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Abstract

In this study, we investigate the energy landscape of the Ising and Potts models on
fixed and finite but large three-dimensional (3D) lattices where no external field exists
and quantitatively characterize the metastable behavior of the associated Glauber
dynamics in the very low temperature regime. Such analyses for the models with
non-zero external magnetic fields have been extensively performed over the past two
decades; however, models without external fields remained uninvestigated. Recently,
the corresponding investigation has been conducted for the two-dimensional (2D)
model without an external field, and in this study, we further extend these successes
to the 3D model, which has a far more complicated energy landscape than the 2D
one. In particular, we provide a detailed description of the highly complex plateau
structure of saddle configurations between ground states and then analyze the typical
behavior of the Glauber dynamics thereon. Thus, we achieve a quantitatively precise
analysis of metastability, including the Eyring–Kramers law, the Markov chain model
reduction, and a full characterization of metastable transition paths.
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Example of a three-dimensional saddle configuration

1 Introduction

Metastability is a ubiquitous phenomenon that arises when a stochastic system has
several locally stable sets; it is observed in a wide class of models, e.g., in the small
random perturbations of dynamical systems (e.g., [16, 17, 23, 33, 35, 38, 39, 36, 48]),
interacting particle systems consisting of sticky particles (e.g., [3, 12, 24, 26, 31, 32,
47, 49]), and spin systems in the low temperature regime (e.g., [1, 6, 10, 11, 13, 14,
15, 18, 19, 21, 22, 25, 29, 30, 34, 37, 44, 45, 42]). Numerous important works are
not listed here; we direct the references of the monographs [13, 46], which provide a
comprehensive introduction to this broad topic.

Metastable behaviors of stochastic Ising and Potts models

In this study, we consider the metastability of the stochastic Ising and Potts models
evolving according to Metropolis–Hastings-type Glauber dynamics on a large, but fixed
three-dimensional (3D) lattice. For such models, the Gibbs invariant measure is exponen-
tially concentrated on monochromatic configurations (i.e., the configurations consisting
of a single spin, which are the ground states of the Ising and Potts Hamiltonians) in the
very low temperature regime. Hence, in such regimes, the dynamics exhibits metastable
behavior between the monochromatic configurations: It starts from a monochromatic
configuration, remains in a certain neighborhood of the starting configuration for an ex-
ponentially long time, and finally overcomes the energy barrier between monochromatic
configurations to reach another monochromatic one.

Several mathematical questions persist regarding the metastable behavior explained
above. For instance, in the transition from one monochromatic configuration to another,
the mean transition time, the asymptotic law of the rescaled transition time, and the
typical transition paths are all points of interest. We are also interested in the charac-
terization of the energy barrier and the saddle configurations that realize this energy
barrier via optimal paths between monochromatic configurations. The final issue is
particularly important and challenging for the model considered in the present article
and has remained open for a long time. It is also important to estimate the mixing
time or spectral gap of the associated dynamics; this allows us to measure the effects
of metastable behavior on the global mixing properties of the associated Markovian
dynamics. In this article, we answer all these questions for the stochastic Ising and Potts
models on finite three-dimensional lattices in the absence of external fields.

Model with non-zero external field

The first rigorous mathematical treatment of the metastable behavior of the Ising model
was performed in [44, 45], where the authors considered the Ising model on a two-
dimensional (2D) lattice in the presence of a non-zero external field. These studies
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verified that the transition from a metastable monochromatic configuration to a stable
one is essentially equivalent to the formation of a certain type of critical droplet. From
this observation, precise information regarding the transition path was obtained, as well
as large deviation-type estimates for the transition time and mixing behavior associated
with the Metropolis–Hastings dynamics. This result was extended to the 3D Ising model
presented in [1, 6]. Similar results for four- or higher-dimensional models remain to be
found, because the variational problems related to the analysis of the energy landscape
and critical droplet are highly complicated.

In [18], the aforementioned analyses were further refined via the potential-theoretic
approach developed in [16]. In [18], the authors obtained the Eyring–Kramers law
for the transition time between monochromatic configurations, as well as the spectral
gap of the associated dynamics. This new technology does not provide information on
the transition path; however, it provides precise asymptotics for the mean metastable
transition time and spectral gap. The same model on growing lattice boxes, rather than
fixed ones, was investigated in [15], and the Kawasaki-type (instead of Glauber-type)
dynamics for the same model were studied in [14].

Model without external field

When studying the metastability of the stochastic Ising model with a non-zero external
field (as described above), the crucial object is the critical droplet, which provides a
sharp saddle structure for the energy landscape. However, in the zero external field
case, the critical droplet does not exist. Instead, the saddle structure is flat, structurally
complex, and composed of a large set of saddle configurations. This is the crucial
challenge in the zero external field case, which has left the problem unsolved for a long
time. In the present study, we solve this problem by comprehensively analyzing the
energy landscape.

Recently, [42] analyzed for the first time the 2D Ising and Potts models in the absence
of external fields. More precisely, they characterized (1) the energy barrier between
ground states and (2) the deepest metastable valleys in the landscape. Using the
energy landscape results and a general tool referred to as the pathwise approach to
metastability (developed in [19, 20, 41, 43]), they obtained large deviation-type results
for the metastable behaviors of the 2D models in the absence of external fields.

In [27], which is a companion article of the present one, we improved on the refine-
ment of results in the previous studies for the 2D model using the potential-theoretic
approach, thereby making the following contributions:

• the Eyring–Kramers law for metastable transitions between monochromatic config-
urations,

• the Markov chain model reduction of metastable behavior (cf. [28] for a compre-
hensive review on this method), and

• the full characterization of typical transition paths.

To this end, we derive a highly detailed analysis of the energy landscape and characterize
all saddle configurations. In particular, we comprehensively and precisely describe the
large and complicated saddle structure of the model. Our analysis is sufficiently accurate
to allow the transition paths between ground states to be characterized explicitly.

Main achievement

In the current article, we extend all these analyses to the 3D Ising and Potts mod-
els by combining the pathwise approach and the potential-theoretic approach.
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Indeed, the energy landscape of the 3D model is significantly more complicated than
that of the 2D model. For both the 2D and 3D models, there are numerous saddle
configurations between ground states, and they form a plateau structure. For the 2D
model, at least the bulk part of this plateau structure is relatively simple, because
each saddle configuration can only move forward or backward to reach another saddle
configuration. In contrast, for the 3D model, we cannot expect such a simplification,
because there exist certain configurations for which the legitimate movements between
saddle configurations can occur in a substantially more complex manner. We refer to
the figure at the front page for an example of a highly complicated saddle configuration
in the 3D case (which should be characterized in some way to answer all the questions
above). Readers who are familiar with the results on the non-zero external field model
can notice from this figure that the saddle configurations for the zero external model
may not have a clear structure as in the non-zero external field case.

Approximation method to metastability

In our companion paper [27], we introduced a new approximation method to prove
the Eyring–Kramers law and Markov chain model reduction. This method relies on the
approximation of the equilibrium potential function (refer to Section 3.1 for the precise
definition) in a Sobolev space defined via the Dirichlet norm associated with the Markov
chain. It is robust and particularly suitable if the energy landscape is too complex to
apply the potential-theoretic approach [16] via variational principles (the Dirichlet and
Thomson principles), because it effectively avoids these variational principles via an
approximation in the Sobolev space. We apply this method to the 3D model to achieve
our main result.

The main mathematical difficulty of applying this method lies in the fact that we
must construct a test function that accurately approximates the equilibrium potential
function so that we can obtain the precise Sobolev norm. For this procedure, we need a
comprehensive understanding of the whole energy landscape regarding the metastable
transitions. Thus, compared with the 2D model, the corresponding construction for the
3D model is far more complicated. Overcoming this difficulty is the main contribution of
the present study.

2 Main results

2.1 Models

In this subsection, we introduce the stochastic Ising and Potts models on a fixed 3D
lattice and review their basic features.

Ising and Potts models

We fix three positive integers K ≤ L ≤M . Then, we denote by

Λ = J1, KK× J1, LK× J1, MK

the 3D lattice box. We use the notation Ja, bK = [a, b] ∩ Z throughout this article. We
impose either open or periodic boundary conditions upon the lattice box Λ. For the latter
boundary condition, we can write

Λ = TK ×TL ×TM , (2.1)

where Tk = Z/(kZ) represents the discrete one-dimensional torus.
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For an integer q ≥ 2, we use S = {1, . . . , q} to represent the set of spins and X = SΛ

to represent the space of spin configurations in the 3D box Λ. We express a configuration
σ ∈ X as σ = (σ(x))x∈Λ, where σ(x) ∈ S represents the spin of σ at site x ∈ Λ.

For x, y ∈ Λ, we write x ∼ y if they are neighboring sites; that is, ‖x− y‖ = 1 where
‖ · ‖ denotes the Euclidean distance in Λ. With this notation, we define the Hamiltonian
H : X → R as

H(σ) =
∑

{x, y}⊆Λ: x∼y

1{σ(x) 6= σ(y)} − h
∑
x∈Λ

σ(x) ; σ ∈ X , (2.2)

where h ∈ R denotes the magnitude of the external magnetic field. Thus, the first
summation on the right-hand side represents the spin–spin interactions, and the second
one corresponds to the effect of the external magnetic field. We use µβ(·) to denote the
Gibbs measure on X associated with the Hamiltonian H at inverse temperature β > 0;
that is,

µβ(σ) =
1

Zβ
e−βH(σ) ; σ ∈ X , (2.3)

where Zβ =
∑
ζ∈X e

−βH(ζ) is the partition function. The random spin configuration on
box Λ corresponds to the probability measure µβ(·) on X ; it is referred to as the Ising
model if q = 2 and the Potts model if q ≥ 3. Henceforth, we treat q as a fixed parameter.
Our primary concern is the metastability analyses of these models as β → ∞ under
Metropolis–Hastings dynamics, which will be defined precisely below.

Remark 2.1 (Results for non-zero external field). Comprehensive analyses of the energy
landscape and the metastability of the Ising model with a non-zero external field i.e.,
h 6= 0, were performed in [18, 44, 45] for the 2D case, and in [1, 6] for the 3D one. For
these models, the characterization of the critical droplet comprehensively explains the
metastable behavior. We remark that analysis for cases of more than three dimensions
has yet to be undertaken, because the energy landscape is too complex to allow critical
droplets to be characterized. Recently, the 2D Potts model with an external field toward
one specific spin has been studied [7, 8, 9].

In this study, we consider the zero external field case (i.e., h = 0); thus, we hence-
forth assume that h = 0. This case differs from those involving non-zero external
fields, in the sense that the energy landscape is not characterized by critical droplets.
Instead, we must tackle a large and complex landscape of saddle configurations via
complicated combinatorial and probabilistic arguments.

Ground states

For each a ∈ S, denote by sa ∈ X the monochromatic configuration in which all spins
are a, i.e., sa(x) = a for all x ∈ Λ. We write

S = {s1, . . . , sq} . (2.4)

It is precisely upon S that the Hamiltonian H(·) attains its minimum 0; hence, S rep-
resents the set of ground states of the model. Accordingly, we obtain the following
characterization of the partition function Zβ that appears in (2.3), as well as the Gibbs
measure µβ as β →∞.
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Theorem 2.2. We have1

Zβ = q +Oβ(e−3β) . (2.5)

Thus, we obtain

lim
β→∞

µβ(s) =
1

q
for all s ∈ S and lim

β→∞
µβ(S) = 1 .

Proof. The estimate (2.5) of the partition function comes directly from the expression
of the partition function given right after (2.3) and the fact that H(σ) ≥ 3 for σ /∈ S.
The second assertion of the theorem is directly derived from the first one and the
expression (2.3) of µβ .

Metropolis–Hastings dynamics and metastability

We give a continuous version of the Metropolis–Hastings dynamics, which is the standard
heat-bath Glauber dynamics used for studying the metastability of the Ising model [44].
For x ∈ Λ and a ∈ S, we use σx, a ∈ X to denote the configuration obtained from σ by
updating the spin at site x to a. Then, the continuous version of the Metropolis–Hastings
dynamics is defined as a continuous-time Markov chain {σβ(t)}t≥0 on X , whose transition
rates are given by

rβ(σ, ζ) =

{
e−β[H(ζ)−H(σ)]+ if ζ = σx, a 6= σ for some x ∈ Λ and a ∈ S ,
0 otherwise ,

where [α]+ = max {α, 0}. We notice from this definition of the rate rβ(·, ·) that the
Metropolis–Hastings dynamics tends to lower the energy, particularly when β is large,
because the jump rate from one configuration to another one with higher energy is
exponentially small, whereas the jump rate to another one with lower or equal energy is
1. We let Pβσ and Eβσ represent the law and expectation, respectively, of the process σβ(·)
starting from σ.

For σ, ζ ∈ X , we write σ ∼ ζ if rβ(σ, ζ) > 0. Note that σ ∼ ζ if and only if ζ ∼ σ, and
that the relation σ ∼ ζ does not depend on β. A crucial observation regarding the rate
rβ(·, ·) defined above is that

µβ(σ) rβ(σ, ζ) = µβ(ζ) rβ(ζ, σ) =

{
min {µβ(σ), µβ(ζ)} if σ ∼ ζ ,
0 otherwise .

(2.6)

From this detailed balance condition, we observe that the invariant measure for the
Metropolis–Hastings dynamics σβ(·) is µβ(·) and that {σβ(t)}t≥0 is reversible with respect
to µβ(·). We also note that the Markov chain σβ(·) is irreducible.

In view of Theorem 2.2, we anticipate that the process σβ(·) will exhibit metastable
behavior between ground states, provided that β is sufficiently large. More precisely, the
process σβ(·) starting from configuration s ∈ S remains in a certain neighborhood of s for
a sufficiently long time, and then undergoes a rare but rapid transition to another ground
state. Our main concern is to precisely analyze such metastability of the stochastic Ising
and Potts models under the Metropolis–Hastings dynamics (defined above) in the very
low temperature regime; that is, when β →∞. We explain these results in the following
subsection.

1For two collections (aβ)β>0 = (aβ(K, L, M))β>0 and (bβ)β>0 = (bβ(K, L, M))β>0 of real numbers, we
write aβ = Oβ(bβ) if there exists some C = C(K, L, M) > 0 such that

|aβ | ≤ Cbβ for all β > 0 and K, L, M .
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Remark 2.3. We employ the continuous-time dynamics (as applied in numerous previ-
ous studies) because it offers a simpler presentation than the corresponding discrete
dynamics (as demonstrated in [6, 18, 42]), for which the jump probability is given by

pβ(σ, ζ) =


1
q|Λ| e

−β[H(ζ)−H(σ)]+ if ζ = σx, a 6= σ for some x ∈ Λ , a ∈ S ,
1−

∑
x∈Λ, a∈S:σx,a 6=σ pβ(σ, σx, a) if ζ = σ ,

0 otherwise .
(2.7)

However, our computations can be applied to this model as well. See also Remark 2.15.

2.2 Main results: Large deviation-type results

Hereafter, we explain our results regarding the metastability of the stochastic Ising
and Potts models. In the current subsection, we explain the large deviation-type results
obtained for the metastable behavior.

Energy barrier between ground states

First, we introduce the energy barrier associated with the Ising and Potts models
considered in this study. This is important for the analysis of metastable behaviors, in
that the Metropolis–Hastings dynamics must overcome this energy barrier to make a
transition from one ground state to another.

A sequence of configurations (ωt)
T
t=0 = (ω0, ω1, . . . , ωT ) ⊆ X for some integer T ≥ 0

is called a path if ωt ∼ ωt+1 (i.e., rβ(ωt, ωt+1) > 0) for all t ∈ J0, T − 1K. We say that
this path connects two configurations σ and ζ if ω0 = σ and ωT = ζ or vice versa. The
communication height between two configurations σ, ζ ∈ X 2 is defined as

Φ(σ, ζ) = min
(ωt)Tt=0

max
t∈J0, T K

H(ωt) ,

where the minimum is taken over all paths connecting σ and ζ. Moreover, for two disjoint
subsets P and Q of X , we define

Φ(P, Q) = min
σ∈P, ζ∈Q

Φ(σ, ζ) .

Then, we define

Γ = Γ(K, L, M) = Φ(s, s′) ; s, s′ ∈ S .

Note that Φ(s, s′) does not depend on the selections of s, s′ ∈ S, owing to the model
symmetry. Additionally, note that Γ represents the energy barrier between ground states,
because the dynamics must overcome this energy level to make a transition from one
ground state to another.

To characterize the energy barrier, we must check the maximum energy of all paths
connecting the ground states. Thus, the energy barrier is a global feature of the energy
landscape, and characterizing it is a non-trivial task. For the current model, we can
identify the exact value of the energy barrier. Recall that we assumed K ≤ L ≤M .

Theorem 2.4. For all sufficiently large K, it holds that

Γ =

{
2KL+ 2K + 2 under periodic boundary conditions ,

KL+K + 1 under open boundary conditions .
(2.8)

2By writing a, b ∈ A, we implicitly state that a and b are different.
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Remark 2.5. Our arguments state that this theorem holds for K ≥ 2829, where the
threshold 2829 may be sub-optimal (cf. Remark 8.4). However, the optimality of this
threshold is a minor issue, because our main concern is the spin system on large boxes.
Henceforth, we assume that K satisfies this condition, i.e., K ≥ 2829.

Theorem 2.4 is proved in Section 8.

Remark 2.6. Several remarks regarding the previous theorem are in order.

1. Note that Theorem 2.4 does not depend on the value of q, because in the transition
from sa to sb for a, b ∈ S, no spins besides a and b play a significant role.

2. Suppose temporarily that Γd is the energy barrier, defined in the same way as above,
subjected to Ising/Potts models defined on a d-dimensional lattice box of size K1 ×
· · · ×Kd with K1 ≤ · · · ≤ Kd. Then, we expect that Γd = 2 + 2

∑d−1
n=1

∏n
i=1Ki under

periodic boundary conditions and Γd = 1 +
∑d−1
n=1

∏n
i=1Ki under open boundary

conditions for all d ≥ 2. Notice that the case of d = 2 is handled in [42, Theorem
1.1] and the case of d = 3 is handled in Theorem 2.4. We leave the verification of
this conjecture for the case of d ≥ 4 as a future research problem.

Comparison with non-zero external field case

We conclude this energy barrier discussion by comparing our results for the zero external
field case with those for the non-zero external field case obtained in [44] and [6] for
the Ising model (i.e., q = 2) in two or three dimensions, respectively. More precisely,
they showed that the energy barrier is given by (under some technical assumptions
regarding h)

Γ2(h) = 4`h − h[`h(`h − 1) + 1] ,

Γ3(h) = 2mh(2mh − δh − 1) + 2(mh − δh)(mh − 1) + 4`h

− h[mh(mh − δh)(mh − 1) + `h(`h − 1) + 1] ,

where Γd represents the d-dimensional energy barrier, `h = d2/|h|e, mh = d4/|h|e, and
δh ∈ {0, 1} is a constant depending only on h (provided that the lattice is sufficiently
large). We refer to [13, Chapter 17] for details. These energy barriers are characterized
by the energy of the critical droplet, and their values do not depend on the size of the
box but are determined solely by the magnitude h of the external field. This is primarily
because the size of the critical droplet is determined solely by |h|, and the size of the
box plays no role provided that the box is sufficiently large to contain a single droplet.
In contrast, the zero external field case does not feature such a critical droplet; hence,
the magnitude of the energy barrier depends crucially on the box size. This is the key
difference between the zero external field and non-zero external field cases.

Large deviation-type results based on pathwise approach

Here, we explain the large deviation-type analysis of the metastable behavior of the
Metropolis–Hastings dynamics. These results can be obtained via the pathwise approach
developed in [19], provided that we can analyze the model energy landscape to a certain
degree of precision. We refer to the monograph [46] for an extensive summary of the
pathwise approach. This approach allows us to analyze the metastability from three
different perspectives: transition time, spectral gap, and mixing time. All these quantities
are crucial for quantifying the metastable behavior. First, we explicitly define them as
follows:

• For A ⊆ X , we denote by τA = inf {t ≥ 0 : σβ(t) ∈ A} the hitting time of the set A.
If A = {σ} is a singleton, we write τ{σ} = τσ.
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• For s ∈ S, we write s̆ = S \ {s}. Then, our primary concern is the hitting time
τs̆ or τs′ for s′ ∈ s̆ when the dynamics starts from s ∈ S. We refer to this as the
(metastable) transition time, because it expresses the time required for a transition
to proceed from the ground state to another one.

• The mixing time corresponding to the level ε ∈ (0, 1) is defined as

tmix
β (ε) = min

{
t ≥ 0 : max

σ∈X
‖Pβσ [σβ(t) ∈ ·]− µβ(·)‖TV ≤ ε

}
,

where ‖ · ‖TV represents the total variation distance between measures (cf. [40,
Chapter 4]).

• We denote by λβ the spectral gap of the Metropolis–Hastings dynamics defined in
Section 2.1.

The 2D version of the following theorem was established in [42] using the refined
pathwise approach developed in [20, 41, 43]. We extend their results to the 3D model.

Theorem 2.7. The following statements hold.

1. (Transition time) For all s, s′ ∈ S and ε > 0, we have

lim
β→∞

Pβs [eβ(Γ−ε) < τs̆ ≤ τs′ < eβ(Γ+ε)] = 1 , (2.9)

lim
β→∞

1

β
logEβs [τs̆] = lim

β→∞

1

β
logEβs [τs′ ] = Γ . (2.10)

Moreover, under Pβs , as β →∞,

τs̆

E
β
s [τs̆]

,
τs′

E
β
s [τs′ ]

⇀ Exp(1) , (2.11)

where Exp(1) is the exponential random variable with a mean value of 1.

2. (Mixing time) For all ε ∈ (0, 1/2), the mixing time satisfies

lim
β→∞

1

β
log tmix

β (ε) = Γ .

3. (Spectral gap) There exist two constants 0 < c1 ≤ c2 such that

c1 e
−βΓ ≤ λβ ≤ c2 e−βΓ .

Remark 2.8. The above theorem holds under both open and periodic boundary condi-
tions.

Theorem 2.7 states that the metastable transition time, mixing time, and inverse
spectral gap become exponentially large as β →∞, and their exponential growth rates
are determined by the energy barrier Γ.

The robust methodology developed in [20, 41, 43] implies that characterizing the
energy barrier between ground states and identifying all the deepest valleys suffice (up
to several technical issues) to confirm the results presented in Theorem 2.7. In [42],
the authors performed corresponding analyses of the energy landscape; then, they used
this robust methodology to prove Theorem 2.7 for two dimensions. We perform the
corresponding analysis of the energy landscape for the 3D model as well in Sections 6, 7,
and 8. The proof of Theorem 2.7 is given in Section 8.3. Analysis of the energy landscape
is far more difficult than that of the 2D one considered in [27] for several reasons. Details
are presented at the beginning of Section 6.
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Characterization of transition path

Our analysis of the energy landscape is sufficiently precise to characterize all the possible
transition paths between ground states in a high level of detail. The transition paths are
rigorously defined in Definition 9.13; we do not present explicit definitions here, because
we would have to define a large amount of notation. The following theorem asserts that,
with dominating probability, the Metropolis–Hastings dynamics evolves along one of the
transition paths when a transition occurs from one ground state to another.

Theorem 2.9. For all s ∈ S, we have3

Pβs
[
∃0 < t1 < · · · < tN < τs̆ such that (σβ(tn))Nn=1 is a transition path between s and s̆

]
= 1− oβ(1) .

