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Abstract

While many questions in robust finance can be posed in the martingale optimal
transport framework or its weak extension, others like the subreplication price of
VIX futures, the robust pricing of American options or the construction of shadow
couplings necessitate additional information to be incorporated into the optimization
problem beyond that of the underlying asset. In the present paper, we take into
account this extra information by introducing an additional parameter to the weak
martingale optimal transport problem. We prove the stability of the resulting problem
with respect to the risk neutral marginal distributions of the underlying asset, thus
extending the results in [9]. A key step is the generalization of the main result in
[7] to include the extra parameter into the setting. This result establishes that any
martingale coupling can be approximated by a sequence of martingale couplings with
specified marginals, provided that the marginals of this sequence converge to those of
the original coupling. Finally, we deduce stability of the three previously mentioned
motivating examples.
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1 Introduction

In mathematical finance, the evolution of an asset price in a financial market is mod-
eled by an adapted stochastic process (Xt) in a filtered probability space (Ω,F ,P, (Ft)).
To ensure the absence of arbitrage opportunities, risk-neutral measures (also known as
equivalent martingale measures) Q are considered under which the asset price process
(Xt) is a martingale, up to assuming zero interest rates. The reason why a transport-
type problem arises in robust finance is because the marginals of (Xt) can be derived
from market information based on the celebrated observation of Breeden–Litzenberger
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[11]. According to this observation, the prices of traded vanilla options determine the
marginals (µt) of (Xt) at their respective maturity times under every risk-neutral mea-
sure Q. Instead of considering one specific financial model, a robust approach is then to
consider all martingale measures that are compatible with this observation, that is, all
filtered probability spaces (Ω,F ,Q, (Ft)) and stochastic processes (Xt) such that

X is a (Q, (Ft))-martingale and Xt ∼ µt at all maturity times t. (1.1)

A reference measure is not needed. Then the robust price bounds for an option with
payoff Φ are obtained by solving a transport-type problem [6, 14] where the optimization
takes place over the set of all risk-neutral measures that are compatible with the observed
prices of vanilla options:

inf / sup {EQ[Φ] : (Ω,F ,Q, (Ft), (Xt)) satisfying (1.1)} . (1.2)

However, as we can only observe the prices of a finite number of derivatives (up to a
bid-ask spread), the marginals (µt) are merely approximately known. Therefore, it is
crucial to establish the stability of the transport-type problem (1.2) with respect to the
marginals.

This article is concerned with the one time period setting, that is t ∈ {1, 2}. Then,
when the payoff Φ is written on the underlying asset X, (1.2) boils down to a martingale
optimal transport (MOT) problem

inf / sup
π∈ΠM (µ1,µ2)

∫
Φ(x, y)π(dx, dy), (1.3)

where ΠM (µ1, µ2) denotes the set of martingale couplings with marginals µ1 and µ2, i.e.,
the set of laws of one-step martingales (X1, X2) with Xt ∼ µt. Continuity of the value
of (1.3) w.r.t. the marginal input, which is called stability, has been proved in [4, 28].

Weak martingale optimal transport (WMOT) is a nonlinear generalization of MOT
analogous to weak optimal transport, which is a nonlinear generalization of classical
optimal transport proposed by Gozlan, Roberto, Samson and Tetali [15], and was consid-
ered in [4, 9]. In WMOT one allows for more general payoffs Φ which may depend on
the conditional law of X2 given X1 in addition to X itself, and the corresponding WMOT
problem reads as

inf / sup
π∈ΠM (µ1,µ2)

∫
Φ (x, πx) µ1(dx), (1.4)

where πx comes from the desintegration π(dx, dy) = µ1(dx)πx(dy). Stability of WMOT
has been studied in [9] and was therein used to establish stability of the superreplication
price of VIX futures and the stretched Brownian motion.

Even though many problems in robust finance are covered by WMOT, some important
examples require that information is included into the optimization problem beyond that
of the underlying asset. Accordingly these problems can not be properly treated in the
WMOT frameworks. For us, guiding examples of such problems are the subreplication
price of VIX futures (see [16]), the robust pricing of American options (see [17]) and
the construction of shadow couplings (see [10]). Through augmenting WMOT by an
additional parameter, we demonstrate how this extra information can be taken into
account, prove stability of the resulting problem, and consequently deduce stability of
the three guiding examples. A key step is the generalization of the main result in [7] to
our current setting. This result states that any martingale coupling can be approximated
by a sequence of martingale couplings with specified marginals, provided that the
marginals of this sequence converge to those of the original coupling. As a side product
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of our approach, we establish the very same result on the level of stochastic processes
with general filtrations (c.f. [5]): any one-step martingale on some filtered probability
space can be approximated w.r.t. the adapted Wasserstein distance by martingales
on (perhaps different) filtered probability spaces, provided that the marginals of this
sequence converge to those of the original martingale.

1.1 Notation

Let (X , dX ) and (Y, dY) be Polish metric spaces and p ≥ 1 We equip the product
X × Y with the product metric dX×Y((x, y), (x̃, ỹ)) := (dX (x, x̃)p + dY(y, ỹ)p)1/p which
turns X × Y into a Polish metric space. The set of Borel probability measures on X
is denoted by P(X ). For µ ∈ P(X ) and ν ∈ P(Y), we write Π(µ, ν) for the set of all
probability measures on X × Y with marginals µ and ν. We denote by Pp(X ) the subset
of P(X ) that finitely integrates x 7→ dpX (x, x0) for some (thus any) x0 ∈ X and endow
Pp(X ) with the p-Wasserstein distanceWp so that (Pp(X ),Wp) is a Polish metric space
where, for µ, ν ∈ Pp(X ),

Wp(µ, ν) :=

(
inf

π∈Π(µ,ν)

∫
dX (x, y)p π(dx, dy)

)1/p

. (1.5)

The set of continuous and bounded functions on X is denoted by Cb(X ) and we use the
shorthand notation µ(f) to write the integral of a µ-integrable function f : X → R∪{±∞}
w.r.t. a Borel measure µ on X . Given a measurable map f : X → Y, we denote by f#µ the
push-forward measure of µ under f . For Polish spaces X1,X2,X3 and π ∈ P(X1×X2×X3)

and a non-empty subset I of {1, 2, 3}, projI π denotes the image of π by the projection to
the coordinates in I, for example, proj1 π is the X1-marginal of π. Further, we write πx1,x2

for the disintegration of π(dx1, dx2, dx3) = proj1,2 π(dx1, dx2)πx1,x2
(dx3). Frequently, we

use the injection (c.f. [3, Section 2])

J : P(X1 ×X2 ×X3)→ P(X1 ×X2 × P(X3))

π 7→ ((x1, x2, x3) 7→ (x1, x2, πx1,x2
))# π,

and remark that J(πk)→ J(π) in Pp(X1×X2×Pp(X3)) implies πk → π in Pp(X1×X2×X3).
Unless stated otherwise, R is equipped with the Euclidean distance and Leb denotes

the Lebesgue measure on [0, 1]. Two measures µ, ν ∈ P1(R) are said to be in convex
order and we write µ ≤cx ν, if

∀ϕ : R→ R convex, µ(ϕ) ≤ ν(ϕ).

We write mean: P1(R)→ R for mean(ρ) =
∫
y ρ(dy) and denote by

ΛM (µ, ν) :=

{
P ∈ P1(R× P1(R)) :

∫
δx ⊗ ρP (dx, dρ) ∈ Π(µ, ν),

mean(ρ) = xP (dx, dρ)-a.s.

}
.

1.2 Organization of the paper

Section 2 presents the main results of this paper. First, we introduce in Subsection 2.1
the setup with the additional parameter and state in Theorem 2.1 and Theorem 2.2 the
corresponding results related to stability. Furthermore, we present in Subsection 2.2
consequences of these results in the filtered process setting, namely Corollary 2.6.
Subsequently, we explain and state stability of the three guiding examples, that are,
robust pricing of American options (Subsection 2.3), subreplication of VIX futures
(Subsection 2.4), and shadow couplings (Subsection 2.5). Section 3 is concerned with
the proofs. In the appendix we collect measure-theoretic auxiliary results.
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2 Main results

2.1 An extension of martingale transport

We now introduce a framework that is sufficiently general to deal with the question
of stability of our guiding examples. From now on, let (U , dU ) be a Polish metric
space that models an extra information parameter u ∈ U . Given µ̄ ∈ P1(R × U) and
ν ∈ P1(R) with proj1 µ̄ ≤cx ν, we denote by ΠM (µ̄, ν) the set of couplings π ∈ Π(µ̄, ν)

such that mean(πx,u) = x , µ̄(dx, du)-a.e. Central to establishing the upper (resp. lower)
semicontinuity property in our stability results for minimization (resp. maximization)
problems is Theorem 3.2, which is a reinforced version of the result below:

Theorem 2.1. Let (µ̄k, νk)k∈N, proj1 µ̄
k ≤cx νk, be a convergent sequence in P1(R ×

U) × P1(R) with limit (µ̄, ν). Then, every coupling π ∈ ΠM (µ̄, ν) is the weak limit of a
sequence (πk)k∈N with πk ∈ ΠM (µ̄k, νk) and J(π) is the weak limit of (J(πk))k∈N.

In the view of the counter-example by Brückerhoff and Juillet [12], this result does
not generalize to higher dimensions, i.e., when R is replaced by Rd with d ≥ 2. This
generalization of the main result of [7] to the present framework is also key to establish
the stability w.r.t. the marginals of the following variant of WMOT:

VC(µ̄, ν) := inf
π∈ΠM (µ̄,ν)

∫
C(x, u, πx,u) µ̄(dx, du). (2.1)

As usual, it is necessary to impose regularity on the cost C in order to have a continuous
dependence of the optimal value of (2.1) w.r.t. the marginals. Thus, we will suppose the
following continuity assumption on the cost function:

Assumption A. We say C : R×U ×Pp(R)→ R satisfies Assumption A if C is continuous
and there is K > 0 such that, for all (x, u, ρ) ∈ R× U × Pp(R) and some u0 ∈ U ,

|C(x, u, ρ)| ≤ K
(

1 + |x|p + dpU (u, u0) +

∫
|y|p ρ(dy)

)
. (2.2)

Theorem 2.2. Let C satisfy Assumption A and C(x, u, ·) be convex for all (x, u) ∈ R× U .
Then the value function VC defined in (2.1) is attained and continuous on {(µ̄, ν) :

proj1 µ̄ ≤cx ν} ⊆ Pp(R× U)× Pp(R). Furthermore, when (µ̄k, νk)k∈N converges to (µ̄, ν)

and for k ∈ N, proj1 µ̄
k ≤cx νk and πk ∈ ΠM (µ̄k, νk) is optimal for VC(µ̄k, νk), we have:

(i) the accumulation points of (πk)k∈N are optimal for VC(µ̄, ν);

(ii) if additionally C(x, u, ·) is strictly convex, then optimizers to (2.1) are unique.
Moreover, (πk)k∈N and (J(πk))k∈N weakly converge to the optimizer of VC(µ̄, ν)

and its image under J , respectively.

2.2 Filtered processes

As explained in the introduction, in the robust approach it is natural to consider all
martingales that are compatible with market observations. For this reason, we follow
the approach in [5], and call in our setting a 5-tuple

X =
(
Ω,F ,P, (Ft)t∈{1,2}, X = (Xt)t∈{1,2}

)
,

consisting of a filtered probability space (Ω,F ,P, (Ft)t∈{1,2}) and an (Ft)-adapted pro-
cess X, a filtered process. We say that a filtered process X is a martingale if X is
a (Ft)-martingale under P. When F1 is larger than the σ-field generated by X1, the
conditional distributions law(X2|F1) and law(X2|X1) may differ and then law(X2|F1) is
not determined by the law of X. For µ, ν ∈ Pp(R) with µ ≤cx ν, we write M(µ, ν) for the
set of all martingales X with X1 ∼ µ and X2 ∼ ν.
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Assume that the payoff Φ of the option, which we want to price, depends on the
conditional law law(X2|F1) in addition to the price of the asset X: Φ is a measur-
able function with domain R × R × Pp(R) satisfying the existence of K > 0 such that
|Φ(x1, x2, ρ)| ≤ K

(
1 + |x1|p + |x2|p +

∫
R
|y|p ρ(dy)

)
for all (x1, x2, ρ) ∈ R×R×Pp(R). The

robust price upper bound is given by

VΦ(µ, ν) = sup
X∈M(µ,ν)

E[Φ(X, law(X2|F1))]. (2.3)

For C : R× Pp(R) 3 (x, ρ) 7→
∫

Φ(x, y, ρ) ρ(dy) ∈ R, one has

E[Φ(X, law(X2|F1))|F1] = C(X1, law(X2|F1)).

