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Stationary measure for six-vertex model on a strip*

Zongrui Yang†

Abstract

We study the stochastic six-vertex model on a strip{
(x, y) ∈ Z2 : 0 ≤ y ≤ x ≤ y +N

}
(0.1)

with two open boundaries. We develop a ‘matrix product ansatz’ method to solve for
its stationary measure, based on the compatibility of three types of local moves of any
down-right path. The stationary measure on a horizontal path turns out to be a tilting
of the stationary measure of the asymmetric simple exclusion process (ASEP) with two
open boundaries. Similar to open ASEP, the statistics of this tilted stationary measure
as the number of sites N → ∞ (with the bulk and boundary parameters fixed) also
exhibit a phase diagram, which is a tilting of the phase diagram of open ASEP. We
study the limit of mean particle density as an example.
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1 Introduction

Understanding Kardar–Parisi–Zhang (KPZ) universality is one of the major goals in
probability and in statistical physics. Much progress has been made through the study of
certain ‘exactly solvable’ models in the KPZ universality class. The stochastic six-vertex
model (S6V) plays a prominent role among these models, since many other models in this
class are its specializations (see Figure 1 and 2 in [36]), including the asymmetric simple
exclusion process (ASEP). While most studies focus on KPZ universality on full space,
recent progress has been made towards understanding the KPZ equation on a half-line
or an open interval, via studies of certain ‘integrable’ models in the KPZ class with one
or two open boundaries. These include studies of half-space stochastic six-vertex models
[4, 34] and polymer models [3, 35, 34, 5]. The stationary measure of open ASEP on an
interval was studied by the ‘matrix product ansatz’ method in [24, 47, 15, 16, 12, 17]
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Six-vertex model on a strip

which leads to the construction of stationary measure of open KPZ equation on an
interval [19, 11, 10, 9].

Considering the significance and extensive research on open ASEP, it is natural to
ask if one can construct and study a six-vertex model with two open boundaries. An open
‘staggered’ six-vertex model is studied in the physics literature [30, 31] (see also [32]),
which is defined on a strip with two boundaries parallel to the y-axis and with certain
‘K-matrices’ manually placed at the boundaries. A six-vertex model defined on the same
strip with a ‘U-turn’ boundary is studied in [13, 50], where the arrows make a U-turn at
the boundary and re-enter the system. The boundaries in these models can be seen as
of different natures from the single boundary in the half-space six-vertex model [4, 34].
In this paper, we introduce and study a stochastic six-vertex model on a strip with two
open boundaries: y = x and y = x−N , where arrows are allowed to enter or exit the
system at the open boundaries. This model can be regarded as a natural counterpart to
the half-space six-vertex model (which has one open boundary, y = x). To the best of our
knowledge, the model in this paper has not been introduced before.

The stationary measures of six-vertex models and ASEP have been intensively studied
since the 70s. In the full-space case, all the ‘extremal’ stationary measures are classified
in [38] for ASEP and in [39, 2] for the six-vertex model. They are known as product
Bernoulli measures and certain ‘blocking measures.’ For the half-space open ASEP,
a certain subset of stationary measures have been studied in [37, 33, 46, 15]. These
measures are known to exhibit a phase diagram involving three phases (see [33, Figure
3.1]). As mentioned in the first paragraph, the stationary measure of open ASEP on an
interval was extensively studied by the ‘matrix product ansatz’ method, which admits a
phase diagram (see Figure 4 (a)). In this paper, we will study the stationary measure of
the six-vertex model on a strip, using the ‘matrix product ansatz’ method.

We will provide a detailed definition of the six-vertex model on a strip in subsec-
tions 2.1 and 2.2. Here, we will only offer a brief introduction. Our model is defined on
the strip (0.1) with each edge containing up to one up/right arrow. There are initially
arrows occupying some outgoing edges of a down-right path P, and we inductively
sample through vertex weights:

P

( )
= 1, P

( )
= 1,

P

( )
= θ2, P

( )
= 1− θ2, P

( )
= θ1, P

( )
= 1− θ1,

(1.1)

P

( )
= b, P

( )
= d, P

( )
= 1− b, P

( )
= 1− d, (1.2)

P

( )
= c, P

( )
= a, P

( )
= 1− c, P

( )
= 1− a. (1.3)

where a, b, c, d are boundary parameters and θ1, θ2 are bulk parameters. See Figure 2 for
an example of such sampling and Figure 1 for the outgoing edges of a down-right path.
We look at the outgoing configurations (i.e. whether the outgoing edges are occupied or
not) of all the translated paths Pk = P + (k, k) for k ∈ Z≥0. When we regard k as time
then this can be regarded as an interacting particle system whose evolution is governed
by the six-vertex model. There is a standard result (Theorem 2.3) that under a scaling
limit, this particle system converges to open ASEP, so it is expected to contain more
information than open ASEP. We develop a matrix product ansatz method to solve for its
stationary measure (Theorem 2.8): We begin by prescribing a measure on the outgoing
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Six-vertex model on a strip
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Figure 1: Outgoing edges on down-right paths and set of vertices U(P,Q). The lower
thick path is P and upper thick path is Q. The gray edges are outgoing edges of P and
Q. Outgoing edges of P are labelled from the up-left of the path to the down-right of the
path: p1 =→, p2 =↑, p3 =→, p4 =↑, p5 =↑. The thick nodes are vertices in U(P,Q).

Figure 2: Sample configuration of stochastic six-vertex model on a strip. Down-right
paths P and Q are the same as in Figure 1 and are omitted.

configurations of any down-right path P as matrix product states:

µP(τ1, . . . , τN ) =
〈W |((1− τ1)Ep1 + τ1D

p1)× · · · × ((1− τN )EpN + τND
pN )|V 〉

〈W |
∏N
i=1(Epi +Dpi)|V 〉

,

where pi ∈ {↑,→}, 1 ≤ i ≤ N are outgoing edges of P labeled from the up-left of P
to the down-right of P, and τi ∈ {0, 1}, 1 ≤ i ≤ N are occupation variables indicating
whether there are arrows on these outgoing edges. Then we solve the matrices and
vectors D↑, D→, E↑, E→, 〈W |, |V 〉 in it using the compatibility of µP with three types of
local moves of down-right paths:

7−→
,

7−→ 7−→

The three sets of compatibility relations (2.7), (2.8) and (2.9) (totally eight relations)
coming from local moves look complicated, but they can actually be simplified in The-
orem 2.10 (after imposing D→ = D↑ + I and E→ = E↑ − I) to the so-called DEHP

algebra

DE− qED = D + E, 〈W |(αE− γD) = 〈W |, (βD− δE)|V 〉 = |V 〉.