The characterization of the transition paths and the proof of this theorem are given
in Section 9.4.

2.3 Main results: Eyring–Kramers law and Markov chain model reduction

The following results constitute more quantitative analyses of the metastable behavior
obtained using potential-theoretic methods. In particular, we obtain the Eyring–Kramers
law (which is a considerable refinement of (2.10)) and the Markov chain model reduction
of metastable behavior in the sense of [2, 4].

For these results, we require an accurate understanding of the energy landscape and
the behavior of the Metropolis–Hastings dynamics on a large set of saddle configurations
between ground states. We conduct these analyses in Sections 9 and 10.

We further remark that the quantitative results given below depend on the selection
of boundary condition, in contrast to Theorems 2.7 and 2.9 (cf. Remark 2.8). For brevity,
we assume periodic boundary conditions throughout this subsection. We can treat the
open boundary case in a similar manner; the results and a sketch of the proof are
presented in Section 11.

Eyring–Kramers law

The following result constitutes a refinement of (2.10) (and hence of (2.11)) that allows
us to pin down the sub-exponential prefactor associated with the large deviation-type
exponential estimates of the mean transition time between ground states.

Theorem 2.10. There exists a constant κ = κ(K, L, M) > 0 such that for all s, s′ ∈ S,

Eβs [τs̆] = (1 + oβ(1))
κ

q − 1
eΓβ and Eβs [τs′ ] = (1 + oβ(1))κ eΓβ . (2.12)

Moreover, the constant κ satisfies

lim
K→∞

κ(K, L, M) =


1/8 if K < L < M ,

1/16 if K = L < M or K < L = M ,

1/48 if K = L = M .

(2.13)

In particular, the quantity Eβs [τs̆] represents the mean time required to jump from s

to another ground state; hence, the first formula of (2.12) corresponds to the so-called
Eyring–Kramers law for the Metropolis–Hastings dynamics.

3A collection (aβ)β>0 = (aβ(K, L, M))β>0 of real numbers is written as aβ = oβ(1) if

lim
β→∞

aβ = 0 for all K, L, M .
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Remark 2.11. Here, we make several comments regarding Theorem 2.10.

1. Although we do not present the exact formula for the constant κ in the theorem,
they can be explicitly expressed in terms of potential-theoretic notions relevant to a
random walk defined in a complicated space (cf. (3.10) and (3.11) for the formulas).
This random walk is vague (cf. Proposition 9.9) compared with the corresponding
random walk identified in [27, Proposition 6.22] for the 2D model, which reflects
the complexity of the energy landscape of the 3D model compared with that of the
2D one.

2. The constant κ is model-dependent. For different Glauber dynamics (even with
identical boundary conditions), this constant may differ.

3. If K < L < M , the transition between ground states must occur in a specific
direction; meanwhile, if K = L < M or K < L = M , there are two possible
directions for the transition. If K = L = M , there are six possible directions. This
explains the dependence of the asymptotics of κ on the relationships among K, L,
and M .

The proof of Theorem 2.10 is conducted via the potential-theoretic approach, which
originates from [16]. Using this approach, we can estimate the mean transition time
Eβs [τs̆] by obtaining a precise estimate of the capacity between ground states (cf. [2,
Proposition 6.10]). This estimate is typically obtained from variational principles for
capacities, such as the Dirichlet and Thomson principles. In contrast, we use the H1-
approximation technique developed in our companion article [27], which considerably
simplifies the proof but still points out the gist of the logical structure needed to estimate
the capacity.

To this end, we require precise analyses of the energy landscape and the behavior of
the underlying metastable processes on a certain neighborhood of saddle configurations
between metastable sets. In most other models for which the Eyring–Kramers law can
be obtained via such robust strategies, the energy landscape is relatively simple; hence,
the landscape only marginally presents serious mathematical issues. However, in the
current model, the saddle consists of a very large collection of saddle configurations,
which form a complex structure. Analyzing this structure is a highly complicated task;
moreover, it is difficult to assess the behavior of the dynamics in the neighborhood of
this large set with adequate precision. The achievement of these tasks is one of the main
contributions of this study. We emphasize here that the H1-approximation technique,
which is used in the proof of the main results in a critical manner, is particularly handy
for models with complicated landscapes, such as the one considered in this study.

Markov chain model reduction of metastable behavior

Because the transitions between ground states occur successively, analyzing all these
transitions together is also an important problem in the study of metastability. The
general method used is Markov chain model reduction [2, 4, 5]. In this methodology,
one proves that the metastable process (accelerated by a certain scale) converges, in
a suitable sense, to a Markov chain on the set of metastable sets. For our model, the
target Markov chain must be a Markov chain on the collection of ground states, because
each ground state corresponds to a metastable set.

To explain this result in the context of our model, we introduce trace process on
ground states. In view of Theorem 2.10, we must accelerate the process by a factor eΓβ

to observe transitions between ground states in the ordinary time scale; hence, let us
denote by σ̂β(t) = σβ(eΓβt), t ≥ 0 the accelerated process. Then, we define a random
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time T (t), t ≥ 0 as

T (t) =

∫ t

0

1{σ̂β(u) ∈ S}du ; t ≥ 0 ,

which measures the amount of time (up to t) the accelerated process spends on the
ground states. Let S(·) be the generalized inverse of T (·); that is,

S(t) = sup {u ≥ 0 : T (u) ≤ t} ; t ≥ 0 .

Then, the (accelerated) trace process {Xβ(t)}t≥0 on the set S of ground states is defined
by

Xβ(t) = σ̂β(S(t)) for t ≥ 0 . (2.14)

We observe that the trace process Xβ(·) is obtained from the accelerated process σ̂β(·)
by turning off the clock whenever it is not on a ground state; thus, the process Xβ(·)
extracts information regarding the hopping dynamics on ground states. It is well known
that the trace process Xβ(·) is a continuous-time, irreducible Markov chain on S; see [2,
Proposition 6.1] for a rigorous proof.

Here, in view of the second estimate of (2.12), we define the limiting Markov chain
{X(t)}t≥0 on S, which expresses the asymptotic behavior of the accelerated process
σ̂β(·) between the ground states as a continuous-time Markov chain with jump rate

rX(s, s′) = κ−1 for all s, s′ ∈ S . (2.15)

Theorem 2.12. The following statements hold.

1. The law of the Markov chain Xβ(·) converges to that of the limiting Markov chain
X(·) as β →∞, in the usual Skorokhod topology.

2. It holds that

lim
β→∞

max
s∈S

Eβs

[ ∫ t

0

1{σ̂β(u) /∈ S}du
]

= 0 .

The second part of this theorem implies that the accelerated process spends a
negligible amount of time in the set X \ S. Therefore, the trace process Xβ(·) of σ̂β(·) on
the set S, which is essentially obtained by neglecting the excursion of σ̂β(·) on the set
X \ S, is indeed a reasonable object for approximating the process σ̂β(·). Combining this
observation with the first part of the theorem implies that the limiting Markov chain X(·)
describes the successive metastable transitions of the Metropolis–Hastings dynamics.

Remark 2.13. The proofs of Theorems 2.10 and 2.12 are based on the potential-theoretic
argument, and we present the arguments in Section 3. We conjecture that these results
also hold for the cases of more than three dimensions.

Remark 2.14. Temporarily, we denote by Es the law of the limiting Markov chain X(·)
starting at s ∈ S. Theorem 2.12 is consistent with Theorem 2.10, in that for any s′ ∈ s̆,
we have Es [τs′ ] = κ.

Remark 2.15 (Discrete Metropolis–Hastings dynamics). The only difference in the dis-
crete dynamics defined by (2.7) is that it is q|Λ| times slower than the continuous
dynamics (in the average sense). Therefore, Theorems 2.4, 2.7, and 2.9 are valid for
this dynamics without any modification. Theorems 2.10 and 2.12 hold provided that we
replace the constant κ with κ′ = q|Λ|κ. The rigorous verification of the result proceeds
in a similar way; thus, we do not repeat it here.
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Outlook of proofs of main results

To prove Theorems 2.4 and 2.7, which fall into the category of pathwise-type metastability
results, we investigate the energy landscape of the Ising/Potts models on the 3D lattice
Λ, as described in Sections 6, 7, and 8. Along the investigation, we present proofs of
Theorems 2.4 and 2.7 in Section 8. Then, we proceed to the proofs of Theorems 2.10
and 2.12, which require more accurate analyses of the energy landscape than the
previous theorems. These detailed analyses are presented in Section 9, and as a
byproduct we present the proof of Theorem 2.9 in Section 9.4. Then, we present the
proofs of Theorems 2.10 and 2.12 in Section 10.

Non-reversible models

The stochastic system considered in this study is the continuous-time Metropolis–
Hastings spin-updating dynamics, which is reversible with respect to the Gibbs measure
µβ(·). In fact, as in our companion paper [27], we can consider various dynamics with
invariant measure µβ(·) but are non-reversible with respect to this measure. Since
the approximation method and the pathwise approach used in the proof of the main
results presented above are robust and can be used in the non-reversible setting as
well, we can analyze the 3D version of the non-reversible models introduced in [27]
for the 2D model and obtain similar results. However, for simplicity (as analysis of
the energy landscape of the 3D model is very complicated itself), we decided not to
include the non-reversible content in the current article. Readers who are interested in
non-reversible generalizations can refer to [27, Sections 2.2 and 5] for details.

3 Outline of the proof

In this section, we provide a brief summary of proof of the main results. We emphasize
again that in the remainder of this article (except in Section 11), we assume periodic
boundary conditions; that is, Λ = TK ×TL ×TM . In addition, we always assume that K
satisfies the condition given in Remark 2.5.

We reduce the proofs of Theorems 2.10 and 2.12 (which are the final destinations
of the current article) to an estimate of the capacity between ground states (cf. The-
orem 3.1), and then we reduce the proof of this capacity estimate to the construction
of a certain test function (cf. Proposition 3.2) which is a proper approximation of the
equilibrium potential function defined in (3.4). The construction and verification of
Proposition 3.2 are done in Section 10. This procedure takes into advantage all the
information on the energy landscape, analyzed in Sections 6-9.

General strategy to prove such results, which works also in non-reversible cases,
was developed in our companion article [27, Section 4]. Thus, we state here only the
essential ingredients in a self-contained manner and refer the interested readers to [27,
Section 4] for more detail.

3.1 Capacity estimate and proof of Theorems 2.10 and 2.12

The Dirichlet form Dβ(·) associated with the (reversible) Metropolis–Hastings dynam-
ics σβ(·) is given by, for f : X → R,

Dβ(f) =
1

2

∑
σ, ζ∈X

µβ(σ) rβ(σ, ζ) {f(ζ)− f(σ)}2 . (3.1)

An alternative expression for the Dirichlet form is given as

Dβ(f) = 〈f, −Lβf〉µβ , (3.2)
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where 〈·, ·〉µβ is the inner product on L2(µβ) and Lβ is the generator of the original
process, that is,

(Lβf)(σ) =
∑
ζ∈X

rβ(σ, ζ) [f(ζ)− f(σ)] . (3.3)

For two disjoint and non-empty subsets P and Q of X , the equilibrium potential between
P and Q is the function hβP,Q : X → R defined by

hβP,Q(σ) = Pβσ [τP < τQ] . (3.4)

By definition, it readily follows that hβP,Q ≡ 1 on P and hβP,Q ≡ 0 on Q. Then, we define
the capacity between P and Q as

Capβ(P, Q) = Dβ(hβP,Q) . (3.5)

It is well known that the equilibrium potential is the unique solution to the following
equation: 

f ≡ 1 on P ,
f ≡ 0 on Q ,

Lβf ≡ 0 on X \ (P ∪Q) .

(3.6)

Next, we define the constant κ = κ(K, L, M) that appears in Theorems 2.10 and 2.12.

• Let mK = bK2/3c, where bαc is the biggest integer not bigger than α, and let
κ2D = κ2D(K, L) be the constant that appeared in [27, (4.13)], which is defined
later in (5.11) explicitly and satisfies

lim
K→∞

κ2D(K, L) =

{
1/4 if K < L ,

1/8 if K = L .
(3.7)

Then, for n ∈ J1, q − 1K, the bulk constant b(n) is defined explicitly as

b(n) =


1

n(q−n) ·
M−2mK

2M · κ2D(K, L) if K < L < M ,
1

n(q−n) ·
M−2mK

2M · κ2D(K, L) if K = L < M ,
1

n(q−n) ·
M−2mK

4M · κ2D(K, L) if K < L = M ,
1

n(q−n) ·
M−2mK

6M · κ2D(K, L) if K = L = M .

(3.8)

• The edge constant e(n), n ∈ J1, q − 1K, is defined in (9.12). Furthermore, it is
verified in Proposition 9.9 that

0 < e(n) ≤ 1

K1/3
for all n ∈ J1, q − 1K . (3.9)

• Then, for n ∈ J1, q − 1K, we define the constant

c(n) = b(n) + e(n) + e(q − n) . (3.10)

We remark that by definition, b(n) = b(q − n) for n ∈ J1, q − 1K; therefore, we have
c(n) = c(q − n). Finally, we define the constant κ that appears in Theorem 2.10 as

κ = (q − 1)c(1) . (3.11)
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For A ⊆ S, we define (cf. (2.4))

S(A) = {sa : a ∈ A} .

A pair (A, B) of two subsets A and B of S is referred to as a proper partition of S if
A and B are non-empty subsets of S satisfying A ∪ B = S and A ∩ B = ∅. Our aim is
to estimate the capacity between S(A) and S(B) for proper partitions (A, B) of S. The
following theorem expresses the key capacity estimate:

Theorem 3.1. It holds for any proper partition (A, B) of S that

Capβ(S(A), S(B)) =
1 + oβ(1)

qc(|A|)
e−Γβ , (3.12)

where c(|A|) is the constant defined in (3.10).

We explain the strategy used to prove this theorem in Section 3.2. Here, we conclude
the proofs of Theorems 2.10 and 2.12 by assuming Theorem 3.1.

Proof of Theorem 2.10. By [2, Proposition 6.10], we have the following formula for the
mean transition time:

Eβs [τs̆] =
1

Capβ(s, s̆)

∑
σ∈X

µβ(σ)hβs, s̆(σ) .

Using Theorem 2.2 and the fact that hβs, s̆(s) = 1 and hβs, s̆ ≡ 0 on s̆, we can rewrite the
last summation as

1

q
+ oβ(1) +

∑
σ∈X\S

µβ(σ)hβs, s̆(σ) =
1

q
+ oβ(1) ,

where the identity follows from the trivial bound |hβs, s̆| ≤ 1 (cf. (3.4)). Summing up the
computations above and applying Theorem 3.1, we obtain

Eβs [τs̆] =
1

Capβ(s, s̆)

[ 1

q
+ oβ(1)

]
= (1 + oβ(1))

κ

q − 1
eΓβ . (3.13)

We next address the second estimate of (2.12). Assume that the process σβ(·) starts
at s and that s 6= s′. We define a sequence of stopping times (Jn)∞n=0 by J0 = 0 and

Jn+1 = inf {t ≥ Jn : σβ(t) ∈ S \ σβ(Jn)} ; n ≥ 0 .

In other words, (Jn)∞n=0 is the sequence of random times at which the process σβ(·) visits
a new ground state. By (3.13) and the strong Markov property, we have for all n ≥ 0 that

Eβs [Jn+1 − Jn] = (1 + oβ(1))
κ

q − 1
eΓβ . (3.14)

Then, we define

n(s′) = inf {n ≥ 0 : σβ(Jn) = s′}

such that τs′ = Jn(s′); thus, we can write

τs′ =

n(s′)−1∑
i=0

(Ji+1 − Ji) . (3.15)
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Note that because we have assumed s 6= s′, it holds that n(s′) ≥ 1. By symmetry, we
observe that n(s′) is a geometric random variable with success probability 1

q−1 that is
independent of the sequence (Jn)∞n=0. Thus, we get from (3.14) and (3.15) that

Eβs [τs′ ] = (1 + oβ(1))
κ

q − 1
eΓβ × (q − 1) = (1 + oβ(1))κ eΓβ .

Finally, from (3.7), (3.8), (3.9), and (3.10), we can easily see that κ satisfies the asymp-
totics (2.13). This completes the proof.

Next, we consider Theorem 2.12. The general methodology used to prove this
type of Markov chain model reduction, based on potential-theoretic computations, was
developed in [2, 4]. Our proof also uses the potential-theoretic approach; however,
the computation is slightly simpler because the metastable sets are singletons. Before
stating the proof, we remark that two alternative approaches are available for the Markov
chain model reduction in the context of metastability: an approach based on the Poisson
equation [33, 35, 47, 48], and one based on the resolvent equation [32, 39].

Proof of Theorem 2.12. We first consider part (1). We denote by rtr
β : S × S → [0, ∞) the

transition rate of the trace process Xβ(·). In view of the rate (2.15) of the limiting Markov
chain, it suffices to prove that rtr

β (s, s′) = (1 + oβ(1)) 1
κ for all s, s′ ∈ S [2, Theorem 2.4].

Since rβ(s, s′) does not depend on the selections of s, s′ ∈ S by the symmetry of the
model, it remains to prove that

rtr
β (s, s̆) = (1 + oβ(1))

q − 1

κ
for all s ∈ S . (3.16)

We denote by Eβs the law of the trace process Xβ(·) starting at s. Then,

1

rtr
β (s, s̆)

= Eβs [τs̆] = e−Γβ Eβs

[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]
, (3.17)

where the factor e−Γβ is included because we accelerated the process by the factor eΓβ

when defining the trace process; the integrand 1{σβ(t) ∈ S} arises because the trace
process is obtained from the accelerated process by turning off the clock when the
process resides outside S. Then, by [2, Proposition 6.10], we can write

Eβs

[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]

=
1

Capβ(s, s̆)

∑
σ∈X

µβ(σ)1{σ ∈ S}hβs, s̆(σ) =
µβ(s)

Capβ(s, s̆)
,

where the second identity follows from the fact that hβs, s̆(s) = 1 and hβs, s̆ ≡ 0 on s̆.
Therefore, by Theorems 2.2 and 3.1, we obtain

Eβs

[ ∫ τs̆

0

1{σβ(t) ∈ S}dt
]

= (1 + oβ(1))
κ

q − 1
eΓβ .

Inserting this into (3.17) yields (3.16).
Here, we address part (2). Denote by Pβµβ the law of the Metropolis–Hastings

dynamics σβ(·) for which the initial distribution is µβ . Then, for any u > 0, we obtain

Pβs [σβ(u) /∈ S] ≤ 1

µβ(s)
Pβµβ [σβ(u) /∈ S] =

µβ(X \ S)

µβ(s)
, (3.18)

where the final identity holds because µβ is the invariant distribution. Therefore by the
Fubini theorem,

Eβs

[ ∫ t

0

1{σ̂β(u) /∈ S}du
]

=

∫ t

0

Pβs [σβ(eΓβu) /∈ S]du ≤ t · µβ(X \ S)

µβ(s)
,

which vanishes as β →∞ by Theorem 2.2.
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3.2 H1-approximation of equilibrium potential and proof of Theorem 3.1

We fix a proper partition (A, B) of S, and explain the general strategy to prove
Theorem 3.1, that is, to estimate the capacity Capβ(S(A), S(B)).

The methodology explained here is based on [27, Section 4.5], in which it is demon-
strated that finding a suitable H1-approximation of the equilibrium potential hβS(A),S(B)

between S(A) and S(B) is sufficient to establish the capacity estimate. The following
proposition states this result.

Proposition 3.2 (H1-approximation of the equilibrium potential). For any proper parti-
tion (A, B) of S, there exists a function h̃ = h̃βS(A),S(B) : X → R such that the following
properties hold.

1. The function h̃ approximates hβS(A),S(B) in the sense that

Dβ(hβS(A),S(B) − h̃) = oβ(e−βΓ) . (3.19)

2. It holds that

Dβ(h̃) =
1 + oβ(1)

qc(|A|)
e−Γβ . (3.20)

Remark 3.3. The following statements are remarks on the previous proposition.

1. Since the (square root of the) Dirichlet form can be regarded as an H1-seminorm,
by (3.19), the test function h̃ approximates hβS(A),S(B) in the H1-sense.

2. Property (3.20) is the one that should be satisfied by the equilibrium potential,
provided that Theorem 3.1 holds in view of (3.5).

3. Proposition 3.2 has a simpler form compared to the original one [27, Proposition
4.4], because here we only need to consider the case when (A, B) is a proper
partition of S.

4. Finding the test function h̃ requires precise information on the energy landscape
and a deep insight into typical patterns of the Metropolis–Hastings dynamics in
a suitable neighborhood of saddle configurations. We derive this in Sections 6-9.
Then, the construction of the test function h̃ and the proof of Proposition 3.2 are
given in Section 10.

5. We remark that the strategies explained in Section 3, which are the proofs of the
Eyring–Kramers law and the Markov chain model reduction explained in Section 3.1
and the H1-approximation method explained in Section 3.2, are model-independent
and robust against specific models. Whereas, the remaining parts of the article are
dedicated to construct the test function h̃ satisfying the assumptions in Proposi-
tion 3.2 and highly depend on the complicated structure of the energy landscape
of the 3D Ising/Potts models.

Finally, provided that Proposition 3.2 holds, we prove Theorem 3.1.

Proof of Theorem 3.1. By the triangle inequality for the seminorm Dβ(·)1/2, it holds that

Dβ(h̃)1/2−Dβ(hβS(A),S(B)−h̃)1/2 ≤ Dβ(hβS(A),S(B))
1/2 ≤ Dβ(h̃)1/2+Dβ(hβS(A),S(B)−h̃)1/2 .

Hence, by (3.19) and (3.20), we obtain

Dβ(hβS(A),S(B)) =
1 + oβ(1)

qc(|A|)
e−Γβ .

By (3.5), the last display completes the proof.

Hence, to prove the main results given in Theorems 2.10 and 2.12, it remains to
prove Proposition 3.2. The proof is given in Section 10.
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4 Neighborhood of configurations

In this section, we introduce several notions of neighborhoods of configurations,
which are analogues of the same concepts defined in [27, Section 6.1]. These notions
will be crucially used in the characterization of energy landscape and in the construction
of test objects.

For c ∈ R, a path (ωt)
T
t=0 in X is called a c-path if it is a path in the sense of Section 2.2,

and moreover satisfies H(ωt) ≤ c for all t ∈ J0, T K. Moreover, we say that this path is in
P ⊆ X if ωt ∈ P for all t ∈ J0, T K.

Definition 4.1 (Neighborhood of configurations). 1. For σ ∈ X , the neighborhood
N (σ) and the extended neighborhood N̂ (σ) are defined as

N (σ) = {ζ ∈ X : There exists a (Γ− 1)-path (ωt)
T
t=0 connecting σ and ζ} and

N̂ (σ) = {ζ ∈ X : There exists a Γ-path (ωt)
T
t=0 connecting σ and ζ} .

We set N (σ) = ∅ (resp. N̂ (σ) = ∅) if H(σ) > Γ − 1 (resp. H(σ) > Γ). Then for
P ⊆ X , we define

N (P) =
⋃
σ∈P
N (σ) and N̂ (P) =

⋃
σ∈P
N̂ (σ) .

2. Let Q ⊆ X . For σ ∈ X such that σ /∈ Q, we define

N̂ (σ ; Q) = {ζ ∈ X : There exists a Γ-path in X \ Q connecting σ and ζ} .