We connect the robust price bounds to the optimization problem

V̂C(µ, ν) := sup
P∈ΛM (µ,ν)

∫
C(x, ρ)P (dx, dρ). (2.4)

Indeed, the values of (2.3) and (2.4) coincide. To see this, oberserve that for X ∈M(µ, ν),
we have law(X1, law(X2|F1)) ∈ ΛM (µ, ν) and therefore VΦ(µ, ν) ≤ V̂C(µ, ν). On the
other hand, for P ∈ ΛM (µ, ν), let us endow R × Pp(R) × [0, 1] with P ⊗ Leb and set
(X1, X2) : R× Pp(R)× [0, 1] 3 (x, ρ, u) 7→ (x, F−1

ρ (u)) ∈ R2, where F−1
ρ denotes the (left-

continuous) quantile function of the probability measure ρ so that (F−1
ρ )#Leb = ρ by the

inverse transform sampling. Denoting by F1 and F2 the respective Borel sigma-field on
R× Pp(R) and R× Pp(R)× [0, 1], we have that

(R× Pp(R)× [0, 1], P ⊗ Leb,F2, (Ft)t∈{1,2}, (Xt)t∈{1,2}) ∈M(µ, ν).

Therefore, we also find VΦ(µ, ν) ≥ V̂C(µ, ν).
In the current setting, we derive the following analogue to Theorem 2.1.

Corollary 2.3. Let (µk, νk)k∈N, µk ≤cx νk, be a convergent sequence in Pp(R)× Pp(R)

with limit (µ, ν). Then, every P ∈ ΛM (µ, ν) is the Wp-limit of a sequence (P k)k∈N with
P k ∈ ΛM (µk, νk).

Remark 2.4. The adapted Wasserstein distance between two filtered processes X and

Y =
(

Ω̃,G,Q, (Gt)t∈{1,2}, Y = (Yt)t∈{1,2}

)
is, by [5, Theorem 3.10], given by

AWp(X,Y) =Wp(law(X1, law(X2|F1)), law(Y1, law(Y2|G1))).

Consequently, the map X 7→ law(X1, law(X2|F1)) is a surjective isometry from M(µ, ν)

onto ΛM (µ, ν). Therefore, we may rephrase Corollary 2.3 using AWp, and obtain under
the same assumptions that every process X ∈M(µ, ν) is the AWp-limit of a sequence of
processes (Xk)k∈N with Xk ∈M(µk, νk).

Similar to Theorem 2.2 we get stability of (2.4).

Proposition 2.5. Let C : R × Pp(R) → R be continuous and assume that there is a
constant K > 0 such that, for all (x, ρ) ∈ R× Pp(R),

|C(x, ρ)| ≤ K
(

1 + |x|p +

∫
R

|y|pρ(dy)

)
.

Then the value V̂C is attained and continuous on {(µ, ν) ∈ Pp(R) × Pp(R) : µ ≤cx ν}.
Moreover, if (µk, νk)k∈N, µk ≤cx νk converges to (µ, ν) in Pp(R) × Pp(R) and (P k)k∈N,
P k ∈ ΛM (µk, νk) is a sequence of optimizers of V̂C(µk, νk), then its accumulation points
are optimizers of V̂C(µ, ν).
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As in Remark 2.4, it is possible to phrase Proposition 2.5 in the language of filtered
processes. Since the map R × Pp(R) 3 (x, ρ) 7→ δx ⊗ ρ ⊗ δρ ∈ Pp(R × R × Pp(R)) is
continuous, adequate continuity and growth assumptions on Φ will imply that C(x, ρ) :=

(δx ⊗ ρ⊗ δρ)(Φ) satisfies the assumptions of Proposition 2.5. Hence, we can deduce the
following stability result for (2.3).

Corollary 2.6. Let Φ: R × R × Pp(R) → R be continuous and assume that there is a
constant K > 0 such that, for all (x1, x2, ρ) ∈ R×R× Pp(R),

|Φ(x1, x2, ρ)| ≤ K
(

1 + |x1|p + |x2|p +

∫
R

|y|pρ(dy)

)
.

Then the value VΦ is attained and continuous on {(µ, ν) ∈ Pp(R)× Pp(R) : µ ≤cx ν}.

2.3 American options

The robust pricing problem of American options as considered by Hobson and Norgi-
las [17, 18], can be cast in the setting of Subsection 2.2. Given a filtered process X, the
filtration (Ft) models the information that is available to the buyer, who may exercise at
only two possible dates, t ∈ {1, 2}. For t ∈ {1, 2}, let Φt : R

t → R be a path-dependent
payoff that she receives when exercising at time t. The model-independent price of this
American option is given by

Am(µ, ν) = sup
X∈M(µ,ν)

price(Φ;X). (2.5)

As the buyer can exercise the option at any (stopping) time, the price crucially depends
on the information that is available to the buyer and we have that the price of Φ is given
by

price(Φ;X) := sup
τ (Ft)-stopping time

EP
[
1{τ=1}Φ1(X1) + 1{τ=2}Φ2(X)

]
. (2.6)

In the case of a Put, that is (Φ1(x) = (K1 − x)+ and Φ2(x, y) = (K2 − y)+), Hobson and
Norgilas [17] relate the above suprema to the left-curtain martingale coupling [8] when
µ does not weight points. By the Snell-envelope theorem, we have that

price(Φ;X) = E [max (Φ1(X1),E[Φ2(X1, X2)|F1] )] ,

which allows us to apply here Proposition 2.5 with C(x, ρ) := max(Φ1(x),
∫

Φ2(x, y) ρ(dy)),
and deduce the following stability result:

Corollary 2.7. Let Φ1 and Φ2 be continuous and sup(x,y)∈R2

(
Φ1(x)
1+|x|p + Φ2(x,y)

1+|x|p+|y|p

)
<∞.

Then the model independent price Am is continuous on {(µ, ν) ∈ Pp(R)2 : µ ≤cx ν}.

2.4 VIX futures

The VIX is the implied volatility of the 30-day variance swap on the S&P 500. Accord-
ing to Guyon, Menegaux and Nutz [16], the subreplication price at time 0 for the VIX
futures contract expiring at T1 is given by

Psub(µ, ν) = sup{µ(φ) + ν(ψ)}, (2.7)

where µ and ν denote the risk neutral distributions of the S&P 500 at dates T1 and T2

, where T2 is equal to T1 plus 30 days, both inferred from the market prices of liquid
options. Moreover, the supremum is taken over all (φ, ψ) ∈ L1(µ)×L1(ν) and measurable
maps ∆S ,∆L such that, for all (x, u, y) ∈ (0,∞)× [0,∞)× (0,∞),

φ(x) + ψ(y) + ∆S(x, v)(y − x) + ∆L(x, u)
(
`x(y)− u2

)
− u ≤ 0, (2.8)
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with `x(y) := 2
T2−T1

ln(x/y). Up to assuming zero interest rates, the S&P 500 is a
martingale under the risk neutral measure so that both, µ and ν, have finite first
moments and µ is smaller than ν for the convex order. To state the dual problem, we
define the set ΠVIX(µ, ν) of admissible martingale couplings as

{π ∈ P((0,∞)× [0,∞)× (0,∞)) : proj1 π = µ, proj3 π = ν,

mean(πx,u) = x and πx,u(`x) = u2 for proj1,2 π-a.e. (x, u)},

where πx,u(`x) stands for
∫

(0,∞)
`x(y)πx,u(dy). Note that each π ∈ ΠVIX(µ, ν) satisfies

π ∈ ΠM (proj1,2 π, ν) and we have, by concavity of the logarithm function and Jensen’s
inequality, for proj1,2 π-a.e. (x, u) that πx,u(`x) ≥ 0. Given probability measures µ, ν on
(0,∞) that are in convex order and finitely integrate | ln(x)|+ |x|, the dual problem Dsub

consists of

Dsub(µ, ν) = inf
ΠVIX(µ,ν)

∫ √
πx,u(`x) proj1,2 π(dx, du). (2.9)

According to [16, Theorem 4.1], the values of Psub(µ, ν) and Dsub(µ, ν) coincide. In the
present paper, we are going to establish the following stability result with respect to the
risk-neutral marginal distributions µ and ν of the S&P 500 at dates T1 and T2.

Proposition 2.8. Let (µk, νk)k∈N, µk ≤cx νk, be a sequence in P((0,∞))×P((0,∞)) that
converges weakly to (µ, ν) ∈ P((0,∞))× P((0,∞)). If limk→∞

∫
(| ln(x)|+ |x|) νk(dx) =∫

(| ln(x)|+ |x|) ν(dx), then

lim
k→∞

Dsub(µk, νk) = Dsub(µ, ν).

The analogous stability result for the superreplication price of the VIX futures contract
is stated in [9, Theorem 1.3] and relies on the reduction of its dual formulation to the
value function of a WMOT problem, see [16, Proposition 4.10]. Such a reduction step
is, in general, not possible for the dual formulation of the subreplication price and we
remark that with the approach in this paper, one can recover [9, Theorem 1.3] without
recasting the problem as a WMOT problem.

2.5 Shadow couplings

The shadow couplings introduced by Beiglböck and Juillet in [10] fit into this frame-
work. These couplings admit characterizations in terms of optimality, in terms of geom-
etry of their support sets, and as barrier-type solutions to the Skorokhod embedding
problem (c.f. [10, Theorem 1.1]). Let U = [0, 1] and Leb denote the Lebesgue measure
on this set. For µ, ν ∈ P1(R) such that µ ≤cx ν, shadow couplings are solutions to weak
martingale transport problems of the form

inf
π∈ΠM (µ,ν)

∫
Cµ̄(x, πx)µ(dx), (2.10)

where µ̄ ∈ Π(µ,Leb) and Cµ̄(x, ρ) := infχ∈ΠM (δx×µ̄x,ρ)
∫

(1− u)
√

1 + y2 χ(dx′, du, dy). The
unique solution π̃? to (2.10) is called a shadow coupling with source µ̄. Attached to each
shadow coupling π̃? with source µ̄ is the (unique) lifted shadow coupling π? ∈ ΠM (µ̄, ν)

that satisfies proj1,3 π
? = π̃? and minimizes

VSC(µ̄, ν) := inf
γ∈ΠM (µ̄,ν)

∫
R×[0,1]×R

(1− u)
√

1 + y2 γ(dx, du, dy). (2.11)

To emphasize the dependence of π? on (µ̄, ν), we denote by SC(µ̄, ν) = π? the unique
optimizer of (2.11). According to [10, Theorem 1.1], there is a stochastic basis supporting
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an (Ft)t≥0-Brownian motion B = (Bt)t≥0 and an F0-measurable random variable U ,
uniformly distributed on [0, 1] , so that π? ∼ (B0, U,Bτ ) where τ is the hitting time of
the process (Bt, U)t∈[0,1] into a left barrier, that is a Borel set R ⊆ R× [0, 1] such that
(x, u) ∈ R, v ≤ u implies (x, v) ∈ R. Put differently, there exist two Borel measurable
maps T1, T2 : R× [0, 1]→ R satisfying

∀x ∈ R, ∀0 ≤ v ≤ u ≤ 1, T1(x, u) ≤ T1(x, v) ≤ x ≤ T2(x, v) ≤ T2(x, u),

such that
π?(dx, du, dy) = µ̄(dx, du)Ber(x, T1(x, u), T2(x, u))(dy), (2.12)

where, for x, l, r ∈ R, Ber(x, l, r) denotes the Bernoulli distribution

Ber(x, l, r) :=

{
r−x
r−l δl + x−l

r−l δr l < x < r,

δx else.

W.l.o.g. we suppose that T1(x, u) = x = T2(x, u) as soon as either T1(x, u) = x or
T2(x, u) = x.

Proposition 2.9. The optimal value map VSC, the selector SC of optimizers of (2.11),
and J ◦ SC are continuous on the domain {(µ̄, ν) : proj1 µ̄ ≤cx ν, proj2 µ̄ = Leb} ⊆
Pp(R × [0, 1]) × Pp(R) and with range R, Pp(R × [0, 1] ×R), and Pp(R × [0, 1] × Pp(R)),
respectively.

Furthermore, when (µ̄k, νk)k∈N with proj1 µ̄
k ≤cx νk and proj2 µ̄

k = Leb is a sequence
converging to (µ̄, ν) in Pp(R × U) × Pp(R) with µ̄k → µ̄ in total variation and (T k1 , T

k
2 )

(resp. (T1, T2)) are the pairs of maps satisfying (2.12) for SC(µ̄k, νk) (resp. SC(µ̄, ν)),
then

(T k1 , T
k
2 )→ (T1, T2) in µ̄-probability on {T1 6= T2},

|T k1 − T1| ∧ |T k2 − T2| → 0 in µ̄-probability on {T1 = T2}.

3 Proofs

3.1 Topological refinements

In order to prove Proposition 2.8, we introduce refinements of the weak topology as
detailed below, which we use to establish stronger versions of the results given in the
introduction. For the rest of the paper, let X and Y be (non-empty) Polish subsets of
R and consider two growth functions f̄ : X × U → [1,+∞) and g : Y → [1,+∞) that are
both continuous and

lim inf
|x|→∞
x∈X

inf
u∈U

f̄(x, u)

|x|
> 0 and lim inf

|y|→∞
y∈Y

g(y)

|y|
> 0. (3.1)

We define the sets Pf̄ (X × U) := {ρ ∈ P(X × U) : ρ(f̄) < ∞} and Pg(Y) := {ρ ∈ P(Y) :

ρ(g) < ∞} and endow them with the initial topology induced by Cb(X × U) ∪ {f̄} resp.
Cb(Y) ∪ {g}, that is,

ρk → ρ in Pf̄ (X × U) ⇐⇒ ρk → ρ weakly and ρk(f̄)→ ρ(f̄),

ρk → ρ in Pg(Y) ⇐⇒ ρk → ρ weakly and ρk(g)→ ρ(g).

