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Expansion and attraction of RDS: long time behavior
of the solution to singular SDE*
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Abstract

We provide a framework for studying the expansion rate of the image of a bounded set
under a semi-flow in Euclidean space and apply it to stochastic differential equations
(SDEs for short) with singular coefficients. If the singular drift of the SDE can be split
into two terms, one of which is singular and the radial component of the other term is
negative then, under suitable conditions, the random dynamical system generated by
the SDE admits a pullback attractor.
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1 Introduction

Regularization by noise, i.e. existence and uniqueness of solutions under the assump-
tion of non-degenerate noise, has been established for a large class of singular stochastic
differential equations (SDEs). It was shown recently that these equations also generate
a random dynamical system (RDS), see [20], and like in the classical (non-singular) case
it therefore seems natural to establish asymptotic properties of these RDS for large
times, like expansion rates of bounded sets and the existence of attractors or even
synchronization (meaning that the attractor is a single random point).

We consider an SDE on Rd with time homogeneous coefficients

dXt = b(Xt) dt+ σ(Xt) dWt, Xs = x ∈ Rd, t ≥ s, (1.1)
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RDSs induced by singular SDEs

where d ≥ 1, b : Rd → Rd and σ = (σij)1≤i,j≤d : Rd → L(Rd) (:= d × d real valued
matrices) are measurable, and (Wt)t∈R is a standard two-sided d-dimensional Brownian
motion. We assume that b ∈ L̃p(Rd) (defined in Section 2.1), so b does not have to be
continuous nor bounded, and σσ∗ (σ∗ denotes the matrix transpose of σ) is bounded
and uniformly elliptic and ∇σ ∈ L̃p(Rd) with p > d (time homogeneous Krylov-Röckner
condition). These are sufficient conditions for the well-posedness of the equation (1.1),
see [16] and [27]. They also imply the existence of a flow and random dynamical system
(RDS) generated by the solution to (1.1) [20].

First we analyse the linear expansion rate of the flow generated by a singular SDE. In
simple stochastic models for the spread of passive tracers in a turbulent fluid, simulations
supporting the conjecture that the expansion rate of a bounded set under a flow is linear
in some non-singular models were first done in [2]. Later, this conjecture was proved in
[4, 5, 23, 8] for various classes of stochastic flows. In classical results, see e.g. [23], [8],
Lipschitz continuity or one-sided Lipschitz continuity of the coefficients of the SDE is
assumed to obtain bounds on the expansion rate. Obviously we lack these properties
in our current setting. Instead, we assume the noise to be non-degenerate, so we can
apply the Zvonkin transformation to get an SDE which has Lipschitz-like coefficients and
this SDE is (in an appropriate sense) equivalent to the original one (1.1). The Zvonkin
transformation was invented by A. K. Zvonkin in [36] for d = 1 and then generalized
by A. Yu. Veretennikov in [26] to d ≥ 1. It has become a rather standard tool to study
well-posedness of singular SDEs, see e.g. [30, 28] and [27]. This tool heavily relies on
regularity estimates of the solution to Kolmogorov’s equation corresponding to (1.1)
which can be found for instance in [15] in the classical setting. In this paper we adapt
the method to the study of the RDS induced by singular SDEs. We show that the flow
expands linearly (see Theorem 5.4), a property which was established for non-singular
SDEs with not necessarily non-degenerate noise in [4, 5, 21, 22, 23]. Our proof mainly
depends on stability estimates (see Theorem 5.2). These kind of estimates were studied
before, see for instance [13], [30] and [31], but the dependence of the constants on
the coefficients was not specified. We give a formula in Theorem 5.2 which states this
dependence explicitly. It also yields the expansion rate constant in Theorem 5.4.

Secondly, we aim at conditions which guarantee the existence of an attractor for the
RDS generated by a singular SDE. Clearly, one can not expect that an attractor exists
without further conditions (an example without attractor is the case in which the drift is
zero and the diffusion is constant). Since [6], numerous papers appeared in which the
existence of attractors for various finite and infinite dimensional RDS was shown, e.g.
[3, 9, 10, 11, 12, 8, 17, 35]. A common way to prove the existence of an attractor is to
show the existence of a random compact absorbing set and then to apply the criterion
from [6, Theorem 3.11]. Just like [8], we will use a different and more probabilistic
criterion from [7] (Proposition 2.8). Roughly speaking, all one has to show is that the
image of a very large ball will be contained inside a fixed large ball after a (deterministic)
long time with high probability. In [8] this was shown under the assumption that the
diffusion is bounded and Lipschitz and the drift b(x) has a component of sufficient
strength (compared to the diffusion) in the direction of the origin for large |x|. In our
set-up, this condition is too restrictive. Instead, we assume that the drift can be written
in the form b = b1 + b2, in which b1 is singular and b2 is non-singular and has a component
of sufficient strength (compared to the diffusion and the localized Lp-norm of b1) in the
direction of the origin for large |x|. Contrary to the non-singular case, adding a drift b2 to
a given function b1 (which is bounded in the non-singular case and in L̃p in the singular
case) will however not guarantee the existence of an attractor, no matter how strongly
b2 points towards the origin. We will explain this in Theorem 2.13 and Theorem 2.14.
Roughly speaking, adding such a drift b2 may cause solutions to spend more time in
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RDSs induced by singular SDEs

regions in which b1 is “particularly singular” and pushes solutions more strongly away
from the origin than b2 pushes towards the origin.

The idea of splitting the drift b of a singular SDE into two parts b1 and b2 was also
used in [32] where they assumed that b1 is essentially as in our set-up and b2 is Lipschitz.
They showed well-posedness of the SDE (which is not covered by our assumptions). We
decided not to work in this (essentially) more general set-up since this requires a new
proof that the SDE generates a global RDS.

It seems to be an interesting and challenging question to study the attractor in more
detail, e.g. to find sufficient conditions for synchronization (meaning that the attractor is
a singleton). We will, however, not address these questions in this work.

Structure of the paper

We introduce notation and the main results in Section 2. In Section 3 we study the
expansion rate of the diameter of the image of a bounded set under a flow under rather
general conditions. These results are minor modifications of results contained in [23]
which are proved by chaining techniques. Section 4 contains estimates on functionals
of the solution to the singular SDE, namely quantitative versions of Krylov’s estimates
and Khasminskii’s lemma. The first part of the main results of this paper is presented
in Section 5, i.e. the linear expansion rate of the diameter of the image of a bounded
set under the flow generated by the solution to a singular SDE. In Section 6 we show
the existence of an attractor of the RDS generated by the singular SDE. In Appendix A
we study regularity estimates of elliptic partial differential equations with emphasis on
the dependence on the coefficients. We believe that these estimates are of independent
interest.

2 Notation and main results

2.1 Notation

We denote the Euclidean norm on Rd by |.| and the induced norm on L(Rd) or
on L(L(Rd)) by ‖.‖. Recall that the trace of a := (aij)1≤i,j≤d := σσ∗ satisfies tr(a) =∑d
i,j=1 σ

2
ij , where σ∗ denotes the transpose of σ ∈ L(Rd). For p ∈ [1,∞), let Lp(Rd)

denote the space of all real Borel measurable functions on Rd equipped with the norm

‖f‖Lp :=
(∫

Rd
|f(x)|p dx

)1/p

< +∞

and L∞ denotes the space of all bounded and measurable functions equipped with the
norm

‖f‖∞ := ‖f‖L∞ := sup
x∈Rd

|f(x)|.

We introduce the notion of a localized Lp-space for p ∈ [1,∞]: for fixed δ > 0,

L̃p(R
d) := {f : ‖f‖L̃p := sup

z
‖ξzδf‖Lp <∞}, (2.1)

where ξδ(x) := ξ(xδ ) and ξzδ (x) := ξδ(x − z) for x, z ∈ Rd, ξ ∈ C∞c (Rd; [0, 1]) is a smooth
function with ξ(x) = 1 for |x| ≤ 1/2, and ξ(x) = 0 for |x| > 1. For (α, p) ∈ R× [1,∞), let
Hα,p(Rd) be the usual Bessel potential space with norm

‖f‖Hα,p := ‖(I−∆)α/2f‖Lp ,

where (I−∆)α/2f is defined via Fourier’s transform

(I−∆)α/2f := F−1((1 + | · |2)α/2Ff).
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The localized Hα,p-space is defined as

H̃α,p := {f : ‖f‖H̃α,p := sup
z
‖ξzδf‖Hα,p <∞}.

From [27, Section 2] and [34, Proposition 4.1] we know that the space H̃α,p does not
depend on the choice of ξ and δ, but the norm does, of course. More precisely, by [34,
Proposition 4.1], for the L̃p-norms with different δ, say δ1 and δ2 and δ1 < δ2, if we use
the notation (L̃p)δ to denote the L̃p space with support radius δ for localization, then

N1‖ · ‖(L̃p)δ1
≤ ‖ · ‖(L̃p)δ2

≤ N2

(δ2
δ1

)d
‖ · ‖(L̃p)δ1

, (2.2)

where N1, N2 are constants independent of δ1, δ2. For convenience we take δ = 1 in the
following. For further properties of these spaces we refer to [27]. In the following, all
derivatives should be interpreted in the weak sense. Occasionally we will use Einstein’s
summation convention (omitting the summation sign for indices appearing twice). We
will often use the notation r+ = max{r, 0} for the positive part of r ∈ R, a∨ b := max{a, b}
and a ∧ b := min{a, b}.

2.2 Preliminaries

In the following, all random processes will be defined on a given probability space
(Ω,F ,P).

Definition 2.1. A semi-flow φ on a Polish (i.e. separable and completely metrizable)
space X equipped with its Borel-σ-algebra X = B(X) is a measurable map

φ :
{

(s, t, x, ω) ∈ R2 ×X × Ω : s ≤ t <∞
}
→ X

such that, for each ω ∈ Ω,

(1) φs,s(x) = x for all x ∈ X and s ∈ R,

(2) (s, t, x) 7→ φs,t(x) is continuous,

(3) for all s ≤ t ≤ u and x ∈ X, the following identity holds

φs,u(x) = φt,u(φs,t(x)).

Next, we define the concepts of a metric dynamical system and a random dynamical
system.

Definition 2.2. A metric dynamical system (MDS for short) θ = (Ω,F ,P, {θt}t∈R) is a
probability space (Ω,F ,P) with a family of measure preserving transformations {θt :

Ω→ Ω, t ∈ R} such that

(1) θ0 = id, θt ◦ θs = θt+s for all t, s ∈ R;

(2) the map (t, ω) 7→ θtω is measurable and θtP = P for all t ∈ R.

Definition 2.3 (RDS, [1]). A (global) random dynamical system (RDS) (θ, ϕ) on a Polish
space (X, d) over an MDS θ is a mapping

ϕ : {(s, x, ω) ∈ [0,∞)×X × Ω} → X

such that, for each ω ∈ Ω,

(1) measurability: ϕ is (B([0,∞))⊗X ⊗F ,X )-measurable,

(2) (t, x) 7→ ϕt(x) is continuous,
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(3) ϕ satisfies the following (perfect) cocycle property: for all t, s ≥ 0, x ∈ X,

ϕ0(., ω) = id, ϕt+s(x, ω) = ϕt(ϕs(x, ω), θsω) (2.3)

In order to obtain a one-to-one correspondence between RDS ϕ and semi-flows φ via

φs,t(x, ω) := ϕt−s(x, θsω), s ≤ t; ϕt(x, ω) = φ0,t(x, ω), t ≥ 0,

we will require from now on that, in addition to (1)-(3) in Theorem 2.1, a semi-flow
satisfies φs,t(x, ω) = φs+h,t+h(x, θhω) for all s ≤ t and all h ∈ R and, for an RDS ϕ,
we will require that the map (s, t, x) 7→ ϕt−s(x, θsω), 0 ≤ s ≤ t is continuous, see [25,
p.609]. We say that an SDE generates a semi-flow resp. an RDS if its solution map has
a modification which is a semi-flow resp. an RDS. The following study is based on the
semi-flow generated by the solution to the SDE with singular drift. Therefore we state
the result from [20, Theorem 4.3, Corollary 4.2] on the existence of a global semi-flow
and a global RDS for singular SDEs under the following condition.

Assumption 2.4. For p, ρ ∈ (2d,∞) assume

(i) b ∈ L̃p(Rd), σ : Rd → L(Rd) is measurable, ‖∇σ‖ ∈ L̃ρ(Rd).
(ii) There exist K1,K2 > 0 such that for a := σσ∗ we have

K1|ζ|2 ≤ 〈a(x)ζ, ζ〉 ≤ K2|ζ|2, ∀ζ, x ∈ Rd.

Remark 2.5. Note that L̃p ⊂ L̃p′ whenever p > p′. Therefore, if Theorem 2.4 holds with
different values of p and ρ, then it also holds with the larger of the two numbers replaced
by the smaller one. In particular, the following result which was formulated for p = ρ

can still be applied.

