2 Medium times

When looking at (4.2), we can see that, for small values of t, the main contributor
of this bound is ‖E[Z | Ft]‖p/

√
∆(t). In the previous Section, we upper bounded this

quantity somewhat crudely by using Jensen’s inequality. In this Section, we establish
a sharper bound on ‖ρt‖p by proving a variant of Proposition 6.1 [5] leveraging the
small scale features of W . We start by covering the more general exchangeable pair
framework, a standard framework for applying Stein’s method, before tackling the
specific Central Limit Theorem case.

5.2.1 Exchangeable pairs framework

Proposition 5.1. Let p ≥ 2 and (W,W ′) be a pair of random variables on Rd such that
(W,W ′) and (W ′,W ) follow the same law. For any t ≥ 0, let ηp(t) = ∆(t)/(p − 1) and
Dt = (W ′ −W )1‖W ′−W‖2≤ηp(t). For any 0 < s < t such that E[D⊗2

s ] is positive-definite,
we have

‖ρt‖p ≤ e−t
(
‖E[ΛsDs +W |W ]‖p +

C√
ηp(t)

‖E[Γs |W ]− E[Γs]‖p +
C
√
dηp(s)

ηp(t)3/2

)
,

where C > 0 is a generic constant, Λs = E[D⊗2
s ]−1 and Γs = 1

2ΛsD
⊗2
s .
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The proof of this result mostly follows the proof of Proposition 6.1 [5].

Proof. Let 0 < s < t and let

τt =

(
ΛsDs +

ΓsZ√
∆(t)

+

∞∑
k=3

ak
(Γs ⊗D⊗(k−1)

s )Hk(Z)

∆(t)k/2

)
,

with ak = 1
k! −

1
4(k−2)! . A small modification of Lemma 6.5 [4] (see also the proof of

Lemma 5.4) gives
E[τt | Ft] = 0.

Therefore,
ρt = ρt + e−tE[τt | Ft]

and using (4.1) along with the triangle inequality yields

et‖ρt‖p ≤ ‖E[ΛsDs +W | Ft]‖p +
1√
∆(t)

‖E [(Γs − Id)Z | Ft]‖p

+

∞∑
k=3

ak
∆(t)k/2

∥∥∥E[(Γs ⊗D⊗(k−1)
s )Hk(Z) | Ft]

∥∥∥
p
.

Then, since Z and W are independent, we have, by Jensen’s inequality,

et‖ρt‖p ≤ ‖E[ΛsDs +W |W ]‖p +
1√
∆(t)

‖(E [Γs |W ]− Id)Z‖p

+

∞∑
k=3

ak
∆(t)k/2

∥∥∥E[Γs ⊗D⊗(k−1)
s |W ]Hk(Z)

∥∥∥
p

and, by Lemma 6.2,

et‖ρt‖p ≤ ‖E[ΛsDs +W |W ]‖p +
1√
ηp(t)

‖E [Γs |W ]− Id‖p

+

∞∑
k=3

ak
√
k!

ηp(t)k/2

∥∥∥E[Γs ⊗D⊗(k−1)
s |W ]

∥∥∥
p
.

Since Γs is positive-definite, we have, for any k ≥ 3,∥∥∥E[Γs ⊗D⊗(k−1)
s |W ]

∥∥∥
p
≤
∥∥E[Γs‖Ds‖k−1 |W ]

∥∥
p

≤ ηp(s)(k−1)/2 ‖E[Γs |W ]‖p
≤ ηp(s)(k−1)/2

(
‖E[Γs |W ]− Id‖p + ‖Id‖

)
≤ ηp(s)(k−1)/2

(
‖E[Γs |W ]− Id‖p +

√
d
)
.

Thus, since
∑∞
k=3 ak

√
k! <∞ and ηp(s) ≤ ηp(t), we obtain that there exists C > 0 such

that

et‖ρt‖p ≤ ‖E[ΛsDs +W |W ]‖p +
C√
ηp(t)

‖E [Γs |W ]− Id‖p +
C
√
dηp(s)

ηp(t)3/2
.