The DEHP algebra has appeared in the matrix product ansatz solution of stationary
measure of open ASEP in the seminal work [24] by B. Derrida, M. Evans, V. Hakim and V.
Pasquier (see subsection 2.3 for a review). In particular, when P is a horizontal path,
then the stationary measure of six-vertex model on a strip is a tilting of the stationary
measure of open ASEP:

Theorem 1.1. Assume that the parameters of six-vertex model on a strip satisfy:

0 < a, b, c, d, θ1, θ2 < 1, θ1 < θ2, b+ d < 1. (1.4)
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Six-vertex model on a strip
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Figure 3: Jump rates in the open ASEP, where we often take L = q and R = 1.
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Figure 4: (a) Phase diagram for open ASEP. (b) Phase diagram for six-vertex model on a
strip.

Define:

(q, α, β, γ, δ) =

(
θ1
θ2
,

(1− θ1)a

θ2
,

(1− θ2)b

θ2(1− b− d)
,

(1− θ2)c

θ2
,

(1− θ1)d

θ2(1− b− d)

)
, (1.5)

and assume ab/(cd) /∈ {ql : l = 0, 1, . . . }. Let µ(τ1, . . . , τN ) be the stationary measure
of six-vertex model on a strip on a horizontal path (see subsections 2.1 and 2.2 for its
definition). Let π(τ1, . . . , τN ) be the stationary measure of open ASEP with particle jump
rates (q, α, β, γ, δ) (see subsection 2.2 and Figure 3, where L = q and R = 1). We have:

µ(τ1, . . . , τN ) = r
∑N

i=1 τiπ(τ1, . . . , τN )/Z, (1.6)

for any τ1, . . . , τN ∈ {0, 1}, where r = 1−θ2
1−θ1 ∈ (0, 1) and Z is a normalizing constant.

The above theorem will be proved in subsection 2.4 as a corollary of the matrix
product ansatz (Theorems 2.8 and 2.10). We remark that the above result is surprising
to us because it gives a simple relation of stationary measures of two probability systems,
and yet we cannot provide a direct probabilistic proof; one must go through the algebraic
method of matrix ansatz. Under certain special parameter conditions, the general matrix
product ansatz (Theorem 2.8) also produces the inhomogeneous product Bernoulli and
the q-volume stationary measures, which will be given in subsection 2.5.

We then study the limit of stationary measure of six-vertex model on a horizontal path
(the tilted measure (1.6)) as the number of sites N →∞, with parameters a, b, c, d, θ1, θ2
fixed. This limit has been well-studied for open ASEP, and it is remarkable that the
limits of many statistical quantities under stationary measure exhibit a phase diagram
(Figure 6 (a)) involving only two boundary parameters A and C (see Definition 3.1),
including mean particle density and density profile [26, 44, 47] (see also Theorem 3.6),
particle current [24, 43, 47], correlation functions [29, 48], large deviation functionals
[26, 27, 21, 15], and limit fluctuations around density [25, 16]. See survey papers [22, 7]
and more references therein. To obtain the phase diagram of six-vertex model on a strip,
we study limits of mean particle density ρ = 1

N

∑N
i=1 τi under stationary measure (1.6):
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Six-vertex model on a strip

Theorem 1.2. Consider the six-vertex model on a strip with bulk parameters θ1, θ2 and
boundary parameters a, b, c, d. Assume that the parameters satisfy (1.4). We will use
an alternative parameterization of the system by (q, r, A,B,C,D), where q = θ1/θ2, r =

(1−θ2)/(1−θ1), and A,B,C,D are defined in terms of (q, α, β, γ, δ) (1.5) by Definition 3.1.
Then on the fan region AC < 1, under the technical condition

|A
√
r|, |B

√
r|, |C/

√
r|, |D/

√
r| 6= q−l for l = 0, 1, 2, . . . (1.7)

the limits of mean particle density are given by:

lim
N→∞

Eµρ =


√
r

1+
√
r
, A ≤ 1/

√
r, C ≤

√
r (maximal current phase with boundary),

Ar
1+Ar , A > 1/

√
r,AC < 1 (high density phase),

r
r+C , C >

√
r,AC < 1 (low density phase).

(1.8)
When we also assume a+ c < 1 we do not need the technical condition (1.7).

The above theorem will be proved in subsection 3.3. In the proof we will utilize an
auxiliary Markov process known as the Askey-Wilson process, which is developed in
the literature on open ASEP stationary measure [14, 15, 47] (see a brief introduction
in subsections 3.1 and 3.2). Theorem 1.2 provides the phase diagram (Figure 4 (b)) of
six-vertex model on a strip, which is a tilting of phase diagram of open ASEP (Figure 4
(a)). The shadowed regions in Figure 4 correspond to the fan regions AC < 1 in the
phase diagrams. At present, it is uncertain whether the phase diagram in Figure 4 (b)
can be extended to include the shock region. Nevertheless, a recent work [49] may offer
the necessary techniques (see Remark 3.10). We defer this aspect to future research.

There remains many open questions to investigate, and we list a few of them. We
expect the density profile and limit fluctuations of stationary measure (1.6) can be
studied following techniques in [15, 16]. An interesting feature of the model in this
paper is that it is a six-vertex model but studied by matrix ansatz coming from open
ASEP, and one can ask if the techniques in previous works of six-vertex model (e.g. Bethe
ansatz, symmetric functions, etc.) can also be applied. Moreover, since the open ASEP
can be seen as a specialization of the six-vertex model on a strip (Theorem 2.3 and (1.6)),
we expect that our model is more flexible in taking scaling limits. In particular, since
a scaling limit of open ASEP converges to the open KPZ equation [20, 41], one expect
similar scaling limits of our model.

2 The six-vertex model on a strip and stationary measure

2.1 Definition of the model

We consider certain configurations of arrows on edges of the strip:{
(x, y) ∈ Z2 : 0 ≤ y ≤ x ≤ y +N

}
, (2.1)

where each edge can contain up to one up/right arrow. We refer the vertices (y, y) as
left boundary vertices, (y +N, y) as right boundary vertices and all other vertices of the
strip as bulk vertices. The left and/or bottom edges of each vertex are referred to as its
incoming edges, and the right and/or top edges are called its outgoing edges.

