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Abstract

We introduce a technique for comparing the limit profile behavior of two reversible,
commuting Markov chains on the same space, that share the same stationary distri-
bution. We apply this technique to prove that the limit profile of star transpositions
at time t = n logn+ cn is equal to dT.V.(Poiss(1 + e−c),Poiss(1)) by comparing to the
limit profile of random transpositions, as studied in [29]. We also provide examples of
important commuting Markov chains, whose limit profile behavior is unknown, which
could give new directions for research.
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1 Introduction

Cutoff, a phenomenon according to which a Markov chain converges abruptly to the
stationary measure, has been a central question in Markov chain mixing (see [26] for a
nice exposition on the history of cutoff and recent developements). Recently, there has
been exciting progress towards answering the even sharper question of determining the
limit profile of various Markov chains. The limit profile captures the exact shape of the
distance of the Markov chain from stationarity. In recent progress, Teyssier [29] derived
an exact formula for the limit profile of random transpositions, improving the seminal
result of Diaconis and Shahshahani [11] and proving a conjecture of Matthews [21]. He
extended the Fourier transform arguments of [11] to use representation theory in order
to study limit profiles of conjugacy class walks. In [22], Teyssier’s representation theory
technique is generalized to study the limit profile of any general reversible Markov chain
using its entire spectrum.

This paper focuses on determining the limit profile of a reversible Markov chain by
comparing to another Markov chain on the same configuration space whose limit profile
is known. The goal of this paper is to prove that the star transposition shuffle exhibits
the same limit profile behavior as random transpositions. The assumptions needed for
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Comparing limit profiles of reversible Markov chains

this new theory are that the two Markov chains are simultaneously diagonalizable, and
that they both exhibit `2 and total variation distance cutoff. The technique introduced in
the present paper differs from the traditional comparison theory developed by Diaconis
and Saloff-Coste ([7], [8]); it compares total variation distances via purely algebraic
techniques, while the Diaconis and Saloff-Coste technique compares `2 norms via path
techniques.

We now give a general introduction on mixing times, cutoff and limit profiles. Let X
be a finite state space with |X| = n, and let P be the transition matrix of an aperiodic and
irreducible Markov chain. In other words, the entry P t(x, y) is the probability of the walk
starting at x and being at y after t steps, for every t ∈ N. The measure P tx(·) = P t(x, ·)
converges to a unique measure π(·) on X as t goes to infinity. We study this convergence
with respect to total variation distance, which is defined as

dx(t) = ‖P tx − π‖T.V. :=
1

2

∑
y∈X
|P tx(y)− π(y)|.

We set
d(t) = max

x∈X
{dx(t)}.

Definition 1.1. The mixing time with respect to the total variation distance is defined as

tmix(ε) := min{t : d(t) ≤ ε},

for every ε ∈ (0, 1).

Cutoff describes a phase transition: as we run the family of Markov chains, the total
variation distance is almost equal to 1, and then suddenly it drops and approaches zero
as n grows. We now give the formal definition of cutoff.

Definition 1.2. A family of Markov chains is said to have cutoff at time tn with window
wn = o(tn) if and only if

lim
c→∞

lim
n→∞

d(n)(tn − cwn) = 1 and lim
c→∞

lim
n→∞

d(n)(tn + cwn) = 0,

where d(n)(t) denotes the total variation distance of the n–th Markov chain.

Given a Markov chain exhibiting cutoff, one can ask for more precise control on the
exact distance from stationarity. This is known as the limit profile, defined as:

Φx(c) := lim
n→∞

d(n)x (tn + cwn) , for all c ∈ R.

If this limit does not exist, similar definitions apply for the lim sup and the lim inf.
The limit profile is known for only a few Markov chains, such as the riffle shuffle [1],

the asymmetric exclusion process on the segment [3], the simple exclusion process on
the cycle [18], and the simple random walk on Ramanujan graphs [20], etc. Teyssier [29]
determined the limit profile for random transpositions. Using representation theory of
the symmetric group Sn, he used Fourier transform arguments for studying limit profiles
that work for random walks on groups using a generating set that is a conjugacy class.
In particular, he proved that for random transpositions, if t = 1

2n log n+ cn, then

Φx(c) = ‖Poiss(1 + e−2c)− Poiss(1)‖T.V.,

for every x ∈ Sn and c ∈ R. In [22], this limit profile behavior is proven to hold for the
k-cycle card shuffle, under the assumption that k = o(n/ log n).

