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Abstract

Consider a centered smooth Gaussian random field {X(t), t ∈ T} with a general
(nonconstant) variance function. In this work, we demonstrate that as u→∞, the ex-
cursion probability P{supt∈T X(t) ≥ u} can be accurately approximated by E{χ(Au)}
such that the error decays at a super-exponential rate. Here, Au = {t ∈ T : X(t) ≥ u}
represents the excursion set above u, and E{χ(Au)} is the expectation of its Euler
characteristic χ(Au). This result substantiates the expected Euler characteristic
heuristic for a broad class of smooth Gaussian random fields with diverse covariance
structures. In addition, we employ the Laplace method to derive explicit approxima-
tions to the excursion probabilities.
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1 Introduction

Let X = {X(t), t ∈ T} represent a real-valued Gaussian random field defined on the
probability space (Ω,F ,P), where T denotes the parameter space. The study of excursion
probabilities, denoted as P{supt∈T X(t) ≥ u}, is a classical and fundamental problem in
both probability and statistics. It finds extensive applications across numerous domains,
including p-value computations, risk control and extreme event analysis, etc.

In the field of statistics, excursion probabilities play a critical role in tasks such
as controlling family-wise error rates [14, 15], constructing confidence bands [11],
and detecting signals in noisy data [9, 14]. However, except for only a few examples,
computing the exact values of these probabilities is almost impossible. To address this
challenge, many researchers have developed various methods for precise approximations
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of P{supt∈T X(t) ≥ u}. These methods encompass techniques like the double sum
method [7, 6], the tube method [10] and the Rice method [3, 4]. For comprehensive
theoretical insights and related applications, we refer readers to the survey by Adler [1]
and the monographs by Piterbarg [7], Adler and Taylor [2], and Azaïs and Wschebor [4],
as well as the references therein.

In recent years, the expected Euler characteristic (EEC) method has emerged as
a powerful tool for approximating excursion probabilities. This method, originating
from the works of Taylor et al. [13] and Adler and Taylor [2], provides the following
approximation:

P

{
sup
t∈T

X(t) ≥ u
}

= E{χ(Au)}+ error, as u→∞, (1.1)

where χ(Au) represents the Euler characteristic of the excursion set Au = {t ∈ T :

X(t) ≥ u}. This approximation (1.1) is highly elegant and accurate, primarily due to
the fact that the principle term E{χ(Au)} is computable and the error term decays
exponentially faster than the major component. However, it is essential to note that
this method assumes a Gaussian field with constant variance, limiting its applicability in
various scenarios.

Inspired by [5] where Gaussian fields with stationary increments are considered, we
improve and generalize the techniques therein to establish the EEC approximation to
accommodate smooth Gaussian random fields with general (nonconstant) variance func-
tions in this paper. Our main objective is to demonstrate that the EEC approximation (1.1)
remains valid under these conditions, with the error term exhibiting super-exponential
decay. For a precise description of our findings, please refer to Theorem 3.1 below. Our
derived approximation result shows that the maximum variance of X(t), denoted by σ2

T

(see (2.1) below), plays a pivotal role in both E{χ(Au)} and the super-exponentially small
error. In our analysis, we observe that the points where σ2

T is attained make the most
substantial contributions to E{χ(Au)}. Building on this observation, we establish two
simpler approximations: one in Theorem 3.2, which incorporates boundary conditions
on nonzero derivatives of the variance function over points where σ2

T is attained, and
another in Theorem 3.3, assuming only a single point attains σ2

T .
In general, the EEC approximation can be expressed as an integral using the Kac-

Rice formula, as outlined in (3.2) in Theorem 3.1. While [13, 2] provided an elegant
expression for E{χ(Au)} termed the Gaussian kinematic formula, this expression heavily
relies on the assumption of unit variance, which simplifies the calculation. In our case,
where the variance function of X(t) varies across T , deriving an explicit expression
for E{χ(Au)} becomes challenging. Instead, we apply the Laplace method to extract
the term with the leading order of u from the integral, leaving a remaining error that
is E{χ(Au)}o(1/u). For a more detailed explanation, we offer specific calculations in
Sections 4 and 5. To intuitively grasp the EEC approximation, one can roughly consider
the major term as g(u)e−u

2/(2σ2
T ), while the error term diminishes as o(e−u

2/(2σ2
T )−αu2

),
where g(u) is a polynomial in u, and α > 0 is a constant.

In terms of statistical applications, the EEC approximation is especially useful in
estimating the EEC curve and hence the excursion probabilities; see a recent reference
[16]. The derived EEC approximation in this paper verifies the validity of the method on
estimating the EEC curve (such as taking the nonparametric average of Euler character-
istic curves) to approximate the excursion probabilities for smooth Gaussian fields with
general nonconstant variance functions. However, the method of Hermite projection
for estimating Lipschitz–Killing curvatures introduced in [16] seems challenging for
nonconstant variances due to the complexity of the EEC expression mentioned above.

The structure of this paper is as follows: We begin by introducing the notations
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and assumptions in Section 2. In Section 3, we present our main results, including
Theorems 3.1, 3.2, and 3.3. In Section 4, we apply the Laplace method to derive
explicit approximations (Theorems 4.1 and 4.2) for cases where a unique maximum
point of the variance is present. We then demonstrate several examples in Section 5
and illustrate the evaluation of EEC and the subsequent approximation of excursion
probabilities, including the case when the maximum of the variance is achieved on a line.
To understand our approach, we outline the main ideas in Section 6 and delve into the
analysis of super-exponentially small errors in Sections 7 and 8. Finally, we provide the
proofs of our main results and of the results for the unique maximum point in Sections 9
and 10, respectively.

2 Notations and assumptions

Let {X(t), t ∈ T} be a real-valued and centered Gaussian random field, where T is a
compact rectangle in RN . We define

ν(t) = σ2
t = Var(X(t)) and sup

t∈T
ν(t) = σ2

T . (2.1)

Here, ν(·) represents the variance function of the field and σ2
T is the maximum variance

over T . For a function f(·) ∈ C2(RN ) and t ∈ RN , we introduce the following notations
on derivatives:

fi(t) =
∂f(t)

∂ti
, fij(t) =

∂2f(t)

∂ti∂tj
, ∀i, j = 1, . . . , N ;

∇f(t) = (f1(t), . . . , fN (t))T , ∇2f(t) = (fij(t))i,j=1,...,N .

(2.2)

Let B ≺ 0 (negative definite) and B � 0 (negative semi-definite) denote that a symmetric
matrix B has all negative or nonpositive eigenvalues, respectively. Additionally, we use
Cov(ξ1, ξ2) and Corr(ξ1, ξ2) to represent the covariance and correlation between two
random variables ξ1 and ξ2. The density of the standard Normal distribution is denoted
as φ(x), and its tail probability is Ψ(x) =

∫∞
x
φ(y)dy. Let Sj be the j-dimensional unit

sphere.

Consider the domain T =
∏N
i=1[ai, bi], where −∞ < ai < bi <∞. We draw from the

notation established by Adler and Taylor in [2] to demonstrate that T can be decomposed
into the union of its interior and lower-dimensional faces. This decomposition forms the
basis for calculating the Euler characteristic of the excursion set Au, as elaborated in
Section 3.

Let k ∈ {0, 1, . . . , N}. Each face K of dimension k is defined by fixing a subset
τ(K) ⊂ {1, . . . , N} of size k and a subset ε(K) = {εj , j /∈ τ(K)} ⊂ {0, 1}N−k of size N − k
so that

K = {t = (t1, . . . , tN ) ∈ T : aj < tj < bj if j ∈ τ(K),

tj = (1− εj)aj + εjbj if j /∈ τ(K)}.

Denote by ∂kT the collection of all k-dimensional faces in T . The interior of T is

designated as
◦
T = ∂NT , while the boundary of T is formulated as ∂T = ∪N−1

k=0 ∪K∈∂kT K.
This allows us to partition T in the following manner:

T =

N⋃
k=0

⋃
K∈∂kT

K.
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For each t ∈ T , let

∇X|K(t) = (Xi1(t), . . . , Xik(t))Ti1,...,ik∈τ(K), ∇
2X|K(t) = (Xmn(t))m,n∈τ(K),

Σ(t) = E{X(t)∇2X(t)} = (E{X(t)Xij(t)})1≤i,j≤N ,

ΣK(t) = E{X(t)∇2X|K(t)} = (E{X(t)Xij(t)})i,j∈τ(K),

Λ(t) = Cov(∇X(t)) = (E{Xi(t)Xj(t)})1≤i,j≤N ,

ΛK(t) = Cov(∇X|K(t)) = (E{Xi(t)Xj(t)})i,j∈τ(K).

(2.3)

For each K ∈ ∂kT , we define the number of extended outward maxima above u on face
K as

ME
u (K) := #{t ∈ K : X(t) ≥ u,∇X|K(t) = 0,∇2X|K(t) ≺ 0, ε∗jXj(t) ≥ 0,∀j /∈ τ(K)},

where ε∗j = 2εj − 1, and define the number of local maxima above u on face K as

Mu(K) := #{t ∈ K : X(t) ≥ u,∇X|K(t) = 0,∇2X|K(t) ≺ 0}.

Clearly, ME
u (K) ≤Mu(K).

For each t ∈ T with ν(t) = σ2
T , we define the index set I(t) = {` : ν`(t) = 0}

representing the directions along which the partial derivatives of ν(t) vanish. If t ∈
K ∈ ∂kT with ν(t) = σ2

T , then we have τ(K) ⊂ I(t) since ν`(t) = 0 for all ` ∈ τ(K). It
is worth noting that since νi(t) = 2E{Xi(t)X(t)}, we can also express this index set as
I(t) = {` : E{X(t)X`(t)} = 0}.

