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Random walks on regular trees can not be slowed
down*
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Abstract

We study a permuted random walk process on a graph G. Given a fixed sequence of
permutations on the vertices of G, the permuted random walker alternates between
taking random walk steps, and applying the next permutation in the sequence to their
current position. Existing work on permuted random walks includes results on hitting
times, mixing times, and asymptotic speed. The usual random walk on a regular tree,
or generally any non-amenable graph, has positive speed, i.e. the distance from the ori-
gin grows linearly. Our focus is understanding whether permuted walks can be slower
than the corresponding non-permuted walk, by carefully choosing the permutation
sequence. We show that on regular trees (including the line), the permuted random
walk is always stochastically faster. The proof relies on a majorization inequality for
probability measures, plus an isoperimetric inequality for the tree. We also quantify
how much slower the permuted random walk can possibly be when it is coupled with
the corresponding non-permuted walk.
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1 Introduction

One of the classical results relating the geometry of a space to the behaviour of
random walks on the space is that on any non-amenable graph the random walk has
positive speed, in that lim inft→∞ t−1|Xt| exists and is a.s. positive. On transitive graphs
the limit is even an almost sure constant. In particular, on the d regular tree, denoted
Td, the speed for the simple random walk is d−2

d , which is positive as long as d > 2. The
motivation for this paper is the question: Can we slow down the particle?
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Random walks can not be slowed

Suppose that after each step t of the random walk, we are allowed to apply some
permutation πt to the vertices of the tree, so that if the particle is at v it is transported to
πt(v). If we observe the particle and can choose πt accordingly, then we can constantly
push it back to any vertex we wish, so that it never moves. Our main finding is that if
the permutations do not depend on the location of the particle, then the particle can not
be slowed down.

1.1 Permuted random walks

We start by considering lazy random walks, where the results are cleaner for mostly
technical reasons (see the discussion below). We start by introducing some notation. Fix
d ≥ 2, and let T = Td denote the rooted infinite d-regular tree. The vertex set is denoted
by V = V (Td). The root of the tree is denoted by v0. The depth |v| of a vertex v ∈ V is its
distance from the root. The neighborhood N(v) of v is the set of vertices u that are of
distance at most one from v. Note that since we are considering lazy random walks, it is
convenient to have v ∈ N(v). Thus the size of N(v) is d+ 1.

Let (Xt)
∞
t=0 be a lazy random walk on T started at the root. The laziness parameter

P(Xt+1 = Xt) is chosen to be 1
d+1 . That is, X0 = v0 and Xt+1 is a uniformly random

element of N(Xt). The (empirical) speed of (Xt) is defined to be the process (t−1|Xt|).
The strong law of large numbers implies that the speed a.s. converges to d−2

d+1 . Note that
this also holds in the case d = 2 where T2 is the line and the speed is 0. For more on
random walks on trees see e.g. [8,10] and references therein.

The model we suggest for studying the slowing down of particles is as follows. Before
the particle starts to move, we can choose a sequence (πt)

∞
t=1 of permutations of V .

(These do not need to be finitary; any bijections of V will do.) The permutation πt is
applied on the random walk at time t. Thus the permuted random walk (Yt) starts at
the root, and its position at time t + 1 is defined by Yt+1 = πt+1(Y ′t+1), where Y ′t+1 is a
uniformly random vertex in N(Yt). The (empirical) speed of (Yt) is the process (t−1|Yt|).
In contrast with (Xt), the permuted random walk may not have a limiting speed. The
lower speed of the permuted random walk is defined by lim inft→∞ t−1|Yt|.

Permuted random walk have been studied before, both on their own merit, and as a
tool towards other ends. Pymar and Sousi [2] established uniform bounds on hitting times
for permuted random walks on finite regular fgraphs. Ganguly and Peres [1] studied
walks on an interval with a fixed uniform random permutation. Recently, Chatterjee and
Diaconis [3,5] demonstrated that mixing of certain Markov chains can be significantly
sped up by adding a deterministic permutation after each move. In a different direction,
Gouëzel [4] used permuted random walks to establish large deviation lower bounds
on the speed of random walks on hyperbolic spaces without moment assumptions on
the step distribution. One idea here is to condition on the long steps of the walk, and
consider the process as a permuted version of a walk with bounded steps for which other
methods can apply. The question at the heart of this paper arose following a presentation
of that work.

Our main result is that no matter how we select the permutations (πt), the permuted
walk (Yt) is not slower than (Xt).

Theorem 1.1. For every d ≥ 2, every sequence (πt) of permutations of V (Td), and every
time t ≥ 0, the depth of the permuted random walk |Yt| stochastically dominates the
depth of the lazy random walk |Xt|. That is, for all t, n ≥ 0,

P[|Yt| ≥ n] ≥ P[|Xt| ≥ n].

In particular, E|Yt| ≥ E|Xt| for all t ≥ 0, and lim inft→∞ t−1|Yt| ≥ d−2
d+1 almost surely.
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Random walks can not be slowed

Remark 1.2. The processes (Xt) and (Yt) in Theorem 1.1 correspond to a lazy random
walk that stays put with probability 1

d+1 . Theorem 1.1 holds verbatim (with the obvious

change to the constant d−2
d+1 ) as long as the probability to stay put is at least 1

d+1 . In
particular, it holds when the chance to stay put is one half, which is a more common
definition of the lazy random walk. For details, see the remark after the proof of
Theorem 1.1.

