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Abstract

We study transient patterns appearing in a class of SPDE using the framework of
quasi-stationary and quasi-ergodic measures. In particular, we prove the existence
and uniqueness of quasi-stationary and quasi-ergodic measures for a class of reaction-
diffusion systems perturbed by additive cylindrical noise. We obtain convergence
results in L2 and almost surely, and demonstrate an exponential rate of convergence
to the quasi-stationary measure in an L2 norm. These results allow us to qualitatively
characterize the behaviour of these systems in neighbourhoods of an invariant mani-
fold of the corresponding deterministic systems at some large time t > 0, conditioned
on remaining in the neighbourhood up to time t. The approach we take here is based
on spectral gap conditions, and is not restricted to the small noise regime.
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1 Introduction

The purpose of this article is to provide a framework with which to discuss the
stability and long time behaviour of stochastic perturbations of spatiotemporal patterns
appearing in reaction-diffusion equations. This topic has recently been of great interest to
physicists, biologists, and mathematicians. For instance, travelling waves and stochastic
perturbations thereof are important features of models from neuroscience [28, 39, 54,
69], population genetics [41, 70, 71], ecology [76, 83], and many other disciplines.
Meanwhile, understanding stochastically perturbed spiral waves in excitable media has
lead to insights on cardiac arrhythmias and how to treat them [6, 40, 65].

Stochastic perturbations of a pattern in a reaction-diffusion system usually destroy
the pattern at some finite time. Hence, while the unperturbed pattern may be stable, the
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Quasi-Ergodicity of stochastic reaction-diffusion equations

perturbed pattern is often only metastable. In recent decades, there has been much in-
terest in characterizing metastable behaviour in a rigorous mathematical framework, for
instance in [18, 37, 54, 58, 61, 62, 84]. In this paper, we approach the study of metastable
patterns in stochastic reaction-diffusion systems using the theory of quasi-stationary and
quasi-ergodic measures, as defined for instance in [21]. As described more precisely
below, these measures characterize the long time behaviour of a metastable pattern
prior to its destruction. The connection between metastability and quasi-ergodicity
has been studied previously, for instance in discrete and one-dimensional settings in
[14, 13, 44] and [53, 55], respectively. To the author’s knowledge, the results of this
paper are the first contribution studying metastability via quasi-stationary measures in
an infinite dimensional setting.

The remainder of this document is structured as follows. In Section 1.1, we outline
sufficient conditions for the existence and uniqueness of quasi-stationary and quasi-
ergodic measures in SPDE, while Section 1.2 presents an incomplete review of relevant
literature. In Section 2, we provide results on quasi-ergodicity of general continuous
Markov processes in separable Hilbert space. As we do not assume a modified Doeblin
condition as in [21], nor do we assume the existence of bounded integral kernels for the
Markov semigroups which we study as in [20, 52, 74, 75, 91], we obtain convergence
results that hold in an L2 and almost sure sense, rather than uniformly. In Section 3, we
prove that a large class of semilinear SPDEs satisfy the hypotheses of Section 2, and
therefore admit unique quasi-stationary and quasi-ergodic measures. In Section 4, we
conclude the paper with a cursory discussion of how quasi-ergodic measures relate to
metastable patterns in SPDEs.

1.1 Setup and results

Let O ⊂ Rd be a spatial domain and let H be a separable Hilbert space of functions
f : O → Rn for some n ∈ N. Consider the following evolution equation on H,

∂tx = Lx+N(x), (1.1)

where L and N are linear and nonlinear operators, respectively, on H. We impose the
following conditions on (1.1), which we verify for the case where L = ∆ is the Laplace
operator and N is a polynomial in Example 1.4 below. Under these assumptions, unique
mild solutions to (1.1) are known to exist, for instance using fixed point arguments
similar to those discussed in Section 3 below.

Assumption 1.1. The PDE (1.1) satisfies the following.

(a) N is a nonlinearity defined on a set D(N) that is densely and continuously embed-
ded in H, D(N) possesses its own Banach space structure, and N : D(N)→ H is
locally Lipschitz and twice continuously Fréchet differentiable as an operator on
D(N).

(b) L : D(L) ⊂ H → H generates a strongly continuous semigroup (Λt)t≥0 on H

such that Λt(H) ⊂ D(N) for all t > 0, and (Λt)t≥0 restricted to D(N) is a strongly
continuous semigroup.

(c) There exists ω > 0 such that ‖Λt‖H ≤ e−ωt and ‖Λt‖D(N) ≤ e−ωt.

(d) Λt : H → D(N) is compact, and ‖Λt‖H→D(N) is locally square integrable in t > 0.

(e) There is a stable normally hyperbolic invariant manifold Γ of (1.1), in the sense of
[8, Condition (H3)].
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Our primary interest is in how the solutions to (1.1) near the invariant manifold Γ

behave under perturbations by noise. Specifically, consider the following stochastic
perturbation of (1.1),

dX = (LX +N(X)) dt+ σB dW. (1.2)

The noise amplitude is σ ≥ 0, B2 is a symmetric positive bounded linear operator with
bounded inverse, and W = (Wt)t≥0 is a cylindrical Wiener process on H.

For each x ∈ H, all stochastic objects are considered over a fixed ambient probability
space (Ω,F ,Px), where Px is the probability measure associated with (1.2) with initial
condition X0 = x. Let Ex denote expectation with respect to Px. Let (Ft)t≥0 be the
filtration associated with (Wt)t≥0. For any probability measure ν on H let

Pν [·] :=

∫
H

Px[·] ν(dx),

and let Eν be expectation with respect to Pν . For any measure ν on H and ν-measurable
function f : H → R, we denote ν(f) :=

∫
f(x) ν(dx).

We now provide sufficient conditions for the existence and uniqueness of mild solu-
tions to (1.2). By a mild solution to (1.2), we mean a continuous Markov process (Xt)t≥0

satisfying

Xt = ΛtX0 +

∫ t

0

Λt−sN(Xs) ds+ σ

∫ t

0

Λt−sB dWs, X0 ∈ H, t > 0.

Assumption 1.2. The SPDE (1.2) satisfies the following.

(a) Yt :=
∫ t

0
Λt−sB dWs is a well-defined continuous D(N)-valued process.

(b) For all t > 0,

Tr

(∫ t

0

ΛsB
2Λ∗s ds

)
< ∞. (1.3)

It should be emphasized that while we allow for non-trace class noise, our assumptions
guarantee that the SPDE (1.2) is non-singular, so that we need not be concerned with
the renormalization theory developed e.g. in [30, 48, 49].

In Theorem 3.1 below, we see that Assumptions 1.1 & 1.2 imply the existence
and uniqueness of local in time D(N)-valued mild solutions to (1.2). We let Γδ be
a δ-neighbourhood of Γ defined in the D(N) topology, and denote by Nδ a C2 cutoff
of N supported on a small neighbourhood of Γδ. The construction of Nδ is specified
more carefully in Section 3. In Theorem 3.6, we see Assumptions 1.1 & 1.2 also imply
that (1.2) with N cutoff to Γδ possesses a unique invariant measure, henceforth denoted
µ, such that µ(D(N)) = 1.

Following these considerations, we make the following additional assumption.

Assumption 1.3. Assumptions 1.1 & 1.2 hold, so that there exists a unique invariant
measure µ of (1.2) with N replaced by a smooth cutoff Nδ supported on a neighbourhood
of Γδ, as proven in Theorem 3.6 below. We morevoer assume that there exists δ > 0 such
that the following hold.

(a) Γδ is contained in the support of µ, so that µ(Γδ) > 0.

(b) Denoting the Lipschitz constant of Nδ by κ, we have κ ∈ (0, ω).

Example 1.4. The principal example we have in mind is as follows. Let O ⊂ Rd be a
sufficiently regular bounded spatial domain and set H := L2(O,Rn). Let L = d∆ with
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Dirichlet boundaries for some d > 0, or L = d∆− a for constants a, d > 0 with periodic
boundaries. For some vector of polynomials p : Rn → Rn, define

N(f)(ξ) = p(f(ξ)) for f ∈ D(N) := Cb(O,R
n), ξ ∈ O.

It is straightforward to check that this example satisfies Assumption 1.1(a), (b), (c), (d),
due to the compactness of Λt : H → D(N) and the L2 → L∞ ultracontractivity of (Λt)t≥0

[34, Theorem 9.3]. In this example, we suppose that (1.1) admits a stable travelling wave
solution, as in the FitzHugh-Nagumo equation on O = [0, L] with periodic boundaries
[5, 42, 59]. Specifically, we suppose that there exists x̂ ∈ Cb(O;Rn) and c ∈ Rd such that

xt(ξ) = x̂(ξ − ct), ξ ∈ O, t > 0,

is a solution of (1.1), and Γ := {x̂(· − ct) : t ∈ R} is a nonlinearly stable invariant manifold
of (1.1). Hence there exists δ > 0 such that if

sup
ξ∈O
‖x0(ξ)− x̂(ξ − cs)‖Rd ≤ δ

for some s ∈ R and (xt)t≥0 is the solution to (1.1) with initial condition x0, then

lim
t→∞

d(xt,Γ) = 0,

where d(x,A) is the distance between a point x and the closest point in a set A. So long
as we work in one spatial dimension, we may take B = I and verify Assumption 1.2 as
in [32, Theorem 11.3.1]. If we take B such that TrB < ∞, then we may take O ⊂ Rd
for d > 1, and verify that Assumption 1.2 is still satisfied. In this example, by taking
sufficiently small δ we can verify Assumption 1.3 so long as either of the constants a, d in
L = d∆− a are large enough for Assumption 1.3(b) to hold.

Now, we return to the abstract SPDE (1.2). Fix δ > 0 such that Assumption 1.3 holds.
As we are interested in the dynamics of (1.2) in Γδ, it is natural to define

τ := inf {t > 0 : Xt ∈ H/Γδ} .

We say that a solution of (1.2) is Γ-like (with tolerance δ > 0) at time t > 0 if Xt ∈ Γδ. We
would like to be able to answer the following questions.