Finally, one can remark that, by definition of Γs,

E[Γs] = Id,

concluding the proof.
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5.2.2 Sum of independent variables

Proposition 5.2. Let W =
∑n
i=1Wi where the (Wi)1≤i≤n are independent random

variables on Rd with finite moment of order p ≥ 2. For any i ∈ {1, . . . , n} and β > 0, let
Di,β = (W ′i −Wi)1‖Di‖≤β where W ′i is an independent copy of Wi. Suppose there exists
β > 0 such that

Λ−1
β =

n∑
i=1

E[D⊗2
i,β ]

is positive-definite. Then, for any t such that ∆(t) ≥ (p− 1)β2, there exists C > 0 such
that

‖ρt‖p ≤ Ψ2(t) := C

(
√
p
(√

β2 +
√
L2

)
+ p

(
β1/p
p + L1/p

p

)
+
p3/2
√
dβ2

∆(t)3/2

)
,

where

∀q ≥ 0, βq =

n∑
i=1

E [‖ΛβDi,β‖q]

and

∀q ≥ 0, Lq =

n∑
i=1

E [‖Wi‖q] .

In the following, we denote by C a generic positive constant. Let s be such that
∆(s) = (p − 1)β2 and let t > s. Let W ′ = W + (W ′I −WI) where I is a uniform random
variable on {1, . . . , n}. Since (W,W ′) and (W ′,W ) follow the same law, we can apply
Proposition 5.1 to obtain

et‖ρt‖p ≤ ‖E[ΛsDs |W ]‖p + ‖W‖p +

√
p− 1

∆(t)
‖E[Γs |W ]− E[Γs]‖p + C

(p− 1)3/2
√
dβ2

∆(t)3/2
,

with Λs = nΛβ . First, following the proof of (5.1), we have

‖W‖p ≤ C
(√

pL2 + pL1/p
p

)
.

Then, by definition of Ds and since I is independent of W ,

E[Ds |W ] =
1

n

n∑
i=1

E[Di,β |W ].

Hence,

‖E[ΛsDs |W ]‖p =

∥∥∥∥∥Λβ

n∑
i=1

E [Di,β |W ]

∥∥∥∥∥
p

and, by Jensen’s inequality,

‖E[ΛsDs |W ]‖p ≤

∥∥∥∥∥
n∑
i=1

ΛβDi,β

∥∥∥∥∥
p

.

Let i ∈ {1, . . . , n}. Since W ′i and Wi are independent, we have

E[Di,β ] = 0.

We can thus apply Rosenthal’s inequality (see Lemma 6.1) to obtain

‖E[ΛsDs |W ]‖p ≤ C
√
p

(
n∑
i=1

‖ΛβDi,β‖22

)1/2

+ Cp

(
n∑
i=1

‖ΛβDi,β‖pp

)1/p

≤ C
(√

pβ2 + pβ1/p
p

)
.
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Similarly,

‖E[Γs |W ]− E[Γs]‖p ≤ C
√
p

(
n∑
i=1

∥∥∥ΛβD
⊗2
i,β

∥∥∥2

2

)1/2

+ Cp

(
n∑
i=1

∥∥∥ΛβD
⊗2
i,β

∥∥∥p
p

)1/p

and, since ‖Di,β‖ ≤ β ≤
√

∆(t)/(p− 1), we can use Cauchy-Schwarz inequality to obtain

∥∥∥ΛβD
⊗2
i,β

∥∥∥ ≤ ‖ΛβDi,β‖ ‖Di,β‖ ≤

√
∆(t)

p− 1
‖ΛβDi,β‖ .

Therefore,√
p− 1

∆(t)
‖E[Γs |W ]− E[Γs]‖p ≤ C

√
p

(
n∑
i=1

‖ΛβDi,β‖22

)1/2

+ Cp

(
n∑
i=1

‖ΛβDi,β‖pp

)1/p

≤ C
(√

pβ2 + pβ1/p
p

)
which concludes the proof.