Note that the theorem is informative even for d = 2, where the limit speed is zero.
However, the laziness is required for Theorem 1.1 to hold. Indeed, for the non-lazy walk
on Td we can have E|Y1| < E|X1| (or for any other t).

Theorem 1.1 is a special case of a more general phenomenon, which we describe in
the next two theorems. For a distribution p on V , define p∗ : N→ [0, 1] by letting p∗(j)
be the total mass of the j largest atoms in p, or equivalently,

p∗(s) = max{p(J) : J ⊂ V, |J | = s}.

We say that a distribution p majorizes a distribution q if p∗(j) ≥ q∗(j) for all j ∈ N.
Denote by pt the distribution ofXt and by qt the distribution of Yt, depending implicitly

on the fixed permutations (πt). The stochastic domination asserted in Theorem 1.1 is
a consequence of the following more technical statement. The main reasons are that
the distribution pt is spherically symmetric and monotone in depth; for more details,
see section 3.

Theorem 1.3. For every t ≥ 0, the distribution pt majorizes qt.

The fact that pt majorizes qt can be interpreted as saying that the amount of disorder
in qt is at least that of pt. Concretely, the theorem implies that the Shannon entropy of Yt
is at least the Shannon entropy of Xt. There is no way to decrease the entropy of a lazy
random walk on a regular tree by applying time dependent permutations.

A second interpretation of the theorem, which follows from the Birkhoff–von-Neumann
decomposition of a bistochastic matrix into a convex combination of permutation ma-
trices, is that for every t, there is a distribution rt on permutations of V , so that if σt
is sampled from rt independently of Xt, then (Xt, σt(Xt)) has the same distribution as
(Xt, Yt). In other words, there is a distribution on a single permutation σt that allows to
replace the iterative application of the t permutations π1, . . . , πt.

An even more general statement than Theorem 1.3 holds. Let Bn = {v ∈ V : |v| ≤ n}
denote the ball of radius n ≥ −1 in the tree1 and ∂Bn = Bn \Bn−1 the sphere of radius n.
Fix an order v0, v1, v2, . . . of V with the following property: for every i < j, it holds that
|vi| ≤ |vj | and if |vi| = |vj | then the d − 1 children of vi appear in the order before the
d− 1 children of vj . Initial segments of the form {v0, v1, . . . , vi} are called quasi-balls.
Note that every ball is a quasi-ball. A distribution p on V is called greedily arranged if
p(vi) ≥ p(vi+1) for every i.

Theorem 1.4. Let p and q be distributions on V and let p′ and q′ be the corresponding
distributions after a single step of a lazy random walk started at p and q, respectively. If
p is greedily arranged and majorizes q, then p′ is greedily arranged and majorizes q′.

Theorems 1.1 and 1.3 follow by a simple inductive argument from the last theorem
using the following two observations. First, the initial distribution p0 is greedily arranged,
and majorizes q0. Second, if a distribution p majorizes q, then it also majorizes any
rearrangement of q (i.e., a distribution of the form q ◦ π for a permutation π of V ). Thus
Theorem 1.4 implies that for every t ≥ 0 and every finite J ⊂ V ,

pt(B) ≥ qt(J), (1.1)

where B is the quasi-ball of size |B| = |J |.
1The ball B−1 is empty.
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1.2 Non-lazy random walks

The last result is particular to lazy random walks on regular trees. For non-lazy walks,
it is too strong to be true. The distribution of a simple non-lazy random walk on a regular
tree is not greedily arranged because the tree is bipartite; in particular, (1.1) may fail
already for t = 1.

On the other hand, versions of the above theorems do hold for non-lazy walks, as we
describe next. The limit speed of a simple (non-lazy) random walk on Td is d−2

d a.s. As
noted, for such random walks, the same stochastic domination as in Theorem 1.1 does
not hold. Nonetheless, we prove that it almost holds (at least for d > 2, when the tree is
not the line).

Denote by N ′(v) the d neighbors of v not including v. Let (St) be a simple random
walk so that S0 = v0 and St+1 is uniform in N ′(St). Let (Zt) be a permuted simple random
walk so that Z0 = v0 and Zt+1 is πt+1(Z ′t+1), where Z ′t+1 is uniform in N ′(Zt).

Theorem 1.5. For every d > 2, every sequence (πt) of permutations of V (Td), and
every time t ≥ 1, we have that |Zt| + 2 stochastically dominates |St|. In particular,
E|Zt| ≥ E|St| − 2 for all t ≥ 0, and lim inft→∞ t−1|Zt| ≥ d−2

d almost surely.

For d = 2, the bound d−2
d on the lower speed of (Zt) trivially holds, but the stronger

claim in the theorem is false. One way to see this is to take πt to be the identity up to
some large time 2T , and then map via π2T all even integers in the range [−2T, 2T ] to all
integers in [−T, T ] so that E|Z2T | = 1

2E|S2T |.
We shall deduce Theorem 1.5 from the following modification of Theorem 1.4 which

takes into account the periodicity of the non-lazy walk. The vertex set can be partitioned
according to parity into V0 = {v ∈ V : |v| = 0 mod 2} and V1 = V \ V0. A distribution p is
called half-greedily arranged if it is supported on one of V0 or V1, and p(vi) ≥ p(vj) for
every i < j for which vi and vj have the same parity (using the same ordering of V as
above).