We will use the word ‘down-right path’ to mean a path P that goes from a vertex on
the left boundary to a vertex on the right boundary, with each step going downwards or
rightwards by 1. Observe that each down-right path on the strip has length N and there
are exactly N outgoing up/right edges on the path. Each outgoing edge can be occupied
by up to one arrow, which gives 2N many ‘outgoing configurations’ of P. Suppose Q
is any down-right path that sits above P, which may contain edges coinciding with P.
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Six-vertex model on a strip

We denote by U(P,Q) the set of vertices between P and Q, including those on Q but
excluding those on P. See Figure 1 for an illustration.

Suppose we are given a (deterministic) outgoing configuration of P. We define
inductively a Markovian sampling procedure to generate configurations. Suppose we are
at the vertex (x, y) ∈ U(P,Q) and we have sampled through all vertices (x′, y′) ∈ U(P,Q)

such that either y′ < y or y′ = y and x′ < x. Then for each incoming edge of (x, y) we
have already assigned an arrow or no arrow to it. We sample the outgoing edges of (x, y)

according to the probabilities (1.1), (1.2) and (1.3) respectively, in the cases when (x, y) is
a bulk/right boundary/left boundary vertex. We sequentially sample through all vertices
in U(P,Q) and obtain a probability measure on the set of all outgoing configurations of
Q. See Figure 2 for an example of this sampling.

2.2 Interacting particle systems

For a down-right path P on the strip, we label its outgoing edges from the up-left of P
to the down-right of P by p1, . . . , pN ∈ {↑,→} (see Figure 1), where ↑ denotes a vertical
edge and→ denotes a horizontal edge (these should not be confused with arrows in the
six-vertex model). The 2N ‘outgoing configurations’ of P can be encoded in occupation
variables τ = (τ1, . . . , τN ) ∈ {0, 1}N , where τi indicates whether or not the edge pi is
occupied. Assume Q is a down-right path that sits above P, then the sampling procedure
in subsection 2.1 can be encoded as a probability transition matrix PP,Q(τ, τ ′), where

τ, τ ′ ∈ {0, 1}N are occupation variables of outgoing edges of P and Q.

Definition 2.1. Assume P is a down-right path on the strip. Denote by Pk the up-right
translation of P by (k, k), for k ∈ Z≥0. We consider a time-homogeneous Markov chain

(τ(k))k≥0 with some initial outgoing configuration τ(0) ∈ {0, 1}N of P and the same
transition probability matrix PPk,Pk+1

(τ, τ ′) = PP,P1
(τ, τ ′) in each step. We regard this

Markov chain as a particle system on the lattice {1, . . . , N} where a particle sits at
position i at time k if and only if τi(k) = 1, and we refer it as the interacting particle
system of the six-vertex model on a strip on down-right path P.

Remark 2.2. The sequential update rules of this particle system can be written in a
similar way as in the full space case in [6, subsection 2.2], however more complicated
since there are two open boundaries. We will not write the specific update rules since
we will not use them.

We will compare the particle system in Definition 2.1 to open asymmetric simple
exclusion process (ASEP). The open ASEP is a continuous-time interacting particle
system on the lattice {1, . . . , N}, where each site can contain up to one particle. Particles
are allowed to move to its nearest left/right neighbor and can also enter or exit the
system at two boundary sites 1, N . Specifically, particles move to the left with rate L and
to the right with rate R, but a move is prohibited (excluded) if the target site is already
occupied. Particles enter the system and are placed at site 1 with rate α and at site N
with rate δ, provided that the site is empty. Particles are also removed with rate γ from
site 1 and with rate β from site N . These jump rates are summarized in Figure 3.

The following shows that under a scaling limit, the six-vertex model converges to
the continuous-time open ASEP. Similar results in the full and half space settings are
already obtained in [1, 4, 34]. Our situation is simpler than in those settings since there
are finitely many sites.

Theorem 2.3. Consider the interacting particle system of six-vertex model on a strip
(with parameters a, b, c, d, θ1, θ2) on a down-right path P. Scale bulk and boundary
parameters (a, b, c, d, θ1, θ2) = (αε, βε, γε, δε, Lε,Rε) and scale time η = [ε−1t]. Take
ε→ 0, then the system at time η converges weakly to the continuous-time open ASEP
at time t, on the same lattice {1, . . . , N} with particle jump rates (α, β, γ, δ, L,R) (see
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Figure 3) and with the same initial condition.

Proof. When ε → 0 the arrows in the six-vertex model will essentially always wiggle,
i.e. alternate between going up and going right, and will almost never keep going the
same direction in two subsequent steps. Hence in each step the interacting particle
system will stay put at a probability near 1. Since we are scaling time η = [ε−1t], we
want to keep track of all the possible changes to the system that can happen in one step
with a probability of order O(ε). Observe that there are N up-right zig-zag paths, and
any down-right path P must have exactly one outgoing edge on each of these paths.
The arrows will evolve along its own zig-zag path at a probability near 1, however it
will change to its left/right neighboring zig-zag paths when it continues going the same
up/right direction in two subsequent steps. At the open boundaries an arrow can eject
out of the system or enter the system and then goes along the leftmost/rightmost zig-zag
path. By the vertex weights (1.1), (1.2) and (1.3) we can see that exactly one of the
following can happen in one step with a probability of order O(ε):

• If 1 is unoccupied, a particle can enter the system and placed at 1 with probability
αε+O(ε2).

• If 1 is occupied by a particle, it can be ejected out of the system with probability
γε+O(ε2).

• One of the particles that is already in the system can either jump 1 step left with
probability Lε+O(ε2), or 1 step right with probability Rε+O(ε2), if not blocked by
other particle. Particle at 1 can only jump right and particle at N can only jump
left.

• If N is unoccupied, a particle can enter the system and placed at N with probability
δε+O(ε2).

• If N is occupied by a particle, it can be ejected out of the system with probability
βε+O(ε2).

Choose a basis of the state space {0, 1}N . Denote by Aε = PP,P1
(τ, τ ′) the 2N × 2N

transition matrix of the interacting particle system related to six-vertex model on the
down-right path P, with parameters (a, b, c, d, θ1, θ2) = (αε, βε, γε, δε, Lε,Rε). Denote by
Q the infinitesimal generator (Q-matrix) of the open ASEP with jump rates (α, β, γ, δ, L,R).