Theorem 2.6. [20, Theorem 4.3, Corollary 4.2] If Theorem 2.4 holds, then the SDE (1.1)
admits a semi-flow φ and a corresponding RDS ϕ.

We will often write ψt(x) instead of φ0,t(x). Abusing notation we will sometimes say
“Let ψt(x) (or just ψ) be a flow...” instead of “Let φs,t(x), x ∈ Rd, s ≤ t <∞ be a semi-flow
and ψt(x) := φ0,t(x), t ≥ 0, x ∈ Rd...”.

Definition 2.7 (Attractor, [6]). Let ϕ be an RDS over the MDS θ = (Ω,F ,P, {θt}t∈R).
The random set A(ω) is a (pullback) attractor if

(1) measurability: A(ω) is a random element in the metric space of nonempty compact
subsets of X equipped with the Hausdorff distance,

(2) invariance property: for t > 0 there exists a set Ωt with full measure such that

ϕ(t, ω)(A(ω)) = A(θtω), ∀ω ∈ Ωt,

(3) pull-back limit: almost surely, for all bounded closed sets B ⊂ X,

lim
t→∞

sup
x∈B

dist(ϕ(t, θ−tω)(x), A(ω)) = 0.

One way to verify the existence of an attractor is the following criterion.

Proposition 2.8. ([7], [8, Proposition 2.3]) Let ϕ be an RDS over the MDS θ = (Ω,F ,P,
{θt}t∈R). Then the following are equivalent:

(i) ϕ has an attractor,

(ii) ∀ r > 0, limR→∞P
(
ω ∈ Ω : Br ⊂

⋃∞
s=0

⋂
t≥s ϕ

−1(t, BR, θ−tω)
)

= 1.
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2.3 Main results

Based on general estimates on the speed of dispersion of random sets in Section 3
(cf. Theorem 3.3) and on quantitative estimates of the solution to singular SDE in Sec-
tion 4, we will show the following result in Section 5.

Theorem 2.9. If Theorem 2.4 holds, then there exists a constant κ > 0 such that for the
flow ψ generated by the solution to (1.1) we have, for any compact X ⊂ Rd,

lim sup
T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|ψt(x)|

)
≤ κ a.s..

The precise statement including a formula for κ will be given in Theorem 5.4. There,
we can see that κ→∞ as K1 → 0 (when all other parameters remain unchanged). The
following example explains this fact: as the noise becomes more and more degenerate,
the linear bound on the dispersion of a bounded set under the flow approaches infinity,
so our non-degeneracy assumption on the noise cannot be avoided.

Example 2.10. In R2, for ε > 0, we consider the system{
dXt = B(Yt) dt+ ε dW 1

t , X0 ∈ R,
dYt = h(Yt) dt+ ε dW 2

t , Y0 ∈ R,
(2.4)

where

B(y) :=

{
|y|−q if y 6= 0,

0 else,
q ∈ (0,

1

4
), h(y) :=

(
(−y) ∨ (−1)

)
∧ 1.

and W 1,W 2 are two independent 1-dimensional Brownian motions. Notice that for
b(x, y) := (B(y), h(y))∗, we have b ∈ L̃p(R2) for p ∈ (4, 1

q ). Clearly there exists a unique
solution (X,Y ) to (2.4) and

Xt = X0 +

∫ t

0

B(Ys) ds+W 1
t , t ≥ 0.

By the ergodic theorem, almost surely,

lim
t→∞

1

t

∫ t

0

B(Ys) ds =

∫ ∞
−∞

B(y)πε( dy),

where πε is the invariant probability measure of Y (an explicit formula for its density
can be found in [14, p.353]). Since πε converges to the point measure δ0 weakly as ε ↓ 0,
we see that the linear expansion rate of (X,Y ) converges to∞ when ε ↓ 0. In particular,
we can not expect to have a linear expansion rate for the solution to a singular SDE with
degenerate noise in general.

We will now assume that the singular drift b in (1.1) is of the form b = b1 + b2 with
b1 ∈ L̃p(Rd) and b2 satisfies one of the following conditions.

Assumption 2.11. For a given β ∈ R, b2(x) : Rd → Rd satisfies

(Uβ) lim sup|x|→∞
x
|x| · b2(x) ≤ β

or

(Uβ) lim inf |x|→∞
x
|x| · b2(x) ≥ β.

Theorem 2.12. Let Theorem 2.4 hold and let φ be the flow generated by the solution
to (1.1). If there exist vector fields b1 and b2 such that b = b1 + b2 with b1 ∈ L̃p(Rd), b2 is
bounded and b2 and σ are Lipschitz continuous, then there exist positive constants β1

(see Theorem 6.2) and β2 (see Theorem 6.3) such that
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1. if b2 satisfies Theorem 2.11 (Uβ) for β > β1, then for any γ ∈ [0, β − β1) we have

lim
r→∞

P
(
Bγt ⊂ φ0,t(Br) ∀ t ≥ 0

)
= 1. (2.5)

2. if b2 satisfies Theorem 2.11 (Uβ) for β < −β2, then for any γ ∈ [0,−β − β2) we have

lim
r→∞

P
(
Bγt ⊂ φ−1

−t,0(Br) ∀ t ≥ 0
)

= 1. (2.6)

In particular, φ (or the corresponding RDS ϕ) has a random attractor.

Correspondingly, the detailed results are presented in Theorem 6.2 and Theorem 6.3.

Remark 2.13. In Theorem 6.3, the bound β2 (or β0 as it is called there) will not only
depend on b1 and σ but also (via Γ) on ‖b2‖L̃p which may look strange and raises the
question whether, for given b1 and σ, there exists any bounded and Lipschitz continuous
function b2 which satisfies (Uβ) for some β < −β2. Observing that ‖b2‖L̃p ≥ β2c where
c = ‖1‖L̃p one can easily see that there are cases in which no such b2 exists and other
cases in which it does. In particular, the explicit bound in Theorem 6.3 shows that for
given σ and Lipschitz constant Lb of b2 there exists some β̄ > 0 such that an attractor
exists for any b2 satisfying (Uβ) for some β > β̄ and for all b1 with sufficiently small
L̃p(R

d) norm. The fact that, for given b1, Theorem 6.3 does not guarantee the existence
of an attractor even for a b2 satisfying (Uβ) for some very large β, is not just an artefact
of our approach. The following example illustrates what is going on.

Example 2.14. Define B and h as in Theorem 2.10 and consider the SDE

dXt = δB(Yt) dt+ γ1h(Xt) dt+ dW 1
t

dYt = γ2h(Yt) dt+ dW 2
t ,

where γ1, γ2 ≥ 0 and δ > 0. The 1d diffusion Y has an invariant probability measure for
every strictly positive value of γ2 and it converges to a Dirac measure at 0 as γ2 →∞ (see
[14, p.353] for a formula for the density of the invariant probability measure). Arguing as
in Theorem 2.10 we see that X converges to∞ as long as γ1 is not too large (compared
to γ2). If we split the drift into

b1(x, y) =

(
δB(x)

0

)
, b2(x, y) =

(
γ1h(x)

γ2h(y)

)
,

then we see that for every negative value of β, there are (large) positive numbers γ1, γ2

for which b2 satisfies (Uβ) and X converges to ∞ so, in particular, the RDS does not
have an attractor. Further, for any pair (γ1, γ2) for which the RDS has an attractor, we
find a pair of larger values for which no attractor exists, so an attractor can even be
destroyed by adding a strong drift towards the origin. Note that our sufficient condition
for an attractor is, for example, satisfied provided that γ1 = γ2 is sufficiently large and
δ > 0 is sufficiently small.

We now state what the upper bounds look like in the special case when the drift b is
bounded ( i.e. p =∞ ).

Example 2.15 (A case study: bounded coefficients). We consider the flow φ generated
by the solution to (1.1) when b, ∇σ are simply bounded, i.e., Theorem 2.4 holds with
arbitrary p = ρ ∈ (1,∞).

1. Expansion rate of the flow: Theorem 5.4 shows that for each ε > 0 there exist
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constants C1 (depending on d and ε) such that for each compact subset X ⊂ Rd

lim sup
T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|φ0,t(x)|

)
≤ C1

(
K2 + ‖b‖2

L̃p

K2

K2
1

+ ‖∇σ‖2∞
)

[(K2

K1

)16d3+ε

+
(‖∇σ‖2∞

K1

)32d3+ε

+
(‖b‖L̃p
K1

)32d2+ε]
.

(2.7)

2. Existence of the attractor: if b = b1 + b2, and b2 and σ are Lipschitz continuous with
Lipschitz constants Lb and Lσ respectively. Further assume that b2 satisfies (Uβ)

in Theorem 2.11 with

β < −C2

( (‖b1‖2L̃p +K2‖b1‖L̃p)

K1

)[(K2

K1

)16d3+ε

+
(‖∇σ‖2∞

K1

)32d3+ε

+
(‖b2‖L̃p

K1

)32d2+ε]
−C3(

√
(d− 1)K2(Lb + Lσ)) +K2(d− 1)), (2.8)

where ε > 0 and C2, C3 > 0 are appropriate functions depending on d and ε only,
then from Theorem 6.3 we know that φ (or the associated RDS ϕ) has an attractor.

3 Expansion of sets under a flow

In this section, we assume that ψ : [0,∞) × Rd × Ω → Rd is measurable such that
t 7→ ψt(x, ω) is continuous for every x ∈ Rd and ω ∈ Ω (we do not require that ψ has any
kind of flow property).

Lemma 3.1. Assume that there exist α > 0 and a constant c1 > 0 such that for each
r > d, there exists c = c(r) > 0 such that for all x, y ∈ Rd and T > 0, we have(

E sup
0≤t≤T

(|ψt(x)− ψt(y)|r)
)1/r

≤ c|x− y|ec1r
αT . (3.1)

Then ψ has a modification (which we denote by the same symbol) which is jointly
continuous in (t, x) and for each γ > 0 and u > 0,

lim sup
T→∞

1

T
sup
χT,γ

logP
(

sup
x,y∈χT,γ

sup
0≤t≤T

|ψt(x)− ψt(y)| ≥ u
)
≤ −I(γ), (3.2)

where supχT,γ means that we take the supremum over all cubes χT,γ in Rd with side

length e−γT , and I : [0,∞)→ R is defined as

I(γ) :=

 γ1+1/αα(1 + α)−1−1/αc
−1/α
1 if γ ≥ c1(α+ 1)dα

d(γ − c1dα) if c1d
α < γ ≤ c1(α+ 1)dα

0 if γ ≤ c1dα.
(3.3)

Proof. We follow the argument in [23, Proof of Theorem 3.1]. Without loss of generality
we take χ := χT,γ = [0, e−γT ]d and define Zt(x) := φt(e

−γTx), x ∈ Rd. From (3.1) we get(
E sup

0≤t≤T
(|Zt(x)− Zt(y)|r)

)1/r

≤ ce−γT |x− y|ec1r
αT .

By Kolmogorov’s Theorem (see, e.g. [23, Lemma 2.1]), φ admits a jointly continuous
modification and for any ρ ∈ (0, r−dr ):

P
(

sup
x,y∈χT,γ

sup
0≤t≤T

|ψt(x)− ψt(y)| ≥ u
)
≤ c̃e(c1r

α−γ)rTu−r, (3.4)

where c̃ depends on r, d, ρ only. Taking logarithms, dividing by T , then letting T → ∞
and optimizing over r > d we get the desired result (3.2).
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Remark 3.2. Since I(γ) = supr>d
{
r
(
γ− c1rα

)}
is the supremum of affine functions, the

map γ 7→ I(γ) is convex. Further, I grows faster than linearly.

The following theorem is a reformulation of [23, Theorem 2.3].

Theorem 3.3. Let ψ : [0,∞) × Rd × Ω → Rd be jointly continuous and satisfy the
assumptions of Theorem 3.1 and (3.1) hold with constants c1 and α. Assume further,
that there exist c2 and c3 ≥ 0 such that, for each k > 0 and each bounded set S ⊂ Rd,
the following holds

lim sup
T→∞

1

T
log sup

x∈S
P
(

sup
0≤t≤T

|ψt(x)| ≥ kT
)
≤ −c2k2 + c3. (3.5)

Let X be a compact subset of Rd with box (or upper entropy) dimension ∆ > 0. Then

lim sup
T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|ψt(x)|

)
≤ κ a.s., (3.6)

where

κ :=


(
c3+γ1∆
c2

) 1
2

if d
d−∆ < α+ 1,(

c3+γ2∆
c2

) 1
2

otherwise,
with γ1 =

c1d
α+1

d−∆
, γ2 = c1(α−1∆)α(1 + α)1+α.