Theorem 1.6. Let p and q be distributions on V , and let p′ and q′ be the corresponding
distributions after a single step of a non-lazy random walk started at p and q, respectively.
If p is half-greedily arranged and majorizes q, then p′ is half-greedily arranged and
majorizes q′.

Although the distribution of St is not greedily arranged, it is half-greedily arranged.
The theorem thus implies that the distribution of St majorizes that of Zt for every t ≥ 0

(although the distribution of |St| does not necessarily majorizes that of |Zt|).

1.3 The speed process

Theorems 1.1 and 1.5 establish stochastic domination of the distance of a standard
(lazy/simple) random walk by the distance of a permuted random walk at any particular
time. It is natural to wonder whether such stochastic domination holds for the corre-
sponding processes, i.e., whether the two processes can be coupled so that the distance
of the permuted walk is always at least the distance of the standard walk. Somewhat
surprisingly, it turns out this is not always possible. We focus on lazy random walks for
concreteness. As an example, consider a sequence of permutations π in which π1 and π2
are the identity permutation and π3 is an automorphism of T which maps a neighbor of
v0 to v0. A direct computation yields that

P[|X2|+ |X3| ≤ 2] = 1
d+1 + 4d

(d+1)3 <
1
d+1 + 5d−1

(d+1)3 = P[|Y2|+ |Y3| ≤ 2],

so that (|Y2|, |Y3|) does not stochastically dominate (|X2|, |X3|).
When d = 2, this effect can be repeated and magnified over time. The next result

shows that for certain choices of permutations, even translations, there are infinitely
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many times at which the distance of the permuted random walk is much smaller (no
matter how the two processes are coupled).

Theorem 1.7. Fix d = 2. There exists a sequence of permutations (πt) of V (T2) ∼= Z, all
of which are translations, such that in any coupling of the lazy random walk process (Xt)

and the permuted random walk process (Yt), almost surely,

lim sup
t→∞

|Xt| − |Yt|√
t log log t

=

√
3

2
. (1.2)

When d > 2, on the other hand, we show that the above cannot occur (not even
nearly) when the permutations are required to be automorphisms of Td. This is the
content of the result below. We do not know how strong this effect can be for general
permutations. For instance, we do not know whether it is always possible to couple the
two processes so that, almost surely, |Xt| ≤ |Yt| for all large enough t.

Theorem 1.8. For every d > 2 and every sequence of automorphisms (πt) of Td, there
exists a coupling of the lazy random walk process (Xt) and the permuted random walk
process (Yt) such that, almost surely,

|Yt| − |Xt| ≥ t1/2−o(1) as t→∞.

The theorem is interesting even when each πt is the identity. It states that there is
a way to couple two lazy random walks so that one is significantly more distant than
the other. The result is tight is the sense that the o(1) term cannot be dropped entirely.
Our proof gives a quantitative estimate for this term and yields that t1/2−o(1) can be
replaced with

√
t/(logC t) for some constant C > 0. See Lemma 5.2 and the second

remark following it.

1.4 A spectral argument

One natural approach towards proving the results above is using spectral methods
(see [7] and references within). Specifically, the transition kernel on `2(V ) is a contraction
with norm ρ < 1, and application of a permutation is an isometry on `2(V ). Thus ‖qt‖2 ≤ ρt
decays exponentially. A positive lower bound on the lower speed of Yt follows easily.
Moreover, this argument holds for any non-amenable graph. However, the resulting
bound on the speed is not sharp.

The proof of a spectral gap uses an isoperimetric inequality for the tree. Not sur-
prisingly, our proofs also use isoperimetric inequalities; see Lemmas 2.2 and 2.3 below.
Lemma 2.3 is a non-standard isoperimetric inequality, which takes into account the
amount of “isolated” points in the set of interest. Proposition 2.1 is a significant general-
ization of the isoperimetric inequality using the language of majorization.

2 Isoperimetry

As noted, our arguments rely on isoperimetric properties of the tree. However, to get
the strongest possible comparison between the permuted and regular random walks we
need sharp isoperimetric inequalities, which we now proceed to prove.

Recall that N(v) is the neighborhood of a vertex v, including v itself. For J ⊂ V , the
neighborhood of J is defined by

N(J) =
⋃
v∈J

N(v).

To analyze the behavior of the random walk, we need to understand the boundary in
more detail. For J ⊂ V and i ∈ [d+ 1], define

Ki(J) = {v ∈ V : |N(v) ∩ J | ≥ i}.
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In particular, the set K1(J) is the neighborhood N(J).
A partition is a sequence µ = (µ1, µ2, . . . , µ`) with µ1 ≥ µ2 ≥ · · · ≥ µ` ≥ 0. Note

that usually trailing 0’s are omitted, but for us it is convenient to have the length of
the partitions be fixed, so we may include 0’s. The size of the partition is defined by
|µ| =

∑
i µi. The dominance order on partitions is defined as follows. For partitions µ, λ,

we write λ ≺ µ if |µ| = |λ| and

λ1 + · · ·+ λr ≤ µ1 + · · ·+ µr, for all r. (2.1)

The following majorization statement is an extension of the standard isoperimetric
inequality for the tree.

Proposition 2.1. Let J ⊂ V be finite and let B be the quasi-ball with |B| = |J |. Let
ki = |Ki(J)| and mi = |Ki(B)|. Then (ki) dominates (mi) as partitions: (k1, . . . , kd+1) �
(m1, . . . ,md+1).