Our analytical framework relies on the following conditions for smoothness (H1) and
regularity (H2), in addition to curvature conditions (H3) or (H3′).

(H1) X ∈ C2(RN ) almost surely and the second derivatives satisfy the uniform mean-
square Hölder condition: there exist constants C, δ > 0 such that

E(Xij(t)−Xij(t
′))2 ≤ C‖t− t′‖2δ, ∀t, t′ ∈ T, i, j = 1, . . . , N.

(H2) For every pair (t, t′) ∈ T 2 with t 6= t′, the Gaussian vector(
X(t),∇X(t), Xij(t), X(t′),∇X(t′), Xij(t

′), 1 ≤ i ≤ j ≤ N
)

is non-degenerate.

(H3) For every t ∈ K ∈ ∂kT , 0 ≤ k ≤ N − 2, such that ν(t) = σ2
T and I(t) contains at

least two indices, we have

(E{X(t)Xij(t)})i,j∈I(t) ≺ 0. (2.4)

(H3′) For every t ∈ K ∈ ∂kT , 0 ≤ k ≤ N − 2, such that ν(t) = σ2
T and I(t) contains at

least two indices, we have
(νij(t))i,j∈I(t) � 0. (2.5)

The smoothness condition (H1) and regularity condition (H2) imply the validity
of Corollary 11.3.2 in [2], showing that X is almost surely a Morse function on T .
Additionally, the conditions required for Kac-Rice formulas in Theorems 11.2.1 and
11.5.1 in [2] are satisfied, so that we can apply them to compute moments of the number
of critical points such as E{ME

u (K)}, E{ME
u (K)ME

u (K ′)} and E{ME
u (K)(ME

u (K)− 1)},
where K and K ′ are different faces of T ; see also [8].

Conditions (H3) and (H3′) involve the behavior of the variance function ν(t) at critical
points, and they are closely related, as shown in Proposition 2.1 below. Here we provide
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some additional insights into (H3′). Despite its initially technical appearance, (H3′) is
in fact a mild condition that specifically applies to lower-dimensional boundary points
t where ν(t) = σ2

T . In essence, it indicates that the variance function should possess a
negative semi-definite Hessian matrix at these boundary critical points where ν(t) = σ2

T

while concurrently exhibiting at least two zero partial derivatives. Conditions (H3)
and (H3′) generalize the nondegeneracy condition of E{(X(t)−X(0))∇2X(t)} which is
condition (H2) in [5] from stationary increments to general nonconstant variances.

For example, in the 1D case, since I(t) contains at most one index, there is no need
to check (H3′). Similarly, in the 2D case, we only need to check (H3′) or (2.5) when
σ2
T is achieved at corner points t ∈ ∂0T with I(t) = {1, 2}. Moreover, if the variance

function ν(t) demonstrates strict monotonicity in all directions across RN , then I(t) = ∅
and there is no need to verify (H3′).

Proposition 2.1. The condition (H3′) implies (H3). In addition, (H3) implies that

(E{X(t)Xij(t)})i,j∈I(t) ≺ 0, ∀t ∈ T with ν(t) = σ2
T . (2.6)

Proof. Taking the second derivative on both sides of ν(t) = E{X(t)2}, we obtain
νij(t)/2 = E{X(t)Xij(t)}+ E{Xi(t)Xj(t)}, implying

(E{X(t)Xij(t)})i,j∈I(t) =
1

2
(νij(t))i,j∈I(t) − (E{Xi(t)Xj(t)})i,j∈I(t). (2.7)

Note that, as a covariance matrix, (E{Xi(t)Xj(t)})i,j∈I(t) is positive definite by (H2).
Therefore, (2.5) implies (2.4), or equivalently (H3′) implies (H3).

Next we demonstrate that (H3) implies (2.6). It suffices to show (2.4) for k = N − 1

and k = N , and for the case that I(t) contains at most one index, which complement
those cases in (H3).

(i) If k = N , then t becomes a maximum point of ν within the interior of T and
I(t) = τ(K) = {1, · · · , N}, implying (2.5), and hence (2.4) holds by (2.7).

(ii) For k = N − 1, we consider two scenarios. If I(t) = τ(K), then t becomes a
maximum point of ν restricted on K, hence (2.4) is satisfied as discussed above. If
I(t) = {1, · · · , N}, then it follows from Taylor’s formula that

ν(t′) = ν(t) + (t′ − t)T∇2ν(t)(t′ − t) + o(‖t′ − t‖2), t′ ∈ T.

Notice that {(t′ − t)/‖t′ − t‖ : t′ ∈ T} contains all directions in RN since t ∈ K ∈ ∂N−1T ,
together with the fact ν(t) = σ2

T , we see that ∇2ν(t) cannot have any positive eigenvalue,
thus (2.5) and hence (2.4) hold.

(iii) Finally, it’s evident from the 1D Taylor’s formula that (2.5) is valid when I(t)

contains only one index.

The condition (2.6) established in Proposition 2.1 serves as the fundamental require-
ment for our main results, as demonstrated in Theorems 3.1, 3.2 and 3.3 below. As seen
from Proposition 2.1, we can simplify (2.6) to condition (H3). Thus our main results will
be presented under the assumption of condition (H3).

Furthermore, it is worth highlighting that, in practical applications, verifying (H3′)

can often be a more straightforward process. This condition directly pertains to the
variance function ν(t), making it easier to assess. Thus, Proposition 2.1 provides the flex-
ibility to check (H3′) instead of (H3). This insight simplifies the verification procedure,
enhancing the practical applicability of our results.
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3 Main results

Here, we will present our main results Theorems 3.1, 3.2 and 3.3, whose proofs are
given in Section 9. Define the number of extended outward critical points of index i
above level u on the face K be

µi(K) := #{t ∈ K : X(t) ≥ u,∇X|K(t) = 0, index(∇2X|K(t)) = i,

ε∗jXj(t) ≥ 0 for all j /∈ τ(K)}.

Recall that ε∗j = 2εj − 1 and the index of a matrix is defined as the number of its negative
eigenvalues. It is evident to observe that µN (K) = ME

u (K). Here, by convention, if
K ∈ ∂0T , then the terms on ∇X|K(t) and ∇2X|K(t) in the definition above vanish. It
follows from (H1), (H2) and the Morse theorem (see Corollary 9.3.5 or pages 211–212 in
[2]) that the Euler characteristic of the excursion set Au can be represented as

χ(Au) =

N∑
k=0

∑
K∈∂kT

(−1)k
k∑
i=0

(−1)iµi(K). (3.1)

Now we state the following general result on the EEC approximation for the excursion
probability.

Theorem 3.1. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Then there exists a constant α > 0 such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

= E{χ(Au)}+ o

(
exp

{
− u2

2σ2
T

− αu2

})
,

where the EEC is expressed as

E{χ(Au)} =

N∑
k=0

∑
K∈∂kT

(−1)k
∫
K

E
{

det∇2X|K(t)1{X(t)≥u, ε∗`X`(t)≥0 for all `/∈τ(K)}
∣∣

∇X|K(t) = 0
}
p∇X|K(t)(0)dt.

(3.2)

It is worth noting that, the principle term E{χ(Au)} can be roughly treated as
g(u)e−u

2/(2σ2
T ), where g(u) is a polynomial in u. So the error term decays exponentially

faster than E{χ(Au)}. In general, computing the EEC approximation E{χ(Au)} is a
challenging task because it involves conditional expectations over the joint covariance of
the Gaussian field and its Hessian, given zero gradient, which vary across T . However,
one can apply the Laplace method to extract the term with the largest order of u from
E{χ(Au)} such that the remaining error is o(1/u)E{χ(Au)}. Examples demonstrating
the Laplace method are presented in Section 5.

It is important to note that in the expression (3.2), when k = 0, all terms involving
∇X|K(t) and∇2X|K(t) vanish. Consequently, if k = 0, we treat the integral in (3.2) as the
usual Gaussian tail probabilities. This notation is also adopted in the results presented
in Theorems 3.2 and 3.3 below.

The proof of Theorem 3.1 reveals that the points where the maximum variance σ2
T

is attained make the most significant contribution to E{χ(Au)}. Therefore, in many
cases, the general EEC approximation E{χ(Au)} can be simplified. The following result
is based on the boundary condition (3.3) and is applicable at boundary points where
nonzero partial derivatives of the variance function occur when σ2

T is reached.

Theorem 3.2. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and the following boundary condition{

t ∈ J : ν(t) = σ2
T ,

∏
i/∈τ(J)

νi(t) = 0
}

= ∅, ∀ face J ⊂ T. (3.3)
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Then there exists a constant α > 0 such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=

N∑
k=0

∑
K∈∂kT

(−1)k
∫
K

E
{

det∇2X|K(t)1{X(t)≥u}
∣∣∇X|K(t) = 0

}
× p∇X|K(t)(0)dt+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

In other words, the boundary condition (3.3) indicates that, for any point t ∈ J

attaining the maximum variance σ2
T , there must be νi(t) 6= 0 for all i /∈ τ(J). In particular,

as an important property, we observe that (3.3) implies the condition (H3′) and hence
(H3). The following result provides an asymptotic approximation for the special case
where the variance function attains its maximum σ2

T only at a unique point.

Theorem 3.3. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Suppose ν(t) attains its maximum σ2

T only at a single point t∗ ∈ K, where
K ∈ ∂kT with k ≥ 0. Then there exists a constant α > 0 such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=
∑
J

(−1)dim(J)

∫
J

E
{

det∇2X|J(t)1{X(t)≥u, ε∗`X`(t)≥0 for all `∈I(t∗)\τ(J)}
∣∣∇X|J(t) = 0

}
× p∇X|J (t)(0)dt+ o

(
exp

{
− u2

2σ2
T

− αu2

})
,

where the sum is taken over all faces J of T such that t∗ ∈ J̄ and τ(J) ⊂ I(t∗).