As before, we set N̂ (σ ; Q) = ∅ if H(σ) > Γ. Then for P ⊆ X disjoint with Q, define

N̂ (P ; Q) =
⋃
σ∈P
N̂ (σ ; Q) .

With this notation, by the definition of Γ, it holds that N (s) ∩ N (s′) = ∅ and N̂ (s) =

N̂ (s′) for any s, s′ ∈ S. Moreover, in the spirit of the large deviation principle, the only
configurations relevant to the study of metastability are the ones in N̂ (S). Hence, it is
crucial to understand the structure of the set N̂ (S). That is the content of Proposition 9.6.

We conclude this section with an elementary lemma which will be used in several
instances of our discussion. The proof is well explained in [27, Lemma A.1], and thus we
omit the detail.

Lemma 4.2. Suppose that P and Q are disjoint subsets of X . Then, it holds that

N̂ (P ∪Q) = N̂ (Q ; P) ∪ N̂ (P ; Q) .

5 Review of two-dimensional model

In this section, we recall some crucial 2D results on the energy landscape from [27,
Sections 6, 7 and Appendices B, C], which are needed in our investigation of the 3D
model. Since all the results that appear in the current section are proved in [27], we
refer to the proofs therein.

Notation 5.1. Greek letters η and ξ are used to denote the spin configurations of the
2D model, while letters σ and ζ are used to denote the 3D configurations. We use the
superscript 2D to stress the notation for the 2D model; for example, we shall denote
by H2D(·) the Hamiltonian of the 2D model to distinguish with H(·) which denotes the
Hamiltonian of the 3D model.
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5.1 2D stochastic Ising and Potts models with periodic boundary conditions

We denote by Λ2D = TK×TL the 2D lattice with periodic boundary conditions. Recall
that S = {1, 2, . . . , q} denotes the set of spins, and denote by X 2D = SΛ2D

the space of
spin configurations on the 2D lattice. Then, the 2D Ising/Potts Hamiltonian function
H2D : X 2D → R (without external field) is defined by

H2D(η) =
∑

{x, y}⊆Λ2D: x∼y

1{η(x) 6= η(y)} ; η ∈ X 2D . (5.1)

We denote by s2D
a , a ∈ S the 2D monochromatic configurations of spin a, that is, s2D

a (x) =

a for all x ∈ Λ2D. Then, it is straightforward that the ground states of this Hamiltonian is
also the monochromatic configurations, i.e., the collection S2D of the ground states is
given as

S2D = {s2D
1 , s2D

2 , . . . , s2D
q } .

Then, we write µ2D
β (·) the associated 2D Gibbs measure, i.e.,

µ2D
β (η) =

1

Z2D
β

e−βH
2D(η) ; η ∈ X 2D .

Here, Z2D
β is the 2D partition function with the property that (cf. [27, Theorem 2.1])

lim
β→∞

Z2D
β = q . (5.2)

In the 2D model, we also consider the continuous-time Metropolis–Hastings dynamics
whose transition rate is defined as

r2D
β (η, ξ) =

{
e−β[H2D(ξ)−H2D(η)]+ if ξ = ηx, a 6= η for some x ∈ Λ2D and a ∈ S ,
0 otherwise .

This 2D stochastic Ising/Potts model is thoroughly analyzed in our companion article
[27]. The remainder of this section presents a review of our analysis.

5.2 Energy barrier and canonical transition paths

It is verified in [42, Theorem 2.1] that the energy barrier between the ground states
of the 2D model is given by

Γ2D = 2K + 2 .

Then, by replacing Γ that appears in Definition 4.1 with Γ2D, we get two types of
neighborhoods N 2D and N̂ 2D for the 2D model. In this subsection, we explain a class
of natural optimal transition paths that achieve this energy level. These paths are
denoted as canonical paths. To define these paths, we first define the so-called canonical
configurations. We note that the constructions given here is a brief survey of [27, Section
6.2].

Canonical configurations

The following notation is used throughout the article (also for the 3D model).

Notation 5.2. Suppose that N ≥ 2 is a positive integer.

• Define SN as the collection of connected subsets of TN . For example, if N = 6,
few examples of the elements of S6 are ∅, {2, 3}, {5, 6, 1}, {4, 5, 6, 1, 2}, T6, etc.

• For P, P ′ ∈ SN , we write P ≺ P ′ if P ⊆ P ′ and |P ′| = |P |+ 1.
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Figure 1: 2D pre-canonical configurations. These configurations illustrate ξa, b2, 3,

ξa, b,+2, 3; 3, 4, and ξa, b,−2, 3; 2, 3, respectively.

• A sequence (Pm)Nm=0 of sets in SN is called an increasing sequence if it satisfies

∅ = P0 ≺ P1 ≺ · · · ≺ PN = TN

so that |Pm| = m for all m ∈ J0, NK.

We first introduce the pre-canonical configurations which are illustrated in Figure 1.

Definition 5.3 (2D pre-canonical configurations). Fix two spins a, b ∈ S.

• For ` ∈ TL and v ∈ J0, LK, we denote by ξa, b`, v ∈ X 2D the configuration whose spins
are b on

TK × {`+ n ∈ TL : n ∈ J0, v − 1K ⊆ Z} .

and a on the remainder.

• For ` ∈ TL, v ∈ J0, L− 1K, k ∈ TK , and h ∈ J0, KK, we denote by ξa, b,+`, v; k, h ∈ X 2D the
configuration whose spins are b on{

x ∈ Λ2D : ξa, b`, v (x) = b
}
∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`+ v}

]
and a on the remainder. Similarly, ξa, b,−`, v; k, h ∈ X 2D is the configuration whose spins
are b on{

x ∈ Λ2D : ξa, b`, v (x) = b
}
∪
[
{k + n ∈ TK : n ∈ J0, h− 1K ⊆ Z} × {`− 1}

]
and a on the remainder. The configurations defined here are 2D pre-canonical
configurations.

Based on this definition, the 2D canonical and regular configurations are defined.

Definition 5.4 (2D canonical and regular configurations). Fix a, b ∈ S. The definitions
are slightly different for the case of K < L and the case of K = L.

• (Case K < L) Collection Ca, b, 2D of 2D canonical configurations between s2D
a and

s2D
b is defined by

Ca, b, 2D =
⋃
`∈TL

⋃
v∈J0, LK

{ξa, b`, v} ∪
⋃
`∈TL

⋃
v∈J0, L−1K

⋃
k∈TK

⋃
h∈J1, K−1K

{ξa, b,+`, v; k, h, ξ
a, b,−
`, v; k, h} .

Then, the collection of canonical configurations is given as

C2D =
⋃

a, b∈S

Ca, b, 2D . (5.3)
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Figure 2: Example of a 2D canonical path from s2D
a to s2D

b .

Similarly,

Ra, b, 2D
v =

⋃
`∈TL

{ξa, b`, v} and Qa, b, 2D
v =

⋃
`∈TL

⋃
k∈TK

⋃
h∈J1, K−1K

{ξa, b,±`, v; k, h} ,

and then define R2D
v =

⋃
a, b∈S Ra, b, 2D

v and Q2D
v =

⋃
a, b∈S Qa, b, 2D

v . A configuration

in R2D
v is called a 2D regular configuration.

• (Case K = L) Define an operator Θ : X 2D → X 2D as a transpose operator, i.e.,

(Θ(σ))(k, `) = σ(`, k) ; k ∈ TK and ` ∈ TL . (5.4)

Denote temporarily by C̃a, b, 2D the collection Ca, b, 2D defined in the case of K < L

above. Then for a, b ∈ S, we define the collections of 2D canonical configurations
between s2D

a and s2D
b as

Ca, b, 2D = C̃a, b, 2D ∪Θ(C̃a, b, 2D) and C2D =
⋃

a, b∈S

Ca, b, 2D .

Similarly, we may define the collections Ra, b, 2D
v , R2D

v , Qa, b, 2D
v , and Q2D

v .

Canonical paths

Now, we explain natural optimal paths between monochromatic configurations (illus-
trated in Figure 2) that consist of canonical configurations.

Definition 5.5 (2D canonical paths). The definition below relies on Notation 5.2.

1. For P, P ′ ∈ SL with P ≺ P ′, a sequence (Ak)Kk=0 of subsets of Λ2D is a standard
sequence connecting TK × P and TK × P ′ if there exists an increasing sequence
(Qk)Kk=0 in SK such that

Ak = (TK × P ) ∪
[
Qk × (P ′ \ P )

]
; k ∈ J0, KK .
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2. A sequence (An)KLn=0 of subsets of Λ2D is a standard sequence connecting ∅ and Λ2D

if there exists an increasing sequence (P`)
L
`=0 in SL such that AK` = TK × P` for

all ` ∈ J0, LK, and furthermore for each ` ∈ J0, L− 1K the subsequence (Ak)
K(`+1)
k=K`

is a standard sequence connecting TK × P` and TK × P`+1.

3. For a, b ∈ S, a sequence (ωn)KLn=0 of 2D configurations is called a pre-canonical path
from s2D

a to s2D
b if there exists a standard sequence (An)KLn=0 connecting ∅ and Λ2D

such that

ωn(x) =

{
a if x /∈ An ,
b if x ∈ An .

4. Moreover, a sequence (ωn)KLn=0 of 2D configurations is called a canonical path (cf.
Figure 2) connecting s2D

a and s2D
b if there exists a pre-canonical path (ω̃n)KLn=0 such

that

(a) (Case K < L) ωn = ω̃n for all n ∈ J0, KLK,
(b) (Case K = L) ωn = ω̃n for all n ∈ J0, KLK or ωn = Θ(ω̃n) for all n ∈ J0, KLK.

It holds that H2D(η) ≤ 2K + 2 for all η ∈ Ca, b, 2D and

H2D(η) =

{
2K if η ∈ Ra, b, 2D

v for v ∈ J1, L− 1K ,
2K + 2 if η ∈ Qa, b, 2D

v for v ∈ J1, L− 2K .
(5.5)

Moreover, the following lemma is immediate.

Lemma 5.6 ([27, Lemma 6.12]). For a 2D canonical path (ωn)KLn=0 connecting s2D
a and

s2D
b , it holds that

max
n∈J0, KLK

H2D(ωn) = Γ2D = 2K + 2 .

Comment on depth of valleys

We conclude this subsection with an application of Definition 5.5 and Lemma 5.6 that is
crucially used later to calculate the 3D valley depths.

Lemma 5.7 ([27, Lemma B.4]). Let η ∈ X 2D and a ∈ S. For any standard sequence
(Ak)KLk=0 of sets connecting ∅ and Λ2D and for n ∈ J0, KLK, we define ωn ∈ X 2D as

ωn(x) =

{
a if x ∈ An ,
η(x) if x ∈ Λ2D \An .

Then, we have that H2D(ωn) ≤ H2D(η) + Γ2D for all n ∈ J0, KLK.

In Lemma 5.7, we have ωKL = s2D
a ∈ S2D which implies that every η ∈ X 2D is

connected to each ground state in S2D with maximum energy H2D(η) + Γ2D. This fact
implies that the maximum depth of valleys in the 2D energy landscape is Γ2D.

It can be further proved that only the valleys containing the ground states have
maximum depth Γ2D, and all the other valleys have depth strictly less than Γ2D. Indeed,
this is a necessary condition for the pathwise approach technique to metastability;
however, this level of precision is not necessarily needed in our investigation of the 3D
energy landscape. Thus, we do not go further into this direction and refer the interested
readers to [42, Theorem 2.1-(ii)].
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Figure 3: Saddle structure of the 2D Ising model with S = {1, 2}. For simplicity, we
drop the superscripts 2D in this figure.

5.3 Saddle structure

Crucial configurations in the description of the saddle structure of the 2D model is the
so-called typical configurations, which turn out to be the elements of the extended neigh-
borhood N̂ 2D(S2D) (cf. Proposition 5.9 below). We present in Figure 3 an illustration of
the saddle structure explained in this subsection.

Definition 5.8 (2D typical configurations). There are two different types of typical
configurations: the bulk and edge typical configurations.

• For a, b ∈ S, the collection of bulk typical configurations (between s2D
a and s2D

b ) is
defined by

Ba, b, 2D =
⋃

v∈J2, L−2K

Ra, b, 2D
v ∪

⋃
v∈J2, L−3K

Qa, b, 2D
v . (5.6)

Then, we write B2D =
⋃
a, b∈S Ba, b, 2D.

• Next, define

Ba, b, 2D
Γ =

⋃
v∈J2, L−3K

Qa, b, 2D
v and B2D

Γ =
⋃

a, b∈S

Ba, b, 2D
Γ =

⋃
a, b∈S

⋃
v∈J2, L−3K

Qa, b, 2D
v .

(5.7)
Then, for a ∈ S, the collection of edge typical configurations with respect to s2D

a is
defined by

Ea, 2D = N̂ 2D(s2D
a ; B2D

Γ ) . (5.8)

Finally, we write E2D =
⋃
a∈S Ea, 2D.

Then, the following crucial proposition provides the picture of the saddle structure of
the 2D model. We shall provide a similar result for the 3D model in Proposition 9.6.

Proposition 5.9 ([27, Proposition 6.16]). 1. For spins a, b, c ∈ S, we have

Ea, 2D ∩ Eb, 2D = ∅ , Ea, 2D ∩ Ba, b, 2D = Ra, b, 2D
2 and Ea, 2D ∩ Bb, c, 2D = ∅ .

2. It holds that E2D ∪ B2D = N̂ 2D(S2D).
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Gateway configurations

Next, we introduce the gateway configurations.

Definition 5.10 (2D gateway configurations). Fix a, b ∈ S. Define

Za, b, 2D := {η ∈ X 2D : There exists a path (ωt)
T
t=0 in X 2D \ B2D

Γ with T ≥ 1 such that

ω0 ∈ Ra, b, 2D
2 , ωT = η and H2D(ωt) = Γ2D for all t ∈ J1, T K} .

(5.9)

Intuitively, this set is the collection of saddle configurations between Ra, b, 2D
2 and s2D

a .
Then, we recall the 2D gateway configurations [27, Section B.5]. The gateway between
s2D
a and s2D

b is denoted as

Ga, b, 2D = Za, b, 2D ∪ Ba, b, 2D ∪ Zb, a, 2D , (5.10)

which is a decomposition of Ga, b, 2D. A configuration belonging to Ga, b, 2D is called a
gateway configuration between s2D

a and s2D
b .

Here, Ga, b, 2D is named the collection of gateway configurations because of the
following lemma, which indicates that it indeed contains the saddle configurations
between s2D

a and s2D
b .

Lemma 5.11 ([27, Lemma B.10]). For a, b ∈ S, suppose that two 2D configurations η
and ξ satisfy

η ∈ Ga, b, 2D , ξ /∈ Ga, b, 2D , η ∼ ξ , and H2D(ξ) ≤ Γ2D .

Then, we have either ξ ∈ N 2D(s2D
a ) and η ∈ Za, b, 2D or ξ ∈ N 2D(s2D

b ) and η ∈ Zb, a, 2D. In
particular, η /∈ Ba, b, 2D.

We note that the construction of regular, canonical, typical, and gateway configura-
tions, as well as canonical paths for the 2D model, will be extended to the 3D model in
the remainder of the article.

5.4 Test function

We also recall the 2D test function defined in [27, Section 7]. Although the construc-
tion therein was carried out for both Ising and Potts models, we only need the objects
for the Ising model in this article. Hence, in this subsection, we assume that q = 2.

Recall that we always assume K ≤ L. We recall a constant

κ2D = κ2D(K, L) (5.11)

from [27, (4.13)], which plays the role of κ in the current article and also satisfies

lim
K→∞

κ2D(K, L) =

{
1/4 if K < L ,

1/8 if K = L .
(5.12)

In [27, Definition 7.2], a test function h̃2D : X 2D → R (corresponding to h̃ of the 3D model
introduced in Proposition 3.2) is constructed as an H1-approximation of the equilibrium
potential between two ground states. We proclaim that this function is crucially used in
the construction of the 3D test function h̃. In the proof of Proposition 3.2, some estimates
of h̃2D are crucially used. The next estimate is used in the proof of (3.20).

Proposition 5.12 ([27, Proposition C.1]). There exists a function h̃2D : X 2D → R such
that ∑

{η, ξ}⊆X 2D: {η, ξ}∩G1, 2, 2D 6=∅

µ2D
β (η) r2D

β (η, ξ) {h̃2D(ξ)− h̃2D(η)}2 =
1 + oβ(1)

2κ2D
e−Γ2Dβ .
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The next one is crucially used in the proof of (3.19).

Proposition 5.13 ([27, Lemmas 7.10-7.16]). 1. For all η ∈ X 2D \ N 2D(S2D), it holds
that ∑

ξ∈X 2D

µ2D
β (η) r2D

β (η, ξ) [h̃2D(η)− h̃2D(ξ)] = oβ(e−Γ2Dβ) .

2. We have that∑
η∈N 2D(s2D

1 )

∑
ξ∈X 2D

µ2D
β (η) r2D

β (η, ξ) [h̃2D(η)− h̃2D(ξ)] = (1 + oβ(1))× 1

2κ2D
e−Γ2Dβ ,

∑
η∈N 2D(s2D

2 )

∑
ξ∈X 2D

µ2D
β (η) r2D

β (η, ξ) [h̃2D(η)− h̃2D(ξ)] = −(1 + oβ(1))× 1

2κ2D
e−Γ2Dβ .

5.5 Auxiliary results

In this subsection, we summarize two auxiliary results of the 2D model that are
crucially used in our arguments.

Bridges, crosses and a bound on 2D Hamiltonian

For a configuration η ∈ X 2D, a bridge, which is a horizontal or vertical bridge, is a row
or column, respectively, in which all spins are the same. If a bridge consists of spin a ∈ S,
we call this bridge an a-bridge. Then, we denote by Ba(η) the number of a-bridges with
respect to η. A cross (resp. a-cross) is the union of a horizontal bridge and a vertical
bridge (resp. a-bridges). With this notation, we have the following lower bound.

Lemma 5.14 ([27, Lemma B.2]). It holds that

H2D(η) ≥ 2
[
K + L−

∑
a∈S

Ba(η)
]
.

Characterization of configurations with low energy

Let a ∈ S. For η ∈ X 2D and σ ∈ X (a 3D configuration), we write

‖η‖a =
∑
x∈Λ2D

1{η(x) = a} and ‖σ‖a =
∑
x∈Λ

1{σ(x) = a} . (5.13)

The following proposition characterizes all the 2D configurations with energy less than
Γ2D.

Proposition 5.15 ([27, Proposition B.3]). Suppose that η ∈ X 2D satisfies H2D(η) < Γ2D.
Then, η satisfies exactly one of the following properties.

• (L1) There exist a, b ∈ S and v ∈ J2, L− 2K such that η ∈ Ra, b, 2D
v . Here, N 2D(η) =

{η}.

• (L2) There exist a, b ∈ S such that η ∈ Ra, b, 2D
1 . In this case, N 2D(η) = N 2D(s2D

a ).

• (L3) For some a ∈ S, η has an a-cross. Then, N 2D(η) = N 2D(s2D
a ) and

∑
b 6=a

‖η‖b ≤
H2D(η)2

16
≤ (2K + 1)2

16
. (5.14)
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6 Canonical configurations and paths

Analyzing the energy landscape of the 3D model is far more complex than that of
the 2D model; below, we briefly list the main differences between them that serve to
complexify the problem.

1. In the 2D model, the energy of the gateway configuration is either Γ2D or Γ2D − 2.
Thus, a Γ2D-path on the gateway configurations does not have the freedom to move.
On the other hand, in the 3D model, the energy of the gateway configuration ranges
from Γ− 2K − 2 to Γ. This implies that the behavior of a Γ-path around a gateway
configuration of energy Γ − 2K − 2 (which is a regular configuration) cannot be
characterized precisely.

2. In the 2D model, a Γ2D-path from s2D
a to s2D

b must visit a configuration in Ra, b, 2D
2 .

Then, it successively visits Ra, b, 2D
3 ,..., Ra, b, 2D

L−2 and finally arrives at s2D
b . Remark-

ably, this path does not need to visit a configuration in Ra, b, 2D
1 and in Ra, b, 2D

L−1 ; this
fact essentially arises from the features of the 2D geometry. In the 3D model, we
observe a similar phenomenon. To explain this, let us temporarily denote by Ra, bv ,
v ∈ J1, L− 1K the collection of 3D configurations such that there are v consecutive
K × L slabs of spins b and such that the spins at the remaining sites are a. Then,
there exists an integer n = nK,L,M such that any Γ-path connecting sa and sb
must successively visit configurations in Ra, bn , Ra, bn+1, . . . , Ra, bM−n but need not visit

Ra, bi for i ∈ J1, n − 1K and i ∈ JM − n + 1, M − 1K. In the 2D model, the number
corresponding to this n = nK,L,M is 2. We guess that in the 3D model, n ∼ K1/2;
however, we cannot determine the exact value of n. This fact reveals the complex
structure of the energy landscape in the 3D model. Instead, we prove below (cf.
Propositions 6.14 and 8.1) that

bK1/2c ≤ n ≤ bK2/3c .

Fortunately, this bound suffices to complete our analysis without identifying the
exact value of n.

3. In the 2D model, theN 2D-neighborhoods are fully characterized in Proposition 5.15;
meanwhile, in the 3D case, we cannot obtain such a specific and simple result.
We overcome the absence of this result by using the 2D result obtained in Propo-
sition 5.15, through suitably applying it to the analysis of the 3D model. Indeed,
this absence is a crucial difficulty in extending the analysis to the four- or higher-
dimensional models.

4. Because of the aforementioned complexity of the energy landscape, the transition
may encounter a dead-end with energy Γ, even in the bulk part of the transition;
this is not the case in the 2D model. Therefore, another technical challenge is that
of carefully characterizing these dead-ends and appropriately excluding them from
the computation.

As explained above, the energy landscape of the 3D model is more complex than that of
the 2D one, and we are unable to present a complete description of the energy landscape
for the former. Nevertheless, we analyze the landscape with the precision required to
prove our main results.

In Section 6, we introduce canonical configurations and paths. Their definitions are
direct generalizations of those in the 2D model. Then, we explain several applications of
these canonical objects. For simplicity, we temporarily denote by

Γ? := 2KL+K + 2 .

We first collect several notation which will be frequently used throughout the remain-
der of the article.
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Figure 4: Figures on Notation 6.1. This form of figure is used throughout the remain-
der of the article to illustrate a 3D configuration consisting of two types of spins only.
The large dotted box denotes Λ = TK × TL × TM . The orange unit boxes denote the
sites with spin b, and the empty part denotes the cluster of spin a. For some cases when
we only concern the shape of the cluster of spin b (e.g. in Figure 5), we omit the dotted
box representing Λ.

Notation 6.1. We refer to Figure 44 for an illustration of the notation below.

• For m ∈ TM , the slab TK × TL × {m} ⊆ Λ is called an m-th floor. For each
configuration σ ∈ X , we denote by σ(m) the configuration of σ at the m-th floor, i.e.,

σ(m)(k, `) = σ(k, `, m) ; k ∈ TK , ` ∈ TL . (6.1)

Thus, σ(m) ∈ X 2D is a spin configuration in Λ2D = TK ×TL.
• For a, b ∈ S and P ⊆ TM , we denote by σa, bP ∈ X the configuration satisfying

σa, bP (k, `, m) = b · 1{m ∈ P}+ a · 1{m /∈ P} . (6.2)

6.1 Canonical configurations

The following notation is used frequently.