To prove this result, we need a couple of lemmas on the isoperimetric behavior of
the tree. Let κ1(J) denote the number of connected components induced by J . Let κ2(J)

denote the number of connected components induced by J in the graph in which edges
are added between all pairs of vertices that are at distance 2 from each other in the tree.
The first lemma is a formula for |N(J)| for general J :

Lemma 2.2. For every finite J ⊂ V ,

|N(J)| = (d− 1)|J |+ κ1(J) + κ2(J).

Proof. We prove the claim by induction on |J |. The base case when |J | = 0 is trivial. Let
J be non-empty. Let v ∈ J be a vertex of maximum depth in J . Let N1 = N(v) ∩ (J \ {v})
and N2 = N(N(v)) ∩ (J \ {v}). The following two equalities hold:

κ1(J \ {v}) = κ1(J)− 1{N1=∅} and κ2(J \ {v}) = κ2(J)− 1{N2=∅}.

The induction hypothesis implies

|N(J \ {v})| = (d− 1)|J |+ κ1(J) + κ2(J)− (d− 1 + 1{N1=∅} + 1{N2=∅}).

It remains to show that

|N(J)| − |N(J \ {v})| = d− 1 + 1{N1=∅} + 1{N2=∅}.

The left-hand side equals

|N(J) \N(J \ {v})| = |N(v) \N(J \ {v})| = d+ 1− |N(v) ∩N(J \ {v})|.

So we need to show that

|N(v) ∩N(J \ {v})| = 2− 1{N1=∅} + 1{N2=∅} = 1{N1 6=∅} + 1{N2 6=∅}.

By the choice of v, there are at most two vertices in N(v) ∩ N(J \ {v}); the vertex v
and its parent. The vertex v is in N(J \ {v}) iff N1 6= ∅. Its parent is in N(J \ {v}) iff
N2 6= ∅.

For the next lemma, we also need the following definitions. The sets of isolated points
in J and connected points in J are defined by

iso(J) = {v ∈ J : N(v) ∩ J = {v}} and con(J) = J \ iso(J).
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Lemma 2.3. For every non-empty J ⊂ V ,

|N(J)| ≥

{
1 + d|J | con(J) = ∅
2 + d|iso(J)|+ (d− 1)|con(J)| con(J) 6= ∅.

Proof. Using Lemma 2.2,

|N(J)| = (d− 1)(|iso(J)|+ |con(J)|) + κ1(J) + κ2(J)

≥ (d− 1)(|iso(J)|+ |con(J)|) + (|iso(J)|+ 1{con(J) 6=∅}) + 1.

Proof of Proposition 2.1. The fact that (ki) and (mi) are decreasing is obvious. These
are partitions of the same size s = (d + 1)|J |. If |J | = 1 then the statement trivially
holds, so we can assume |J | > 1. The choice of order on V implies there is n ≥ 0 so that
Bn ⊆ B ( Bn+1, where Bn is the ball of radius n. We can write

|J | = |B| = |Bn|+ a(d− 1) + c,

where a, c are non-negative integers so that c < d− 1.
The tree is simple enough so that we can compute all the mi’s in terms of these:

m1 = (d− 1)|J |+ 2,

m2 = |J |,
∀ 3 ≤ i ≤ c+ 2 mi = |Bn−1|+ a+ 1,

∀ c+ 3 ≤ i ≤ d+ 1 mi = |Bn−1|+ a.

The case r = 1 of (2.1) now holds by Lemma 2.2:

k1 = |N(J)| ≥ (d− 1)|J |+ 2 = m1.

The case r = 2 is proved as follows. If k2 = 0 then ki = 0 for all i ≥ 2 and the proof is
complete. On the other hand, if k2 ≥ 1 then by Lemma 2.3, and because con(J) ⊆ K2(J),

k1 + k2 ≥ (d− 1)|J |+ |iso(J)|+ 1{con(J)6=∅} + 1 + k2 ≥ d|J |+ 2 = m1 +m2.

For r ∈ {3, 4, . . . , d}, proceed by induction. Because kr ≥ kr+1 ≥ . . . ≥ kd+1, we have

kr ≥ ar :=
s−

∑
i∈[r−1] ki

d− r + 2
.

By induction, ∑
i∈[r]

ki ≥ ar +
∑

i∈[r−1]

ki

=
s

d− r + 2
+
d− r + 1

d− r + 2

∑
i∈[r−1]

ki

≥ s

d− r + 2
+
d− r + 1

d− r + 2

∑
i∈[r−1]

mi

= br +
∑

i∈[r−1]

mi,

where

br :=
s−

∑
i∈[r−1]mi

d− r + 2
.
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If r ≤ c+ 2, then

br =
(c+ 2− r + 1)(|Bn−1|+ a+ 1) + (d+ 1− c− 2)(|Bn−1|+ a)

d− r + 2

=
(d− r + 2)(|Bn−1|+ a) + c+ 2− r

d− r + 2
,

and if r > c+ 2, then

br =
(d− r + 2)(|Bn−1|+ a)

d− r + 2
.

It follows that mr = dbre. All ki’s and mi’s are integers, so the desired inequality
follows.

3 Lazy random walks

The following proposition presents the key link between the isoperimetric inequality
and the behavior of random walks.