Remark 3.4. In addition to the assumptions of the previous theorem, let us assume that
ψt(x) = φ0,t(x) where φ is a semi-flow (later, we will only consider this case). Let X ⊂ Rd
be any compact set and let B be a ball in Rd containing X . Clearly, the boundary ∂B
of B has box dimension d − 1. The flow property of φ implies that for each t ≥ 0, the
boundary of φ0,t(B) is contained in φ0,t(∂B) and therefore any almost sure upper bound
κ for the linear expansion rate of the set ∂B is at the same time an upper bound for the
linear expansion rate of the set B and hence of X . This means that in the case of a flow,
the formula for κ in the theorem always holds with ∆ replaced by d− 1 (or the minimum
of ∆ and d− 1).

4 Quantitative version of Krylov estimates

We will show a quantitative version of Krylov estimates (4.1). One can find similar
results in the literature with implicit constants, for instance [16], [30] and [27], which
however do not fit our needs since some proofs in later sections rely on the explicit
dependence of the constants on the coefficients of the SDE. In the following lemma,
a constant CKry appears which depends on q, p, ρ, d only. While we will regard p, ρ, d

as fixed throughout, we will apply the formula with different values of q and we will
therefore write CKry(q) for clarity. We denote the filtration generated by Wt, t ≥ 0 by Ft,
t ≥ 0.

Lemma 4.1. If Theorem 2.4 holds and (Xt)t≥0 solves (1.1), then, for f ∈ L̃q(Rd) with
q ∈ (d,∞], there exists a constant CKry(q) > 0 depending on q, p, ρ, d only such that for
0 ≤ s ≤ t,

E[

∫ t

s

|f(Xr)|dr
∣∣∣Fs] ≤ CKry(q)Γ

(
K
− 1

2
2 (t− s) 1

2 + (t− s)
)
‖f‖L̃q , (4.1)

where Γ :=
(
K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ +
(‖b‖L̃p

K1

) 4d
1−d/p .

Proof. It is sufficient to show the estimate for positive f . (4.1) clearly holds when q =∞,
so we assume q ∈ (d,∞). All positive constants Ci, i = 0, · · · , 7 appearing in the proof
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only depend on p, ρ, q, d. We will regard p, ρ and d as fixed but we will vary q in the
following proof and we will therefore highlight the dependence of constants on q in some
cases (for C0 and C1). First we show that a := σσ∗ is 1 − d

ρ -Hölder continuous using

Sobolev’s embedding theorem and the condition that σ ∈ H̃1,ρ with ρ > d. Indeed

ω1−d/ρ(a) := sup
x,y∈Rd,x 6=y,|x−y|≤1

‖a(x)− a(y)‖
|x− y|1−d/ρ

≤ sup
x,y∈Rd,x 6=y,|x−y|≤1

(‖(σσ∗)(x)− σ(x)σ∗(y)‖
|x− y|1−d/ρ

+
‖σ(x)σ∗(y)− (σσ∗)(y)‖

|x− y|1−d/ρ
)

≤ sup
x,y∈Rd,x 6=y,|x−y|≤1

(‖σ∗(x)− σ∗(y)‖‖σ‖∞
|x− y|1−d/ρ

+
‖σ(x)− σ(y)‖‖σ‖∞
|x− y|1−d/ρ

)
≤Cρ,d

√
K2‖∇σ‖L̃ρ . (4.2)

We follow the idea from [33, Theorem 3.4]. Applying Theorem A.3 with p′ =∞, we see
that there is a unique solution u ∈ H̃2,q to

λu− 1

2
aij∂iju = f (4.3)

provided that λ ≥ C0(q)
K2

2

K1
(
K1+

√
K2‖∇σ‖L̃ρ
K1

)
2

1−d/ρ =: λ0(q). Further, for λ ≥ λ0(q), we
have

sup
x∈Rd

|u(x)| ≤ C1(q)λ−
2−d/q

2 K1
− d

2q
(K1 +

√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ ‖f‖L̃q =: U1,q(λ)‖f‖L̃q ,

sup
x∈Rd

|∇u(x)| ≤ C1(q)λ−
1−d/q

2 K
− 1+d/q

2
1

(K1 +
√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ ‖f‖L̃q =: U2,q(λ)‖f‖L̃q .

(4.4)

Fix t ≥ s ≥ 0 and define the stopping time

τR := inf
{
s̄ > s :

∫ s̄

s

∣∣b(Xr)
∣∣ dr ≥ R

}
, 0 < R <∞.

By the generalized Itô’s formula (see e.g. [27, Lemma 4.1 (iii)])

u(Xt∧τR)− u(Xs∧τR)

=
1

2

∫ t∧τR

s∧τR
aij(Xr)∂iju(Xr) dr +

∫ t∧τR

s∧τR

(
∇u(Xr)

)∗
σ(Xr) dWr

+

∫ t∧τR

s∧τR
b(Xr) · ∇u(Xr) dr.

Using (4.3), the mean value theorem, (4.4) and BDG’s inequality, we get that

E
[ ∫ t∧τR

s∧τR
f(Xr) dr

∣∣∣Fs]
=E
[
(u(Xs∧τR)− u(Xt∧τR))

∣∣∣Fs]+ E
[
λ

∫ t∧τR

s∧τR
u(Xr) dr

∣∣∣Fs]
+ E

[ ∫ t∧τR

s∧τR
b(Xr) · ∇u(Xr) dr

∣∣∣Fs]
≤ sup
x∈Rd

|∇u(x)|E
[∣∣ ∫ t∧τR

s∧τR
b(Xr) dr +

∫ t∧τR

s∧τR
σ(Xr) dWr

∣∣∣∣∣Fs]+ λ(t− s) sup
x∈Rd

|u(x)|
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+ sup
x∈Rd

|∇u(x)|E
[ ∫ t∧τR

s∧τR

∣∣b(Xr)
∣∣ dr∣∣∣Fs]

≤ sup
x∈Rd

|∇u(x)|C2

√
K2(t− s) 1

2 + λ(t− s) sup
x∈Rd

|u(x)|

+ 2 sup
x∈Rd

|∇u(x)|E
[ ∫ t∧τR

s∧τR

∣∣b(Xr)
∣∣dr∣∣∣Fs]

≤C2

√
K2(t− s) 1

2U2,q(λ)‖f‖L̃q + λ(t− s)U1,q(λ)‖f‖L̃q

+ 2U2,q(λ)‖f‖L̃qE
[ ∫ t∧τR

s∧τR

∣∣b(Xr)
∣∣dr∣∣∣Fs]. (4.5)

Here, the constant C2 > 0 comes from BDG’s inequality. We apply this inequality to
f = |b| with q = p. Then, for λ ≥ λ0(p),

E
[ ∫ t∧τR

s∧τR
|b(Xr)|dr

∣∣∣Fs] ≤C2

√
K2(t− s) 1

2U2,p(λ)‖b‖L̃p + λ(t− s)U1,p(λ)‖b‖L̃p

+ 2U2,p(λ)‖b‖L̃pE
[ ∫ t∧τR

s∧τR
|b(Xr)|dr

∣∣∣Fs].
If λ ≥ λ0(p) is so large that U2,p(λ)‖b‖L̃p = C1(p)λ−

1−d/p
2 K

− 1+d/p
2

1

(K1+
√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ

‖b‖L̃p ≤
1
4 , i.e.

λ ≥
(
4C1(p)K1

−1−d/p
2

(K1 +
√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ ‖b‖L̃p

) 2
1−d/p , (4.6)

then we get

E
[ ∫ t∧τR

s∧τR
|b(Xr)|dr

∣∣∣Fs] ≤ C2

2

√
K2(t− s) 1

2 + 2λ(t− s)U1,p(λ)‖b‖L̃p .

Plugging this into (4.5), observing that, by definition, U1,p(λ)U2,q(λ) = U1,q(λ)U2,p(λ),
and using (4.6) yields, for λ ≥ λ0(p) ∨ λ0(q) satisfying (4.6),

E
[ ∫ t∧τR

s∧τR
f(Xr) dr

∣∣∣Fs]
≤C3

(√
K2(t− s) 1

2U2,q(λ) + λ(t− s)(U1,q(λ) + U1,p(λ)U2,q(λ)‖b‖L̃p
)
‖f‖L̃q

≤2C3

(√
K2(t− s) 1

2U2,q(λ) + λ(t− s)U1,q(λ)
)
‖f‖L̃q .

Let λ = C4

(K2
2

K1
(
K1+

√
K2‖∇σ‖L̃ρ
K1

)
2

1−d/ρ +(4C1(p)K1

−1−d/p
2

(K1+
√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ ‖b‖L̃p)

2
1−d/p

)
with C4 > C0(p) ∨ C0(q) ∨ 1, which implies

√
K2U2,q(λ) = C1(q)

√
K2(λK1)−

1
2 (λK−1

1 )
d
2q
(K1 +

√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ

≤ C5K
− 1

2
2 (λK−1

1 )
d
2q
(K1 +

√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ

≤ C6K
− 1

2
2

((K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2L̃ρ

K1

) 4d2

1−d/ρ +
(‖b‖L̃p
K1

) 4d
1−d/p

)
and

λU1,q(λ) = C1(q)(λK−1
1 )

d
2q
(K1 +

√
K2‖∇σ‖L̃ρ
K1

) d
1−d/ρ
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≤ C7

((K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2L̃ρ

K1

) 4d2

1−d/ρ +
(‖b‖L̃p
K1

) 4d
1−d/p

)
.

In the above estimates we used the fact that p > 2d and q > d. Therefore,

E
[ ∫ t∧τR

s∧τR
f(Xr) dr

∣∣∣Fs]
≤ CKry(q)

((K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2L̃ρ

K1

) 4d2

1−d/ρ +
(‖b‖L̃p
K1

) 4d
1−d/p

)
[K
− 1

2
2 (t− s) 1

2 + (t− s)]‖f‖L̃q .

(4.7)

Letting R→∞ we therefore get (4.1).

The following corollary is a quantitative version of Khasminskii’s lemma. The constant
CKry(q) appearing in there is the same as in the previous lemma.

Corollary 4.2. Let Theorem 2.4 hold, let Γ :=
((

K2

K1

) 4d2

1−d/ρ+
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ+
(‖b‖L̃p

K1

) 4d
1−d/p

)
.

Then, for any f ∈ L̃q(Rd) with q ∈ (d,∞], any 0 ≤ S ≤ T , and any 0 < λ <∞, the solution
(Xt)t≥0 of (1.1) satisfies

E exp
(
λ

∫ T

S

|f(Xr)|dr
)
≤ 2 · 2(T−S)

(
κ
2K
−1/2
2 +

√
κ2

4 K
−1
2 +κ

)2
≤ 2 · 2(T−S)

(
κ2

K2
+2κ
)
, (4.8)

where κ := 2CKry(q)λΓ‖f‖L̃q .

Proof. The second inequality is an application of the general inequality (A + B)2 ≤
2A2 + 2B2.

Theorem 4.1 shows that there exists some positive integer n such that, for j =

0, · · · , n− 1,

λE
[ ∫ (T−S)(j+1)

n

(T−S)j
n

∣∣∣f(Xr)
∣∣∣ dr∣∣∣F (T−S)j

n

]
≤ 1

2
(4.9)

and the proof of [29, Lemma 3.5] shows that for any such n we have

E exp
(
λ

∫ T

S

|f(Xr)|dr
)
≤ 2n

(see also [19, Lemma 3.5]). By Theorem 4.1, any n such that

CKry(q)λΓ‖f‖L̃q
[(T − S

K2n

) 1
2

+
T − S
n

]
≤ 1

2

satisfies (4.9). In particular, we can take

n =
⌊
(T − S)

(κ
2
K
−1/2
2 +

√
κ2

4
K−1

2 + κ
)2⌋

+ 1

Here, bxc is the largest integer that is smaller than or equal to x ∈ R. Therefore (4.8)
holds.

Remark 4.3. Note that the right hand side of our version of Krylov’s estimate contains

the factor (t− s)1/2 + (t− s) instead of C(T )(t− s)1− d
2q in [33, Theorem 3.4 (3.8)]), where

C(T ) depends on the final time T . Further, we require the condition q > d instead of
q > d/2 in [33, Theorem 3.4 (3.8)]). The reason for our restriction to q > d is that we
use (4.4) which only holds for q > d. Since we will later apply Krylov’s estimate to
f := |b∗ · σ−1|2 which is in L̃p/2 we will have to assume p > 2d.

Remark 4.4. More general versions of the quantitative Khasminskii’s Lemma (but with
less explicit constants) can be found in [18].
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5 Upper bounds for the dispersion of sets induced by the flow
generated by the solution to SDE

This section is devoted to providing upper bounds for the dispersion of bounded sets
induced by the flow generated by the solution to a singular SDE. It essentially follows
from Theorem 3.3 once we verify the stability estimate (3.1). To establish (3.1), we
treat the special case of weakly differentiable coefficients in Section 5.1 and then use
Zvonkin’s transformation in Section 5.2 to prove the general case.