Notation 6.2. We first introduce several maps on X . If K = L, we define a bijection
Θ(12) : X → X as the map switching the first and second coordinates, i.e., for all σ ∈ X
and (k, `, m) ∈ Λ,

(Θ(12)(σ))(k, `, m) = σ(`, k, m) .

If L = M , we can similarly define a bijection Θ(23) on X switching the second and third
coordinates. Finally, for the case of K = L = M , we can even define the bijection Θ(13)

on X switching the first and third coordinates.
Then, for A ⊆ X , we define Υ(A) as

Υ(A) =



A if K < L < M ,

A ∪Θ(12)(A) if K = L < M ,

A ∪Θ(23)(A) if K < L = M ,

A ∪Θ(12)(A) ∪Θ(23)(A) ∪Θ(13)(A)

∪ (Θ(12) ◦Θ(23))(A) ∪ (Θ(23) ◦Θ(12))(A)
if K = L = M .

Note that the set Υ(A) for the case of K = L = M denotes the set of all configurations
obtained by permuting the coordinates of the configurations in A.

4In fact, this figure and all the 3D figures below contradict our assumption that K ≥ 2829. However, we
believe that there will be absolutely no confusion with these figures which only provide simple illustrations of
complicated notions.
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Figure 5: Canonical configurations. These two configurations belong to Ca, b6 (if the
orange boxes represent the sites with spin b as in Figure 4), since the 2D configurations
at the 7-th floor are 2D canonical configurations ξa, b,+6, 7; 5, 2 and ξa, b,−3, 4; 2, 6, respectively.

Now, we define canonical configurations of our 3D model.

Definition 6.3 (Canonical configurations). We refer to Figure 5 for a visualization of the
objects introduced below. Recall Notation 5.2.

1. We first introduce some building blocks in the definition of canonical and gateway
configurations. For a, b ∈ S and P, Q ∈ SM with P ≺ Q, we define C̃a, bP,Q ⊆ X as

σ ∈ C̃a, bP,Q ⇔


σ(m) = s2D

b if m ∈ P ,

σ(m) = s2D
a if m ∈ Qc ,

σ(m) ∈ Ca, b, 2D if m ∈ Q \ P ,

where the 2D objects are defined in Section 5.2. Then, we set

Ca, bP,Q = Υ(C̃a, bP,Q) . (6.3)

We then define, for i ∈ J0, M − 1K,

Ca, bi =
⋃

P,Q∈SM : |P |=i and P≺Q

Ca, bP,Q and Ca, b =

M−1⋃
i=0

Ca, bi . (6.4)

Finally, for a proper partition (A, B) of S, we write

CA,Bi =
⋃
a∈A

⋃
b∈B

Ca, bi and CA,B =
⋃
a∈A

⋃
b∈B

Ca, b .

A configuration belonging to Ca, b for some a, b ∈ S is called a canonical configura-
tion between sa and sb.

In view of the definition above, the role of the map Υ is clear. When K < L < M

there is only one direction of transition, if K = L < M or K < L = M there are 2 = 2!

possible directions, while if K = L = M there are 6 = 3! possible directions. The map Υ

reflects this observation into the definition. Next, let us define regular configurations
which are the special ones among the canonical configurations.

Definition 6.4 (Regular configurations). For a, b ∈ S and P ∈ SM , recall the configura-
tion σa, bP from (6.2) and define

R̃a, bi = {σa, bP : P ∈ SM , |P | = i} ; i ∈ J0, MK . (6.5)
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Note that R̃a, bi is a collection of configurations consisting of spins a and b only, where
spins a and b are located at slabs TK × TL × (TM \ P ) and TK × TL × P , respectively,
for P ∈ SM with |P | = i. Then, define (cf. Notation 6.2)

Ra, bi = Υ(R̃a, bi ) . (6.6)

A configuration belonging to Ra, bi for some i ∈ J0, MK is called a regular configuration.
Clearly, we have Ra, b0 = {sa} and Ra, bM = {sb}. For a proper partition (A, B) of S, we
write

RA,Bi =
⋃
a∈A

⋃
b∈B

Ra, bi . (6.7)

6.2 Energy of canonical configurations

One can compute the energy of canonical configurations readily by elementary
computations, but we provide a more systematic approach which will be frequently used
in later computations. To this end, we first introduce a notation.

Notation 6.5. For (k, `) ∈ TK × TL, we denote by σ〈k, `〉 ∈ STM the configuration of σ
on the (k, `)-th pillar {k} × {`} ×TM , i.e.,

σ〈k, `〉(m) = σ(k, `, m) ; m ∈ TM . (6.8)

The energy of the one-dimensional (1D) configuration σ〈k, `〉 is denoted by

H1D(σ〈k, `〉) =
∑

m∈TM

1{σ(k, `, m) 6= σ(k, `, m+ 1)} . (6.9)

In the following lemma, we decompose the 3D energy into lower-dimensional ones.

Lemma 6.6. For each σ ∈ X , it holds that

H(σ) =
∑

m∈TM

H2D(σ(m)) +
∑

(k, `)∈TK×TL

H1D(σ〈k, `〉) . (6.10)

Proof. We can write H(σ) as∑
m∈TM

[ ∑
k∈TK

∑
`∈TL

1{σ(k + 1, `, m) 6= σ(k, `, m)}+ 1{σ(k, `+ 1, m) 6= σ(k, `, m)}
]

+
∑
k∈TK

∑
`∈TL

[ ∑
m∈TM

1{σ(k, `, m) 6= σ(k, `, m+ 1)}
]
.

The first and second lines correspond to the first and second terms at the right-hand
side of (6.10), respectively.

Based on the previous expression, we deduce the following proposition.

Proposition 6.7 (Energy of canonical configurations). The following properties hold.

1. For each canonical configuration σ, we have H(σ) ≤ Γ?.

2. For each configuration σ ∈ Ca, bi for some a, b ∈ S and i ∈ J1, M − 2K, we have

H(σ) ∈ JΓ? − 2K − 2, Γ?K .

Proof. Observe that for a canonical configuration σ, we have H1D(σ〈k, `〉) ≤ 2 for all
(k, `) ∈ TK ×TL, and H2D(σ(m)) = 0 for all m ∈ TM \ {m0} for some m0 ∈ TM , at which
it holds that H2D(σ(m0)) ≤ 2K + 2 (cf. (5.5)). Thus, by Lemma 6.6,

H(σ) ≤ (2K + 2) + 2KL = Γ? .
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Figure 6: Canonical path connecting sa and sb.

For part (2), it suffices to additionally observe thatH1D(σ〈k, `〉) = 2 for all (k, `) ∈ TK×TL
if i ∈ J1, M − 2K and thus

H(σ) ≥ 2KL = Γ? − 2K − 2 .

Remark 6.8. In particular, we have H(σ) = Γ? − 2K − 2 = 2KL for any σ ∈ RA,Bi ,
i ∈ J1, M − 1K. Hence, a Γ?-path at a regular configuration can evolve in a non-canonical
way, since we still have a spare of 2K + 2 to reach the energy barrier Γ. Incorporating
all these behaviors in the metastability analysis is a demanding part of the 3D model.
For this reason, the regular configuration plays a crucial role. We remark that for the 2D
case [7, 27, 42], any optimal path at a regular configuration does not have freedom, and
that helped a lot simplifying the arguments.

6.3 Canonical paths

In this subsection, we define 3D canonical paths between ground states. They
generalize the 2D paths recalled in Definition 5.5. Refer to Figure 6 for an illustration.
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Definition 6.9 (Canonical paths). We recall Notation 5.2. Let us fix a, b ∈ S. A path
(ωt)

KLM
t=0 is called a pre-canonical path connecting sa and sb if there exists an increasing

sequence (Pi)
M
i=0 in SM such that

• for each i ∈ J0, MK, we have that ωKLi = σa, bPi
(cf. (6.2)), and

• for each i ∈ J0, M − 1K, there exists a 2D canonical path (γit)
KL
t=0 from s2D

a to s2D
b

defined in Definition 5.5 such that

ω
(m)
t =


s2D
b if m ∈ Pi ,
s2D
a if m ∈ TM \ Pi+1 ,

γit−KLi if m ∈ Pi+1 \ Pi ,
for all t ∈ JKLi, KL(i+ 1)K .

IfK < L < M , a path is called a canonical path if it is a pre-canonical path. IfK = L < M ,
a path is called a canonical path if it is either a pre-canonical one or the image of a
pre-canonical one with respect to the map Θ(12). We can define canonical paths for the
cases of K < L = M and K = L = M in a similar manner.

Remark 6.10. We emphasize that for a canonical path (ωt)
KLM
t=0 , all configurations ωt,

t ∈ J0, KLMK, are canonical configurations, and hence any canonical path is a Γ-path by
part (1) of Proposition 6.7.

Canonical paths provide optimal paths between two ground states, and hence we can
confirm the following upper bound for the energy barrier.

Proposition 6.11. For s, s′ ∈ S, we have that Φ(s, s′) ≤ Γ?.

Proof. By Remark 6.10, it suffices to take a canonical path connecting s and s′.

We prove Φ(s, s′) ≥ Γ in Section 8 to verify Φ(s, s′) = Γ?. This reversed inequality
requires a much more complicated proof.

6.4 Characterization of the deepest valleys

We show in this subsection that using the canonical paths, the valleys in the energy
landscape, except for the ones associated to the ground states, have depths less than Γ.
Note that Theorem 2.4, although not yet proved, indicates that the valleys associated to
the ground states have depth Γ. This characterization of the depths of other valleys is
essentially required since we have to reject the possibility of being trapped in a deeper
valley in the course of transition. This fact is crucially used in the application of the
pathwise approach to metastability.

Notation 6.12. For the convenience of notation, we call (ωt)
T
t=0 a pseudo-path if either

ωt ∼ ωt+1 or ωt = ωt+1 for all t ∈ J0, T − 1K.
Proposition 6.13. For σ ∈ X \ S, we have

Φ(σ, S)−H(σ) ≤ Γ? − 2 < Γ? .

Proof. Main idea of the proof is inherited from the proof of [42, Theorem 2.1]. Let us
find two spins a, b ∈ S so that σ has spins a and b at some sites, which is clearly possible
since σ /∈ S. Let us fix a canonical path (ωt)

KLM
t=0 connecting sa and sb. Then, we write

At = {x ∈ Λ : ωt(x) = b} ; t ∈ J0, KLMK ,

so that we have ∅ = A0 ⊆ A1 ⊆ · · · ⊆ AKLM = Λ and |At| = t for all t ∈ J0, KLMK. We
can take the path (ωt)

KLM
t=0 in a way that

A1 = {x0} and σ(x0) = b . (6.11)
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Now, we define a pseudo-path (cf. Notation 6.12) (ω̃t)
KLM
t=0 connecting σ and sb as

ω̃t(x) =

{
σ(x) if x /∈ At ,
b if x ∈ At .

In other words, we update the spins in an exactly same manner with the canonical path
(ωt)

KLM
t=0 . We claim that

H(ω̃t)−H(σ) ≤ 2KL+ 2K = Γ? − 2 for all t ∈ J0, KLMK . (6.12)

It is immediate that this claim concludes the proof. To prove this claim, we recall the
decomposition obtained in Lemma 6.6 and write ω̃t = ζ. Then, we can write H(ζ)−H(σ)

as ∑
m∈TM

[H2D(ζ(m))−H2D(σ(m))] +
∑

(k, `)∈TK×TL

[H1D(ζ〈k, `〉)−H1D(σ〈k, `〉)] . (6.13)

Let us first consider the first summation of (6.13). We suppose that t ∈ JKLi, KL(i+ 1)K
and write ωKLi = σa, bP and ωKL(i+1) = σa, bQ where P ≺ Q. Write Q \ P = {m′}. Then, we
have that

H2D(ζ(m))−H2D(σ(m)) =

{
−H2D(σ(m)) ≤ 0 if m ∈ P ,

0 if m ∈ Qc ,
(6.14)

since ζ(m) = s2D
b form ∈ P and ζ(m) = σ(m) form ∈ Qc. On the other hand, by Lemma 5.7,

we have that
H2D(ζ(m′))−H2D(σ(m′)) ≤ 2K + 2 . (6.15)

By (6.14) and (6.15), we conclude that∑
m∈TM

[H2D(ζ(m))−H2D(σ(m))] ≤ 2K + 2 . (6.16)

Now, we turn to the second summation of (6.13). Note that ζ〈k, `〉 is obtained from σ〈k, `〉

by flipping the spins in consecutive sites in Q to b. From this, we can readily deduce that

H1D(ζ〈k, `〉)−H1D(σ〈k, `〉) ≤ 2 for all k ∈ TK and ` ∈ TL . (6.17)

Moreover, if x0 = (k0, `0, m0), we can check that

H1D(ζ〈k0, `0〉)−H1D(σ〈k0, `0〉) ≤ 0 . (6.18)

By (6.17) and (6.18), we get∑
(k, `)∈TK×TL

[H1D(ζ〈k, `〉)−H1D(σ〈k, `〉)] ≤ 2(KL− 1) . (6.19)

Now, the claim (6.12) follows from (6.13), (6.16), and (6.19).

6.5 Auxiliary result on saddle configurations

In the 2D case, in the analysis of the energy landscape, the collection R2D
2 plays a

significant role since to make an optimal transition (not exceeding the energy barrier
2K + 2), we may skip the collection R2D

1 but must pass through R2D
2 . Thus, the integer

2 worked as some kind of a threshold for metastable transitions. We expect a similar
pattern in the 3D case, and we briefly explain this phenomenon in this subsection.

Let us define
mK = bK2/3c . (6.20)
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Then, we shall prove in Corollary 8.5 below that

Φ(sa, σ
a, b
J1, nK) = Γ? for all n ∈ JmK , M −mKK . (6.21)

Thus, we can define (cf. Figure 8 below)

nK,L,M = min {n ∈ J1, M − 1K : Φ(sa, σ
a, b
J1, nK) = Γ?} . (6.22)

We strongly believe that this quantity does not depend on M , but we do not have a proof
for it at the moment. Note that this number was just 2 in the 2D case. In the 3D model,
we do not know this number exactly, since non-canonical movements at the early stage of
transitions are hard to characterize. However, the upper bound nK,L,M ≤ mK = bK2/3c
obtained from (6.21) is enough for our purpose, as we shall see later.

The main result of this subsection is the corresponding lower bound. This result will
not be used in the proofs later, but emphasizes the complexity of the energy landscape
near ground states.

Proposition 6.14. We have nK,L,M ≥ bK1/2c.

Proof. It suffices to prove that

Φ(s1, σ
1, 2
J1, nK) ≤ Γ? − 2 for all n ∈ J1, bK1/2c − 1K .

We fix such an n and write σ = σ1, 2
J1, nK. We now construct an explicit path from σ to s1

without exceeding the energy Γ? − 2. Note that σ1, 2
J1, nK has spins 2 at TK × TL × J1, nK

and spins 1 at all the other sites. In this proof, we regard TK = J1, KK and TL = J1, LK
in order to simplify the explanation of the order of spin flips in a lexicographic manner.

• First, starting from σ, we change spins 2 to 1 in J1, KK× J1, nK× J1, nK in ascending
lexicographic order. Denote by ζ ∈ X the obtained spin configuration, which has
spins 2 only on J1, KK× Jn+ 1, LK× J1, nK. Then, the variation of the Hamiltonian
from σ to ζ can be expressed by the following n× n matrices:

+2 + 0 · · · + 0

+4 + 2 · · · + 2
...

+4 + 2 · · · + 2

 ,


+0 − 2 · · · − 2

+2 + 0 · · · + 0
...

+2 + 0 · · · + 0

× (K − 2) , and


−2 − 4 · · · − 4

+0 − 2 · · · − 2
...

+0 − 2 · · · − 2

 .

Here, each n× n matrix represents {i} × J1, nK× J1, nK for 1 ≤ i ≤ K, in which the
numbers represent the variation of the energy which should be read in ascending
lexicographic order. From this path, we obtain

Φ(σ, ζ) ≤ 2KL+ 2n2 + 2n− 2 , (6.23)

where the maximum of the energy is obtained right after flipping the spin at
(2, 1, n− 1), which is denoted by bold font at the matrices above.

• Next, starting from ζ, we change spins 2 to 1 in J1, KK×{i}×J1, nK in the ascending
lexicographic order for i ∈ Jn+1, L−1K, from i = n+1 to i = L−1. Denote by ζ ′ ∈ X
the obtained spin configuration, which has spins 2 only on J1, KK× {L} × J1, nK. In
each step, the variation of the Hamiltonian is represented by the n×K matrix

+0 − 2 · · · − 2 − 4

+2 + 0 · · · + 0 − 2
...

+2 + 0 · · · + 0 − 2

 .
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Figure 7: Examples of gateway configurations. Each configuration above represents
a gateway configuration of type 1 (left), type 2 (middle), or type 3 (right), respectively.

Since H(ζ) = 2KL, we can verify that

Φ(ζ, ζ ′) ≤ 2KL+ 2 , (6.24)

where the maximum is obtained right after flipping the spin at (1, n+ 1, 1) (cf. bold
font +2).

• Finally, starting from ζ ′, we change spins 2 to 1 in the ascending lexicographic
order. The variation of the Hamiltonian is represented by

−2 − 4 · · · − 4 − 6

+0 − 2 · · · − 2 − 4
...

+0 − 2 · · · − 2 − 4

 .

Hence, the Hamiltonian monotonically decreases from H(ζ ′) = 2K(n+ 1) to arrive
at H(s1) = 0. Hence, we have

Φ(ζ ′, s1) ≤ 2K(n+ 1) . (6.25)

Therefore, by (6.23), (6.24), and (6.25), we have

Φ(σ, s1) ≤ 2KL+ 2n2 + 2n− 2 .

Since n ∈ J1, bK1/2c − 1K, it holds that 2n2 + 2n− 2 ≤ 2K. This concludes the proof.

7 Gateway configurations

In the analysis of the 3D model, a crucial notion is the concept of gateway configura-
tions. The gateway configurations of the 3D model play a far more significant role than
those of the 2D model.

We fix a proper partition (A, B) of S throughout this section.

7.1 Gateway configurations

We refer to Figure 7 for an illustration of gateway configurations defined below.

Definition 7.1 (Gateway configurations). For a, b ∈ S and P, Q ∈ SM with P ≺ Q, we
define G̃a, bP,Q ⊆ C̃

a, b
P,Q as

σ ∈ G̃a, bP,Q ⇔


σ(m) = s2D

b if m ∈ P ,

σ(m) = s2D
a if m ∈ Qc ,

σ(m) ∈ Ga, b, 2D if m ∈ Q \ P ,
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where Ga, b, 2D is defined in Definition 5.10. Then, we define (cf. Notation 6.2)

Ga, bP,Q = Υ(G̃a, bP,Q) .

Then, recall mK from (6.20) and define, for i ∈ J0, M − 1K,

Ga, bi =
⋃

P,Q∈SM : |P |=i and P≺Q

Ga, bP,Q and Ga, b =

M−mK⋃
i=mK−1

Ga, bi . (7.1)

Notice that the crucial difference between (7.1) and (6.4) is the fact that the second
union in (7.1) is taken only over i ∈ JmK − 1, M − mKK. This is related to (6.21), and
we give a more detailed reasoning in Section 7.2. A configuration belonging to Ga, b for
some a, b ∈ S is called a gateway configuration.

Finally, for a proper partition (A, B) of S (which is fixed throughout the current
section), we write for i ∈ J0, M − 1K,

GA,Bi =
⋃
a∈A

⋃
b∈B

Ga, bi and GA,B =
⋃
a∈A

⋃
b∈B

Ga, b . (7.2)

Notation 7.2. For a, b ∈ S and P, Q ∈ SM with P ≺ Q, Q \ P = {m0}, and |P | ∈
JmK − 1, M −mKK, we decompose

G̃a, bP,Q = G̃a, b, [1]
P,Q ∪ G̃a, b, [2]

P,Q ∪ G̃a, b, [3]
P,Q ,

where (cf. (5.6), (5.7), and (5.10))

G̃a, b, [1]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Ba, b, 2D \ Ba, b, 2D

Γ } ,

G̃a, b, [2]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Ba, b, 2D

Γ } ,

G̃a, b, [3]
P,Q = {σ ∈ G̃a, bP,Q : σ(m0) ∈ Za, b, 2D ∪ Zb, a, 2D} .

Then, write Ga, b, [n]
P,Q = Υ(G̃a, b, [n]

P,Q ), n ∈ {1, 2, 3}. A configuration σ ∈ GA,B is called a

gateway configuration of type n, n ∈ {1, 2, 3}, if σ ∈ Ga, b, [n]
P,Q for some a ∈ A, b ∈ B and

P, Q ∈ SM with P ≺ Q.

The following proposition is direct from the definition of gateway configurations.

Proposition 7.3. For σ ∈ GA,B, we have H(σ) ∈ {Γ? − 2, Γ?}. Moreover, we have
H(σ) = Γ? − 2 if and only if σ is a gateway configuration of type 1 and H(σ) = Γ? if and
only if σ is a gateway configuration of type 2 or 3.

Proof. Let σ ∈ G̃a, bP,Q for some a ∈ A, b ∈ B and P, Q ∈ SM with P ≺ Q, Q \ P = {m0},
and |P | ∈ JmK − 1, M −mKK. Then, by Lemma 6.6, we can write

H(σ) = H2D(σ(m0)) + 2KL

since H2D(σ(m)) = 0 for all m 6= m0 and H1D(σ〈k, `〉) = 2 for all k ∈ TK and ` ∈ TL.
Hence, by definition, we have

H(σ) =

{
2KL+ 2K = Γ? − 2 if σ ∈ G̃a, b, [1]

P,Q ,

2KL+ 2K + 2 = Γ? if σ ∈ G̃a, b, [2]
P,Q ∪ G̃a, b, [3]

P,Q .

Since the Hamiltonian is invariant under Υ, the proof is completed.
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Figure 8: Structure of gateway configurations between sa and sb. The grey regions
consist of configurations of energy Γ?. The green boxes denote the sets of the form
N (Ra, bi ) for i ∈ JnK,L,M , M − nK,L,M K (cf. (6.22)), while the green lines denote the
gateway configurations of type 1 whose energy is Γ? − 2 (cf. Proposition 7.3). Later in
Proposition 8.1, we shall show that mK ≥ nK,L,M . The structure given in this figure
(especially between Ga, bmK−1 and Ga, bM−mK ) is confirmed in Lemma 7.5. We remark that

the dead-ends are attached to N (sa), N (sb), and N (Ra, bi ), i ∈ JnK,L,M , M − nK,L,M K.
In particular, the configurations in Ga, bi with i < nK,L,M − 1 belong to the dead-ends
attached to the set N (sa).

7.2 Properties of gateway configurations

Next, we investigate several crucial properties of the gateway configurations which
will be used frequently in the following discussions. The following notation will be useful
in the remaining parts of the article.

Notation 7.4. For any integers u, v such that 0 ≤ u < v ≤M , we write

Ka, b[u, v] =

v⋃
i=u

Ka, bi and KA,B[u, v] =

v⋃
i=u

KA,Bi ,

where K ∈ {C, G, R}. In particular, by (7.1) and (7.2), we can write

GA,B = GA,B[mK−1,M−mK ] . (7.3)

In this section, we focus on the relation between gateway configurations and neigh-
borhoods of regular configurations. We refer to Figure 8 for an illustration of the
relations obtained in the current subsection.