Our main application studies the limit profile of the star transpositions shuffle, which
is not generated by a conjugacy class. One step of the star transpositions shuffle consists

EJP 29 (2024), paper 58.
Page 2/14

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1110
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Comparing limit profiles of reversible Markov chains

of picking a card of the deck uniformly at random and transposing it with the top
card. Flatto, Odlyzko and Wales [14] found the eigenvalues of the transition matrix
using representation theory of the symmetric group. Diaconis analysed the eigenvalue
behavior in [4] to prove that star transpositions exhibit cutoff at n log n with window of
order n. The following theorem discusses the limit profile of star transpositions.

Theorem 1.3. For the star transpositions card shuffle at time t = n(log n+ c), we have
that

Φx(c) = dT.V.(Poiss(1 + e−c),Poiss(1)),

for every x ∈ Sn and c ∈ R.

The proof of Theorem 1.3 requires a new idea, since Teyssier’s technique works for
conjugacy invariant random walks and the more general technique analyzed in [22]
assumes the knowledge of certain eigenfunctions. The main ingredient of the proof of
Theorem 1.3 is that star transpositions and random transpositions are simultaneously
diagonalizable. This allows us to only use the eigenvalues, found in [14], and not the
eigenfunctions of star transpositions. We also need to use the eigenvalues [11] and the
limit profile [29] of random transpositions.

To prove Theorem 1.3, we develop a technique that allows us to compare the limit
profile of the shuffle in question to the limit profile of the random transpositions shuffle.
The following main lemma of this paper allows us to compare limit profiles of reversible
Markov chains on the same space X, with the same stationary measure.

Lemma 1.4. Let P and Q be the transition matrices of two reversible Markov chains on
a finite space X that share the same eigenbasis and stationary measure π. In particular,
we denote by fi : X → C the orthonormal eigenvectors satisfying

Pfi = βifi and Qfi = qifi,

where i = 1, . . . , |X| and β1 = q1 = 1.

1. We have

4‖P tx −Qt∗x ‖2T.V. ≤
|X|∑
i=2

fi(x)2(βti − q
t∗
i )2, (1.1)

for every x ∈ X, t, t∗ ≥ 0. If P,Q are the transition matrices of transitive Markov
chains then

4‖P tx −Qt∗x ‖2T.V. ≤
|X|∑
i=2

(βti − q
t∗
i )2, (1.2)

for every x ∈ X, t, t∗ ≥ 0.

2. Assume P exhibits cutoff at tn with window wn with limit profile Φx and Q exhibits
cutoff at tn with window wn with limit profile Φx. For t = tn+cwn and t∗ = tn+cwn,
we have

|Φx(c)− Φx(c)| ≤ 1

2
lim
n→∞

 |X|∑
i=2

fi(x)2(βti − q
t∗
i )2

1/2

, (1.3)

for every c ∈ R, x ∈ X. If P,Q are furthermore the transition matrices of transitive
Markov chains then

|Φx(c)− Φx(c)| ≤ 1

2
lim
n→∞

 |X|∑
i=2

(βti − q
t∗
i )2

1/2

, (1.4)

for every c ∈ R, x ∈ X.

EJP 29 (2024), paper 58.
Page 3/14

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1110
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Comparing limit profiles of reversible Markov chains

The assumptions of Lemma 1.4 are equivalent to saying that P and Q commute,
i.e. PQ = QP . Even though the assumptions of Lemma 1.4 sound restrictive, it is
actually not rare that two reversible random walks on the same group are simultaneously
diagonalizable. As explained in Section 4, it is a standard fact that random transpositions
commutes with any other symmetric random walk on Sn. In general, the transition
matrix of a symmetric, conjugacy invariant random walk on a group G commutes with
any other symmetric transition matrix of a random walk on G (Laurent Saloff-Coste,
personnal communication).