5.3 Large times

Finally, we are left with bounding ‖ρt‖p for “large” values of t by using large-scale
features of the (Wi)1≤i≤n. In practice, we improve on Proposition 6.1 [5]. However, while
this result was derived in the general exchangeable pairs framework, our improvements
require dealing with sums of independent random variables and thus to the Central Limit
Theorem case.

Proposition 5.3. Suppose W =
∑n
i=1Wi where the (Wi)1≤i≤n are centered independent

random variables on Rd with finite moment of order p+ 2 such that E[W⊗2] = Id. There
exists C > 0 such that for any p < q ≤ p+ 2 and r verifying 1

q + 1
r = 1

p and any t such that

∆(t) > (p− 1) maxi∈{1,...,n} ‖E[W⊗2
i ]‖, we have

‖ρt‖p ≤ Ψ3(t) :=
e−3t‖E[W⊗3]H2(Z)‖p

2
+
C‖E[W⊗3]‖Wq(ν, γ)

η2r(t)3/2

+ C

(√
pN4(t)

ηp(t)
+ p

(
Np+2(t)

ηp(t)

)1/p
)

+
N ′4(t)

ηp(t)
,

where

• ηp(t) = ∆(t)
p−1 ;

• ξi(t) = log
(

ηp(t)

‖E[W⊗2
i ]‖

)
;

• ∀q > 2, Nq(t) =
∑n
i=1

E[‖Di‖q(1‖Di‖2≥ηp(t)ξi(t)+ξi(t)
−1)q/2−1]

ξi(t)
;

• N ′4(t) =
∑n
i=1

‖E[D⊗2
i ‖Wi‖‖Di‖]‖√

‖E[W⊗2
i ]‖ξi(t)3/2

.

For any i ∈ {1, . . . , n} and any t > 0, let Di,t = Di1‖Di‖2≤ηp(t)ξi(t). Let us first rewrite
ρt with the help of the following result.

Lemma 5.4. For any i ∈ {1, . . . , n}, the quantity

τi,t = E [Di,t | Ft] +

∞∑
k=1

E[(W ′i ⊗D
⊗k
i,t )Hk(Z) | Ft]

k!∆(t)k/2

verifies
E[τi,t | Ft] = 0.
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Proof. Let i ∈ {1, . . . , n} and let φ be a smooth test function. Since Φ : x → E[φ(e−tx +√
1− e−2tZ)] is real analytic (see e.g. Lemma 1 [2] or Lemma 6.4 [5]), we have

E[W ′iφ(Ft + e−tDi,t)1‖Di‖2≤ηp(t)ξi(t)] =

∞∑
k=0

e−kt

k!
E
[
W ′i
〈
D⊗ki,t ,∇

kφ(Ft)
〉]

=

∞∑
k=0

e−kt

k!
E
[
(W ′i ⊗D⊗ki,t )∇kφ(Ft)

]
.

Thus, by performing multiple integrations by parts with respect to the Gaussian measure
(see e.g. Equation (16) [2]), we obtain

E[W ′iφ(Ft + e−tDi,t)1‖Di‖2≤ηp(t)ξi(t)] =

∞∑
k=0

E
[
(W ′i ⊗D

⊗k
i,t )Hk(Z)φ(Ft)

]
k!∆(t)k/2

.

Finally, since Wi and W ′i are independent and identically distributed, we have

E[W ′iφ(Ft + e−tDi,t)1‖Di‖2≤ηp(t)ξi(t)] = E[Wiφ(Ft)1‖Di‖2≤ηp(t)ξi(t)]

concluding the proof.

We are now ready to start the proof of Proposition 5.3. Using Lemma 5.4, we obtain

ρt = ρt + e−t
n∑
i=1

E[τi,t | Ft].

Then, since
∑n
i=1E[W⊗2

i ] = Id and
∑n
i=1E[W⊗3

i ] = E[W⊗3], we can write

ρt =
e−tE[W⊗3]E[H2(Z) | Ft]

2∆(t)
+ e−t

n∑
i=1

E

[
Wi −

E[W⊗2
i ]√

∆(t)
Z − E[W⊗3

i ]

2∆(t)
H2(Z) + τi,t | Ft

]
.