Employing the Laplace method, we will provide refined explicit approximation results
in Section 4 under the assumptions in Theorem 3.3. Furthermore, we demonstrate
several examples that illustrate the evaluation of approximating excursion probabilities
in Section 5, including the case that the maximum of the variance function is achieved
on a line.

4 Gaussian fields with a unique maximum point of the variance

In this section, we delve deeper into EEC approximations when the variance function
ν(t) reaches its maximum value σ2

T at a solitary point t∗. While Theorem 3.3 provides an
implicit formula for such scenarios, our objective here is to obtain explicit formulae by
employing integral approximation techniques based on the Kac-Rice formula. The proofs
are given in Section 10.

There are some existing references on approximating the excursion probabilities for
Gaussian fields with a unique maximum point of the variance function, such as [7, 6],
where the double sum method was employed but the error rate was hard to obtain (only
stated as o(1) multiplying the major term). Our derived EEC approximations show a
super-exponentially small error for the smooth case, and one can apply the Laplace
method to derive a specific approximation. Meanwhile, we provide the approximation
for the case when the maximum point t∗ is on the boundary. This boundary case turns to
be difficult for the double sum method and is usually ignored.

4.1 Gaussian fields satisfying the boundary condition (3.3)

The following result provides explicit approximations to the excursion probabilities
when the maximum of the variance is reached only at a single point and the boundary
condition (3.3) is satisfied.
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Theorem 4.1. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1)

and (H2). Suppose ν attains its maximum σ2
T only at t∗ ∈ K ∈ ∂kT , νi(t∗) 6= 0 for all

i /∈ τ(K), and ∇2ν|K(t∗) ≺ 0. Then, as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

= Ψ

(
u

σT

)
+ o

(
exp

{
− u2

2σ2
T

− αu2

})
for some α > 0, if k = 0,

P

{
sup
t∈T

X(t) ≥ u
}

=

√
det(ΣK(t∗))

det(ΛK(t∗) + ΣK(t∗))
Ψ

(
u

σT

)
(1 + o(1)), if k ≥ 1,

(4.1)

where ΛK(t∗) and ΣK(t∗) are defined in (2.3).

Now we apply Theorem 4.1 to the 1D case when T = [a, b]. If t∗ = a or t∗ = b, then it
is a direct application of the first line in (4.1). If t∗ ∈ (a, b), then it follows from (4.1) that

P

{
sup
t∈[a,b]

X(t) ≥ u

}
=

√
E{X(t∗)X ′′(t∗)}

Var(X ′(t∗)) + E{X(t∗)X ′′(t∗)}
Ψ

(
u

σT

)
(1 + o(1)).

4.2 Gaussian fields not satisfying the boundary condition (3.3)

We consider here the other case when νi(t∗) 6= 0 for some i /∈ τ(K). For a symmetric
matrix B = (Bij)1≤i,j≤N , we call (Bij)i,j∈I the matrix B with indices restricted on I.

Theorem 4.2. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1)

and (H2). Suppose ν attains its maximum σ2
T only at t∗ ∈ K ∈ ∂kT such that I(t∗) \ τ(K)

contains m ≥ 1 indices and (νii′(t
∗))i,i′∈I(t∗) ≺ 0. Then, as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=
∑
J

√
det(ΣJ(t∗))

det(ΛJ(t∗) + ΣJ(t∗))
P{(ZJ′1 , . . . , ZJ′j−k) ∈ E′(J)}

× P
{

(XJ1(t∗), . . . , XJk+m−j (t
∗)) ∈ E(J)

∣∣∇X|J(t∗) = 0
}

Ψ

(
u

σT

)
(1 + o(1)),

(4.2)

where the sum is taken over all faces J such that t∗ ∈ J̄ and τ(J) ⊂ I(t∗), j = dim(J),

(J1, . . . , Jk+m−j) = I(t∗) \ τ(J), (J ′1, . . . , J
′
j−k) = τ(J) \ τ(K),

E(J) = {(yJ1 , . . . , yJk+m−j ) ∈ Rk+m−j : ε∗J`(J)yJ` ≥ 0, ∀` = 1, . . . , k +m− j},
E′(J) = {(yJ′1 , . . . , yJ′j−k) ∈ Rj−k : ε∗J′`

(K)yJ′` ≥ 0, ∀` = 1, . . . , j − k},

ε∗J`(J) and ε∗J′`
(K) are the ε∗ numbers for faces J and K respectively, (ZJ′1 , . . . , ZJ′j−k)

is a centered Gaussian vector having covariance matrix Σ(t∗) + Σ(t∗)Λ−1(t∗)Σ(t∗) with
indices restricted on τ(J)\τ(K), and ΛJ(t∗) and ΣJ(t∗) are defined in (2.3). In particular,
for k = 0, the term inside the sum in (4.2) with J = K = {t∗} is given by

P{(XJ1(t∗), . . . , XJm(t∗)) ∈ E(J)}Ψ
(
u

σT

)
.

Now we apply Theorem 4.2 to the 1D case when T = [a, b]. Without loss of generality,
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assume t∗ = b and ν′(t∗) = 0. Then it follows from Theorem 4.2 that

P

{
sup
t∈[a,b]

X(t) ≥ u

}

=

(
P{X ′(t∗) > 0}+

√
E{X(t∗)X ′′(t∗)}

Var(X ′(t∗)) + E{X(t∗)X ′′(t∗)}
P{Z > 0}

)
Ψ

(
u

σT

)
(1 + o(1))

=
1

2

(
1 +

√
E{X(t∗)X ′′(t∗)}

Var(X ′(t∗)) + E{X(t∗)X ′′(t∗)}

)
Ψ

(
u

σT

)
(1 + o(1)),

where Z is a centered Gaussian variable.

Denote by Rn+ = (0,∞)n. To simplify the statement in Theorem 4.2, we present below
another version with less notations on faces.

Corollary 4.3. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Suppose ν attains its maximum σ2

T only at t∗ ∈ K ∈ ∂kT with τ(K) =

{1, . . . , k} such that I(t∗) = {1, . . . , k, k+1, . . . , k+m}withm ≥ 1 and (νii′(t
∗))1≤i,i′≤k+m ≺

0. Then, as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=

k+m∑
j=k

∑
J∈∂jT : t∗∈J̄

√
det(ΣJ(t∗))

det(ΛJ(t∗) + ΣJ(t∗))
P{(Z1, . . . , Zj−k) ∈ Rj−k+ }

× P
{

(Xj+1(t∗), . . . , Xk+m(t∗)) ∈ Rk+m−j
+

∣∣∇X|J(t∗) = 0
}

Ψ

(
u

σT

)
(1 + o(1)),

(4.3)

where (Z1, . . . , Zj−k) is a centered Gaussian random vector having covariance Σ(t∗) +

Σ(t∗)Λ−1(t∗)Σ(t∗) with indices restricted on {k + 1, . . . , j}, and ΛJ(t∗) and ΣJ(t∗) are
defined in (2.3). In particular, for k = 0, the term inside the sum in (4.3) with J = K =

{t∗} is

P{(X1(t∗), . . . , Xm(t∗)) ∈ Rm+}Ψ
(
u

σT

)
.

5 Examples

Throughout this section, we consider a centered Gaussian random field {X(t), t ∈ T}
satisfying (H1), (H2) and (H3), where T = [a1, b1]× [a2, b2] ⊂ R2.

5.1 Examples with a unique maximum point of the variance

Suppose ν(t1, t2) attains the maximum σ2
T only at a single point t∗ = (t∗1, t

∗
2); and the

assumptions in Theorems 4.1 or 4.2 are satisfied.

Case 1: t∗ = (b1, b2) and ν1(t∗)ν2(t∗) 6= 0. It follows directly from Theorem 4.1 that

P

{
sup
t∈T

X(t) ≥ u
}

= Ψ

(
u

σT

)
+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.
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Case 2: t∗ = (b1, b2), ν1(t∗) = 0 and ν2(t∗) 6= 0. It follows from Corollary 4.3 that

P

{
sup
t∈T

X(t) ≥ u
}

=

(
P{X1(t∗) > 0}+

√
E{X(t∗)X11(t∗)}

Var(X1(t∗)) + E{X(t∗)X11(t∗)}
P{Z > 0}

)
Ψ

(
u

σT

)
(1 + o(1))

=
1

2

(
1 +

√
E{X(t∗)X11(t∗)}

Var(X1(t∗)) + E{X(t∗)X11(t∗)}

)
Ψ

(
u

σT

)
(1 + o(1)),

where Z is a centered Gaussian variable.
Case 3: t∗ = (b1, b2) and ν1(t∗) = ν2(t

∗) = 0. Applying Corollary 4.3 and noting the
calculations in Case 2 above, we obtain

P

{
sup
t∈T

X(t) ≥ u
}

=

(
P{X1(t∗) > 0, X2(t∗) > 0}+

1

2

√
E{X(t∗)X11(t∗)}

Var(X1(t∗)) + E{X(t∗)X11(t∗)}

+
1

2

√
E{X(t∗)X22(t∗)}

Var(X2(t∗)) + E{X(t∗)X22(t∗)}

+ P{Z1 > 0, Z2 > 0}

√
det(Σ(t∗))

det(Λ(t∗) + Σ(t∗))

)
Ψ

(
u

σT

)
(1 + o(1)),

where (Z1, Z2) is a centered Gaussian vector with covariance Σ(t∗) + Σ(t∗)Λ−1(t∗)Σ(t∗).
Case 4: t∗ = (t∗1, b2), where t∗1 ∈ (a1, b1) and ν2(t∗) 6= 0. It follows directly from
Theorem 4.1 that

P

{
sup
t∈T

X(t) ≥ u
}

=

√
E{X(t∗)X11(t∗)}

Var(X1(t∗)) + E{X(t∗)X11(t∗)}
Ψ

(
u

σT

)
(1 + o(1)).