Lemma 1.4 is proven in Section 3. The proof of Theorem 1.3 is contained in Section 5.
Section 4 summarizes the main tools that we need from representation theory and
random transpositions. In Section 6, we discuss possible conjectures and the difficulties
that occur when trying to apply Lemma 1.4 for the case of random-to-random.

2 Examples of commuting Markov chains

This section is dedicated to presenting examples of Markov chains. As Lemma 4.8
indicates, the transition matrix of a conjugacy class invariant, symmetric random walk
on a group G always commutes with the transition matrix of a symmetric random walk
on G. This means that in the following examples one can use Fourier analysis (just like
in [29]) to get the limit profile of the conjugacy invariant random walk, and then apply
Lemma 1.4 to get the limit profile of the other random walk.

2.1 The random walk on SLn(Fq)

ConsiderG = SLn(Fq), the group of n×nmatrices with entries on Fq and determinant
equal to one. Hildebrand [15] proved that the random transvection random walk on G
exhibits cutoff at time n with contant window. This is the random walk on the Caley
graph of G with respect to the conjugacy class of {In + aEi,j , a ∈ Fq, 1 ≤ i 6= j ≤ n},
where In is the identity matrix and Ei,j is the matrix whose (i, j) entry is one and the
rest are zero.

Saloff-Coste and Diaconis [9] and Kassabov [17] studied the random walk Xt on G

which corresponds to walking on the Caley graph of G with respect to {In + aEi,j , a ∈
Fq, 1 ≤ i 6= j ≤ n}. In other words, at time t + 1, we pick two rows i, j of Xt and an
a ∈ Fq uniformly at random. Then we add the the i–th row of Xt multiplied by a to the
j–th row. This gives us Xt+1.

Lemma 4.8 says that the two random walks commute and therefore Lemma 1.4 can
be applied, especially since the spectrum of random transvections is fully understood.
Of course, determining the limit profile of random transvections and proving cutoff for
the second random walk and understanding its spectrum are still open.

2.2 Kac’s walk

Kac’s walk is a random walk on the orthogonal group SO(n). Let

gi,j(θ) =



1 0 . . . 0

0
. . .

cos θ . . . sin θ
...

...
...

...
− sin θ . . . cos θ

. . . 0

0 . . . 0 1
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be the rotation by θ in the i, j plane of Rn. Diaconis and Saloff-Coste [10] studied
the random walk on SO(n) generated by multiplying by gi,j(θ) where i, j are chosen
uniformly at random in [n] and θ is a uniformly random angle in [0, 2π). Pillai and Smith
[23] prove that the rate of convergence is of order at most n4 log n and we refer to their
paper for the full history of the problem.

Rosenthal [25], on the other hand, considered the random walk on SO(n) generated
by the conjugacy class of g1,2(π) and proved that it exhibits cutoff at 1

4n log n with window
of order n. The two walks commute and it would be interesting to compare their limit
profile behavior. Hough and Jiang [16] also proved cutoff for the conjugacy invariant
random walk with respect to the conjugacy class of {g1,2(θ) : θ ∈ [0, 2π)} and this is
another candidate for comparison.

2.3 Bernoulli–Laplace urn model

In the Bernoulli–Laplace model, there are two urns each one containing n balls. At
time zero, the first urn contains n red balls and the second one contains n white balls. At
time t, we pick one ball from each urn and swap them. Diaconis and Shahshahani [12]
proved that the Bernoulli–Laplace Markov chain exhibits cutoff at 1

4n log n with window
of order n. They also prove that the orthonormal eigenbasis is given by the dual Hahn
polynomials.

The dual Hahn polynomials are an eigenbasis for the generalized Bernoulli–Laplace
model where k balls are picked from each urn without replacement and get swapped.
This way, we get a family of commuting transition matrices. Eskenazis and Nestoridi
[13] proved that for k = o(n) the Bernoulli–Laplace exhibits cutoff at n

4k log n and window
n
k log log n. It is very likely that the limit profile for k = o(n) is the same as for the case
k = 1.