The observation above tells us Aε = I + εQ + O(ε2). Hence limε→0A
[ε−1t]
ε = etQ. The

left hand side is the transition probability for the (discrete-time) particle system with
parameters (αε, βε, γε, δε, Lε,Rε) from time 0 to time η = [ε−1t], and the right hand side
is the transition probability for the continuous-time open ASEP from time 0 to time t.
Since the initial data are the same we conclude the weak convergence.

2.3 Matrix product ansatz of open ASEP

In this subsection we recall the matrix product ansatz solution of the stationary
measure of open ASEP first developed in the seminal work [24] by B. Derrida, M. Evans,
V. Hakim and V. Pasquier. See also [18] for a nice survey.

We start with open ASEP on the lattice {1, . . . , N} with particle jump rates given in
Figure 3. We will always assume L = q, R = 1 and

α, β > 0, γ, δ ≥ 0, 0 ≤ q < 1. (2.2)

Under these assumptions the open ASEP is irreducible as a Markov process on the finite
state space {0, 1}N . We denote by π = π(τ1, . . . , τN ) its (unique) stationary measure,
where τ1, . . . , τN ∈ {0, 1} are occupation variables of N sites. It is known since [24] that
the stationary measure π can be written as the following matrix product:
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Six-vertex model on a strip

Theorem 2.4 ([24]). Assume (2.2). Suppose that there are matrices D, E, a row vector
〈W | and a column vector |V 〉 with the same (possibly infinite) dimension, satisfying:

DE− qED = D + E, 〈W |(αE− γD) = 〈W |, (βD− δE)|V 〉 = |V 〉, (2.3)

(which is commonly referred to as the DEHP algebra). Then for any t1, . . . , tN > 0,

Eπ

 N∏
j=1

t
τj
j

 =
〈W |(E + t1D)× · · · × (E + tND)|V 〉

〈W |(E + D)N |V 〉
, (2.4)

assuming that the denominator 〈W |(E + D)N |V 〉 is nonzero.

We refer the reader to [24] for the proof of this theorem.

Remark 2.5. Here we implicitly assume that all the admissible finite products of the
matrices and vectors D, E, 〈W | and |V 〉 are well-defined (i.e. convergent if they are
infinite dimensional) and satisfy the associativity property. These properties will also be
implicitly assumed in the matrix ansatz in Theorem 2.8. One can observe that the USW

representation [47] of the DEHP algebra (see Remark 2.7) satisfy these properties, since
D and E are tridiagonal matrices and 〈W | and |V 〉 are finitely supported vectors.

Remark 2.6. It has been noted in [29, 40] that the matrix ansatz (2.4) possibly does
not work (i.e. the denominator may equal to zero) when αβ = qlγδ for some l = 0, 1, . . . .
They are referred to as the ‘singular’ cases of the matrix ansatz, for which an alternative
method is developed in [12]. In this paper we only consider the ‘non-singular’ case

αβ 6= qlγδ for any l = 0, 1, . . . . (2.5)

Assume (2.2), (2.5) and 〈W |V 〉 > 0, then it can be shown that the matrix products

〈W |Dn1Em1 . . .DnkEmk |V 〉 (2.6)

are strictly positive, for any k, n1,m1, . . . , nk,mk ≥ 0. In particular, the denominator
〈W |(E + D)N |V 〉 of (2.4) is strictly positive. Moreover, the matrix products (2.6) only
depend on the value of 〈W |V 〉, parameters q, α, β, γ, δ and numbers k, n1,m1, . . . , nk,mk,
and are independent on the specific choices of D,E, 〈W |, |V 〉 satisfying the DEHP alge-
bra (2.3). See [40, Appendix A] for a proof of these facts.

Remark 2.7. It is a highly nontrivial task to find concrete examples of D, E, 〈W | and |V 〉
that satisfy the DEHP algebra (2.3). For general parameters q, α, β, γ, δ, an example was
found in the seminal work [47] by M. Uchiyama, T. Sasamoto and M. Wadati, which is
often referred to as the USW representation of the DEHP algebra. In such an example, D
and E are infinite tridiagonal matrices with entries closely related to the Jacobi matrices
of the Askey-Wilson orthogonal polynomials, 〈W | = (1, 0, 0, . . . ) and |V 〉 = (1, 0, 0, . . . )T .

2.4 Stationary measure of six-vertex model on a strip

Consider the six-vertex model on a strip with parameters a, b, c, d, θ1, θ2. Assume
P is a down-right path with outgoing edges p1, . . . , pN ∈ {↑,→}, which defines an
interacting particle system as in Definition 2.1. In this subsection we will always assume
a, b, c, d, θ1, θ2 ∈ (0, 1) so that this system is irreducible as a Markov process on the finite
state space {0, 1}N . We denote its unique stationary measure by µP = µP(τ1, . . . , τN ),
where τ1, . . . , τN ∈ {0, 1} are occupation variables of N sites. We develop a matrix
product ansatz method based on local moves (2.12), (2.13) and (2.14) of down-right
paths to solve for the stationary measure µP . An interesting feature is that this matrix
ansatz ties together the interacting particle systems arising from different down-right
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paths. We then realize in Theorem 2.10 that the eight compatibility relations of the
matrix ansatz (which arise from local moves) can be reduced to the DEHP algebra. As a
corollary, in the special case when P is a horizontal path, we prove Theorem 1.1.

Theorem 2.8. Suppose that there are matrices D↑, D→, E↑, E→, row vector 〈W | and
column vector |V 〉 with the same (possibly infinite) dimension satisfying the following
three sets of relations:

D↑D→ = D→D↑, E↑E→ = E→E↑,

D↑E→ = (1− θ2)D→E↑ + θ1E
→D↑,

E↑D→ = θ2D
→E↑ + (1− θ1)E→D↑,

(2.7)

〈W |D→ = (1− c)〈W |D↑ + a〈W |E↑,
〈W |E→ = (1− a)〈W |E↑ + c〈W |D↑,

(2.8)

D↑|V 〉 = (1− b)D→|V 〉+ dE→|V 〉,
E↑|V 〉 = (1− d)E→|V 〉+ bD→|V 〉.

(2.9)

The stationary measure of six-vertex model on a strip on down-right path P is given by:

µP(τ1, . . . , τN ) =
〈W |((1− τ1)Ep1 + τ1D

p1)× · · · × ((1− τN )EpN + τND
pN )|V 〉

〈W |
∏N
i=1(Epi +Dpi)|V 〉

, (2.10)

where p1, . . . , pN ∈ {↑,→} are the outgoing edges of P and τ1, . . . , τN ∈ {0, 1} are
occupation variables on these edges. We assume the denominator of (2.10) is nonzero.