Similarly, we define Pf̄⊕g(X × U × Y) = {ρ ∈ P(X × U × Y) : ρ(f̄ ⊕ g) < ∞} and
Pf̄⊕ĝ(X ×U ×Pg(Y)) := {ρ ∈ P(X ×U ×Pg(Y)) : ρ(f̄ ⊕ ĝ) <∞} where (f̄ ⊕ g)(x, u, y) :=

f̄(x, u) + g(y) and (f̄ ⊕ ĝ)(x, u, ρ) = f̄(x, u) + ρ(g). Again, these spaces are endowed with
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the topology induced by Cb(X ×U ×Y)∪ {f̄ ⊕ g} resp. Cb(X ×U ×Pg(Y))∪ {f̄ ⊕ ĝ}, that
is,

ρk → ρ in Pf̄⊕g(X × U × Y) ⇐⇒ ρk → ρ weakly and ρk(f̄ ⊕ g)→ ρ(f̄ ⊕ g),

ρk → ρ in Pf̄⊕ĝ(X × U × Pg(Y)) ⇐⇒ ρk → ρ weakly and ρk(f̄ ⊕ ĝ)→ ρ(f̄ ⊕ ĝ).

Note that when X = R = Y and f̄(x, u) = 1 + |x|p + dpU (u0, u) for some u0 ∈ U and
g(y) = 1 + |y|p, we have Pf̄ (X × U) = Pp(X × Y), Pg(Y) = Pp(Y), and the topologies on
the above introduced spaces coincide with the corresponding p-Wasserstein topologies.
Moreover, when dU is bounded, the growth condition (3.1) provides that these topologies
are finer than the corresponding 1-Wasserstein topology. The reader may ignore these
refinements of the weak topology by substituting in every statement these refinements
with a p-Wasserstein topology.

Next, we define the injection

J : Pf̄⊕g(X × U × Y)→ Pf̄⊕ĝ(X × U × Pg(Y)),

π 7→ (x, u, πx,u)#π,
(3.2)

and observe that
∫
C(x, u, πx,u) projX×U π(dx, du) = J(π)(C) for any J(π)-integrable

C : X × U × P(Y)→ R ∪ {∞}. In our specific setting we treat the X - and U -coordinates
similarly as we interpret the X -coordinate as the spatial state (at time 1) and the U -
coordinate as the information state (at time 1), whereas we think of the Y-coordinate
as the state at time 2. For this reason, we say a sequence (πk)k∈N in P(X × U × Y)

converges in the adapted weak topology to π if

J(πk)→ J(π) in P(X × U × P(Y)). (3.3)

The associated adapted p-Wasserstein distance of π1 and π2, where π1, π2 ∈ Pp(X×U×Y),
is given by

AWp
p(π

1, π2) := inf
χ∈Π(µ̄1,µ̄2)

∫
dpX (x1, x2) + dpU (u1, u2) +Wp

p (π1
x1,u1

, π2
x2,u2

) dχ(x1, u1, x2, u2),

(3.4)
where µ̄i = proj1,2 π

i, and satisfies AWp
p(π

1, π2) = Wp
p (J(π1), J(π2)) where Wp is the

p-Wasserstein distance on Pp(X × U × Pp(Y)).

3.2 Approximation of extended martingale couplings: proof of Theorem 2.1

Before stating and proving a strengthened version of Theorem 2.1, let us deduce
stability of the set of martingale couplings with respect to the marginals. The Hausdorff
distance between two closed subsets A,B ⊆ Pp(R × U × R) is denoted by dH(A,B) :=

max (supa∈AWp(a,B), supb∈BWp(b,A)) where Wp(a,B) := infb∈BWp(a, b). Note that for
(µ̄, ν) ∈ Pp(R× U)× Pp(R), ΠM (µ̄, ν) is a compact subset of Pp(R× U ×R).

Corollary 3.1. Let (µ̄k, νk)k∈N with proj1 µ̄
k ≤cx νk be convergent in Pp(R× U)×Pp(R)

to (µ̄, ν). Then
lim
k→∞

dH

(
ΠM (µ̄k, νk),ΠM (µ̄, ν)

)
= 0.

The corresponding statement for couplings without the martingale constraint is
straightforward to see as in this case one even has

dH (Π(µ̄, ν),Π(µ̄′, ν′)) ≤
(
Wp
p (µ̄, µ̄′) +Wp

p (ν, ν′)
)1/p ≤ Wp(µ̄, µ̄

′) +Wp(ν, ν
′).

Proof of Corollary 3.1. Assume that (µ̄k, νk)k∈N converge in Pp(R× U)×Pp(R) to (µ̄, ν).
Note that

⋃
k∈N ΠM (µ̄k, νk) is relatively compact as consequence of Prokhorov’s theorem.
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On the one hand, any subsequence of (πk)k∈N with πk ∈ ΠM (µ̄k, νk) admits a further
subsequence (πkj )j∈N converging to some π ∈ ΠM (µ̄, ν) in Pp(R × U × R) so that
limj→∞Wp

(
πkj ,ΠM (µ̄, ν)

)
= 0. Therefore,

lim
k→∞

sup
πk∈Π(µ̄k,νk)

Wp

(
πk,ΠM (µ̄, ν)

)
= 0.

On the other hand, the map π 7→ Wp(π,ΠM (µ̄k, νk)) is Wp-continuous. Thus, by
compactness of the set of martingale couplings there is for every k ∈ N, π̃k ∈ ΠM (µ̄, ν)

withWp

(
π̃k,ΠM (µ̄k, νk)

)
= supπ∈ΠM (µ̄,ν)Wp

(
π,ΠM (µ̄k, νk)

)
. Again by compactness, any

subsequence of (π̃k)k∈N admits a further subsequence (π̃kj )j∈N converging to some
π? ∈ ΠM (µ̄, ν) in Pp(R× U ×R). By Theorem 2.1 and convergence of the marginals in
Pp(R × U) × Pp(R), there exist a sequence (πkj )j∈N with πkj ∈ ΠM (µ̄kj , νkj ) such that
limj→∞Wp(π

kj , π?) = 0. Since

sup
π∈ΠM (µ̄,ν)

Wp

(
π,ΠM (µ̄kj , νkj )

)
=Wp(π̃

kj ,ΠM (µ̄kj , νkj ))

≤ Wp(π̃
kj , πkj ) ≤ Wp(π̃

kj , π?) +Wp(π
kj , π?),

one has limj→∞ supπ∈ΠM (µ̄,ν)Wp

(
π,ΠM (µ̄kj , νkj )

)
= 0. Consequently,

lim
k→∞

sup
π∈ΠM (µ̄,ν)

Wp

(
π,ΠM (µ̄k, νk)

)
= 0.

We will prove the following strengthened version of Theorem 2.1 which takes into
account general integrability conditions over Polish subsets of R and is, in fact, an
extension of the main result in [7]. For µ ∈ P(X ) and ν ∈ Pg(Y), µ ≤cx ν means that
the respective extensions µ(· ∩ X ) and ν(· ∩ Y) of µ and ν to the Borel sigma-field on R
satisfy µ(· ∩ X ) ≤cx ν(· ∩ Y).

Theorem 3.2. Let (µ̄k, νk)k∈N, proj1 µ̄
k ≤cx νk, be a convergent sequence in Pf̄ (X ×

U)×Pg(Y) with limit (µ̄, ν). Then, every coupling π ∈ ΠM (µ̄, ν) is the limit in the adapted
weak topology of a sequence (πk)k∈N with πk ∈ ΠM (µ̄k, νk).

The proof of Theorem 3.2 relies on the next three auxiliary results, that are Lemma 3.3,
Lemma 3.4, and Proposition 3.5.

Here we recall the notion of a pair of measures being irreducible and refer to [8,
Appendix A] for further details. When µ ∈M1(R), we denote by uµ its potential function,
that is the map defined by uµ(y) =

∫
R
|y−x|µ(dx) for y ∈ R. A pair (µ, ν) of finite positive

measures in convex order is called irreducible if I := {x ∈ R : uµ(x) < uν(x)} is an
interval and µ(I) = µ(R). For any pair (µ, ν) ∈ P1(R)2, µ ≤cx ν, there exists N ⊆ N and
a sequence (µn, νn)n∈N of irreducible pairs of subprobability measures in convex order
such that

µ = η +
∑
n∈N

µn and ν = η +
∑
n∈N

νn, (3.5)

where ({uµn < uνn})n∈N are pairwise disjoint and η = µ|{uµ=uν}, c.f. [8, Theorem A.4].
The sequence (µn, νn)n∈N is unique up to rearrangement of the pairs and is called
the decomposition of (µ, ν) into irreducible components. The next lemma generalizes
[7, Proposition 2.4] to the current setting where we have to keep track of the extra
coordinate u ∈ U .

Lemma 3.3. Let (µ̄k, νk)k∈N, proj1 µ̄
k ≤cx νk, be a convergent sequence in P1(R× U)×

P1(R) with limit (µ̄, ν) and write proj1 µ̄ =: µ. Let (µn, νn)n∈N where N ⊆ N be the
decomposition of (µ, ν) into irreducible components. Then, for every k ∈ N, there exists
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a decomposition of (µ̄k, νk) into pairs of subprobability measures (µ̄kn, ν
k
n)n∈N , (η̄k, υk)

such that proj1 µ̄
k
n ≤c νkn for each n ∈ N , proj1 η̄

k ≤c υk and

η̄k +
∑
n∈N

µ̄kn = µ̄k, υk +
∑
n∈N

νkn = νk,

lim
k→∞

( ∑
n∈N
W1(µ̄kn, µn × µ̄x) +W1(νkn, νn)

)
+W1(η̄k, η × µ̄x) +W1(υk, η) = 0.

Proof. We set η̄(dx, du) = η(dx)µ̄x(du) and µ̄n(dx, du) = µn(dx)µ̄x(du) for n ∈ N . Let us
selectW1-optimal couplings π̂k ∈ Π(µ̄, µ̄k) and define

µ̄kn(dx, du) :=

∫
x̂,û

π̂kx̂,û(dx, du) µ̄n(dx̂, dû), η̄k(dx, du) :=

∫
x̂,û

π̂kx̂,û(dx, du) η̄(dx̂, dû).

We have

W1(η̄k, η̄) +
∑
n∈N
W1(µ̄kn, µ̄n) ≤ W1(µ̄k, µ̄) −→

k→+∞
0.

Pick any π̄k ∈ Π̄M (µ̄k, νk), set

νkn(dy) :=

∫
x,u

π̄kx,u(dy) µ̄kn(dx, du), υk(dy) :=

∫
x,u

π̄kx,u(dy) η̄k(dx, du),

π̄kn(dx, du, dy) := µ̄kn(dx, du)π̄kx,u(dy) ∈ ΠM (µ̄kn, ν
k
n).

Let n ∈ N . Since (νk = υk +
∑
n∈N ν

k
n)k∈N converges to ν in W1, we have tightness

of (νkn)k∈N. As the marginals are tight, we can pass by Prokhorov’s theorem to a
subsequence and assume that, as k →∞, (π̄kn)k∈N converges weakly to π̃n ∈ ΠM (µ̄n, ν̃n)

where ν̃n ∈ M1(R). At the same time, as (µ̄k)k∈N and (νk)k∈N are W1-convergent, by
passing to a subsequence we can additionally assume convergence of (π̄k)k∈N inW1 to
some π̄ ∈ ΠM (µ̄, ν). Since π̄kn ≤ π̄k for each k ∈ N, passing to weak limits, we have π̃n ≤ π̄,
which, in view of π̃n(dx, du,R) = µ̄n(dx, du), implies π̃n(dx, du, dy) = µ̄n(dx, du)π̄x,u(dy)

so that ν̃n = νn. By Lemma A.4, we get that W1(π̄kn, π̃n) goes to 0 as k → ∞. Hence,
W1(νkn, νn) also goes to 0. The same argument applies to deal withW1(υk, η).

In order to show Theorem 3.2, it turns out to be beneficial to first demonstrate
that a family of couplings with a simpler structure is already dense. We say that a
coupling π ∈ ΠM (µ̄, ν) is simple if there is J ∈ N, a measurable partition (Uj)Jj=1 of U
into proj2 µ̄-continuity sets and, for j ∈ {1, . . . , J}, a martingale kernel (Kj,x)x∈R such
that

π(dx, du, dy) =

J∑
j=1

1Uj (u)µ̄(dx, du)Kj,x(dy). (3.6)

Put differently, one may say π is simple if there exist (classical) martingale couplings πj ∈
ΠM (µ, νj), j ∈ {1, . . . , J}, and a measurable partition (Uj)Jj=1 of U in proj2 µ̄-continuity
sets such that

π(dx, du, dy) =

J∑
j=1

πj(dx, dy)µ̄x(du ∩ Uj).

