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Abstract

We prove, under mild conditions on fixed points and 2-cycles, the asymptotic normality
of vincular pattern counts for a permutation chosen uniformly at random in a conjugacy
class. Additionally, we prove that the limiting variance is always non-degenerate for
classical pattern counts. The proof uses weighted dependency graphs.
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1 Introduction

1.1 Background

A natural question in the context of random combinatorial structures is the asymptotic
behaviour of the number of substructures of a given type. In general, we expect such
numbers to be asymptotically normal or Poisson distributed, but proving it might be
difficult. For permutations, a good notion of substructures is that of permutation patterns.
Unsurprisingly, the asymptotic normality of patterns counts (either classical, consecutive
or vincular patters) in uniform random permutations has been extensively studied. We
refer for example to [2, 4, 10, 12, 13] for such results.

More recently, there has been some interest in extending these results to other
models of random permutations, and in particular to uniform random permutations in
some conjugacy classes. In this spirit, asymptotic normality results have been obtained
for specific patterns: see [7, 16] for descent counts and [8] for the number of peaks (the
latter is a sum of vincular pattern counts). These results use minimal assumptions on the
conjugacy class under consideration. In another direction, the second author [15] and
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Pattern counts in conjugacy classes

independently Hamaker and Rhoades, [9, Theorem 8.8] have both proved asymptotic
normality results for general patterns, but with some restrictions on the chosen conjugacy
classes. In the latter reference, the problem was raised of proving the asymptotic
normality of pattern counts assuming only the convergence of the proportion of fixed
points and 2-cycles in our permutations [9, Problem 9.9]. We solve this problem in the
present paper; see Theorem 1.2 below. Additionally, we prove that the limiting Gaussian
distribution is always non-degenerate for classical pattern counts (Theorem 1.3).

Note: In parallel to this work, the asymptotic normality of classical pattern counts
in random permutations in conjugacy classes has been obtained by Dubach [3] by a
different method. His method only applies to classical patterns (and not to the general
case of vincular patterns that we treat here), but can provide stronger results in this
case (speed of convergence and large deviation estimates). It can also be used to analyze
other types of statistics on random permutations in conjugacy classes, such as longest
monotone subsequences, the Robinson–Schensted shape, and the number of records; all
of these are out of reach with the method of weighted dependency graphs used in this
paper.

1.2 Vincular patterns

We use the notation [n] to represent the set {1, 2, . . . , n}. Additionally, we utilize the
one-line notation for permutations σ = σ1σ2 . . . σn.

Definition 1.1. Let π be a permutation of size k and A a subset of [k − 1]. Then an
occurrence of the vincular pattern (π,A) in a permutation σ is a tuple (i1, · · · , ik) with
i1 < · · · < ik such that:

• (i1, · · · , ik) is an occurrence of π in σ, i.e.

σi
π
−1
1

< · · · < σi
π
−1
k

.

• for all s in A, we have is+1 = is + 1.

In words, the subsequence (σi1 , · · · , σik) is in the same relative order as (π1, . . . , πk)

and A indicates entries of the subsequence which must be consecutive in σ. For example,
let us consider the permutation σ = 2173456 and the triple (i1, i2, i3) = (2, 3, 7) (the
corresponding subsequence (σi1 , σi2 , σi3) = (1, 7, 6) is in blue in σ).

• The triple (i1, i2, i3) = (2, 3, 7) is an occurrence of (π = 132, ∅) since π = 132 is
the permutation with the same relative order as the subsequence (σi1 , σi2 , σi3) =

(1, 7, 6). Equivalently,

σi
π
−1
1

= σi1 = 1 < σi
π
−1
2

= σi3 = 6 < σi
π
−1
3

= σi2 = 7.

• The triple (2, 3, 7) is also an occurrence of (132, {1}). Indeed, it is an occurrence of
132 as explained before, and it satisfies i2 = i1 + 1 (i.e. the two first elements in the
corresponding subsequence (1, 7, 6) are adjacent in σ).

• The triple (2, 3, 7) is however not an occurrence of (132, {2}) since i3 6= i2 + 1; said
otherwise, the elements 7 and 6 in the corresponding subsequence (1, 7, 6) are not
adjacent in σ.

Vincular patterns have been introduced in [1]. They encompass the notions of
classical and consecutive patterns. Indeed, when A = ∅, there are no constraints on
indices being consecutive, and we recover the notion of classical patterns. On the other
hand, when A = [k − 1], all indices must be consecutive, and we recover consecutive
patterns. Here are some examples of occurrences of vincular patterns in the literature.
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Pattern counts in conjugacy classes

• An occurrence of (21, ∅) is a classical occurrence of 21, i.e. an inversion.

• An occurrence of (21, {1}) is a consecutive occurrence of 21, i.e. a descent.

• An occurrence of (123 . . . k, ∅) is an increasing subsequence of length k.

• A peak is an occurrence of (132, {1, 2}) or (231, {1, 2}). Symmetrically, a valley is an
occurrence of (213, {1, 2}) or (312, {1, 2}).

• The longest alternating subsequence of a permutation equals, up to an additive
term equal to 1 or 2, the number of valleys, plus the number of peaks of the
permutation. In other terms, it is almost a linear combination of vincular patterns
(in that case, consecutive patterns). This result and some equivalent variants were
obtained separately by different authors. We refer for example to Houdré and
Restrepo [11] and Romik [17].

• The generating function of the vincular pattern (312, {1}) (together with other
statistics) occurs as partition function of a model of statistical physics called PASEP
(partially asymmetric simple exclusion process); see [14].

1.3 Our main result: asymptotic normality of vincular pattern counts for uni-
form random permutation in conjugacy classes

Throughout this article, we fix a vincular pattern (π,A) such that π is of size k. We let
X(π,A)(σ) be the number of the occurrences of (π,A) in σ and we define m by m = k−|A|,
which is the number of blocks in (π,A). For an (integer) partition λ of n, we let Cλ be the
conjugacy class indexed by λ in the symmetric group Sn, and σλ be a uniform random
permutation in Cλ. Our main result is the following statement, where mi(λ

n) denotes the
number of parts of size i in λn.

Theorem 1.2. For any vincular pattern (π,A), there exist two polynomial functions f
and g such that if m1(λ

n)
n → p1 and m2(λ

n)
n → p2, then

X(π,A)(σλn)− E(X(π,A)(σλn))

nm−
1
2

d−−−−→
n→∞

N (0, f(p1) + p2g(p1)). (1.1)

Moreover, we have convergence of all moments.

We prove Theorem 1.2 in Section 4. A difficulty, compared to the case of uniform
random permutations in the whole symmetric group Sn, is that, when working in a
given conjugacy class, occurrences of patterns at disjoint sets of positions are no longer
independent events. Our proof thus relies then on a technique known as weighted
dependency graphs introduced in [5] in order to control higher cumulants for sums of
random dependent variables. The main ingredient is Theorem 3.2 (proved in Section 3),
which states the existence of a weighted dependency graph structure for the random
permutation σλn . Both the proofs of Theorem 3.2 and of Theorem 1.2, starting from The-
orem 3.2, require delicate combinatorial arguments, to bound complicated multi-indexed
sums.

We believe that Theorem 3.2 is interesting in itself. It can be used to prove that other
classes of permutation statistics are asymptotically normal: for example, it is immediate
to adapt the proof of Theorem 1.2 to the number of excedances1, peaks and/or valleys
(and thus to the length of the longest alternating subsequence). Also, the proof is readily
adapted to establish joint convergence in Theorem 1.2, i.e. the limiting joint distribution
of (

X(π1,A1)(σλn)− E(X(π1,A1)(σλn))

nm1− 1
2

, . . . ,
X(πr,Ar)(σλn)− E(X(πr,Ar)(σλn))

nmr−
1
2

)
is a multivariate Gaussian distribution for any family of patterns.

1An excedance is a position i such that σ(i) > i.
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1.4 Non-degeneracy of the limiting Gaussian law for classical patterns

A natural problem following Theorem 1.2 is to determine whether the limiting law is
degenerate or not, i.e. whether the limiting variance f(p1) + p2g(p1) is positive or equal
to 0. In the case of a uniform permutation in Sn, which corresponds2 to p1 = p2 = 0, it is
known that the limiting variance, f(0) in this case, is always positive; see [10, 13]. Since
f and g are polynomial functions, this implies that f(p1) + p2g(p1) can only vanish when
(p1, p2) lives in a subvariety of codimension 1 of {(p1, p2) ∈ R2

+ : p1 + 2p2 ≤ 1}. In other
terms, we know that the limiting variance is generically positive. It would nevertheless
be desirable to have a complete characterization of the degeneracy cases.