Proof. Consider the collection of signed measures µP (with total mass 1) indexed by
down-right paths P given by the matrix product states (2.10). We prove the following:

Claim 2.9. The collection µP of signed measures for down-right paths P is compatible
with the evolution of six-vertex model, i.e. for any path Q sitting above P (which may
have coinciding edges),∑

τ

PP,Q(τ, τ ′)µP(τ) = µQ(τ ′), ∀τ, τ ′ ∈ {0, 1}N . (2.11)

Observe that if we consider the translated path P1 = P + (1, 1), then µP1 is the
same as µP as signed measures on {0, 1}N , since the outgoing edges of P1 are also
p1, . . . , pN ∈ {↑,→} (so that the elements that we put in the matrix product states (2.10)
are the same). Suppose the above claim holds, we can take Q = P1 and hence µP is an
eigenvector with eigenvalue 1 of the transition matrix PP,P1(τ, τ ′) of the (irreducible)
interacting particle system defined by P. By Perron-Frobenius theorem µP is the unique
stationary probability measure of this system.

We introduce three types of ‘local moves’ of a down-right path, where the thick paths
denote locally the down-right path:

7−→
, (2.12)

7−→
(2.13)

7−→
(2.14)

We remark that by sequentially performing these local moves, a down-right path P
can be updated to any down-right path Q sitting above it. See Figure 5 for an example of
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7−→ 7−→ 7−→

Figure 5: Upper translation of a horizontal path via three local moves.

achieving an upper translation of a horizontal path by these local moves. Therefore (2.11)
can be guaranteed by its special case when Q is a local move P̃ of P:∑

τ

PP,P̃(τ, τ ′)µP(τ) = µP̃(τ ′), ∀τ, τ ′ ∈ {0, 1}N . (2.15)

As we put matrix product states (2.10) of µP and µP̃ into (2.15), all of the terms
coincide except two that went through the local move in the bulk, or one that went
through local move at the left/right boundary. As a sufficient condition for (2.15) to hold,
we only need to keep track of the updated terms. In the following diagrams the thick
paths represent locally the down-right paths P and P̃, and thin arrows denote locally the
outgoing configurations.

We first consider a bulk local move (2.12). The outgoing edges of P and P̃ coincide
except for those two edges that went through the local move. The following are local
terms in the matrix ansatz of µP on the possible local configurations:

D→D↑ D→E↑ E→D↑ E→E↑

After sampling through the bulk vertex in the middle, we get local terms of signed
measures on outgoing configurations of P̃ written in the first row, which should match
with the local terms in the matrix ansatz of µP̃ in the second row:

D→D↑ (1− θ2)D→E↑ + θ1E
→D↑ (1− θ1)E→D↑ + θ2D

→E↑ E→E↑

D↑D→ D↑E→ E↑D→ E↑E→

This give us the bulk compatibility relations (2.7).
In a left boundary local move (2.13), the outgoing edges of P and P̃ coincide except

for the leftmost edges. Here are the leftmost terms in the matrix ansatz of µP on possible
local configurations:

〈W |D↑ 〈W |E↑

After sampling through the left boundary vertex, we get the leftmost terms of signed
measures on P̃ in the first row, which should match leftmost terms in the matrix ansatz
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of µP̃ in second row:

(1− c)〈W |D↑ + a〈W |E↑ (1− a)〈W |E↑ + c〈W |D↑

〈W |D→ 〈W |E→

This gives us the left boundary compatibility relations (2.8). The right boundary compati-
bility relations (2.9) can be obtained similarly.

The compatibility relations (2.7), (2.8) and (2.9) look complicated, but in fact they
can be reduced to the DEHP algebra (2.3) after imposing some simple (additional)
relations (2.18).

Theorem 2.10. Assume b+ d < 1. Suppose D and E are matrices, 〈W | is a row vector
and |V 〉 is a column vector with the same (possibly infinite) dimension, satisfying the
DEHP algebra (2.3):

DE− qED = D + E, 〈W |(αE− γD) = 〈W |, (βD− δE)|V 〉 = |V 〉,

with parameters:

(q, α, β, γ, δ) =

(
θ1
θ2
,

(1− θ1)a

θ2
,

(1− θ2)b

θ2(1− b− d)
,

(1− θ2)c

θ2
,

(1− θ1)d

θ2(1− b− d)

)
. (2.16)

Then the matrices

D↑ =
(1− θ2)

θ2
D, E↑ =

(1− θ1)

θ2
E, D→ = D↑ + I, E→ = E↑ − I, (2.17)

together with boundary vectors 〈W |, |V 〉 satisfy the compatibility relations (2.7), (2.8)
and (2.9).

Proof. We take
D→ = D↑ + I, E→ = E↑ − I (2.18)

into compatibility relations (2.7), (2.8) and (2.9). They simplify to three equations:

θ2D
↑E↑ − θ1E↑D↑ = (1− θ2)E↑ + (1− θ1)D↑,

〈W | = 〈W |(aE↑ − cD↑),
(1− b− d)|V 〉 = (bD↑ − dE↑)|V 〉,

(2.19)

which look similar to the DEHP algebra (2.3). In fact, if we set the parameters
(q, α, β, γ, δ) as (2.16) and make the substitution

D↑ =
(1− θ2)

θ2
D, E↑ =

(1− θ1)

θ2
E,

then (2.19) become exactly the DEHP algebra (2.3). Hence if we start with a solution
D,E, 〈W |, |V 〉 of the DEHP algebra with parameters (q, α, β, γ, δ) as (2.16) then the
matrices D↑, D→, E↑, E→ as (2.17) and the same boundary vectors 〈W |, |V 〉 satisfy
compatibility relations (2.7), (2.8) and (2.9).

We now provide the proof of Theorem 1.1 in the introduction.
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Proof of Theorem 1.1. Recall that by Theorem 2.10, a solution of the compatibility rela-
tions in Theorem 2.8 can be given by a solution of the DEHP algebra. Conditions (1.4)
guarantee that (q, α, β, γ, δ) given by (2.16) above satisfy the usual constraints (2.2) of
open ASEP. When P is a horizontal path we have p1 = · · · = pN =↑. Since

D↑ =
(1− θ2)

θ2
D, E↑ =

(1− θ1)

θ2
E.