5.1 Stability estimates of the SDE with weakly differentiable coefficients

Consider the equation

dY it = b̃(Y it ) dt+ σ̃(Y it ) dWt, Y i0 = yi ∈ Rd, i = 1, 2. (5.1)

For b̃ and σ̃ we assume:

Assumption 5.1. For p, ρ ∈ (2d,∞),

1. ‖b̃‖H̃1,p <∞;1

2. ‖∇σ̃‖L̃ρ <∞;

3. for ã := σ̃σ̃∗, there exist some K̃1, K̃2 > 0 such that for all x ∈ Rd,

K̃1|ζ|2 ≤ 〈ã(x)ζ, ζ〉 ≤ K̃2|ζ|2, ∀ζ ∈ Rd.

Theorem 5.2. Let Theorem 5.1 hold. There exist constants κ0, κ1 > 0 depending only
on p, d, ρ, such that for any r ≥ 1, T ≥ 0, yi ∈ Rd, i = 1, 2, the solutions Y i := Y i(yi) to
equations (5.1) satisfy

E[ sup
t∈[0,T ]

|Y 1
t (y1)− Y 2

t (y2)|r] ≤ κ0|y1 − y2|r exp(κ1T%), (5.2)

where

% := r4
[
‖b̃‖∞ + ‖σ̃‖2∞ + (Γ̃‖∇b̃‖L̃p)2K̃−1

2 + Γ̃‖∇b̃‖L̃p + Γ̃2‖∇σ̃‖4
L̃ρ
K̃−1

2 + Γ̃‖∇σ̃‖2
L̃ρ

]
,

(5.3)

and Γ̃ :=
((

K̃2

K̃1

) 4d2

1−d/ρ +
(‖∇σ̃‖2

L̃ρ

K̃1

) 4d2

1−d/ρ +
(‖b̃‖L̃p

K̃1

) 4d
1−d/p

)
.

Proof. Again, all constants C1, ... depend on p, ρ, d only. By Itô’s formula we get for any
r ≥ 1,

|Y 1
t − Y 2

t |2r =|y1 − y2|2r +

∫ t

0

|Y 1
s − Y 2

s |2r dAs +Mt ≤ |y1 − y2|2r

+

∫ t

0

|Y 1
s − Y 2

s |2r dĀs +Mt, (5.4)

where Mt is an (Ft)-local martingale defined as

Mt :=

∫ t

0

2r|Y 1
s − Y 2

s |2r−2[σ̃(Y 1
s )− σ̃(Y 2

s )]∗(Y 1
s − Y 2

s ) dWs

1Since b̃ ∈ H1,p, we can find a continuous and bounded version b̄ ∈ H1,p. Due to the uniformly elliptic
noise, the solutions Y i, i = 1, 2 with drift b̄ are indistinguishable from those with drift b̃. Therefore will always
assume that b̃ is bounded and continuous.
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and

At :=

∫ t

0

2r〈Y 1
s − Y 2

s , b̃(Y
1
s )− b̃(Y 2

s )〉+ r‖σ̃(Y 1
s )− σ̃(Y 2

s )‖2

|Y 1
s − Y 2

s |2
ds

+

∫ t

0

2r(r − 1)|[σ̃(Y 1
s )− σ̃(Y 2

s )]∗(Y 1
s − Y 2

s )|2

|Y 1
s − Y 2

s |4
ds

and

Āt :=

∫ t

0

2r|〈Y 1
s − Y 2

s , b̃(Y
1
s )− b̃(Y 2

s )〉|+ r‖σ̃(Y 1
s )− σ̃(Y 2

s )‖2

|Y 1
s − Y 2

s |2
ds

+

∫ t

0

2r(r − 1)|[σ̃(Y 1
s )− σ̃(Y 2

s )]∗(Y 1
s − Y 2

s )|2

|Y 1
s − Y 2

s |4
ds.

There exists C1 > 0 such that for each x, y ∈ Rd

|σ̃(x)− σ̃(y)| ≤ C1|x− y|(M|∇σ̃|(x) +M|∇σ̃|(y) + ‖σ̃‖∞),

|b̃(x)− b̃(y)| ≤ C1|x− y|(M|∇b̃|(x) +M|∇b̃|(y) + ‖b̃‖∞),

whereMf is defined asMf(x) := supr∈(0,1)
1
|Br|

∫
Br
f(x+ y) dy, which satisfies

‖Mf‖L̃γ ≤ C(γ, d)‖f‖L̃γ for γ > 1, (5.5)

see [27, Lemma 2.1].
Using these estimates and the Cauchy–Schwarz inequality, we get

Āt ≤C2

(
r
(∫ t

0

M|∇b̃|(Y 1
s ) +M|∇b̃|(Y 2

s ) ds+ t‖b̃‖∞
)

+ r
(∫ t

0

M|∇σ̃|2(Y 1
s ) +M|∇σ̃|2(Y 2

s ) ds+ t‖σ̃‖2∞
)

+ 2r(r − 1)
(∫ t

0

M|∇σ̃|2(Y 1
s ) +M|∇σ̃|2(Y 2

s ) ds+ t‖σ̃‖2∞
))

=tC2

(
r‖b̃‖∞ + (2r2 − r)‖σ̃‖2∞

)
+ C2

2∑
i=1

∫ t

0

rM|∇b̃|(Y is ) + (2r2 − r)M|∇σ̃|2(Y is ) ds.

Applying Theorem 4.2 and (5.5) we get, for α > 0 and t ≥ 0,

E[exp(αĀt)] ≤ 16 exp
[
C3%αt

]
, (5.6)

where

%α =α
(
r‖b̃‖∞ + r2‖σ̃‖2∞

)
+ (rαΓ̃‖∇b̃‖L̃p)2K̃−1

2 + rαΓ̃‖∇b̃‖L̃p
+ (αr2Γ̃‖∇σ̃‖2

L̃ρ
)2K̃−1

2 + (αr2Γ̃‖∇σ̃‖2
L̃ρ

). (5.7)

Choosing α = 1 and applying stochastic Grönwall’s inequality (see [24, Theorem 4] or
[29, Lemma 3.7]) to (5.4) we get

E[ sup
t∈[0,T ]

|Y 1
t − Y 2

t |r] ≤ C4|y1 − y2|r
(
E
[

exp
(
ĀT
)])1/2

≤ 4C4|y1 − y2|r exp
(1

2
C3%1T

)
.

Observing that %1 is at most equal to %0 defined in (5.3) and defining κ0 = 4C4 and
κ1 = 1

2C3, (5.2) follows.
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Remark 5.3. If σ̃ is even globally Lipschitz continuous with Lipschitz constant L, then
there is no need to use Khasminskii’s Lemma for the integral over σ̃ and we easily
get (5.2) with

% = r2
[
‖b̃‖∞ + (Γ̃‖∇b̃‖L̃p)2K̃−1

2 + Γ̃‖∇b̃‖L̃p + L2
]

and

Γ̃ :=
((K̃2

K̃1

)4d2
+
( L
K̃1

)4d2
+
(‖b̃‖L̃p
K̃1

) 4d
1−d/p

)
.

5.2 Linear expansion rate of the SDE with singular coefficients

Theorem 5.4. Let Theorem 2.4 hold. Let ψ denote the flow generated by the solution
to (1.1). Let X be a compact subset of Rd. Then there exists a positive constant Cp,ρ,d
depending on p, d, ρ only such that

lim sup
T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|ψt(x)|

)
≤ κ∗ a.s., (5.8)

where

κ∗ =Cp,ρ,d

(
K2 + ‖b‖2

L̃p

K2

K2
1

+ ‖∇σ‖2
L̃ρ

)
[(K2

K1

) 16d3

(1−d/(p∧ρ))(1−d/ρ)
+
(‖b‖L̃p
K1

) 32d2

1−d/(p∧ρ)
+
(‖∇σ‖2Lρ

K1

) 32d3

(1−d/(p∧ρ))(1−d/ρ)
]
.

Proof. The idea is to apply Theorem 3.3. All following constants C∗1 , ..., C
∗
7 will depend

on p, ρ, d only.

Step 1. We check the assumptions of Theorem 3.1.

To verify (3.1) we apply Zvonkin’s transformation and Theorem 5.2. Since, by (4.2),
the map x 7→ a(x) = σ(x)σ∗(x) is 1−d/ρ-Hölder continuous and ω1−d/ρ(a) ≤ Cρ,d

√
K2‖∇σ

‖L̃ρ , Theorem A.3 and Theorem A.4 show that there exists a constant C∗1 such that for

λ:=C∗1K1

(K2
2

K2
1

(K1 +
√
K2‖∇σ‖L̃ρ
K1

) 2
1−d/ρ+

(K1 +
√
K2‖∇σ‖L̃ρ
K1

) 2d
(1−d/ρ)(1−d/p)

(‖b‖L̃p
K1

) 2
1−d/p

)
,

the equation
1

2
aij∂

2
iju

(l) + b · ∇u(l) − λu(l) = −b(l), l = 1, · · · , d,

has a unique solution U := (u(l))1≤l≤d, u(l) ∈ H̃2,p and

Φ(x) := x+ U(x) for x ∈ Rd (5.9)

is a C1-diffeomorphism on Rd (see also [33]), which is also known as Zvonkin’s transfor-
mation map. Let Ψ := (Φ)−1. Then, by the generalized Itô’s formula ([27]), Yt := Φ(ψt(x))

satisfies the following equation

dYt = b̃(Yt) dt+ σ̃(Yt) dWt, Y0 = y ∈ Rd (5.10)

with
b̃(x) := λU(Ψ(x)), σ̃(x) := [∇Φ · σ] ◦ (Ψ(x)), y = Φ(x).

From [27, (4.5)] we know that

‖U‖∞ <
1

2
, ‖∇U‖∞ <

1

2
. (5.11)
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Furthermore, by (A.17) and (A.4) we have

‖∇U‖L̃p ≤
1

2

(K1

λ

) d
2p ≤ 1

2
, ‖U‖L̃p ≤

1

2

(K1

λ

) 1−d/p
2 ≤ 1

2
,

‖∇2U‖L̃p ≤ C
∗
2

1

K1

(
1 +

√
K2‖∇σ‖L̃ρ

K1

) d
(1−d/ρ) ‖b‖L̃p . (5.12)

Hence, by (5.11) (see also e.g. [27, p. 15]),

1

2
≤ |∇Φ| = |I+∇U | ≤ 3

2
, |∇Ψ| ≤ 2

which implies that for all x ∈ Rd,
1

4
K1|ξ|2 ≤ 〈σ̃σ̃∗(x)ξ, ξ〉 ≤ 9

4
K2|ξ|2, ∀ξ ∈ Rd, (5.13)

and

‖b̃‖∞ ≤ λ‖U‖∞ ≤
1

2
λ, ‖b̃‖L̃p ≤ λ‖U‖L̃p ≤

1

2
λ,

‖∇b̃‖L̃p ≤ λ‖det(∇Φ)‖
1
p
∞‖∇U‖L̃p ≤ λ. (5.14)

Moreover for p′ = min(p, ρ) we have by embedding

‖∇σ̃‖L̃p′ = ‖
(

(∇2Φ · σ +∇Φ∇σ)∇Ψ
)
◦Ψ‖L̃p′

≤ ‖
(

(∇2Φ · σ)∇Ψ
)
◦Ψ‖L̃p + ‖

(
(∇Φ∇σ)∇Ψ

)
◦Ψ‖L̃ρ

≤ 2‖det(∇Φ)‖
1
p∧ρ
∞ (

√
K2‖∇2Φ‖L̃p + ‖∇Φ · ∇Ψ‖∞‖∇σ‖L̃ρ)

≤ 9C∗2

√
K2

K1

(
1 +

√
K2‖∇σ‖L̃ρ

K1

) d
(1−d/ρ) ‖b‖L̃p + 9‖∇σ‖L̃ρ . (5.15)

If (φt(x))t≥0 is the flow generated by the solution to (5.10), then by definition of Φ(ψt(x))

from (5.9) and the fact that U is uniformly bounded from (5.11), we get that

lim sup
T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|ψt(x)|

)
= lim sup

T→∞

(
sup
t∈[0,T ]

sup
x∈X

1

T
|φt(x)|

)
.