Q1. (Stability) If X0 ∈ Γ, how long does a Γ-like solution persist?

Q2. (Similarity) If Xt is a Γ-like solution over a (random) time interval [0, τ), how does
its behaviour differ from the behaviour of solutions to (1.1) in Γ over this time
interval?

Q3. (Ergodicity) When, and how, can we understand the “average” behaviour of a Γ-like
solution?

A brief, non-exhaustive survey of some of the literature related to these questions
is presented in Section 1.2. In this paper, we address these questions – primarily Q3 –
using the theory of quasi-stationary and quasi-ergodic measures. We obtain the following
result on the existence and uniqueness of quasi-stationary and quasi-ergodic measures
for (1.2).

Theorem A. Let Assumption 1.3 hold. Then, there exist unique positive ϕ,ϕ∗ ∈ L2(Γδ, µ),
given by the principal eigenfunctions of the sub-Markov semigroup of (1.2) with killing
at H/Γδ, such that the following statements hold.
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(i) α(dx) := ϕ∗(x)µ(dx) is the unique probability measure on Γδ satisfying

Pα [Xt ∈ A | t < τ ] = α(A) (1.4)

for all measurable A ⊂ Γδ. Moreover, for f ∈ L2(Γδ, µ), the following convergence
result holds in L2

µ and µ-almost surely:

lim
t→∞

Ex [f(Xt) | t < τ ] = α(f). (1.5)

(ii) β(dx) := ϕ(x)ϕ∗(x)µ(dx) is the unique probability measure on Γδ such that for any
ε > 0, and bounded measurable f : H → R,

Px

[∥∥∥∥1

t

∫ t

0

f(Xs) ds− β(f)

∥∥∥∥ > ε | t < τ

]
−−−→
t→∞

0, (1.6)

the above convergence holding in L2
µ and µ-almost surely over x ∈ Γδ.

The proof of Theorem A follows from Theorems 2.8 & 3.3 below. A probability measure
satisfying (1.4) is referred to as a quasi-stationary measure, while a probability measure
satisfying (1.6) is referred to as a quasi-ergodic measure. As will be seen in Section 2,
the functions ϕ,ϕ∗ are given by the principal eigenfunctions of the sub-Markov generator
of (1.2) in L2(Γδ, µ). We obtain the following result on the rate of convergence to the
quasi-stationary measure α, the proof of which follows from Theorems 2.9 & 3.3 below.

Theorem B. Let Assumption 1.3 hold, and let ϕ,ϕ∗, α be as in Theorem A. Then, defining
α∗(dx) := ϕ(x)µ(dx), for any f ∈ L2(Γδ, µ) there exists T > 0 and a constant Cf > 0 such
that

‖Ex [f(Zt) | t < τ ]− α(f)‖L1
α∗
≤ Cfe

−γt ∀t ≥ T.

Building on the above results, we prove the existence of a Q-process for (1.2) in
Γδ. Roughly speaking, this Q-process is a homogeneous Markov process in Γδ given
by (Xt)t≥0 conditioned on never exitting Γδ. In practice, Q-processes may be analyzed
via Doob’s h-transform [77, pp. 296], for instance as seen in [26, Theorem 6.16(iv)],
though this is not a technique used in this document. Since we do not prove uniform
convergence to the quasi-stationary measure, and instead rely on the spectral properties
of the sub-Markov generator of (1.2) in Γδ, we cannot use the theory developed e.g. in
[21]. The proof of the following theorem is provided in Theorems 2.10 & 3.3.

Theorem C. Let Assumption 1.3 hold for some fixed δ > 0. Then, for each s ≥ 0 and
A ∈ Fs, the limit

Qx[A] := lim
t→∞

Px [A | t < τ ] , A ∈ Fs, s ≥ 0 (1.7)

is defined for µ-almost all x ∈ Γδ. With respect to (Qx)x∈Γδ , the solution process (Xt)t≥0

is a homogeneous Markov process in Γδ with unique ergodic measure β.

Before proving Theorems A, B, & C, we discuss the existence of quasi-stationary and
quasi-ergodic measures in a more general Hilbert space setting in Section 2, below, and
return to the question of quasi-ergodicity of Γ-like solutions of (1.2) in Section 3. First,
we review the literature related to the problem at hand.

1.2 Literature

As described in Example 1.4, are principally interested in the metastability of travel-
ling waves in stochastic reaction-diffusion equations, a Previous studies on this topic
include Bresslof & Weber [18], Eichinger, Gnann, & Kuehn [37], Hamster & Hupkes
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[50, 51], Inglis & MacLaurin [54], Krüger & Stannat [57, 58], Lang [61], Lang & Stannat
[62], MacLaurin [66], and Stannat [84]. We also expect the theory developed in this
paper to apply to spiral waves on bounded discs in R2 with Dirichlet boundary conditions,
such as those studied by Xin [88], and with significant modifications to spiral waves on
R2, as studied in PDE by Beyn & Lorenz [12], Sandstede, Scheel, & Wulff [81], and in
SPDEs by Kuehn, MacLaurin, & Zucal [60].

Other studies have addressed metastability of patterns in SPDE using techniques
related to the theory of large deviations [43]. The recent work of Salins, Budhiraja,
& Dupuis [80] provides a general overview of large deviation theory for SPDEs, while
Barret [7] and Berglund & Gentz [10] have obtained Eyring-Kramers formula for SPDEs
using finite dimensional approximation methods. The results of [7, 10] provide quanti-
tative estimates on the exit time up to which a metastable pattern in an SPDE persists.
However, these exit time estimates are only valid in a small noise regime, making them
irrelevant for many applications to the life sciences, where small noise approximations
are often bad. Many biological systems are composed of populations of interacting parti-
cles/agents, and in practice the population size of such systems is rarely large enough
for a deterministic limit to be a good approximation of the dynamics. The resulting
demographic noise – i.e. noise arising from the fact that the system is composed of
finitely many agents – can have significant effects on the dynamics of a systems. See
[19, 27, 45, 76, 78] for examples from various fields of biology.

Metastability has been studied using quasi-stationary and quasi-ergodic measures
in finite dimensional systems in [14, 13, 53, 55]. In [44], the hypotheses of [14, 13] are
checked for a particular example of the Glauber dynamics associated with a two dimen-
sional Ising model with boundary conditions. An introduction to quasi-ergodicity can be
found in the textbook of Collet et al. [26]. The questions of existence and uniqueness of
quasi-stationary and quasi-ergodic measures are discussed in their greatest generality
in the work of Champagnat & Villemonais [21, 22, 23, 24]. In [21], exponential conver-
gence to quasi-stationary measures in total variation norm is shown to be equivalent to
a modified Doeblin condition, while [24] studies Lyapunov conditions for the existence
of quasi-stationary and quasi-ergodic measures. Castro et al. [20], Hening & Kolb [52],
Hening et al. [53], and Ji et al. [55], Lelièvre et al. [63], Pinsky [74, 75], Zhang, Li, & Song
[91], and others have studied quasi-ergodicity by exploiting the spectral properties of
the sub-Markov semigroup of a killed Markov process. Their arguments are similar in
spirit to those of the present document. However, [20, 52, 74, 75, 91] work in finite
dimensional settings, and implicitly or explicitly assume the existence of a bounded
density of the sub-Markov transition kernel with respect to some referene measure,
which we do not assume here. Meanwhile [53, 55, 63] make explicit use of the finite
dimensional nature and gradient structure of the systems they study.

To the author’s knowledge, there is almost no work on quasi-stationary and quasi-
ergodic measures of SPDEs. Liu et al. [64] prove quasi-stationarity of subcritical su-
perprocesses, the distribution of which is governed by an SPDE [86]. However, the
arguments of [64] are only at the level of the particle process, and hence do not general-
ize to other SPDEs which are not dual to a particle system. To the author’s knowledge,
this paper therefore represents the first results on the existence and uniqueness of
quasi-stationary and quasi-ergodic measures for general semilinear SPDEs.

2 General sub-Markov semigroups

In this section, we establish conditions for the existence and uniqueness of quasi-
stationary and quasi-ergodic measures for a general irreducible continuous Markov
process (Zt)t≥0 on a separable Hilbert space H. Our strategy is to demonstrate that
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if the Markov semigroup of (Zt)t≥0 is irreducible and compact in some topology, then
these properties are inherited by the sub-Markov semigroup of (Zt)t≥0 with killing at
the boundary of any bounded connected subdomain of H. This allows us to conclude
that the top of the spectrum of this sub-Markov generator is a simple eigenvalue. These
considerations are proven in Section 2.1. Then, in Section 2.2 we prove quasi-ergodicity
of the process with killing. We emphasize that we make no assumptions on the existence
or boundedness of an integral kernel density for our sub-Markov semigroup, nor do
we assume any Doeblin type or Lyapunov condition on our Markov process. As a
consequence we obtain convergence results that hold in an Lp and almost sure sense,
rather than uniformly.

Before proceeding, we introduce the general setup and assumptions of this section.
In Section 3, we verify that these assumptions hold for SPDEs satisfying Assumption 1.3.
Let (Zt)t≥0 be a continuous (Ft)t≥0-adapted Markov process on a separable Hilbert
space H. Let the Markov semigroup of (Zt)t≥0 be defined as

Ptf(x) := Ex [f(Zt)] , f ∈ BM(H), x ∈ H,

where BM(H) is the set of bounded measurable functions f : H → R. In our general
setting, (Pt)t≥0 is not necessarily strongly continuous on BM(H). However, in many
cases, one can in fact find an extension of BM(H) onto which (Pt)t≥0 extends to a
strongly continuous semigroup. This leads to the following assumptions.

Assumption 2.1. There exists an invariant measure µ of (Pt)t≥0 such that Pt extends to
a compact operator on L2(H,µ) for each t > 0.

Assumption 2.2. The semigroup (Pt)t≥0 is irreducible, in the sense that

Pt1F (x) > 0 for all open measurable F ⊂ H, x ∈ H, t > 0, (2.1)

and strong Feller, in the sense that it maps bounded measurable functions to bounded
continuous functions.