3 The proof of Lemma 1.4

Proof of Lemma 1.4. Since P and Q are both reversible Markov chains with respect to
the same stationary measure π and share the same orthonormal eigenbasis fi, we can
write

P tx(y)

π(y)
= 1 +

|X|∑
i=2

fi(x)fi(y)βti

and similarly

Qtx(y)

π(y)
= 1 +

|X|∑
j=2

fi(x)fi(y)qti ,

as explained in Lemma 12.2 of [19]. Therefore,

P tx(·)−Qt∗x (·)
π(·)

= 1 +

|X|∑
i=2

fi(x)fi(·)
(
βti − q

t∗
i

)
,

This way, we have expressed P tx−Q
t∗
x

π as a linear combination of the elements of the
orthonormal eigenbasis {fi}. Therefore the `2 norm can be written as∥∥∥∥P tx −Qt∗xπ

∥∥∥∥2
2

=

|X|∑
i=2

fi(x)2(βti − q
t∗
i )2, (3.1)

where the `2 norm is defined as

‖g‖22 =
∑
x∈X

g2(x)π(x).
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Equation (3.1) and Cauchy-Schwartz give (1.1).

Note that if P and Q are transitive, then dx(t) = d(t) for every x ∈ X and π is the
uniform measure on X. Summing over x ∈ X on both sides of (1.1), we get

4|X|‖P tx −Qt∗x ‖2T.V. ≤
∑
x∈X

|X|∑
i=2

fi(x)2(βti − q
t∗
i )2.

The fact that f is normal means that
∑
x∈X fi(x)2 = |X|, which finishes the proof of (1.2).

This concludes part 1 of the lemma. Part 2 follows by taking limits on both sides of
equations (1.1) and (1.2).

4 Representation theory of the symmetric group and random trans-
positions

In this section, we summarize features of the random transposition shuffle that are
important for the analysis of the limit profile of star transpositions. The transition matrix
of random transpositions is given by

Q(x, y) =


1
n if y = x,
2
n2 if y = xs, where s is a transposition,

0 otherwise.

It is easy to check that Q is a symmetric matrix. Diaconis and Shahshahani [11] found
all the eigenvalues of Q and their multiplicities. Their formulas are in terms of standard
Young tableaux, which we now introduce.

By a partition λ = (λ1, . . . , λk) of n we mean a sequence of natural numbers such
that λ1 ≥ λ2 ≥ . . . ≥ λk > 0 and

∑k
i=1 λi = n. Every partition corresponds to a Young

diagram, which has λi boxes in row i. We will also consider the transpose partition λ′ of
λ to be the partition occuring by transposing the Young diagram of λ.

Example 4.1. We can think of λ = (3, 2) as λ = . In this case, λ′ = (2, 2, 1) =

.

To describe the eigenvalues of many shuffles and their multiplicities, we will need
the notion of standard Young tableaux (SYT) of type λ, which is a filling of the Young
diagram λ with all the numbers in [n], so that the entries of each row and column of the
diagram appear in increasing order.

Example 4.2. One SYT of λ = (3, 2) is Tλ = 1 2 4

3 5
.

The following notion will be important when counting the multiplicities of the eigen-
values of Q.

Definition 4.3. Let λ be a partition of n. We define dλ to be the number of SYT of λ.

The following lemma provides a useful bound on dλ.

Lemma 4.4 (Corollary 2 of [11]). Let λ be a partition of n. Let j = n − λ1, then
dλ ≤

(
n
j

)√
j!.

The following lemma presents the eigenvalues of random transpositions.
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Lemma 4.5 (Lemma 7 of [11]). Let λ = (λ1, . . . , λk) be a partition of n. The eigenvalues
of Q are given by

sλ =
1

n
+
n− 1

n
rλ,

where

rλ =
1(
n
2

) k∑
i=1

[(
λi
2

)
−
(
λ′i
2

)]
.

Each eigenvalue sλ occurs with multiplicity d2λ.

The formula for the sλ gives the following standard fact which is used in both [11]
and [29].

Corollary 4.6. Let λ be a partition of n. If j = n− λ1 is constant, then

sλ = 1− 2j

n
+O

(
1

n2

)
.

Similarly, if j = n− λ′1 is constant, then

sλ = −1 +
2(j + 1)

n
+O

(
1

n2

)
.

Finally, the following lemma discusses the limit profile of random transpositions.