The stationary measure µ can be written as

µ(τ1, . . . , τN ) =
〈W |((1− τ1)E↑ + τ1D

↑)× · · · × ((1− τN )E↑ + τND
↑)|V 〉

〈W |
∏N
i=1(E↑ +D↑)|V 〉

= r
∑N

i=1 τi
〈W |((1− τ1)E + τ1D)× · · · × ((1− τ1)E + τ1D)|V 〉

〈W |
∏N
i=1(E + rD)|V 〉

= r
∑N

i=1 τiπ(τ1, . . . , τN )/Z,

(2.20)

for r = 1−θ2
1−θ1 and normalizing constant Z given by:

Z =
∑

(τ1,...,τN )∈{0,1}N
r
∑N

i=1 τiπ(τ1, . . . , τN ).

We used Theorem 2.4 in the last step of (2.20). The assumption ab/(cd) /∈ {ql : l =

0, 1, . . . } is equivalent to the ‘non-singular’ condition (2.5) of (q, α, β, γ, δ), which, by
Remark 2.6, guarantees that the denominator of (2.20) above is nonzero.

Remark 2.11. In Theorem 1.1 and in section 3 we only consider the case when θ1 < θ2.
When θ1 > θ2 we can still get the stationary measure by a standard particle-hole duality
argument. More precisely, when we swap the parameters in the six-vertex model:

θ1 ←→ θ2, a←→ c, b←→ d,

any edge equipped with τ ∈ {0, 1} arrow becomes equipped with 1− τ arrow. Hence in
the particle systems particles become holes and holes become particles. The stationary
measures are related by µ(τ1, . . . , τN ) = ν(1−τ1, . . . , 1−τN ), for any (τ1, . . . , τN ) ∈ {0, 1}N .

2.5 Bernoulli and q-volume stationary measures in special cases

Based on the general matrix product solution of the stationary measure on a down-
right path in Theorem 2.8, we obtain the Bernoulli and the q-volume stationary measures
in some special cases. In these cases we do not necessarily have a, b, c, d ∈ (0, 1) so the
stationary measure may not be unique.

Corollary 2.12. Suppose that

(1− θ1)(a+ d− ab− ad)(b+ c− bc− ab) = (1− θ2)(a+ d− ad− cd)(b+ c− bc− cd), (2.21)

and that both sides of the equation are non-zero. Suppose P is a down-right path on the
strip with outgoing edges p1, . . . , pN ∈ {↑,→}. Then we have a stationary measure µP of
six-vertex model on a strip on down-right path P, which is Bernoulli with probability

p↑ =
a+ d− ab− ad

a+ b+ c+ d− (a+ c)(b+ d)
,

on the sites τi where pi =↑, and Bernoulli with probability

p→ =
a+ d− ad− cd

a+ b+ c+ d− (a+ c)(b+ d)
,

on the sites τi where pi =→.
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Proof. One can observe that in the case of (2.21), the 1-dimensional matrices

D↑ = a+d−ab−ad, E↑ = b+ c− bc− cd, D→ = a+d−ad− cd, E→ = b+ c− bc−ab,

and vectors 〈W | = |V 〉 = 1 satisfy compatibility relations (2.7), (2.8) and (2.9). Hence
we get the Bernoulli stationary measure from Theorem 2.8.

Corollary 2.13. When a = b = c = d = 1 our model has ‘anti-reflecting’ boundary, i.e.
an arrow that touches the boundary must exist the system, and an arrow enters the
system at a boundary point exactly when no arrow exists at this boundary point. In
the corresponding interacting particle system on a down-right path, the parity of the
number of particles get preserved. Suppose (1− θ1)(1− θ2) 6= 0 and P is a down-right
path with outgoing edges p1, . . . , pN ∈ {↑,→}. Then we have a stationary measure µP of
the six-vertex model on the strip on P, which is Bernoulli with probability

p↑ =

√
1− θ2√

1− θ1 +
√

1− θ2
on the sites τi where pi =↑, and Bernoulli with probability

p→ =

√
1− θ1√

1− θ1 +
√

1− θ2
on the sites τi where pi =→.

We can get two stationary measures from it by restricting this measure to the set of
states with even/odd number of particles and multiplying a normalizing constant.

Proof. When a = b = c = d = 1 one can observe that the 1-dimensional matrices

D→ = E↑ =
√

1− θ1, D↑ = E→ =
√

1− θ2,

and vectors 〈W | = |V 〉 = 1 satisfy compatibility relations (2.7), (2.8) and (2.9). Hence
we get the Bernoulli stationary measure from Theorem 2.8.

Corollary 2.14. When a = b = c = d = 0 our model has ‘reflecting’ boundary, i.e. any
arrow that touches the boundary must bounce back, and no new arrows can be created at
the boundary. In the interacting particle system on a down-right path, the total number
of particles is preserved. Let q = θ1/θ2 and suppose 0 ≤ k ≤ N is the number of particles
in the system. Then we have the collection of stationary measures µk for 0 ≤ k ≤ N on
any down-right path P, with probability

q−
∑
mj∑

1≤`1<···<`k≤N q
−

∑
`j

at the state where the k particles are placed at the sites 1 ≤ m1 < · · · < mk ≤ N .

Proof. When a = b = c = d = 0 we set

D→ = D↑ = D, E→ = E↑ = E.

The compatibility relations (2.7), (2.8) and (2.9) turn into a single relation

DE = qED.

We take the representation on the Fock space spanned by {ei : i ∈ Z≥0}:

E =

∞∑
n=0

qn|en〉〈en|, D =

∞∑
n=1

|en−1〉〈en|,

and W = e0, V = ek. Theorem 2.8 gives the stationary measure µk.
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3 Askey-Wilson processes and limit of the mean particle density

After the matrix product ansatz solution of stationary measure of open ASEP in [24] as
reviewed in subsection 2.3), there are various representations [24, 47, 28, 43, 42, 8, 29]
of the DEHP algebra (2.3) for different parameters (q, α, β, γ, δ), which induce studies of
asymptotics of open ASEP as number of sites N →∞. As mentioned in Remark 2.7, the
USW representation for general parameters (q, α, β, γ, δ) was given in the seminal work
[47] in terms of the Askey-Wilson orthogonal polynomials. Using the USW representation,
the open ASEP stationary measure was written in [15] as expectations of the Askey-
Wilson Markov process introduced in [14] (Theorem (3.2)). Many asymptotics of open
ASEP was then rigorously studied in [15, 16] by this technique. We briefly review Askey-
Wilson processes and the phase diagram of stationary measure of open ASEP in first two
subsections, following [14, 15, 16]. In the third subsection we prove Theorem 1.2 on the
mean density of stationary measure of six-vertex model on a strip on a horizontal path,
which in particular provides the phase diagram (Figure 6).