The next lemma establishes that these simple couplings are already dense in ΠM (µ̄, ν).

Lemma 3.4. Let µ̄ ∈ P1(R×U) and ν ∈ P1(R). Then, the set of couplings satisfying (3.6)
is dense in ΠM (µ̄, ν) w.r.t. the adapted weak topology.
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Proof. We denote by λ = proj2 µ̄ ∈ P1(U). Let u0 ∈ U and ε > 0. We claim that there is a
finite partition (Uj)Jj=1, J ∈ N, of U into λ-continuity sets such that

sup{dU (u, û) : u, û ∈ Uj} ≤
ε

2
for j ∈ {1, . . . , J − 1}, and

∫
UJ
dU (u, u0)λ(du) ≤ ε

4
. (3.7)

To this end, note that since the map u 7→ dU (u, u0) is integrable w.r.t. λ, we can choose
Mε ∈ [0,+∞) with ∫

{u∈U : dU (u,u0)>Mε}
dU (u, u0)λ(du) ≤ ε

8
.

By inner regularity of λ there exists a compact subset K of A := {u ∈ U : dU (u, u0) ≤Mε}
such that λ(A \ K) ≤ ε

8Mε
. Therefore, we have∫
A\K

dU (u, u0)λ(du) ≤ λ(A \ K)Mε ≤
ε

8
.

Next, we choose for each u ∈ K a radius ru ∈ (0, ε4 ] such that the boundary of the ball
Bru(u) := {û ∈ U : dU (u, û) < ru} has zero measure under λ. The family (Bru(u))u∈K
is an open cover of the compact set K, which permits us to extract from this family a
finite subcover of K denoted by (Aj)

I
j=1, I ∈ N. Let J := I + 1, UJ :=

⋂I
j=1A

c
j ⊂ Kc,

and set recursively, Uj := Aj ∩
{⋃j−1

i=1 Ai

}c
for j ∈ {1, . . . , J − 1}. By this procedure we

have constructed a partition (Uj)Jj=1 of U into measurable sets. Moreover, as for each
i ∈ {1, . . . , J} the boundary of Ui is contained in the union of the boundaries of the balls
(Aj)

J
j=1, it must have zero λ-measure. Finally, for each j ∈ {1, . . . , J − 1} we get

sup{dU (u, û) : u, û ∈ Uj} ≤ sup{dU (u, û) : u, û ∈ Aj} ≤
ε

2
,

and compute∫
UJ
dU (u, u0)λ(du) ≤

∫
Ac

dU (u, u0)λ(du) +

∫
A\K

dU (u, u0)λ(du) ≤ ε

8
+
ε

8
=
ε

4
.

We have shown the claim (3.7).
Let π̄ ∈ ΠM (µ̄, ν). Consider the disintegration kernel µ̄x such that µ̄(dx, du) =

µ(dx)µ̄x(du), and, for j ∈ {1, . . . , J}, denote by µ̄j(dx, du) the restrictions
1R×Uj (x, u)µ̄(dx, du). Since µ̄j(dx, du)-a.e. µ̄x(Uj) > 0 we can define

π̄J(dx, du, dy) :=

J∑
j=1

µ̄j(dx, du)Kj,x(dy) where Kj,x(dy) :=

∫
Uj
π̄x,u(dy)

µ̄x(du)

µ̄x(Uj)
,

and remark that π̄J ∈ ΠM (µ̄, ν). The last step is to estimate the AW1-distance between
π̄ and π̄J .

Let Id denote the identity function. Using that (Id, Id)#µ̄ is an admissible coupling
in the minimization problem that constitutes the AW1-distance between π̄ and π̄J , and
Jensen’s inequality (see for example [9, Proposition A.9]), we obtain the estimate

AW1(π̄, π̄J) ≤
J∑
j=1

∫
R×Uj

W1(π̄x,u,Kj,x) µ̄(dx, du)

≤
J∑
j=1

∫
R×Uj

∫
Uj
W1(π̄x,u, π̄x,û)

µ̄x(dû)

µ̄x(Uj)
µ̄(dx, du)

=

∫
W1(π̄x,u, π̄û,x̂) γ(dx, du, dx̂, dû)
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where γ :=
∑J
j=1 γj with the subprobability couplings γj defined for j ∈ {1, . . . , J} by

γj := ((x, u, û) 7→ (x, u, x, û))#

(
µ̄x(dû)

µ̄x(Uj)
µ̄j(dx, du)

)
∈ Π(µ̄j , µ̄j).

We have γ ∈ Π(µ̄, µ̄) and, by (3.7),

∫
dU (u, û) + |x−x̂| γ(dx, du, dx̂, dû) =

J∑
j=1

∫
dU (u, û) γj(dx, du, dx̂, dû)

≤ ε

2

J−1∑
j=1

γj(R× U ×R× U) +

∫
dU (u, u0) + dU (u0, û) γJ(dx, du, dx̂, dû)

≤ ε

2
+
ε

4
+
ε

4
= ε. (3.8)

Since ε > 0 is arbitrary, Lemma A.1 gives the conclusion.

Finally, we also require the following approximation result.

Proposition 3.5. Let (µk, νk)k∈N, µk ≤cx νk, be a sequence in P1(R)× P1(R) with limit
(µ, ν) being irreducible. For 1 ≤ j ≤ J ∈ N, let (µkj )k∈N be a convergent sequence in

M1(R) with limit µj and
∑N
j=1 µ

k
j = µk. Let (νj)

J
j=1, µj ≤cx νj , be a family in M∗1(R)

such that ν =
∑J
j=1 νj . Then, for 1 ≤ j ≤ J , there exist a convergent sequence (νkj )k∈N

inM1(R) with limit νj such that

µkj ≤c νkj and
J∑
j=1

νkj = νk. (3.9)

The proof of Proposition 3.5 is rather technical and therefore postponed to Sub-
section 3.7. On closer inspection of the statement, this technicality is not completely
surprising: in the setting of Proposition 3.5, let (µj)

J
j=1 and (µkj )Jj=1 be families of mea-

sures with µj({xj}) = µj(R) and µkj ({xkj }) = µkj (R) for some xj , xkj ∈ R so that the points
(xj)

J
j=1 are distinct. For π ∈ ΠM (µ, ν), we define νj := πxj . Invoking Proposition 3.5 we

obtain (νkj )Jj=1 and set πk :=
∑J
j=1 µ

k
j ⊗νkj . Since µkj is concentrated on a single point and

µkj ≤cx νkj , πk defines a martingale coupling in ΠM (µk, νk) and, as νkj → νj and µkj → µj
inM1(R), (πk)k∈N converges in AW1 to π. Hence, we recover in this particular setting
the main result of [7], which states that, as long as µk ≤cx νk, µk → µ, νk → ν inW1, any
martingale coupling in ΠM (µ, ν) can be approximated in AW1 by a sequence (πk)k∈N
with πk ∈ ΠM (µk, νk).

Proof of Theorem 3.2. By following the reasoning outlined in [7, Lemma 5.2], incorpo-
rating the additional coordinate and replacing [7, Proposition 2.5] by Lemma 3.3, one
can confirm that it suffices to establish the conclusion when (µ̄, ν) is such that (proj1 µ̄, ν)

is irreducible. As the argument runs almost verbatim to the proof of [7, Lemma 5.2], we
omit the details and assume from now on that (proj1 µ̄, ν) is irreducible.

Let us suppose that dU denotes some bounded complete metric compatible with
the topology on U and check that we may suppose w.l.o.g. that X = R = Y, f̄(x, u) =

1 + |x| + dU (u, u0) for some u0 ∈ U and g(y) = 1 + |y|. The convergence of (µ̄k)k
(resp. (νk)k) to µ̄ in Pf̄ (X × U) (resp. ν in Pg(Y)) implies that (µ̄k(· ∩ X × U))k (resp.
(νk(· ∩ Y))k) converges to µ̄(· ∩ X × U) in P1(R × U) (resp. ν(· ∩ Y) in P1(R)). We
set π̃(·) = π(· ∩ X × U × Y) ∈ ΠM (µ̄(· ∩ X × U), ν(· ∩ Y)). Let (π̃k)k be a sequence
such that π̃k ∈ Π(µ̄k(· ∩ X × U), νk(· ∩ Y)) and (J̃(π̃k) = (x, u, π̃kx,u)#π̃

k)k converges to

EJP 29 (2024), paper 57.
Page 13/30

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1114
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Martingale transport and stability in robust finance

J̃(π̃) = (x, u, π̃x,u)#π̃ in P1(R × U × P1(R)). Since X , U and Y are Polish, the Borel
sigma-fields satisfy

B(X × U × Y) = B(X )⊗ B(U)⊗ B(Y)

= σ ({{A ∩ X} ×B × {C ∩ Y} : A,C ∈ B(R), B ∈ B(U)})
= {D ∩ X × U × Y : D ∈ B(R)⊗ B(U)⊗ B(R)}
= {D ∩ X × U × Y : D ∈ B(R× U ×R)} .

By Alexandrov’s theorem, X and Y are countable intersections of open subsets of R.
Hence X ,Y ∈ B(R) and X × U × Y ∈ B(R × U ×R) so that B(X ) ⊂ B(R), B(X ) ⊂ B(R)

and B(X × U × Y) ⊂ B(R× U ×R). Let πk ∈ Π(µ̄k, νk) be defined by πk = π̃k|B(X×U×Y).
By [9, Lemma A.7], the sequence (J(πk))k is relatively compact in Pf̄⊕ĝ(X × U × Pg(Y)).
Let (J(πkj ))j denote some subsequence converging to Q. Since the injection i : X × U ×
P(Y) 3 (x, u, ρ) 7→ (x, u, ρ(· ∩ Y)) ∈ R × U × P(R) is continuous, i#J(πk) = J̃(π̃k) and
i#J(π) = J̃(π̃), we have for any continuous and bounded function ϕ on R× U × P(R),

Q(ϕ ◦ i) = lim
j→∞

J(πkj )(ϕ ◦ i) = lim
j→∞

J̃(π̃kj )(ϕ) = J̃(π̃)(ϕ) = J(π)(ϕ ◦ i).

The equality between the left-most and right-most terms remains valid when ϕ is measur-
able and bounded. Let A ∈ B(X ), B ∈ B(U) and C ∈ B(P(Y)). Since P(R) 3 ρ 7→ ρ(Y) is
measurable, PY(R) = {η ∈ P(R) : η(Y) = 1} is a Borel subset of P(R). Since P(Y) 3 ρ 7→
ρ(· ∩Y) ∈ PY(R) is an homeomorphism with inverse r : PY(R) 3 ρ 7→ ρ|B(Y) ∈ P(Y) when
PY(R) is endowed with the topology induced by P(R), r−1(C) ∈ B(PY(R)) ⊂ B(P(R)).
For the choice ϕ = 1A×B×r−1(C), we deduce that Q(A×B×C) = J(π)(A×B×C). Since
B(X × U × P(Y)) = B(X ) ⊗ B(U) ⊗ B(P(Y)), this implies that Q = J(π). Therefore the
sequence (J(πk))k converges to J(π) in Pf̄⊕ĝ(X × U × Pg(Y)).

Therefore, we assume from now on that X = R = Y, f̄(x, u) = 1 + |x|+ dU (u, u0) and
g(y) = 1 + |y|.

Moreover, by using Lemma 3.4 we may assume that π admits the representation (3.6).
Let (Uj)Jj=1 be the associated finite measurable partition of U . Without loss of generality,
e.g. by replacing one element of the partition Uk such that µ̄(R× Uk) > 0 with the union
of Uk with all elements Uj that satisfy µ̄(R × Uj) = 0 and removing the latter, we can
assume that min1≤j≤J µ̄(R× Uj) > 0. For j ∈ {1, . . . , J} and k ∈ N, we define

µ̄j := 1R×Uj µ̄, µ̄kj := 1R×Uj µ̄
k, µj := proj1 µ̄j and µkj := proj1 µ̄

k
j .

As (Uj)Jj=1 is comprised of continuity sets for the first marginal of µ̄, the weak con-
vergence of (µ̄k)k∈N to µ̄ implies that (µ̄kj )k∈N converges weakly to µ̄j and, due to the
continuity of the first coordinate mapping, (µkj )k∈N converges weakly to µj for each
j ∈ {1, · · · , J}. All the requirements of Proposition 3.5 are satisfied, allowing us to
identify, for each j ∈ {1, . . . , J}, a sequence of subprobability measures (νkj )k∈N such
that

νkj −→
k→+∞

νj , µkj ≤c νkj and
J∑
j=1

νkj = νk.

From now on we will assume that k is large enough so that min1≤j≤J µ
k
j (R) > 0. Weak

convergence of the original sequences yields, for each j ∈ {1, · · · , J}, that the normalized
sequence (µ̄kj /µ

k
j (R))k∈N (resp. (νkj /µ

k
j (R))k∈N) converges weakly to µ̄j/µj(R) (resp.