Now, fix a bounded, connected, nonempty, open subset E of H contained in the
support of µ. For E ⊂ suppµ and p ≥ 1, define the Lpµ-norm of f ∈ BM(E) as

‖f‖pLpµ :=

∫
E

‖f(x)‖p µ(dx). (2.2)

We then define Lp(E,µ) as the closure of BM(E) under the Lpµ-norm. Since we have
specified that E is nonempty and open, and that E ⊂ suppµ, these spaces are nontrivial.
Supposing that the initial distribution of (Zt)t≥0 has support in E, define the stopping
time

τ := inf {t > 0 : Zt ∈ H/E} .

For t ≥ 0 the sub-Markov semigroup of (Zt)t≥0 killed on H/E is

Qtf(x) := Ex
[
f(Zt)1{t<τ}

]
, f ∈ Cb(E).

Assumption 2.3. For B ⊂ E, let τB := inf {t > 0 : Zt ∈ H/B}, so τ = τE . We assume
that for all nonempty open B ⊂ E, x ∈ E and t > 0, we have Px [τB <∞] = 1 and
Px [t < τB ] > 0.

2.1 Spectral properties of the sub-Markov semigroup

To prove the quasi-ergodicity of (Zt)t≥0 with killing outside of E, we study the
spectrum of (Qt)t≥0. First, we need the following lemma.

Lemma 2.4. Let Assumptions 2.1, 2.2, & 2.3 hold. Then, we have the following.
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(i) (Qt)t≥0 extends to a strongly continuous semigroup of compact operators on
L2(E,µ).

(ii) (Qt)t≥0 is strongly Feller.

Proof. (i) We first prove strong continuity. For f ∈ BM(E), let f be the extension of f to
H by zero. For arbitrary p ≥ 1, f ∈ BM(E), and all t > 0, x ∈ E, we have

|Qtf(x)|p ≤ Ex [|f(Zt)|p1t<τ ] ≤ Ex

[∣∣f(Zt)
∣∣p] ≤ Pt

(
|f |p

)
(x),

by Jensen’s inequality. Hence, by the µ-invariance of (Pt)t≥0,∫
E

|Qtf(x)|p µ(dx) ≤
∫
H

Pt

(∣∣f ∣∣p) (x)µ(dx)

=

∫
H

∣∣f(x)
∣∣p µ(dx) =

∫
E

|f(x)|p µ(dx).

Thus ‖Qtf‖Lpµ ≤ ‖f‖Lpµ for p ≥ 1, so ‖Qtf‖L∞µ ≤ ‖f‖L∞µ . It follows that Qtf is bounded

µ-almost surely by f ∈ BM(E) uniformly in t ≥ 0, and we may apply the dominated
convergence theorem to find that

1

2
lim
t→0
‖Qtf − f‖L2

µ
≤ lim

t→0

(∫
E

f(x)2 µ(dx)−
∫
E

f(x)Qtf(x)µ(dx)

)
= 0.

Compactness of Qt follows from from [4, Theorem 2.3], observing that Qt is dominated
by Pt, in the sense that for all positive f ∈ Lp(E,µ),

Qtf(x) = Ex [f(Zt)1t<τ ] ≤ Ex [f(Zt)] = Ptf(x), x ∈ E, t > 0.

(ii) The following is similar to an argument found in [25]. Fix arbitrary t > s > 0 and
a bounded measurable function f : E → R, and define

ψt,s(x) := Ex [f(Xt−s), t− s < τ ] .

Then Qtf(x) = QsQt−sf(x) = Ex [ψt,s(Xs)1s<τ ], and for all x ∈ E it holds that

|Qtf(x)− Psψt,s(x)| = Ex [|ψt,s(Xs)|1s>τ ] ≤ ‖f‖L∞µ Px [s > τ ] . (2.3)

Note that the right hand side of (2.3) tends to zero as s → 0 by continuity of (Zt)t≥0.
Since ψt,s is a bounded measurable function and (Pt)t≥0 is strong Feller, we see that
Psψt,s ∈ Cb(E). Hence for any sequence (xn)n∈N ⊂ E such that xn → x ∈ E, for any
ε > 0 we can find small s > 0 and N > 0 such that if n > N , then

|Qtf(xn)−Qtf(x)| ≤ |Qtf(xn)− Psψt,s(xn)|+ |Psψt,s(xn)− Psψt,s(x)|
+ |Psψt,s(x)−Qtf(x)|

≤ ε.

Therefore for arbitrary bounded measurable f : E → R and any t > 0, we have that
Qtf : E → R is continuous.

Before proceeding, we must borrow a few ideas from the theory of Banach lattices.
Since these concepts are not the main focus of this paper, we refer to [9, Section 10.3] for
the relevant definitions. The proof of the following result is similar to an argument in
[20, Theorem 4.5], with a subtle difference due to the L2, continuous time setting in
which we work.
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Lemma 2.5. Under Assumptions 2.1 & 2.2, (Qt)t≥0 is an ideal irreducible semigroup on
the Banach lattice L2(E,µ), in the sense that for each t > 0, the only closed ideals in
L2(E,µ) that are Qt-invariant are L2(E,µ) and {0}.

Proof. Let I be a closed ideal in L2(E,µ). By [9, Proposition 10.15], there must exist a
measurable set A ⊂ E such that

I =
{
f ∈ L2(E,µ) : f |A = 0 µ-almost surely

}
.

If µ(A) = µ(E), then I consists solely of the zero function in L2(E,µ), while µ(A) = 0

implies that I = L2(E,µ). Suppose that 0 < µ(A) < µ(E), and take f ∈ I/{0} such
that f ≥ 0. Hence there exists a real number ε > 0 and a set B ⊂ E/A of positive
µ-measure such that f(x) > ε for µ-almost all x ∈ B. If we may take B to be open, then
by Assumption 2.3 we observe that for µ-almost all x ∈ E,

Qt1B(x) = Ex [1B(Zt)1t<τ ] = Px [Zt ∈ B, t < τ ] ≥ Px [t < τB ] > 0 . (2.4)

It follows that Qtf > εQt1B holds µ-almost surely in E, and in particular that Qtf cannot
be contained in I.

If B cannot be taken to be open, let t > s > 0, and note that Qs1B is a continuous
function, by Lemma 2.4. Moreover, by the strong continuity of (Qt)t≥0, we may take s > 0

such that Qs1B is nonnegative and nonzero. Therefore, Qs1B has nontrivial open support.
Hence we may find an open nonempty set B′ ⊂ E and ε′ > 0 such that Qs1B(x) ≥ ε′1B′(x)

for µ-almost all x ∈ E. Then, using the positivity of (Qt)t≥0 we find that for all t > 0 and
s > 0 sufficiently small, we have

Qtf ≥ εQt1B = εQt−sQs1B ≥ εε′Qt−s1B′ > 0,

holds µ-almost surely in E, where the last inequality holds as in (2.4) with B replaced by
B′. In particular, we again see that Qtf(x) > 0 for µ-almost all x ∈ A, and hence Qtf is
not in I.

Therefore if 0 < µ(A) < µ(E), it is impossible for I to be Qt-invariant. Hence for
arbitrary t > 0, the only Qt-invariant ideals in L2(E,µ) are {0} and L2(E,µ).

The generator of (Pt)t≥0 in L2(H,µ) is denoted L, while the generator of (Qt)t≥0 in
L2(E,µ) is denoted LE . For each t > 0, Qt has an adjoint in L2(E,µ), denoted Q∗t . Define

s(Qt) := sup SpecQt, s(LE) := sup SpecLE .

Given Lemma 2.4 & 2.5, we have the following classical result.

Proposition 2.6. s(LE) is a simple eigenvalue of LE with positive eigenvector.

Proof. Since for each t > 0 the operator Qt is compact, LE must have compact resolvent
[38, Theorem II.4.29]. Since each Qt is positive, LE is resolvent positive [9, Corollary
11.4]. Moreover, since Qt is a positive compact irreducible operator, [35] implies that
s(Qt) > 0, and therefore by the spectral mapping theorem [72, Theorem 2.4]

s(LE) =
1

t
ln s(Qt) > −∞.

By [9, Proposition 12.15], there exists ϕ ∈ D(A) such that ϕ > 0 and LEϕ = s(LE)ϕ. As
s(LE) is an eigenvalue of LE , it must be a pole of the resolvent operator of LE . By [9,
Theorem 14.12(d)], the order of this pole has multiplicity equal to one. Consequently,
the eigenspace of s(LE) is equal to span{ϕ}.

EJP 29 (2024), paper 75.
Page 9/29

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1130
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Quasi-Ergodicity of stochastic reaction-diffusion equations

2.2 Quasi-Ergodicity of Markov processes on separable Hilbert space

Proposition 2.6 in hand, we are able to prove results on the quasi-ergodicity of (Zt)t≥0.
Let ϕ, ϕ∗, be the eigenfunctions from Proposition 2.6, normalized such that∫

E

ϕ(x)µ(dx) =

∫
E

ϕ∗(x)µ(dx) = 1,

and define
M := 〈ϕ,ϕ∗〉L2

µ
∈ (0, 1].

We have the following lemma on the asymptotic behaviour of (Qt)t≥0. The proof idea is
similar to [15, Lemma 3]. In the case where H is finite dimensional and Qt possesses
a uniformly bounded integral kernel with respect to µ, similiar results are proven in
[74, Theorem 3], and also in [56, 91]. Our weaker assumptions lead us to convergence
results in L2 and almost surely, rather than uniformly.

Lemma 2.7. Let Assumptions 2.1, 2.2, & 2.3 hold. Then, there exists γ > 0 such that for
all f ∈ L2(E,µ) we have∥∥∥∥eλ1tQtf(·)−M−1

∫
ϕ(·)ϕ∗(y)f(y)µ(dy)

∥∥∥∥
L2
µ

≤ e−γt
(
1 +M−1

)
‖f‖L2

µ
. (2.5)

Moreover, eλ1tQtf(·) converges µ-almost surely to M−1
∫
ϕ(·)ϕ∗(y)f(y)µ(dy).