Thus, combining the triangle inequality, Jensen’s inequality and Lemma 6.2, we obtain

‖ρt‖p ≤
e−t|‖E[E[W⊗3]H2(Z) | Ft]‖p

2∆(t)
+ e−tA(t),

where

A(t) = E


 ∞∑
k=0

∥∥∥∥∥
n∑
i=1

Ak,i

∥∥∥∥∥
2
p/2


1/p

with

• A0,i = E[Di,t +Wi |Wi];

• ∀k ∈ {1, 2}, Ak,i =
E[W ′i⊗D

⊗k
i,t |Wi]−E[W

⊗(k+1)
i ]

√
k!ηp(t)k/2

;

• ∀k > 2, Ak,i =
E[W ′i⊗D

⊗k
i,t |Wi]√

k!ηp(t)k/2
.

First, by Lemmas 6.3 and 6.4, we have

e−t|‖E[E[W⊗3]H2(Z) | Ft]‖p
2∆(t)

≤ e−3t

2
‖E[W⊗3]H2(Z)‖p +

C‖E[W⊗3]‖Wq(ν, γ)

η2r(t)3/2

where q > p and r is such that
1

q
+

1

r
=

1

p
.
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Let D̄i,t = Di1‖Di‖2≥ηp(t)ξi(t). In order to deal with A(t), let us first remark that, since
E[Wi] = 0 and since W ′i and Wi are independent, we have

A0,i = E[Di,t +Wi |Wi] = E[Di,t −Di |Wi] = −E[D̄i,t |Wi].

And similarly,

A1,i = −E[W ′i ⊗ D̄i,t |Wi]√
ηp(t)

.

Let us also note that

E[A2,i] = −
E[W ′i ⊗ D̄

⊗2
i,t ]

2ηp(t)
.

Then, viewing A(t) as the p-norm of an infinite-dimensional vector, we can apply Rosen-
thal’s inequality (see Lemma 6.1) to obtain

‖ρt‖p ≤
n∑
i=1

( ∞∑
k=0

‖E[Ak,i]‖2
)1/2

+ C
√
p

(
n∑
i=1

E

[ ∞∑
k=0

‖Bk,i‖2
])1/2

+ Cp

 n∑
i=1

E

( ∞∑
k=0

‖Bk,i‖2
)p/21/p

,

where

∀k ∈ N, 1 ≤ i ≤ n,Bk,i =

Ak,i if k 6= 2
E[W ′i⊗D

⊗2
i,t |Wi]√

2ηp(t)
if k = 2.

Let us conclude the proof by bounding these quantities.

5.3.1 Bounding the first term

Let i ∈ {1, . . . , n}. First, let us note that since Wi and W ′i are independent,

E[A0,i] = E[D̄i,t] = 0.

On the other hand, since E[Wi] = 0 and E[W⊗2
i ] = Id, we have E[W ′i ⊗ D̄i,t] = −E[Wi ⊗

D̄i,t]. Hence,

E[W ′i ⊗ D̄i,t] =
E[D̄⊗2

i,t ]

2

and

‖E[A1,i]‖2 =
‖E[D̄⊗2

i,t ]‖2

4ηp(t)
≤ ‖E[D⊗2

i ‖Di‖2]‖2

4ηp(t)3ξi(t)2
≤ ‖E[D⊗2

i ‖Di‖‖Wi‖]‖2

(ηp(t)ξi(t))3
ξi(t).

On the other hand,

‖E[A2,i]‖2 ≤
‖E[D̄⊗2

i,t ‖Wi‖]‖2

ηp(t)2
≤ ‖E[D⊗2

i ‖Di‖‖Wi‖]‖2

(ηp(t)ξi(t))3

ξi(t)
2

2
.