νj/µj(R)) as k → ∞. As (µ̄k)k∈N and (νk)k∈N are W1-convergent sequences, it then
follows easily from Lemmas A.3 and A.4 that the normalized sequences converge inW1.
Thus, we can apply [7, Theorem 2.6] and obtain an AW1-convergent sequence (γkj )k∈N
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of martingale couplings with limit γj where

γj :=
µj⊗Kj,x

µj(R)
∈ ΠM

(
µj

µj(R)
,

νj
µj(R)

)
and γkj ∈ ΠM

(
µkj

µkj (R)
,

νkj
µkj (R)

)
,

where we write η ⊗K(dx, dy) := η(dx)Kx(dy) for the gluing of a measure η ∈ P(X ) with
a measurable kernel K : X → P(Y). Further, write

γ̄kj :=
µ̄kj⊗γkj,x
µkj (R)

and γ̄j :=
1R×Uj×Rπ

µj(R)
=
µ̄j⊗Kj,x

µj(R)
.

To prove that (γ̄kj )k∈N converges in AW1 to γ̄j , we choose

χkj ∈ Π

(
µ̄kj

µkj (R)
,

µ̄j
µj(R)

)
resp. χ̂kj ∈ Π

(
µkj

µkj (R)
,

µj
µj(R)

)

that areW1-optimal between their marginals resp. optimal for AW1(γkj , γj). For ease of
notation, we moreover define χ̌kj as χ̌kj (dx, du, dx̂, dû, dz) := χkj (dx, du, dx̂, dû)χ̂kj,x(dz) and
compute

AW1(γ̄kj , γ̄j) ≤ W1

(
µ̄kj

µkj (R)
,

µ̄j
µj(R)

)
+

∫
W1(γkj,x,Kj,x̂)χkj (dx, du, dx̂, dû)

≤ W1

(
µ̄kj

µkj (R)
,

µ̄j
µj(R)

)
+

∫ (
W1(γkj,x,Kj,z) +W1(Kj,z,Kj,x̂)

)
χ̌kj (dx, du, dx̂, dû, dz)

≤ W1

(
µ̄kj

µkj (R)
,

µ̄j
µj(R)

)
+AW1(γkj , γj) +

∫
W1(Kj,z,Kj,x̂) χ̌kj (dx, du, dx̂, dû, dz). (3.10)

By Lemma A.1 and since∫
|z − x̂|χ̌kj (dx, du, dx̂, dû, dz) ≤ W1

(
µ̄kj

µkj (R)
,

µ̄j
µj(R)

)
+AW1(γkj , γj) −→

k→∞
0,

the right-hand side of (3.10) goes to 0 as k →∞.
In the next step, we revert the normalization by setting

πk :=

J∑
j=1

µkj (R)γ̄kj ∈ Π̄M (µ̄k, νk).

Let ε ∈ (0,min1≤j≤J µj(R)) be arbitrary and assume that k is sufficiently large so that
max1≤j≤J |µkj (R)− µj(R)| ≤ ε. We split each of π̄k and π̄ into two parts:

πk =

J∑
j=1

(µj(R)− ε) γ̄kj +

J∑
j=1

(
µkj (R)− µj(R) + ε

)
γ̄kj and π =

J∑
j=1

(µj(R)− ε) γ̄j + ε

J∑
j=1

γ̄j .

Because (µ̄j)
J
j=1 are pairwise singular, we can apply [7, Lemma 3.7] to deduce that

lim
k→∞

AW1

 J∑
j=1

(µj(R)− ε) γ̄kj ,
J∑
j=1

(µj(R)− ε) γ̄j

 = 0.

With the help of [7, Lemma 3.6] and [7, Lemma 3.1 (a)(c)], we conclude that

lim sup
k→∞

AW1

(
πk, π

)
≤ C

(
I1
Jε(µ̄) + I1

Jε(ν)
)
, (3.11)
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where C > 0 is a constant that does not depend on (k, ε) and, for a Polish space X , δ > 0,
x0 ∈ X , and η ∈M1(X ), I1

δ (η) is given by

I1
δ (η) := sup

τ∈M1(X ),τ≤η,τ(X )≤δ

∫
X
dX (x, x0) τ(dx).

As ε > 0 was arbitrary and we have by [7, Lemma 3.1 (b)] that limε↘0

(
I1
Jε(µ̄) + I1

Jε(ν)
)

=

0, we can infer from (3.11) that (π̄k)k∈N converges to π̄ in AW1.

3.3 Proofs of Corollary 2.3 and Proposition 2.5

We are first going to prove the following stronger variants of Corollary 2.3 and
Proposition 2.5 before deducing Proposition 2.8. Let f : X → [1,+∞) be a continuous
growth function such that

lim inf
|x|→∞
x∈X

f(x)

|x|
> 0.

The topological space Pf (X ) is defined like Pg(Y) with X and f replacing Y and g. The
topological space Pf⊕ĝ(X × Pg(Y)) is defined analogously to Pf̄⊕ĝ(X × U × Pg(Y)) but
without the u coordinate.

Corollary 3.6. Let (µk, νk)k∈N, µk ≤cx νk, be a convergent sequence in Pf (X )× Pg(Y)

with limit (µ, ν). Then, every P ∈ ΛM (µ, ν) is the limit in Pf⊕ĝ(X ×Pg(Y)) of a sequence
(P k)k∈N with P k ∈ ΛM (µk, νk).

Proof. Let P = µ(dx)Px(dρ) ∈ ΛM (µ, ν). By Lemma 3.22 [23], there exists a measurable
mapping R × [0, 1] 3 (x, u) 7→ πx,u ∈ P1(R) such that πx,u#Leb(du) = Px. Then for µ̄ =

µ⊗ Leb, π(dx, du, dy) = µ̄(dx, du)πx,u(dy) ∈ ΠM (µ̄, ν). The sequence (µ̄k = µk ⊗ Leb)k∈N
converges to µ̄ in Pf̄ (X × [0, 1]) where f̄(x, u) = f(x). By Theorem 3.2, π is the limit in the
adapted weak topology of a sequence (πk)k∈N with πk ∈ ΠM (µ̄k, νk). Therefore, we have
P k = J(πk) ∈ ΛM (µk, νk) and get that (P k)k∈N converges to P in Pf⊕ĝ(X × Pg(Y)).

Proposition 3.7. Assume that C : X × Pg(Y) → R is continuous and that there is a
constant K > 0 such that, for all (x, ρ) ∈ X × Pg(Y),

|C(x, ρ)| ≤ K (1 + f(x) + ρ(g)) .

Then, the value V̂C defined in (2.4) is attained and continuous on {(µ, ν) ∈ Pf (X )×Pg(Y) :

µ ≤cx ν}. Moreover, if (µk, νk)k∈N with µk ≤cx νk converges to (µ, ν) in Pf (X ) × Pg(Y)

and P k ∈ ΛM (µk, νk) is a sequence of optimizers of V̂C(µk, νk), then its accumulation
points are optimizers of V̂C(µ, ν).

Proof. Note that the mapping Pf⊕ĝ(X × Pg(Y)) 3 P 7→ P (C) is continuous. Using [9,
Lemma A.7] for the relative compactness, we easily check that for (µ, ν) ∈ Pf (X )×Pg(Y)

with µ ≤cx ν, ΛM (µ, ν) is compact and non-empty. Therefore V̂C is attained.
Let (µk, νk)k∈N with µk ≤cx νk be convergent in Pf (X )×Pg(Y) with limit (µ, ν). Let

P ? ∈ ΛM (µ, ν) be optimal for V̂C(µ, ν). By Corollary 3.6, there exists a sequence (P k)k∈N
with P k ∈ ΛM (µk, νk) that converges to P ? in Pf⊕ĝ(X × Pg(Y)). Therefore

V̂C(µ, ν) = P ?(C) = lim
k→∞

P k(C) ≤ lim inf
k→∞

V̂C(µk, νk). (3.12)

Now choosing P k,? ∈ ΛM (µk, νk) such that V̂C(µk, νk) = P k,?(C), we may extract a
subsequence (P kj ,?)j∈N converging to some P∞ in Pf⊕ĝ(X × Pg(Y)) and such that
limj→∞ P kj ,?(C) = lim supk→∞ V̂C(µk, νk). Then P∞ ∈ ΛM (µ, ν) and

V̂C(µ, ν) ≥ P∞(C) = lim
j→∞

P kj (C) = lim sup
k→∞

V̂C(µk, νk).
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With (3.12), we deduce that V̂C(µ, ν) = limk→∞ V̂C(µk, νk) so that V̂C is continuous on
{(η, θ) : η ≤cx θ} ⊆ Pf (X ) × Pg(Y). Moreover V̂C(µ, ν) = P∞(C) and this equality
remains true for any accumulation point P∞ of (P k,?)k∈N.

3.4 Proof of Proposition 2.8 about the stability of the VIX futures subreplica-
tion price

Proof of Proposition 2.8. Set X = (0,+∞), f : X 3 x 7→ | ln(x)| + |x| and CVIX : X ×
Pf (X ) 3 (x, ρ) 7→ −

√
ρ(`x) ∨ 0 where we recall that X 3 y 7→ `x(y) = 2

T2−T1
ln(x/y) for

x ∈ X . Let µ, ν ∈ Pf (X ). For π ∈ ΠVIX(µ, ν), we have that (x, πx,u)#π = P ∈ ΛM (µ, ν)

with ∫ √
πx,u(`x) proj1,2 π(dx, du) = −P (CVIX). (3.13)

Therefore Dsub(µ, ν) ≥ −V̂CVIX
(µ, ν).

On the other hand, if P ∈ ΛM (µ, ν) then

π :=
(

(x, ρ, y) 7→ (x,
√
ρ(`x), y)

)
#
P ⊗ ρ ∈ ΠVIX(µ, ν),

since we have, by Jensen’s inequality combined with
∫
ρ(f)P (dx, dρ) = ν(f) < ∞,

ρ(`x) ∈ [0,+∞) P (dx, dρ)-a.e. and, for ϕ : X ×R+ → R measurable and bounded,∫
X×R+×X

ϕ(x, u)(u2 − `x(y))π(dx, du, dy)

=

∫
Pf⊕f̂ (X×Pf (X ))

ϕ(x,
√
ρ(`x))

∫
X

(ρ(`x)− `x(y)) ρ(dy)P (dx, dρ) = 0.

Therefore (3.13) again holds. We conclude that Dsub(µ, ν) = −V̂CVIX(µ, ν) and deduce
from Proposition 3.7 applied with Y = X = (0,∞) and g = f the continuity of Dsub.

3.5 Stability of extended weak martingale optimal transport problems: proof
of Theorem 2.2

This section is dedicated to the proof of a stronger variant of Theorem 2.2, that is
Theorem 3.8 below.

Assumption B. We say that a cost function C : X×U×Pg(Y)→ R satisfies Assumption B
if C is continuous and there is a constant K > 0 such that, for all (x, u, ρ) ∈ X ×U×Pg(Y),

|C(x, u, ρ)| ≤ K
(
1 + f̄(x, u) + ρ(g)

)
. (3.14)

Theorem 3.8. Let C satisfy Assumption B and C(x, u, ·) be convex. Then the value
function VC defined in (2.1) is attained and continuous on {(µ̄, ν) : proj1 µ̄ ≤cx ν} ⊆
Pf̄ (X × U)× Pg(Y).

Furthermore, when (µ̄k, νk)k∈N converges to (µ̄, ν) in Pf̄ (X × U) × Pg(Y) and for
k ∈ N, proj1 µ̄

k ≤cx νk and πk ∈ ΠM (µ̄k, νk) is optimal for VC(µ̄k, νk), we have:

(i) the accumulation points of (πk)k∈N are optimal for VC(µ̄, ν);

(ii) if C(x, u, ·) is strictly convex, then optimizers of (2.1) are unique and (πk)k∈N
converges to the optimizer of VC(µ̄, ν) in the adapted weak topology.

Proof. By [9, Proposition A.12 (b)], the map

Pf̄⊕g(X × U × Y) 3 π 7→
∫
C(x, u, πx,u) proj1,2 π(dx, du)
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is lower semicontinuous. Since ΠM (µ̄, ν) is a compact subset of Pf̄⊕g(X × U × Y), we
deduce that the value function is attained.