Proof. By Proposition 2.6 we may split L2(E,µ) = H1 ⊗ Hrem, where H1 = span{ϕ}
and both of H1, Hrem are Qt-invariant, see Deimling [36, Theorem 8.9]. Since e−λ1t =

sup Spec(Qt) and there is a gap between e−λ1t and the rest of the spectrum of Qt, there
exists γ > 0 such that

eλ1t‖Qt|Hrem‖L2
µ
≤ e−γt for large t > 0. (2.6)

Moreover, for f ∈ L2(E,µ) there exists ψf ∈ Hrem and cf ∈ R such that

f = cfϕ+ ψf .

Observing that

0 = lim
t→∞

∫
E

(
eλ1tQtf(x)− cfϕ(x)

)
ϕ∗(x)µ(dx)

= lim
t→∞

∫
E

eλ1tf(x)Q∗tϕ
∗(x)µ(dx)− cfM

= lim
t→∞

∫
E

f(x)ϕ∗(x)µ(dx)− cfM,

we obtain cf = M−1〈f, ϕ∗〉L2
µ
. By Hölder’s inequality,

|cf | ≤ M−1‖f‖L2
µ
, ‖ψf‖L2

µ
≤
(
1 +M−1

)
‖f‖L2

µ
,

and hence ∥∥∥∥eλ1tQtf(x)−M−1

∫
E

ϕ(x)ϕ∗(y)f(y)µ(dy)

∥∥∥∥
L2
µ

=
∥∥∥eλ1tcfQtϕ(x) + eλ1tQtψf −M−1ϕ(x)〈f, ϕ∗〉L2

µ

∥∥∥
L2
µ

=
∥∥∥(cf −M−1〈f, ϕ∗〉L2

µ

)
ϕ(x) + eλ1tQtψf

∥∥∥
L2
µ

=
∥∥eλ1tQtψf

∥∥
L2
µ
≤ e−γt

(
1 +M−1

)
‖f‖L2

µ
,
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completing the proof of (2.5).
To prove that eλ1tQtf(·) converges µ-almost surely to M−1

∫
ϕ(·)ϕ∗(y)f(y)µ(dy), fix

f ∈ L2(E,µ) and define

At(·) :=

∣∣∣∣eλ1tQtf(·)−M−1

∫
ϕ(·)ϕ∗(y)f(y)µ(dy)

∣∣∣∣,
so that ‖At‖L2

µ
≤ Cfe

−γt for some Cf > 0. By Chebyshev’s inequality, for any n ∈ N and

t, s > 0 we have

µ
{
x ∈ E : |At(x)−As(x)| > n−1

}
≤ n2‖At −As‖2L2

µ

≤ 2n2 min
{
‖As‖L2

µ
, ‖At‖L2

µ

}
≤ 2n2Cf exp (−γmin {s, t}) .

Therefore (At)t≥0 is Cauchy µ-almost surely, and so converges µ-almost surely. By (2.5),
the µ-almost sure limit of (At)t≥0 must be zero, completing the proof.

We are now ready to prove the main result of this section. The following results
consist of “conditonal” limiting theorems for 1. the distribution of (Zt)t≥0, 2. the time-
averaged dynamics of (Zt)t≥0, and 3. the distribution of a sequence of measurements
of (Zt)t≥0 taken at different times prior to killing. Compare the following results with
those of [91, Section 3], noting in particular that we work in an Lp framework due to the
fact that we make no assumptions on the existence or boundedness of a density for the
transition kernel of (Qt)t≥0.

Theorem 2.8. Let Assumptions 2.1, 2.2, & 2.3 hold. Defining α(dx) := ϕ∗(x)µ(dx) and
β(dx) := ϕ(x)ϕ∗(x)µ(dx), the following results hold.

1. For f ∈ L2(E,µ) we have

lim
t→∞

Ex [f(Zt) | t < τ ] = α(f) (2.7)

in L2
µ and µ-almost surely. Moreover, α is the unique quasi-stationary measure of

(Zt)t≥0. That is, α is the only measure on E such that for any measurable A ⊂ E,

Pα [Zt ∈ A | t < τ ] = α(A), t > 0.

2. For arbitrary f ∈ L2(E,µ), ε > 0, and µ-almost all x ∈ E, we have

lim
t→∞

Px

[∣∣∣∣1t
∫ t

0

f(Zs) ds− β(f)

∣∣∣∣ > ε
∣∣ t < τ

]
= 0. (2.8)

Moreover, β is the unique quasi-ergodic measure of (Zt)t≥0 on E.

3. For f, g ∈ L2(E,µ) and 0 < a < b < 1 we have in L2
µ and µ-almost surely that

lim
t→∞

Ex [f(Zat)g(Zt) | t < τ ] = β(f)α(g), (2.9)

lim
t→∞

Ex [f(Zat)g(Zbt) | t < τ ] = β(f)β(g). (2.10)

4. For f ∈ L2(E,µ), it holds in L2
µ and µ-almost surely that

lim
t→∞

lim
T→∞

Ex [f(Zt) |T < τ ] = β(f). (2.11)
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Proof. To see (2.7), note that Lemma 2.7 implies

lim
t→∞

Ex [f(Zt) | t < τ ] = lim
t→∞

Qtf(x)

Qt1(x)

=
M−1

∫
E
ϕ(x)ϕ∗(y)f(y)µ(dy)

M−1
∫
E
ϕ(x)ϕ∗(y)µ(dy)

= α(f),

the above limits holding µ-almost surely and in L2
µ. To see that α is in fact a quasi-

stationary measure, we compute for µ-almost all x ∈ E

Eα [f(Zt) | t < τ ] =

∫
E
Qtf(y)α(dy)

Pα[t < τ ]

=
1

Pα[t < τ ]
lim
s→∞

Qs(Qtf)(x)

Px[s < τ ]

=
1

Pα[t < τ ]
lim
s→∞

Qs(Qtf)(x)

Px[s+ t < τ ]

Px[s+ t < τ ]

Px[s < τ ]

=
1

Pα[t < τ ]
lim
s→∞

Ex [f(Xs+t) |s+ t < τ ]Ex[Qt1(Xs) | s < τ ]

=
1

Pα[t < τ ]

∫
E

f(y)α(dy)

∫
E

Qt1(y)α(dy) =

∫
E

f(y)α(dy).

Supposing α0 were a second quasi-stationary measure, then∫
E

f(y)α0(dy) = lim
t→∞

Eα0
[f(Zt) | t < τ ] =

∫
E

f(y)α(dy),

so that α0 = α by duality.
We now prove (2.9). First note that, by the Markov property,

Ex [f(Zat)g(Zt) | t < τ ] =
eλ1tQat (f(·)Qt−atg(·)) (x)

eλ1tQt1(x)
. (2.12)

From Lemma 2.7, we have that
(
eλ1tQt1(x)

)
converges to M−1ϕ(x) as t → ∞ µ-

almost surely and in L2
µ. We now show that the limit of the numerator in (2.12) is

M−1ϕ(x)β(f)α(g) in L2
µ and µ-almost surely. To see this, we define

ht(x) := f(x)eλ1(t−at)Qt−atg(x),

and compute

eλ1tQat(f(·)Qt−atg(·))(x)−M−1ϕ(x)β(f)α(g)

= eλ1tQat(f(·)Qt−atg(·))(x)− ϕ(x)M−2

∫
ϕ(y)ϕ∗(y)f(y)µ(dy)

∫
ϕ∗(z)g(z)µ(dz)

= eλ1atQatht(x)−M−1

∫
ϕ(x)ϕ∗(y)f(y)M−1

∫
ϕ(y)ϕ∗(z)g(z)µ(dz)µ(dy)

= eλ1atQatht(x)

−M−1

∫
ϕ(x)ϕ∗(y)f(y)

(
M−1

∫
ϕ(y)ϕ∗(z)g(z)

− eλ1(t−at)Qt−atg(y) + eλ1(t−at)Qt−atg(y)

)
µ(dy)

= eλ1atQatht(x)−M−1

∫
ϕ(x)ϕ∗(y)ht(y)µ(dy)

+M−1

∫
ϕ(x)ϕ∗(y)f(y)

(
eλ1(t−at)Qt−atg(y)−M−1

∫
ϕ(y)ϕ∗(z)g(z)µ(dz)

)
µ(dy).

(2.13)
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Taking the L2
µ norm and applying Hölder’s inequality, we have∥∥∥∥eλ1atQatht(x)−M−1

∫
ϕ(x)ϕ∗(y)ht(y)µ(dy)

∥∥∥∥
L2
µ

+M−1‖ϕ‖L2
µ

∣∣∣∣∫ ϕ∗(y)f(y)

(
eλ1(t−at)Qt−atg(y)−M−1

∫
ϕ(y)ϕ∗(z)g(z)µ(dz)

)
µ(dy)

∣∣∣∣
≤
∥∥∥∥eλ1atQatht(x)−M−1

∫
ϕ(x)ϕ∗(y)ht(y)µ(dy)

∥∥∥∥
L2
µ

+M−1‖ϕ‖L2
µ
‖ϕ∗f‖L2

µ

∥∥∥∥eλ1(t−at)Qt−atg(·)−M−1

∫
ϕ(·)ϕ∗(z)g(z)µ(dz)

∥∥∥∥
L2
µ

≤ e−γt(1 +M−1)‖ht‖L2
µ

+M−1‖ϕ‖L2
µ
‖ϕ∗f‖L2

µ
e−γ(t−at)(1 +M−1)‖g‖L2

µ
.

(2.14)
Note that

‖ht‖L2
µ

=
∥∥∥f(·)eλ1(t−at)Qt−atg(·)

∥∥∥
L2
µ

≤ ‖f‖L2
µ
eλ1(t−at)‖Qt−atg‖L2

µ
≤ ‖f‖L2

µ
‖g‖L2

µ
,

so that (2.14) tends to zero as t→∞. Hence

lim
t→∞

eλ1tQat(f(·)Qt−atg(·))(x) = M−1ϕ(x)β(f)α(g). (2.15)

in L2
µ. Since the rate of convergence in (2.15) is exponential, the same argument as in

Lemma 2.7 can be used to show that the convergence in (2.15) holds µ-almost surely. We
have therefore proven that limt→∞Ex [f(Zat)g(Zt) | t < τ ] = β(f)α(g) in L2

µ and µ-almost
surely. The proofs of (2.10) & (2.11) are similar.