The first one below states that we have to escape from a gateway configuration via a
neighborhood of regular configurations, unless we touch a configuration with energy
higher than Γ?.

Lemma 7.5. For a proper partition (A, B) of S, the following statements hold.

1. For a ∈ A, b ∈ B, and i ∈ JmK − 1, M − mKK, we suppose that σ ∈ Ga, bi and
ζ ∈ X \ Ga, bi satisfy σ ∼ ζ and H(ζ) ≤ Γ?. Then, we have ζ ∈ N (Ra, b[i, i+1]), and
moreover σ is a gateway configuration of type 3.
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2. Suppose that σ ∈ GA,B and ζ ∈ X \ GA,B satisfy σ ∼ ζ and H(ζ) ≤ Γ?. Then, we
have ζ ∈ N (RA,B[mK−1,M−mK+1]), and moreover σ is a gateway configuration of type
3.

Proof. We first suppose that σ ∈ G̃a, bP,Q and ζ ∈ X \ G̃a, bP,Q for some a ∈ A, b ∈ B and
P, Q ∈ SM with P ≺ Q and |P | ∈ JmK − 1, M −mKK. We write Q \ P = {m0}. Then, we
claim that ζ ∈ N ({σa, bP , σa, bQ }), and σ is of type 3.

Let us first show that σ is a gateway configuration of type 3. If σ is of type 1, then
we have H(σ) = Γ? − 2, H2D(σ(m0)) = 2K, and σ(m0) ∈ Ba, b, 2D. To update a spin in σ

without increasing the energy by 3 or more, it can be readily observed that we have
to update a spin of σ at the m0-th floor to get ζ with H2D(ζ(m0)) ≤ 2K + 2. In such a
situation, Lemma 5.11 asserts that σ(m0) /∈ Ba, b, 2D and we get a contradiction. A similar
argument can be applied if σ is of type 2, and hence we can conclude that σ is of type 3.

Now, since σ is of type 3, we have H(σ) = Γ?, H2D(σ(m0)) = 2K + 2, and σ(m0) ∈
Za, b, 2D ∪ Zb, a, 2D (cf. (5.9)). In order not to increase the energy by flipping a site of
σ, it is clear that we have to flip a spin at the m0-th floor (cf. Figure 7). This means
that, by Lemma 5.11, we have ζ(m0) ∈ N 2D(s2D

a ) ∪N 2D(s2D
b ). Now, we suppose first that

ζ(m0) ∈ N 2D(s2D
a ). Then, there exists a 2D (2K + 1)-path (ωt)

T
t=0 in X 2D = SΛ2D

such that
ω0 = s2D

a and ωT = ζ(m0). Define a 3D path (ω̃t)
T
t=0 as

ω̃
(m)
t =

{
ω

(m)
t if m = m0 ,

ζ(m) = σ(m) if m 6= m0 .

Then, (ω̃t)
T
t=0 is a (Γ? − 1)-path connecting σa, bP and ζ, and thus we get ζ ∈ N (σa, bP ).

Similarly, we can deduce that ζ(m0) ∈ N 2D(s2D
b ) implies ζ ∈ N (σa, bQ ). This concludes the

proof of the claim.
Now, we return to the lemma. For part (1), suppose that σ ∈ Ga, bP,Q for some a ∈ A,

b ∈ B and P, Q ∈ SM with |P | = i ∈ JmK − 1, M −mKK and P ≺ Q. If σ ∈ G̃a, bP,Q, then by
the claim above, we get

ζ ∈ N ({σa, bP , σa, bQ }) ⊆ N (Ra, b[i, i+1]) ,

and moreover σ is a gateway configuration of type 3. On the other hand, if σ ∈ Θ(G̃a, bP,Q)

for some permutation operator Θ that appears in Notation 6.2, then by the same logic as
above, we obtain that

ζ ∈ N ({Θ(σa, bP ), Θ(σa, bQ )}) ⊆ N (Θ(R̃a, b[i, i+1])) ⊆ N (Ra, b[i, i+1]) ,

and that σ is a gateway configuration of type 3. This completes the proof of part (1). Part
(2) is direct from part (1).

Next, we establish a relation between GA,B and N (RA,B[0,M ]) for proper partitions

(A, B) of S. Recall Definition 4.1.

Lemma 7.6. For a proper partition (A, B) of S, the two sets GA,B and N (RA,B[0,M ]) are
disjoint and moreover, it holds that

N̂
(
GA,B ; N (RA,B[0,M ])

)
= GA,B . (7.4)

Proof. We first claim that, for any a ∈ A, b ∈ B, and P, Q ∈ SM with P ≺ Q and
|P | ∈ JmK − 1, M −mKK5,

G̃a, bP,Q ∩N (RA,B[0,M ]) = ∅ . (7.5)

5In fact, it holds even if |P | ∈ J0, M − 1K.
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Suppose the contrary that we can take a configuration σ ∈ G̃a, bP,Q ∩ N (RA,B[0,M ]). Then,

since σ ∈ G̃a, bP,Q and since H(σ) < Γ? as σ ∈ N (RA,B[0,M ]), the configuration σ must be a

gateway configuration of type 1 by Proposition 7.3. Since σ ∈ N (RA,B[0,M ]), there exists

a (Γ? − 1)-path connecting σ and RA,B[0,M ]. However, it is clear that (cf. Figure 7) any
configuration ζ such that ζ ∼ σ has energy at least Γ?. This yields a contradiction. By
the same argument, we can show that Θ(G̃a, bP,Q) is also disjoint with N (RA,B[0,M ]) where Θ

is one of the permutation operators introduced in Notation 6.2, and hence it holds that
Ga, bP,Q is disjoint with N (RA,B[0,M ]). Hence, the two sets GA,B and N (RA,B[0,M ]) are disjoint.

Next, we turn to (7.4). Since GA,B ⊆ N̂ (GA,B ; N (RA,B[0,M ])) easily follows from (7.5),
it suffices to show that

N̂ (GA,B ; N (RA,B[0,M ])) ⊆ G
A,B .

Suppose the contrary that we can take σ ∈ N̂ (GA,B ; N (RA,B[0,M ])) which does not belong

to GA,B. Let (ωt)
T
t=0 be a Γ?-path in X \ N (RA,B[0,M ]) connecting GA,B and σ. Since we

have assumed that σ /∈ GA,B, we can take

t0 = min {t : ωt /∈ GA,B} .

Since ωt0−1 ∈ GA,B, ωt0 /∈ GA,B, and ωt0−1 ∼ ωt0 , by Lemma 7.5, we have ωt0−1 ∈
N (RA,B[mK−1,M−mK+1]). This contradicts the fact that (ωt)

T
t=0 is a path in X \N (RA,B[0,M ]).

8 Energy barrier between ground states

The main objective of the current section is to analyze the energy barrier and optimal
paths between ground states. In this section, we fix a proper partition (A, B) of S. The
main result of the current section is the following result regarding the energy barrier
between the ground states.

Proposition 8.1. The following statements hold.

1. For s, s′ ∈ S, we have that Φ(s, s′) ≥ Γ?.

2. Let (ωt)
T
t=0 be a path in X \ GA,B connecting S(A) and S(B). Then, there exists

t ∈ J0, T K such that H(ωt) ≥ Γ? + 1.

Part (1) of the previous proposition gives an opposite bound of Proposition 6.11 and
hence completes the proof of the characterization of the energy barrier. Moreover,
in part (2), it is verified that any optimal path connecting S(A) and S(B) must visit a
gateway configuration between them. Before proceeding further, we officially conclude
the proof of Theorem 2.4 by assuming Proposition 8.1.

Proof of Theorem 2.4. The conclusion of the theorem holds by Proposition 6.11 and part
(1) of Proposition 8.1.

We provide the proof of Proposition 8.1 in Sections 8.1 and 8.2. Then, in Section 8.3,
we prove the large deviation-type results, namely Theorem 2.7, based on the analysis of
energy landscape that we carried out so far.

8.1 Preliminary analysis on energy landscape

The purpose of this subsection is to provide a lemma (cf. Lemma 8.3 below) regarding
the communication height between two far away configurations, which will be the crucial
tool in the proof of Proposition 8.1.

Before proceeding to this result, we first introduce a lower bound on the Hamiltonian
H which will be used frequently in the remaining computations of the current section.
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For σ ∈ X and a ∈ S, denote by Da(σ) ⊆ TK×TL the collection of monochromatic pillars
in σ of spin a:

Da(σ) = {(k, `) ∈ TK ×TL : σ〈k, `〉(m) = a for all m ∈ TM} .

Then, let D(σ) =
⋃
a∈S Da(σ) and write

da(σ) = |Da(σ)| and d(σ) = |D(σ)| =
∑
a∈S

da(σ) . (8.1)

Now, we derive a lower bound on H. Recall the 1D and 2D Hamiltonians from (6.9)
and (5.1), respectively.

Lemma 8.2. For each σ ∈ X , it holds that

H(σ) ≥ 2KL− 2d(σ) +
∑

m∈TM

H2D(σ(m)) , (8.2)

and the equality holds if and only if H1D(σ〈k, `〉) = 2 for all (k, `) ∈ (TK ×TL) \ D(σ).

Proof. Since H1D(σ〈k, `〉) = 0 if (k, `) ∈ D(σ) and H1D(σ〈k, `〉) ≥ 2 otherwise, we have
that ∑

(k, `)∈TK×TL

H1D(σ〈k, `〉) ≥ 2(KL− d(σ)) . (8.3)

Hence, we can deduce (8.2) from Lemma 6.6. The conclusion on the equality condition
is immediate from the argument above.

Now, we proceed to the main result of this subsection. For the simplicity of notation,
we write, for a ∈ S,

Va := N 2D(s2D
a ) ⊆ X 2D and ∆2D := X 2D \

q⋃
a=1

Va (8.4)

so that we have the following natural decomposition of the set X 2D:

X 2D =
( q⋃
a=1

Va
)
∪∆2D . (8.5)

Note that the set ∆2D is non-empty by the definition of N 2D. Recall mK ∈ N from (6.20).
The following lemma, which is the main technical result in the analysis of the energy land-
scape, asserts that we have to overcome an energy barrier of Γ? in order to change a 2D
configuration at a certain floor from a neighborhood of a ground state to a neighborhood
of another ground state.

Lemma 8.3. Suppose that a, b ∈ S. Moreover, let U and V be two disjoint subsets of
TM satisfying |U |, |V | ≥ mK , and let σ ∈ X be a configuration satisfying

σ(m) ∈ Va for all m ∈ U and σ(m) ∈ Vb for all m ∈ V .

Suppose that another configuration ζ ∈ X satisfies either ζ(m) ∈ Va1 for some m ∈ U and
a1 6= a or ζ(m) ∈ Vb1 for some m ∈ V and b1 6= b. Finally, we assume that σ satisfies

d(σ) < 200 . (8.6)

Then, both of the following statements hold.

1. It holds that Φ(σ, ζ) ≥ Γ?.
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2. For any path (ωt)
T
t=0 in X \ Ga, b connecting σ and ζ, there exists t ∈ J0, T K such

that H(ωt) ≥ Γ? + 1.

Proof. We first consider part (1). Let (ωt)
T
t=0 be a path connecting σ and ζ. For conve-

nience of notation, we define a collection (cm)m∈U∪V such that

cm =

{
a if m ∈ U ,

b if m ∈ V .
(8.7)

Then, we define

T0 = min {t : H2D(ω
(m)
t ) /∈ Vcm for some m ∈ U ∪ V } ,

where the existence of t ∈ J1, T − 1K such that H2D(ω
(m)
t ) /∈ Vcm for some m ∈ U ∪ V is

guaranteed by the conditions on σ and ζ. Now, we find m0 ∈ U ∪ V such that

H2D(ω
(m0)
T0

) /∈ Vcm0 . (8.8)

By the definitions of Va and T0, we have that

H2D(ω
(m0)
T0

) ≥ Γ2D = 2K + 2 . (8.9)

If H(ωT0
) ≥ Γ?, there is nothing to prove. Hence, let us assume from now on that

H(ωT0
) < Γ? . (8.10)

Then, by Lemma 8.2 with σ = ωT0 and by recalling the definition (8.1) of d(σ), we have

2
∑
n∈S

dn(ωT0
) + 2K + 2 >

∑
m∈TM

H2D(ω
(m)
T0

) . (8.11)

Since we get a contradiction to (8.9) if Dn(ωT0
) = ∅ for all n ∈ S, there exists n0 ∈ S

such that Dn0
(ωT0

) 6= ∅. Suppose first that n0 ∈ S \ {b}. For this case, we claim that

H2D(ω
(m)
T0

) ≥ 4 for all m ∈ V . (8.12)

Assume not, so that we have ω
(m)
T0

= s2D
n0

for some m ∈ V . If m = m0, this obviously

cannot happen. On the other hand, if m ∈ V \ {m0}, we have ω(m)
T0
∈ Vb by the definition

of T0 and thus ω(m)
T0

cannot be s2D
n0

as b 6= n0. Therefore, we verified (8.12). Similarly, if
n0 ∈ S \ {a}, we obtain

H2D(ω
(m)
T0

) ≥ 4 for all m ∈ U . (8.13)

Since either (8.12) or (8.13) must happen, and since |U |, |V | ≥ mK , we get from (8.9)
and (8.11) that

2
∑
n∈S

dn(ωT0
) + 2K + 2 > (2K + 2) + 4(mK − 1) , (8.14)

and hence ∑
n∈S

dn(ωT0) ≥ 2mK − 1 . (8.15)

Thus, we have either∑
n∈S\{a}

dn(ωT0) ≥ mK or
∑

n∈S\{b}

dn(ωT0) ≥ mK .
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Then for K satisfying the condition in Theorem 2.4, we have mK ≥ 200 and thus by the
condition (8.6), we can take T1 < T0 such that

T1 = min
{
t :

∑
n∈S\{a}

dn(ωt) = h2
K or

∑
n∈S\{b}

dn(ωt) = h2
K

}
(8.16)

where hK = b
√
mK − 1c. Since T1 < T0, by the definition of T0, we have

ω
(m)
T1
∈ Va , ∀m ∈ U and ω

(m)
T1
∈ Vb , ∀m ∈ V . (8.17)

We first suppose that
∑
n∈S\{a} dn(ωT1

) = h2
K . Since (cf. (5.13))

‖ω(m)
T1
‖n ≥ dn(ωT1

) for all m ∈ TM , n ∈ S ,

we can assert from (8.17) and (L2), (L3) of Proposition 5.15 that

H2D(ω
(m)
T1

) ≥ 4
( ∑
n∈S\{a}

dn(ωT1)
)1/2

= 4hK for all m ∈ U . (8.18)

Therefore, by Lemma 8.2 with σ = ωT1
, the definition of T1, and (8.18), we get

H(ωT1
) ≥ 2KL− 4h2

K + 4hK |U | ≥ 2KL− 4h2
K + 4hKmK > 2KL+ 2K + 2 = Γ? ,

where the last inequality holds for K ≥ 32. Of course, we get the same conclusion for the
case of

∑
n∈S\{b} dn(ωT1

) = h2
K by an identical argument. Therefore, we can conclude

that H(ωT1
) > Γ?, and thus part (1) is verified.

Now, we turn to part (2). We now assume that, for some σ and ζ satisfying the
assumptions of the lemma, there exists a path (ωt)

T
t=0 in X \Ga, b connecting σ and ζ with

H(ωt) ≤ Γ? for all t ∈ J0, T K . (8.19)

Without loss of generality, we can assume that the triple (σ, ζ, (ωt)
T
t=0) that we selected

has the smallest path length T among all such triples.
Recall T0 from the proof of the first part. If Dn(ωT0) 6= ∅ for some n ∈ S, we can

repeat the same argument with part (1) to deduce H(ωT1) > Γ?, where T1 is defined
in (8.16). This contradicts (8.19).

Next, we consider the case when Dn(ωT0
) = ∅ for all n ∈ S. The contradiction for this

case is more involved than that of the corresponding case of part (1). By Lemma 8.2, we
have that

2K + 2 ≥
∑

m∈TM

H2D(ω
(m)
T0

) . (8.20)

Recall m0 from (8.8). Since H2D(ω
(m0)
T0

) = 2K + 2 by (8.9), we not only have

H2D(ω
(m)
T0

) = 0 for all m ∈ TM \ {m0} , (8.21)

but also the equality in (8.20) holds, i.e.,∑
m∈TM

H2D(ω
(m)
T0

) = 2K + 2 . (8.22)

Hence, by the last part of Lemma 8.2, we must have

H1D(ω
〈k, `〉
T0

) = 2 for all (k, `) ∈ TK ×TL . (8.23)

From these observations, we can deduce the following facts:
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• By (8.22), (8.23), and Lemma 8.2, we have H(ωT0
) = Γ?.

• By (8.21) and (8.23), we have ω(m)
T0
∈ {s2D

a , s2D
b } for all m ∈ TM \ {m0}.

Moreover, the spins must be aligned so that (8.23) holds. Without loss of generality,
we assume that m0 ∈ U , since the case m0 ∈ V can be handled in an identical manner.
Starting from ωT0 , suppose that we flip a spin at m-th floor, m 6= m0, without decreasing
the 2D energy of the m0-th floor. Then, since each non-m0-th floor is monochromatic
and (8.23) holds, the 3D energy of σ increases by at least four and we obtain a contradic-
tion to the fact that (ωt)

T
t=0 is a Γ?-path. Thus, we must decrease the 2D energy of the

m0-th floor before modifying the other floors. Define

T2 = min {t > T0 : H2D(ω
(m0)
t ) < 2K + 2} .

Then, by Proposition 5.15, it suffices to consider the following two cases:

• (Case 1: ω(m0)
T2

∈ Vn for some n ∈ S) Since ω(m0)
T0

∈ X 2D is the first escape from

the valley Va, it holds from the minimality of T2 that ω(m0)
T2

/∈ Vn for n ∈ S \ {a}
(the 2D path must visit a number of regular configurations first; see part (1) of
Proposition 5.9). On the other hand, if ω(m0)

T2
∈ Va, then we obtain a contradiction

from the minimality of the length of (ωt)
T
t=0, as we have a shorter path from ωT2

to
ζ where ωT2

clearly satisfies the conditions imposed to σ.

• (Case 2: ω
(m0)
T2

is a 2D regular configuration) Since we have assumed that

m0 ∈ U , we have ω(m0)
T2

∈ Ra, b
′

2 for some b′ ∈ S \ {a} (by the minimality of T2 and
part (1) of Proposition 5.9). Now, we claim that b′ = b. To this end, let us suppose
that b′ 6= b. Then as ω(m)

T2
∈ {s2D

a , s2D
b } for m 6= m0, we have H1D(ω

〈k, `〉
T2

) ≥ 3 for

(k, `) ∈ TK × TL satisfying ω
(m0)
T2

(k, `) = b′. Because there are exactly 2K such
(k, `), by Lemma 8.2, we have

H(ωT2) =
∑

(k, `)∈TK×TL

H1D(ω
〈k, `〉
T2

) +
∑

m∈TM

H2D(ω
(m)
T2

)

≥ 3× 2K + 2× (KL− 2K) + 2K > Γ? ,

where at the first inequality we used the fact that H2D(ω
(m0)
T2

) = 2K. This con-
tradicts the fact that (ωt)

T
t=0 is a Γ?-path. Therefore, we must have b′ = b, which

implies along with (8.23) that ωT2
∈ Ga, b. Hence, we get a contradiction as we

assumed that (ωt)
T
t=0 is a path in X \ Ga, b.

Since we get a contradiction for both cases, we completed the proof of part (2).

Remark 8.4. We remark that (8.16) is exactly the place from which the lower bound
2829 of K in Theorem 2.4 originates.

The following is a direct consequence of the previous lemma which will be used later.

Corollary 8.5. Suppose that P, Q ∈ SM and |P | ∈ JmK , M −mKK. Then for a, b ∈ S, we
have Φ(σa, bP , σa, bQ ) = Γ?. In particular, we have Φ(σa, bP , sa) = Γ?.

Proof. We can apply Lemma 8.3 with σ = σa, bP and ζ = σa, bQ to get

Φ(σa, bP , σa, bQ ) ≥ Γ? . (8.24)

On the other hand, by taking a canonical path connecting sa and σa, bP , we get Φ(sa, σ
a, b
P ) ≤

Γ?. Similarly, we get Φ(sa, σ
a, b
Q ) ≤ Γ?. Hence, we obtain

Φ(σa, bP , σa, bQ ) ≤ max {Φ(sa, σ
a, b
P ), Φ(sa, σ

a, b
Q )} ≤ Γ? . (8.25)

Combining (8.24) and (8.25) proves Φ(σa, bP , σa, bQ ) = Γ?. By inserting Q = ∅, we get

Φ(σa, bP , sa) = Γ?.
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8.2 Proof of Proposition 8.1

Recall (5.13). Note that
‖σ‖a =

∑
m∈TM

‖σ(m)‖a . (8.26)

We are now ready to prove Proposition 8.1. We first prove this proposition when q = 2.
Then, the general case can be verified from this result via a projection-type argument.

Proof of Proposition 8.1: q = 2. Since q = 2, we only have two spins 1 and 2 and hence
we let s = s1 and s′ = s2. We fix an arbitrary path (ωt)

T
t=0 connecting s and s′, and take

σ ∈ (ωt)
T
t=0 such that

‖σ‖1 = bKLM/2c+ 1 . (8.27)

Since there is nothing to prove if H(σ) ≥ Γ? + 1, we assume that

H(σ) ≤ Γ? . (8.28)

Then, we claim that there exists t ∈ J0, T K such that H(ωt) = Γ?. Moreover, we claim
that if (ωt)

T
t=0 is a path in X \ G1, 2, there exists t ∈ J0, T K such that H(ωt) = Γ? + 1. It is

clear that a verification of these claims immediately proves the case of q = 2.
We recall the decomposition (8.5) of X 2D and write

Pn = Pn(σ) = {m ∈ TM : σ(m) ∈ Vn} ; n ∈ {1, 2} ,

R = R(σ) = {m ∈ TM : σ(m) ∈ ∆2D} ,

so that TM can be decomposed into TM = P1 ∪ P2 ∪ R. Write p1 = |P1|, p2 = |P2|, and
r = |R| so that the previous decomposition of TM implies

p1 + p2 + r = M . (8.29)

We also write d1 = d1(σ), d2 = d2(σ), and d = d(σ) so that d = d1 + d2. The following
facts are crucially used:

• By Lemma 8.2 and (8.28), it holds that

d1 + d2 +K + 1 ≥ 1

2

∑
m∈TM

H2D(σ(m)) . (8.30)

• We have 
H2D(σ(m)) ≥ 4 ‖σ(m)‖1/22 ≥ 4d

1/2
2 if m ∈ P1 ,

H2D(σ(m)) ≥ 4 ‖σ(m)‖1/21 ≥ 4d
1/2
1 if m ∈ P2 ,

H2D(σ(m)) ≥ 2K if m ∈ R ,

(8.31)

where the first two bounds follow from (L2) and (L3) of Proposition 5.15, while
the last one follows from (L1) of Proposition 5.15.

• By inserting (8.31) to (8.30), we get

d1 + d2 +K + 1 ≥ 2p1d
1/2
2 + 2p2d

1/2
1 +Kr . (8.32)

We consider four cases separately based on the conditions on p1, p2, and r. Recall that
we assumed K ≥ 2829; several arguments below require K to be large enough, and they
indeed hold for K in this range.