Let ((µ̄k, νk))k∈N in {(η̄, θ) : proj1 η̄ ≤cx θ} ⊆ Pf̄ (X × U)× Pg(Y) be convergent with
limit (µ̄, ν). Let π? ∈ ΠM (µ̄, ν) be such that VC(µ̄, ν) = J(π?)(C). By Theorem 3.2,
there exists a sequence (πk)k∈N with πk ∈ ΠM (µ̄k, νk) such that J(πk) → J(π?) in
Pf̄⊕ĝ(X ×U×Pg(Y)). Since the mapping Pf̄⊕ĝ(X ×U×Pg(Y)) 3 P 7→ P (C) is continuous,
we deduce that

lim sup
k→∞

VC(µ̄k, νk) ≤ lim
k→∞

J(πk)(C) = J(π?)(C) = VC(µ̄, ν). (3.15)

Choosing now πk,? ∈ ΠM (µ̄k, νk) such that VC(µ̄k, νk) =
∫
C(x, u, πk,?x,u)µ̄k(dx, du), we may

extract a subsequence (πkj ,?)j∈N such that (πkj ,?)j∈N converges to π∞ in Pf̄⊕g(X ×U×Y)

and limj→∞
∫
C(x, u, π

kj ,?
x,u )µ̄kj (dx, du) = lim infk→∞ VC(µk, νk). The limit π∞ belongs to

ΠM (µ̄, ν) and, by lower semicontinuity of

Pf̄⊕g(X × U × Y) 3 π 7→
∫
C(x, u, πx,u) proj1,2 π(dx, du),

we deduce that

VC(µ̄, ν) ≤
∫
C(x, u, π∞x,u) µ̄(dx, du)

≤ lim
j→∞

∫
C(x, u, πkj ,?x,u ) µ̄kj (dx, du) = lim inf

k→∞
VC(µk, νk).

With (3.15), we deduce that limk→∞ VC(µ̄k, νk) = VC(µ, ν) so that VC is continuous on
{(η̄, θ) : proj1 η̄ ≤cx θ} ⊆ Pf̄ (X ×U)×Pg(Y). Moreover, VC(µ̄, ν) =

∫
C(x, u, π∞x,u)µ̄(dx, du)

and this equality remains true for any accumulation point π∞ of (πk,?)k∈N in Pf̄⊕g(X ×
U × Y).

Let us now assume that C(x, u, ·) is strictly convex and prove (ii). When π ∈ ΠM (µ̄, ν)

is another optimizer of VC(µ̄, ν), then π+π?

2 ∈ ΠM (µ̄, ν) and
∫
C(x, u, (π+π?

2 )x,u)µ̄(dx, du) ≥
VC(µ̄, ν) so that∫ (

C
(
x, u,

πx,u + π?x,u
2

)
− 1

2
(C(x, u, πx,u) + C(x, u, π?x,u))

)
µ̄(dx, du) ≥ 0.

With the strict convexity, this implies that µ̄(dx, du)-a.e., πx,u = π?x,u and π = π?.
Let us finally assume that the sequence (πk)k∈N of optimizers of VC(µ̄k, νk) admits a

subsequence which does not have π? as an accumulation point w.r.t. the adapted weak
topology. By [9, Lemma A.7], this particular subsequence admits a subsequence (πkj )j∈N
such that (J(πkj ))j∈N converges in Pf̄⊕ĝ(X × U × Pg(Y)) to P . We define π̃ ∈ ΠM (µ̄, ν)

by π̃ = µ̄× π̃x,u with π̃x,u =
∫
ρ(dy)Px,u(dρ). As C(x, u, ·) is convex and continuous, we

have by Jensen’s inequality∫
C(x, u, π̃x,u) µ̄(dx, du) ≤

∫
C(x, u, ρ)P (dx, du, dρ)

= lim
k→∞

∫
C(x, u, πkx,u) µ̄k(dx, du) = VC(µ̄, ν).

In particular, π̃ is an optimizer of VC(µ̄, ν) and, by strict convexity of C(x, u, ·), we have
J(π̃) = P and uniqueness of optimizers. Thus, π̃ = π?, and we also get J(π?) = P . Hence,
(πkj )j∈N converges in the adapted weak topology to π?, which is a contradiction and
completes the proof.
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3.6 Stability of the shadow couplings: proof of Proposition 2.9

Let us first state a consequence of Proposition 2.9 concerning the shadow couplings.
In view of Sklar’s theorem, it is natural to parametrize the dependence structure

between µ and the Lebesgue measure on [0, 1] in the lift µ̄ ∈ Π(µ,Leb) of µ by copulas i.e.
probability measures on [0, 1]× [0, 1] with both marginals equal to the Lebesgue measure.
We call shadow coupling between µ and ν with copula χ the shadow coupling between
µ and ν with source equal to the image µ̄χ of χ by [0, 1]× [0, 1] 3 (v, u) 7→ (F−1

µ (v), u) ∈
R× [0, 1], where F−1

µ denotes the quantile function of µ , i.e., the left-continuous pseudo-
inverse of its cumulative distribution function.

Corollary 3.9. The shadow coupling with copula χ is continuous on the domain {(µ, ν) :

µ ≤cx ν} ⊆ Pp(R)×Pp(R) and with range (Pp(R×R),Wp) and even continuous in AWp

at each couple (µ, ν) such that µ does not weight points.

The proof of this corollary is postponed after the one of Proposition 2.9. For the
Hoeffding-Fréchet copula, χ(dv, du) = Leb(du)δu(dv), we recover the stability w.r.t.
the marginals µ and ν of the left-curtain coupling proved by Juillet in [22]. For the
independence copula χ(dv, du) = Leb(dv) ⊗ Leb(du), we deduce the continuity of the
sunset coupling.

The proof that the selector SC of the lifted shadow coupling is continuous when the
codomain Pp(R × [0, 1] × R) is endowed with the adapted Wasserstein distance AWp

relies on the fact that, by (2.12), the selector SC takes values in the following extremal
set of extended martingale couplings

Πext
M,p := {π ∈ Pp(R× U ×R) : # Supp(πx,u) ∈ {1, 2} and mean(πx,u) = x π-a.s.}.

The set Πext
M,p is extremal in the following sense: when π ∈ Πext

M,p and P ∈ Pp(R×U×Pp(R))

with I(P ) = π, where I(P ) is the unique measure that satisfies∫
f(x, u, y) I(P )(dx, du, dy) =

∫ ∫
f(x, u, y) ρ(dy)P (dx, du, dρ),

for all f ∈ Cb(R × U × R) and mean(ρ) = x P -a.s., then we already have P = J(π).
Proceeding from this observation, the next lemma shows that on Πext

M,p the p-Wasserstein
topology coincides with the p-adapted Wasserstein topology, which we in turn use to
prove Proposition 2.9.

Lemma 3.10. The identity map Id on Pp(R × U × R) is (Wp,AWp)-continuous at any
P ∈ Πext

M,p. In particular, the metric spaces (Πext
M,p,Wp) and (Πext

M,p,AWp) are topologically
equivalent.

Proof. We follow a similar line of reasoning as used in [26, Lemma 1.9]. AsWp ≤ AWp,
it suffices to show that, given a sequence (πk)k∈N in Pp(R× U ×R) with mean(πkx,u) = x

πk-a.s. and π ∈ Πext
M,p,

lim
k→∞

Wp(π
k, π) = 0 =⇒ lim

k→∞
AWp(π

k, π) = 0.

So, let (πk)k∈N and π be as above and assume that πk → π inWp. Observe that J |Πext
M,p

is
bijective onto

J(Πext
M,p) = {P ∈ Pp(R× U × Pp(R)) : I(P ) ∈ Πext

M,p and mean(ρ) = x P (dx, du, dρ)-a.e.},
(3.16)

with inverse I. Using [3, Lemma 2.3], we find that the sequence (J(πk))k∈N is Wp-
relatively compact in Pp(R × U × Pp(R)). Therefore, there is a subsequence (πkj )j∈N
such that J(πkj ) → P . Since πkj → I(P ) = π ∈ Πext

M and mean(ρ) = x P (dx, du, dρ)-a.e.,
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we get by (3.16) that P ∈ J(Πext
M,p) which yields by bijectivity of J |Πext

M,p
that P = J(π).

Hence, J(πkj )→ J(π) inWp which means that πkj → π in AWp.
Since any subsequence of (πk)k∈N admits, by above reasoning, an AWp-convergent

subsequence with limit π, we conclude that πk → π in AWp.

The proof of Proposition 2.9 also relies on the following lemma, the proof of which is
postponed to the end of the current section.

Lemma 3.11. Let x, y, z ∈ R with y < x < z, and ((yk, zk))k∈N be a (−∞, x] × [x,+∞)-
valued sequence such that for each k, either yk < x < zk or yk = x = zk. Then we
have

(i) W1(Ber(x, yk, zk),Ber(x, y, z))→ 0 ⇐⇒ |yk − y|+ |zk − z| → 0,

(ii) W1(Ber(x, yk, zk), δx)→ 0 ⇐⇒ (zk − x) ∧ (x− yk)→ 0.

Proof of Proposition 2.9. As optimizers of VSC are unique, we immediately obtain from
Theorem 3.8, applied with C(x, u, ρ) =

∫
R

(1− u)
√

1 + y2ρ(dy) , continuity of

VSC : {(µ̄, ν) ∈ Pp(R× [0, 1])× Pp(R) : proj1 µ̄ ≤cx ν, proj2 µ̄ = Leb} → R, (3.17)

SC : {(µ̄, ν) ∈ Pp(R× [0, 1])× Pp(R) : proj1 µ̄ ≤cx ν, proj2 µ̄ = Leb} → Pp(R× [0, 1]×R),

(3.18)

when the domain is endowed with the product of the corresponding Wasserstein p-
topologies. Since SC is a continuous function taking values in Πext

M , Lemma 3.10 ensures
that it is still continuous when the codomain is endowed with the stronger AWp-distance.
Therefore we have that

SC(µ̄k, νk)→ SC(µ̄, ν) in AW1,

which is equivalent toW1-convergence of

(Id,Ber(X,T k1 , T
k
2 ))#µ̄

k = J(SC(µ̄k, νk))→ J(SC(µ̄, ν)) = (Id,Ber(X,T1, T2))#µ̄,

where X : R× [0, 1] 3 (x, u) 7→ x ∈ R. Applying Lemma A.2 in the setting

V = R× [0, 1], Z = P1(R), θk = µ̄k,

θ = µ̄, ϕk = Ber(X,T k1 , T
k
2 ) and ϕ = Ber(X,T1, T2),

yields Ber(X,T k1 , T
k
2 )→ Ber(X,T1, T2) in µ̄-probability. There exists a subsequence such

that this convergence holds µ̄-a.s. Hence, we can invoke Lemma 3.11 and derive the as-
sertion in the second statement of the proposition for this particular subsequence. By the
above reasoning any subsequence admits a subsubsequence which fulfills the conclusion
of the second statement of the proposition, which readily implies the statement.

Proof of Corollary 3.9. For the continuity inWp, it is enough to combine Proposition 2.9
with

∀µ, µ′ ∈ Pp(R), Wp
p (µ̄χ, µ̄

′
χ) ≤

∫
[0,1]×[0,1]

|F−1
µ (v)− F−1

µ′ (v)|pχ(dv, du) =Wp
p (µ, µ′),

∀π, π′ ∈ Pp(R× [0, 1]×R), Wp(proj1,3 π,proj1,3 π
′) ≤ Wp(π, π

′) ≤ AWp(π, π
′).

To prove the reinforced continuity in AWp, we consider a sequence ((µk, νk)k) in
Pp(R) × Pp(R) with µk ≤cx νk converging to (µ, ν) where µ does not weight points.
As seen in the proof of Proposition 2.9, the function SC is still continuous when the
codomain is endowed with the AWp-distance, so that AWp(SC(µ̄kχ, ν

k), SC(µ̄χ, ν))→ 0.
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For notational simplicity, we now denote SCk and SC respectively in place of SC(µ̄kχ, ν
k)

and SC(µ̄χ, ν). Let ηk ∈ Π(µ̄kχ, µ̄χ) be optimal for AWp(SC
k, SC). We have∫

[0,1]×[0,1]

Wp
p (SCk

F−1

µk
(v),u

, SCF−1
µ (v),u)χ(dv, du) ≤ 2p−1AWp

p(SC
k, SC)

+ 2p−1

∫
[0,1]×[0,1]×R×[0,1]

Wp
p (SCx,w, SCF−1

µ (v),u)χ(dv, du)ηk
F−1

µk
(v),u

(dx, dw)

The second term on the right-hand side goes to 0 according to Lemma A.1 since µ̄χ is the
image of χ by [0, 1]× [0, 1] 3 (v, u) 7→ (F−1

µ (v), u) ∈ R× [0, 1] and, using |x− F−1
µ (v)|p ≤

2p−1(|x− F−1
µk

(v)|p + |F−1
µk

(v)− F−1
µ (v)|p), we have∫

[0,1]2×R×[0,1]

|x− F−1
µ (v)|p + |w − u|pχ(dv, du)ηk

F−1

µk
(v),u

(dx, dw)

≤ 2p−1
(
AWp

p(SC
k, SC) +Wp

p (µk, µ)
)
→ 0.

Hence, ∫
[0,1]×[0,1]

Wp
p

(
SCk

F−1

µk
(v),u

, SCF−1
µ (v),u

)
χ(dv, du)→ 0.

Let πk (resp. π) denote the shadow coupling with copula χ between µk and νk (resp. µ
and ν) and for (x,w) ∈ R× [0, 1], ϑk(v, w) = Fµk(F−1

µk
(v)−) + wµk({F−1

µk
(v)}). The image

of the Lebesgue measure on [0, 1]× [0, 1] by ϑk is the Lebesgue measure on [0, 1] and for
each v ∈ (0, 1), F−1

µk
(ϑk(v, w)) = F−1

µk
(v), dw a.e.. Hence dv a.e.,

πk
F−1

µk
(v)

=

∫
[0,1]×[0,1]

SCk
F−1

µk
(ϑk(v,w)),u

χϑk(v,w)(du)dw.