We could solve the question in the case of classical patterns, i.e. the case A = ∅, for
which we prove that the limiting Gaussian law is always non-degenerate (except in the
trivial case p1 = 1, where most points of the permutation are fixed). For simplicity, we
write π instead of (π, ∅). Our second main result is the following.

Theorem 1.3. For any classical pattern π and any (p1, p2) ∈ R2
+ with p1 + 2p2 ≤ 1,

except (p1, p2) = (1, 0), we have f(p1) + p2g(p1) > 0.

Note that in the case p1 = 1, p2 = 0, we can choose λn = (1n), i.e. σλn is a.s. the
identity permutation. Thus, in this case, the limiting variance f(1) is indeed 0.

The proof of this non-degeneracy statement is rather involved. It uses a method
introduced in [10]; see also [6]. The basic idea is to use a recursive construction of the
random objects, say σn, under consideration. Typically, such a recursive construction
uses a random object of smaller size, say σn−1, and an extra source of randomness, say
I. Then one can compute the variance of the quantity of interest, X(σn), by conditioning
on I and using the law of total variance. If the recursive construction is well-chosen,
then some terms in the law of total variance involve the variance of X(σn−1), i.e., one
can compute, or at least bound from below, the variance recursively. This is the basic
principle, the details being quite subtle; see Section 5.

2 Preliminaries: weighted dependency graphs

In this section, we present the notion of weighted dependency graphs, which is the
main tool in the proof of Theorem 1.2. The results presented in this section are taken
from [5].

2.1 Definition

We start by recalling the notion of mixed cumulants. The mixed cumulant of a family
of random variables X1, X2, . . . , Xr defined on the same probability space and having
finite moments is defined as

κ(X1, X2, . . . , Xr) := [t1 · · · tr] logE[exp(t1X1 + · · ·+ trXr)]. (2.1)

If Xi = X for all i, we abbreviate κ(X1, X2, . . . , Xr) as κr(X). This is the standard
cumulant of a random variable.

An important property of cumulants is the following: if {X1, X2, . . . , Xr} can be
written as a disjoint union of two mutually independent sets of random variables, then
κ(X1, X2, . . . , Xr) = 0. Hence, cumulants can be seen as a kind of measure of dependency,
and the definition of weighted dependency graphs is based on these heuristics. Another
important and elementary property of cumulants is that X follows the normal distribution
if and only if κr(X) = 0 for every r ≥ 3.

2Uniform random permutations in the whole symmetric group Sn are of course not a special case of random
permutations in conjugacy classes. However, it follows easily from the results of [9, Section 8] that the limiting
variance for uniform random permutations is the same as for any conjugacy class with proportions of fixed
points and 2 cycles tending to 0.
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In the sequel, a weighted graph is a graph with weights on its edges, belonging to
(0, 1]. Non-edges can be interpreted as edges of weight 0, so that a weighted graph can
be equivalently seen as an assignment of weights in [0, 1] to the edges of the complete
graph. All our definitions are compatible with this convention.

For a weighted graph H, we defineM(H) to be the maximal weight of a spanning
tree of H, the weight of a spanning tree being the product of the weights of its edges
(if H is disconnected, there is no spanning tree and as a consequence of the above
convention, we haveM(H) = 0). For example, for ε < 1, the weighted graph H of Fig. 1
satisfiesM(H) = ε4. The following definition was introduced in [5].

ε ε2

ε3

ε

1

ε

1 ε2

Figure 1: Example of a weighted graph H with a marked spanning tree of maximum
weight in red.

Definition 2.1. Let V be a finite set and let {Yv, v ∈ V } be a family of random variables
with finite moments, defined on the same probability space. We fix a sequence C =

(C1, C2, · · · ) of positive real numbers and a real-valued function Ψ defined on multisets
of elements of V .

A weighted graph L with vertex set V is a (Ψ,C) weighted dependency graph for
{Yv, v ∈ V } if, for any multiset U = {v1, . . . , vr} of elements of V , one has∣∣∣∣κ(Yv; v ∈ U)∣∣∣∣ ≤ Cr Ψ(U)M(L[U ]). (2.2)

Here, L[U ] is the weighted graph with vertex set U and the same weights as L. In
examples of weighted dependency graphs, Ψ and C are simple or universal quantities,
so that the meaningful term isM(L[U ]). Note that the smaller the weights on edges are,
the smallerM(L[U ]) is, i.e. the closer to independence are the corresponding random
variables {Yv, v ∈ U}. Hence, the edge weights in a weighted dependency graph quantify
in some sense the dependency between the random variables {Yv, v ∈ V }.

2.2 A useful example: uniform random permutations in Sn

Let n ≥ 1 be an integer, and τ be a uniform random permutation in the symmetric
group Sn. For (i, j) in [n]2, we let Ai,j = 1[τi = j]. Note that variables Ai,j and Ak,`
cannot be both equal to 1 if (i, j) 6= (k, `) but either i = k or j = `. If i 6= k and j 6= `, we
have

P[Ai,jAk,`] =
1

n(n− 1)
,

which is close but different from P[Ai,j ] · P[Ak,`] = 1/n2. Hence, variables Ai,j and Ak,`
are weakly dependent. It turns out that this family of random variables admits a nice
weighted dependency graph. This was shown in [5, Proposition 8.1], which we copy here.
(We use the symbol # for the number of distinct elements in a set or multiset.)

Proposition 2.2. Consider the weighted graph L on vertex set [n]2 defined as follows:
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• if two pairs v1 = (i1, j1) and v2 = (i2, j2) satisfy either i1 = i2 or j1 = j2, then they
are linked in L by an edge of weight 1.

• otherwise, they are linked in L by an edge of weight 1/n.

Then L is a (Ψ,C) weighted dependency graph, for the family {Yi,j , (i, j) ∈ [n]2},
where

• Ψ(U) = n−#(U) for any multiset U of elements of [n]2;

• C = (Cr)r≥1 is a sequence that does not depend on n.

2.3 Cumulant bounds

Weighted dependency graphs are useful to bound cumulants and prove asymptotic
normality results. In particular, in this paper, we will use the following lemma [5, Lemma
4.10]

Lemma 2.3. Let L be a (Ψ,C = (Cr)r≥1) weighted dependency graph for a family of
variables {Yv, v ∈ V }. Define R and T` (for ` ≥ 1) as follows:

R =
∑
v∈V

Ψ({v}); (2.3)

T` = max
v1,...,v`∈V

[∑
u∈V

(
max
i∈[`]

w(u, vi)

)
·

Ψ
(
{v1, · · · , v`, u}

)
Ψ
(
{v1, · · · , v`}

) ] , (2.4)

where w(u, v) is the weight of the edge (u, v) in L. Then, for r ≥ 1, we have∣∣∣∣∣κr
(∑
v∈V

Yv

)∣∣∣∣∣ ≤ Cr r!RT1 · · ·Tr−1.
2.4 Power of weighted dependency graphs

An important property of weighted dependency graphs is the following stability
property. Consider a family of random variables {Yv, v ∈ V } with a (Ψ,C) weighted
dependency graph L and fix some integer d ≥ 1. We are interested in monomials
YI :=

∏
v∈I Yv of degree at most d, i.e. where I ∈ V d is a list of elements of V of length d

(possibly with repetitions). This defines a new family of random variables {YI , I ∈ V d}.
It turns out that this family admits a natural weighted dependency graph inherited from
that of {Yv, v ∈ V }.

To state this formally, we need to introduce some more notation. Let L be a weighted
graph with vertex set V . The d-th power Ld of L is a weighted graph with vertex set V d.
If I and J are in V d, the weight between vertices I and J is

W (I, J) := max
u∈I,v∈J

w(u, v),

where w(u, v) is the weight between u and v in L.
Besides, we say that a function Ψ defined on multisets of elements of a set V is

super-multiplicative if Ψ(U1 ] U2) ≥ Ψ(U1)Ψ(U2) for all multisets U1 and U2 (here and
throughout the paper, ] is the disjoint union of multisets, i.e. if an element belongs
to both U1 and U2 with multiplicity m1 and m2, it belongs to 1 ] U2 with multiplicity
m1+m2). Finally, a function Ψ defined on lists of V induces a function on lists of multisets
of elements of V by setting

Ψ((I1, · · · , Ir)) = Ψ(I1 ] · · · ] Ir). (2.5)

The following proposition was proved in [5, Proposition 5.11].
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Proposition 2.4. Consider random variables {Yv, v ∈ V } with a (Ψ,C) weighted depen-
dency graph L and assume that Ψ is super-multiplicative.