Using the estimates (5.13), (5.14) and (5.15) we will establish (5.2) for Y . Indeed, let
K̃1 := 1

4K1 and K̃2 = 9
4K2 in Theorem 5.1. Then we define

Γ̃ :=
((K̃2

K̃1

) 4d2

1−d/p′ +
(‖∇̃σ‖2L̃p′

K̃1

) 4d2

1−d/p′ +
(‖b̃‖L̃p
K̃1

) 4d
1−d/p

)
≤Cp,ρ,d

((K2

K1

) 4d2

1−d/(p∧ρ) +
(K2

K1

‖b‖2
L̃p

K2
1

(1 +

√
K2‖∇σ‖L̃ρ

K1
)

2d
1−d/ρ

) 4d2

1−d/(p∧ρ) + (
λ

K1
)

4d
p−d

)
≤Cp,ρ,d

((K2

K1

) 8d3

(1−d/(p∧ρ))(1−d/ρ) +
(‖b‖L̃p
K1

) 16d2

1−d/(p∧ρ) +
(‖∇σ‖2

K1

) 16d3

(1−d/(p∧ρ))(1−d/ρ)
)
. (5.16)

Using Theorem 5.2 and the fact that |∇Ψ| ≤ 2 together with (5.13), (5.14) and (5.15),
for the flows correspondingly ψ1

t (x1), ψ2
t (x2) generated by the solutions X1

t (x1), X1
t (x2)

to (1.1) we get

E[ sup
t∈[0,T ]

|ψ1
t (x1)− ψ2

t (x2)|r] = E[ sup
t∈[0,T ]

|Ψ(Y 1
t (y1))−Ψ(Y 2

t (y2))|r]

≤ 2rE[ sup
t∈[0,T ]

|Y 1
t (y1)− Y 2

t (y2)|r] ≤ 2rC∗4 |y1 − y2|r exp(C∗3T%)

(5.17)
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with

% :=r4
[
λ+K2 + Γ̃λ+ (Γ̃λ)2K−1

2 +Γ̃2(
K2

K2
1

‖b‖2
L̃p

+ ‖∇σ‖2
L̃ρ

)2K−1
2 + Γ̃(

K2

K2
1

‖b‖2
L̃p

+ ‖∇σ‖2
L̃ρ

)
]
.

(5.18)

Step 2. Verification of estimate (3.5) in Theorem 3.3.

Let

ρt := exp
(∫ t

0

b∗(σ−1)∗(ϕr(x)) dWr −
1

2

∫ t

0

b∗(σσ∗)−1b(ϕr(x)) dr
)
,

where ϕt(x) is the flow generated by the solution to

dϕt = σ(ϕt) dWt, ϕ0(x) = x ∈ Rd.

It follows from (4.8) that, for any β > 0,

E exp
(
β

∫ T

0

b∗(σσ∗)−1b(ϕr(x)) dr
)
≤2 exp

(
TC∗5

(
(K2

1K2)−1(Γ′β)2‖b‖4
L̃p

+ Γ′βK−1
1 ‖b‖2L̃p

))
(5.19)

where

Γ′ =
(K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2L̃ρ

K1

) 4d2

1−d/ρ . (5.20)

Therefore (ρt)t≥0 is a martingale. Let Pρ := ρTP. By Girsanov’s theorem and Hölder’s
inequality,

P
(

sup
0≤t≤T

|ψt(x)− x| ≥ kT
)

=Pρ
(

sup
0≤t≤T

|ϕt(x)− x| ≥ kT
)

=E[ρT I{sup0≤t≤T |ϕt(x)−x|≥kT}]

≤[Eρ2
T ]

1
2P[ sup

0≤t≤T
|ϕt(x)− x| ≥ kT ]

1
2 .

Applying Markov’s inequality we obtain, for each x ∈ Rd and ζ ≥ 0,

P
(

sup
0≤t≤T

|ϕt(x)− x| ≥ kT
)1/2

≤ e− 1
2 ζkT

[
E exp

(
ζ sup

0≤t≤T

∣∣∣ ∫ t

0

σ(ϕr(x)) dWr

∣∣∣)] 1
2

. (5.21)

(5.19) shows[
Eρ2

T

]1/2
=
[
E exp

(
2

∫ T

0

b∗(σ−1)∗(ϕr(x)) dWr − 2

∫ T

0

b∗(σσ∗)−1b(ϕr(x)) dr

+

∫ T

0

b∗(σσ∗)−1b(ϕr(x)) dr
)]1/2

≤
(
E
[

exp
(

2

∫ T

0

b∗(σ−1)∗(ϕr(x)) dWr − 2

∫ T

0

b∗(σσ∗)−1b(ϕr(x)) dr
]2)1/4

[
E exp

(∫ t

0

2b∗(σσ∗)−1b(ϕr(x)) dr
)]1/4

≤
[
E exp

(
2

∫ T

0

b∗(σσ∗)−1b(ϕr(x)) dr
)]1/4

≤ 2 exp
(
C∗5T

(
(K2

1K2)−1Γ′ 2‖b‖4
L̃p

+K−1
1 Γ′‖b‖2

L̃p

))
=: 2 exp(Tκ1)
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and by time change
∫ t

0
σ(ϕr(r)) dWr = W∫ t

0
|σ(ϕr(x))|2 dr, we also have[

E exp
(

2ζ sup
0≤t≤T

∣∣∣ ∫ t

0

σ(ϕr(x)) dWr

∣∣∣)]1/2 ≤ √2 exp(Cdζ
2‖σ‖2∞T ) =:

√
2 exp(Tζ2κ2).

Inserting these estimate into (5.21) and optimizing over ζ ≥ 0 yields, for any k > 0,

P
(

sup
0≤t≤T

|ψt(x)− x| ≥ kT
)
≤ 2 exp

(
C∗6T

(
κ1 + κ2ζ

2 − ζk
))

≤ 2 exp
(
C∗7T

(
− 1

4κ2
k2 + κ1

))
. (5.22)

With estimates (5.17) and (5.22) at hand we are ready to apply Theorem 3.3 by taking

c1 : = λ+K2 + Γ̃λ+ (Γ̃λ)2K−1
2 + Γ̃2(

K2

K2
1

‖b‖2
L̃p

+ ‖∇σ‖2
L̃ρ

)2K−1
2 + Γ̃(

K2

K2
1

‖b‖2
L̃p

+ ‖∇σ‖2
L̃ρ

),

c2 : =
1

4‖σ‖2∞
, c3 := C∗7 (K2

1K2)−1Γ′
2‖b‖4

L̃p
+K−1

1 Γ′‖b‖2
L̃p
, α := 3, (5.23)

with Γ̃ from (5.16) and Γ′ from (5.20). Note that we can take ∆ = d− 1 by Remark 3.4.
The linear expansion rate κ can now be estimated as follows (no matter which of the two
cases in the definition of κ in Theorem 3.3 applies):

κ ≤ Cα,d
(c1 + c3

c2

)1/2

≤ Cp,ρ,d‖σ‖∞
(√

λ+
√
K2 +

√
Γ̃λ+ Γ̃λK

−1/2
2 + Γ̃

(
K2K

−2
1 ‖b‖2L̃p + ‖∇σ‖2

L̃ρ

)
K
−1/2
2

+
√

Γ̃
(√

K2K
−1
1 ‖b‖L̃p + ‖∇σ‖L̃ρ

)
+ (K2

1K2)−1/2Γ′‖b‖2
L̃p

+ (K−1
1 Γ′)1/2‖b‖L̃p

)
≤ Cp,ρ,d

√
K2

(√
K1 +

√
K2 +

K1√
K2

+ ‖b‖2
L̃p

(

√
K2

K2
1

+
1

K1

√
K2

) +

√
K2 +

√
K1

K1
‖b‖L̃p

+ ‖∇σ‖L̃ρ

+
‖∇σ‖2

L̃ρ√
K2

)[(K2

K1

) 16d3

(1−d/(p∧ρ))(1−d/ρ)
+
(‖b‖L̃p
K1

) 32d2

1−d/(p∧ρ) +
(‖b‖L̃p
K1

) 8
1−d/p

+
(‖∇σ‖2L̃ρ

K1

) 32d3

(1−d/(p∧ρ))(1−d/ρ) + (
‖∇σ‖2

L̃ρ

K1

) 8d
(1−d/p)(1−d/ρ) +

(‖∇σ‖2L̃ρ
K1

) 8
1−d/ρ

]
≤ Cp,ρ,d

(
K2 + ‖b‖2

L̃p

K2

K2
1

+ ‖∇σ‖2
L̃ρ

)
[(K2

K1

) 16d3

(1−d/(p∧ρ))(1−d/ρ)
+
(‖b‖L̃p
K1

) 32d2

1−d/(p∧ρ)
+
(‖∇σ‖2Lρ

K1

) 32d3

(1−d/(p∧ρ))(1−d/ρ)
]
.

(5.24)

In the last inequality we used that max( 32d2

1−d/(p∧ρ) ,
8

1−d/p ) ≤ 32d2

1−d/(p∧ρ) , and

max( 32d3

(1−d/(p∧ρ))(1−d/ρ) , 8d
(1−d/p)(1−d/ρ) ,

8
1−d/ρ ) ≤ 32d3

(1−d/(p∧ρ))(1−d/ρ) . In the end we get (5.8).

As a by-product from the proof of Theorem 5.4 we also have

Proposition 5.5. Let ψ denote the flow generated by the solution to (1.1). Let χT be
cubes of Rd with side length exp(−γT ), γ > 0. If Theorem 2.4 holds then for any k > 0

lim sup
T→∞

1

T
sup
χT

logP
(

sup
x,y∈χT

sup
0≤t≤T

|ψt(x)− ψt(y)| ≥ k
)
≤ −I(γ)
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where

I(γ) :=

 γ1+1/αα(1 + α)−1−1/αc
−1/α
1 if γ ≥ c1(α+ 1)dα

d(γ − c1dα) if c1d
α < γ ≤ c1(α+ 1)dα

0 if γ ≤ c1dα.
(5.25)

with α and c1 as in (5.23).

Proof. This follows easily from (5.18) and Theorem 3.1.

6 Existence of random attractors to SDEs with singular drift

Inspired by the work [8], we are interested in the question whether there exists a
random attractor of the RDS generated by the solution to the singular SDE. To formulate
our results, we assume that the drift b can be decomposed into b = b1 + b2 where
|b1| ∈ L̃p(Rd) and b2 is non-singular and points towards the origin. In order to be able
to use results from [8] we assume, in addition to the previous assumptions, that b2 and
σ are both globally Lipschitz continuous and that b2 is bounded. We will obtain the
required bounds for the one-point motion of the flow ψ by using the corresponding
bounds for the flow generated by the SDE without drift b1 and apply Girsanov’s theorem.
To obtain Theorem 6.2 and Theorem 6.3 we use the chaining technique to control the
two-point motion and hence the growth of sets under the action of the solution flow. We
start with estimates of the one-point motion (items 1-5 of the following lemma) and then
move to estimates for the dispersion of sets (items 6 and 7).

Lemma 6.1. Let Theorem 2.4 hold. Further assume that there exist vector fields b1 and
b2 such that b = b1 + b2 with b1 ∈ L̃p(Rd) and b2 and σ Lipschitz with constants Lb and Lσ
respectively. We also assume b2 to be bounded (which implies b2 ∈ L̃p(Rd)). Let ψ be the

flow generated by the solution to (1.1). Let Γ := CKry(p2 )
((

K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ +(‖b2‖L̃p
K1

) 4d
1−d/p

)
where CKry(p2 ) is from (4.1) with q = p

2 depending on p, ρ and d only.

1. Let 1 ≤ r, and r1, r2 > r. If b2 satisfies Theorem 2.11 (Uβ) for some β ∈ R, then, for
each |x| = r2,

P
(
|ψT (x)| ≥ r1, inf

0≤t≤T
|ψt(x)| ≥ r

)
≤ 2 exp

(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4

(
− r2 − r1√

K2T
−
√
Tβ∗(r)√
K2

)2

+

)
with

β∗(r) := sup
|x|≥r

x · b2(x)

|x|
+ (d− 1)

K2

2r
. (6.1)

2. If b2 satisfies Theorem 2.11 (Uβ) for some β < 0 and r0 > 1 is such that β∗(r0) ≤ 0

where β∗(r0) is from (6.1), then for every R ≥ r ≥ r0 and every x ∈ Rd, we have

P
(
|ψT (x)| ≥ R, inf

0≤t≤T
|ψt(x)| ≤ r

)
≤ 4 exp

(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− (R− r)2

16K2T

)
.

3. If b2 satisfies Theorem 2.11 (Uβ) for some β < 0 and r0 > 1 such that β∗(r0) ≤ 0

where β∗(r0) is from (6.1) and if R ≥ r0, then for every |x| = R, δ, δ1 > 0, we have

P
(

sup
0≤s≤δ1

|ψs(x)| ≥ R+ δ
)
≤ 6 exp

(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− δ2

16K2δ1

)
.
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4. Let 1 ≤ r, and r1, r2 > r. If b2 satisfies Theorem 2.11 (Uβ) for some β ∈ R, then for
each |x| = r1,

P
(
|ψT (x)| ≤ r2, inf

0≤t≤T
|ψt(x)| ≥ r

)
≤ 2 exp

(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4

(√Tβ∗(r)√
K2

− r2 − r1√
K2T

)2

+

)
with

β∗(r) := inf
|x|≥r

x · b2(x)

|x|
. (6.2)

5. If b2 satisfies Theorem 2.11 (Uβ) for some β ∈ R, then for each |x| = r1, for
1 ≤ r < r1

P
(

inf
t≥0
|ψt(x)| ≤ r

)
≤ 2 exp

(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− (r1 − r)
β∗(r)

K2

)
with β∗(r1) defined as (6.2).