Finally, for any k ≥ 3,

‖E[Ak,i]‖2 ≤
‖E[D⊗2

i,t ‖Di,t‖k−2‖Wi‖]‖2

k!ηp(t)k
≤ ‖E[D⊗2

i ‖Di‖‖Wi‖]‖2

(ηp(t)ξi(t))3

ξi(t)
k

k!
.
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Therefore, by definition of ξi(t),

∞∑
k=0

‖E[Ak,i]‖2 ≤
‖E[D⊗2

i ‖Di‖‖Wi‖]‖2

(ηp(t)ξi(t))3

∞∑
k=1

ξi(t)
k

k!

≤ ‖E[D⊗2
i ‖Di‖‖Wi‖]‖2

(ηp(t)ξi(t))3
eξi(t)

≤ ‖E[D⊗2
i ‖Di‖‖Wi‖]‖2

‖E[W⊗2
i ]‖ηp(t)2ξi(t)3

and thus
n∑
i=1

( ∞∑
k=0

‖E[Ak,i]‖2
)1/2

≤ N ′4(t)

ηp(t)
.

5.3.2 Bounding the last two terms

Let i ∈ {1, . . . , n}, q ∈ [2, p]. First, by Jensen’ inequality and by definition of D̄i,t,

‖B0,i‖2 ≤ ‖E[D̄i,t |Wi]‖2 ≤ E[‖D̄i,t‖2 |Wi] ≤
E[‖D̄i,t‖2+4/q |Wi]

(ηp(t)ξi(t))2/q
.

Let W ′′i and D̄′i,t be a conditionally independent copies of W ′i and D̄i,t with respect to Wi.
We have

‖E[W ′i ⊗ D̄i,t |Wi]‖2 = E[
〈
W ′i ⊗ D̄i,t,W

′′
i ⊗ D̄′i,t

〉
|Wi]

= E[〈W ′i ,W ′′i 〉
〈
D̄i,t, D̄

′
i,t

〉
|Wi]

and, by Cauchy-Schwarz’s inequality,

‖E[W ′i ⊗ D̄i,t |Wi]‖2 ≤ E[〈W ′i ,W ′′i 〉
2 |Wi]

1/2E[
〈
D̄i,t, D̄

′
i,t

〉2 |Wi]
1/2

≤ E[
〈
W ′⊗2
i ,W ′′⊗2

i

〉
|Wi]

1/2E[
〈
D̄⊗2
i,t , D̄

′⊗2
i,t

〉
|Wi]

1/2

≤ ‖E[W ′⊗2
i |Wi]‖‖E[D̄⊗2

i,t |Wi]‖.

Since W ′i is independent of W , ‖E[W ′⊗2
i |Wi]‖ = ‖E[W ′⊗2

i ]‖ = ‖E[W⊗2
i ]‖. Thus,

‖B1,i‖2 =
‖E[W ′i ⊗ D̄i,t |Wi]‖2

ηp(t)

≤ ‖E[W⊗2
i ]‖E[‖D̄i,t‖2 |Wi]

ηp(t)

≤ ‖E[W⊗2
i ]‖E[‖Di‖2+4/q |Wi]

(ηp(t)ξi(t))1+2/q
ξi(t).

On the other hand,

‖B2,i‖2 ≤
‖E[W ′i ⊗D

⊗2
i,t |Wi]‖2

2ηp(t)2

≤ ‖E[W⊗2
i ]‖E[‖Di,t‖4 |Wi]

2ηp(t)2

≤ ‖E[W⊗2
i ]‖E[‖Di‖2+4/q |Wi]

(ηp(t)ξi(t))1+2/q

ξ2
i (t)

2
.
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Finally, for any k ≥ 3,

‖Bk,i‖2 ≤
‖E[W⊗2

i ]‖E[‖Di,t‖2k |Wi]

k!ηp(t)k
≤ ‖E[W⊗2

i ]‖E[‖Di‖2+4/q |Wi]

(ηp(t)ξi(t))1+2/q

ξi(t)
k

k!
.