Proposition 3.1. Let J ⊂ V be finite and let B be the quasi-ball with |B| = |J |. Let
ki = |Ki(J)| and mi = |Ki(B)|. For every distribution q,∑

i∈[d+1]

q∗(ki) ≤
∑

i∈[d+1]

q∗(mi).

This may seem surprising until one realizes that q∗ can be any function on N that
is increasing from 0 to 1 and is concave. The proof of Proposition 3.1 is based on
the following majorization inequality, known as the Hardy–Littlewood–Pólya inequality
and Karamata’s inequality, a version of which was first proved by Schur; see e.g. [6,
Theorem 3.C.1]. Note that the definition of the dominance order µ � λ extends verbatim
to partitions of a real number with real instead of integer parts, and so this applies also
for non-integer dominated sequences. In our setting, ki and mi are integers.

Theorem 3.2. Let I ⊂ R be an interval and let f : I → R be concave. For any t ∈ N, if
µ, λ ∈ It are two partitions such that µ � λ, then∑

i∈[t]

f(µi) ≤
∑
i∈[t]

f(λi).

Proof of Proposition 3.1. To apply Theorem 3.2 and Proposition 2.1 we need to extend
q∗ to a concave function. By construction, the function q∗ : N→ [0, 1] is increasing and
can be written as q∗(j) =

∑
i∈[j]D(i) where D : N→ [0, 1] is a decreasing function. Thus

extending q∗ to R+ by a piecewise linear interpolation is increasing and concave.

The following fact helps to establish when a distribution is greedily arranged.

Fact 3.3. Let B be a quasi-ball and let i ∈ [d+ 1]. Then Ki(B) is a quasi-ball.

Proof. Write B as B = {v0, v1, . . . , vi}. The choice of order on V implies there is n ≥ 0

so that Bn ⊆ B ( Bn+1, and we can write |B| = |Bn| + a(d − 1) + c, where a, c are
non-negative integers so that c < d − 1. Analyze the different Ki(B)’s as follows. The
set K1(B) = N(B) contains Bn+1 and some of the smallest elements in ∂Bn+2. The set
K2(B) is equal to B. For i ∈ {3, . . . , c + 2}, the set Ki(B) contains Bn−1 and the a + 1

smallest elements in ∂Bn. For i ∈ {c+ 3, . . . , d+ 1}, the set Ki(B) contains Bn−1 and the
a smallest elements in ∂Bn.

We are now ready to complete the proof of our main results.
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Proof of Theorem 1.4. Let J ⊂ V and let B be the quasi-ball of the same size. For
i ∈ [d+ 1], let ki = |Ki(J)| and mi = |Ki(B)|. We have

q′(J) =
1

d+ 1

∑
i∈[d+1]

q(Ki(J))

≤ 1

d+ 1

∑
i∈[d+1]

q∗(ki) (3.1)

≤ 1

d+ 1

∑
i∈[d+1]

q∗(mi) (3.2)

≤ 1

d+ 1

∑
i∈[d+1]

p∗(mi) (3.3)

=
1

d+ 1

∑
i∈[d+1]

p(Ki(B)) (3.4)

= p′(B).

Here, the first and last equalities follow from the definition of the lazy random walk; (3.1)
follows from the definition of q∗; (3.2) follows from Proposition 3.1; (3.3) holds because
p majorizes q; and (3.4) follows from Fact 3.3 and the assumption that p is greedily
arranged.

Let us now explain how the above implies the theorem, i.e., that p′ is greedily
arranged and majorizes q′. Let B be a quasi-ball. Since q′(J) ≤ p′(B) for any J ⊂ V

having |J | = |B|, we have that (q′)∗(|B|) ≤ p′(B) ≤ (p′)∗(|B|). In particular, p′ majorizes
q′. Moreover, using this with q = p yields that p′(B) = (p′)∗(|B|), which implies that p′ is
greedily arranged.

Proof of Theorem 1.1. Theorem 1.4 implies (1.1) and in particular pt(Bn) ≥ qt(Bn) for
all n, t ≥ 0. In other words, |Yt| stochastically dominates |Xt| for every t ≥ 0. This implies
that E|Yt| ≥ E|Xt|. It remains to show that lim inft→∞ t−1|Yt| ≥ d−2

d+1 almost surely. For
every ε > 0, standard concentration bounds show that for some constants c, C > 0,

P
[
t−1|Xt| < d−2

d+1 − ε
]
≤ Ce−ct.

Since |Yt| stochastically dominates |Xt| for every t ≥ 0, the same holds with Yt instead of
Xt. The Borel–Cantelli lemma completes the proof.

Remark 3.4. Theorem 1.4, and thus also Theorems 1.1 and 1.3, extend to the lazy
random walk in which the probability to stay put is any γ ≥ 1

d+1 . The idea is that if q′γ is
the result of a lazy random walk step applied to a distribution q with lazyness γ, then for
any γ > δ,

q′γ =
(
γ − δ

)
q +

(
1− γ + δ

)
q′δ.

We apply this with γ > δ = 1
d+1 to get

q′γ(J) =
(
γ − 1

d+ 1

)
q(J) +

(
1− γ +

1

d+ 1

) 1

d+ 1

∑
i∈[d+1]

q(Ki(J))

≤
(
γ − 1

d+ 1

)
p(B) +

(
1− γ +

1

d+ 1

) 1

d+ 1

∑
i∈[d+1]

p(Ki(B)) = p′(B).
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4 Simple random walks

In this section, we consider simple (non-lazy) walks. The argument is similar to the
lazy case, and we omit some of the details that are unchanged. For J ⊂ V , let

N ′(J) =
⋃
v∈J

N ′(v).