We fix some integer d ≥ 1. Then Ld is a (Ψ,Dd) weighted dependency graph for the
family {YI , I ∈ V d}, where the constants Dd = (Dd,r)r≥1 depend only on d, r and C.

3 A weighted dependency graph structure for uniform random
permutation in conjugacy classes

Fix an integer partition λn of size n, for (i, j) in [n]2, we introduce the random
variables

Bi,j = 1[σλn(i) = j].

Note that the law of Bi,j depends on λn. Given a subset α = {(it, jt), t ≤ T} of [n]2,
we write S(α) = {i1, . . . , iT , j1, . . . , jT } for the support of α. Furthermore, we denote by
cc(V,E) the number of connected components of the graph (V,E). We also write CC(α)

instead of cc(S(α), α); this is the number of components of the graph with edge set α
and no isolated vertices. We now let

Ψ(α) = nCC(α)−#S(α). (3.1)

We define similarly Ψ on lists of elements of [n]2, and it is insensitive to the order and
repetitions of arguments.

The choice of Ψ may seem surprising, but in fact, it is quite natural. Indeed, the joint
moments Mα := E(

∏
(i,j)∈αBi,j) are nonzero if and only if (S(α), α) is a disjoint union of

directed paths and cycles. In this case, Mα is O(Ψ(α)), and this is optimal (in the sense
that Mα = Θ(Ψ(α)) if mk(λ) = Θ(n) for any fixed k). Furthermore, as proved in the next
lemma, Ψ has been chosen to be super-multiplicative, so that we can use Proposition 2.4.

Lemma 3.1. The function Ψ defined by (3.1) is super-multiplicative.

Proof. Let α = {(it, jt), t ≤ T} and α′ = {(i′t, j′t), t ≤ T ′}. We want to prove that

CC(α ∪ α′) + #{i1, . . . , iT , j1, . . . , jT }+ #{i′1, . . . , i′T ′ , j′1, . . . , j′T ′}
≥ CC(α) + CC(α′) + #{i1, . . . , iT , j1, . . . , jT , i′1, . . . , i′T ′ , j′1, . . . , j′T ′}. (3.2)

When α contains a cycle C of length at least 2, removing an edge of C from α does
not change any quantity of (3.2). By symmetry, we may assume that neither α nor α′

contain a cycle, except possibly loops. Then, writing loops(α) for the number of loops in
α (counted with multiplicity), one has

CC(α) + T = #{i1, . . . , iT , j1, . . . , jT }+ loops(α)

and

CC(α′) + T ′ = #{i′1, . . . , i′T , j′1, . . . , j′T }+ loops(α′).

Consequently, (3.2) is equivalent to

CC(α∪α′) + T + T ′ ≥ #{i1, . . . , iT , j1, . . . , jT , i′1, . . . , i′T , j′1, . . . , j′T }+ loops(α) + loops(α′).

The latter holds true since for any multigraph G = (V,E), one has

cc(G) + |E| ≥ |V |+ loops(E).

The goal of this section is to prove the following proposition.
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7 4

9

9 9

7

K1[α]L1[α]

(7, 4)

(9,7)

(9, 9)

4

79

(S(α), α)

Figure 2: From left to right: the three graphs L1[α], K1[α] and (S(α), α) associated with
the r = 3, i1 = j2 = 7, j1 = 4, i2 = i3 = j3 = 9. Edges of the first kind in K1[α] are plotted
in blue. In this case, all three graphs are connected.

Theorem 3.2. There is a universal sequence C = (Cr)r≥1 such that the following holds.
For any n ≥ 1 and any λ ` n, the complete graph L on [n]2 with weights

w
(
(i, j), (k, `)

)
=

{
1
n if {i, j} and {k, `} are disjoint;

1 otherwise,
(3.3)

is a (Ψ,C) weighted dependency graph for the family {Bi,j , (i, j) ∈ [n]2}.
Fix r ≥ 1 and let α = {{(it, jt), 1 ≤ t ≤ r}}, be a multiset of size r of elements of [n]2.

We want to show that ∣∣κ(Bi1,j1 , . . . , Bir,jr)∣∣ ≤ Cr Ψ(α)M(L[α]), (3.4)

whereM(L[α]) is defined in Section 2.1. We start with a lemma.

Lemma 3.3. For any α = {(i1, j1), . . . , (ir, jr)}, we haveM(L[α]) = n−CC(α)+1.

Proof. By definition, the weighted graph L, and therefore also L[α], have only edges with
weight 1 or n−1. To form a spanning tree of maximal weight, we need to use as many
edges of weight 1 as possible. It follows thatM(L[α]) = n−c+1, where c is the number of
connected components of the subgraph L1[α] of L[α] obtained by keeping only edges of
weight 1.

It remains to relate connected components of L1[α] to those of (S(α), α). By construc-
tion, L1[α] has r vertices decorated with pairs (it, jt) and edges between pairs with a
non-empty intersection. Consider a variant, denoted K1[α], where we have 2r vertices
with decorations it and jt (t running from 1 to r) and with two kinds of edges

• for each t, the vertex decorated with it is connected to that decorated with jt;

• vertices with equal decorations are connected.

See Fig. 2 for an example. Contracting the first type of edges in K1[α] gives L1[α].
Contracting the second type of edges instead gives the graph (S(α), α) considered above.
Hence, both have the same number of connected components and the lemma follows.

Using Lemma 3.3 and the definition of Ψ (Eq. (3.1)), Eq. (3.4) reduces to∣∣κ(Bi1,j1 , . . . , Bir,jr)∣∣ ≤ Crn−#{i1,...,ir,j1,...,jr}+1. (3.5)

We now prove this inequality. The idea is to represent σλ as τ−1 ◦ ρ ◦ τ , where ρ is a
fixed permutation in Cλ and τ a uniform random permutation in Sn. As in Section 2.2,
we write Ai,j = 1[τi = j] and we have

Bi,j =

n∑
k=1

Ai,kAj,ρk .
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By multilinearity of cumulants, one has

κ
(
Bi1,j1 , . . . , Bir,jr

)
=

∑
1≤k1,...,kr≤n

κ
(
Ai1,k1Aj1,ρk1 , . . . , Air,krAjr,ρkr

)
. (3.6)

Combining Proposition 2.2 together with Proposition 2.4 for m = 2, we know that L2 is a
(Ψ,D) weighted dependency graph for the family {Ai,kAj,k′ , (i, k, j, k′) ∈ [n]4}, where

• L2 is the second power of the graph L defined in Proposition 2.2; namely, in the
graph L2, the vertex associated with Ais,ksAjs,k′s is linked to that of Ait,ktAjt,k′t by
an edge of weight 1 if {is, js} ∩ {it, jt} 6= ∅ or {ks, k′s} ∩ {kt, k′t} 6= ∅, and by an edge
of weight 1/n otherwise.

• Ψ
(
(i1, k1, j1, k

′
1), . . . , (ir, kr, jr, k

′
r)
)

= n−#{(it,kt), t≤r}∪{(jt,k
′
t), t≤r};

• D = (Dr)r≥1 is a universal sequence.

In particular, for any (i1, . . . , ir), (j1, . . . , jr) and (k1, . . . , kr), we have∣∣∣κ(Ai1,k1Aj1,ρk1 , . . . , Air,krAjr,ρkr )∣∣∣ ≤ Dr · n−#{(it,kt), t≤r}∪{(jt,ρkt ), t≤r}

· M
(
L2
[
(i1, k1, j1, ρk1), . . . , (ir, kr, jr, ρkr )

])
. (3.7)

The weighted graph L2 has only edges with weight 1 and 1/n. Therefore for any subgraph
L2[U ], we haveM(L2[U ]) = n− cc(L2

1[U ])+1, where L2
1[U ] is the subgraph of L2[U ] formed

by its edges of weight 1.
In the case we are interested in, we get

M
(
L2
[
(i1, k1, j1, ρk1), . . . , (ir, kr, jr, ρkr )

])
= n− cc(GAk1,...,kr )+1, (3.8)

where GAk1,...,kr is the graph with vertex set [r] and, for each s, t in [r], it has an edge
between s and t if and only if {is, js} ∩ {it, jt} 6= ∅ or {ks, ρks} ∩ {kt, ρkt} 6= ∅. We note
that GAk1,...,kr depends on i1, . . . , ir, j1, . . . , jr, but since these indices are fixed throughout
the proof, we keep this dependence implicit in the notation. Only the dependence in
k1, . . . , kr is made explicit.