Combining both these bounds yields, by definition of ξi(t)

∞∑
k=1

‖Bk,i‖2 ≤
‖E[W⊗2

i ]‖E[‖Di‖2+4/q |Wi]

(ηp(t)ξi(t))1+2/q

∞∑
k=1

ξi(t)

k!

≤ ‖E[W⊗2
i ]‖E[‖Di‖2+4/q |Wi]

(ηp(t)ξi(t))1+2/q
eξi(t)

≤ E[‖Di‖2+4/q |Wi]

ξi(t)1+2/qηp(t)2/q

Thus,
∞∑
k=0

‖Bk,i‖2 ≤
E[‖Di‖2+4/q(1‖Di‖2≥ηp(t)ξi(t) + ξi(t)

−1) |Wi]

(ηp(t)ξi(t))2/q

and, by Jensen’s inequality,

E

( ∞∑
k=0

‖Bk,i‖2
)q/2 ≤ E[‖Di‖q+2(1‖Di‖2≥ηp(t)ξi(t) + ξi(t)

−1)q/2]

ηp(t)ξi(t)
.

Therefore,  n∑
i=1

E

( ∞∑
k=0

‖Bk,i‖2
)q/21/q

≤
(
Nq+2(t)

ηp(t)

)1/q

.

5.4 Combining times

We are now ready to conclude the proof of Theorem 3.1. Let ε1 and ε2 such that
ηp(ε1) := ∆(ε1)

p−1 = β2 and ε2 be such that ηp(ε2) := ∆(ε2)
p−1 = ε := maxi∈{1,...,n} ‖E[W⊗2

i ]‖2/3.
Remark that, by assumption, ε1 < ε2. In the following computations, we will rely on the
fact that ∆(t) ≥ 2t. By (5.1) and Propositions 5.2 and 5.3 we have∫ ∞

0

‖ρt‖p dt ≤
∫ ε1

0

Ψ1(t) dt+

∫ ε2

ε1

Ψ2(t) dt+

∫ ∞
ε2

Ψ3(t) dt.

First, since β2 < ε∫ ε1

0

Ψ1(t) dt ≤ C
(
p
√
ηp(ε1)d+ pηp(ε1)

(√
pd+ pL1/p

p

))
≤ C

(
pβ
√
d+ pε

(√
pd+ pL1/p

p

))
.

Then, ∫ ε2

ε1

Ψ2(t) dt ≤ Cpηp(ε2)
(√

p(
√
β2 +

√
d) + p

(
β1/p
p + L1/p

p

))
+
Cpβ2

√
d√

ηp(ε1)

≤ Cpε
(√

p(
√
β2 +

√
d) + p

(
β1/p
p + L1/p

p

))
+ Cpβ

√
d.

Finally, let t ≥ ε2. Since ηp(t) ≥ maxi∈{1,...,n} ‖E[W⊗2
i ]‖2/3, we have, for any i ∈

{1, . . . , n}, ξi(t) ≥ Cξi. On the other hand, since p ≤ mini∈{1,...,n} ‖E[W⊗2
i ]‖−1, we have
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− log(ε2) ≤ − log(ηp(ε2)) − log(p − 1) ≤ Cξi. Hence, since N4(.), Np+2(.) and N ′4(.) are
decreasing functions,∫ ∞

ε2

Ψ3(t) dt ≤ ‖E[W⊗3]H2(Z)‖p
6

+
C(2r − 1)3/2‖E[W⊗3]‖Wq(ν, γ)√

(p− 1)ηp(ε2)

+ Cp
(√

N4(ε2) + (pNp+2(ε2))1/p −N ′4(ε2) log(ε2)
)

≤ ‖E[W⊗3]H2(Z)‖p
6

+
C(2r − 1)3/2‖E[W⊗3]‖Wq(ν, γ)√

(p− 1)ε

+ Cp
(√

N4 + (pNp+2)1/p +N ′4

)
.

which concludes the proof of Theorem 3.1.