The main difficulty stems from the fact that the tree is bipartite. The half-ball B′n is the
set of the form

B′n = {v ∈ Bn : |v| ≡ n mod 2}.

A half-quasi-ball is the intersection of a quasi-ball with either V0 or with V1. Half-qausi-
balls have parities. A half-greedily arranged distribution is a distribution supported
on a quasi-ball.

Lemma 4.1. For every non-empty J ⊂ V ,

|N ′(J)| ≥ 1 + (d− 1)|J |.

Proof. First assume that J is contained in either V0 or V1 = V \ V0. In this case,
κ1(J) = |J | so that Proposition 2.2 implies that

|N ′(J)| = |N(J)| − |J | = (d− 1)|J |+ κ2(J) ≥ (d− 1)|J |+ 1.

Second, for arbitrary J , we have N ′(v)∩N ′(w) = ∅ if |v| 6= |w| mod 2. The result follows
by applying the above to J ∩ V0 and J ∩ V1 separately.

For J ⊂ V and i ∈ [d], define

K ′i(J) = {v ∈ V : |N ′(v) ∩ J | ≥ i}.

Fix J and let B be a half-quasi-ball of the same size. Let ki = |K ′i(J)| and mi = |K ′i(B)|.
Proposition 4.2. For any distribution q on V ,∑

i∈[d]

q∗(ki) ≤
∑
i∈[d]

q∗(mi).

Proof. As before, the proposition follows from Theorem 3.2 once we show that (k1, . . . , kd)

� (m1, . . . ,md). The fact that these are partitions is obvious, and they have the same
size since d|J | =

∑
i∈[d] ki =

∑
i∈[d]mi. It remains to establish (2.1) for these partitions.

Write

|J | = |B| = |B′n|+ a(d− 1) + c,

where B′n ⊂ B ( B′n+2, and a, c ≥ 0 are integers so that c ≤ d− 2. The values of the mi’s
are now as follows: m1 = (d− 1)|J |+ 1, for 2 ≤ i ≤ c+ 1, we have mi = |B′n−2|+ a+ 1,
and for c+ 2 ≤ i ≤ d, we have mi = |B′n−2|+ a. The inequality

∑
i∈[r] ki ≥

∑
i∈[r]mi for

r = 1 follows from Lemma 4.1. For r ≥ 2, one proceeds by induction in a similar manner
as in the proof of Proposition 2.1.

Fact 4.3. Let B be a half-quasi-ball, and i ∈ [d]. Then, K ′i(B) is a half-quasi-ball of
opposite parity than B.

EJP 29 (2024), paper 50.
Page 10/15

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1109
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Random walks can not be slowed

Proof of Theorem 1.6. Let J ⊂ V and let B be the half-quasi-ball of the same size as J
and with opposite parity than p. Let ki = |K ′i(J)| and mi = |K ′i(B)|. We have

q′(J) =
1

d

∑
i∈[d]

q(K ′i(J))

≤ 1

d

∑
i∈[d]

q∗(ki) (4.1)

≤ 1

d

∑
i∈[d]

q∗(mi) (4.2)

≤ 1

d

∑
i∈[d]

p∗(mi) (4.3)

=
1

d

∑
i∈[d]

p(K ′i(B)) (4.4)

= p′(B),

where the first and last equalities follow from the definition of the non-lazy random
walk; (4.1) follows from the definition of q∗; (4.2) follows from Proposition 4.2; (4.3)
holds because p majorizes q; and (4.4) follows from Fact 4.3 and the assumption that
p is half-greedily arranged. The result follows in the same way as in the proof of
Theorem 1.4.

Proof of Theorem 1.5. Denote by pt the distribution of St, and denote by qt the distribu-
tion of Zt. Since d > 2, we have |Bn| ≤ 1 + d(d− 1)n ≤ |B′n+1|. We then have

qt(Bn) ≤ q∗t (|Bn|) (4.5)

≤ p∗t (|Bn|) (4.6)

≤ p∗t (|B′n+1|) (4.7)

≤ pt(Bn+2), (4.8)

where (4.5) holds by definition of q∗t ; (4.6) holds by Theorem 1.6 and induction on
t; (4.7) holds because |Bn| ≤ |B′n+1|; and (4.8) holds because pt is half-greedily arranged,
and because B′n+1 ∪B′n+2 ⊆ Bn+2. The rest of the proof proceeds in a similar manner as
in the proof of Theorem 1.1.

5 Exceptional times

In this section we consider the possible slow-down of a random walk on Z ∼= T2 and
on Td for d > 2. While the domination of Theorem 1.1 still applies, we ask here whether
(πt) may be chosen so that there are exceptional times where |Yt| is much smaller than
|Xt|. We prove Theorem 1.7 on the existence of exceptional times of slowing down
on Z. In contrast, we prove Theorem 1.8 on the non-existence of such times on Td when
d > 2 and the permutations are restricted to automorphisms. This section is mostly
independent of the previous parts of the paper.