Lemma 4.7 (Teyssier [29]). For random transpositions, we have that at t = 1
2n(log n+ c)

Φ(c) = dT.V.(Poiss(1 + e−c),Poiss(1)),

where c ∈ R.

The following lemma will allow us to compare the limit profile of star transpositions
to the limit profile of random transpositions. As pointed out by Laurent Saloff-Coste, it
is a standard fact that the transition matrix of a symmetric random walk on a group G
generated by a union of conjugacy classes commutes with the transition matrix of any
symmetric random walk on G. For completeness, we include the proof of this statement
for the case of Q.

Lemma 4.8. Let P be the transition matrix of a symmetric random walk on Sn. The
transition matrix Q of random transpositions commutes with P .

Proof. Let µ be the probability measure on Sn, such that P (x,w) = µ(x−1w) and define
ν to be the probability measure on Sn, such that Q(x,w) = ν(x−1w).

Let x, y ∈ Sn. We write

(PQ)(x, y) =
∑
w∈Sn

P (x,w)Q(w, y).

Let S′ be the set of all transpositions and let S = S′ ∪ {id}. We have that

(PQ)(x, y) =
∑
s∈S

P (x, ys)Q(ys, y) =
∑
s∈S

µ(x−1ys)ν(s−1).

We want to use the fact that ν is constant on all transpositions, which form a conjugacy
class. Because of this, we write

(PQ)(x, y) =
∑
s∈S

µ((x−1y)s(y−1x)(x−1y))ν(s−1).

Let s = (x−1y)s(y−1x) ∈ S and recall that ν(s) = ν(s−1) = ν(s) = ν(s−1). Therefore,

(PQ)(x, y) =
∑
s∈S

µ(sx−1y)ν(s−1) =
∑
s∈S

P (xs−1, y)Q(x, xs−1) = (QP )(x, y),

which finishes the proof.
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5 Star transpositions

The goal of this section is to prove Theorem 1.3 using Lemma 1.4. In the following
lemma, we recall the eigenvalues of the transition matrix P of star transpositions.

Lemma 5.1 (Theorem 3.7 of [14]). Let λ = (λ1, . . . , λk) be a partition of n. Let λ(i) be a
partition of n− 1 occurring by deleting the last box in the i-th row of λ (if this results to
a partition). The eigenvalues of P corresponding to λ are given by sλ(i) = 1

n (λi − i+ 1),
and they occur with multiplicity dλdλ(i) .

Lemma 5.2. Let λ = (λ1, . . . , λk) be a partition of n and let i be a row of λ whose last
box can be removed to give a partition of n− 1. The eigenvectors of P corresponding to
sλ(i) are eigenvectors for Q corresponding to sλ.

Proof. There are many ways to prove that there is an eigenvector for P corresponding
to the eigenvalue sλ(i) that is also an eigenvector for Q corresponding to the eigenvalue
sλ. Theorem 6 of Chapter 3 of [5] says that

Q = φ∗∆φ and P = φ∗Dφ,

where φ depends only on Sn. To define ∆ and D, we need to consider the Fourier trans-
forms Q̂(ρi) =

∑
x∈Sn Q(id, x)ρi(x) and P̂ (ρi) =

∑
x∈Sn P (id, x)ρi(x) at an irreducible

representation ρi : Sn → GLdρi (C). Then,

∆ =

MQ(ρ1) 0 0
0 . . . 0
0 0 MQ(ρk)

 and D =

MP (ρ1) 0 0
0 . . . 0
0 0 MP (ρk)

 ,

where {ρi : Sn → GLdρi (C)} are all the irreducible representations of Sn, and MQ(ρi),

MP (ρi) ∈ Cdρi×dρi are defined as

MQ(ρi) =

Q̂(ρi) 0 0
0 . . . 0
0 0 Q̂(ρi)

 and MP (ρi) =

P̂ (ρi) 0 0
0 . . . 0
0 0 P̂ (ρi)

 .

Diaconis and Shahshahani [11] proved that Q̂(ρλ) = sλIdλ and

P̂ (ρλ) =


sλ(i1)Id

λ(i1)
0 0

0 . . . 0
0 0 sλ(i`)Id

λ(i`)

 ,

where {i1, . . . , i`} are the rows of λ whose last box can be removed to give a valid
partition of n− 1.