Let us illustrate this definition with an example. We take λ = (6, 2, 1) and choose
ρ to be (1, 2, 3, 4, 5, 6)(7, 8)(9) (in the product of cycle notation). As in Fig. 2, we let
r = 3, i1 = j2 = 7, j1 = 4, i2 = i3 = j3 = 9. We consider the term indexed by
(k1, k2, k3) = (9, 5, 4), yielding (ρk1 , ρk2 , ρk3) = (9, 6, 5). Then 1 is linked to 2 in GAk1,...,kr
because {i1, j1} ∩ {i2, j2} = {7} 6= ∅. Likewise {i2, j2} ∩ {i3, j3} = {9} 6= ∅ and {k2, ρk2} ∩
{k3, ρk3} = {5} 6= ∅, implying that 2 is linked to 3 in GAk1,...,kr (in fact, only one of
these intersections being nonempty would suffice for 2 to be linked to 3). One can
check however that 1 is not linked to 3 since {i1, j1} ∩ {i3, j3} = {4, 7} ∩ {9} = ∅ and

{k1, ρk1} ∩ {k3, ρk3} = {9} ∩ {4, 5} = ∅. Hence, GAk1,...,kr is the path 1 2 3 .

To help us in our analysis, we now introduce, for each r-tuple k1, · · · , kr, four (loop-
free) graphs denoted G(1)

k1,...,kr
, G(2)

k1,...,kr
, G∨k1,...,kr and G∧k1,...,kr , all on vertex set [r]×{1, 2}.

For all these graphs, the idea is to label the vertex (s, 1) with the pair (is, ks) and (s, 2)

with the pair (js, ρks). Then we put an edge between two vertices labelled by (x, y) and
(x′, y′)

• in G(1)
k1,...,kr

if x = x′, i.e. if the first coordinates in the labels coincide;

• in G(2)
k1,...,kr

if y = y′, i.e. if the second coordinates in the labels coincide;

• in G∧k1,...,kr if (x, y) = (x′, y′), i.e. if the labels coincide;

• in G∨k1,...,kr if either x = x′ or y = y′, i.e. if one coordinate in the labels coincide.
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(7, 9) (4,9)

(9,5)

(9, 4) (9,5)

(7,6)

(7, 9) (4,9)

(9,5)

(9, 4) (9,5)

(7,6)

(7, 9) (4,9)

(9,5)

(9, 4) (9,5)

(7,6)

(7, 9) (4,9)

(9,5)

(9, 4) (9,5)

(7,6)

G(1) G(2) G∧ G∨

Figure 3: From left to right: the four graphs G(1)
k1,...,kr

, G(2)
k1,...,kr

, G∨k1,...,kr and G∧k1,...,kr
associated with the particular values of i1, . . . , ir, j1, . . . , jr, k1, . . . , kr given on page 9.

Additionally, in G(2)
k1,...,kr

and G∨k1,...,kr , we add edges between (s, 1) and (s, 2) for any s ≤ r
(for clarity, these extra edges will be drawn in blue). We continue our example above by
representing the four associated graphs G(1)

k1,...,kr
, G(2)

k1,...,kr
, G∨k1,...,kr and G∧k1,...,kr in Fig. 3.

We note that a coincidence between a value in {i1, . . . , ir, j1, . . . , jr} and a value in the
set {k1, . . . , kr, ρk1 , . . . , ρkr} has no influence on any of the graphs considered here.

Comparing their definitions, we immediately see that GAk1,...,kr can be obtained from
G∨k1,...,kr by merging, for each s ≤ r, the vertices (s, 1) and (s, 2) into a single vertex s.
Since G∨k1,...,kr has edges between (s, 1) and (s, 2) for any s ≤ r, this merge operation
does not change the number of connected components. Besides, again directly from
definition, we see that connected components of G∧k1,...,kr correspond to distinct pairs in
the set {(it, kt), t ≤ r} ∪ {(jt, ρkt), t ≤ r}.

With these observations, Eqs. (3.7) and (3.8) imply∣∣∣κ(Ai1,k1Aj1,ρk1 , . . . , Air,krAjr,ρkr )∣∣∣ ≤ Dr n
− cc(G∧k1,...,kr

)−cc(G∨k1,...,kr )+1. (3.9)

We now need the following easy, possibly well-known, graph theoretical lemma.

Lemma 3.4. Let V be a vertex set and E1, E2 be two sets of edges on V . Then

cc(V,E1 ∪ E2) + cc(V,E1 ∩ E2) ≥ cc(V,E1) + cc(V,E2). (3.10)

Proof. Assume E1 contains a cycle C. If E2 contains C as well, we can remove any edge
of C from E1 without changing any of the quantities appearing in (3.10). If E2 does not
contain C, removing from E1 an edge of C which is not in E2 does not change any of the
quantities appearing in (3.10) either. Hence, it is enough to prove (3.10) when E1 does
not contain any cycle. With the same argument, we can assume that E2 does not contain
any cycle as well. In this case, we have

cc(V,E1) = |V | − |E1|, cc(V,E2) = |V | − |E2|, cc(V,E1 ∩ E2) = |V | − |E1 ∩ E2|.

The union E1 ∪ E2 may however contain cycles, so we only have an inequality

cc(V,E1 ∪ E2) ≥ |V | − |E1 ∪ E2|.

Together with the standard inclusion-exclusion principle |E1∪E2|+ |E1∩E2| = |E1|+ |E2|,
this proves the lemma.

By construction, the graph cc(G∨k1,...,kr ) is the union of G(1)
k1,...,kr

and G(2)
k1,...,kr

. On the

other hand, the edges of G∧k1,...,kr are included in that of the intersection of G(1)
k1,...,kr

and

G
(2)
k1,...,kr

(since we have added edges {(s, 1), (s, 2)} in G(2)
k1,...,kr

, it might happen that such

an edge is in both G(1)
k1,...,kr

and G(2)
k1,...,kr

, but not in G∧k1,...,kr ; this is for example the case
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of the bottom edge in Fig. 3). Consequently, G∧k1,...,kr has more connected components
than this intersection. Combining these observations with Lemma 3.4, for any k1, . . . , kr,
we have

cc(G∧k1,...,kr ) + cc(G∨k1,...,kr ) ≥ cc(G
(1)
k1,...,kr

∩G(2)
k1,...,kr

) + cc(G
(1)
k1,...,kr

∪G(2)
k1,...,kr

)

≥ cc(G
(1)
k1,...,kr

) + cc(G
(2)
k1,...,kr

).

Back to (3.9), we get that, for any k1, . . . , kr,∣∣∣κ(Ai1,k1Aj1,ρk1 , . . . , Air,krAjr,ρkr )∣∣∣ ≤ Drn
− cc(G

(1)
k1,...,kr

)−cc(G(2)
k1,...,kr

)+1. (3.11)

At this stage, we observe the graph G(1)
k1,...,kr

is independent of k1, . . . , kr (it compares the
first coordinates of the labels, which are either i’s or j’s). Its number of connected compo-
nents is the number of distinct elements in {i1, . . . , ir, j1, . . . , jr}. Hence, summing (3.11)
over k1, . . . , kr and recalling (3.6), we obtain∣∣∣κ(Bi1,j1 , . . . , Bir,jr)∣∣∣ ≤ Dr · n−#{i1,...,ir,j1,...,jr}+1 ·

∑
1≤k1,...,kr≤n

n− cc(G
(2)
k1,...,kr

). (3.12)

We need a final lemma.

Lemma 3.5. Fix ρ in Sn. For any graph G on vertex set [r]× {1, 2}, the number of lists

(k1, · · · , kr) in [n]r with G(2)
k1,...,kr

= G is at most ncc(G).

Proof. Observe that if G(2)
k1,...,kr

= G and if (t, h) is linked to (s, h′) in G, the value of ks
is determined by that of kt; they should either be equal if h = h′, or they should satisfy
ks = ρkt if h = 1 and h′ = 2, or kt = ρks if h = 2 and h′ = 1. Hence, a list (k1, · · · , kr) in

[n]r with G(2)
k1,...,kr

= G is determined by the value of one kt in each component of G. This
proves the lemma.