3.1 Backgrounds on Askey-Wilson process

The Askey-Wilson measures are probability measures which make the Askey–Wilson
polynomials orthogonal. Based on these measures, [14] introduced a family of time-
inhomogeneous Markov processes called Askey-Wilson processes.

The Askey-Wilson measures depend on five parameters (a, b, c, d, q), where q ∈ (−1, 1)

and the parameters a, b, c, d admit the following three possibilities:

(1) all of them are real,

(2) two of them are real and the other two form a complex conjugate pair,

(3) they form two complex conjugate pairs,

and in addition we require:

ac, ad, bc, bd, qac, qad, qbc, qbd, abcd, qabcd ∈ C \ [1,∞).

The Askey-Wilson measure is of mixed type:

ν(dy; a, b, c, d, q) = f(y, a, b, c, d, q)dy +
∑

z∈F (a,b,c,d,q)

p(z)δz(dy),

with absolutely continuous part supported on [−1, 1] with density

f(y, a, b, c, d, q) =
(q, ab, ac, ad, bc, bd, cd; q)∞

2π(abcd; q)∞
√

1− y2

∣∣∣∣ (e2iθy ; q)∞
(aeiθy , beiθy , ceiθy , deiθy ; q)∞

∣∣∣∣2 , (3.1)

where y = cos θy and f(y, a, b, c, d, q) = 0 when |y| > 1. We use the q-Pochhammer symbol:
for complex z, z1, . . . , zk and 0 ≤ n ≤ ∞,

(z; q)n =

n−1∏
j=0

(1− zqj), (z1, · · · , zk; q)n =

k∏
i=1

(zi; q)n.

The discrete (atomic) part supported on a finite or empty set F (a, b, c, d, q) of atoms
generated by numbers χ ∈ {a, b, c, d} such that |χ| > 1. In this case χ must be real and
generates its own set of atoms:

yj =
1

2

(
χqj +

1

χqj

)
for j = 0, 1 . . . such that |χqj | > 1, (3.2)
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the union of which is F (a, b, c, d, q). When χ = a, the corresponding masses are

p(y0; a, b, c, d, q) =
(a−2, bc, bd, cd; q)∞

(b/a, c/a, d/a, abcd; q)∞
,

p(yj ; a, b, c, d, q) = p(y0; a, b, c, d, q)
(a2, ab, ac, ad; q)j (1− a2q2j)

(q, qa/b, qa/c, qa/d; q)j(1− a2)

( q

abcd

)j
, j ≥ 1.

For other values of χ the masses are given by similar formulas with a and χ swapped.
We will not use these precise formulas of the masses in this paper.

The Askey-Wilson processes depend on five parameters (A, B, C, D, q), where q ∈ (−1, 1)

and A, B, C, D are either real or (A, B) or (C, D) are complex conjugate pairs, and in addition

AC, AD, BC, BD, qAC, qAD, qBC, qBD, ABCD, qABCD ∈ C \ [1,∞).

The Askey-Wilson process {Yt}t∈I is a time-inhomogeneous Markov process defined on
the interval

I =
[
max{0, CD, qCD}, 1

max{0,AB,qAB}

)
,

with marginal distributions

πt(dx) = ν(dx; A
√
t, B
√
t, C/
√
t, D/
√
t, q), t ∈ I,

(which has compact support Ut) and transition probabilities

Ps,t(x, dy) = ν(dy; A
√
t, B
√
t,
√
s/t(x+

√
x2 − 1),

√
s/t(x−

√
x2 − 1)),

for s < t, s, t ∈ I, x ∈ Us. We remark that the marginal distribution πt(dx) may have
atoms at

1

2

(
A
√
tqj +

1

A
√
tqj

)
,

1

2

(
B
√
tqj +

1

B
√
tqj

)
,

1

2

(
Cqj√
t

+

√
t

Cqj

)
,

1

2

(
Dqj√
t

+

√
t

Dqj

)
,

(3.3)
and the transition probabilities Ps,t(x, dy) may also have atoms.

In the following subsections we only consider Askey-Wilson process under conditions

A, C ≥ 0, B, D ≤ 0, AC < 1, BD < 1,

in which case the process is defined on interval I = [0,∞), and the marginal distributions
πt(dx) cannot be purely discrete.

3.2 Stationary measure of open ASEP and asymptotics

We consider open ASEP on the lattice {1, . . . , N} with particle jump rates (q, α, β, γ, θ)

satisfying (2.2).

Definition 3.1. We will use the following parameterization:

A = κ+(β, δ), B = κ−(β, δ), C = κ+(α, γ), D = κ−(α, γ), (3.4)

where

κ±(u, v) =
1

2u

(
1− q − u+ v ±

√
(1− q − u+ v)2 + 4uv

)
.

We can check that for any given q ∈ [0, 1), (3.4) gives a bijection

{(α, β, γ, δ) : α, β > 0, γ, δ ≥ 0} ∼−→ {(A,B,C,D) : A,C ≥ 0, B,D ∈ (−1, 0]} .
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Figure 6: (a) Phase diagram for open ASEP. (b) Phase diagram for six-vertex model on a
strip.

Theorem 3.2 (Theorem 1 in [15]). Suppose AC < 1 and D,E, 〈W |, |V 〉 satisfy the DEHP

algebra with 〈W |V 〉 = 1. Then for 0 < t1 ≤ · · · ≤ tN , we have

〈W |

N
−→∏
j=1

(E + tjD)|V 〉 =
1

(1− q)N
E

 N∏
j=1

(1 + tj + 2
√
tjYtj )

 , (3.5)

where the right arrow means that the product is taken in increasing order of j from left
to right. Hence by Theorem 2.4, the generating function of stationary measure of open
ASEP reads:

Eπ

 N∏
j=1

t
τj
j

 =
E
(∏N

j=1(1 + tj + 2
√
tjYtj )

)
2NE(1 + Y1)N

, (3.6)

where {Yt}t≥0 is the Askey–Wilson process with parameters (A,B,C,D, q).