Case 5: t∗ = (t∗1, b2), where t∗1 ∈ (a1, b1) and ν2(t∗) = 0. Applying Corollary 4.3 and
noting the calculations in Case 2 above, we obtain

P

{
sup
t∈T

X(t) ≥ u
}

=
1

2

(√
E{X(t∗)X11(t∗)}

Var(X1(t∗)) + E{X(t∗)X11(t∗)}
+

√
det(Σ(t∗))

det(Λ(t∗) + Σ(t∗))

)
Ψ

(
u

σT

)
(1 + o(1)).

Case 6: a1 < t∗1 < b1 and a2 < t∗2 < b2. It follows directly from Theorem 4.1 that

P

{
sup
t∈T

X(t) ≥ u
}

=

√
det(Σ(t∗))

det(Λ(t∗) + Σ(t∗))
Ψ

(
u

σT

)
(1 + o(1)).

5.2 Examples with the maximum of the variance achieved on a line

Consider the Gaussian random field X(t) defined as:

X(t) = ξ1 cos t1 + ξ′1 sin t1 + t2(ξ2 cos t2 + ξ′2 sin t2),

where t = (t1, t2) ∈ T = [a1, b1] × [a2, b2] ⊂ (0, 2π)2, and ξ1, ξ
′
1, ξ2, ξ

′
2 are independent

standard Gaussian random variables. This is a Gaussian random field on R2 generated

EJP 29 (2024), paper 74.
Page 10/26

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1133
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


EEC approximation for smooth GRF with general variance

from the cosine field, with an additional product of t2 along the vertical direction. The
constraint on the parameter space within (0, 2π)2 is imposed to prevent degeneracy in
derivatives. For this field, we have ν(t) = 1 + t22, which reaches the maximum σ2

T = 1 + b22
on the entire real line L := {(t1, b2) : a1 ≤ t1 ≤ b1}. Furthermore,

ν1(t)|t∈L = 0, ν2(t)|t∈L = 2b2 > 0, ∀t ∈ L.

By employing similar reasoning in the proofs of Theorems 3.1 and 3.2, we see that, in
the EEC approximation E{χ(Au)}, all integrals (derived from the Kac-Rice formula) over
faces not contained within L̄ are super-exponentially small. Thus, there exists α > 0

such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

= P{X(a1, b2) ≥ u,X1(a1, b2) < 0}+ P{X(b1, b2) ≥ u,X1(b1, b2) > 0}

+ I(u) + o

(
exp

{
− u2

2σ2
T

− αu2

})
= Ψ

(
u√

1 + b22

)
+ I(u) + o

(
exp

{
− u2

2σ2
T

− αu2

})
,

(5.1)

where

I(u) = −
∫ b1

a1

E
{
X11(t1, b2)1{X(t1,b2)≥u}

∣∣X1(t1, b2) = 0
}
pX1(t1,b2)(0)dt1.

Since X1(t1, b2) = −ξ1 sin t1 + ξ′1 cos t1 and X11(t1, b2) = −ξ1 cos t1 − ξ′1 sin t1, one has

Cov(X(t1, b2), X1(t1, b2), X11(t1, b2)) =

1 + b22 0 −1

0 1 0

−1 0 1

 ,

which does not depend on t1. Particularly, X1(t1, b2) is independent of both X(t1, b2) and
X11(t1, b2). Thus

I(u) = −b1 − a1√
2π

E
{
X11(t1, b2)1{X(t1,b2)≥u}

}
= −b1 − a1√

2π

∫ ∞
u

E{X11(t1, b2)|X(t1, b2) = x}φ

(
x√

1 + b22

)
dx

=
b1 − a1√

2π

∫ ∞
u

x

1 + b22
φ

(
x√

1 + b22

)
dx

=
b1 − a1√

2π
φ

(
u√

1 + b22

)
.

Substituting this expression into (5.1), we arrive at the following refined approximation:

P

{
sup
t∈T

X(t) ≥ u
}

= Ψ

(
u√

1 + b22

)
+
b1 − a1√

2π
φ

(
u√

1 + b22

)
+ o

(
exp

{
− u2

2σ2
T

− αu2

})
,

which has a super-exponentially small error.
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6 Outline of the proofs of main results

Here we show the main idea for proving the main results above. The main idea below
is similar to that introduced in [5] by estimating the moments of the number of critical
points. Let f be a smooth real-valued function, then supt∈T f(t) ≥ u if and only if there
exists at least one extended outward local maximum above u on some face of T . Thus,
under conditions (H1) and (H2), the following relation holds for each u ∈ R:{

sup
t∈T

X(t) ≥ u
}

=

N⋃
k=0

⋃
K∈∂kT

{ME
u (K) ≥ 1} a.s. (6.1)

This implies that the probability of the supremum of the Gaussian random field exceeding
u is equal to the probability that there exists at least one extended outward local
maximum above u on some face K of T . Therefore, we obtain the following upper bound
for the excursion probability:

P

{
sup
t∈T

X(t) ≥ u
}
≤

N∑
k=0

∑
K∈∂kT

P{ME
u (K) ≥ 1} ≤

N∑
k=0

∑
K∈∂kT

E{ME
u (K)}. (6.2)

On the other hand, notice that

E{ME
u (K)} − P{ME

u (K) ≥ 1} =

∞∑
i=1

(i− 1)P{ME
u (K) = i}

≤
∞∑
i=1

i(i− 1)P{ME
u (K) = i} = E{ME

u (K)[ME
u (K)− 1]}

and

P{ME
u (K) ≥ 1,ME

u (K ′) ≥ 1} ≤ E{ME
u (K)ME

u (K ′)}.

Applying the Bonferroni inequality to (6.1) and combining these two inequalities, we
obtain the following lower bound for the excursion probability:

P

{
sup
t∈T

X(t) ≥ u
}

≥
N∑
k=0

∑
K∈∂kT

P{ME
u (K) ≥ 1} −

∑
K 6=K′

P{ME
u (K) ≥ 1,ME

u (K ′) ≥ 1}

≥
N∑
k=0

∑
K∈∂kT

(
E{ME

u (K)} − E{ME
u (K)[ME

u (K)− 1]}
)
−
∑
K 6=K′

E{ME
u (K)ME

u (K ′)},

(6.3)

where the last sum is taken over all possible pairs of different faces (K,K ′).

Remark 6.1. Note that, following the same arguments above, we have that the expecta-
tions on the number of extended outward maxima ME

u (·) in both (6.2) and (6.3) can be
replaced by the expectations on the number of local maxima Mu(·).

We call a function h(u) super-exponentially small [when compared with the excursion
probability P{supt∈T X(t) ≥ u} or E{χ(Au)}], if there exists a constant α > 0 such that

h(u) = o(e−u
2/(2σ2

T )−αu2

) as u → ∞. The main idea for proving the EEC approximation
Theorem 3.1 consists of the following two steps: (i) show that, except for the upper
bound in (6.2), all terms in the lower bound in (6.3) are super-exponentially small; and
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(ii) demonstrate that the difference between the upper bound in (6.2) and E{χ(Au)} is
also super-exponentially small. The proofs for Theorems 3.2 and 3.3 follow the same
ideas, aiming to establish super-exponential smallness for the terms involved in the
lower bounds, as well as for the difference between the upper bound and EEC.

Remark 6.2. In terms of the detailed proofs in Sections 7 and 8 below, the method-
ologies are similar to those in [5]. The main difference is due to the condition (H3) or
(H3′), which generalizes the condition (H2) in [5] where Gaussian fields with stationary
increments are considered. It is important to recognize that in our current framework,
there is no assumption of stationary increments; and the condition (H3) or (H3′) is
imposed only on the points attaining the maximum of the variance. Such general assump-
tions make the proofs more challenging, requiring improved and refined techniques on
estimating the super-exponentially small errors, especially on estimating the adjacent
faces in Proposition 7.4 and approximating the major term in Proposition 8.1. Meanwhile,
due to the absence of stationary increments, we employ the Laplace method to derive
general explicit approximations to excursion probabilities for smooth Gaussian fields
with the maximum of variance achieved at a single point in Section 4, and to derive
the approximation for an example with the maximum of variance achieved on a line in
Section 5.

7 Estimation of super-exponential smallness for terms in the
lower bound

7.1 Factorial moments

We first state the following result, which is a modified version (restricted on a face
K) of Lemma 4 in Piterbarg [8], characterizing the decaying rate for factorial moments
of the number of critical points exceeding a high level for Gaussian fields.

Lemma 7.1. Assume (H1) and (H2). Then there exists a positive constant C such that
for any ε > 0 one can find a number ε1 > 0 such that for any K ∈ ∂kT ,

E{Mu(K)(Mu(K)− 1)} ≤ Cu2k+1 exp

{
− u2

2β2
K + ε

}
+ Cu4k+2 exp

{
− u2

2σ2
K − ε1

}
,

(7.1)

where

β2
K = sup

t∈K
sup

e∈Sk−1

Var(X(t)|∇X|K(t),∇2X|K(t)e), σ2
K = sup

t∈K
Var(X(t)).

The following result shows that the factorial moments in (6.3) are super-exponentially
small under our assumptions.