Consequently, for any graph G on vertex set [r]× {1, 2}, the lists (k1, · · · , kr) in [n]r

with G(2)
k1,...,kr

= G contributes at most 1 to the sum
∑

1≤k1,...,kr≤n n
− cc(G

(2)
k1,...,kr

). Thus the

latter sum is bounded by a constant depending only on r, namely 2(2r
2 ). Inserting this

inequality in (3.12), this proves (3.5) and thus Proposition 3.2.

4 Proof of asymptotic normality of vincular pattern counts

By the method of moments, convergence (1.1), together with moment convergence,
hold if

• V ar(Xπ(σλn)) = n2m−1(f(p1) + p2g(p1))(1 + o(1));

• and higher cumulants tend to 0 after normalization, i.e. κr(Xπ(σλn)) = o(nr(m−
1
2 ))

for r ≥ 3.

The existence of polynomial functions f and g such that the first item holds is proven in
[9] (see Proposition 7.2 and Theorem 8.14 there). We will bound the cumulants using
the weighted dependency graph structure of Section 3.

Note that we have

X(π,A)(σλn) =
∑

i1<···<ik
is+1=is+1 for s∈A

∑
j1,...,jk

j
π−1(1)

<···<j
π−1(k)

Bi1,j1 · · ·Bik,jk .

We denote by I(π,A) the set of tuples (i1, . . . , ik, j1, . . . , jk) as in the above sum. To bound
the cumulant of X(π,A)(σλn), we need a weighted dependency graph for the family of
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products Bi1,j1 · · ·Bik,jk . This is given by applying the stability property of weighted
dependency graphs of Proposition 2.4 to the specific dependency graph of Proposition 3.2,
as we now explain.

Let us recall the notation from Section 2.4, adapted to the present situation. If each
of α1, . . . , α` is a list of k elements (or k-list for short) of [n]2, we define

Ψ(α1, . . . , α`) = Ψ(α1 ∪ · · · ∪ α`),

where in the right-hand side, lists are seen as sets, and we recall that Ψ is defined
in (3.1). We also consider the k-th power Lk of the weighted graph L from Proposition 3.2.
Concretely, Lk has vertices indexed by k-lists of [n]2 and its edge weights are given by

wk(α, β) := max
(i,`)∈α, (j,`′)∈β

w((i, `), (j, `′)) =

{
1
n if S(α) ∩ S(β) = ∅;
1 otherwise.

Using Proposition 2.4, there is a universal sequence Dk = (Ckr )r≥1 such that Lk is a

(Ψ,Dk) weighted dependency graph for the set of random variables
∏k
t=1Bit,jt , indexed

by k-lists α = ((i1, j1), . . . , (ik, jk)) of elements of [n]2. We shall consider the restriction
of this weighted graph to k-lists in I(π,A): this is a (Ψ,Dk) weighted dependency graph
for the set of random variables

∏k
t=1Bit,jt , indexed by I(π,A).

To use Lemma 2.3, we want to bound the quantities R and (T`)`≥1, whose definitions
are now recalled for this specific weighted dependency graph.

R =
∑
α

Ψ(α) =
∑

(i1,...,ik,j1,...,jk)∈I(π,A)

nCC
(
(i1,j1),...,(ik,jk)

)
−#{i1,...,ik,j1,...,jk}, (4.1)

and

T` = max
α1,...,α`

∑
β

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)

 , (4.2)

where, in the indices, each of α1, . . . , α`, β is a k-list in I(π,A), and where

W ({β}, {α1, . . . , α`}) = max
i
wk(β, αi) =

{
1
n if S(β) ∩ (S(α1) ∪ · · · ∪ S(α`)) = ∅;
1 otherwise.

(4.3)

We start by bounding R.

Lemma 4.1. R ≤ 2(2k
2 )nm.

Proof. As in Section 3, we introduce two graphsG(I) andG(A) associated with a sequence
(i1, . . . , ik, j1, . . . , jk) (the dependence in (i1, . . . , ik, j1, . . . , jk) is implicit in the notation).
Both have vertex set [k]× {1, 2}, where the vertex (s, 1), resp. (s, 2), is labelled with is,
resp. js. Edges are chosen as follows:

• in G(I), we connect (s, 1) and (s, 2) for all s ≤ k;

• in G(A), we connect (s, 1) and (s+ 1, 1) for s ∈ A;

• in both graphs, we additionally connect vertices with equal labels.

With the same arguments as Lemma 3.3, we see that connected components of G(I)

correspond to that of (S((i1, j1), . . . , (ik, jk)), {(i1, j1), . . . , (ik, jk)}), implying

cc(G(I)) = CC
(
(i1, j1), . . . , (ik, jk)

)
.
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Furthermore, let G(∩) be the intersection of G(I) and G(A); it only has edges connecting
vertices with equal labels, and hence its number of components is the number of distinct
values in {i1, . . . , ik, j1, . . . , jk}. Thus (4.1) can be rewritten as

R =
∑

(i1,...,ik,j1,...,jk)∈I(π,A)

ncc(G
(I))−cc(G(∩)). (4.4)

We now introduce the union G(∪) of G(I) and G(A) (union in terms of edge-set). Since
it contains the edges {((s, 1), (s, 2)), s ≤ k} ∪ {((s, 1), (s + 1, 1)), s ∈ A}, it has at most
m = k −#A connected components. Using Eq. (4.4) and Lemma 3.4, we get

R ≤
∑

(i1,...,ik,j1,...,jk)∈I(π,A)

ncc(G
(∪))−cc(G(A)) ≤ nm

∑
(i1,...,ik,j1,...,jk)∈I(π,A)

n− cc(G(A)).

But, for a given graph G, there are at most ncc(G) lists (i1, . . . , ik, j1, . . . , jk) in I(π,A) such
that G(A) = G. Indeed, choosing a value is or js corresponding to a vertex of G forces

the values of variables it or jt in the same component. We finally get R ≤ 2(2k
2 )nm.

The next step is to bound T` for all ` ≥ 1.

Lemma 4.2. For any ` ≥ 1, there exists C ′′k,` (depending on the size k of the pattern
(π,A) and on `, but not on n) such that, the following holds true

T` ≤ C ′′k,`nm−1.

To prove this lemma, we need the following simple combinatorial fact to control the
various terms in (4.2).

Lemma 4.3. For any k-lists α1, . . . , α` and β = ((i1, j1), . . . , (ik, jk)) of elements of [n]2,
one has

CC(α1 ∪ · · · ∪ α` ∪ β)− CC(α1 ∪ · · · ∪ α`) ≤ k − I(β),

where I(β) is the number of pairs (is, js) in β which intersect S(α1 ∪ · · · ∪ α`).

Proof. We can see the graph with edge set α1 ∪ · · · ∪ α` ∪ β (and no isolated vertex) as
obtained from that with edge set α1 ∪ · · · ∪ α` adding successively the edges (i1, j1), . . . ,
(ik, jk) (with their extremity as new vertices if needed). When adding the edge (is, js), if
(is, js) intersects S(α1∪· · ·∪α`), the number of components does not increase, otherwise
it might increase by 1. This proves the lemma.

Proof of Lemma 4.2. We first fix α1, . . . , α` and write S(α) = S(α1)∪ · · · ∪S(α`). We split
the sum in (4.2) according to the intersection S(β) ∩ S(α) being empty or not. When
S(β) ∩ S(α) = ∅, we have W ({β}, {α1, . . . , α`}) = 1

n (Equation (4.3)) and I(β) = 0. Thus
Lemma 4.3 gives

Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)

= nCC(α1∪···∪α`∪β)−CC(α1∪···∪α`)−(#S(α1∪···∪α`,β)−#S(α1∪···∪α`)) ≤ nk−#S(β).

This yields the following bound:

∑
β:S(β)∩S(α)=∅

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)
≤

2k∑
i=1

∑
β:#S(β)=i

nk−i−1.
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But the number of k-lists β in I(π,A) with #S(β) = i is bounded by Ck,ini−|A| for some
constant Ck,i (to construct such a β, one chooses i−|A| values, the other being forced by
the adjacencies conditions is+1 = is+1 for s ∈ A). This yields, recalling that m = k−#A,

∑
β:S(β)∩S(α)=∅

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)
≤

(
k∑
i=1

Ck,i

)
nm−1.

Let us now consider the summands in (4.2) indexed by terms β in I(π,A) such that
S(β) ∩ S(α) 6= ∅. In this case, we have W ({β}, {α1, . . . , α`}) = 1 (see Equation (4.3)) and
the analysis is more subtle.