Since µ does not weight points, F−1
µ is one-to-one and πF−1

µ (v) =
∫

[0,1]
SCF−1

µ (v),uχv(du),
dv a.e.. By the triangle inequality, we have

Wp
p

(
πk
F−1

µk
(v)
, πF−1

µ (v)

)
≤ 2p−1

∫
[0,1]×[0,1]

Wp
p

(
SCk

F−1

µk
(ϑk(v,w)),u

, SCF−1
µ (ϑk(v,w)),u

)
χϑk(v,w)(du) dw

+ 2p−1

∫
[0,1]

Wp
p

(∫
[0,1]

SCF−1
µ (ϑk(v,w)),u χϑk(v,w)(du),

∫
[0,1]

SCF−1
µ (v),u χv(du)

)
dw.

Using again that the image of the Lebesgue measure on [0, 1]× [0, 1] by ϑk is the Lebesgue
measure on [0, 1], we deduce that

AWp
p(π, π

k) ≤
∫

[0,1]

|F−1
µ (v)− F−1

µk
(v)|p +Wp

p (πF−1
µ (v), π

k
F−1

µk
(v)

) dv

≤ Wp
p (µ, µk) + 2p−1

∫
[0,1]×[0,1]

Wp
p

(
SCk

F−1

µk
(v),u

, SCF−1
µ (v),u

)
χ(dv, du)+

2p−1

∫
[0,1]×[0,1]

Wp
p

(∫
[0,1]

SCF−1
µ (ϑk(v,w)),u χϑk(v,w)(du),

∫
[0,1]

SCF−1
µ (v),u χv(du)

)
dw dv.

The sum of the first two terms on the right-hand side goes to 0 as n→∞. Since, by the
proof of [19, Proposition 4.2] (see the equation just above (4.12) where θ(F−1

µ (v), w) = v

since Fµ is continuous), dvdw -a.e., ϑk(v, w)→ v, we have
∫

[0,1]×[0,1]
|ϑk(v, w)−v|p dv dw →

0 by Lebesgue’s theorem, so that the third term on the right-hand side also goes to 0 by
Lemma A.1.
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Remark 3.12. Like in the proof of [19, Proposition 4.2], we could check that AWp(π
k, π)

still goes to 0 as n→∞ when

∀x ∈ R, µk({x}) > 0⇒ ∃(xk)k ∈ RN, Fµk(xk) ∧ Fµ(x)− Fµk(xk−) ∨ Fµ(x−)→µ({x}).

Proof of Lemma 3.11. To show (i) and (ii) we may assume w.l.o.g. that yk < x < zk, since
yk = x = zk implies Ber(x, yk, zk) = δx 6= Ber(x, y, z). Then we compute

W1

(
Ber(x, yk, zk),Ber(x, y, z)

)
=
(
z−x
z−y ∧

zk−x
zk−yk

)
|y − yk|+

(
z−x
z−y −

zk−x
zk−yk

)+

(zk − y)

+
(
zk−x
zk−yk −

z−x
z−y

)+

(z − yk) +
(
x−y
z−y ∧

x−yk
zk−yk

)
|z − zk|. (3.19)

When |yk − y| + |zk − z| → 0 then each summand in (3.19) also vanishes, showing the
reverse implication of (i).

Conversely, whenW1(Ber(x, yk, zk),Ber(x, y, z))→ 0 then all four summands on the
right-hand side of (3.19) have to go to 0 individually as k → ∞. Thus, since zk − y ≥
x− y > 0 and z − yk ≥ z − x > 0, we find, due to the second and third terms in (3.19),
that zk−x

zk−yk →
z−x
z−y . Then using that the first and fourth terms also have to converge to 0,

we get |yk − y|+ |zk − z| → 0, which completes the proof of (i).

On the other hand, we have

W1

(
Ber(x, yk, zk), δx

)
2

=
(zk − x)(x− yk)

zk − yk
=

(zk − x) ∨ (x− yk)

zk − yk
(
(zk − x) ∧ (x− yk)

)
.

Since zk − yk ≥ (zk − x) ∨ (x− yk) ≥ 1
2 (zk − yk), we deduce that

1 ≤
W1

(
Ber(x, yk, zk), δx

)
(zk − x) ∧ (x− yk)

≤ 2,

which yields (ii) and completes the proof.

3.7 Proof of Proposition 3.5

The proof of Proposition 3.5 relies on Lemma 3.13 below and Wasserstein projections
in convex order. By [1, Proposition 4.2] there is a map J : P1(R) × P1(R) → P1(R)

satisfying

µ ≤c J (µ, ν) andW1(J (µ, ν), ν) = inf
µ≤cη

W1(η, ν), (3.20)

which is called a Wasserstein projection in convex order. According to [20, Theorem 1.1],
J is Lipschitz continuous: for µ, ν, µ′, ν′ ∈ Pp(R) with p ≥ 1, we have

Wp(J (µ, ν),J (µ′, ν′)) ≤ Wp(µ, µ
′) + 2Wp(ν, ν

′). (3.21)

For µ, ν ∈ P1(R) which share the same mean, we also denote by µ∧c ν the minimum of µ
and ν in the convex order (see [24]). Its potential function is given by uµ∧cν = co(uµ ∧uν)

where co denotes the convex hull operator.

Lemma 3.13. Let a, b ∈ R ∪ {−∞,+∞}, a < b, and ρ ∈ P1(R) be concentrated on [a, b]

with mean x ∈ R. Let (am)m∈N, (b
m)m∈N, a < am < x < bm < b, be monotone sequences

with am → a and bm → b. Then

W1

(
ρ ∧c

(
bm − x
bm − am

δam +
x− am

bm − am
δbm

)
, ρ

)
→ 0.
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Proof of Lemma 3.13. Let for each m ∈ N, ηm = bm−x
bm−am δam+ x−am

bm−am δbm and ρm = ρ∧cηm.
Let us check that limm→∞ supy∈(−∞,am](uρ(y) − (x − y)) = 0. If a = −∞, this is a
consequence of limy→−∞(uρ(y) − (x − y)) = 0. If a > −∞, uρ(y) = x − y for y ≤ a and
since uρ is 1-Lipschitz,

∀y ∈ [a, am], uρ(y) ≤ uρ(a) + (y − a) = x− a+ y − a ≤ x− y + 2(am − a).

Since uηm(y) = x − y for y ∈ (−∞, am] and using a symmetric reasoning to deal
with the supremum over [bm,+∞) we deduce that limm→∞ supy∈(−∞,am]∪[bm,+∞)(uρ(y)−
uηm(y)) = 0. By convexity of uρ and since uηm is affine on [am, bm], supy∈R(uρ(y) −
uηm(y)) = supy∈(−∞,am]∪[bm,+∞)(uρ(y)− uηm(y)) so that

lim
m→∞

sup
y∈R

(uρ(y)− uηm(y)) = 0.

Since the convex function uρ − supy∈R(uρ(y)− uηm(y)) is not greater than uρ ∧ uηm ,

uρ − sup
y∈R

(uρ(y)− uηm(y)) ≤ co(uρ ∧ uηm) = uρm ≤ uρ.

Hence uρm converges uniformly to uρ as m → ∞, which implies that W1(ρm, ρ) −→
m→+∞

0.

Proof of Proposition 3.5. For every j = 1, . . . , J , we have µkj → µj inM1(R) with µj(R) >

0, so that µkj (R)→ µj(R) > 0 and, for k large enough, min1≤j≤J µ
k
j (R) > 0. We are going

to check the existence of M < ∞ such that for each ε ∈ (0, 1), we can find sequences
(νk,εj )k∈N inM1(R) that satisfy

µkj ≤c ν
k,ε
j ,

J∑
j=1

νk,εj = νk and lim sup
k→+∞

J∑
j=1

µj(R)W1

(
νk,εj
µkj (R)

,
νj

µj(R)

)
≤Mε. (3.22)

As ε is arbitrary, the conclusion follows easily from (3.22).
Before jumping into the various steps of proving (3.22), we fix the following notation:

Let a ∈ {−∞}∪R and b ∈ R∪{+∞} be the endpoints of the irreducible component (a, b)

of (µ, ν). Further, let

πj =
µj

µj(R)
⊗πjx ∈ ΠM

(
µj

µj(R)
,

νj
νj(R)

)
.

Up to modifying x 7→ πjx on a µ-null set, we suppose w.l.o.g. that for all x ∈ (a, b), πjx is
concentrated on [a, b] and mean(πjx) = x. Finally, for m ∈ N, pick am, bm ∈ (a, b), am < bm,
with am ↘ a, and bm ↗ b, so that µj([am, bm]) > 0 and µj({am, bm}) = 0 for each
j = 1, . . . , J .

Step 1: We claim that when m is sufficiently large, there exists ν̃j ∈M1(R) with

W1(ν̃j , νj) < ε, ν̃j ≤c νj , µj |[am,bm] ≤c ν̃j |[am,bm] and ν̃j |R\[am,bm] = µj |R\[am,bm].

(3.23)
To show (3.23) we define qmx as the unique probability measure supported on {am, bm}
with mean(qmx ) = x when x ∈ [am, bm], and δx otherwise, i.e.,

qmx :=

{
bm−x
bm−am δam + x−am

bm−am δbm if x ∈ (am, bm),

δx else.

Set πj,m(dx, dy) := µj(dx) (πjx ∧c qmx )(dy). The measure πj,m is a martingale coupling
between µj and its second marginal, which we denote by νj,m and thus νj,m ≤c νj . Thanks
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to Lemma 3.13 we have for every x ∈ (a, b) thatW1(πjx, π
j
x ∧c qmx )→ 0. Furthermore, by

the triangle inequality and convexity of the absolute value we have

W1(πjx, π
j
x ∧c qmx ) ≤ W1(πjx, δ0) +W1(δ0, π

j
x ∧c qmx ) ≤ 2W1(πjx, δ0),

where the right-hand side is µj-integrable. Hence, we get by dominated convergence

AW1(πj , πj,m) ≤
∫
R

W1(πjx, π
j
x ∧c qmx )µj(dx) −→

m→+∞
0. (3.24)

Letting m be sufficiently large, (3.24) yields that ν̃j := νj,m satisfies W1(ν̃j , νj) < ε.
Since, for x ∈ [am, bm], (πjx ∧c qmx )([am, bm]) = 1 and for x ∈ R\[am, bm], πjx ∧c qmx = δx,
ν̃j |[am,bm] is the second marginal of µj |[am,bm]⊗(πjx ∧c qmx ) and (3.23) holds. Observe that
ν̃j([a

m, bm]) = µj([a
m, bm]) implies that

mean

(
µj |[am,bm]

µj([am, bm])

)
= mean

(
νj |[am,bm]

µj([am, bm])

)
=: x̃mj .

Step 2: Next we construct, for j ∈ {1, . . . , J}, sequences (ν̃kj )k∈N inM1(R) such that

µkj ≤c ν̃kj ,
J∑
j=1

ν̃kj ≤c νk and ν̃kj →
k→∞

(1− ε)ν̃j + εµj inM1(R). (3.25)

Since µj({am, bm}) = 0, we have for every h ∈ Cb(R) that the discontinuities of h1[am,bm]

are a µj-null set, whence we get by Portmanteau’s theorem∫
1[am,bm](x)h(x)µkj (dx)→

∫
1[am,bm](x)h(x)µj(dx).

With Lemma A.4, we deduce that µkj |[am,bm] converges to µj |[am,bm] inM1(R) as k →∞.
When k is sufficiently large, we have µkj ([am, bm]) > 0 and define

xk,mj := mean

(
µkj |[am,bm]

µkj ([am, bm])

)
and ν̂kj := J

(
µkj |[am,bm]

µkj ([am, bm])
,
ν̃j |[am,bm]

µj([am, bm])

)
∧c qmxk,mj .

To simplify notation, we use the above definitions also when µkj ([am, bm]) = 0 under the

convention that the undefined term
µkj |[am,bm]

µkj ([am,bm])
is replaced by

µj |[am,bm]

µj([am,bm]) . By Lemma A.3

andW1-Lipschitz continuity of J , c.f. (3.21), we have

J

(
µkj |[am,bm]

µkj ([am, bm])
,
ν̃j |[am,bm]

µj([am, bm])

)
−→
k→+∞

J
(

µj |[am,bm]

µj([am, bm])
,
ν̃j |[am,bm]

µj([am, bm])

)
=

ν̃j |[am,bm]

µj([am, bm])
,

in W1, where the last equality follows from the fact that µ|[am,bm] ≤c ν̃j |[am,bm]. Again

by Lemma A.3, we obtain that xk,mj → x̃mj and therefore qm
xk,mj

→ qmx̃mj in W1. Thus, [7,

Lemma 4.1], i.e., continuity of ∧c, provides that

ν̂kj −→
k→+∞

ν̃j |[am,bm]

µj([am, bm])
∧c qmx̃mj inW1.