6. Assume that b2 satisfies Theorem 2.11 (Uβ) for

β > β0 := 4
‖b1‖2L̃pΓ +K2‖b1‖L̃p

√
Γ

K1
+ (2

√
3(d− 1)K2(Lb + Lσ) + 6K2(d− 1)).

Let h : [1,∞) → [1,∞) be strictly increasing such that limx→∞
h(x)
x = 0 and

limx→∞
log x
h(x) = 0. Let η ∈ (0, 1

2 ) and γ > 0 with η + γ < β − β0. For R > 2, define

T := h(R), r = (1− η)R and r1 := R+ γh(R). Then

lim sup
R→∞

1

h(R)
logPR

:= lim sup
R→∞

1

h(R)
logP

[(
Br1 * ψT (BR)

)
∪ ∪t∈[0,T ]

(
Br * ψt(BR)

)]
< 0.

7. Assume that b2 satisfies Theorem 2.11 (Uβ) for

β < −β0 := −4
‖b1‖2L̃pΓ +K2‖b1‖L̃p

√
Γ

K1
− (2

√
3(d− 1)K2(Lb + Lσ) + 6K2(d− 1)).

Let h(R) = Rι for some ι ∈ (0, 1
3 ). Let η ∈ (0, 1

2 ) and γ > 0 with η + γ < −β − β0.
For R > 2, define T := h(R), r = (1− η)R and r1 := R+ γh(R). Then

lim sup
R→∞

1

h(R)
logPR

:= lim sup
R→∞

1

h(R)
logP

[ ⋃
|x|=r1

(
(|ψT (x)| ≥ R) ∩ ( inf

t∈[0,T ]
|ψt(x)| ≥ r)

)]
< 0.

Proof. Let

ρt := exp
{∫ t

0

(b1)∗(σ−1)∗(ψ2
r(x)) dWr −

1

2

∫ t

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

}
,

where ψ2
t (x) is the flow generated by the solution to

dψ2
t = b2(ψ2

t ) dt+ σ(ψ2
t ) dWt, ψ2

0 = x ∈ Rd.
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From (4.8) we get for T > 1 and any λ > 0

E exp
(
λ

∫ T

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

)
≤ 2 exp

(
T
(
(K2

1K2)−1(Γλ)2‖b1‖4L̃p +K−1
1 λΓ‖b1‖2L̃p

))
. (6.3)

(since log 2 < 1). Therefore, (ρt)t≥0 is a martingale. Fix T > 0 and let Pρ := ρTP. Gir-
sanov’s theorem and Hölder’s inequality show for each measurable set A ⊆ C([0, T ],Rd)

P(ψ|[0,T ] ∈ A) = Pρ
(
ψ2|[0,T ] ∈ A

)
= E

[
ρT : ψ2|[0,T ] ∈ A

]
≤
[
Eρ2

T

]1/2
P
(
ψ2|[0,T ] ∈ A

)1/2
≤
[
E exp

(
2

∫ T

0

(b1)∗(σ−1)∗(ψ2
r(x)) dWr − 2

∫ T

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

+

∫ T

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

)]1/2[
P
(
ψ2|[0,T ] ∈ A

)]1/2
≤
(
E
[

exp
(

2

∫ T

0

(b1)∗(σ−1)∗(ψ2
r(x)) dWr − 2

∫ T

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

]2)1/4

[
E exp

(∫ T

0

2(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

)]1/4[
P
(
ψ2|[0,T ] ∈ A

)]1/2
≤
[
E exp

(
2

∫ T

0

(b1)∗(σσ∗)−1b1(ψ2
r(x)) dr

)]1/4[
P
(
ψ2|[0,T ] ∈ A

)]1/2
≤ 2 exp

(
T
(
(K2

1K2)−1Γ2‖b1‖4L̃p +K−1
1 Γ‖b1‖2L̃p

))[
P
(
ψ2|[0,T ] ∈ A

)]1/2
. (6.4)

If Ai denotes the set inside P on the left side of item i in the Lemma (i = 1, ..., 5), then

P(ψ|[0,T ] ∈ Ai) ≤ 2 exp
(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

)[
P
(
ψ2|[0,T ] ∈ Ai

)]1/2
finishing the first step in cases 1-5. It remains to estimate

[
P
(
ψ2|[0,T ] ∈ Ai

)]1/2
. Inserting

the estimate in [8, Proposition 4.2 a)] under (Uβ), we obtain statement 1. Inserting the
estimate in [8, Proposition 4.5] under (Uβ), we obtain statement 2. Inserting the estimate
in [8, Proposition 4.6] under (Uβ), we obtain statement 3. Inserting the estimate in [8,
Proposition 4.2 b)] under (Uβ), we obtain statement 4. and inserting the estimate in [8,
Proposition 4.3] under (Uβ), we obtain statement 5.

Finally we show items 6 and 7. Without loss of generality we assume 1
η < R. For

a ball BR with radius R we can cover its boundary ∂BR by N = Nε ≤ Cd(
R
ε )d−1 balls

with radius ε centered on ∂BR for any ε ∈ (0, 1]. Here we take ε = exp(−κh(R)) for some
κ > 0 which will be chosen later and we label the balls by L1, · · · , LN with corresponding
centers x1, · · · , xN . Note that

N ≤ CdRd−1 exp
(

(d− 1)κh(R)
)
.

Then

PR ≤N max
1≤i≤N

[
P
(
|ψT (xi)| ≤ r1 + 1, inf

t∈[0,T ]
|ψt(xi)| > r + 1

)
+ P

(
inf

t∈[0,T ]
|ψt(xi)| ≤ r + 1

)
+ P

(
sup
t∈[0,T ]

diam ψt(Li) ≥ 1
)]

=:N(P1(R) + P2(R) + P3(R)).
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Item 5. shows for r = (1− η)R

P2(R) ≤ 2 exp
(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− (R− r − 1)
β∗(r + 1)

K2

)
= 2 exp

(
h(R)

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− (ηR− 1)
β∗(r + 1)

K2

)
.

Hence

1

h(R)
log(NP2(R)) ≤ (d− 1)κ+

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− ηR− 1

h(R)

β∗(r + 1)

K2
(6.5)

which is tending to −∞ since β∗(r+1)
K2

> 0 and limR→∞
ηR−1
h(R) =∞.

By [8, (4.2)], choosing κ ≥ (Lb + Lσ) + 3K2(d− 1),

lim sup
R→∞

1

h(R)
logNP3(R) ≤ (d− 1)κ− 1

2K2
(κ− (Lb + Lσ))2 < 0. (6.6)

Further, item 4. gives us the following upper bound (note T = h(R))

P1(R) ≤ 2 exp
(
T

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4

(√Tβ∗(r + 1)√
K2

− r1 + 1−R√
K2T

)2

+

)
= 2 exp

(
h(R)

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− h(R)

4K2

(
β∗(r + 1)− γ − 1

h(R)

)2

+

)
.

So

lim sup
R→∞

1

h(R)
log(NP1(R)) ≤ (d− 1)κ+

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4K2
(β − γ)2.

For κ ≥ (Lb + Lσ) + 3K2(d− 1), notice

β − γ > β0 + η ≥ 4
‖b1‖2L̃pΓ +K2‖b1‖L̃p

√
Γ

K1
+ (2

√
3(d− 1)K2(Lb + Lσ) + 6K2(d− 1)).

Then we have

lim sup
R→∞

1

h(R)
log(NP1(R)) ≤ (d− 1)κ+

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4K2
(β − γ)2 < 0.

(6.7)

Therefore, by (6.7), (6.5) and (6.6), it follows that, for κ ≥ (Lb + Lσ) + 3K2(d− 1),

lim sup
R→∞

1

h(R)
logPR ≤ lim sup

R→∞

1

h(R)
max

(
logNP1(R), logNP2(R), logNP3(R)

)
< 0.

(6.8)

Therefore part 6. holds.

We show part 7. in a similar way. We again cover ∂Br1 by N ≤ Cdr1
d−1eκ(d−1)T

balls centered on ∂Br1 with radius e−κT for some κ > 0 chosen later. Label the balls by
L1, · · · , LN with corresponding centers x1, · · · , xN . Then

PR ≤N max
i

[
P
(
|ψT (xi)| ≥ R+ 1, inf

t∈[0,T ]
|ψt(xi)| > r + 1

)
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+ P
(
|ψT (xi)| ≥ R+ 1, inf

t∈[0,T ]
|ψt(xi)| ≤ r + 1

)
+ P

(
sup
t∈[0,T ]

diam ψt(Li) ≥ 1
)]

=:N(P1(R) + P2(R) + P3(R)).

From case 1 we then get (note T = h(R))

P1(R) ≤2 exp
(
h(R)

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− h(R)

4K2

(R+ 1− r1

h(R)
− β∗(r + 1)

)2

+

)
≤2 exp

(
h(R)

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− h(R)

4K2
(

1

h(R)
− γ − β)2

)
.

Therefore,

1

h(R)
logP1(R) ≤ 2

(Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4K2
(

1

h(R)
− γ − β)2

)
.

Under (Uβ), taking κ ≥ (Lb + Lσ) + 3K2(d− 1),

(−γ − β)2 ≥ (−β0 − η)2 ≥ 16
Γ2‖b1‖4L̃p +K2

2Γ‖b1‖2L̃p
K2

1

+ 12(d− 1)κK2−2(κ− (Lb + Lσ))2,

which implies that

1

h(R)
logNP1(R) ≤ 2

(Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− 1

4K2
(

1

h(R)
− γ − β)2

)
+ (d− 1)κ < 0.

(6.9)

Analogously, case 2 implies for R such that r = (1− η)R > r0 where β∗(r0) < 0,

1

h(R)
logNP2(R) ≤

Γ2‖b1‖4L̃p +K2
2Γ‖b1‖2L̃p

K2
1K2

− (R− r)2

16K2h(R)
+ (d− 1)κ→ −∞ as R→∞.

(6.10)

By (6.9), (6.10) and (6.6) we conclude that lim supR→∞
1

h(R) logPR < 0.

Now we are ready to state the first main theorem of this section.

Theorem 6.2. Let Theorem 2.4 hold. Further assume that there exist vector fields
b1 and b2 such that b = b1 + b2 with b1 ∈ L̃p(R

d), b2 is bounded and b2 and σ are
Lipschitz continuous with Lipschitz constants Lb and Lσ respectively. Let ψ denote the

flow generated by the solution to (1.1). Let Γ := CKry(p2 )
((

K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ +(‖b2‖L̃p
K1

) 4d
1−d/p

)
where CKry(p2 ) is from (4.1) with q = p

2 depending on p, ρ and d only. c1 is

from (5.23). If b2 satisfies Theorem 2.11 (Uβ) for

β > β0 := 4
‖b1‖2L̃pΓ +K2‖b1‖L̃p

√
Γ

K1
+ (2

√
3(d− 1)K2(Lb + Lσ) + 6K2(d− 1)),

then for any γ ∈ [0, β − β0) we have

lim
r→∞

P
(
Bγt ⊂ ψt(Br) ∀ t ≥ 0

)
= 1. (6.11)
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Proof. For γ ∈ [0, β − β0), let η ∈ (0, 1
2 ) such that γ + η < β − β0. Let R0 ≥ 2, Ri+1 = Ri +

γh(Ri) by iteration, where h : [1,∞)→ [1,∞) is strictly increasing and limx→∞
h(x)
x = 0

and limx→∞
log x
h(x) = 0. For i = 0, 1, · · · , take ri = (1− η)Ri, r̄i = R+ γh(Ri). Define

PRi := P
[(
Br̄i * ψT (BRi)

)
∪ ∪t∈[0,T ]

(
Bri * ψt(BRi)

)]
.

Then Theorem 6.1 case 6 shows that

∞∑
i=0

PRi <∞, if
∞∑
i=0

exp(−κh(Ri)) <∞, κ > 0.

If we take h(Ri) = Rαi for some α ∈ (0, 1), then Borel-Cantelli Lemma and time-
homogeneity of flow ψ yield the result (6.11).

Finally, we state the following theorem on the existence of random attractors.

Theorem 6.3. Let Theorem 2.4 hold. Further assume that there exist vector fields b1
and b2 such that b = b1 + b2 with b1 ∈ L̃p(R

d) and b2 and σ are Lipschitz continuous
with Lipschitz constants Lb and Lσ respectively. Let φ denote the flow generated by the

solution to (1.1). Let Γ := CKry(p2 )
((

K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ +
(‖b2‖L̃p

K1

) 4d
1−d/p

)
where

CKry(p2 ) is from (4.1) with q = p
2 depending on p, ρ and d only. If b2 satisfies Theorem 2.11

(Uβ) for

β < −β0 := −4
‖b1‖2L̃pΓ +K2‖b1‖L̃p

√
Γ

K1
− (2

√
3(d− 1)K2(Lb + Lσ) + 6K2(d− 1)),

then, for any γ ∈ [0,−β − β0), we have

lim
r→∞

P
(
Bγt ⊂ φ−1

−t,0(Br) ∀ t ≥ 0
)

= 1. (6.12)

In particular, ψ has a random attractor.