5.1 Exceptional times for Z

Proof of Theorem 1.7. The permutations (πt) are all translations of Z. Consequently, the
permutations commute not just with each other but with the steps of the random walk. We
shall define an integer sequence `t, and define the permutations πt by πtπt−1 · · ·π1(v) =

v − `t. Thus the process (Yt + `t) has the same law as the random walk (Xt). However,
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the coupling between the processes may not be such that Yt = Xt − `t, even though that
is one possible coupling.

To define (`t), let φ(t) denote the integer part of ( 4
3 t log log t)1/2. Let f(t) be a positive

integer-valued non-decreasing function growing to infinity slower than φ(t). Let (bj)
∞
j=0

be defined by b0 = 1 and bj+1 = bj + f(bj) for all j ≥ 0. Let (`t) be defined by `bj+i is the
integer part of φ(bj) · ( 4i

f(bj)
− 2) for all j ≥ 0 and 0 ≤ i < f(bj). Intuitively, for each j,

the numbers of the form `bj+i are uniformly and densely placed in the interval between
−2φ(bj) and 2φ(bj).

Fix ε > 0 and consider the set Tε of times t at which Xt ≥ (1− ε)φ(t). By the law of
the iterated logarithm for the lazy random walk (Xt), we have that the cardinality of Tε
is almost surely infinite. By the same law, almost surely, the set T ′ of times t at which
|Yt + `t| ≤ 1.5φ(t) contains all but finitely many positive integers.

Fix t ∈ Tε ∩ T ′ sufficiently large. Let j ≥ 0 be such that bj ≤ t < bj+1. Since
|Yt + `t| ≤ 1.5φ(t) < 2φ(bj), there exists 0 ≤ i < f(bj) such that

|(Yt + `t)− `bj+i| ≤ εφ(t).

At time t′ = bj + i, we have

Xt′ ≥ Xt − |t− t′| ≥ (1− ε)φ(t)− f(bj) ≥ (1− ε)φ(t)− f(t) > 0,

and
|Yt′ | = |(Yt′ + `t′)− `t′ | ≤ |(Yt + `t)− `t′ |+ |t− t′| ≤ εφ(t) + f(t).

Thus,
|Xt′ | − |Yt′ | ≥ (1− 2ε)φ(t)− 2f(t) ≥ (1− 3ε)φ(t′).

We conclude that almost surely,

lim sup
t→∞

|Xt| − |Yt|
φ(t)

≥ 1.

Since lim supt→∞
|Xt|
φ(t) = 1 almost surely, we have equality above.

5.2 No exceptional times for d > 2

We split the proof of Theorem 1.8 into two parts for readability, and in order to
emphasize the missing piece for lifting the automorphism restriction.

Lemma 5.1. For every d > 2 and every sequence of automorphisms (πt) of Td, there
exists a coupling of the lazy random walk process (Xt) and the permuted random walk
process (Yt) such that, almost surely,

|Yt| ≥ |Xt| − 2 log t for all t large enough.

Proof. Using that (πt) consists only of automorphisms, it is not hard to check that
(πtπt−1 · · ·π1Xt) has the same distribution as the permuted random walk process (Yt).
Thus, setting Yt = πtπt−1 · · ·π1Xt describes a coupling between (Xt) and (Yt).

To see that this coupling satisfies the claimed property, note that |Xt| − |Yt| > k

implies that either |Xt| < k or (πtπt−1 · · ·π1)−1v0 ∈ Tk(Xt), where Tk(x), defined when
|x| ≥ k, is the connected component (subtree) of {v ∈ V (T) : |v| ≥ k} containing x.
Indeed, on the complementary event {|Xt| ≥ k}∩{(πtπt−1 · · ·π1)−1v0 /∈ Tk(Xt)}, we have

|Yt| = distT(Xt, (πtπt−1 · · ·π1)−1v0) (5.1)

≥ distT(Xt, u) (5.2)

= |Xt| − k, (5.3)
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where u is the unique vertex in Tk(Xt) with |u| = k. Here (5.1) follows from the fact that
automorphisms preserve the graph distance, and (5.2) uses that T is a tree, so any path
from (πtπt−1 · · ·π1)−1v0 to Xt must contain u.

Since Xt is uniform given its depth |Xt|, we see that

P(|Xt| − |Yt| > k) ≤ P(|Xt| < k) +
1

|∂Bk|
,

where ∂Bk = {v ∈ V (T) : |v| = k} and |∂Bk| = d(d − 1)k−1. Standard concentration
bounds on the speed of (Xt) now imply that

∑∞
t=1P(|Xt| − |Yt| > 2 log t) < ∞, and the

Borel–Cantelli lemma completes the proof.

Lemma 5.2. Let (Xt) be a non-trivial nearest-neighbor random walk on Z (possibly
biased and with any laziness). There is a coupling of (Xt) with another copy of itself (X ′t)

such that for some constant C > 0, almost surely,

X ′t −Xt ≥
√
t

(log t)C
for all t large enough.

Remark 5.3. For positively biased random walks, Xt and X ′t are eventually positive so
that the conclusion is equivalent to |X ′t| − |Xt| ≥

√
t/(log t)C . By interchanging the roles

of (Xt) and (X ′t), the same statement is seen to hold also for negatively biased random
walks. For unbiased random walks, on the other hand, it holds that X ′t = 0 infinitely
often.

Remark 5.4. The term
√
t/(log t)C is not optimal, but it cannot be improved to c

√
t.

Indeed, in any coupling, the probability of the event {Xt ≥ 0, X ′t < c
√
t} is bounded

from below, so that Fatou’s lemma gives that X ′t −Xt < c
√
t infinitely often with positive

probability.