To sum up, the suitable column of φ∗ gives the common eigenvector of P and Q

corresponding to the eigenvalues sλ(i) and sλ.

To prove Theorem 1.3 we will need the following lemma.

Lemma 5.3. Let λ be a partition of n. Let i > 1 and denote j = n− λ1. Then

dλ(i) ≤
4j

n
dλ and − j

n
≤ sλ(i) ≤

n− j
n

.
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Proof. In the diagram associated to λ, the hook hi,j of the (i, j) box is the number of
boxes which are below or on the right of our box (including our box). We call équ(λ) the
product of the hooks of the partition λ. It is a standard fact that

dλ =
n!

équ(λ)
.

For example, the entry of each box in λ = 4 3 1

2 1
gives the corresponding hook. Then

dλ = 5.
For λ(i) to be a valid partition, we have that hi,λi = 1. We have that

dλ(i)

dλ
=

1

n

i−1∏
`=1

h`,λi
h`,λi − 1

λi−1∏
k=1

hi,k
hi,k − 1

.

Notice that each ha,b appearing in the above products has to be at least equal to 2, since

the (i, λi) box and the (a, b) box contribute to ha,b. Therefore, each ratio ha,b
ha,b−1 is at most

2, which gives that

dλ(i) ≤
2i+λi−2

n
dλ.

Using the fact that i+ λi ≤ 2j + 2 for every i > 1 finishes the proof of the first statement.
The final claim holds because i ≤ j + 1 and therefore

− j
n
≤ sλ(i) =

1

n
(λi − i+ 1) ≤ λ1

n
=
n− j
n

,

for every i > 1.

The following standard fact is a consequence of the branching rule for the irreducible
representations of Sn. We refer to Theorem 3.6 of [14] for the exact statement of the
branching rule.

Lemma 5.4. Let λ be a partition of n. Then dλ =
∑
i dλ(i) and dλ(i) = dλ′ (λi) .

We are now ready to prove Theorem 1.3.

Proof of Theorem 1.3. Lemma 4.8 and Lemma 5.2 allow us to use Lemma 1.4. Therefore,
the goal is to prove that

lim
n→∞

∑
λ

dλ
∑
i

dλ(i)(stλ − s
t∗
λ(i))

2 = 0,

where sλ and sλ(i) are the eigenvalues of random transpositions and star transpositions
respectively. Recalling Lemmas 4.5 and 5.1, we have

sλ =
1

n
+
n− 1

n
rλ and sλ(i) =

1

n
+
n− 1

n
rλ(i) ,

where

rλ =
1(
n
2

) k∑
i=1

[(
λi
2

)
−
(
λ′i
2

)]
and rλ(i) =

λi − i
n− 1

.

Note that
rλ′ = −rλ and r(λ′)(λi) = −rλ(i) , (5.1)

where λ′ is the transpose diagram of λ.
Our strategy is to prove that for every ε > 0 and c ∈ R, there is an M = M(c, ε) such

that
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1.
∑
λ1≤n−M d2λ|sλ|2t ≤ ε,

2.
∑
λ1≤n−M
λ′1≤n−M

dλ
∑
i≥1 dλ(i) |sλ(i) |2t∗ ≤ ε,

3.
∑
λ1≤n−M
λ′1≤n−M

dλ|sλ|t
∑
i≥1 dλ(i) |sλ(i) |t∗ ≤ ε, and

4.
∑
λ1>n−M dλ

∑
i dλ(i) |stλ − s

t∗
λ(i) |2 ≤ ε, and

∑
λ′1>n−M

dλ
∑
i dλ(i) |stλ − s

t∗
λ(i) |2 ≤ ε

for sufficiently large n.
Lemma 4.1 of Teyssier [29] states that for every ε ∈ (0, 1) and c ∈ R, there is an

M1 = M1(c, ε) such that at t = 1
2n(log n+ c) we have that∑

λ1≤n−M1

dλ|sλ|t ≤ ε,

where n is sufficiently large. This implies that∑
λ1≤n−M1

d2λ|sλ|2t ≤ ε,

where n is sufficiently large. This gives 1.
Now, we want to prove 2. Let M2 = M2(c, ε) be such that