6 Technical lemmas

Lemma 6.1 (Rosenthal inequality, Theorem 5.2 [11]). There exists C > 0 such that, for
any p ≥ 2 and any independent random variables (Ui)1≤i≤n with finite moment of order
p taking values in a Hilbert space H, we have∥∥∥∥∥

n∑
i=1

Ui − E[Ui]

∥∥∥∥∥
H,p

≤ C√p

(
n∑
i=1

‖Ui‖2H,2

)1/2

+ Cp

(
n∑
i=1

‖Ui‖pH,p

)1/p

,

where, for any random variable X taking values in H and any q > 0,

‖X‖H,q = E[‖X‖qH].

Proof. By Theorem 5.2 [11],∥∥∥∥∥
n∑
i=1

Ui − E[Ui]

∥∥∥∥∥
H,p

≤ C√p

(
n∑
i=1

‖Ui − E[Ui]‖2H,2

)1/2

+ Cp

(
n∑
i=1

‖Ui − E[Ui]‖pH,p

)1/p

.

Now for q ∈ [2, p], combining the triangle and Jensen’s inequalities yields

‖Ui − E[Ui]‖H,q ≤ ‖Ui‖H,q + ‖E[Ui]‖H ≤ 2‖Ui‖H,q,

concluding the proof.

Lemma 6.2 (Lemma 3 [2]). Let Z be a d-dimensional standard normal random variable.
For any p ≥ 2, k ∈ N and M ∈ (Rd)⊗k+1, we have

‖MHk(Z)‖2p ≤ (p− 1)kk!‖M‖2.

Lemma 6.3. Let X,Y and Z be three random variables on Rd such that Z is drawn from
the Gaussian measure γ and is independent from (X,Y ). Let q > p ≥ 2 and suppose that
X and Y have finite moment of order q. Then, for any k ≥ 0 and any i ∈ {1, . . . , d}k,

‖E[Hi(Z) | X + Z]− E[Hi(Z) | Y + Z]‖p ≤ C
√

(2r − 1)k+1(k + 1)!‖Y −X‖q,

where C > 0 is a generic constant, Hi = (Hk)i and r is such that 1
r + 1

q = 1
p .

Proof. Let ε = Y −X. We have

E[Hi(Z) | X + Z] = E[Hi(Z) | Y + Z + ε]

EJP 29 (2024), paper 78.
Page 15/18

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1134
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Rates of convergence in the CLT in Wasserstein distances

and

E[Hi(Z) | Y + Z]− E[Hi(Z) | X + Z] =

∫ 1

0

d

dt
E[Hi(Z) | Y + Z + tε] dt.

Let us denote the density of Z by fγ and the measure of (Y, ε) by µ. For any t ∈ [0, 1], let

f(t) =

∫
(−1)k∇ifγ (Z + Y − y′ + t(ε− ε′)) dµ(y′, ε′),

where ∇i· = (∇k·)i. We then have

f ′(t) =

∫ 〈
ε− ε′, (−1)k∇∇ifγ (Z + Y − y′ + t(ε− ε′))

〉
dµ(y′, ε′).

Similarly, letting

g(t) =

∫
fγ (Z + Y − y′ + t(ε− ε′)) dµ(y′, ε′),

we have

g′(t) =

∫
〈ε− ε′,∇fγ (Z + Y − y′ + t(ε− ε′))〉 dµ(y′, ε′).

By definition of the conditional expectation,

• f(t)
g(t) = E[Hi(Z) | Y + Z + tε];

• g′(t)
g(t) = E[〈ε, Z〉 | Y + Z + tε]− 〈ε,E[Z | Y + Z + tε]〉 and

• f ′(t)
g(t) = E[〈ε,Hi+1(Z)〉 | Y + Z + tε]− 〈ε,E[Hi+1(Z) | Y + Z + tε]〉,

where Hi+1(x) = (−1)k+1∇∇ifγ(x)
fγ(x) . Therefore, letting Gt = Y + Z + tε, we obtain

d

dt
E[Hi(Z) | Gt] =

(
f

g

)′
(t) = 〈ε,E[Z | Gt]E[Hi(Z) | Gt]− E[Hi+1(Z) | Gt]〉

− (E[〈ε, Z〉 | Gt]E[Hi(Z) | Gt]− E[〈ε,Hi+1(Z)〉 | Gt]) .