Proposition 7.2. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Then there exists α > 0 such that as u→∞,

N∑
k=0

∑
K∈∂kT

E{Mu(K)(Mu(K)− 1)} = o
(
e−u

2/(2σ2
T )−αu2

)
. (7.2)

Proof. Due to Lemma 7.1, it suffices to show that for each K ∈ ∂kT , β2
K < σ2

T , which is
equivalent to Var(X(t)|∇X|K(t),∇2X|K(t)e) < σ2

T for all t ∈ K̄ = K ∪ ∂K and e ∈ Sk−1.
Suppose Var(X(t)|∇X|K(t),∇2X|K(t)e) = σ2

T for some t ∈ K, then

σ2
T = Var(X(t)|∇X|K(t),∇2X|K(t)e) ≤ Var(X(t)|∇2X|K(t)e) ≤ Var(X(t)) ≤ σ2

T .
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Note that

Var(X(t)|∇2X|K(t)e) = Var(X(t))⇔ E{X(t)(∇2X|K(t)e)} = 0⇔ ΣK(t)e = 0.

But t is a point with ν(t) = σ2
T , thus ΣK(t) ≺ 0 by Proposition 2.1, implying ΣK(t)e 6= 0

for all e ∈ Sk−1 and causing a contradiction.

On the other hand, suppose Var(X(t)|∇X|K(t),∇2X|K(t)e) = σ2
T for some t ∈ ∂K,

then Var(X(t)|∇X|K(t)) = σ2
T and hence νi(t) = 0 for all i ∈ τ(K), implying ΣK(t) ≺ 0 by

Proposition 2.1. Similarly to the previous arguments, this will lead to a contradiction.
The proof is completed.

7.2 Non-adjacent faces

For two sets D,D′ ⊂ RN , let d(D,D′) = inf{‖t − t′‖ : t ∈ D, t′ ∈ D′} denote their
distance. The following result demonstrates that the last two sums involving the joint
moment of two non-adjacent faces in (6.3) are super-exponentially small.

Proposition 7.3. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1)

and (H2). Then there exists α > 0 such that as u→∞,

E{Mu(K)Mu(K ′)} = o

(
exp

{
− u2

2σ2
T

− αu2

})
, (7.3)

where K and K ′ are different faces of T with d(K,K ′) > 0.

Proof. Consider first the case where dim(K) = k ≥ 1 and dim(K ′) = k′ ≥ 1. Applying
the Kac-Rice formula in [2, Theorem 11.2.1] with f = (∇X|K(t),∇X|K′(t′)), we obtain

E{Mu(K)Mu(K ′)}

=

∫
K

dt

∫
K′
dt′E

{
|det∇2X|K(t)||det∇2X|K′(t

′)|1{X(t)≥u,X(t′)≥u}

× 1{∇2X|K(t)≺0,∇2X|K′ (t
′)≺0}

∣∣∇X|K(t) = 0,∇X|K′(t′) = 0
}
p∇X|K(t),∇X|K′ (t′)(0, 0)

≤
∫
K

dt

∫
K′
dt′
∫ ∞
u

dx

∫ ∞
u

dx′ pX(t),X(t′)(x, x
′)p∇X|K(t),∇X|K′ (t′)(0, 0|X(t) = x,X(t′) = x′)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣X(t) = x,X(t′) = x′,∇X|K(t) = 0,∇X|K′(t′) = 0}.

(7.4)

Notice that the following two inequalities hold: for constants ai1 and bi2 ,

k∏
i1=1

|ai1 |
k′∏
i2=1

|bi2 | ≤
∑k
i1=1 |ai1 |k+k′ +

∑k′

i2=1 |bi2 |k+k′

k + k′
;

and for any Gaussian variable ξ and positive integer m, by Jensen’s inequality,

E|ξ|m ≤ E(|Eξ|+ |ξ − Eξ|)m ≤ 2m−1(|Eξ|m + E|ξ − Eξ|m)

= 2m−1(|Eξ|m +Bm(Var(ξ))m/2),

where Bm is some constant depending only on m. Combining these two inequalities with
the well-known conditional formula for Gaussian variables, we obtain that there exist
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positive constants C0, C1 and N1 such that for sufficiently large x and x′,

sup
t∈K,t′∈K′

E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣X(t) = x,X(t′) = x′,

∇X|K(t) = ∇X|K′(t′) = 0
}

≤ sup
t∈K,t′∈K′

k∑
i,j=1

k′∑
i′,j′=1

C0E
{
|Xij(t)|k+k′ + |Xi′j′(t

′)|k+k′
∣∣X(t) = x,X(t′) = x′,

∇X|K(t) = ∇X|K′(t′) = 0
}

≤ C1 + (xx′)N1 .

(7.5)

Further, there exists C2 > 0 such that

sup
t∈K,t′∈K′

p∇X|K(t),∇X|K′ (t′)(0, 0|X(t) = x,X(t′) = x′)

≤ sup
t∈K,t′∈K′

(2π)−(k+k′)/2[detCov(∇X|K(t),∇X|K′(t′)|X(t) = x,X(t′) = x′)]−1/2

≤ C2.

(7.6)

Plugging (7.5) and (7.6) into (7.4), we obtain that there exists C3 such that, for u large
enough,

E{Mu(K)Mu(K ′)} ≤ C3 sup
t∈K,t′∈K′

E{(C1 + |X(t)X(t′)|N1)1{X(t)≥u,X(t′)≥u}}

≤ C3 sup
t∈K,t′∈K′

E{(C1 + (X(t) +X(t′))2N1)1{[X(t)+X(t′)]/2≥u}}

≤ C3 exp

(
− u2

(1 + ρ)σ2
T

+ εu2

)
,

(7.7)

where ε is any positive number and ρ = supt∈K,t′∈K′ Corr[X(t), X ′(t)] < 1 due to (H2).
The case when one of the dimensions of K and K ′ is zero can be proved similarly.

7.3 Adjacent faces

The following result shows that the last two sums involving the joint moment of two
adjacent faces in (6.3) are super-exponentially small.

Proposition 7.4. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Then there exists α > 0 such that as u→∞,

E{ME
u (K)ME

u (K ′)} = o

(
exp

{
− u2

2σ2
T

− αu2

})
, (7.8)

where K and K ′ are different faces of T with d(K,K ′) = 0.

Proof. Let I := K̄ ∩ K̄ ′, which is nonempty since d(K,K ′) = 0. To simplify notation, let
us assume without loss of generality:

τ(K) = {1, . . . ,m,m+ 1, . . . , k},
τ(K ′) = {1, . . . ,m, k + 1, . . . , k + k′ −m},

where 0 ≤ m ≤ k ≤ k′ ≤ N and k′ ≥ 1. If k = 0, we conventionally consider τ(K) = ∅.
Under this assumption, K ∈ ∂kT , K ′ ∈ ∂k′T , dim(I) = m, and all elements in ε(K) and
ε(K ′) are 1.
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EEC approximation for smooth GRF with general variance

We first consider the case when k ≥ 1 and l ≥ 1. By the Kac-Rice formula,

E{ME
u (K)ME

u (K ′)}

≤
∫
K×K′

dtdt′
∫ ∞
u

dx

∫ ∞
u

dx′
∫ ∞

0

dzk+1 · · ·
∫ ∞

0

dzk+k′−m

∫ ∞
0

dwm+1 · · ·
∫ ∞

0

dwk

E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣X(t) = x,X(t′) = x′,∇X|K(t) = 0, Xk+1(t) = zk+1,

. . . , Xk+k′−m(t) = zk+k′−m,∇X|K′(t′) = 0, Xm+1(t′) = wm+1, . . . , Xk(t′) = wk
}

× pt,t′(x, x′, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk)

:=

∫
K×K′

A(t, t′, u) dtdt′,

(7.9)

where pt,t′(x, x′, 0, zk+1, . . . , zk+k′−m, 0, wm+1, . . . , wk) is the density of the joint distribu-
tion of the variables involved in the given condition. We define

M0 := {t ∈ I : ν(t) = σ2
T , νi(t) = 0, ∀i = 1, . . . , k + k′ −m}, (7.10)

and consider two cases forM0.
Case (i): M0 = ∅. Under this case, since I is a compact set, by the uniform

continuity of conditional variance, there exist constants ε1, δ1 > 0 such that

sup
t∈B(I,δ1), t′∈B′(I,δ1)

Var(X(t)|∇X|K(t),∇X|K′(t′)) ≤ σ2
T − ε1, (7.11)

where B(I, δ1) = {t ∈ K : d(t, I) ≤ δ1} and B′(I, δ1) = {t′ ∈ K ′ : d(t′, I) ≤ δ1}. By
partitioning K × K ′ into B(I, δ1) × B′(I, δ1) and (K × K ′)\(B(I, δ1) × B′(I, δ1)) and
applying the Kac-Rice formula, we obtain

E{Mu(K)Mu(K ′)}

≤
∫

(K×K′)\(B(I,δ1)×B′(I,δ1))

dtdt′ p∇X|K(t),∇X|K′ (t′)(0, 0)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|1{X(t)≥u,X(t′)≥u}
∣∣∇X|K(t) = 0,∇X|K′(t′) = 0

}
+

∫
B(I,δ1)×B′(I,δ1)

dtdt′ p∇X|K(t),∇X|K′ (t′)(0, 0)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|1{X(t)≥u,X(t′)≥u}
∣∣∇X|K(t) = 0,∇X|K′(t′) = 0

}
:= I1(u) + I2(u).

(7.12)

Note that

(K ×K ′)\(B(I, δ1)×B′(I, δ1)) =
(

(K\B(I, δ1))×B′(I, δ1)
)⋃(

B(I, δ1)× (K\B(I, δ1))
)

⋃(
(K\B(I, δ1))× (K\B(I, δ1))

)
,

where each product on the right hand side consists of two sets with a positive distance.
It then follows from Proposition 7.3 that I1(u) is super-exponentially small. On the other
hand, since 1{X(t)≥u,X(t′)≥u} ≤ 1{[X(t)+X(t′)]/2≥u}, one has

I2(u) ≤
∫
B(I,δ1)×B′(I,δ1)

dtdt′
∫ ∞
u

dx pX(t)+X(t′)
2

(x|∇X|K(t) = 0,∇X|K′(t′) = 0)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣[X(t) +X(t′)]/2 = x,

∇X|K(t) = 0,∇X|K′(t′) = 0
}
p∇X|K(t),∇X|K′ (t′)(0, 0).