To prove (2.8), note that from (2.12) we have

Ex

[
1

t

∫ t

0

f(Zs) ds | t < τ

]
=

1
t

∫ t
0
eλ1tQs (f(·)Qt−s1(·)) (x) ds

eλ1tQt1(x)
.

Then, defining ht(x) := f(x)Qt−s1(x), observe that

1

t

∫ t

0

eλ1tQs (f(·)Qt−s1(·)) (x) ds−M−1ϕ(x)β(f)

=
1

t

∫ t

0

eλ1sQs

(
f(·)eλ1(t−s)Qt−s1(·)

)
(x)−M−1ϕ(x)β(f) ds

=
1

t

∫ t

0

eλ1sQs

(
f(·)eλ1(t−s)Qt−s1(·)

)
(x)

−M−1

∫
ϕ(x)ϕ∗(y)f(y)M−1

∫
ϕ(y)ϕ∗(z)1(z)µ(z)µ(dy) ds

=
1

t

∫ t

0

eλ1sQsht(x)−M−1

∫
ϕ(x)ϕ∗(y)ht(y)µ(dy)

−M−1

∫
ϕ(x)ϕ∗(y)

(
M−1

∫
ϕ(y)ϕ∗(z)1(z)µ(dz)− eλ1(t−s)Qt−s1(y)

)
ds.

As the L2
µ norm of ht is bounded uniformly in t > 0, the same argument as used to

prove (2.9) implies that

lim
t→∞

∥∥∥∥Ex [1

t

∫ t

0

f(Zs) ds | t < τ

]
− β(f)

∥∥∥∥
L2
µ

= 0.
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Since the above convergence can be seen to occur at an exponential rate,

lim
t→∞

Ex

[
1

t

∫ t

0

f(Zs) ds | t < τ

]
= β(f)

µ-almost surely, again using the argument as in Lemma 2.7. Applying Markov’s inequality
completes the proof.

Now, we prove that the rate of convergence to the quasi-stationary measure α in
Theorem 2.8.1 is exponential in L2(E,α∗), where α∗(dx) := ϕ(x)µ(dx). If (Zt)t≥0 is
reversible with respect to µ, we of course have α = α∗.

Theorem 2.9. Let Assumptions 2.1, 2.2, & 2.3 hold, and define the probability measure
α∗(dx) := ϕ(x)µ(dx). Then, for any f ∈ L2(E,µ) there exist T > 0 and Cf > 0 such that

‖Ex [f(Zt) | t < τ ]− α(f)‖L1
α∗
≤ Cfe

−γt ∀t ≥ T.

Proof. First, note that since Qtf
Qt1

converges to α(f) in L2
µ, for any K > 0 there exists

T > 0 such that for all t ≥ T , we have∥∥∥∥M−1

Qt1
Qtf − eλtQtf

∥∥∥∥
L1
µ

=

∥∥∥∥(M−1ϕ− eλtQt1
) Qtf
Qt1

∥∥∥∥
L1
µ

≤
∥∥eλtQt1−M−1ϕ

∥∥
L2
µ

∥∥∥∥QtfQt1

∥∥∥∥
L2
µ

≤ C ′fe
−(γ−λ)t

for some C ′f > 0. From this we compute

‖Ex [f(Zt) | t < τ ]− α(f)‖L1
α∗

=

∥∥∥∥ ϕ

Qt1
Qtf − α(f)ϕ

∥∥∥∥
L1
µ

≤ M

∥∥∥∥M−1ϕ

Qt1
Qtf − eλtQtf + eλtQtf −M−1α(f)ϕ

∥∥∥∥
L1
µ

≤ M

∥∥∥∥M−1ϕ

Qt1
Qtf − eλtQtf

∥∥∥∥
L1
µ

+M
∥∥eλtQtf −M−1α(f)ϕ

∥∥
L2
µ

≤ MC ′fe
−(γ−λ)t +MC ′′f e

−γt,

where C ′′f is as in Lemma 2.7, completing the proof.

Since we have not proven that the rate of convergence to α is uniform, the proof of
existence of a Q-process found in [21] does not immediately translate to our setting. Nev-
ertheless, we prove the existence and uniqueness of theQ-process in Theorem 2.10 below
using arguments inspired by their work.

Theorem 2.10. Under Assumptions 2.1, 2.2, & 2.3, for µ-almost all x ∈ E there exists a
probability measure Qx defined set-wise as the limit

Qx(A) := lim
t→∞

Px(A | t < τ), A ∈ Fs, s ≥ 0. (2.16)

Moreover, the limit in (2.16) holds in L2
µ. With respect to (Qx)x∈E , the solution process

(Zt)t≥0 is a homogeneous Markov process in E with unique ergodic measure β

Proof. For x ∈ E and t > 0, we define an auxiliary probability measure Qtx on Ω as

Qtx(dω) :=
1t<τ (ω)

Ex[1t<τ ]
Px(dω).
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By the Markov property of (Zt)t≥0 with respect to Px, for fixed s > 0 and any t ≥ s

Ex [1t<τ | Fs]
Ex [1t<τ ]

=
1s<τPZs [t− s < τ ]

Px[t < τ ]
. (2.17)

By Lemma 2.7 with Px[t < τ ] = Qt1(x), we have in L2
µ and µ-almost surely that

M−1ϕ(x) = lim
t→∞

Px[t < τ ]

Pα[t < τ ]
.

Hence for fixed s > 0, (2.17) converges µ-almost surely as t→∞ to

Ms(x) := 1s<τe
λ1s

ϕ(Zs)

ϕ(x)
.

Also, we may compute

Ex[Ms(x)] = eλ1sϕ(x)−1Ex [1s<τϕ(Zs)] = eλ1sϕ(x)−1Qsϕ(x) = 1. (2.18)

Now, we claim that the definition of (Mt)t≥0 and (2.18) imply that for each As ∈ Fs,
s ≥ 0, it holds that

lim
t→∞

Qtx(As) = Ex [1AsMs] µ-almost surely. (2.19)

This claim is similar to [79, Theorem 2.1]. For s ≥ 0, As ∈ Fs, and ω ∈ As note that
1t<τ (ω) = Ex[1t<τ |Fs](ω), and hence

lim
t→∞

∫
As

∥∥∥∥ 1t<τ (ω)

Ex[1t<τ ]
−Ms(ω)

∥∥∥∥Px(dω) ≤ lim
t→∞

∫
As

∥∥∥∥ 1t<τ (ω)

Ex[1t<τ ]

∥∥∥∥Px(dω)

− lim
t→∞

∫
As

∥∥∥∥E[1t<τ |Fs](ω)

E[1t<τ ]

∥∥∥∥Px(dω)

= 0

for µ-almost all x ∈ E. By Scheffé’s Lemma [82], it then follows that

lim
t→∞

Qtx(As) =

∫
As

Ms(ω)Px(dω) = Ex[1AsMs] µ-almost surely,

proving (2.19). It follows that Qx is well-defined for µ-almost all x ∈ E, and

dQx
dPx

∣∣∣∣
Fs

= Ms(x) for s > 0.

We now show that (Zt)t≥0 is a Markov process with respect to (Qx)x∈E . Indeed, using
the definition of conditional expectations we have

MsE
Q
x [f(Zt) | Fs] = EQx [Mtf(Zt) | Fs]

= EQx [Mtf(Zt) |Zs] = MsE
Q
x [f(Zt) |Zs] ,

the second equality following from the definition of Mt and the Markov property of
(Px)x∈E . This proves that (Zt)t≥0 is a Markov process with respect to (Qx)x∈E . The fact
that (Zt)t≥0 with respect to (Qx)x∈E has a unique ergodic measure given by β follows
from the fourth statement of Theorem 2.8.
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3 Application to a class of SPDEs

We now demonstrate that Assumption 1.3 guarantees that a cutoff version of (1.2) sat-
isfies Assumptions 2.1, 2.2, & 2.3, and therefore possesses unique quasi-stationary and
quasi-ergodic measures in Γδ. We then show, in Proposition 3.9, that the quasi-stationary
and quasi-ergodic measure of this cutoff version of (1.2) are a quasi-stationary and
quasi-ergodic measure of (1.2) itself.

Before proceeding, we make a few remarks on the setup for our SPDE and the
notation used in this section. Since Γδ is not necessarily open in H, we let ΓHδ be the
smallest open set in H such that ΓHδ ∩D(N) = Γδ. Throughout this section, if E1, E2, are
Banach spaces, the Fréchet derivative of a function f : E1 → E2 at x ∈ E1 is denoted
Df(x).

Now, letting Nδ : D(N) → D(N) be a twice continuously Fréchet differentiable
function such that

(i) Nδ(x) = N(x) for x ∈ Γδ,

(ii) for some δ′ > δ we have Nδ(x) = 0 for x ∈ D(N)/Γδ′ , and

(iii) LipNδ = LipN |Γδ = κ,

we consider

dX ′ = (LX ′ +Nδ(X
′)) dt+ σB dW. (3.1)

We can see that the exit time of (X ′t)t≥0 from ΓHδ is equal to the exit time of (X ′t)t≥0 from
Γδ, since ΓHδ ∩D(N) = Γδ and – as will be seen in Proposition 3.1 below – X ′t ∈ D(N) for
all t > 0. Moreover, as N is only defined on D(N), we have N |Γδ = N |ΓHδ .

Before proceeding, we establish a mild solution theory for (1.2) & (3.1). A solution
theory of the associated Ornstein-Uhlenbeck process,

dYt = LYt dt+ σB dWt, (3.2)

and the first variational equation of (3.1) with initial condition y ∈ H,

∂tηt[y] = Lηt[y] +DNδ(X
′
t)ηt[y], η0[y] = y. (3.3)

is also needed. The solution theory of (1.2) and (3.1) follows from a relatively standard
fixed point argument, similar to that in [33, Theorem 7.7].