(Case 1: p1, p2 ≥ 1) Since both P1 and P2 are non-empty, the first two bounds in (8.31)
activate and thus

d1, d2 ≤
(2K + 1)2

16
. (8.33)
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We note that, since the function f(x) = x− 2ax1/2 is convex on [0, ∞) for a > 0, by (8.33)
we have

d1 − 2p2d
1/2
1 ≤ max

{
0,

(2K + 1)2

16
− 2K + 1

2
p2

}
,

d2 − 2p1d
1/2
2 ≤ max

{
0,

(2K + 1)2

16
− 2K + 1

2
p1

}
.

(8.34)

Inserting (8.34) to (8.32), we get

Kr ≤ K + 1 +

2∑
i=1

max
{

0,
(2K + 1)2

16
− 2K + 1

2
pi

}
. (8.35)

We now consider three sub-cases:

• p1, p2 ≤ (2K + 1)/8: For this case, we can rewrite (8.35) as

Kr ≤ K + 1 +
(2K + 1)2

8
− 2K + 1

2
(p1 + p2) < K + 1 +

(2K + 1)2

8
−K(p1 + p2) .

Inserting (8.29) yields a contradiction since K ≤M .

• p1 ≤ (2K + 1)/8 < p2 or p2 ≤ (2K + 1)/8 < p1: By symmetry, it suffices to consider
the former case, for which we can rewrite (8.35) as

Kr ≤ K + 1 +
(2K + 1)2

16
− 2K + 1

2
p1 < 2K +

(2K + 1)2

16
−Kp1 .

Thus, we get

p1 + r ≤ 2 +
(2K + 1)2

16K
,

and thus by the second bound in (8.31),

‖σ‖2 ≥ p2

(
KL− (2K + 1)2

16

)
≥
(
M − 2− (2K + 1)2

16K

)(
KL− (2K + 1)2

16

)
.

We get a contradiction to (8.27) since the right-hand side is greater than bKLM/2c+
1.

• p1, p2 > (2K + 1)/8: By (8.35), we can notice that r = 0 or 1. By (8.27), the first
bound in (8.31), and (8.26), we get⌊KLM

2

⌋
+ 1 = ‖σ‖1 ≥

∑
m∈P1

‖σ(m)‖1 ≥ p1

(
KL− (2K + 1)2

16

)
,

and thus,

p2 ≥M − 1− p1 ≥M − 1− bKLM/2c+ 1

KL− (2K + 1)2/16
≥ 2K + 1

7
. (8.36)

Similarly, we get

p1 ≥
2K + 1

7
. (8.37)

Now, by (8.33), (8.36) and (8.37), it holds that

p2 ≥
4

7
d

1/2
1 and p1 ≥

4

7
d

1/2
2 .

Inserting this along with (8.36) and (8.37) to the right-hand side of (8.32), we get

2p1d
1/2
2 + 2p2d

1/2
1 +Kr ≥

(
d2 +

1

4
p1d

1/2
2

)
+
(
d1 +

1

4
p2d

1/2
1

)
≥ d+

2K + 1

28
d1/2 ,
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where the last inequality follows from the inequality x1/2 + y1/2 ≥ (x + y)1/2.
Applying this to (8.32), we conclude that

d ≤
( 28(K + 1)

2K + 1

)2

< 200 .

This proves the condition (8.6) for σ. Moreover, since p1, p2 > (2K+1)/8 ≥ mK , we
can now apply part (1) of Lemma 8.3 to deduce Φ(σ, s′) ≥ Γ?, and this proves the
first part of the claim. Moreover, if (ωt)

T
t=0 is a path in X \ G1, 2, then the sub-path

from σ to ωT = s′ is also in X \ G1, 2, and thus part (2) of Lemma 8.3 verifies the
second assertion of the claim as well.

(Case 2: p1 ≥ 1, p2 = 0, r ≥ 1 or p1 ≥ 1, p2 = 0, r ≥ 1) By symmetry, it suffices to
consider the former case. Similarly as in (Case 1), we can apply the first bound in (8.31)
to deduce

d2 ≤
(2K + 1)2

16
. (8.38)

Again by the first bound in (8.31), we have

‖σ(m)‖1 ≥ KL−
(2K + 1)2

16
for all m ∈ P1 ,

and thus we get

∑
m∈R

‖σ(m)‖1 = ‖σ‖1 −
∑
m∈P1

‖σ(m)‖1 ≤
KLM

2
+ 1− p1

(
KL− (2K + 1)2

16

)
.

Therefore, there exists m0 ∈ R such that

‖σ(m0)‖1 ≤
1

r

[ KLM
2

+ 1− p1

(
KL− (2K + 1)2

16

) ]
= KL− (2K + 1)2

16
+

1

r

[
− KLM

2
+

(2K + 1)2M

16
+ 1

]
≤ KL− (2K + 1)2

16
− 1

r

[ KLM
4
− K2M

20

]
,

where at the second line we used p1 = M − r. Thus, we have

d1 ≤ ‖σ(m0)‖1 ≤ KL−
(2K + 1)2

16
− 1

r

[ KLM
4
− K2M

20

]
. (8.39)

Inserting this to (8.32), we get

2p1d
1/2
2 +Kr ≤ d2 +

[
KL− (2K + 1)2

16
− 1

r

( KLM
4
− K2M

20

) ]
+K + 1 .

Reorganizing and applying a similar estimate as in (8.34), we get

Kr +
1

r

[ KLM
4
−K

2M

20

]
≤ KL− (2K + 1)2

16
+K + 1 + (d2 − 2p1d

1/2
2 )

≤ KL− (2K + 1)2

16
+K + 1 + max

{
0,

(2K + 1)2

16
− 2K + 1

2
p1

}
= KL+K + 1−min

{ (2K + 1)2

16
,

2K + 1

2
p1

}
. (8.40)

Now, we analyze two sub-cases separately.
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• p1 ≤ (2K + 1)/8: Then, we can rewrite (8.40) as

Kr +
1

r

[ KLM
4
− K2M

20

]
≤ KL+K + 1− 2K + 1

2
p1 ≤ KL+K .

Multiplying r/K in both sides, we reorganize the previous inequality as(
r − L+ 1

2

)2

≤ (L+ 1)2

4
− LM

4
+
KM

20
≤ L2 + 10L+ 5

20
. (8.41)

Since p1 ≤ (2K + 1)/8, we have

r ≥M − 2K + 1

8
≥ 3

4
L− 1 . (8.42)

Inserting (8.42) to (8.41) yields a contradiction for L ≥ K ≥ 2829.

• p1 > (2K + 1)/8: For this case, (8.40) becomes

Kr +
1

r

[ KLM
4
− K2M

20

]
≤ KL+K + 1− (2K + 1)2

16
≤ KL− K2

4
+K .

Multiplying both sides by r/K and reorganizing, we get(
r − L

2
+
K

8
− 1

2

)2

≤ 1

64
(4L−K + 4)2 − LM

4
+
KM

20
.

Since the right-hand side is negative for K ≥ 9, we get a contradiction.

(Case 3: p1 ≥ 1, p2 = 0, r = 0 or p1 = 0, p2 ≥ 1, r = 0) As before, we only consider the
former case. In this case, indeed P1 = TM . Thus, by the first bound in (8.31) we have

‖σ‖1 =
∑

m∈TM

‖σ(m)‖1 ≥M
(
KL− (2K + 1)2

16

)
>
KLM

2
+ 2 .

This contradicts (8.27).

(Case 4: p1 = p2 = 0) For this case, we have σ(m) ∈ ∆2D for all m ∈ TM . Hence,
H2D(σ(m)) ≥ 2K for all m ∈ TM by (L1) of Proposition 5.15, and thus by (8.30) we get

d1 + d2 ≥ K(M − 1)− 1 . (8.43)

Since d1 + d2 = d ≤ KL, we get M = L+ 1 or L.
If M = L + 1, we must have d1 + d2 = KL or KL − 1. If this is KL, then all floors

should have the same configuration, which is impossible since ‖σ‖1 = bKLM/2c + 1

cannot be a multiple of M . If this is KL− 1, then the equality in (8.43) must hold and
thus we have H2D(σ(m)) = 2K for all m ∈ TM . Hence, by (L1) of Proposition 5.15,
‖σ(m)‖1, m ∈ TM , is a multiple of K, and thus ‖σ‖1 =

∑
m∈TM ‖σ

(m)‖1 is also a multiple
of K. This is impossible since ‖σ‖1 = bKLM/2c+ 1 is not a multiple of K.

It remains to consider the case of M = L. For this case, (8.43) becomes

d1 + d2 ≥ K(L− 1)− 1 . (8.44)

Define
E(σ) = (TK ×TL) \ (D1(σ) ∪ D2(σ)) (8.45)

so that we have |E(σ)| ≤ K + 1 by (8.44). We now have three sub-cases. We note that
H2D(σ(m)) is an even integer for each m ∈ TM , as q = 2.
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• First, we assume that H2D(σ(m)) = 2K for all m ∈ TM . Then, as in the previous
discussion on the case of M = L+ 1, we get a contradiction since ‖σ‖1 must be a
multiple of K for this case.

• Next, we assume that H2D(σ(m)) ≥ 2K + 2 for all m ∈ TM . Then, by (8.30),

d = d1 + d2 ≥ (K + 1)(L− 1) . (8.46)

If d = KL, then as in the case of M = L + 1, we get a contradiction since
‖σ‖1 = bKLM/2c+ 1 cannot be a multiple of M . Hence, we have d ≤ KL− 1, and
combining this with (8.46) implies that we must have K = L (and thus K = L = M ),
and moreover

d = KL− 1 and H2D(σ(m)) = 2K + 2 for all m ∈ TM .

Hence, we have |E(σ)| = KL − d = 1. Write E(σ) = {(k0, `0)}. By Lemma 5.14,
we can deduce that the configuration σ(m) has at least L− 1 ≥ 3 monochromatic
bridges, and thus we have at least one monochromatic bridge of the form TK × {`}
or {k} × TL that does not touch E(σ), so that it is a subset of either D1(σ) or
D2(σ). Suppose first that this bridge is TK × {`} for some ` ∈ TL. Then, the slab
TK × {`} ×TM is monochromatic. Therefore, by replacing the role of the second
and third coordinates, which is possible since K = L = M , the proof is reduced to
one of (Case 1), (Case 2), and (Case 3) as there is a monochromatic floor so that
either p1 or p2 is positive. This completes the proof. Similarly, if the monochromatic
bridge is {k} × TL, then we replace the role of the first and third coordinates to
complete the proof.

• Now, we lastly assume that H2D(σ(i0)) = 2K for some i0 ∈ TM and H2D(σ(j0)) ≥
2K + 2 for some j0 ∈ TM . By (8.30), we get

d ≥ KL−K , (8.47)

and hence, we have |E(σ)| ≤ K (cf. (8.45)). Now, we consider two sub-sub-cases
separately.

– |E(σ)| ≤ K − 1: First, suppose that K < L. By (L1) of Proposition 5.15, we
have σ(i0) ∈ R1, 2

v for some v ∈ J2, L− 2K. Since |E(σ)| ≤ K − 1 ≤ L− 1, there
exists `1 ∈ TL such that

(TK × {`1}) ∩ E(σ) = ∅ .

We further have TK × {`1} ⊆ D1(σ) or TK × {`1} ⊆ D2(σ) since σ(i0) ∈ R1, 2
v .

This implies that all sites in the slab TK × {`1} × TM have the same spin
n under σ. Since L = M , we can replace the role of the second and third
coordinates to reduce the proof to one of (Case 1), (Case 2) and (Case 3).
This completes the proof. Next, if K = L, then since there further exists
k1 ∈ TK such that ({k1} ×TL) ∩ E(σ) = ∅, we can use the same argument as
above to handle this case as well.

– |E(σ)| = K: The equality in (8.47) must hold, and thus we get H2D(σ(j0)) =

2K + 2 and H2D(σ(m)) = 2K for all m ∈ TM \ {j0}. We first suppose that
K < L. By (L1) of Proposition 5.15, we get σ(m) = ξ1, 2

`m, vm
for some `m ∈ TL

and vm ∈ J2, L − 2K for all m ∈ TM \ {j0}. Then, since L is strictly bigger
than K = |E(σ)|, we can always find a row in TK × TL which is either a
subset of D1(σ) or D2(σ). Thus, by changing the role of the second and third
coordinates, which is possible since L = M , we find a monochromatic floor
and the proof is reduced to one of (Case 1), (Case 2) and (Case 3). Next,
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we handle the case K = L, so that for all m ∈ TM \ {j0}, σ(m) = ξ1, 2
`m, vm

or

Θ(ξ1, 2
`m, vm

) (cf. Definition 5.4) for some `m ∈ TL and vm ∈ J2, L − 2K. First
of all, assume that all of them are of the same direction. Without loss of
generality, assume that σ(m) = ξ1, 2

`m, vm
for all m ∈ TM \ {j0}. If σ(m1) 6= σ(m2)

for some m1, m2 ∈ TM \ {j0}, then E(σ) must be exactly the line where they
differ and hence we can write E(σ) = TK × {`0} for some `0 ∈ TL. Then, by
taking any ` ∈ TL \ {`0}, we notice that TK × {`} is not only monochromatic
in σ(m) with m ∈ TM \ {j0}, but also a subset of either D1(σ) or D2(σ); hence,
TK×{`}×TM is a monochromatic slab. By replacing the role of the second and
third coordinates, which is possible since L = M , we find a monochromatic
floor and the proof is reduced to one of (Case 1), (Case 2) and (Case 3). On
the contrary, suppose that σ(m1) = σ(m2) for all m1, m2 ∈ TM \ {j0}. If there
exists a row or column which is disjoint with E(σ), then we can argue as above.
If not, then we can easily deduce that for the j0-th floor,

H2D(σ(j0)) ≥ 4(K − 4) > 2K + 2 ,

which contradicts the assumption that H2D(σ(j0)) = 2K + 2. Finally, we
consider the case when σ(m) = ξ1, 2

`, v and σ(m′) = Θ(ξ1, 2
`′, v′) for some m, m′ ∈

TM \ {j0} simultaneously. In this case, we have

d1 ≤ (K − v)(K − v′) and d2 ≤ vv′ .

Thus, we get a contradiction since

|E(σ)| ≥ K2 − (K − v)(K − v′)− vv′

=
1

2
K2 − 1

2
(K − 2v)(K − 2v′) ≥ 1

2
K2 − 1

2
(K − 4)2 = 4K − 8 > K ,

where the second inequality holds since v, v′ ∈ J2, K − 2K.

Now, we consider the general case of Proposition 8.1.

Proof of Proposition 8.1: general case. We fix a proper partition (A, B) of S and then fix
a ∈ A and b ∈ B. Let (ωt)

T
t=0 be a path connecting sa and sb. For each σ ∈ X , we denote

by σ̃ the configuration obtained from σ by changing all spins in A to 1 and spins in B to
2. Thus, σ̃ becomes an Ising configuration, i.e. a spin configuration for q = 2. Note that

H(σ̃) =
∑

{x, y}⊆Λ: x∼y

1{σ̃(x) 6= σ̃(y)}

=
∑

{x, y}⊆Λ: x∼y

1{σ(x) ∈ A, σ(y) ∈ B or σ(x) ∈ B, σ(y) ∈ A} (8.48)

≤
∑

{x, y}⊆Λ: x∼y

1{σ(x) 6= σ(y)} = H(σ) .

Now, we consider the induced pseudo-path (ω̃t)
T
t=0 of (ωt)

T
t=0 (cf. Notation 6.12). Thus,

by the proof above for q = 2, there exists t1 ∈ J0, T K such that H(ω̃t1) ≥ Γ?. Thus, we get
from (8.48) that

Γ? ≤ H(ω̃t1) ≤ H(ωt1) ,

and we complete the proof for part (1).
For part (2), suppose that (ωt)

T
t=0 is a path such that

H(ωt) ≤ Γ? for all t ∈ J0, T K . (8.49)
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Then, by (8.48), we have H(ω̃t) ≤ Γ? for all t ∈ J0, T K. Thus, by the proof above for q = 2,
there exists s ∈ J0, T K such that ω̃s ∈ G1, 2. We now claim that ωs ∈ GA,B . It is immediate
that this claim finishes the proof.

To prove this claim, we write

Un = {x ∈ Λ : ω̃s(x) = n} ; n = 1, 2 .

Then, we have
ωs(x) ∈ A for x ∈ U1 and ωs(x) ∈ B for x ∈ U2 . (8.50)

Now, we assume that

ωs(x) 6= ωs(y) for some x, y ∈ U1 or x, y ∈ U2 with x ∼ y . (8.51)

We now express the energy H(ωs) as

H(ωs) =
[ ∑
{x, y}⊆U1 or {x, y}⊆U2

+
∑

x∈U1, y∈U2

]
1{ωs(x) 6= ωs(y)} , (8.52)

where the summation is carried over x, y satisfying x ∼ y. Note that the second
summation is equal to H(ω̃s) by (8.50). On the other hand, we can readily deduce from
Figure 7 that the first summation of (8.52) is at least 4 if ω̃s is a gateway configuration
of type 1, and at least 2 if ω̃s is a gateway configuration of type 2 or 3 (cf. Notation 7.2).
Thus, by Proposition 7.3, we can conclude that the right-hand side of (8.52) is at least
Γ? + 2; i.e., we get H(ωs) ≥ Γ? + 2. This contradicts (8.49) and hence, we cannot
have (8.51). This finally implies that there exist a0 ∈ A and b0 ∈ B such that

ωs(x) =

{
a0 if x ∈ U1 ,

b0 if x ∈ U2 ,

and thus we have ωs ∈ Ga0, b0 ⊆ GA,B as claimed.

8.3 Proof of Theorem 2.7

Theorem 2.7 is now a consequence of our analysis on the energy landscape and the
general theory developed in [42, 43].

Proof of Theorem 2.7. We have two results on the energy barrier; Theorem 2.4 and
Proposition 6.13. The theory developed in [43] implies that these two are sufficient to
conclude Theorem 2.76. This implication has been rigorously verified in [42] for the
case of d = 2, and this argument extends to the case of d = 3 without a modification.
Hence, we do not repeat the argument here, and refer the readers to [42, Section 3] for
a detailed proof.

9 Typical configurations and optimal paths

In the previous sections, we proved large deviation-type results regarding the
metastable behavior by analyzing the energy barrier in terms of canonical and gateway
configurations. In order to get precise quantitative results such as Theorems 2.10
and 2.12 or to get a characterization of optimal paths, we need a more refined analysis
of the energy landscape based on the typical configurations which will be introduced
and analyzed in the current section.

We fix a proper partition (A, B) of S throughout the section.

6We remark that the second convergence of (2.11) is not a consequence of an analysis of the energy barrier,
but of the first convergence of (2.11) and the symmetry of the model. This argument is also given in [42,
Section 3] for d = 2, and an identical one works for d = 3.
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Figure 9: 3D typical configurations for the Ising model. Suppose that q = 2,
A = {1}, and B = {2} (one can compare this figure with Figure 8). The given figure
provides an illustration of the complete structure of the set N̂ (S). This characterization
is verified in Proposition 9.6. We take bulk ones only from mK to M − mK instead of
nK,L,M (cf. (6.22)) to M − nK,L,M since we do not know the exact value of nK,L,M .
Because of this, the structure of the edge typical configurations is a little bit more
complicated than in the 2D case.

9.1 Typical configurations

Let us start by defining the typical configurations. We consistently refer to Figure 9
for an illustration of our construction.

For a, b ∈ S and i ∈ J0, MK, we define

R̂a, bi = N̂ (Ra, bi ; Ga, b) . (9.1)

We also define
R̂A,Bi = N̂ (RA,Bi ; GA,B) ; i ∈ J0, MK .

Remark 9.1. For i ∈ JmK , M −mKK, we have that

R̂A,Bi =
⋃

a∈A, b∈B

R̂a, bi .

To check this, it suffices to check N̂ (Ra, bi ; Ga, b) = N̂ (Ra, bi ; GA,B) provided that a ∈
A and b ∈ B. This follows from Lemma 8.3 since Ra, bi cannot be connected to a
configuration in GA,B \ Ga, b via a Γ-path in X \ Ga, b by part (2) of Lemma 8.3.

Remark 9.2. By Lemma 8.3, two sets R̂A,Bi and R̂A,Bj for different i, j are disjoint if
either i ∈ JmK , M −mKK or j ∈ JmK , M −mKK. Moreover by Proposition 8.1, they are
disjoint if i ∈ J0, mK − 1K and j ∈ JM − mK + 1, MK or vice versa. On the other hand,
they might be the same set if i, j ∈ J0, mK − 1K or i, j ∈ JM −mK + 1, MK. In particular,
we have

R̂A,B0 = R̂A,B1 = · · · = R̂A,BnK,L,M−1 ,

where nK,L,M is defined in (6.22). The same result holds for R̂a, bi instead of R̂A,Bi .

Now, we define the typical configurations. We recall Notation 7.4.
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Definition 9.3 (Typical configurations). For a proper partition (A, B) of S, we define the
typical configurations as follows.

• Bulk typical configurations: We define, for a, b ∈ S,

Ba, b = Ga, b[mK ,M−mK−1] ∪ R̂
a, b
[mK ,M−mK ] ,

and then define

BA,B =
⋃
a∈A

⋃
b∈B

Ba, b = GA,B[mK ,M−mK−1] ∪ R̂
A,B
[mK ,M−mK ] , (9.2)

where the second identity holds because of Remark 9.1. A configuration belonging
to BA,B is called a bulk typical configuration between S(A) and S(B).

• Edge typical configurations: We define

EA = GA,BmK−1 ∪ R̂
A,B
[0,mK ] and EB = GA,BM−mK ∪ R̂

A,B
[M−mK ,M ] . (9.3)

Finally, we define EA,B = EA ∪ EB. A configuration belonging to EA,B is called an
edge typical configuration between S(A) and S(B).

Later in Proposition 9.6, we shall show that BA,B ∪ EA,B = N̂ (S) and hence all relevant
configurations in the analysis of metastable behavior between S(A) and S(B) belong to
either BA,B or EA,B.

Remark 9.4. Since RA,B0 = S(A) and RA,BM = S(B) (cf. (6.7)), we can readily observe
that S(A) ⊆ EA and S(B) ⊆ EB.

9.2 Properties of typical configurations

In this subsection, we analyze some properties of the edge and bulk typical config-
urations. In fact, we have to take K large enough (i.e., K ≥ 2829) in order to get the
structural properties of edge and bulk typical configurations given in the current section.

The first property asserts that EA and EB are disjoint.

Proposition 9.5. The two sets EA and EB are disjoint.

Proof. By part (2) of Lemma 8.3 (cf. Remark 9.2), the set R̂A,BmK is disjoint with EB;
similarly, the set R̂A,BM−mK is disjoint with EA. It is direct from the definition that GA,BmK−1

and GA,BM−mK are disjoint. By definition, GA,BmK−1, G
A,B
M−mK ⊆ G

A,B are mutually disjoint with

R̂A,B[0,mK ] and R̂A,B[M−mK ,M ]. Hence, it suffices to prove that R̂A,B[0,mK−1] and R̂A,B[M−mK+1,M ]

are disjoint. Otherwise, we can take a configuration σ such that

σ ∈ R̂A,B[0,mK−1] ∩ R̂
A,B
[M−mK+1,M ] .

Since σ ∈ R̂A,B[0,mK−1], there exists a Γ-path in X \ GA,B (which is indeed a part of a

canonical path) connecting σ and S(A). Similarly, there exists a Γ-path in X \ GA,B
connecting σ and S(B). By concatenating them, we can find a Γ-path (ωt)

T
t=0 in X \ GA,B

connecting S(A) and S(B). This contradicts part (2) of Proposition 8.1.