(7.13)
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EEC approximation for smooth GRF with general variance

Combining this with (7.11), we conclude that I2(u) and hence E{ME
u (X,K)ME

u (X,K ′)}
are super-exponentially small.

Case (ii): M0 6= ∅. Let

B(M0, δ2) := {(t, t′) ∈ K ×K ′ : d(t,M0) ∨ d(t′,M0) ≤ δ2},

where δ2 is a small positive number to be specified. Note that, by the definitions ofM0

and B(M0, δ2), there exists ε2 > 0 such that

sup
(t,t′)∈(K×K′)\B(M0,δ2)

Var([X(t) +X(t′)]/2|∇X|K(t),∇X|K′(t′)) ≤ σ2
T − ε2. (7.14)

Similarly to (7.13), we obtain that
∫

(K×K′)\B(M0,δ2)
A(t, t′, u)dtdt′ is super-exponentially

small. It suffices to show below that
∫
B(M0,δ2)

A(t, t′, u) dtdt′ is super-exponentially small.

Due to (H3) and Proposition 2.1, we can choose δ2 small enough such that for all
(t, t′) ∈ B(M0, δ2),

ΛK∪K′(t) := −E{X(t)∇2X|K∪K′(t)} = −(E{X(t)Xij(t)})i,j=1,...,k+k′−m

are positive definite. Let {e1, e2, . . . , eN} be the standard orthonormal basis of RN . For
t ∈ K and t′ ∈ K ′, let et,t′ = (t′ − t)/‖t′ − t‖ and αi(t, t′) = 〈ei,ΛK∪K′(t)et,t′〉. Then

ΛK∪K′(t)et,t′ =

N∑
i=1

〈ei,ΛK∪K′(t)et,t′〉ei =

N∑
i=1

αi(t, t
′)ei (7.15)

and there exists α0 > 0 such that for all (t, t′) ∈ B(M0, δ2),

〈et,t′ ,ΛK∪K′(t)et,t′〉 ≥ α0. (7.16)

Since all elements in ε(K) and ε(K ′) are 1, we may write

t = (t1, . . . , tm, tm+1, . . . , tk, bk+1, . . . , bk+k′−m, 0, . . . , 0),

t′ = (t′1, . . . , t
′
m, bm+1, . . . , bk, t

′
k+1, . . . , t

′
k+k′−m, 0, . . . , 0),

where ti ∈ (ai, bi) for i ∈ τ(K) and t′j ∈ (aj , bj) for j ∈ τ(K ′). Therefore,

〈ei, et,t′〉 ≥ 0, ∀ m+ 1 ≤ i ≤ k,
〈ei, et,t′〉 ≤ 0, ∀ k + 1 ≤ i ≤ k + k′ −m,
〈ei, et,t′〉 = 0, ∀ k + k′ −m < i ≤ N.

(7.17)

Let

Di = {(t, t′) ∈ B(M0, δ2) : αi(t, t
′) ≥ βi}, if m+ 1 ≤ i ≤ k,

Di = {(t, t′) ∈ B(M0, δ2) : αi(t, t
′) ≤ −βi}, if k + 1 ≤ i ≤ k + k′ −m,

D0 =

{
(t, t′) ∈ B(M0, δ2) :

m∑
i=1

αi(t, t
′)〈ei, et,t′〉 ≥ β0

}
,

(7.18)

where β0, β1, . . . , βk+k′−m are positive constants such that β0 +
∑k+k′−m
i=m+1 βi < α0. It fol-

lows from (7.17) and (7.18) that, if (t, s) does not belong to any of D0, Dm+1, . . . , Dk+k′−m,
then by (7.15),

〈ΛK∪K′(t)et,t′ , et,t′〉 =

N∑
i=1

αi(t, t
′)〈ei, et,t′〉 ≤ β0 +

k+k′−m∑
i=m+1

βi < α0,
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EEC approximation for smooth GRF with general variance

which contradicts (7.16). Thus D0

⋃(
∪k+k′−m
i=m+1 Di

)
is a covering of B(M0, δ2). By (7.9),

E{ME
u (K)ME

u (K ′)} ≤
∫
D0

A(t, t′, u) dtdt′ +

k+k′−m∑
i=m+1

∫
Di

A(t, t′, u) dtdt′.

By the Kac-Rice metatheorem and the fact 1{X(t)≥u,Y (s)≥u} ≤ 1{X(t)≥u}, we obtain∫
D0

A(t, t′, u) dtdt′

≤
∫
D0

dtdt′
∫ ∞
u

dx p∇X|K(t),∇X|K′ (t′)(0, 0)pX(t)(x|∇X|K(t) = 0,∇X|K′(t′) = 0)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣X(t) = x,∇X|K(t) = 0,∇X|K′(t′) = 0

}
,

(7.19)

and that for i = m+ 1, . . . , k,∫
Di

A(t, t′, u) dtdt′

≤
∫
Di

dtdt′
∫ ∞
u

dx

∫ ∞
0

dwi pX(t),∇X|K(t),Xi(t′),∇X|K′ (t′)(x, 0, wi, 0)

× E
{
|det∇2X|K(t)||det∇2X|K′(t

′)|
∣∣X(t) = x,∇X|K(t) = 0, Xi(t

′) = wi,∇X|K′(t′) = 0
}
.

(7.20)

Comparing (7.19) and (7.20) with Eqs. (4.33) and (4.36) respectively in the proof of
Theorem 4.8 in Cheng and Xiao [5], one can employ the same reasoning therein to
show that Var(X(t)|∇X|K(t),∇X|K′(t′)) < σ2

T uniformly on D0 and P(X(t) > u,Xi(t
′) >

0|∇X|K(t) = 0,∇X|K′(t′) = 0) = o(e−u
2/(2σ2

T )−αu2

) uniformly on Di, and deduce that∫
D0
A(t, t′, u) dtdt′ and

∫
Di
A(t, t′, u) dtdt′ (i = m+ 1, . . . , k) are super-exponentially small.

It is similar to show that
∫
Di
A(t, t′, u) dtdt′ are super-exponentially small for i =

k + 1, . . . , k + k′ −m. For the case k = 0 or l = 0, the argument is even simpler when
applying the Kac-Rice formula; the details are omitted here. The proof is finished.

In the proof of Proposition 7.4, we have shown in (7.12) that, if M0 = ∅, then the
moment E{Mu(X,K)Mu(X,K ′)} is super-exponentially small. It is important to note
that, the boundary condition (3.3) implies (and generalizes) the condition M0 = ∅,
yielding the following result.

Proposition 7.5. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and the boundary condition (3.3). Then there exists α > 0 such that as u→∞,

E{Mu(K)Mu(K ′)} = o
(

exp
{
− u2

2σ2
T

− αu2
})
,

where K and K ′ are different faces of T with d(K,K ′) = 0.

8 Estimation of the difference between EEC and the upper bound

In this section, we demonstrate that the difference between E{χ(Au)} and the ex-
pected number of extended outward local maxima, i.e. the upper bound in (6.2), is
super-exponentially small.

Proposition 8.1. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
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(H2) and (H3). Then there exists α > 0 such that for any K ∈ ∂kT with k ≥ 0, as u→∞,

E{ME
u (K)} = (−1)k

∫
K

E
{

det∇2X|K(t)1{X(t)≥u, ε∗`X`(t)≥0 for all `/∈τ(K)}
∣∣∇X|K(t) = 0

}
× p∇X|K(t)(0)dt+ o

(
exp

{
− u2

2σ2
T

− αu2

})
= (−1)kE

{( k∑
i=0

(−1)iµi(K)

)}
+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

(8.1)

Proof. The second equality in (8.1) arises from the application of the Kac-Rice formula:

E

{( k∑
i=0

(−1)iµi(K)

)}

=

k∑
i=0

(−1)i
∫
K

E
{
|det∇2X|K(t)|1{index(∇2X|K(t))=i}

× 1{X(t)≥u, ε∗`X`(t)≥0 for all `/∈τ(K)}
∣∣∇X|K(t) = 0

}
p∇X|K(t)(0) dt

=

∫
K

E
{

det∇2X|K(t)1{X(t)≥u, ε∗`X`(t)≥0 for all `/∈τ(K)}
∣∣∇X|K(t) = 0

}
p∇X|K(t)(0) dt.

To prove the first approximation in (8.1) and convey the main idea, we start with the
case when the face K represents the interior of T .

Case (i): k =N . By the Kac-Rice formula, we have

E{ME
u (K)} =

∫
K

p∇X(t)(0)dt

∫ ∞
u

pX(t)(x|∇X(t) = 0)

× E
{

det∇2X(t)1{∇2X(t)≺0}
∣∣X(t) = x,∇X(t) = 0

}
dx

:=

∫
K

p∇X(t)(0)dt

∫ ∞
u

A(t, x)dx.

Let

M1 = {t ∈ K̄ = T : ν(t) = σ2
T , ∇ν(t) = 2E{X(t)∇X(t)} = 0},

B(M1, δ1) = {t ∈ K : d (t,M1) ≤ δ1} ,
(8.2)

where δ1 is a small positive number to be specified. Then, we only need to estimate∫
B(M1,δ1)

p∇X(t)(0)dt

∫ ∞
u

A(t, x)dx, (8.3)

since the integral above with B(M1, δ1) replaced by K\B(M1, δ1) becomes super-
exponentially small due to the fact

sup
t∈K\B(M1,δ1)

Var(X(t)|∇X(t) = 0) < σ2
T .