Proof. We may always couple (Xt) and (X ′t) so that they stay put at the same times (and
this set of times has density less than 1). It therefore suffices to handle the non-lazy
case. We thus assume that P(X1 −X0 = 1) = p and P(X1 −X0 = −1) = 1− p for some
p ∈ (0, 1).

The main step is to construct a coupling between two Binomial (n, p) random variables
Bn and B′n such that

P
(
B′n −Bn ≥

√
n

log2 n

)
≥ c′ and P(B′n < Bn) ≤ C′

log2 n
,

where c′, C ′ > 0 are constants that depend on p but not on n. Let m be the integer part
of
√
n/ log2 n and consider the two intervals

In = [pn−
√
n, pn] ∩N and Jn = [pn−

√
n, pn−m] ∩N.

Denote f(i) = P(Bn = i) and observe that f(i)
f(i−1) = p

1−p ·
n−i+1

i ≥ 1 whenever i ≤ p(n+ 1).

Thus, f(i) is increasing for i ∈ In, and f(i) ≤ f(i+m) for i ∈ Jn. It follows that there is
a coupling such that

Bn /∈ In =⇒ B′n = Bn,

Bn ∈ Jn =⇒ B′n = Bn +m,

Bn ∈ In \ Jn =⇒ B′n ∈ In.

The central limit theorem implies that P(Bn ∈ Jn) converges as n→∞ to some positive
constant c = c(p). Since f is bounded from above by C/

√
n for some constant C = C(p),
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we have that P(Bn ∈ In \ Jn) ≤ Cm/
√
n ≤ C/ log2 n. This completes the construction of

a coupling between Bn and B′n with the claimed properties.

The above coupling between Bn and B′n is relevant because Xt has the same law as
2Bt−t. Consider the times tn = 2n for n ≥ 1. We construct the coupling between (Xt) and
(X ′t) so that it is Markovian at these times. Fix n ≥ 1 and suppose we have already coupled
(Xt)t≤tn and (X ′t)t≤tn in some manner (the coupling for n = 1 can be done arbitrarily).
We now describe the (conditional) coupling between the processes in the time range
(tn, tn+1]. This coupling only depends on Xtn and X ′tn . The law of (Xt − Xtn)tn≤t≤tn+1

and (X ′t − X ′tn)tn≤t≤tn+1
is entirely independent of the past (conditioned on time tn).

These are two random walks of length tn+1 − tn = 2n, which we denote by (Si)
2n

i=0 and
(S′i)

2n

i=0. To couple these walks, we first couple the endpoints S2n and S′2n using the above
coupling between B2n and B′2n (pushed forward by the map x 7→ 2x − 2n). Given the
endpoints, we couple the walks so that S′i ≥ Si for all i when S′2n ≥ S2n , and arbitrarily
otherwise. The former can be done by first sampling (Si) and then uniformly choosing
1
2 (S′2n − S2n) coordinates i among those where the increment Si − Si+1 is −1 and setting
the corresponding increments S′i−S′i−1 to +1 there (with all other increments remaining
the same for both). This completes the description of the coupling between (Xt) and
(X ′t).

It remains to check that the constructed coupling has the claimed property. Let
∆n = Xtn+1

−Xtn and ∆′n = X ′tn+1
−X ′tn . Define events

En = {∆′n −∆n ≥ 2n/2/n2} and Fn = {∆′n < ∆n}.

Since Fn has probability at most C ′/n2, only finitely many of the Fn occur almost surely.
Let N1 be the smallest positive integer such that Fn does not occur for any n ≥ N1. Ob-
serve that X ′t −Xt is non-decreasing for t ≥ tN1

. Since {En}∞n=1 are independent events,
each of probability at least c′, infinitely many of them occur almost surely. Moreover,
almost surely, for any n large enough, at least one of En−1, En−2, . . . , En−C′′ logn occurs,
where C ′′ > 0 is some large constant. Let N2 be the smallest positive integer so that this
holds for n ≥ N2. Observe that if n − C ′′ log n ≥ max{N1, N2} and tn ≤ t ≤ tn+1, then
letting n− C ′′ log n ≤ m < n be such that Em occurs, we obtain that

X ′t −Xt ≥ X ′tm+1
−Xtm+1

= ∆′m −∆m +X ′tm −Xtm

≥ 2m/2/m2 +X ′tN −XtN

≥
√
t · e−5C log log t,

where the last inequality holds for t large enough.

Proof of Theorem 1.8. Let (X ′t) denote a copy of the lazy random walk (Xt). By the
first lemma, (X ′t) and (Yt) can be coupled so that |X ′t| − |Yt| ≤ 2 log t eventually. By the
second lemma (and the first remark following it), the walks (|Xt|) and (|X ′t|) can be
coupled so that |X ′t| − |Xt| ≥

√
t/ logC t eventually. Extend this coupling to a coupling

of (Xt) and (X ′t). The processes (Xt) and (Yt) are now coupled so that |Yt| − |Xt| ≥√
t/ logC t− 2 log t ≥

√
t/ log2C t eventually.

Removing the automorphism assumption in Theorem 5.1, even at the expense of
increasing the upper bound on |Xt|− |Yt| from 2 log t to

√
t/(log t)C for a sufficiently large

constant C, would suffice in order to lift the automorphism assumption in Theorem 1.8.
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