Now, we analyze the crucial features of the typical configurations. Note that this is a
3D version of Proposition 5.9.

Proposition 9.6. For a proper partition (A, B) of S, the following properties hold for
the typical configurations.

1. It holds that EA ∩ BA,B = R̂A,BmK and EB ∩ BA,B = R̂A,BM−mK .
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2. We have EA,B ∪ BA,B = N̂ (S).

Proof. (1) It suffices to prove the first identity, as the second one follows similarly. One
can observe that the set GA,BmK−1 ⊆ GA,B is disjoint with BA,B from (9.2), and the set

GA,B[mK ,M−mK−1] ⊆ G
A,B is disjoint with EA in view of the expression (9.3). Therefore,

by (9.2) and (9.3), we get

EA ∩ BA,B = R̂A,B[0,mK ] ∩ R̂
A,B
[mK ,M−mK ] . (9.4)

By Lemma 8.3, the two sets RA,B[0,mK−1] and RA,B[mK ,M−mK ] cannot be connected by a Γ-path

in X \ GA,B, and hence R̂A,B[0,mK−1] and R̂A,B[mK ,M−mK ] are disjoint. Therefore, we have

R̂A,B[0,mK ] ∩ R̂
A,B
[mK ,M−mK ] = R̂A,BmK ∩ R̂

A,B
[mK ,M−mK ] = R̂A,BmK . (9.5)

The proof is completed by (9.4) and (9.5).

(2) We will first prove that

N̂ (S) = N̂ (N (RA,B[0,M ]) ∪ G
A,B) . (9.6)

Since it is immediate that S is a subset of the right-hand side, we have N̂ (S) ⊆
N̂ (N (RA,B[0,M ]) ∪ G

A,B). On the other hand, since N (RA,B[0,M ]) ∪ G
A,B ⊆ N̂ (S) clearly

holds, we also have N̂ (N (RA,B[0,M ]) ∪ G
A,B) ⊆ N̂ (S). This proves (9.6). Since the sets

N (RA,B[0,M ]) and GA,B are disjoint by Lemma 7.6, we can apply Lemmas 4.2 and 7.6 to
deduce

N̂ (S) = N̂ (N (RA,B[0,M ]) ; GA,B) ∪ N̂ (GA,B ; N (RA,B[0,M ])) .

= N̂ (RA,B[0,M ] ; GA,B) ∪ GA,B = R̂A,B[0,M ] ∪ G
A,B .

This completes the proof since by (7.3), (9.2) and (9.3), we have EA,B ∪ BA,B = GA,B ∪
R̂A,B[0,M ].

9.3 Structure of edge typical configurations

As in the 2D case [27, Sections 6.4 and 6.5], we analyze the structure of edge typical
configurations.

We remark that we fixed a proper partition (A, B) of S. Decompose

EA = OA ∪ IA (9.7)

where
OA = {σ ∈ EA : H(σ) = Γ} and IA = {σ ∈ EA : H(σ) < Γ} .

We now take a subset IA of IA so that we can decompose IA into the following disjoint
union:

IA =
⋃
σ∈IA

N (σ) .

Consequently, we get the following decomposition of EA:

EA = OA ∪
( ⋃
σ∈IA

N (σ)
)
. (9.8)

Notation 9.7. For σ ∈ IA, we denote by σ ∈ IA the unique configuration satisfying
σ ∈ N (σ).
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By part (1) of Lemma 8.3, for σ, σ′ ∈ RA,BmK , the two sets N (σ) and N (σ′) are disjoint.
By a similar reasoning, we know that for any σ ∈ RA,BmK and a ∈ A, the sets N (σ) and
N (sa) are disjoint. Thus, we can assume that

RA,BmK ∪ S(A) ⊆ IA . (9.9)

The following construction of an auxiliary Markov chain is an analogue of [27, Definition
6.20].

Definition 9.8. For a proper partition (A, B) of S, we define a Markov chain ZA(·) on

IA ∪ OA.

• (Graph) We define the graph structure GA = (V A, E A) for V A = OA ∪ IA. The
edge set E A is defined by declaring that {σ, σ′} ∈ E A for σ, σ′ ∈ V A if{

σ, σ′ ∈ OA and σ ∼ σ′ or

σ ∈ OA , σ′ ∈ IA , and σ ∼ ζ for some ζ ∈ N (σ′) .

• (Markov chain) We first define a rate rA : V A × V A → [0, ∞). If {σ, σ′} /∈ E A, we
set rA(σ, σ′) = 0, and if {σ, σ′} ∈ E A, we set

rA(σ, σ′) =


1 if σ, σ′ ∈ OA ,
|{ζ ∈ N (σ) : ζ ∼ σ′}| if σ ∈ IA , σ′ ∈ OA ,
|{ζ ∈ N (σ′) : ζ ∼ σ}| if σ ∈ OA , σ′ ∈ IA .

(9.10)

We now let (ZA(t))t≥0 be the continuous-time Markov chain on V A with rate rA(·, ·).
Note that the uniform distribution on V A is the invariant measure for the chain
ZA(·), and indeed this chain is reversible with respect to this measure.

• (Potential-theoretic objects) Denote by LA, hA·, ·(·), and capA(·, ·) the genera-
tor, equilibrium potential, and capacity with respect to the Markov chain ZA(·),
respectively.

We now give three important propositions regarding the objects constructed above.
These propositions play fundamental roles in the construction of the test function on the
edge typical configurations.

We remark from (9.9) that S(A), RA,BmK ⊆ IA ⊆ V A. Potential-theoretic objects
between these two sets are crucially used in our discussion. We define

e(A) =
1

|V A| capA(S(A), RA,BmK )
. (9.11)

For n ∈ J1, q − 1K (with a slight abuse of notation) we can write

e(n) =
1

|V An | capAn(S(An), RAn, BnmK )
, (9.12)

where An = {1, . . . , n} and Bn = {n+ 1, . . . , q}. Since e(A) depends on A only through
|A|, it holds that e(A) = e(|A|). We next derive a rough bound of e(n) via the Thomson
principle. We refer to e.g., [13] for the flow structure and the Thomson principle.

Proposition 9.9. For all n ∈ J1, q − 1K, we have that e(n) ≤ 1
K1/3 .

Proof. We recall that an anti-symmetric function φ : V A × V A → R is called a flow
associated with the Markov chain ZA(·), provided that φ(x, y) 6= 0 if and only if {x, y} ∈
E A. For each flow φ, the associated flow norm is defined by

‖φ‖2 :=
∑

{x, y}⊆V A: {x, y}∈EA

φ(x, y)2

|V A|−1 rA(x, y)
.
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For each x ∈ V A, the divergence of a flow φ at x is defined by

(div φ)(x) :=
∑
y∈V A

φ(x, y) .

Finally, for two disjoint non-empty subsets U , V of V A, a flow φ is called a unit flow from
U to V if∑

x∈U
(div φ)(x) = −

∑
x∈V

(div φ)(x) = 1 and (div φ)(z) = 0 for all z /∈ U ∪ V .

Then, by the Thomson principle (cf. [13, Theorem 7.37]), for any unit flow ψ from S(A)

to RA,BmK , we have

capA(S(A), RA,BmK ) ≥ 1

‖ψ‖2
. (9.13)

We shall construct below a unit flow ψ from S(A) to RA,BmK that satisfies

‖ψ‖2 < mK |V A|
2M

. (9.14)

Then, by combining (9.13) and (9.14), we have (recalling the definition (6.20) of mK)

capA(S(A), RA,BmK ) ≥ 1

‖ψ‖2
>

2M

|V A|mK
≥ K1/3

|V A|
.

Recalling the definition (9.11), this completes the proof.
Now, it remains to construct a unit flow ψ from S(A) to RA,BmK satisfying bound (9.14).

To this end, let us first fix a ∈ A and b ∈ B. Define

iK,L,M = max {m ≥ 1 : Φ(S(A), RA,Bm ) < Γ} . (9.15)

By Corollary 8.5, we know that iK,L,M < mK .
Let us start by fixing P, Q ∈ SM such that P ≺ Q, Q \ P = {m}, iK,L,M ≤ |P | <

|Q| ≤ mK , a ∈ A, and b ∈ B. Then, we first define a flow ψP,Q connecting σa, bP = σa, bP

and σa, bQ = σa, bQ (cf. Notation 9.7). First, we set

ψP,Q(σ, ζ) = −ψP,Q(ζ, σ) =
1

2KLM
(9.16)

if σ, ζ ∈ Ca, bP, Q satisfy, for some ` ∈ TL, k ∈ TK , v ∈ J1, L− 2K, and h ∈ J1, K − 2K,
σ(m) = ξa, b`, v and ζ(m) = ξa, b,+`, v; k, 1 or ,

σ(m) = ξa, b,+`, v; k, h and ζ(m) = ξa, b,+`, v; k, h+1 or ,

σ(m) = ξa, b,+`, v; k,K−1 and ζ(m) = ξa, b`, v+1 .

(9.17)

Now, we claim that all configurations that appear in (9.17) except for the ones corre-
sponding to ξa, b`, 1 and ξa, b`, L−1 belong to V A. To check this, observe first that if the m-th

floor of σ ∈ Ca, bP, Q is of the form σ(m) = ξa, b,+`, v ; k, h, we have H(σ) = Γ and hence σ ∈ OA. On

the other hand, if the m-th floor of σ ∈ Ca, bP, Q is of the form σ(m) = ξa, b`, v for v ∈ J2, L− 2K,

we have H(σ) = Γ− 2 and moreover N (σ) = {σ}. This implies that σ ∈ IA. This proves
the claim. On the other hand, since if σ(m) = ξa, b`, 1 then σ ∈ N (σa, bP ), and if σ(m) = ξa, b`, L−1

then σ ∈ N (σa, bQ ) (cf. the canonical paths provide (Γ − 1)-paths), we can replace the

configurations corresponding to ξa, b`, 1 and ξa, b`, L−1 that appear in (9.17) with σa, bP and
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σa, bQ , respectively, to get a flow connecting σa, bP and σa, bQ . We remark that we may have

σa, bP = σa, bQ .
We deduce from the definition of the flow norm that

‖ψP,Q‖2 =
|V A|

(2KLM)2
×K2L(L− 2) <

|V A|
4M2

, (9.18)

where K2L(L− 2) is the number of edges that appear in (9.17). Next, we define

ψ =

mK−1∑
r=iK,L,M

∑
P,Q∈SM : |P |=r, P≺Q

ψP,Q .

Notice from (9.15) that a configuration of the form σa, bP,Q with |P | = iK,L,M is indeed an
element of S(A). Then, from the definition (9.16), we can readily check that ψ(x) = 0

for all x /∈ S(A) ∪ RA,BmK (by using the fact that the flow on each edge has a constant
magnitude 1

2KLM ), and moreover it holds that (cf. (9.9))∑
x∈S(A)

∑
y∈V A

ψ(x, y) = 1 . (9.19)

Indeed, to prove the last assertion, it suffices to observe that∑
x∈S(A)

∑
y∈V A

ψ(x, y) =
∑

P,Q∈SM : |P |=iK,L,M , P≺Q

∑
ζ∈V A:σa,bP ∼ζ

ψP,Q(σa, bP , ζ)

=
1

2KLM
×KL× 2M = 1 ,

where KL is the number of configurations in Ca, bP,Q connected to σa, bP , and 2M is the
number of possible choices of P and Q. Consequently, the flow ψ is a unit flow from S(A)

to RA,BmK .
Thus, it suffices to verify (9.14). Since the support of ψP,Q (which is the collection

of edges on which ψP,Q is non-zero) for different pairs (P, Q) are disjoint, we deduce
from (9.18) that

‖ψ‖2 =

mK−1∑
r=iK,L,M

∑
P,Q∈SM : |P |=r, P≺Q

‖ψP,Q‖2 < mK × 2M × |V
A|

4M2
=

mK |V A|
2M

,

and therefore ψ satisfies (9.14).

For simplicity, we write (cf. (9.9))

hA(·) = hAS(A),RA,BmK

(·) (9.20)

where hA is the equilibrium potential defined in Definition 9.8. This function is a
fundamental object in the construction of the test function in Section 10.

Proposition 9.10. For σ ∈ R̂A,BmK ∩ OA ⊆ V A, we have hA(σ) = 0.

Proof. We fix σ ∈ R̂A,BmK ∩ OA. It suffices to prove that any Γ-path (ωt)
T
t=0 from σ to

S(A) must visit N (RA,BmK ). Suppose first that the path (ωt)
T
t=0 does not visit GA,B. Since

σ ∈ R̂A,BmK , there exists a Γ-path in X \ GA,B connecting RA,BmK and σ, and therefore by
concatenating this path with (ωt)

T
t=0, we get a Γ-path in X \ GA,B connecting RA,BmK and

S(A). This contradicts part (2) of Lemma 8.3. Thus, the path (ωt)
T
t=0 must visit GA,B and

we let
t0 = min {t : ωt ∈ GA,B} .
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By part (2) of Lemma 7.5, we have ωt0−1 ∈ N (RA,B[mK−1,M−mK+1]). If ωt0−1 ∈ N (RA,Bi ) for

some i ∈ JmK − 1, M −mK + 1K \ {mK}, then (ωt)
t0−1
t=0 induces a Γ-path from RA,BmK from

RA,Bi avoiding GA,B, which contradicts part (2) of Lemma 8.3. Hence, we can conclude
that ωt0−1 ∈ N (RA,BmK ), as desired.

Remark 9.11. The previous proposition implies that configurations σ that belong to
R̂A,BmK ∩ OA are dead-ends attached to N (RA,BmK ) (cf. grey protuberances attached to
green boxes in Figures 8 and 9).

The next proposition highlights the fact that the auxiliary process ZA(·) defined in
Definition 9.8 approximates the behavior of the Metropolis–Hastings dynamics at the
edge typical configurations.

Proposition 9.12. Define a projection map ΠA : EA → V A by (cf. Notation 9.7)

ΠA(σ) =

{
σ if σ ∈ IA ,
σ if σ ∈ OA .

Then, there exists C = C(K, L, M) > 0 such that

1. for σ1, σ2 ∈ OA, we have∣∣∣ 1

q
e−Γβ rA(ΠA(σ1), ΠA(σ2))− µβ(σ1) rβ(σ1, σ2)

∣∣∣ ≤ Ce−(Γ+1)β , (9.21)

2. for σ1 ∈ OA and σ2 ∈ I
A

, we have∣∣∣ 1

q
e−Γβ rA(ΠA(σ1), ΠA(σ2))−

∑
ζ∈N (σ2)

µβ(σ1) rβ(σ1, ζ)
∣∣∣ ≤ Ce−(Γ+1)β . (9.22)

Proof. (1) Suppose that σ1, σ2 ∈ OA. Since if σ1 6∼ σ2 then the left-hand side of (9.21) is
0, we may assume that σ1 ∼ σ2. In this case, {σ1, σ2} ∈ E A, and thus∣∣∣ 1

q
e−Γβ rA(ΠA(σ1), ΠA(σ2))− µβ(σ1) rβ(σ1, σ2)

∣∣∣ =
∣∣∣ 1

q
e−Γβ − 1

Zβ
e−Γβ

∣∣∣
since µβ(σ1) = µβ(σ2) = 1

Zβ
e−Γβ by the definition of OA. By (2.5), the right-hand side of

the previous display is Oβ(e−(Γ+1)β).

(2) Let σ1 ∈ OA and σ2 ∈ I
A

. Similarly, we may assume that σ1 ∼ σ2. Then, we can write∣∣∣ 1

q
e−Γβ rA(ΠA(σ1), ΠA(σ2))−

∑
ζ∈N (σ2)

µβ(σ1) rβ(σ1, ζ)
∣∣∣

=
∣∣∣ 1

q
e−Γβ |{ζ ∈ N (σ2) : ζ ∼ σ1}| −

∑
ζ∈N (σ2): ζ∼σ1

min {µβ(σ1), µβ(ζ)}
∣∣∣

= |{ζ ∈ N (σ2) : ζ ∼ σ1}| ×
∣∣∣ 1

q
e−Γβ − 1

Zβ
e−Γβ

∣∣∣ ,
since min {µβ(σ1), µβ(ζ)} = µβ(σ1) for all ζ ∈ N (σ2). Again by (2.5), the last line is
clearly bounded from above by KL×Oβ(e−Γβ e−β) = Oβ(e−(Γ+1)β). This concludes the
proof.
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9.4 Analysis of 3D transition paths

In this section, we finally define the collection of transition paths between ground
states that appear in Theorem 2.9.

Definition 9.13 (Transition paths). Write

HA,B = GA,B ∪ R̂A,B[mK ,M−mK ] . (9.23)

A path (ωt)
T
t=0 is called a transition path between S(A) and S(B) if

ω0 ∈ N̂ (S(A) ; GA,B) , ωT ∈ N̂ (S(B) ; GA,B) , and

ωt ∈ HA,B for all t ∈ J1, T − 1K .

In particular, we have ω0 ∈ N (RA,BmK−1), ω1 ∈ GA,BmK−1, ωT−1 ∈ GA,BM−mK , and ωT ∈
N (RA,BM−mK+1) by part (1) of Lemma 7.5.

Remark 9.14. The two sets N̂ (S(A) ; GA,B) and N̂ (S(B) ; GA,B) are disjoint thanks to
part (2) of Proposition 8.1.

Now, we characterize all the optimal paths between ground states in terms of the
transition paths.

Theorem 9.15. Let (ωt)
T
t=0 be a Γ-path connecting S(A) and S(B). Then, (ωt)

T
t=0 has a

transition path between S(A) and S(B) as a sub-path.

Proof. Let (ωt)
T
t=0 be a Γ-path connecting S(A) and S(B), and define

T ′ = min {t : ωt ∈ N̂ (S(B) ; GA,B)} .

Then, define
t′ = max {t < T ′ : ωt ∈ N̂ (S(A) ; GA,B)} .

We claim that the sub-path (ωt)
T ′

t=t′ is a transition path between S(A) and S(B). By part
(1) of Lemma 7.5, we have

ωt′ ∈ N (RA,BmK−1) , ωt′+1 ∈ GA,BmK−1 , ωT ′−1 ∈ GA,BM−mK , and ωT ′ ∈ N (RA,BM−mK+1) .

In particular, we get ωt′+1, ωT ′−1 ∈ HA,B. To complete the proof of the claim, it suffices
to check that, if σ ∈ HA,B and ζ /∈ HA,B satisfy σ ∼ ζ and H(ζ) ≤ Γ, then ζ ∈
N (RA,BmK−1) ∪ N (RA,BM−mK+1). To prove this, let us first assume that σ ∈ R̂a, bi for some

a ∈ A, b ∈ B, and i ∈ JmK , M −mKK (cf. (9.23)). Then, since ζ /∈ R̂a, bi and H(ζ) ≤ Γ, by
the definition of R̂a, bi we must have ζ ∈ GA,B, and hence we get a contradiction to the
fact that ζ /∈ HA,B. Next, we assume that σ ∈ GA,Bi for some i ∈ JmK−1, M−mKK. Since
ζ ∈ X \ HA,B, by Lemma 7.5, we have ζ ∈ N (RA,BmK−1) ∪ N (RA,BM−mK+1). This completes
the proof.

Therefore, we can now say that the set GA,B ∪ R̂A,B[mK ,M−mK ] consists of a saddle

plateau between S(A) and S(B), which is a huge set of saddle configurations.
Now, we can prove Theorem 2.9.

Proof of Theorem 2.9. Denote by τ̂ the hitting time of the set {σ ∈ X : H(σ) ≥ Γ + 1}.
Then, by the large deviation principle (e.g. [43, Theorem 3.2]), we have that

Pβs [τ̂ < eβ(Γ+1/2)] = oβ(1) .

Hence, by part (1) of Theorem 2.7, we have that Pβs [τs̆ < τ̂ ] = 1 − oβ(1). Thus, the
conclusion of the theorem follows immediately from Theorem 9.15.
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10 Construction of test function

We fix in this section a proper partition (A, B) of S. The main purpose of the
current section is to construct a test function h̃ = h̃βA,B : X → R that satisfies the two
requirements of Proposition 3.2.

Notation 10.1. Since the partition (A, B) is fixed, we simply write b = b(|A|), eA =

e(|A|), eB = e(|B|), and c = c(|A|) so that c = b + eA + eB throughout the current section.

10.1 Construction of test function

We now define a function h̃ : X → R which indeed fulfills all requirements in
Proposition 3.2, as we shall verify later.

Definition 10.2 (Test function). We construct the test function h̃ on EA,B, BA,B, and
(EA,B ∪ BA,B)c separately. Recall Notation 9.7.

1. Construction of h̃ on edge typical configurations EA,B = EA ∪ EB.

• For σ ∈ EA, we recall the decomposition (9.8) of EA and define

h̃(σ) =

{
1− eA

c (1− hA(σ)) if σ ∈ OA ,
1− eA

c (1− hA(σ)) if σ ∈ IA .
(10.1)

• For σ ∈ EB, we similarly define

h̃(σ) =

{
eB
c (1− hB(σ)) if σ ∈ OB ,
eB
c (1− hB(σ)) if σ ∈ IB .

(10.2)

2. Construction of h̃ on bulk typical configurations BA,B. Recall the 2D test
function h̃2D explained in Proposition 5.12. We define the test function on each
component of the decomposition (9.2) of BA,B.

• Construction on GA,B[mK ,M−mK−1]: Let us first fix P, Q ∈ SM such that P ≺ Q

and |P | ∈ JmK , M −mK − 1K. Write

GA,BP,Q =
⋃

a∈A, b∈B

Ga, bP,Q .

The test function h̃ is defined on GA,BP,Q by

h̃(σ) =
1

c

[M −mK − |P | − (1− h̃2D(σ(m)))

M − 2mK
b + eB

]
; σ ∈ GA,BP,Q , (10.3)

where {m} = Q \ P so that σ(m) is a 2D gateway configuration between s2D
a

and s2D
b for some (a, b) ∈ A×B. Since GA,B[mK ,M−mK−1] can be decomposed into

GA,B[mK ,M−mK−1] =

M−mK−1⋃
i=mK

⋃
P,Q∈SM :P≺Q and |P |=i

GA,BP,Q ,

we can combine the constructions (10.3) to define the test function on
GA,B[mK ,M−mK−1].

• Construction on R̂A,Bi for i ∈ JmK , M −mKK: We set

h̃(σ) =
1

c

[M −mK − i
M − 2mK

b + eB

]
; σ ∈ R̂A,Bi , (10.4)

so that the function h̃ is constant on each R̂A,Bi , i ∈ JmK , M −mKK.
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3. Construction of h̃ on the remainder set X \ (EA,B ∪ BA,B): We define h̃(σ) = 1 for
all σ ∈ X \ (EA,B ∪ BA,B).

Remark 10.3. From the definition above, we can readily observe the following proper-
ties of the test function h̃.

1. In view of part (1) of Proposition 9.6, we should check that the definitions of h̃ on
EA,B and BA,B agree on R̂A,BmK and R̂A,BM−mK . This can be verified from (10.1), (10.2),
(10.4), and Proposition 9.10. In particular, both definitions imply that the value
of h̃ on the former set is constantly b+eB

c , while the value of h̃ on the latter set is
constantly eB

c .