We write as usual β = ((i1, j1), · · · , (ik, jk)). First we recall that the constraints
is+1 = is + 1 for s ∈ A splits the sequence (i1, · · · , ik) into m blocks of necessary
consecutive values. This allows to define Fα(β) (F stands for forced ) as the number of
indices s such that is is not in S(α), but either is−1 is in the same block as is (i.e. is−1 ∈ A),
or one it in the same block is in S(α). Then, for fixed α, i, j, the number of lists β in
I(π,A) with Fα(β) = j and #

(
S(β) \ S(α1 ∪ · · · ∪ α`)

)
= i is bounded by C ′k,`,i,jn

i−j for
some constant C ′k,`,i,j . Indeed, to construct β, one needs i new values, but j of them are
forced by the constraints is+1 = is for s ∈ A.

On the other hand, in each block of indices, all but possibly one is in the block are
in Fα(β) ] S(α). Therefore, |Fα(β)| + |S(α) ∩ {i1, . . . , ik}| ≥ k − m. Equality occurs if
and only if |S(α) ∩ {i1, . . . , ik}| = 0. Looking at the definition of I(β) in Lemma 4.3, we
trivially have |I(β)| ≥ |S(α) ∩ {i1, . . . , ik}|. Putting both inequalities together, we have
|Fα(β)|+ |I(β)| ≥ k −m, with equality if and only if |I(β)| = 0. But |I(β)| = 0 implies
S(β)∩S(α) = ∅. Since we are considering the case S(β)∩S(α) 6= ∅, the inequality above
must be strict and we have in fact |Fα(β)|+ |I(β)| ≥ k −m+ 1.

Using the definition of Ψ (Eq. (3.1)), Lemma 4.3 and the inequality above, we have

Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)
≤ nk−|I(β)|−#S(β\(α1∪···∪α`)) ≤ n|Fα(β)|+m−1−#S(β\(α1∪···∪α`)).

This yields the following bound:

∑
β:S(β)∩S(α) 6=∅

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)

≤
∑

i≤2m−1
j≤|A|

∑
β:#(S(β)\S(α1∪···∪α`))=i

|Fα(β)|=j

nj+m−1−i.

Recalling that there are at most C ′k,`,i,jn
i−j terms in the latter sum, we conclude that

∑
β:S(β)∩S(α)6=∅

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)
≤

 m∑
i≤2m−1,j≤|A|

C ′k,`,i,j

nm−1.

Bringing everything together, we get that

∑
β

W ({β}, {α1, . . . , α`})
Ψ(α1, . . . , α`, β)

Ψ(α1, . . . , α`)
≤ C ′′k,`nm−1.

Since this holds for any tuple (α1, . . . , α`), we have T` ≤ C ′′k,`nm−1, as wanted.
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Back to the proof of Theorem 1.2, Lemma 2.3 gives us∣∣∣κr(X(π,A)(σλn))
∣∣∣ ≤ DrR

r−1∏
i=1

Ti ≤ C ′′′k,rnr(m−1)+1,

for some constants C ′′′k,r. Consequently, if r > 2, we get:

κr

(
X(π,A)(σλn)− E(X(π,A)(σλn))

nm−
1
2

)
= O(n1−

r
2 )→ 0.

This concludes the proof of Theorem 1.2.

5 Non-degeneracy of the limiting law

In this section, we prove Theorem 1.3. Recall that this theorem only considers
classical patterns, i.e. the case A = ∅, and that we write π instead of (π, ∅) for simplicity.
Note that in this case, the parameter m in Theorem 1.2 is simply equal to the size k of
the pattern.

Let us define p3 = 1
3 (1− p1 − 2p2) ≥ 0. For n ≥ 0, we set mi = bnpic for i ∈ {2, 3} and

m1 = n− 2m2 − 3m3, so that (1m1 , 2m2 , 3m3) is a partition of n, which we denote by λn.
From [9, Theorem 8.14], it holds that

Var
(
Xπ(σλn)

)
=
(
f(p1) + p2g(p1)

)
n2k−1 +O(n2k−2). (5.1)

In fact, in [9, Theorem 8.14], the error term is o(n2k−1) and this is best possible assuming
only mi/n → pi, but a quick inspection of the proof reveals that if mi/n = pi + O(1/n)

for i ∈ {1, 2}, then the error term is O(n2k−2), as claimed.
We shall prove that Var

(
Xπ(σλn)

)
≥ K1n

2k−3/2, for some constant K1 = K1(p1, p2) >

0. Comparing with Eq. (5.1), this forces f(p1) + p2g(p1) > 0. The method of proof is
inspired from [10, Section 4] and [6, Section 3.4]. The idea is to establish a recursive
inequality on Var

(
Xπ(σλn)

)
, using a recursive construction of σλn and the law of total

variance. We first consider the case p2 > 0 (in Sections 5.1 to 5.4) and indicate later
(in Section 5.5) the appropriate modifications in the case p2 = 0, p1 < 1.

5.1 Preliminary: one point conditional pattern densities

In this section, we introduce some quantity which will be useful later. Let Pi = (xi, yi),
for i ≤ k, be points in the unit square with distinct coordinates, i.e. the xi’s are distinct
and the yi’s are distinct, but we allow here some xi to be equal to some yj . We reorder the
points (Pi)i≤k as P(i) = (x(i), y(i)) such that x(1) < · · · < x(k). Then there exists a unique
permutation π such that y(π−1

1 ) < · · · < y(π−1
k ), and we set Perm(P1, . . . , Pk) := π. For

example, if P1 = (0.1, 0.5), P2 = (0.7, 0.2) and P3 = (0, 0.33) then P(1) = P3 = (0, 0.333),
P(2) = P1 = (0.1, 0.5), P(3) = P2 = (0.7, 0.2) and Perm(P1, P2, P3) = 231.

Let us introduce some randomness. We denote by Λ the Lebesgue measure on [0, 1]2

and by ∆ that on the diagonal {(x, x), x ∈ [0, 1]} with total mass 1. In particular, for
any p1 ∈ [0, 1], p1∆ + (1 − p1)Λ has uniform marginals. We then let P1, . . . , Pk−1 be
i.i.d. random points with distribution p1∆ + (1− p1)Λ and set

ϕπp1(x, y) = P
[

Perm(P1, . . . , Pk−1, (x, y)) = π
]
. (5.2)

Lemma 5.1. Assume π has size at least 2 and p1 < 1. Then the function

(x, y) 7→ ϕπp1(x, y) + ϕπp1(y, x)

is non constant.
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Proof. Let π̃ be the pattern obtained from π by removing the first entry, and standardizing.
We look at ϕπp1((0, 12 )), i.e the probability that random points P1, . . . , Pk−1 together with
(0, 12 ) induce the pattern π. This event is equivalent to the fact that P1, . . . , Pk−1 induce
π̃ and that exactly π1 − 1 points among P1, . . . , Pk−1 have a y-coordinate smaller than 1

2 .
Hence, we have

ϕπp1(0, 12 ) = P
[

Perm(P1, . . . , Pk−1) = π̃ ∧ #{i ≤ k − 1 : yi <
1
2} = π1 − 1

]
≥ P

[
Perm(P1, . . . , Pk−1) = π̃, ∧ #{i ≤ k − 1 : yi <

1
2} = π1 − 1 ∧ ∀i, xi 6= yi

]
.

The latter event “∀i, xi 6= yi” is a.s. equivalent to the Pi’s being sampled according
to Λ and hence has probability (1 − p1)k−1 (recall that P1, . . . , Pk−1 have distribution
p1∆ + (1− p1)Λ). Conditionally to “∀i, xi 6= yi”, the events

Perm(P1, . . . , Pk−1) = π̃ and #
{
i ≤ k − 1 : yi <

1
2

}
= π1 − 1

are independent (in general, the pattern induced by uniform random points is inde-
pendent of the set of its y-coordinates). These events occur with probability 1

(k−1)! and(
k−1
π1−1

)
2−k+1 respectively. Thus we get

ϕπp1(0, 12 ) ≥ (1− p1)k−1

(π1 − 1)! (k − π1)! 2k−1
.

In particular, when p1 < 1, we have ϕπp1(0, 12 ) > 0. On the other hand,

• If π1 6= 1, then ϕπp1(0, 0) = 0;

• If π1 = 1 and if π has size at least 2, then ϕπp1(0, 1) = ϕπp1(1, 0) = 0.