Proof. The existence of an attractor is an easy observation from Theorem 2.8 if we
have (6.12). So we only need to show (6.12). The argument is essentially the same as [8,
Proof of Theorem 3.1 a)]. We give the outline of the proof emphasising those arguments
which are different.

For γ ∈ [0,−β − β0), let η ∈ (0, 1
2 ) such that γ + η < −β − β0. Let h(y) = yα for

some α ∈ (0, 1
3 ). Notice that such h is strictly increasing and limy→∞

h(y)
y = 0 and

limy→∞
log y
h(y) = 0. For T ∈ (1,∞), take R := T 1/α, r1 = R+ γT and r = (1− η)R. Define

PR := P
[(
Br1 * φ−1

0,T (BR)
)
∪ ∪t∈[0,T ]

(
Br * φ−1

t,T (BR)
)]
.

Once we show that

lim
R→∞

1

h(R)
logPR < 0, (6.13)

then, by the same argument as in the proof of Theorem 6.2, we can finish the proof by
the Borel-Cantelli Lemma and time-homogeneity of the flow ψ.

To show (6.13), notice that

PR ≤ P
[
∪|x|=r1

(
(|φ0,T (x)| ≥ R) ∩ ( inf

t∈[0,T ]
|φ0,t(x)| ≥ r)

)]
+ P

(
sup
|x|=r

sup
t∈[0,T ]

|φt,T (x)| ≥ R
)

=: P1(R) + P2(R).
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For P1(R), we get from Theorem 6.1, case 7 that (note T = Rα = h(R))

lim
R→∞

1

h(R)
logP1(R) < 0.

In the following we show

lim
R→∞

1

h(R)
logP2(R) = −∞, (6.14)

which is sufficient to get (6.13).
Let ξs := (sup|x|=r |φs,T (x)| − r)+, ζs := (sup|x|=r+Rη/2 |φs,T (x)| − r)+. Then, as shown

in [8, p.1205-1206], we have

lim sup
R→∞

1

h(R)
logP2(R)

≤ lim sup
R→∞

1

h(R)
log max

s∈[1,T ]

[
P
(
ζs ≥ ηR

)
+ P

(
sup

t∈[s−1,s]

sup
|x|=r

|φt,s(x)| ≥ r +
η

2
R
)]

=: lim sup
R→∞

1

h(R)
log max

s∈[1,T ]
(P2,1(s,R) + P2,2(s,R)).

To estimate P2,1(s,R), for fixed 0 ≤ s ≤ T , denote r0 := r + η
2R, we cover ∂Br0 by N ≤

Cdr
d−1
0 eκ(d−1)T balls of radius e−κT centered on ∂Br0 withfor κ ≥ (Lb +Lσ) + 3K2(d− 1),

(the same choice as in the proof of Theorem 6.1 case 7. Label the balls by L1, · · · , LN and
their centers correspondingly by x1, · · · , xN . Then for a number r2 such that β∗(r2) < 0

where β∗(r2) is from (6.1), we have

P2,1(s,R) ≤ N max
i

[
P
(
|φs,T (xi)| ≥ r + ηR− 1

)
+ P

(
diam φs,T (Li) ≥ 1

)]
≤ N max

i

[
P
(
|φs,T (xi)| ≥ r + ηR− 1, inf

s≤t≤T
|φs,t(xi)| > r2

)
+ P

(
|φs,T (xi)| ≥ r + ηR− 1, inf

s≤t≤T
|φs,t(xi)| ≤ r2

)
+ P

(
diam φs,T (Li) ≥ 1

)]
.

By the same argument from Theorem 6.1 case 7 with h(R) = Rα = T , and Theorem 6.1
case 2, and Theorem 5.5 we get

lim sup
R→∞

1

h(R)
log max

s∈[1,T ]
P2,1(s,R) = −∞.

Up to here, in order to get (6.14), we only need to show

lim sup
T→∞

1

T
log max

s∈[1,T ]
P2,2(s, T 1/α) = −∞. (6.15)

In [8, Proof of Theorem 3.1 a)], this is shown by using three statements: [8, (4.7)], [8,
Proposition 4.5] and [8, Proposition 4.6]. In our setting, we already showed the second
and the third statements: these are Theorem 6.1 case 2 and case 3 correspondingly.
Therefore it is sufficient to show the estimate corresponding to [8, (4.7)] in our setting.
In order to do so we first apply Girsanov Theorem as we did in Theorem 6.1. Let

ρt := exp
(∫ t

0

b∗(σ−1)∗(φ̄r(x)) dWr −
1

2

∫ t

0

b∗(σσ∗)−1b(φ̄r(x)) dr
)
,

where φ̄ is the flow generated by the solution to

dφ̄t = σ(φ̄t) dWt, φ̄0(x) = x ∈ Rd.
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Following from (4.8) we get for T > 1 and any λ > 0

E exp
(
λ

∫ T

0

b∗(σσ∗)−1b(φ̄r(x))dr
)
≤ exp

(
T
‖b‖4

L̃p
(λΓ′)2 +K2

2‖b‖2L̃pλΓ′

K2
1K2

)
where Γ′ = CKry(p2 )

((
K2

K1

) 4d2

1−d/ρ +
(‖∇σ‖2

L̃ρ

K1

) 4d2

1−d/ρ
)

and CKry(p2 ) is from (4.1) with p = p
2

and b = 0. Therefore (ρt)t≥0 is a martingale. Let Pρ := ρ1P. As we already did in (6.4),
by Girsanov theorem and Hölder’s inequality, for ε > 0, for any x, z ∈ Rd,

P
(
|φt+ 1

2n ,1
(x)− φt+ 1

2n ,1
(z)| ≥ ε

2

)
=Pρ

(
|φ̄t+ 1

2n ,1
(x)− φ̄t+ 1

2n ,1
(z)| ≥ ε

2

)
=E[ρ1I

{
|φ̄
t+ 1

2n
,1

(x)−φ̄
t+ 1

2n
,1

(z)|≥ ε2

}]

≤2 exp
(‖b‖4

L̃p
Γ′ 2 +K2

2‖b‖2L̃pΓ′

K2
1K2

)[
P
(
|φ̄t+ 1

2n ,1
(x)− φ̄t+ 1

2n ,1
(z)| ≥ ε

2

)]1/2
.

(6.16)

Let Bt(x) := W∫ 1
t
|σ|2(φr(x))dr, then by time change and the fact that for κ1, κ2 ∈ R

P
(
Wt ≥ κ1

)
≤ 1

2
e−

κ21
2t , P(sup

s≤t
Ws ≥ κ2) ≤ e−

κ22
2t ,

we know for x, z ∈ Rd and |x− z| ≤ δ with δ > 0[
P
(
|φ̄t+ 1

2n ,1
(x)− φ̄t+ 1

2n ,1
(z)| ≥ ε

2

)]1/2
≤
[
P
(
|Bt+ 1

2n
(x)−Bt+ 1

2n
(z)| ≥ ε

2
− δ
)]1/2

≤
[

exp
(
− (ε− 2δ)2

4

1

2(
∫ 1

t+ 1
2n
|σ|2(φ̄r(x)) dr −

∫ 1

t+ 1
2n
|σ|2(φ̄r(x)) dr)

)]1/2
≤ exp

(
− (ε− 2δ)2

16

1

K2 −K1

)
.

Accordingly by (6.16) for any ε, δ > 0 and for any x, z ∈ Rd with |x− z| ≤ δ we have

P
(
|φt+ 1

2n ,1
(x)− φt+ 1

2n ,1
(z)| ≥ ε

2

)
≤ 2 exp

(‖b‖4
L̃p

Γ′ 2 +K2
2‖b‖2L̃pΓ′

K2
1K2

− (ε− 2δ)2

16

1

K2 −K1

)
. exp

(
− (ε− 2δ)2

16

1

K2 −K1

)
corresponding to [8, (4.7)]. Applying the argument from [8, Proof of Theorem 3.1 a)] we
get that P2,2(s, T 1/α) decays super exponentially in T , therefore (6.15) holds. The proof
is complete.

A Bounds for solutions of elliptic PDEs

Consider the following elliptic equation on Rd (recall the summation convention):

λu− aij∂iju+ b · ∇u = f, (A.1)

where λ > 0, a(·) : Rd → Rd⊗Rd is a symmetric matrix-valued Borel measurable function,
and b(·) : Rd → Rd and f : Rd → R are Borel measurable functions such that f ∈ L̃p(Rd)
with p ∈ (1,∞). The definition of the solution to equation (A.1) is as follows:
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Definition A.1. Let λ > 0. We call u ∈ H̃2,p a strong solution to (A.1) if for a.e. x ∈ Rd,

λu(x)− aij(x)∂iju(x) + b(x) · ∇u(x) = f(x).

We assume

Assumption A.2. (Ha) there exist 0 < K1 ≤ K2 such that for all x ∈ Rd,

K1|ζ|2 ≤ 〈a(x)ζ, ζ〉 ≤ K2|ζ|2, ∀ζ ∈ Rd, (A.2)

and a(·) is α-Hölder continuous with

ωα(a) := sup
x,y∈Rd,x 6=y,|x−y|≤1

‖a(x)− a(y)‖
|x− y|α

<∞ (A.3)

for some α ∈ (0, 1].

(Hb) b ∈ L̃p1(Rd) for some p1 ∈ (d,∞].

In this section we will show estimates of the solution of the elliptic PDE above. Such
estimates were obtained in [33, Theorem 3.3] in the case where a is uniformly elliptic
and uniformly continuous and b ∈ Lp1 for some p1 > d. These estimates were, however,
not explicit in terms of the coefficients a, b and f . We prove the following theorem which
shows this dependence since we need it (and also Corollary A.4) in the main text for the
proofs of Theorem 4.1 and Theorem 5.4, but it may also be of independent interest.

Theorem A.3. Suppose Theorem A.2 holds. There exists a constant C0 > 0 depending

on p, p1, α and d only, such that for λ ≥ C0K1

(
K2

2

K2
1

(K1+ωα(a)
K1

)
2
α + (K1+ωα(a)

K1
)
d
α

2
1−d/p1

(
‖b‖L̃p1
K1

)
2

1−d/p1

)
and for any f ∈ L̃p(Rd) with p ∈ (d/2 ∨ 1, p1], there is a unique solution

u ∈ H̃2,p to (A.1). Further, for p′ ∈ [1,∞] there exists a constant C depending on α, p, d, p′

and p1 only, such that

‖∇2u‖L̃p ≤ C
1

K1

(
1 +

ωα(a)

K1

)d/α
‖f‖L̃p ,

λ
(1+ d

p′−
d
p )/2‖∇u‖L̃p′ ≤ CK1

( d
p′−

d
p−1)/2

(
1 +

ωα(a)

K1

)d/α
‖f‖L̃p if 1 +

d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖u‖L̃p′ ≤ CK1

( d
p′−

d
p )/2

(
1 +

ωα(a)

K1

)d/α
‖f‖L̃p if 2 +

d

p′
− d

p
> 0. (A.4)

Proof. Assume u ∈ H̃2,p is a solution to (A.1). We first show the a priori estimates (A.4).
Then the continuity method, as shown in [15], is a standard way to conclude the existence
and uniqueness of the solution to (A.1) for those λ for which (A.4) holds. We divide the
proof into three steps. Note that all positive constants Ci, i = 1, · · · appearing in the
proof only depend on d, p, p1, p

′, α (and not on λ, f , b, a, and ωα(a)).

Step 1. Assume that a is a constant (positive definite) matrix, b = 0 and f ∈ Lp.

For λ > 0, let v ∈ H2,p be the solution to the following equation

λv −∆v = f̃ , f̃(x) := f(σx), x ∈ Rd,

where σ is the unique positive definite matrix satisfying σσ∗ = a. Then v = (λ−∆)−1f̃ is
the unique solution in H2,p. From [33, (3.3)] we know that, for each p′ ∈ [1,∞], there are
constants C1, C2, C3 such that

‖∇2v‖Lp ≤ C1‖f̃‖Lp ,
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λ
(1+ d

p′−
d
p )/2‖∇v‖Lp′ ≤ C2‖f̃‖Lp , if 1 +

d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖v‖Lp′ ≤ C3‖f̃‖Lp if 2 +

d

p′
− d

p
> 0. (A.5)

Let u(x) := v(σ−1x), i.e. v(x) = u(σx). Observe that

∂iv(x) = ∂ku(σx)σki, ∂ijv(x) = ∂kru(σx)σkiσrj .