Proposition 3.1. Under Assumptions 1.1 & 1.2, we have the following results.

(i) For each x ∈ H, there exists a unique mild solution (X ′t)t≥0 ⊂ D(N) to (3.1),

X ′t = Λtx+

∫ t

0

Λt−sNδ(X
′
s) ds+ σ

∫ t

0

Λt−sB dWs, t ≥ 0. (3.4)

(ii) For each x ∈ H there exists a unique mild solution (Xt)t∈[0,τ) ⊂ D(N) to (1.2),

Xt = Λtx+

∫ t

0

Λt−sN(Xs) ds+ σ

∫ t

0

Λt−sB dWs, t ∈ [0, τ). (3.5)

(iii) There exists a unique mild solution to (3.2) which is continuous in D(N),

Yt = ΛtY0 + σ

∫ t

0

Λt−sB dWs, t ≥ 0. (3.6)
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(iv) There exists a unique solution (ηt)t≥0 ⊂ D(N) to the first variational equation (3.3).
Letting X ′t(x) denote the solution to (3.1) with initial condition x ∈ H, x 7→ X ′t(x)

is almost surely continuously Fréchet differentiable with DX ′t(x)y = ηt[y].

Proof. That (Yt)t≥0 in (3.6) is a unique solution to (3.2) and continuous in D(N) is a
consequence of Assumption 1.2.

We now prove existence and uniqueness of mild solutions to (3.1). Since these
arguments are largely known under Assumption 1.2, we sketch the proof. In this case,
Nδ is globally Lipschitz on D(N) with Lipschitz constant κ > 0. Fix an arbitrary T > 0

and X0 ∈ D(N). Let (Yt)t≥0 be defined as in (3.6) with Y0 = 0, and for some D(N)-valued
Markov process (X ′t)t≥0 define Vt := X ′t−Yt. Note that (X ′t)t≥0 satisfies (3.4) for t ∈ [0, T ]

if and only if

Vt = ΛtX0 +

∫ t

0

Λt−sNδ(Vs + Ys) ds for t ∈ [0, T ]. (3.7)

Let CT be the space of continuous paths from [0, T ] to D(N), and define U : CT → CT by

U(v)(t) = ΛtX0 +

∫ t

0

Λt−sNδ(vs + Ys) ds, v ∈ CT , t ∈ [0, T ].

Due to the local boundedness of (Λt)t≥0 and N on D(N), the local inversion theorem [33,
Lemma 9.2] implies that there exists small T > 0 such that (3.7) admits a unique solution
(Vt)t∈[0,T ], and hence there exists a unique local mild solution (X ′t)t∈[0,T ] to (3.1).

To extend this solution globally in time, we exploit the fact that Nδ is Lipschitz to
obtain

e−ωt‖Vt‖D(N) ≤ ‖X0‖D(N) +

∫ t

0

κe−ωs‖Ys‖D(N) ds+

∫ t

0

κe−ωs‖Vs‖D(N) ds.

We may then apply Grönwall’s inequality to conclude that Vt cannot blowup in finite
time, and we may extend the solution to (3.7) to t ∈ [0,∞) for X0 ∈ D(N). Extending
this solution theory to allow for X0 ∈ H can be achieved as in [33, Theorem 7.15]. The
same arguments apply to (1.2) for t < τ .

Similar arguments can be used to prove the existence and uniqueness of solutions in
D(N) to (3.2) with x, y ∈ H. Following [29, Theorem 3.6], we now prove that x 7→ X ′t is
C1 with Fréchet derivative ηt. For fixed x, y ∈ H, t > 0, define for s ∈ (0, t) the quantity

ρs(y) := X ′s(x+ y)−X ′s(x)− ηs(x)[y].

We’ll show that ‖ρs(y)‖H ≤ ct‖y‖2H almost surely. Using the evolution equations (3.1)
& (3.3) and the integral remainder form of Taylor’s theorem [90, Theorem 4.C], we have

ρs(y) =

∫ s

0

eL(s−r) (Nδ(X
′
r(x+ y))−Nδ(X ′r(x))) dr

−
∫ s

0

eL(s−r)DNδ(X
′
r(x))ηr(x)[y] dr

=

∫ s

0

eL(s−r)
[∫ 1

0

DNδ(ξX
′
r(x+ y) + (1− ξ)Xr(x)) dξ

]
(ρr(y) + ηr(x)[y]) dr

−
∫ s

0

eL(s−r)DNδ(Xr(x))ηr[y] dr

=

∫ s

0

eL(s−r)
[∫ 1

0

DNδ(ξX
′
r(x+ y) + (1− ξ)Xr(x)) dξ

]
ρr(y) dr

+

∫ s

0

eL(s−r)
[∫ 1

0

DNδ(ξX
′
r(x+ y) + (1− ξ)X ′r(x))−DNδ(Xr(x)) dξ

]
ηr[y] dr.
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Using Assumption 1.3, for t > 0 and s ∈ (0, t), we see that there exists kt > 0 such that
‖ηs[y]‖D(N) ≤ kt‖y‖H . One may then use the fact that N ∈ C2(D(N)) and Grönwall’s
inequality to obtain

‖ρs(y)‖H ≤ C‖ρs(y)‖D(N) ≤ C

∫ s

0

eω(s−r) dr
1

2
‖Nδ‖C2(D(N))k

2
t ‖y‖

2
H

× exp

(∫ s

0

(
‖Nδ‖C1(D(N)) + ‖y‖H

)
dr

)
≤ ct‖y‖2H

for a constant ct > 0 increasing in t > 0. As a consequence, we see that ηs[y] is in fact
the Fréchet derivative of x 7→ X ′t for all t > 0.

Remark 3.2. Assumption 1.2 fails when B = I, L = ∆, and d ≥ 2. In this case, to make
sense of solutions to (1.2) one must perform a renormalization procedure [30, 48, 49], as
discussed for stochastic reaction-diffusion equations by [11], and for many other classes
of SPDEs elsewhere in the literature. It is presently unclear as to how much of the
following discussion holds for (1.2) when the equation must be renormalized.

The following is the main result of this section, proving Theorem A above. Henceforth,
let (X ′t)t≥0 denote the mild solution to (3.1), and let (Pt)t≥0 denote the corresponding
Markov semigroup,

Pt : BM(H)→ BM(H), Ptf(x) := Ex [f(X ′t)] .

Let (Xt)t∈[0,τ) denote the mild solution of (1.2).

Theorem 3.3. Under Assumption 1.3, the solution to (3.1) satisfies Assumptions 2.1, 2.2
& 2.3. In particular, the following properties of (X ′t)t≥0 and (Pt)t≥0 hold.

(i) (Pt)t≥0 is irreducible and strong Feller, in the sense of Assumption 2.2.

(ii) (X ′t)t≥0 possesses a unique invariant measure µ.

(iii) (Pt)t≥0 extends to a strongly continuous semigroup of compact operators on
Lp(H,µ) for p > 1.

As a consequence, (X ′t)t≥0 possesses a unique quasi-stationary measure, a unique
quasi-ergodic measure, and a unique Q-process on Γδ, which are also the unique quasi-
stationary measure, unique quasi-ergodic measure, and unique Q-process of the solution
to (1.2).

The proof that (3.1) satisfies Assumption 2.3 follows from [33, Theorem 12.19]. We
prove the remainder of Theorem 3.3 in a series of lemmas, beginning with a proof of the
stochastic irreducibility and strong Feller property of (Pt)t≥0.

To prove the strong Feller property and that each Pt is compact on Lp(H,µ), we
make use of results from [73] and [31], respectively. To this end we must introduce
the Yosida approximations of (3.1) and (3.3), which are essential to the proof of the
integration by parts formula necessary for the arguments [31] in the case where Nδ is not
a bounded operator on H. The Yosida approximations of (1.2) and (3.3) are constructed
by replacing Nδ with its Yosida approximation Nδ,α. The Yosida approximation of a
dissipative operator is well-defined, and while Nδ itself is not dissipative, note that Nδ−κ
is, where κ = LipNδ. Hence, following the construction in [33, Appendix D.3], we define
for small α > 0

Jα(x) := (I − α(Nδ − κI))
−1

(x), x ∈ H,
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and

(Nδ,α − κI)(x) := (Nδ − κI)(Jα(x)) =
1

α
(Jα(x)− x), x ∈ H.

Then, the Yosida approximation of (3.1) is

dXα = (LXα +Nδ,α(Xα)) dt+ σ dW, (3.8)

while the Yosida approximation of (3.3) is

∂tη
α = Lηt +DNδ,α(Xt)ηt. (3.9)

Lemma 3.4. Under Assumption 1.3, the following hold.

(i) For each α > 0 the Yosida approximation Nδ,α : H → H is Lipschitz, with a Lipschitz
constant independent of α > 0.

(ii) The Yosida approximations (3.8) and (3.9) possess unique mild solutions, which we
denote (Xα

t )t≥0 and (ηαt )t≥0.

(iii) Xα converges to X ′ almost surely on [0,∞)×H, and ηα converges almost surely
to η on [0,∞)×H.

Proof. (i) Taking arbitrary x, y ∈ H such that ‖Jα(x)− Jα(y)‖H > 0, we observe that

‖Jα(x)− Jα(y)‖D(N) =
‖Jα(x)− Jα(y)‖D(N)

‖Jα(x)− Jα(y)‖H
‖Jα(x)− Jα(y)‖H

≤ C‖Jα(x)− Jα(y)‖H
≤ C‖x− y‖H ,

(3.10)

where C > 0 is a constant depending on the embedding of D(N) into H, and Jα :

H → H is 1-Lipshitz by [33, Proposition D.11(i)]. If ‖Jα(x)− Jα(y)‖H = 0, we may
take sequences (xn)n∈N, (yn)n∈N, such that xn → x and yn → y in H, and such that
‖Jα(xn)− Jα(yn)‖H > 0. Then, from (3.10) we have

‖Jα(x)− Jα(y)‖D(N) = lim
n→∞

‖Jα(xn)− Jα(yn)‖D(N)

≤ lim
n→∞

C‖xn − yn‖H
= C‖x− y‖H .