In both cases, we can conclude that the function ϕπp1(x, y) + ϕπp1(y, x) is not constant.

We also note that |ϕπp1(x, y) − ϕπp1(x′, y′)| is bounded from above by the probability
that at least one of P1, . . . , Pk−1 has its x-coordinate between x and x′ or its y-coordinate
between y and y′. Using a union bound, this implies

|ϕπp1(x, y)− ϕπp1(x, y)| ≤ (k − 1)(|x− x′|+ |y − y′|),

i.e. ϕπp1 is (k − 1)-Lipschitz when using the L1 norm on [0, 1].

5.2 A recursive inequality on the variance

Let λ be a partition with at least one part equal to 2 and denote by λ′ the partition
obtained by removing a part of length 2 to λ. Then a uniform random permutation σ = σλ
in Cλ can be constructed as follows.

• Choose two distinct indices i and j uniformly at random between 1 and n, and set
σi = j and σj = i

• Take a uniform random permutation σ′ of [n] \ {i, j} of cycle type λ′, independent
of {i, j}, and set σk = σ′k for k /∈ {i, j}.

Using the law of total variance, we have

v(λ) := Var(Xπ(σ)) = E
[

Var(Xπ(σ)|i, j)
]

+ Var
[
E(Xπ(σ)|i, j)

]
.

Moreover, the quantity Xπ(σ) can be decomposed as Xπ(σ) = Xπ(σ′) + C, where C is
the number of occurrences of π in σ, using position i or j (or both). Note that Xπ(σ′) is
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independent of i, j, so that E(Xπ(σ′)|i, j) is the constant random variable a.s. equal to
E(Xπ(σ′)). This implies that

Var
[
E(Xπ(σ)|i, j)

]
= Var

[
E(Xπ(σ′)) + E(C|i, j)

]
= Var

[
E(C|i, j)

]
.

In particular, we get an initial bound

v(λ) ≥ Var
[
E(C|i, j)

]
. (5.3)

On the other hand, from Cauchy-Schwarz and Jensen inequalities, since Xπ(σ′) and i, j
are independent, we have∣∣∣E[Cov(Xπ(σ′), C|i, j)

]∣∣∣ ≤ E[√Var(Xπ(σ′))
√

Var(C|i, j)
]

≤
√

Var(Xπ(σ′))
√
E[Var(C|i, j)].

Expanding Var(Xπ(σ)|i, j) = Var(Xπ(σ′) + C|i, j) by bilinearity, we find that

E
[

Var(Xπ(σ)|i, j)
]

= Var(Xπ(σ′)) + 2E
[

Cov(Xπ(σ′), C|i, j)
]

+ E
[

Var(C|i, j)
]

≥ Var(Xπ(σ′))− 2
√

Var(Xπ(σ′))
√
E[Var(C|i, j)].

Note that Var(Xπ(σ′)) = v(λ′), since σ′ is a uniform random permutation of cycle-type λ′.
Summing up, we get the following recursive inequality on v(λ):

v(λ) ≥ v(λ′)

(
1− 2

√
E[Var(C|i,j)]

v(λ′)

)
+ Var

[
E(C|i, j)

]
. (5.4)

5.3 Analysing the initial bound (5.3)

Recall that C counts the number of occurrences of π in σ that use position i or j (or
both). We first consider the number C1 of those using i but not j.

Lemma 5.2. Let x, y be in [0, 1] and i = i(n) and j = j(n) be two sequences chosen such
that i = xn+ o(n) and j = yn+ o(n). Then we have

E(C1|i, j) =
1

(k − 1)!
nk−1ϕπp1(x, y) + o(nk−1),

where ϕπp1 is defined in Eq. (5.2) and the error term is uniform on i and j.

We start with some estimates on the distribution of finitely tuples (σ(i1), . . . , σ(im)),
where σ is a uniform random permutation of cycle type λ.

Lemma 5.3. 1. Fix m ≥ 1 and let i1, . . . , im be distinct indices in {1, . . . , n}. Then

P(∃s 6= t : σis = it) = O(n−1).

2. Let j1, . . . , jm also be distinct indices in {1, . . . , n}. We assume that there is no s 6= t

such that is = jt and we let r = |{t : it = jt}|. Then

P(∀s ≤ m, σis = js) = (p1)
r ( 1−p1

n

)m−r
(1 +O(n−1)).

In both estimates, the error terms depend on m, but are uniform in (i1, . . . , im, j1, . . . , jm)

and in λ. Moreover, the same estimates hold conditionally to i, j in the construction
of Section 5.2, provided that the tuple (i1, . . . , im, j1, . . . , jm) does not contain i or j.
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Proof. For the first item, let us note that a given index is is a fixed point of σ with
probability m1(λ)/n. Conditionally of is not being a fixed point, by conjugation invariance,
its image σis is uniformly distributed on [n] \ {is}, and thus for fixed s 6= t, we have

P(σis = it) =
n−m1(λ)

n
· 1

n− 1
≤ 1

n− 1
.

The first item in the lemma follows by a simple union bound.
Let us consider the second item. By symmetry, we can assume that is = js for s ≤ r

and is 6= js for s > r. Recalling that the set F (σ) of fixed points of σ is a uniform random
subset of [n] of size m1(λ), we have

P
[
∀s ≤ r, σ(is) = is

]
= P

[
{i1, . . . , ir} ⊂ F (σ)

]
=

(
n−r
m1−r

)(
n
m1

) = pr1 +O(n−1).

Now, conditionally on i1, . . . , ir being fixed points, the probability that ir+1, . . . , im are
not fixed points is (

n−m
m1−r

)(
n−r
m1−r

) = (1− p1)m−r +O(n−1).

Combining this computation with item i), the probability of i1, . . . , ir being fixed points, of
ir+1, . . . , im being not fixed points and of (σir+1 , . . . , σim) being disjoint from (ir+1, . . . , im)

is

pr1(1− p1)m−r +O(n−1).

But under this event, by conjugation invariance, the tuple (σir+1
, . . . , σim) is a uniform

random tuple of distinct values in [n] \ {i1, . . . , im}. Hence, the conditional probability
that is equal to (jr+1, · · · , jm) is 1/nm−r(1 +O(n−1)). We finally get

P(∀s ≤ m, σ(is) = js) =
pr1(1− p1)m−r +O(n−1)

nm−r(1 +O(n−1))
,

which proves the second item.
The conditional statement in the lemma follows easily from the unconditional one

since for h /∈ {i, j}, we have σh = σ′h, where σ′ is a uniform random permutation of
cycle-type λ′ of the set [n] \ {i, j}.

Proof of Lemma 5.2. Recall that C1 is the number of occurrences of π in σ using position
i but not j. Denoting by i1, . . . , ik−1 the other positions of such an occurrence of π (in
any order, hence the symmetry factor in the next formula) and j1, . . . , jk−1 their images
by σ, we can write C1 as follows:

C1 =
1

(k − 1)!

∑
i1,...,ik−1∈[n]\{i,j}

distinct

∑
j1,...,jk−1∈[n]\{i,j}

distinct(
1
[

Perm
(
( i1n ,

j1
n ), . . . , ( ik−1

n , jk−1

n ), ( in ,
j
n )
)

= π
]

· 1
[
σ(i`) = j`,∀1 ≤ ` ≤ k − 1)

])
. (5.5)

By Lemma 5.3, item i), for each i1, . . . , ik−1, the total contribution of terms with some
jt 6= it, but jt ∈ {i1, . . . , ik−1, i}, is O(n−1) in expectation. Hence, the total contribution
of such terms to the double sum in (5.5) is O(nk−2) in expectation.
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Furthermore, from Lemma 5.3, item ii), if (j1, . . . , jk−1) is such that for each t, either
jt = it or jt /∈ {i1, . . . , ik−1, i}, we have, conditionally to i, j,

P
[
σ(i`) = j`,∀1 ≤ ` ≤ k − 1 | i, j

]
= (p1)#{`:i`=j`}

(
1−p1
n

)#{`:i` 6=j`}(1 +O( 1
n )).