∑
j≥M2

e−2cj

j! ≤ ε/2.
Equation (5.1) implies that if rλ(i) ≥ 0 then sλ(i) = |sλ(i) | ≥ |sλ′ (λi) |. Therefore, it suffices
to consider only the cases where rλ(i) ≥ 0, which implies that sλ(i) ≥ 0. Lemmas 4.4, 5.3
and 5.4 give∑

λ1≤n−M2

λ′1≤n−M2

dλ
∑
i≥1

s
λ(i)
≥0

dλ(i) |sλ(i) |2t∗ ≤
∑
j≥M2

d2λ

(
1− j

n

)2t∗

≤
∑
j≥M2

n2j

j!
e−

2t∗j
n .

For t = n log n+ cn, we have∑
λ1≤n−M2

λ′1≤n−M2

dλ
∑
i≥1

s
λ(i)
≥0

dλ(i) |sλ(i) |2t∗ ≤
∑
j≥M2

e−2cj

j!
≤ ε/2.

This gives 2.
We now focus on 3. Let M = max {M1,M2}. Just like in 2, it suffices to consider

only the partitions λ where rλ(i) ≥ 0. In combination with Lemma 5.3, this implies that
0 ≤ sλ(i) ≤ sλ(1) = 1− j

n , where j = n− λ1. Therefore, Lemma 5.4 gives that

∑
λ1≤n−M

dλ|sλ|t
∑
i≥1

s
λ(i)
≥0

dλ(i) |sλ(i) |t∗ ≤
∑

λ1≤n−M

d2λ|sλ|t
(

1− j

n

)t∗
.

Applying Cauchy-Schwartz on the right hand side gives ∑
λ1≤n−M

dλ|sλ|t
∑
i≥1

s
λ(i)
≥0

dλ(i) |sλ(i) |t∗


2

≤
∑

λ1≤n−M

d2λ|sλ|2t
∑

λ1≤n−M

d2λ

(
1− j

n

)2t∗

.

We setM = max {M1,M2} so that both
∑
λ1≤n−M3

d2λ|sλ|2t and
∑
λ1≤n−M3

d2λ
(
1− j

n

)2t∗
are less than ε as we saw in 1 and 2. This gives 3.

We now focus on proving 4. We start by writing∑
λ1>n−M

dλ
∑
i

dλ(i) |stλ−s
t∗
λ(i) |2 =

∑
λ1>n−M

dλ
∑
i>1

dλ(i) |stλ−s
t∗
λ(i) |2+

∑
λ1>n−M

dλdλ(1) |stλ−s
t∗
λ(1) |2.
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Notice that for j = n− λ1, with j constant Lemma 5.3 gives that |sλ(i) | ≤ max{ jn , 1−
j
n} = 1− j

n , for sufficiently large n. Therefore, Lemma 5.3 and setting j = n− λ1 gives

∑
λ1>n−M

dλ
∑
i>1

dλ(i) |stλ − s
t∗
λ(i) |2 ≤

4MM

n

∑
j<M

λ:λ1=n−j

d2λ

(
|stλ|+

(
1− j

n

)t∗)2

≤ 4MM

n

∑
j<M

λ:λ1=n−j

n2j

j!

(
|stλ|+

(
1− j

n

)t∗)2

, (5.2)

for sufficient large n. The last inequality occurred from applying the inequality for
Lemma (4.4) for dλ. Using Corollary 4.6, and the facts that t = 1

2n(log n + c) and
t∗ = n(log n+ c), we have that(

1− j

n

)t∗
≤ e−cj

nj
and stλ =

(
1− 2j

n
+O

(
1

n2

))t
≤ 3

e−cj

nj

for sufficiently large n. Therefore, we have that

(5.2) ≤ 4M+2M2

n
M !