It follows that, for arbitrary x, y ∈ H, we have

‖Nδ,α(x)−Nδ,α(y)‖H ≤ C‖Nδ(Jα(x))−Nδ(Jα(y))‖D(N) + Cκ‖Jα(x)− Jα(y)‖D(N)

≤ 2Cκ‖Jα(x)− Jα(y)‖D(N)

≤ 2C2κ‖x− y‖H ,

concluding the proof of (i).
(ii) The Yosida approximations Nδ,α are Lipschitz and bounded on H, so that the

existence and uniqueness of solutions to (3.8) & (3.9) follow from the same arguments
as in Proposition 3.1.

(iii) We sketch the proof of the convergence of (Xα
t )t≥0 to (X ′t)t≥0. Observe that

‖X ′t −Xα
t ‖D(N) =

∥∥∥∥∫ t

0

Λt−s (Nδ(X
′
s)−Nδ,α(Xα

s )) ds

∥∥∥∥
D(N)

≤
∫ t

0

e−ω(t−s)‖Nδ(X ′s)−Nδ(Xα
s )‖D(N) ds

+

∫ t

0

e−ω(t−s)‖Nδ(Xα
s )−Nδ,α(Xα

s )‖D(N) ds.

(3.11)
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Using the fact that Nδ,α(x) = Nδ(Jα(x)), by the proof of [33, Proposition D.11(iii)] and
the Lipschitz property of Nδ, for x ∈ D(N) we have

‖Nδ(x)−Nδ,α(x)‖D(N) ≤ κ‖x− Jα(x)‖ ≤ κα‖(Nδ − κ)x‖D(N).

Therefore from (3.11) we may apply Grönwall’s inequality and take α→ 0 to conclude
the result. A similar argument applies for the convergence of (ηαt )t≥0 to (ηt)t≥0.

Lemma 3.5. Assumption 1.3 implies that (Pt)t≥0 is irreducible in the sense of (2.1).
Moreover, (Pt)t≥0 is a strong Feller semigroup, in the sense that for any bounded
measurable function f : H → R, the function Ptf : H → R is bounded and continuous.

Proof. Stochastic irreducibility follows from Propositions 2.8 & 2.11 of [67]. To prove
that (Pt)t≥0, we apply a result of [73] to (Pαt )t≥0, and then take α→ 0. One can verify that
assumptions (A.1), (A.2), & (A.3) of [73] are satisfied for the Yosida approximation (3.8).
In particular, by Lemma 3.4 above, Nδ,α : H → H is Lipschitz with Lipschitz constant
2C2κ. Applying [73, Theorem 1.2], it follows that for arbitrary α > 0, t > 0, x, y ∈ H, and
bounded measurable f : H → R, we have

|Pαt f(x)− Pαt f(y)| ≤ ct‖f‖∞‖x− y‖, (3.12)

where in our setting ct = (t ∧ t0)−1/2e−ωt0 for a time t0 > 0 such that

t20e
−2ωt0 +

∫ t0

0

‖Λt‖2HS dt ≤
2

9
(2C2κ)−2.

Since ct is independent of α > 0, we may take α→ 0 in (3.12) to conclude that

|Ptf(x)− Ptf(y)| ≤ ct‖f‖∞‖x− y‖.

Hence, for any bounded measurable f : H → R, we have that Ptf : H → R is continuous.

Lemma 3.6. Assumption 1.3 implies that (3.1) possesses a unique invariant measure µ
on H. Moreover, µ satisfies a logarithmic Sobolev inequality.

Proof. To prove the existence and uniqueness of an invariant measure of (3.1), we apply
[47, Theorem 2.5]. To do so, we must verify that (3.1) satisfies

• [47, Hypothesis 2.1] (Pt)t≥0 is irreducible and strong Feller.

• [47, Hypothesis 2.2] For each r > 0, there exists some t0 > 0 and a compact set

K ⊂ D(N) such that inf
{
Pt01K(x) : ‖x‖D(N) ≤ r

}
> 0.

Lemma 3.5 above implies that [47, Hypothesis 2.1] is satisfied. To prove that (Pt)t≥0

satisfies [47, Hypothesis 2.2], we borrow ideas from [47, 68], filling in the details of
their arguments for the case where N is only defined on D(N) ( H. We first show that
for arbitrary t > 0 and f ∈ Cb(H), Ptf is weakly sequentially continuous. Hence take
(xn)n∈N ⊂ H converging weakly to x ∈ H, and observe that

E
[
‖Xt(xn)−Xt(x)‖D(N)

]
≤ ‖Λt(xn − x)‖D(N)

+E

[∥∥∥∥∫ t

0

Λt−s(Nδ(Xs(xn))−Nδ(Xs(x))) ds

∥∥∥∥
D(N)

]
≤‖Λt(xn − x)‖D(N)

+E

[∫ t

0

∥∥Λ(t−s)
∥∥
D(N)

‖Nδ(Xs(xn))−Nδ(Xs(x))‖D(N) ds

]
≤‖Λt(xn − x)‖D(N) + E

[∫ t

0

e−ω(t−s)κ‖Xs(xn)−Xs(x)‖D(N) ds

]
.
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Define ant := ‖Λt(xn − x)‖D(N). By Assumption 1.1, Λt is compact, and therefore com-
pletely continuous. Hence for each t > 0 and any ε > 0, there exists N ∈ N such that if
n ≥ N then ant ≤ ε. Applying Tonelli’s theorem, we therefore find that for large enough
n ∈ N we have

eωtE
[
‖Xt(xn)−Xt(x)‖D(N)

]
≤ ε+

∫ t

0

κeωsE
[
‖Xs(xn)−Xs(x)‖D(N)

]
ds.

Applying Grönwall’s inequality, we find that for any t > 0,

cE [‖Xt(xn)−Xt(x)‖H ] ≤ E
[
‖Xt(xn)−Xt(x)‖D(N)

]
≤ εe−ωt +

∫ t

0

εκs ds,

which converges to zero as n→∞, where c > 0 is a constant arising from the embedding
of D(N) in H. From this, one may readily see that for any bounded continuous f :

H → R we have that f(Xt(xn))→ f(Xt(x)) in probability as n→∞. By the dominated
convergence theorem, Ptf(xn) must also converge to Ptf(x) as n→∞, completing the
proof of the claim that Ptf is weakly sequentially continuous for f ∈ Cb(H).

Now, fix r > 0, t0 > 0, and ε > 0, and define Br :=
{
x ∈ D(N) : ‖x‖D(N) ≤ r

}
. Let

Br be the closure of Br in the weak topology of H. Viewing Pt1·(x) = Ex[Xt ∈ ·] as a
measure on H, by the definition of the narrow topology we have that x 7→ Pt1·(x) is a
continuous map from Br equipped with the weak topology to the space of probability
measures on H equipped with the narrow topology. Hence, by the compactness of Br
in H, we see thatM :=

{
Pt1·(x) : x ∈ Br

}
is narrowly compact. As a consequence, by

the Prokhorov theorem [17, Theorem 8.6.2] the family of measuresM is tight1, which is
equivalent to saying that [47, Hypothesis 2.2] holds.

Finally, we note that there exist constants c1, c2 > 0 such that

Ex

[
‖X ′t‖D(N)

]
≤ e−ωtEx

[
‖X0‖D(N)

]
+

∫ t

0

e−ω(t−s)Ex

[
‖Nδ(X ′s)‖D(N)

]
ds

+ σEx

[
‖Yt‖D(N)

]
≤ c1e

−ωt + c2(1− e−ωt),

and hence we may apply [47, Theorem 2.5] to conclude the existence and uniqueness of
an invariant measure µ for (3.1).

We now sketch the proof of the logarithmic Sobolev inequality, following ideas from
[29, Proposition 3.30]. First, note that Assumption 1.3 implies

‖DX ′t‖D(N) ≤ e−(ω−κ)t,

with ω > κ, and therefore for any f ∈ C1
b (H) we have for some constant Cf > 0 that∥∥DPt(f2)

∥∥2
= ‖2Ex [f(X ′t)Df(X ′t)DX

′
t]‖

2

≤ 2Cfe
−(ω−κ)t.

Consequently, taking into account µ-invariance and the integration by parts formula [31,
Theorem 3.6],

∂t

∫
Ptf

2 lnPtf
2 dµ =

∫
LPtf2 lnPtf

2 dµ+

∫
LPtf2 dµ

= −1

2

∫
1

Ptf2

∥∥BDPtf2
∥∥2
dµ

≥ −Cfe−(ω−κ)t

∫
Pt‖BDf‖2 dµ = −Cfµ

(
‖BDf‖2

)
e−(ω−κ)t.

1Here, we say that a sequence of measures µn converges “in the narrow topology” if µn(f) → µ(f) for all
bounded continuous f . This is equivalent to what [17] refers to as weak convergence.
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Integrating the above over a finite time interval [0, t], we obtain∫
Psf

2 lnPsf
2 dµ

∣∣t
0
≥ (ω − κ)−1(1− e−(ω−κ)t)µ

(
‖BDf‖2

)
,

and taking t→∞ yields the logarithmic Sobolev inequality

µ(f2) lnµ(f2)− µ(f2 ln f2) ≥ (ω − κ)−1µ
(
‖BDf‖2

)
.

Finally, to apply the results of [31], we must prove a result relating the invariant
measure µ of (3.1) to the invariant measure of (3.2).

Lemma 3.7. Under Assumption 1.3, the Ornstein-Uhlenbeck process governed by (3.2)
possesses a unique invariant measure ν, which is a Gaussian measure with mean zero
and covariance operator

Q∞ :=
σ2

2

∫ ∞
0

ΛtBB
∗Λ∗t dt.

Moreover, the density ρ := dµ/dν exists, and ln ρ ∈ W 1,2(H,µ).