This gives

E(C1|i, j) =
∑

i1,...,ik−1∈[n]\{i,j}
distinct

∑
j1,...,jk−1∈[n]\{i,j}

distinct(
1
[

Perm
(
( i1n ,

j1
n ), . . . , ( ik−1

n , jk−1

n ), ( in ,
j
n )
)

= π
]
· (p1)#{`:i`=j`}

(
1−p1
n

)#{`:i` 6=j`})
+O(nk−2). (5.6)

We let (P
(n)
i )i≤k−1 be a vector of independent random variables with the following

distribution, conditioned not to share coordinates:

• with probability p1, we set P (n)
1 = (h/n, h/n), where h is uniform in [n] \ {i, j};

• with probability 1 − p1, we set P (n)
1 = (h/n, h′/n), where h, h′ are uniform in

[n] \ {i, j} conditioned to satisfy h 6= h′;

Using this, (5.6) rewrites as

E(C1|i, j) =
1

(k − 1)!
nk−1 P

[
Perm

(
P

(n)
1 , . . . , P

(n)
k−1, (

i
n ,

j
n )
)

= π
]

+O(nk−2).

But the tuple
(
P

(n)
1 , . . . , P

(n)
k−1, (

i
n ,

j
n )
)

converges in distribution to
(
P1, . . . , Pk−1, (x, y)

)
as

in Eq. (5.2). Since
(
P1, . . . , Pk−1, (x, y)

)
have distinct coordinates with probability 1, and

since the map 1[Perm
(
·, · · · , ·

)
= π] is continuous on the set of k-tuples of points with

distinct coordinates, we get

E(C1|i, j) =
1

(k − 1)!
nk−1 P

[
Perm

(
P1, . . . , Pk−1, (x, y)

)
= π

]
+ o(nk−1).

It is easy to check that the error term is uniform in i, j, concluding the proof of the
lemma.

Symmetrically, letting C2 be the number of occurrences of π in σ that use the position
j but not i, we have

E(C2|i, j) =
nk−1

(k − 1)!
ϕπp1(y, x) + o(nk−1).

Moreover, it is easy to see that there are less than nk−2 occurrences of π in σ using
simultaneously i and j, so that C = C1 + C2 + O(nk−2). Summing up, we get that,
provided that i = xn+O(1) and j = yn+O(1),

E(C|i, j) =
nk−1

(k − 1)!

(
ϕπp1(x, y) + ϕπp1(y, x)

)
+ o(nk−1). (5.7)

Since i, j are a uniform random pair of distinct integers in [n], one can couple them with
i.i.d. random uniform variables (U, V ) in [0, 1] such that i = Un+O(1) and j = V n+O(1).
Hence,

Var
[
E(C|i, j)

]
=

n2k−2

((k − 1)!)2
Var

(
ϕπp1(U, V ) + ϕπp1(V,U)

)
+ o(n2k−2).
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Using Lemma 5.1 and the fact that ϕπp1 is (k − 1)-Lipschitz, we know that

K2 := Var(ϕπp1(V,U) + ϕπp1(U, V )) > 0.

Setting K ′2 = K2/(k!)2, Eq. (5.3) implies that for any n sufficiently large,

v(λ) ≥ Var
[
E(C|i, j)

]
≥ K ′2n2k−2. (5.8)

5.4 Improving the initial lower bound

Suppose that p2 6= 0. The lower bound (5.8), is not sufficient to prove that the limiting
variance does not vanish. We will use the recursive inequality Eq. (5.4) to improve it. To
this end, we first need to analyse the term E

[
Var(C|i, j)

]
.

Lemma 5.4. There exist K3,K4 > 0 such that for any n > K3,

E
[

Var(C|i, j)
]
≤ K4n

2k−3.

Proof. Conditionally on i, j, we have

C =

k∑
r=1

∑
i1<···<ik∈[n]\{j}

ir=i

∑
j
π−1(1)

<···<j
π−1(k)

∈[n]\{i}

jr=j

Bir,jr
∏
6̀=r

Bi`,j`

+

k∑
r=1

∑
i1<···<ik∈[n]\{i}

ir=j

∑
j
π−1(1)

<···<j
π−1(k)

∈[n]\{j}

jr=i

Bir,jr
∏
` 6=r

Bi`,j`

+

k∑
r1=1

k∑
r2=1
r2 6=r1

∑
i1<···<ik∈[n]
ir1

=i,ir2
=j

∑
j
π−1(1)

<···<j
π−1(k)

∈[n]

jr1=j,jr2=i

Bir1 ,jr1Bir2 ,jr2

∏
`/∈{r1,r2}

Bi`,j` .

Conditionally on i, j, we have, in the two first term Bir,jr = Bi,j = 1, and in the third
one Bir1 ,jr1 = Bi,j = 1 = Bj,i = Bir2 ,jr2 The other B factors have indices different from i

and j. Since σ′ is a uniform permutation on the conjugacy class indexed by λ′ we have
(Ψ,Dk−1) weighted dependency graph for the random variables

∏k−1
t=1 Bit,jt .

One can easily adapt the proof of Section 4 to obtain that the quantities R and

T` associated with the above dependency graph satisfy R ≤ 32(2(k−1)
2 )(n − 2)k−1 and

T` ≤ K7,kn
k−2 (note that the product

∏k−1
t=1 Bit,jt under consideration have degree k− 1).

From Lemma 2.3, this implies Var(C|i, j) ≤ K4n
2k−3. One can conclude since K4 is

independent of the choice of i and j.

Plugging in Eq. (5.8) and Theorem 5.4 in Eq. (5.4), we get that, for some constant
K5 > 0,

v(λ) ≥ v(λ′)(1−K5n
−1/2) +K ′2n

2k−2. (5.9)

For, i ≤ m2(λ), we denote by λ(i) = ((λ′) · · · )′ the partition obtained by removing i blocks
of size 2 from λ. For i ≤ K6n

1/2 (where K6 is a positive constant), the inequality (5.9)
holds substituting λ by λ(i) and we have

v(λ(i)) ≥ v(λ(i+1))(1−K5(n− 2i)−1/2) +K ′2(n− 2i)2k−2.

We start from the initial inequality (5.8), namely v(λ(K6
√
n)) ≥ K ′2(n−K6

√
n)2k−2, and

iterate the above recursive inequality: we get

v(λ) ≥
K6
√
n−1∑

i=0

K ′2(n− 2i)2k−2(1−K5(n− 2i)−1/2) · · · (1−K5n
−1/2)
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For K6 sufficiently small, e.g. K6 = (2K5)−1, all products

(1−K5(n− 2i)−1/2) · · · (1−K5n
−1/2)

are bounded away from 0, so that each of the Θ(
√
n) terms in the sum behaves as

Θ(n2k−2). Therefore, there exists a constant K7 > 0 such that

v(λ) ≥ K7n
2k−3/2. (5.10)

Comparing with (5.1), we conclude that f(p1) + p2g(p1) > 0.

5.5 The case without cycles of size 2

When p2 = 0 and p1 < 1, the proof can be easily adapted. In such cases, one has
p3 = 1

3 (1− p1 − 2p2) > 0. In particular, for n > 3
1−p1 , λ contains a block of size 3, and we

let λ̂ be the partition obtained by removing a block of size 3 from λ. One can construct
σλ as follows:

• Choose i, j, h distinct uniformly at random in [n] and set σi = j, σj = h and σh = i.

• Take a uniform random permutation σ̂ of [n]\{i, j, h} of cycle type λ̂ and set σ` = σ̂`
for any ` ∈ [n] \ {i, j, h}

Let Ĉ be the number of occurrences of π that contains i or j or h. The counterpart
of (5.7) is the following.

Lemma 5.5. Let x, y, z be in [0, 1] and i = i(n), j = j(n) and h = h(n) be three sequences
of positive integers chosen such that i = xn+ o(n), j = yn+ o(n) and h = zn+ o(n). Then

E(Ĉ|i, j, h) =
nk−1

(k − 1)!

(
ϕπp1(x, y) + ϕπp1(y, z) + ϕπp1(z, x)

)
+ o(nk−1),

where ϕπp1 is defined in Eq. (5.2).

The remainder of the proof is the same. One need only to check the following variant
of Lemma 5.1.

Lemma 5.6. Assume π has size at least 2 and p1 < 1. Then the function

f : (x, y, z) 7→ ϕπp1(x, y) + ϕπp1(y, z) + ϕπp1(z, x)

is not constant.

Proof. Assume, for the sake of contradiction, that f is constant. Then f(x, y, y) =

f(x, x, y) for any x and y. This implies that ϕπp1(x, x) = ϕπp1(y, y) for any x and y, i.e. that
the function x 7→ ϕπp1(x, x) is constant. As a consequence, the expression

(x, y) 7→ f(x, x, y)− ϕπp1(x, x) = ϕπp1(x, y) + ϕπp1(y, x)

should also be constant, leading to a contradiction with Lemma 5.1.
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