∑
j<M

e2cj

j!
≤ ε/2, (5.3)

for sufficient large n.
Finally, Corollary 4.6 and Lemma 5.4 give that

∑
λ1>n−M

dλdλ(1) |stλ − s
t∗
λ(1) |2 ≤

∑
j<M

λ:λ1=n−j

d2λ

((
1− 2j

n
+O

(
1

n2

))t
−
(

1− j

n

)t∗)2

≤
∑
j<M

λ:λ1=n−j

d2λ

(
e−cj

nj

(
1 +O

(
log n

n

))
− e−cj

nj

(
1 +O

(
j2

n

)))2

,

where in the last inequality, we plug in the values for t and t∗ and we use the fact that

ex
(

1− x2

n

)
≤
(
1 + x

n

)n ≤ ex for |x| ≤ n. Using Lemma 4.4, we get that

∑
λ1>n−M

dλdλ(1) |stλ − s
t∗
λ(1) |2 = O

(
log2 n

n2

)
.

Therefore ∑
λ1>n−M

dλdλ(1) |stλ − s
t∗
λ(1) |2 ≤ ε/2, (5.4)

for sufficiently large n. Equations (5.3) and (5.4) give the first inequality in 4. To prove
the second inequality, we write

∑
λ′1>n−M

dλ
∑
i

dλ(i) |stλ − s
t∗
λ(i) |2 =

∑
λ′1>n−M

dλ′
∑
i

dλ′ (λi)

∣∣∣∣stλ − ( 2

n
− sλ′ (λi)

)t∗ ∣∣∣∣2
and we proceed similarly as before, using the second part of Corollary 4.5 and the fact

that sλ′ (1) =
λ′1
n . We note that at this point it is important that t and t∗ are either both

odd or both even, so that the corresponding eigenvalues have the same sign. To achieve
this, we could have considered t to be 1

2n(log n + c) + 1, which doesn’t affect the limit
profile behavior.
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6 Open questions

6.1 Conjugacy class shuffles with cutoff

We are now looking at the case where G = Sn and we want to apply Lemma 1.4 when
Q is the transition matrix of random transpositions. Let P be the transition matrix of a
lazy random walk on Sn generated by a conjugacy class (or a union of conjugacy classes).

A standard application of Schur’s lemma gives that

D =

MP (ρ1) 0 0
0 . . . 0
0 0 MP (ρk)

 ,

is a diagonal matrix and in fact each Fourier transform P̂ (ρi) is a multiple of the identity.
Since each irreducible representation contributes only one eigenvalue, we form the
following conjecture.

Conjecture 6.1. Let P be the transition matrix of a lazy random walk on Sn generated
by a conjugacy class (or a union of conjugacy classes) with number of fixed points of
order n − o(n). If P exhibits total variation cutoff and `2 cutoff at tn with window wn,
then

Φx(c) = dT.V.(Poiss(1 + e−c),Poiss(1)).

To support this claim, we point out that the card shuffle generated by k–cycles with
k = o(n) satisfies this conjecture as proven in [22].

6.2 Random-to-random

One step of the random-to-random card shuffle consists of picking a card and a
position of the deck uniformly and independently at random and moving that card to
that position. This shuffle was introduced by Diaconis and Saloff-Coste [7], who proved
that the mixing time is O(n log n). It has been studied by ([30], [27], [28], [24]), since
cutoff at 3

4n log n− 1
4n log log n was conjectured by Diaconis for fifteen years [6]. Recently,

Bernstein and Nestoridi [2] proved the upper bound for the mixing time, which in
combination with Subag’s [28] lower bound resolved the desired conjecture.

The main open question of this section is the following.

Open Question. What is the limit profile of random-to-random?

Even though Lemma 1.4 can be applied for random transpositions and random-to-
random (due to Lemma 4.8), it is not clear if it can lead to determining the limit profile
of random-to-random. In fact the limit profile of random-to-random seems to be different
from the limit profile of random transpositions.

We can see this by looking at just at the n − 1 dimensional representation ρ. For
random transpositions, ρ contribute the eigenvalue 1 − 2

n with multiplicity n2. For
random-to-random, we have n3/2 eigenvalues that are roughly equal to 1 − 1

n and the
rest are negligible. When we study the error, we get a term that is roughly equal to

n3/2

((
1− 2

n

)t
−
(

1− 1

n

)t∗)2

+ n2
(

1− 2

n

)2t

,

where t, t∗ are the corresponding cutoff times. This term does not converge to zero as n
approches infinity, thus suggesting that the limit profiles of the two shuffles are different.
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