Proof. The existence of the invariant measure ν follows from [29, Theorem 2.34]. To
prove the existence of ρ and that ln ρ ∈W 1,2(H,µ), first observe that∫

H

‖Nδ(x)‖2D(N) µ(dx) ≤ sup
x∈Γδ

‖N(x)‖2D(N)µ(Γδ) < ∞. (3.13)

Letting µα be the unique invariant measure of the Yosida approximation (3.8), the
existence of ρα = dµα/dν follows from [16]. Moreover, [16, Claim 3] implies that
D ln ρα = Nδ,α, where D ln ρα denotes the Fréchet derivative of ln ρα, and hence∫

H

‖D ln ρα(x)‖2 µ(dx) =

∫
H

‖Nδ,α(x)‖2 µ(dx) < ∞,

implying that ln ρα ∈W 1,2(H,µ). For α > 0, let (Pαt )t≥0 denote the Markov semigrop of
(Xα

t )t≥0. Since Xα
t converges to Xt in D(N) for each t > 0 as α→ 0, by the dominated

convergence theorem we have

lim
α→0

µα(A) = lim
α→0

lim
t→∞

Pαt 1A(x) = lim
t→∞

Pt1A(x) = µ(A).

Hence by the Vitali-Hahn-Sack Theorem [89, Chapter II.2], ρ = dµ/dν exists. By (3.13) we
may apply the dominated convergence theorem to conclude that ln ρ ∈W 1,2(H,µ).

We are now able to prove the fourth statement in Theorem 3.3

Lemma 3.8. Let Assumption 1.3 hold. For each p ∈ [1,∞), (Pt)t≥0 extends to a strongly
continuous semigroup of compact operators on Lp(H,µ).

Proof. Follows from [31, Theorem 5.1].

We have therefore proven Theorem 3.3 for the solution to (1.2) with N replaced by
Nδ, and hence this system with a cutoff nonlinearity possesses a unique quasi-stationary
measure, a unique quasi-ergodic measure, and a unique Q-process in Γδ defined µ-almost
surely in Γδ. However, our interest is ultimately in (1.2) with a non-cutoff nonlinearity.
The following result demonstrates that the quasi-stationary distribution, quasi-ergodic
distribution, and Q-process of (1.2) with cutoff nonlinearity in Γδ are also the quasi-
stationary measure, quasi-ergodic measure, and Q-process of (1.2) with non-cutoff
nonlinearity.
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Proposition 3.9. Let Assumption 1.3 hold, and let α and β be the unique quasi-stationary
and quasi-ergodic measure of (3.1), guaranteed to exist by Theorems 3.3 & 2.8. Then,
α and β are the unique quasi-stationary and quasi-ergodic measure of (1.2). More-
over, (1.2) admits a unique Q-process in Γδ, equal to the Q-process of (3.1).

Proof. For t < τ we of course have N(Xt) = Nδ(Xt) and N(X ′t) = Nδ(X
′
t). Since (Xt)t≥0

and (X ′t)t≥0 are driven by the same Wiener process, it follows that

‖Xt −X ′t‖ ≤
∫ t

0

e−ω(t−s)κ‖Xs −X ′s‖ ds,

where κ > 0 is the Lipschitz constant of Nδ. Grönwall’s inequality then implies
‖Xt −X ′t‖ = 0 for t < τ . In particular, Px[Xt ∈ · | t < τ ] = Px[X ′t ∈ · | t < τ ].

4 Applications

In this section, we sketch how the results of Section 3 may be used to study the
effects of noise on the behaviour of metastable patterns in SPDEs. We first study how
noise may affect the average “position” of a pattern. Here, the position of a pattern is
rigorously defined using a generalization of the isochron map, introduced by Winfree
[87] to define the phase of stochastic oscillators in biological systems. Loosely speaking,
the isochron map uniquely projects a given point in the vicinity of a deterministic stable
invariant manifold Γ to a point on Γ, in a manner that is consistent with the deterministic
dynamics. The generalization of the isochron map used here allows us to define the
isochronal phase of patterns such as stochastic travelling waves and stochastic spiral
waves, giving a precise notion of the position of such a stochastically perturbed pattern.
This is done in Section 4.1. Using the isochron map, in Section 4.2 we sketch how
one may obtain results on noise-induced deviations in the velocity of a spatiotemporal
pattern. To do so we restrict our attention to the case where the pattern Γ is a limit
cycle.

4.1 Quasi-Ergodicity of the isochronal phase

Let (Xt)t≥0 denote the unique mild solution of the following stochastic reaction-
diffusion system

dX = ((∆− a)X +N(X)) dt+ σ dW, (4.1)

where W is a cylindrical Wiener process, a, σ > 0 are parameters, N : D(N) ⊂ H → H is
a vector of polynomials, and H = L2(O,Rm) is the solution space of (4.1) with a bounded
spatial domain O.

Assumption 4.1. Let (t, x) 7→ φt(x) denote the solution map of (4.1) with σ = 0. There
exists a stable normally hyperbolic C1 invariant manifold Γ of (4.1) which is compact,
smooth, and finite dimensional. Moreover,

(a) φt is bi-Lipschitz in Γδ, the δ-neighbourhood of Γ defined in the topology of D(N).
In particular, the dynamics of φt are not chaotic near Γ,

(b) Dφt(γ) is invertible with an inverse bounded uniformly in γ ∈ Γ,

(c) Γ can be parameterized by some S ⊂ Rm′ as Γ = {γα}α∈S , and α 7→ γα is C1 with
Dγα being invertible with an inverse bounded uniformly in α.

To study the long-term behaviour of (Xt)t≥0 in the vicinity of Γδ, we reduce this
process to a finite dimensional process on Γ in a manner that is consistent with the
deterministic dynamics.
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Lemma 4.2. Let Assumption 4.1 hold. Then, for each x ∈ Γδ there exists a unique point
π(x) ∈ Γ such that

‖φt(x)− φt(π(x))‖ −−−→
t→∞

0. (4.2)

The map π : Γδ → Γ is referred to as the isochron map of Γ. Moreover, if φt is C2, then π
is C2 (in the topology of D(N)).

Proof. A simple proof follows from Cantor’s Intersection Theorem, as in [2], or, under
slightly stronger assumptions, from a fixed point argument as in [3, Theorem 3.1].

Remarkably, even though (1.2) only admits a mild solution when the noise is not trace
class, the isochron map possesses certain regularizing properties that allow one to prove
a strong Itô formula.

Lemma 4.3. Let Assumption 4.1 hold. Let V = ∆− a+N , and let Dπ and D2π denote
the first and second Fréchet derivatives of π in the topology of D(N), respectively. Then,
for some orthonormal basis {ek}k∈N of H it holds that

π(Xt∧τ )−π(X0) =

∫ t∧τ

0

Dπ(Xs)V (Xs)+
σ2

2

∑
k∈N

D2π(Xs)[Bek, Bek] ds+

∫ t∧τ

0

Dπ(Xs)B dWs,

(4.3)
and all of the above integrals are well defined.

Proof. See [3, Theorem 3.5].

Now, so long as (1.2) satisfies Assumption 1.3, we may apply Theorem A to conclude
that (1.2) admits a unique quasi-ergodic measure β in Γδ. We may then define a measure
on Γ via pushforward under the isochron map,

π∗β(A) := β
(
π−1(A)

)
.

Using the change of variables formula and Theorems 2.8 & 3.3, we have the following
result, providing a measure that indicates how the noise affects the average position
of our stochastically perturbed pattern. This may be compared with [3, Theorem C],
obtained using different methods.

Theorem 4.4. Let Assumption 4.1 hold. For any p ≥ 1, ε > 0, and bounded g ∈
L2(Γ, π∗β), letting πt := π(Xt) for t < τ we have

lim
t→∞

Px

[∣∣∣∣1t
∫ t

0

g(πs) ds− (π∗β)(g)

∣∣∣∣p > ε
∣∣ t < τ

]
= 0. (4.4)

4.2 Quasi-asymptotic frequencies of stochastic oscillators

Now, assume that Γ is a periodic (in time) solution of (1.1). In this case, we refer to a
Γ-like solutions as a stochastic oscillator. For instance, Γ could be a family of periodic
solutions corresponding to a limit cycle solution of (1.1) without diffusion (i.e. of the ODE
ẋ = N(x)), or a stable pulse-type travelling wave solution of (1.1) when O is a periodic
spatial domain, as in [5]. Let the period of Γ under the flow of (1.1) be T > 0. Specifically,
for (t, x) ∈ [0,∞)×H we have

γt+T = γt, and φs(γt) = γs+t, ∀ t ∈ R, s ≥ 0.

For a sufficiently small neighbourhood Γδ of Γ, define the isochron map π : Γδ → [0, T ]

as in (4.2). The stochastic integral in (4.3), being a finite dimensional local Markov
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process with linear quadratic variation, has a time average equal to zero – see for
instance [85] for details. Applying the second statement of Theorem 2.8, we find that

cσ := lim
t→∞

Ex

[
1

t
π(Xt) | t < τ

]
=

∫
E

π′(x)V (x) +
σ2

2

∑
k∈N

π′′(x)[Bek, Bek]β(dx) (4.5)

exists as a deterministic limit. We refer to this cσ as the quasi-asymptotic frequency of (1.2)
in Γδ.

Based on the properties of the isochron map, it can be shown as in [1] that

cσ = c0 + σ2(b0 + bσ),

where c0 = 1/T is the frequency of Γ under the deterministic flow of (1.1), and b0 is a
constant independent of the noise amplitude. Moreover,

bσ =
1

2

∫
Γδ

∑
k∈N

π′′(x) [Bek, Bek] δσ(dx),

where δσ := β − η is the σ-dependent difference measure of the quasi-ergodic measure
β and the deterministic invariant measure η of Γ under the deterministic flow of (1.1).
Thus, we see that the quasi-asymptotic frequency cσ depends “almost” quadratically on σ
in some interval [σ0, σ1] ⊂ [0,∞) if and only if dbσ/dσ is “almost” zero for all σ ∈ [σ0, σ1].
This might be considered a refinement of the results of [46], who suggest that this
asymptotic frequency should depend quadratically on σ > 0. The approach taken here
allows for a straightforward of their results to the infinite dimensional setting.
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