Notice that, by Proposition 2.1, E{X(t)∇2X(t)} ≺ 0 for all t ∈M1. Thus there exists δ1
small enough such that E{X(t)∇2X(t)} ≺ 0 for all t ∈ B(M1, δ1). In particular, let λ0

be the largest eigenvalue of E{X(t)∇2X(t)} over B(M1, δ1), then λ0 < 0 by the uniform
continuity. Also note that E{X(t)∇X(t)} tends to 0 as δ1 → 0. Therefore, as δ1 → 0,

E{Xij(t)|X(t) = x,∇X(t) = 0}

= (E{Xij(t)X(t)},E{Xij(t)X1(t)}, . . . ,E{Xij(t)XN (t)}) · [Cov(X(t),∇X(t))]
−1

· (x, 0, . . . , 0)T

=
E{Xij(t)X(t)}x

σ2
T

(1 + o(1)).
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Thus, for all x ≥ u and t ∈ B(M1, δ1) with δ1 small enough,

Σ1(t, x) := E{∇2X(t)|X(t) = x,∇X(t) = 0} ≺ 0.

Let ∆1(t, x) = ∇2X(t)− Σ1(t, x). We have∫ ∞
u

A(t, x)dx =

∫ ∞
u

pX(t)(x|∇X(t) = 0)E
{

det(∆1(t, x) + Σ1(t, x))

× 1{∆1(t,x)+Σ1(t,x)≺0}
∣∣X(t) = x,∇X(t) = 0

}
dx

:=

∫ ∞
u

pX(t)(x|∇X(t) = 0)E(t, x) dx.

(8.4)

Note that the following is a centered Gaussian random matrix not depending on x:

Ω(t) = (Ωij(t))1≤i,j≤N = (∆1(t, x)|X(t) = x,∇X(t) = 0).

Let ht(v) denote the density of the Gaussian random vector ((Ωij(t))1≤i≤j≤N with v =

(vij)1≤i≤j≤N ∈ RN(N+1)/2. Then

E(t, x) = E
{

det(Ω(t) + Σ1(t, x))1{Ω(t)+Σ1(t,x)≺0}
}

=

∫
v: (vij)+Σ1(t,x)≺0

det((vij) + Σ1(t, x))ht(v)dv,
(8.5)

where (vij) is the abbreviation of the matrix v = (vij)1≤i,j≤N . There exists a constant
c > 0 such that for δ1 small enough and all t ∈ B(M1, δ1), and x ≥ u, we have

(vij) + Σ1(t, x) ≺ 0, ∀‖(vij)‖ :=
( N∑
i,j=1

v2
ij

)1/2

< cu.

This implies {v : (vij) + Σ1(t, x) 6≺ 0} ⊂ {v : ‖(vij)‖ ≥ cu}. Consequently, the integral

in (8.5) with the domain of integration replaced by {v : (vij) + Σ1(t, x) 6≺ 0} is o(e−α
′u2

)

uniformly for all t ∈ B(M1, δ1), where α′ is a positive constant. As a result, we conclude
that, uniformly for all t ∈ B(M1, δ1) and x ≥ u,

E(t, x) =

∫
RN(N+1)/2

det((vij) + Σ1(t, x))ht(v)dv + o(e−α
′u2

).

By substituting this result into (8.4), we observe that the indicator function 1{∇2X(t)≺0}
in (8.3) can be eliminated, causing only a super-exponentially small error. Thus, for
sufficiently large u, there exists α > 0 such that

E{ME
u (K)} =

∫
K

p∇X(t)(0)dt

∫ ∞
u

E{det∇2X(t)|X(t) = x,∇X(t) = 0}

× pX(t)(x|∇X(t) = 0)dx+ o
(

exp
{
− u2

2σ2
T

− αu2
})
.

Case (ii): k ≥ 0. It is worth noting that when k = 0, the terms in (8.1) related to the
Hessian will vanish, simplifying the proof. Therefore, without loss of generality, let k ≥ 1,
τ(K) = {1, · · · , k} and assume all the elements in ε(K) are 1. By the Kac-Rice formula,

E{ME
u (K)} = (−1)k

∫
K

p∇X|K(t)(0)dt

∫ ∞
u

pX(t)

(
x
∣∣∇X|K(t) = 0

)
E
{

det∇2X|K(t)

× 1{∇2X|K(t)≺0}1{Xk+1(t)>0,...,XN (t)>0}
∣∣X(t) = x,∇X|K(t) = 0

}
dx

:= (−1)k
∫
K

p∇X|K(t)(0)dt

∫ ∞
u

A′(t, x)dx.
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Let

M2 = {t ∈ K̄ : ν(t) = σ2
T , ∇ν|K(t) = 2E{X(t)∇X|K(t)} = 0},

B(M2, δ2) = {t ∈ K : d (t,M2) ≤ δ2} ,
(8.6)

where δ2 is another small positive number to be specified. Here, we only need to estimate∫
B(M2,δ2)

p∇X|K(t)(0)dt

∫ ∞
u

A′(t, x)dx, (8.7)

since the integral above with B(M2, δ2) replaced by K\B(M2, δ2) is super-exponentially
small due to the fact

sup
t∈K\B(M2,δ2)

Var(X(t)|∇X(t) = 0) < σ2
T .

On the other hand, following similar arguments in the proof for Case (i), we have that re-
moving the indicator functions 1{∇2X|K(t)≺0} in (8.7) will only cause a super-exponentially
small error. Combining these results, we conclude that the first approximation in (8.1)
holds, thus completing the proof.

From the proof of Proposition 8.1, it is evident that the same line of reasoning and
arguments can be readily extended to E{Mu(X,K)}, leading to the following result.

Proposition 8.2. Let {X(t), t ∈ T} be a centered Gaussian random field satisfying (H1),
(H2) and (H3). Then there exists a constant α > 0 such that for any K ∈ ∂kT , as u→∞,

E{Mu(K)} = (−1)k
∫
K

E
{

det∇2X|K(t)1{X(t)≥u}
∣∣∇X|K(t) = 0

}
p∇X|K(t)(0)dt

+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

9 Proofs of the main results

Proof of Theorem 3.1. By Propositions 7.2, 7.3 and 7.4, together with the fact ME
u (K) ≤

Mu(K), we obtain that the factorial moments and the last two sums in (6.3) are super-
exponentially small. Therefore, from (6.2) and (6.3), it follows that there exists a constant
α > 0 such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=

N∑
k=0

∑
K∈∂kT

E{ME
u (K)}+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

This desired result follows as an immediate consequence of Proposition 8.1.

Proof of Theorem 3.2. Remark 6.1 indicates that both inequalities (6.2) and (6.3) hold
with ME

u (·) replaced by Mu(·). Therefore, the corresponding factorial moments and the
last two sums in (6.3) with ME

u (·) replaced by Mu(·) are super-exponentially small by
Propositions 7.2, 7.3 and 7.5. Consequently, there exists a constant α > 0 such that as
u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=

N∑
k=0

∑
K∈∂kT

E{Mu(K)}+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

The desired result follows directly from Proposition 8.2.
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Proof of Theorem 3.3. Note that, in the proof of Theorem 3.1, we have seen that the
points inM2 defined in (8.6) make major contribution to the excursion probability. That
is, with up to a super-exponentially small error, we can focus only on those faces, say J ,
whose closure J̄ contains the unique point t∗ with ν(t∗) = σ2

T and satisfying τ(J) ⊂ I(t∗)

(i.e., the partial derivatives of ν are 0 at t∗ restricted on J). To formalize this concept,
we define a set of faces T ∗ as follows:

T ∗ = {J ∈ ∂kT : t∗ ∈ J̄ , τ(J) ⊂ I(t∗), k = 0, . . . , N}.

For each J ∈ T ∗, let

ME∗

u (J) := #{t ∈ J : X(t) ≥ u,∇X|J(t) = 0,∇2X|J(t) ≺ 0,

ε∗jXj(t) ≥ 0 for all j ∈ I(t∗) \ τ(J)}.

Note that, both inequalities (6.2) and (6.3) remain valid when we replace ME
u (J) with

ME∗

u (J) for faces J belonging to T ∗, and replace ME
u (J) with Mu(J) otherwise. Employ-

ing analogous reasoning as used in the derivation of Theorems 3.1 and 3.2, we obtain
that, there exists α > 0 such that as u→∞,

P

{
sup
t∈T

X(t) ≥ u
}

=
∑
J∈T∗

E{ME∗

u (J)}+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.

This desired result is then deduced from Proposition 8.1.

10 Proofs on results with a unique maximum point of the vari-
ance

We begin by presenting the following two auxiliary results on the Laplace method for
integral approximations. Lemma 10.1 can be found in many books on the approximations
of integrals; here we refer to Wong [17]. Lemma 10.2 can be derived by following similar
arguments in the proof of the Laplace method for the case of boundary points in [17].

Lemma 10.1. [Laplace method for interior points] Let t0 be an interior point of T .
Suppose the following conditions hold: (i) g(t) ∈ C(T ) and g(t0) 6= 0; (ii) h(t) ∈ C2(T )

and attains its minimum only at t0; and (iii) ∇2h(t0) is positive definite. Then as u→∞,∫
T

g(t)e−uh(t)dt =
(2π)N/2

uN/2(det∇2h(t0))1/2
g(t0)e−uh(t0)(1 + o(1)).