Since ν̃j |[am,bm] is concentrated on [am, bm] with mass µj([am, bm]) and mean x̃mj , we have
ν̃j |[am,bm] ≤c µj([am, bm])qmx̃mj . Hence,

ν̂kj −→
k→+∞

ν̃j |[am,bm]

µj([am, bm])
inW1. (3.26)
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We set
ν̃kj := (1− ε)

(
µkj |R\[am,bm] + µkj ([am, bm])ν̂kj

)
+ εµkj . (3.27)

By definition of ν̂kj and since
µkj |[am,bm]

µkj ([am,bm])
≤c qmxk,mj

, we have
µkj |[am,bm]

µkj ([am,bm])
≤c ν̂kj , which yields

µkj = (1− ε)
(
µkj |R\[am,bm] + µkj |[am,bm]

)
+ εµkj ≤c ν̃kj . (3.28)

In order to complete step 2, it remains to show that, when k is sufficiently large, then

J∑
j=1

ν̃kj ≤c νk. (3.29)

As µkj → µj and µkj |[am,bm] → µj |[am,bm] inM1(R) and by (3.26) and (3.23), we also obtain
that ν̃kj → (1− ε)ν̃j + εµj inM1(R). In turn, this implies locally uniform convergence of
the sequence of potential functions (uν̃kj )k∈N to u(1−ε)ν̃j+εµj . At the same time, as νk → ν

in P1(R), we have uniform convergence of uνk to uν . Thus, we find, for each δ > 0, an
index k(δ) ∈ N such that for all k ≥ k(δ) and j ∈ {1, · · · , J} we have

uν̃kj |[am,bm] ≤ (1− ε)uν̃j |[am,bm] + εuµj |[am,bm] +
δ

J
and uν ≤ uνk + δ. (3.30)

As (µ, ν) is irreducible with component (a, b) ⊇ [am, bm], we can fix a δ > 0 such that

εuµ|[am,bm] ≤ εuν |[am,bm] − 2δ. (3.31)

Let k ≥ k(δ), and compute, for y ∈ [am, bm],

J∑
j=1

uν̃kj (y) ≤ (1− ε)
J∑
j=1

uν̃j (y) + ε

J∑
j=1

uµj (y) + δ

≤ (1− ε)uν(y) + εuν(y)− δ
= uν(y)− δ ≤ uνk(y),

where the first and last inequalities follow from (3.30), the second from
∑J
j=1 µj = µ,∑J

j=1 ν̃j ≤c
∑J
j=1 νj = ν and (3.31). Next, let y ∈ R \ [am, bm]. Since µkj ([am, bm])ν̂kj and

µkj |[am,bm] are both concentrated on [am, bm] with the same mass and barycentre, we
obtain that their potential functions take the same value at y. We have

J∑
j=1

uν̃kj (y) = (1− ε)
J∑
j=1

(
uµkj |R\[am,bm]

(y) + µkj ([am, bm])uν̂kj (y)
)

+ ε

J∑
j=1

uµkj (y)

= (1− ε)
J∑
j=1

(
uµkj |R\[am,bm]

(y) + uµkj |[am,bm]
(y)
)

+ εuµk(y) = uµk(y) ≤ uνk(y).

Summarizing, we have
∑J
j=1 uν̃kj ≤ uνk for k ≥ k(δ), which yields (3.29).

Step 3: The final step consists in modifying (ν̃kj )Jj=1 to (νk,εj )Jj=1 that fulfills (3.22).

Denote by χk ∈ ΠM (
∑J
j=1 ν̃

k
j , ν

k) the inverse transform martingale coupling (see [21]),
which by [21, Theorem 2.11] satisfies

∫
R×R

|y − x|χk(dx, dy) ≤ 2W1

 J∑
j=1

ν̃kj , ν
k

 . (3.32)
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We define νk,εj as the second marginal of ν̃kj⊗χkx, that is

νk,εj (dy) :=

∫
R

χkx(dy) ν̃kj (dx).

Using (3.28) we have

µkj ≤c ν̃kj ≤c ν
k,ε
j and

J∑
j=1

νk,εj = νk. (3.33)

To prove the remaining claim in (3.22), we estimate

µj(R)W1

(
νk,εj
µkj (R)

,
νj

µj(R)

)
≤ µj(R)

µkj (R)
W1

(
νk,εj , ν̃kj

)
+W1

(
µj(R)

µkj (R)
ν̃kj , ν̃j

)
+W1 (ν̃j , νj) .

(3.34)

Because of (3.25),
∑J
j=1 ν̃

k
j converges to (1− ε)

∑J
j=1 ν̃j + ε

∑J
j=1 µj inW1. We compute

lim sup
k→∞

J∑
j=1

µj(R)

µkj (R)
W1

(
νk,εj , ν̃kj

)
= lim sup

k→∞

J∑
j=1

W1

(
ν̃kj , ν

k,ε
j

)
≤ lim sup

k→+∞

∫
R×R

|y − x|χk(dx, dy)

≤ 2 lim sup
k→+∞

W1

 J∑
j=1

ν̃kj , ν
k


≤ 2W1

(1− ε)
J∑
j=1

ν̃j + ε

J∑
j=1

µj , ν


≤ 2(1− ε)

J∑
j=1

W1(ν̃j , νj) + 2εW1(µ, ν)

≤ 2 (J +W1(µ, ν)) ε,

where the first equality is due to µkj (R) → µj(R), the first inequality holds because∑J
j=1 ν̃

k
j⊗χkx = χk, the second due to (3.32), the second last by the convexity of the

1-Wasserstein distance and ν =
∑J
j=1 νj , and the last by (3.23). As ε < 1, we obtain

by (3.25) and convexity of the 1-Wasserstein distance that

lim sup
k→∞

W1

(
µj(R)

µkj (R)
ν̃kj , ν̃j

)
≤ εW1(µj , ν̃j) ≤ ε

(
W1(µj , νj) + ε

)
≤ ε
(
W1(µj , νj) + 1

)
.

Plugging these estimates into (3.34) yields

lim sup
k→∞

J∑
j=1

µj(R)W1

(
νk,εj
µkj (R)

,
νj

µj(R)

)
≤

4J + 2W1(µ, ν) +

J∑
j=1

W1(µj , νj)

 ε

so that (3.22) holds with M = 4J + 2W1(µ, ν) +
∑J
j=1W1(µj , νj).

A Measure-theoretic auxiliary results

Throughout the paper we make repeat use of the following reformulation of [13,
Lemma 2.7].
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Lemma A.1. Let (V, dV) and (Z, dZ) be Polish metric spaces, µ ∈ Pp(V) and ϕ : V →Z
be a measurable function such that ϕ#µ ∈ Pp(Z). Then

Π(µ, µ) 3 π 7→
∫
V×V

dpZ(ϕ(v), ϕ(v̂))π(dv, dv̂)

vanishes when
∫
V×V d

p
V(v, v̂)π(dv, dv̂) goes to 0.

Proof. It was shown in [13, Lemma 2.7] that

sup

{∫
V×V

dpZ(ϕ(v), ϕ(v̂))π(dv, dv̂) : π ∈ Π(µ, µ) with

∫
V×V

dpV(v, v̂)π(dv, dv̂) ≤ δ
}

goes to 0 as δ ↘ 0, which proves our claim.

To comment on our use of Lemma A.1, we typically apply it in the specific setting
where ϕ is a disintegration kernel of some fixed coupling, cf. for example the end of the
proof of Lemma 3.4. For this reason, the lemma proves very useful to check convergence
in the adapted Wasserstein topology. For more details on the adapted weak topologies
and the adapted Wasserstein distance, we refer the interested reader to [2, 5, 26].

The next result relates weak convergence of couplings concentrated on the graph of
measurable functions, to convergence in probability of said functions. This lemma is a
generalization of the classical result [25, Lemma 1].

Lemma A.2. Let V,Z be Polish spaces, (θk)k∈N be a sequence in P(V) that converges
in total variation to θ, and let ϕk : V → Z, k ∈ N, and ϕ : V → Z be measurable functions.
Then

(Id, ϕk)#θ
k → (Id, ϕ)#θ in P(V × Z) =⇒ ϕk → ϕ in θ-probability.

Proof. As θk → θ in total variation, we have that the total variation distance between
(Id, ϕk)#θ

k and (Id, ϕk)#θ vanishes as k →∞. Thus, since the sequence ((Id, ϕk)#θ
k)k∈N

converges to (Id, ϕ)#θ =: η in P(V × Z), the same holds for the sequence (ηk)k∈N where
ηk := (Id, ϕk)#θ. W.l.o.g. we assume that the metrics dX and dY are both bounded, so
that ηk → η inW1 and can pick couplings χk ∈ Π(θ, θ) such that

W1(ηk, η) =

∫
V×V

dV(v, v̂) + dZ(ϕk(v), ϕ(v̂))χk(dv, dv̂).

By the triangle inequality we have∫
dZ(ϕk(v), ϕ(v)) θ(dv) =

∫
dZ(ϕk(v), ϕ(v))χk(dv, dv̂)

≤
∫
dZ(ϕk(v), ϕ(v̂)) + dV(ϕ(v̂), ϕ(v))χk(dv, dv̂)

=W1(ηk, η) +

∫
dZ(ϕ(v), ϕ(v̂))χk(dv, dv̂). (A.1)

The first summand in (A.1) vanishes as k →∞ since ηk → η inW1, whereas the second
summand vanishes as consequence of Lemma A.1 since

∫
dV(v, v̂)χk(dv, dv̂)→ 0.

A.1 Convergence of subprobability measures

Occasionally it is advantageous to work with subprobability measures. Therefore, we
denote by Mp(X ) the set of finite non-negative Borel measures on X that have finite
p-th moments and byM∗p(X ) the subset of measures with positive mass. We say that a
sequence (ρk)k∈N converges inMp(X ) to ρ if one of the following equivalent conditions
holds:
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(a) (ρk)k∈N converges weakly to ρ and, for some x0 ∈ X , limk→∞
∫
dpX (x, x0) ρk(dx) =∫

dpX (x, x0) ρ(dx);

(b) for every continuous function ϕ : X → R such that, for some x0 ∈ X and all x ∈ X ,
|ϕ(x)| ≤ 1 + dpX (x, x0), limk→∞ ρk(ϕ) = ρ(ϕ).

Further, when ρ, ρ̃ ∈ M∗p(X ) have equal mass, we can consider their p-Wasserstein
distance given by

Wp(ρ, ρ̃) := ρ(X )
1
p Wp

(
ρ

ρ(X )
,

ρ̃

ρ̃(X )

)
,

and similarly define the p-adapted Wasserstein distance AWp between measures π, π̃ ∈
M∗p(X × U × Y) that have equal mass.

Lemma A.3. Let p ≥ 1, ρ ∈ M∗p(X ), and (ρk)k∈N be a sequence in M∗p(X ) with
limk→∞ ρk(X ) = ρ(X ). Then the following are equivalent:

(i) (ρk)k∈N converges inMp(X ) to ρ;

(ii) the normalized sequence
(

ρk

ρk(X )

)
k∈N

converges to ρ
ρ(X ) in Pp(X ).

Proof. Since limk→∞ ρk(X ) = ρ(X ), we have in either case that (ρk)k∈N and the normal-
ized sequence (ρk/ρk(X ))k∈N are weakly convergent with limit ρ and ρ/ρ(X ), respectively.
For some x0 ∈ X , we then have

lim
k→∞

∫
dX (x, x0)p ρk(dx) =

∫
dX (x, x0)p ρ(dx)

if and only if

lim
k→∞

∫
dX (x, x0)p

ρk(dx)

ρk(X )
=

∫
dX (x, x0)p

ρ(dx)

ρ(X )
.

Thus, the equivalence of (i) and (ii) follows from [27, Definition 6.8].

Lemma A.4. Let p ≥ 1 and X be a Polish space. Let (ρk)k∈N be a convergent sequence
inMp(X ) and (qk)k∈N be a weakly convergent sequence with qk ≤ ρk for every k ∈ N.
Then, (qk)k∈N converges inMp(X ).

Proof. Write ρ and q for the weak limits of (ρk)k∈N and (qk)k∈N respectively. Consider
the sequence q̃k := ρk − qk ∈Mp(X ), k ∈ N, which is also weakly convergent with limit
q̃ := ρ− q. By Portmanteau’s theorem we have∫

dX (x, x0)p q(dx) ≤ lim inf
k→∞

∫
dX (x, x0)p qk(dx),

∫
dX (x, x0)p q̃(dx) ≤ lim inf

k→∞

∫
dX (x, x0)p q̃k(dx).

Hence,

lim sup
k→∞

∫
dX (x, x0)p qk(dx) =

∫
dX (x, x0)p ρ(dx)− lim inf

k→∞

∫
dX (x, x0)p q̃k(dx)

≤
∫
dX (x, x0)p ρ(dx)−

∫
dX (x, x0)p q̃(dx)

=

∫
dX (x, x0)p q(dx),

yields limk→∞
∫
dX (x, x0)p qk(dx) =

∫
dX (x, x0)p q(dx).
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