Therefore

(λ−∆)v(x) = (λ− aij∂ij)u(σx)

and hence u solves (A.1). Uniqueness of a solution under the conditions of Step 1
holds since the map v 7→ u is a bijection between solutions of the corresponding PDEs.
Considering

1

Kp
1

‖∇2v‖pLp ≥ detσ−1‖∇2u‖pLp ,
1

K
p′/2
1

‖∇v‖p
′

Lp′
≥ detσ−1‖∇u‖p

′

Lp′
,

‖f̃‖pLp = detσ−1‖f‖pLp ,

then (A.5) yields

‖∇2u‖Lp ≤ C1
1

K1
‖f‖Lp ,

λ
(1+ d

p′−
d
p )/2‖∇u‖Lp′ ≤ C2(detσ−1)

1
p−

1
p′

1√
K1

‖f‖Lp , if 1 +
d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖u‖Lp′ ≤ C3(detσ−1)

1
p−

1
p′ ‖f‖Lp if 2 +

d

p′
− d

p
> 0. (A.6)

We know that detσ =
∏d
i=1

√
λi where λi > 0, i = 1, · · · , d, are the eigenvalues of a.

From (A.2) we get λi ∈ [K1,K2]. Therefore

detσ−1 ∈ [K
− d2
2 ,K

− d2
1 ]. (A.7)

Using (A.6) and (A.7), we finally get

‖∇2u‖Lp ≤ C1
1

K1
‖f‖Lp ,

λ
(1+ d

p′−
d
p )/2‖∇u‖Lp′ ≤ C2K1

( d
p′−

d
p−1)/2‖f‖Lp if 1 +

d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖u‖Lp′ ≤ C3K1

( d
p′−

d
p )/2‖f‖Lp if 2 +

d

p′
− d

p
> 0. (A.8)

Step 2. a satisfies Theorem A.2 (Ha), b = 0 and f ∈ L̃p.

Here we apply the freezing coefficient argument. For δ > 0 which will be determined
later, let ξδ(·) := ξ( ·δ ) where ξ is the same function which we used to define the localized
spaces. For z ∈ Rd denote

ξz,δ(x) := ξδ(x− z), az := a(z), uz(x) := ξz,δ(x)u(x), fz(x) := ξz,δ(x)f(x).

Observe that

λuz − azij∂ijuz = hz
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where

hz :=fz + (aij∂iju)ξz,δ − azij∂ijuz

=fz + (aij − azij)∂iju · ξz,δ − azij(∂iu∂jξz,δ + ∂ju∂iξ
z,δ + u∂ijξ

z,δ).

From [15, p18, 2. Corollary], we know that there exists some N0 > 0 such that for any
ū ∈ H2,p and ε > 0 we have

‖∇ū‖Lp ≤ ε‖∇2ū‖Lp +N0ε
−1‖ū‖Lp .

Therefore

‖hz‖Lp ≤C4

(
‖fz‖Lp + ωα(a)δα‖∇2u · ξz,δ‖Lp +K2‖∇u · ∇ξz,δ‖Lp +K2‖u · ∇2ξz,δ‖Lp

)
≤C4

(
‖fz‖Lp + 2ωα(a)δα‖∇2(u · ξz,δ)‖Lp + (K2 + 2ωα(a)δα)‖∇u · ∇ξz,δ‖Lp

+ (K2 + 2ωα(a)δα)‖u · ∇2ξz,δ‖Lp
)

≤C5

(
‖fz‖Lp + 2ωα(a)δα‖∇2uz‖Lp + (K2 + 2ωα(a)δα)δ−1‖∇u · ξz,δ‖Lp

+ (K2 + 2ωα(a)δα)δ−2‖u · ξz,δ‖Lp
)

≤C5

(
‖fz‖Lp + 2ωα(a)δα‖∇2uz‖Lp + (K2 + 2ωα(a)δα)δ−1(‖∇uz‖Lp+‖u · ∇ξz,δ‖Lp)

+ (K2 + 2ωα(a)δα)δ−2‖u · ξz,δ‖Lp
)

≤C6

(
‖fz‖Lp + (2ωα(a)δα + ε(K2 + 2ωα(a)δα)δ−1)‖∇2uz‖Lp

+ (K2 + 2ωα(a)δα)(ε−1δ−1 + δ−2)‖u · ξz,δ‖Lp), (A.9)

where ωα(a) is from (A.3). Assuming (without loss of generality) that C6 ≥ 1/6, we define

δ :=
( K1

6C6(K1 + 2ωα(a))

)1/α

< 1, ε :=
K1δ

6C6(K2 + 2ωα(a)δα)
. (A.10)

It is easy to see that C6
1
K1

(2ωα(a)δα + ε(K2 + 2ωα(a)δα)δ−1) < 1
2 , and

(K2 + 2ωα(a)δα)(ε−1δ−1 + δ−2) ≤ C7
K2

2

K1
(
K1 + ωα(a)

K1
)

2
α .

So we get from (A.8) and (A.9) that

‖∇2uz‖Lp ≤ C8
1

K1
(‖fz‖Lp +

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp). (A.11)

Plugging this into (A.9) yields

‖hz‖Lp ≤ C6

(
‖fz‖Lp +

C8

2C6

(
‖fz‖Lp +

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp

)
+ C7

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp

)
.

Using the second inequality in (A.8) we get for 1 + d
p′ −

d
p > 0

λ
(1+ d

p′−
d
p )/2‖∇uz‖Lp′ ≤C9K1

( d
p′−

d
p−1)/2

(
‖fz‖Lp +

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp

)
. (A.12)

Similarly, for 2 + d
p′ −

d
p > 0

λ
(2+ d

p′−
d
p )/2‖uz‖Lp′ ≤C10K1

( d
p′−

d
p )/2

(
‖fz‖Lp +

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp

)
. (A.13)
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Let p′ = p. Then

λ‖uz‖Lp ≤ C10

(
‖fz‖Lp +

K2
2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp

)
. (A.14)

Taking λ ≥ 2C10
K2

2

K1
(K1+ωα(a)

K1
)

2
α =: C10κ we obtain

‖uz‖Lp ≤
C10

λ− C10
K2

2

K1
(K1+ωα(a)

K1
)

2
α

‖fz‖Lp ,
K2

2

K1
(
K1 + ωα(a)

K1
)

2
α ‖uz‖Lp ≤ ‖fz‖Lp .

Together with (A.11), (A.13), and (A.12), we have

‖∇2uz‖Lp ≤C12
1

K1
‖fz‖Lp ,

λ
(1+ d

p′−
d
p )/2‖∇uz‖Lp′ ≤C13K1

( d
p′−

d
p−1)/2‖fz‖Lp , if 1 +

d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖uz‖Lp′ ≤C14K1

( d
p′−

d
p )/2‖fz‖Lp , if 2 +

d

p′
− d

p
> 0. (A.15)

From definition (2.1) we know that, for each z ∈ Rd, ‖uz‖Lp ≤ ‖u‖L̃p . δ−d supz̄ ‖uz̄‖Lp2,
so we get from (A.15) that for any λ ≥ C10κ we have

λ
(2+ d

p′−
d
p )/2‖u‖L̃p′ ≤ C15K1

( d
p′−

d
p )/2

δ−d‖f‖L̃p if 2 +
d

p′
− d

p
> 0,

λ
(1+ d

p′−
d
p )/2‖∇u‖L̃p′ ≤ λ

(1+ d
p′−

d
p )/2

sup
z

(‖∇uz‖Lp′ + ‖u∇ξz,1‖Lp′ )

≤ C16(K1
( d
p′−

d
p−1)/2

+ λ−1/2K1
( d
p′−

d
p )/2

)δ−d‖f‖L̃p

≤ C17K1
( d
p′−

d
p−1)/2

δ−d‖f‖L̃p if 1 +
d

p′
− d

p
> 0,

‖∇2u‖L̃p ≤ sup
z

(‖∇2uz‖Lp + ‖u∇2ξz,1‖Lp + 2‖∇u∇ξz,1‖Lp)

≤ C18

( 1

K1
+ λ−1 + λ−1/2K1

−1/2
)
δ−d‖f‖L̃p)

≤ C19
1

K1
δ−d‖f‖L̃p . (A.16)

Step 3. a is Hölder continuous and Theorem A.2 (Ha) holds, |b| ∈ L̃p1 and f ∈ L̃p.

By (A.16) and Hölder’s inequality, we have for λ ≥ C10κ and 1 + d
p′ −

d
p > 0

λ
(1+ d

p′−
d
p )/2‖∇u‖L̃p′ ≤C17K1

( d
p′−

d
p−1)/2

δ−d‖f + b · ∇u‖L̃p
≤C17K1

( d
p′−

d
p−1)/2

δ−d(‖f‖L̃p + ‖b‖L̃p1‖∇u‖L̃p2 )

where p1, p2 ∈ (p,∞) and 1
p1

+ 1
p2

= 1
p . Let p′ = p2. Then we get

λ(1− d
p1

)/2‖∇u‖L̃p2 ≤C20K1
(− d

p1
−1)/2δ−d(‖f‖L̃p + ‖b‖L̃p1 ‖∇u‖L̃p2 ).

Choosing λ so large such that

λ(1− d
p1

)/2 ≥ C20K1

−d/p1−1
2 δ−d‖b‖L̃p1 ,

2Recall that in Section 2 we assumed that the localized spaces are defined using the function ξ1.
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we get

‖∇u‖L̃p2 ≤
C20K1

(− d
p1
−1)/2

λ(1− d
p1

)/2 − C20K1

−d/p1−1
2 δ−d‖b‖L̃p1

δ−d‖f‖L̃p .

Moreover,

‖b · ∇u‖L̃p ≤
C20K1

(− d
p1
−1)/2δ−d‖b‖L̃p1

λ(1− d
p1

)/2 − C20K1
(− d

p1
−1)/2δ−d‖b‖L̃p1

‖f‖L̃p =: γ‖f‖L̃p .

Using (A.16) we see that for any λ such that λ ≥ C10κ and λ(1− d
p1

)/2 ≥ C20K1

−1−d/p1
2 δ−d

‖b‖L̃p1 , we have

‖∇2u‖L̃p ≤ C21(1 + γ)δ−d
1

K1
‖f‖L̃p ,

λ
(1+ d

p′−
d
p )/2‖∇u‖L̃p′ ≤ C22(1 + γ)K1

( d
p′−

d
p−1)/2

δ−d‖f‖L̃p if 1 +
d

p′
− d

p
> 0,

λ
(2+ d

p′−
d
p )/2‖u‖L̃p′ ≤ C23(1 + γ)K1

( d
p′−

d
p )/2

δ−d‖f‖L̃p if 2 +
d

p′
− d

p
> 0.

Define C24 :=
(
2C10

)
∨C20. Then, for λ ≥ C24κ and C24λ

−(1− d
p1

)/2K1
(− d

p1
−1)/2δ−d‖b‖L̃p1 <

1
2 (i.e. λ ≥ C24K1(δ−d

‖b‖L̃p
K1

)
2

1−d/p1 ) by taking

λ ≥ C24K1

(K2
2

K2
1

(
K1 + ωα(a)

K1
)

2
α + (

K1 + ωα(a)

K1
)
d
α

2
1−d/p1 (

‖b‖L̃p
K1

)
2

1−d/p1

)
we get that there exists finite positive constant C25 such that 1 + γ ≤ C25, which finally
shows the desired result (A.4) after plugging in the value of δ from (A.10).

Corollary A.4. Let Theorem A.2 hold and f = bi, i = 1, · · · , d in (A.1), let p′ ∈ [1,∞].
There exists some C0 > 0 depending on α, p1 and d only, such that if we choose

λ ≥ C0K1

(
K2

2

K2
1

(K1+ωα(a)
K1

)
2
α + (K1+ωα(a)

K1
)
d
α

2
1−d/p1 (

‖b‖L̃p
K1

)
2

1−d/p1

)
then for the solution ui to

equation (A.1) we have

‖∇ui‖L̃p′ ≤
1

2
λ
− d

2p′K
d

2p′

1 ≤ 1

2
if 1 +

d

p′
− d

p
> 0,

‖u‖L̃p′ ≤
1

2
λ−

1+d/p′
2 K

1+d/p′
2

1 ≤ 1

2
if 2 +

d

p′
− d

p
> 0. (A.17)

Proof. Notice that for such λ we have C0λ
−(1− d

p1
)/2K1

(− d
p1
−1)/2(K1+ωα(a)

K1
)
d
α ‖b‖L̃p1 <

1
2 ,

so by (A.4) for f = bi,

‖∇ui‖L̃p′ ≤ Cλ
−1−d/p′+d/p1

2 K1

−1−d/p1+d/p′
2 (

K1 + ωα(a)

K1
)
d
α ‖bi‖L̃p1 ≤

1

2
λ
− d

2p′K
d

2p′

1 ≤ 1

2
.

With the similar argument we get ‖u‖L̃p′ ≤ Cλ
−2−d/p′+d/p1

2 K1

d/p′−d/p1
2 (K1+ωα(a)

K1
)
d
α ‖b‖L̃p1

≤ 1
2λ
− 1+d/p′

2 K
1+d/p′

2
1 .
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