Lemma 10.2. [Laplace method for boundary points] Let t0 ∈ K ∈ ∂kT with 0 ≤ k ≤ N−1.
Suppose that conditions (i), (ii) and (iii) in Lemma 10.1 hold, and additionally ∇h(t0) = 0.
Then as u→∞,∫

T

g(t)e−uh(t)dt =
(2π)N/2P{Zi`ε∗i` > 0,∀i` /∈ τ(K)}

uN/2(det∇2h(t0))1/2
g(t0)e−uh(t0)(1 + o(1)),

where (Zi1 , . . . , ZiN−k) is a centered (N−k)-dimensional Gaussian vector with covariance
matrix (hi`i`′ (t0))i`,i`′ /∈τ(K) and τ(K) and ε∗i` are defined in Section 2.

We now provide below the proofs of Theorems 4.1 and 4.2.

Proof of Theorem 4.1. For t ∈ T , we define the following notation for conditional vari-
ance ν̃|K(t) = Var(X(t)|∇X|K(t) = 0). If k = 0, then νi(t

∗) 6= 0 for all i ≥ 1, and hence
I(t∗) = ∅. The first line of (4.1) follows from Theorem 3.3 that

P

{
sup
t∈T

X(t) ≥ u
}

= P{X(t∗) ≥ u}+ o

(
exp

{
− u2

2σ2
T

− αu2

})
.
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Now, let us consider the case when k ≥ 1. Note that the assumption on partial derivatives
of ν(t) implies I(t∗) = τ(K). By Theorem 3.3, we have

P

{
sup
t∈T

X(t) ≥ u
}

= (−1)kI(u,K) + o

(
exp

{
− u2

2σ2
T

− αu2

})
, (10.1)

where

I(u,K) =

∫
K

E
{

det∇2X|K(t)1{X(t)≥u}
∣∣∇X|K(t) = 0

}
p∇X|K(t)(0)dt

=

∫ ∞
u

∫
K

(2π)−(k+1)/2√
ν̃|K(t)det (ΛK(t))

E
{

det∇2X|K(t)
∣∣X(t) = x,∇X|K(t) = 0

}
× e−

x2

2ν̃(t) dtdx.

Applying the Laplace method in Lemma 10.1 with

g(t) =
1√

ν̃|K(t)det (ΛK(t))
E
{

det∇2X|K(t)
∣∣X(t) = x,∇X|K(t) = 0

}
,

h(t) =
1

2ν̃|K(t)
, u = x2,

and noting that the Hessian matrix of 1/(2ν̃|K(t)) evaluated at t∗ is

− 1

2ν̃2
|K(t∗)

(ν̃ij(t
∗))i,j∈τ(K) = − 1

2σ4
T

∇2ν̃|K(t∗) � 0, (10.2)

we obtain

I(u,K) =
(2σ4

T )k/2√
2πσ2

Tdet (ΛK(t∗))
√
|det∇2ν̃|K(t∗)|

I(u)(1 + o(1)), (10.3)

where

I(u) =

∫ ∞
u

E
{

det∇2X|K(t∗)
∣∣X(t∗) = x,∇X|K(t∗) = 0

}
x−ke

− x2

2σ2
T dx

= det(ΣK(t∗))

∫ ∞
u

E
{

det(Q∇2X|K(t∗)Q)
∣∣X(t∗) = x,∇X|K(t∗) = 0

}
x−ke

− x2

2σ2
T dx.

(10.4)

Here, noting that ΣK(t∗) = E{X(t)∇2X|K(t∗)} ≺ 0 by Proposition 2.1, we let Q in (10.4)
be a k × k positive definite matrix such that Q(−ΣK(t∗))Q = Ik, where Ik is the size-k
identity matrix. Then

E{X(t)(Q∇2X|K(t∗)Q)} = QΣK(t∗)Q = −Ik.

Notice that E{X(t∗)∇X|K(t∗)} = 0 due to ν|K(t∗) = 0, we have

E
{
Q∇2X|K(t∗)Q

∣∣X(t∗) = x,∇X|K(t∗) = 0
}

= − x

σ2
T

Ik.

One can write

E
{

det(Q∇2X|K(t∗)Q)
∣∣X(t∗) = x,∇X|K(t∗) = 0

}
= E{det(∆(t∗)− (x/σ2

T )Ik)},

where ∆(t∗) is a centered Gaussian random matrix with covariance independent of
x. According to the Laplace expansion of determinant, E{det(∆(t∗) − (x/σ2

T )Ik)} is a
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polynomial in x with the highest-order term being (−1)kσ−2k
T xk. Plugging this into (10.4)

and (10.3), we obtain

I(u,K) =
(−1)k2k/2|det(ΣK(t∗))|√

det(ΛK(t∗))
√
|det

(
∇2ν̃|K(t∗)

)
|
Ψ

(
u

σT

)
(1 + o(1)).

Finally, note that

ν̃|K(t) = E{X(t)2} − E{X(t)∇X|K(t)}TΛ−1
K (t)E{X(t)∇X|K(t)},

we have

∇2ν̃|K(t∗) = 2[ΛK(t∗) + ΣK(t∗)]− 2[ΛK(t∗) + ΣK(t∗)]Λ−1
K (t∗)[ΛK(t∗) + ΣK(t∗)]

= −2ΣK(t∗)[Ik + Λ−1
K (t∗)ΣK(t∗)].

(10.5)

Therefore,

I(u,K) = (−1)k

√
det(ΣK(t∗))

det(ΛK(t∗) + ΣK(t∗))
Ψ

(
u

σT

)
(1 + o(1)),

where ΣK(t∗) ≺ 0 by Proposition 2.1 and ΛK(t∗) + ΣK(t∗) = ∇2ν|K(t∗)/2 ≺ 0 by assump-
tion. Plugging this into (10.1) yields the desired result.

Proof of Theorem 4.2. We first prove the case when k ≥ 1. By Theorem 3.3, we have

P

{
sup
t∈T

X(t) ≥ u
}

=
∑
J

(−1)jI(u, J) + o

(
exp

{
− u2

2σ2
T

− αu2

})
, (10.6)

where j = dim(J), the sum is taken over all faces J such that t∗ ∈ J̄ and τ(J) ⊂ I(t∗),
and

I(u, J) =

∫
J

E
{

det∇2X|J(t)1{X(t)≥u}1{ε∗`X`(t)≥0, ∀`∈I(t∗)\τ(J)}
∣∣∇X|J(t) = 0

}
× p∇X|J (t)(0)dt

=

∫ ∞
u

∫
J

(2π)−(j+1)/2√
ν̃|J(t)det (ΛJ(t))

E
{

det∇2X|K(t)1{ε∗`X`(t)≥0, ∀`∈I(t∗)\τ(J)}
∣∣X(t) = x,

∇X|J(t) = 0
}
e
− x2

2ν̃|J (t) dtdx.

Applying the Laplace method in Lemma 10.2 with

g(t) =
E
{

det∇2X|J(t)1{ε∗`X`(t)≥0, ∀`∈I(t∗)\τ(J)}
∣∣X(t) = x,∇X|J(t) = 0

}√
ν̃|J(t)det (ΛJ(t))

,

h(t) =
1

2ν̃|J(t)
, u = x2,

we obtain

I(u, J) =
(2σ4

T )j/2P{(ZJ′1 , . . . , ZJ′j−k) ∈ E′(J)}√
2πσ2

Tdet (ΛJ(t∗))
√
|det∇2ν̃|J(t∗)|

I(u)(1 + o(1)),
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where (ZJ′1 , . . . , ZJ′j−k) is a centered (j − k)-dimensional Gaussian vector having covari-

ance matrix ∇2h(t∗) with indices restricted on τ(J) \ τ(K), and

I(u) =

∫ ∞
u

E
{

det∇2X|J(t∗)1{ε∗`X`(t∗)≥0, ∀`∈I(t∗)\τ(J)}
∣∣X(t∗) = x,∇X|J(t∗) = 0

}
× x−je

− x2

2σ2
T dx

= det(ΣJ(t∗))

∫ ∞
u

∫
E(J)

E
{

det(Q∇2X|J(t∗)Q)
∣∣X(t∗) = x,∇X|J(t∗) = 0,

XJ1(t∗) = yJ1 , . . . , XJk+m−j (t
∗) = yJk+m−j

}
p(yJ1 , . . . , yJk+m−j |x, 0)

× x−je
− x2

2σ2
T dyJ1 · · · dyJk+m−jdx.

(10.7)

Here p(yJ1 , . . . , yJk+m−j |x, 0) is the pdf of (XJ1(t∗), . . . , XJk+m−j (t
∗)|X(t∗) = x,∇X|J(t∗) =

0), and Q is a j × j positive definite matrix such that Q(−ΣJ(t∗))Q = Ij . Then, similarly
to the arguments in the proof of Theorem 4.1, one can write the last expectation in (10.7)
as

E{det(∆(t∗, yJ1 , . . . , yJk+m−j )− (x/σ2
T )Ik)},

where ∆(t∗, yJ1 , . . . , yJk+m−j ) is a centered Gaussian random matrix with covariance

independent of x, and hence the highest-order term in x is (−1)jxj/σ2j
T . Noting that

E{X(t∗)Xi(t
∗)} = 0 for all i ∈ I(t∗) and following similar arguments in the proof of

Theorem 4.1, we obtain

I(u, J) = (−1)j

√
det(ΣJ(t∗))

det(ΛJ(t∗) + ΣJ(t∗))
P{(ZJ′1 , . . . , ZJ′j−k) ∈ E′(J)}

× P{(XJ1(t∗), . . . , XJk+m−j (t
∗)) ∈ E(J)|∇X|J(t∗) = 0}Ψ

(
u

σT

)
(1 + o(1)),

which yields the desired result together with (10.6). In particular, by (10.5), one can
treat (ZJ′1 , . . . , ZJ′j−k) having covariance Σ(t∗) + Σ(t∗)Λ−1(t∗)Σ(t∗) with indices restricted

on τ(J) \ τ(K) while not changing the probability that it falls in E(J). Lastly, the case
when k = 0 can be shown similarly.
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