Applying the triangle inequality along with Cauchy-Schwarz, Holder’s and Jensen’s
inequalities then yields∥∥∥∥ ddtE[Hi(Z) | Gt]

∥∥∥∥
p

≤ C‖ε‖q(‖Hi+1(Z)‖r + ‖Z‖2r‖Hi(Z)‖2r),

where
1

q
+

1

r
=

1

p
.

Finally applying Lemma 6.2 yields∥∥∥∥ ddtE[Hi(Z) | Y + Z + tε]

∥∥∥∥
p

≤ C
√

(2r − 1)(k+1)(k + 1)!‖ε‖q,

concluding the proof.

Lemma 6.4. Let Y and Z be two independent standard normal random variables on Rd.
Then, for any k ≥ 1 and any α > 0, we have

E[Hk(Z) | αY +
√

1− α2Z] = (1− α2)k/2Hk(αY +
√

1− α2Z).
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Proof. Let φ be a smooth function with compact support. By performing multiple
integrations by parts with respect to the Gaussian measure (see e.g. Equation (16) [2]),
we obtain

E
[
E[Hk(Z) | αY +

√
1− α2Z]φ(αY +

√
1− α2Z)

]
= E[Hk(Z)φ(αY +

√
1− α2Z)]

= (1− α2)k/2E[∇kφ(αY +
√

1− α2Z)]

= (1− α2)k/2E[Hk(αY +
√

1− α2Z)φ(αY +
√

1− α2Z)],

concluding the proof.

Lemma 6.5. Let X be a random variable on Rd with identity covariance matrix. Then,

‖E[X⊗3]‖2 ≤
√
d‖E[X⊗2‖X‖2]‖.

Proof. Let X ′ be an independent copy of X. By Cauchy-Schwarz’s inequality, we have

‖E[X⊗3]‖2 = E
[〈
X⊗3, X ′⊗3

〉]
= E

[
〈X,X ′〉3

]
≤ E

[
〈X,X ′〉2

]1/2
E
[
〈X,X ′〉4

]1/2
≤ E

[〈
X⊗2, X ′⊗2

〉]1/2
E
[〈
X⊗2, X ′⊗2

〉
‖X‖2‖X ′‖2

]1/2
≤ ‖E[X⊗2]‖‖E[X⊗2‖X‖2]‖
≤ ‖E[Id]‖‖E[X⊗2‖X‖2]‖

≤
√
d‖E[X⊗2‖X‖2]‖.

Lemma 6.6. Let X be a centered random variable on Rd with identity covariance matrix
and suppose there exists τ : Rd → (Rd)⊗2 such that, for any smooth test function
φ : Rd → Rd,

E[〈X,φ(X)〉] = E[〈τ(X),∇φ(X)〉]. (6.1)

Then

‖E[X⊗3]‖ ≤ 2E[‖τ(X)− Id‖2]1/2.

Proof. The proof follows the proof of Equation (3.14) [8], except we use (6.1) in place of
the Poincaré inequality.

Let B = E[X⊗3]. We have

‖B‖2 = E
[〈
X,BX⊗2

〉]
.

By definition of τ , we obtain

‖B‖2 = E
[〈
τ(X),∇(BX⊗2)

〉]
= 2E [〈τ(X), BX〉] ,

where

(BX)i,j =

d∑
k=1

Bi,j,kXk.
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Since X is centered, we have E[BX] = 0 and

‖B‖2 = 2E [〈τ(X)− Id, BX〉] .

Finally, by Cauchy-Schwarz’s inequality and since E[X⊗2] = Id,

‖B‖2 ≤ E[‖τ(X)− Id‖2]1/2E[‖BX‖2]1/2

≤ 2‖B‖E[‖τ(X)− Id‖2]1/2,

concluding the proof.
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