2. It is obvious that h̃ ≡ 1 on S(A) and h̃ ≡ 0 on S(B), and moreover we can readily
verify from the definition that 0 ≤ h̃ ≤ 1.

The remainder of this section is devoted to proving parts (1) and (2) of Proposition 3.2.
In the remainder of the current section, we assume for simplicity that K < L < M . The
other cases, K = L < M , K < L = M , or K = L = M , can be handled in the exact same
manner.

10.2 Dirichlet form of test function

We first prove that the test function h̃ satisfies property (2) of Proposition 3.2.

Proof of part (2) of Proposition 3.2. We divide the Dirichlet form into three parts as[ ∑
{σ, ζ}⊆EA,B∪BA,B

+
∑

σ∈EA,B∪BA,B
ζ∈(EA,B∪BA,B)c

+
∑

{σ, ζ}⊆(EA,B∪BA,B)c

]
µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 .

We first consider the second summation. Observe first that, by part (2) of Proposition 9.6,
we have EA,B ∪BA,B = N̂ (S) and thus we get H(ζ) ≥ Γ + 1 if σ ∼ ζ. Hence, by (2.6) and
Theorem 2.2, we get

µβ(σ) rβ(σ, ζ) = min {µβ(σ), µβ(ζ)} = µβ(ζ) ≤ Ce−(Γ+1)β .

From the fact that 0 ≤ h̃ ≤ 1 (cf. part (2) of Remark 10.3), we can conclude that the
second summation is oβ(1) e−Γβ. The third summation is trivially 0 by the definition of
the test function on (EA,B ∪ BA,B)c. Therefore, it remains to show that

∑
{σ, ζ}⊆EA,B∪BA,B

µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 =
1 + oβ(1)

cq
e−Γβ . (10.5)

By part (1) of Proposition 9.6 and the fact that h̃ is constant on each R̂A,Bi , i ∈ JmK , M −
mKK (cf. (10.4)), we can decompose the left-hand side into[ ∑

{σ, ζ}⊆BA,B
+

∑
{σ, ζ}⊆EA

+
∑

{σ, ζ}⊆EB

]
µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 . (10.6)

Again by the fact that h̃ is constant on each R̂A,Bi , we can express the first summation as

M−mK−1∑
i=mK

∑
a∈A, b∈B

∑
P,Q∈SM :
P≺Q, |P |=i

∑
{σ, ζ}⊆Ba,b: {σ, ζ}∩Ga,bP,Q 6=∅

µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 . (10.7)
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By (10.3) and (10.4), Theorem 2.2 and (5.2), we can write the last summation as (1+oβ(1))

times

2b2 e−2KLβ

qc2(M − 2mK)2

∑
{σ, ζ}⊆Ba,b: {σ, ζ}∩Ga,bP,Q 6=∅

µ2D
β (σ(m)) r2D

β (σ(m), ζ(m)) {h̃2D(ζ(m))−h̃2D(σ(m))}2 ,

(10.8)
where {m} = Q \ P and σ(m) and ζ(m) are regarded as 2D Ising configurations. By

Proposition 5.12, the last summation is 1+oβ(1)
2κ2D e−Γ2Dβ . Therefore, display (10.8) equals

b2 e−2KLβ

c2(M − 2mK)2
× (1 + oβ(1)) e−Γ2Dβ

qκ2D
. (10.9)

Inserting this to (10.7) (and recalling (3.8)), we get∑
{σ, ζ}⊆BA,B

µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 =
b + oβ(1)

c2q
e−Γβ . (10.10)

Next, we deal with the second and third summations of (10.6). By (10.1) and Proposi-
tion 9.12, the second summation equals

e−Γβ

q

∑
{σ, ζ}⊆V A

e2A r
A(σ, ζ) {hA(ζ)− hA(σ)}2

c2
+ oβ(1) e−Γβ =

eA + oβ(1)

c2q
e−Γβ . (10.11)

Similarly, we get ∑
{σ, ζ}⊆EB

µβ(σ) rβ(σ, ζ) {h̃(ζ)− h̃(σ)}2 =
eB + oβ(1)

c2q
e−Γβ . (10.12)

Therefore, by (10.10), (10.11), and (10.12), we can conclude that the left-hand side
of (10.5) is equal to

(1 + oβ(1))× b + eA + eB
c2q

e−Γβ =
1 + oβ(1)

qc
e−Γβ .

This concludes the proof.

10.3 H1-approximation

Now it remains to prove that the test function h̃ satisfies part (1) of Proposition 3.2.
We shall carry this out in the current section to conclude the proof of Proposition 3.2.

We abbreviate h = hβS(A),S(B) in the remainder of the section. Then, the next lemma
asserts that the equilibrium potential is nearly constant on each N -neighborhood. Since
this lemma can be proved in the exact same manner as [27, Lemma 7.8], we omit the
proof.

Lemma 10.4. For any σ ∈ X such that H(σ) < Γ, it holds that

max
ζ∈N (σ)

|h(ζ)− h(σ)| = oβ(1) .

Now we proceed to the proof of (3.19). By (3.2), we can write

Dβ(h− h̃) = 〈h− h̃, −Lβh+ Lβh̃〉µβ
= Dβ(h) +Dβ(h̃)− 〈h, −Lβh̃〉µβ − 〈h̃, −Lβh〉µβ .
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Since h̃ ≡ h ≡ 1 on S(A), h̃ ≡ h ≡ 0 on S(B) (cf. Remark 10.3-(2)), and Lβh ≡ 0 on X \ S
(cf. (3.6)), we have

〈h̃, −Lβh〉µβ =
∑

s∈S(A)

h̃(s) (−Lβh)(s)µβ(s) =
∑

s∈S(A)

h(s) (−Lβh)(s)µβ(s) = Dβ(h) .

By the last two displayed equations, we obtain that

Dβ(h− h̃) = Dβ(h̃)−
∑
σ∈X

h(σ) (−Lβh̃)(σ)µβ(σ) . (10.13)

Therefore, by part (2) of Proposition 3.2 proved in the previous subsection and the
definition of Lβ (cf. (3.3)), we are left to prove that∑

σ∈X
h(σ)

∑
ζ∈X

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] =
1 + oβ(1)

qc
e−Γβ . (10.14)

For simplicity, we define

ψ(σ) =
∑
ζ∈X

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] , (10.15)

so that we can rewrite our objective (10.14) as∑
σ∈X

h(σ)ψ(σ) =
1 + oβ(1)

qc
e−Γβ . (10.16)

In summary, it suffices to prove (10.16) to prove that h̃ satisfies part (1) of Proposition 3.2.
The proof of (10.16) is divided into several lemmas. First, we demonstrate that ψ(σ) is
negligible if σ is not a typical configuration.

Lemma 10.5. For every σ ∈ X \ (EA,B ∪ BA,B) (i.e., σ /∈ N̂ (S) by Proposition 9.6), it
holds that ψ(σ) = oβ(e−Γβ).

Proof. Since h̃ ≡ 1 on X \ (EA,B ∪ BA,B) by part (3) of Definition 10.2, it readily holds
that

ψ(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] .

Then, by (2.6) and part (2) of Proposition 9.6, if ζ ∈ EA,B ∪ BA,B with σ ∼ ζ then
H(σ) ≥ Γ + 1, and thus

µβ(σ) rβ(σ, ζ) = µβ(σ) = Oβ(e−(Γ+1)β) .

Along with the fact that 0 ≤ h̃ ≤ 1, we conclude that ψ(σ) = Oβ(e−(Γ+1)β) = oβ(e−Γβ).

We are left to consider ψ(σ) for σ ∈ EA,B ∪ BA,B = N̂ (S). To this end, we decompose
as ψ = ψ1 + ψ2 where

ψ1(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] , (10.17)

ψ2(σ) =
∑

ζ /∈EA,B∪BA,B
µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] .

In fact, we can show that ψ2(σ) is negligible.

Lemma 10.6. For σ ∈ EA,B ∪ BA,B, we have ψ2(σ) = oβ(e−Γβ).
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Proof. This follows directly by the same argument presented in the proof of Lemma 10.5.

Now, to estimate ψ1(σ), let us first look at the bulk typical configurations that are not
the edge typical configurations.

Lemma 10.7. We have that ψ1(σ) = oβ(e−Γβ) for all σ ∈ GA,B[mK ,M−mK−1].

Proof. For σ ∈ GA,B[mK ,M−mK−1], by definition we can write

ψ1(σ) =
∑

ζ∈EA,B∪BA,B
µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)]

=
b

c(M − 2mK)

∑
ζ∈EA,B∪BA,B

µβ(σ) rβ(σ, ζ) [h̃2D(σ(m))− h̃2D(ζ(m))]

for some m ∈ Q \P with P ≺ Q (cf. Definition 10.2), where σ(m) and ζ(m) are considered
as 2D Ising configurations. Then, by Theorem 2.2 and (5.2), the last display equals

2b(1 + oβ(1))

qc(M − 2mK)
e−2KLβ ×

∑
ζ∈EA,B∪BA,B

µ2D
β (σ) r2D

β (σ, ζ) [h̃2D(σ(m))− h̃2D(ζ(m))] .

Since σ(m) is a 2D gateway configuration, by part (1) of Proposition 5.13, the last
summation equals oβ(e−Γ2Dβ). Therefore, we conclude that

ψ1(σ) =
2b(1 + oβ(1))

qc(M − 2mK)
e−2KLβ × oβ(e−Γ2Dβ) = oβ(e−Γβ) .

Lemma 10.8. For all i ∈ JmK + 1, M −mK − 1K, we have that∑
σ∈R̂A,Bi

ψ1(σ) = 0 .

Moreover, |ψ1(σ)| ≤ Ce−βΓ for all σ ∈ R̂A,Bi , for some fixed constant C > 0.

Proof. Recall from the definition that h̃ is defined as constant on each R̂A,Bi . Thus,
ψ1(σ) = 0 for all σ ∈ R̂A,Bi \ N (RA,Bi ) and it suffices to show that∑

σ∈N (RA,Bi )

ψ1(σ) = oβ(e−βΓ) .

It remains to prove that for all a ∈ A, b ∈ B, and P ∈ SM such that |P | ∈ JmK + 1, M −
mK − 1K, ∑

σ∈N (σa,bP )

∑
ζ∈EA,B∪BA,B

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] = oβ(e−βΓ) . (10.18)

Indeed, the left-hand side can be written as∑
Q∈SM :P≺Q

∑
σ∈Ca,bP,Q∩N (σa,bP ), ζ∈Ca,bP,Q: ζ∼σ

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)]

+
∑

Q′∈SM :Q′≺P

∑
σ∈Ca,b

Q′,P∩N (σa,bP ), ζ∈Ca,b
Q′,P : ζ∼σ

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] .
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Since we constructed the test function h̃ between σa, bP and σa, bQ (P ≺ Q) and between

σa, bQ′ and σa, bP (Q′ ≺ P ) in the same manner, the two summations above cancel out with
each other, and thus we obtain (10.18).

Finally, for the last statement of the lemma, it suffices to see that if σ ∈ N (RA,Bi ) and
ζ /∈ N (RA,Bi ) with σ ∼ ζ then H(ζ) ≥ Γ, and thus

µβ(σ) rβ(σ, ζ) = µβ(ζ) ≤ 1

Zβ
e−βΓ = Oβ(e−βΓ) ,

where the last equality holds by Theorem 2.2. This proves the last statement of the
lemma since the number of summands in (10.17) does not depend on β, and since we
have 0 ≤ h̃ ≤ 1 (cf. Remark 10.3).

Next, we turn to the edge typical configurations.

Lemma 10.9. The following statements hold.

1. If σ ∈ OA \ (R̂A,BmK ∪N (S(A))), we have ψ1(σ) = oβ(e−Γβ).

2. If σ ∈ IA \ (R̂A,BmK ∪N (S(A))), it holds that∑
ζ∈N (σ)

ψ1(ζ) = 0 , (10.19)

and |ψ1(ζ)| ≤ Ce−Γβ for all ζ ∈ N (σ) where C is a constant independent of β.

Proof. (1) By part (1) of Proposition 9.12 and the definition of h̃, we calculate

ψ1(σ) =
∑
ζ∈EA

eA
qc
e−Γβ rA(σ, ΠA(ζ))[hA(σ)− hA(ΠA(ζ))] +Oβ(e−(Γ+1)β)

=
eA
qc
e−Γβ · |V A| · (−LAhA)(σ) +Oβ(e−(Γ+1)β) .

Since LAhA = 0 on OA \ (R̂A,BmK ∪ N (S(A))) by the elementary property of equilibrium
potentials (cf. (3.6)), we may conclude that ψ1(σ) = Oβ(e−(Γ+1)β) = oβ(e−Γβ).

(2) First, we prove (10.19). Note that h̃ is constant on N (σ). Thus,∑
ζ∈N (σ)

ψ1(ζ) =
∑

ζ∈N (σ)

∑
ζ′∈OA

µβ(ζ) rβ(ζ, ζ ′) [h̃(ζ)− h̃(ζ ′)] .

By part (2) of Proposition 9.12 and the definition of h̃, this is equal to∑
ζ′∈OA

eA
qc
e−Γβ · rA(σ, ζ ′)[hA(σ)− hA(ζ ′)] +Oβ(e−(Γ+1)β)

=
eA
qc
e−Γβ · |V A| · (−LAhA)(σ) + oβ(e−Γβ) .

Since LAhA = 0 on IA \ (R̂A,BmK ∪N (S(A))), we conclude that
∑
ζ∈N (σ) ψ1(ζ) = oβ(e−Γβ)

and (10.19) is now proved.
Finally, for the last statement, the last display implies that for all ζ ∈ N (σ),

|ψ1(ζ)| =
∣∣∣ ∑
ζ′∈OA

eA
qc
e−Γβ · rA(σ, ζ ′)[hA(σ)− hA(ζ ′)]

∣∣∣+Oβ(e−(Γ+1)β)

≤
∑
ζ′∈OA

eA
qc
rA(σ, ζ ′)e−Γβ +Oβ(e−(Γ+1)β) ≤ Ce−Γβ ,

where the first inequality holds since 0 ≤ hA ≤ 1 and the second inequality holds by
Proposition 9.9, (9.10), and the fact that the number of such ζ ′ ∈ OA with σ ∼ ζ ′ does
not depend on β. This concludes the proof.
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Lemma 10.10. It holds that ∑
σ∈R̂A,BmK

ψ1(σ) = oβ(e−Γβ) ,

and that |ψ1(σ)| ≤ Ce−Γβ for all σ ∈ R̂A,BmK where C is a constant independent of β.

Proof. First, we consider the first statement. Proposition 9.10 and the definition of h̃ on
R̂A,BmK imply that ψ1(σ) = 0 for all σ ∈ R̂A,BmK \ N (RA,BmK ). Hence, it suffices to prove that∑

σ∈N (RA,BmK
)

ψ1(σ) = oβ(e−Γβ) . (10.20)

Since h̃ is constant on N (RA,BmK ), the left-hand side can be decomposed into[ ∑
σ∈N (RA,BmK

), ζ∈EA

+
∑

σ∈N (RA,BmK
), ζ∈BA,B

]
µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] . (10.21)

Let us analyze the first summation of (10.21). By part (2) of Proposition 9.12, this
equals ∑

σ∈RA,BmK

∑
ζ∈OA

eA
qc
e−Γβ × rA(σ, ζ) [hA(σ)− hA(ζ)] +Oβ(e−(Γ+1)β) .

By the property of capacities (e.g., [13, (7.1.39)]) and Proposition 9.10, we have

e−1
A = |V A| capA(S(A), RA,BmK ) = −

∑
σ∈RA,BmK

∑
ζ: {σ, ζ}∈EA

rA(σ, ζ) {hA(σ)− hA(ζ)} . (10.22)

Summing up, we obtain ∑
σ∈N (RA,BmK

), ζ∈EA

ψ1(σ) = − 1

qc
e−Γβ + oβ(e−Γβ) . (10.23)

Next, we analyze the second summation of (10.21).∑
a∈A, b∈B

∑
P,Q∈SM :P≺Q, |P |=mK

∑
σ∈N (σa,bP,Q), ζ∈Ba,b

µβ(σ) rβ(σ, ζ) [h̃(σ)− h̃(ζ)] . (10.24)

By Theorem 2.2, (5.2), and part (2) of Proposition 5.13, this becomes (recall the 2D
constant κ2D from (5.11))

|A||B| × 2M × 2b(1 + oβ(1))

qc(M − 2mK)
e−2KLβ × 1

2κ2D
e−Γ2Dβ =

1 + oβ(1)

qc
e−Γβ , (10.25)

where the identity follows from the definition of b in (3.8). Combining this with (10.21)
and (10.23), we can prove the first statement of the lemma.

For the second statement, from the discussion before (10.20) it is inferred that we
only need to prove for σ ∈ N (RA,BmK ). For such σ ∈ N (RA,BmK ), the previous proof implies
that

ψ1(σ) =
[ ∑
ζ∈EA

+
∑

ζ∈BA,B

]
µβ(σ) rβ(σ, ζ) [hA(σ)− hA(ζ)] +Oβ(e−(Γ+1)β) ,

where we used the fact that 0 ≤ h̃ ≤ 1. By (10.22) and Proposition 9.9, the first
summation in the right-hand side is bounded by Ce−Γβ. By (10.24) and (10.25), the
second summation in the right-hand side is also bounded by Ce−Γβ. Therefore, we
conclude the proof of the second statement.
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Lemma 10.11. It holds that∑
σ∈N (S(A))

ψ1(σ) =
1 + oβ(1)

qc
e−Γβ and

∑
σ∈N (S(B))

ψ1(σ) = oβ(e−Γβ) .

Moreover, it holds that |ψ1(σ)| ≤ Ce−Γβ for all σ ∈ N (S(A)) ∪ N (S(B)) where C is a
constant independent of β.

Proof. We concentrate on the claim for N (S(A)), since the corresponding claim for
N (S(B)) can be proved in the exact same way.

By the property of capacities (e.g., [13, (7.1.39)]) as above, we can write that

e−1
A = |V A| capA(S(A), RA,BmK ) =

∑
σ∈S(A)

∑
ζ: {σ, ζ}∈EA

rA(σ, ζ) {hA(σ)− hA(ζ)} .

Therefore, by the definition of h̃ and part (2) of Proposition 9.12,
∑
σ∈N (S(A)) ψ1(σ) equals∑

σ∈S(A)

∑
ζ: {σ, ζ}∈EA

eA
qc
e−Γβ · rA(σ, ζ)[hA(σ)− hA(ζ)] +Oβ(e−(Γ+1)β) =

1

qc
e−Γβ + oβ(e−Γβ) .

This proves the first statement. As before, the fact that |ψ1| ≤ Ce−Γβ on N (S(A)) is
straightforward from the observations made in the proof.

Finally, we present a proof of Proposition 3.2 by combining all computations above.

Proof of Proposition 3.2. It remains to prove that h̃ satisfies part (1) since we already
verified in the previous subsection that it satisfies part (2). By the discussion at the
beginning of the subsection, it suffices to prove (10.16). By the definition of ψ given
in (10.15) and the series of Lemmas 10.5-10.11, and the fact that 0 ≤ h ≤ 1, we have∑

σ∈X
h(σ)ψ(σ) =

∑
σ∈N (S(A))

h(σ)ψ1(σ) + oβ(e−Γβ) =
∑

σ∈N (S(A))

ψ1(σ) + oβ(e−Γβ) ,

where the second identity follows from Lemmas 10.4. Thus, by applying Lemma 10.11,
we can complete the proof of (10.16).

11 Remarks on open boundary condition

Thus far, we have only considered the models under periodic boundary conditions. In
this section, we consider the same models under open boundary conditions. The proofs
for the open boundary case differ slightly to those of the periodic case; however, the
fundamentals of the proofs are essentially identical. Hence, we do not repeat the detail
but focus solely on the technical points producing the different forms of the main results.

Energy Barrier

We start by explaining that for the open boundary case, the energy barrier is given by

Γ = KL+K + 1 . (11.1)

One can observe that the canonical path explained in Figure 6 becomes an optimal path
(note that we should start from a corner of box in this case) with height KL + K + 1

between ground states. This proves that the energy barrier Γ is at most KL + K + 1.
Hence, it remains to prove the corresponding lower bound, i.e., of the fact that Γ ≥
KL + K + 1. Rigorous proof of this has been developed in [42] for the 2D model, and
the same argument also applies to the 3D model as well using the arguments given in
Section 8.
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Sub-exponential prefactor

As mentioned earlier, the large deviation-type results (Theorems 2.7 and 2.9) hold under
open boundary conditions without modification, except for the value of Γ. On the other
hand, for the precise estimates (Theorems 2.10 and 2.12), the prefactor κ must be
appropriately modified.

For simplicity, we assume that q = 2 and analyze the transition from s1 to s2. To
heuristically investigate the speed of this transition in the open boundary case via a
comparison to the periodic one, it suffices to check the bulk part of the transition,
because the edge part is negligible (as K →∞) as in the periodic boundary case. The
bulk transition must start from a configuration filled with mK lines of spin 2 at either the
bottom or top of the lattice box Λ. In the periodic case, there are M choices for these
starting clusters (of spins 2) of size KL×mK ; thus, we can observe that the speed of the
transition is slowed by a factor of M/2 under this restriction. Now, let us suppose that
we are at a configuration such that several floors of spin 2 are located at the bottom of
the lattice, as in Figure 6. When we expand this cluster of spin 2 in the periodic case,
there are 2 (namely, up and down) possible choices for the next floor to be filled; on the
other hand, there is only one (namely, up) possible choice in the open boundary case.
This further slows down the transition by a factor of 2. Next, when we expand the floor at
the top of the cluster of spin 2, we may again look at the bulk part of the spin updates (cf.
Definition 5.8). Thus, we suppose that there are two lines filled with spin 2 on that floor.
There are L possible choices of the location in the periodic case, but just two possible
choices in the open case. Thus, this gives us a factor of L/2. Moreover, we may choose
one of two directions of growth of lines in the periodic case, which gives us additional
factor of 2. Finally, there are K possible ways to form a protuberance in the periodic
case; however, we now have only two (at the corners) possible choices. This further
slows down the transition by a factor of K/2. Once the protuberance has been formed,
we have only one direction in which to expand it, whereas we have two directions in
the periodic case. This slows down the transition by a factor of 2. Summing up, the
transition on the bulk is slowed by a factor of

M

2
× 2× L

2
× 2× K

2
× 2 = KLM .

Turning this into a rigorous argument (via the same logic applied to the periodic case),
we obtain the following Eyring–Kramers law with a modified (compared to the periodic
case) prefactor. Recall that we assumed K ≤ L ≤M .

Theorem 11.1. Suppose that we impose open boundary conditions on the model. Then,
there exists a constant κ′ = κ′(K, L, M) > 0 such that, for all s, s′ ∈ S,

Eβs [τs̆] = (1 + oβ(1))
κ′

q − 1
eΓβ and Eβs [τs′ ] = (1 + oβ(1))κ′ eΓβ .

Moreover, the constant κ′ satisfies

lim
K→∞

KLM · κ′(K, L, M) =


1/8 if K < L < M ,

1/16 if K = L < M or K < L = M ,

1/48 if K = L = M .

(11.2)

The constant κ′ can be defined in terms of new bulk and edge constants b′(n) and e′(n),
in the exact same manner as done in Section 3.1.

Then, Theorem 2.12 also holds for open boundary conditions with modified limiting
Markov chain X ′(·) with rate rX′(s, s′) = (κ′)−1 for all s, s′ ∈ S.
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