Remark 3.3. We note that the above theorem was proved in [15] for D, E, 〈W | and
|V 〉 given by the USW representation [47] in Remark 2.7. In view of AC < 1 we have
γδ/(αβ) = ABCD < 1, in particular αβ 6= qlγδ for any l = 0, 1, . . . . By Remark 2.6 we
have that the matrix product (3.5) does not depend on the specific choice of D, E, 〈W |
and |V 〉 satisfying the DEHP algebra, and that one only need to assume 〈W |V 〉 = 1.

It has been well-known in the physics literature (see for example [23, 43, 26, 27])
that the limit of the statistics of open ASEP under the stationary measure as the number
of sites N → ∞ exhibit a phase diagram that involves only two boundary parameters
A,C:

Definition 3.4. We define the phase diagram of open ASEP involving parameters A,C.
We define two regions:

• (fan region) AC < 1,

• (shock region) AC > 1.

We also define three phases:

• (maximal current phase) A < 1, C < 1,

• (high density phase) A > 1, A > C,

• (low density phase) C > 1, C > A.

See Figure 6 (a) where the shadowed area denote the fan region, and the three phases
are labeled.
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Definition 3.5. Consider a particle system with N sites with occupation variables
(τ1, . . . , τN ) ∈ {0, 1}N . The observable ρ = 1

N

∑N
i=1 τi is called the mean particle density

of the system.

The following limit of the mean particle density has been well-known in physics, see
for example [26, 44]. It was obtained in [47] by Askey-Wilson polynomials and later in
mathematical works [15, 16] by Askey-Wilson processes. More specific asymptotics are
also obtained therein.

Theorem 3.6. Consider the open ASEP with sites {1, . . . , N} and with particle jump
rates (q, α, β, γ, δ) whose stationary measure is denoted by π(τ1, . . . , τN ). On the fan
region AC < 1 the limits of mean particle density as N →∞ are given by:

lim
N→∞

Eπρ =


1
2 , A ≤ 1, C ≤ 1 (maximal current phase with boundary),
A
A+1 , A > 1, A > C (high density phase),
1

C+1 , C > 1, C > A (low density phase).

3.3 Limit of mean particle density of six-vertex model on a strip

In this subsection we prove Theorem 1.2 in the introduction, which gives the limits of
mean particle density of the stationary measure of six-vertex model on a strip. The limits
exhibit a phase diagram that is a tilting of phase diagram of open ASEP (Figure 6).

We first fix some notations. We will consider the six-vertex model on a strip with bulk
parameters θ1, θ2 and boundary parameters a, b, c, d. We will always assume:

a, b, c, d, θ1, θ2 ∈ (0, 1), θ1 < θ2, b+ d < 1.

We define parameter r = 1−θ2
1−θ1 ∈ (0, 1) and parameters q, α, β, γ, δ by (2.16):

(q, α, β, γ, δ) =

(
θ1
θ2
,

(1− θ1)a

θ2
,

(1− θ2)b

θ2(1− b− d)
,

(1− θ2)c

θ2
,

(1− θ1)d

θ2(1− b− d)

)
.

Last we define A,B,C,D in terms of (q, α, β, γ, δ) by Definition 3.1. We denote the
stationary measure on a horizontal down-right path by µ(τ1, . . . , τN ).

We assume that the matrices D,E, row vector 〈W | and column vector |V 〉 satisfy the
DEHP algebra (2.3) with parameters (q, α, β, γ, δ), and that 〈W |V 〉 = 1. As mentioned
in Remark 2.7, a concrete example is given by the USW representation [47]. Then by
Theorem 2.10 we have that the matrices

D↑ =
(1− θ2)

θ2
D, E↑ =

(1− θ1)

θ2
E, D→ = D↑ + I, E→ = E↑ − I, (3.7)

and the same boundary vectors 〈W |, |V 〉 satisfy compatibility relations (2.7), (2.8)
and (2.9) in Theorem 2.8.

Corollary 3.7. Suppose AC < 1. Then for any 0 < t1 ≤ · · · ≤ tN ,

〈W |

N
−→∏
j=1

(D↑tj + E↑)|V 〉 =

(
1− θ1
θ2(1− q)

)N
E

 N∏
j=1

(1 + rtj + 2
√
rtjYrtj )

 .

Hence the generating function of stationary measure µ can be written as

Eµ

 N∏
j=1

t
τj
j

 =
E
(∏N

j=1(1 + rtj + 2
√
rtjYrtj )

)
E(1 + r + 2

√
rYr)N

, (3.8)

where {Yt}t≥0 is the Askey–Wilson process with parameters (A,B,C,D, q).

EJP 29 (2024), paper 44.
Page 17/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1100
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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Proof. This is an easy consequence of equation (3.7), Theorem 3.2 and Theorem 2.8. As
in Remark 3.3, AC < 1 implies αβ 6= qlγδ for any l = 0, 1, . . . , which, by Remark 2.6,
guarantees that the denominator in the matrix product ansatz is nonzero.

Corollary 3.8. Consider the mean density ρ = 1
N

∑N
i=1 τi under stationary measure µ of

the particle system of six-vertex model on a strip on a horizontal path. If AC < 1, then
we have

Eµρ =
∂tZN (t)|t=1

NZN (1)
,

where ZN (t) is given by

ZN (t) =

(
1− θ1
θ2(1− q)

)N
E(1 + rt+ 2

√
rtYrt)

N , (3.9)

where {Yt}t≥0 is the Askey–Wilson process with parameters (A,B,C,D, q).

Proof. By Theorem 2.8, we have:

Eµτi = Pµ(τi = 1) =
〈W |(D↑ + E↑)i−1D↑(D↑ + E↑)N−i|V 〉

〈W |(D↑ + E↑)N |V 〉
.

Summing over i = 1, . . . , N we get

Eµρ =
∂tZN (t)|t=1

NZN (1)
,

where
ZN (t) = 〈W |(D↑t+ E↑)N |V 〉, ∀t ≥ 0.

is the normalizing constant. By Corollary 3.7 we can write ZN (t) in the form (3.9).

Definition 3.9. We define the phase diagram of six-vertex model on a strip on a horizon-
tal path.

We first define two regions:

• (fan region) AC < 1,

• (shock region) AC > 1.

On the fan region we define three phases:

• (maximal current phase) A < 1/
√
r, C <

√
r,

• (high density phase) A > 1/
√
r, AC < 1,

• (low density phase) C >
√
r, AC < 1.

See Figure 6 (b) where the shadowed area denote the fan region, and the three phases
are labeled.

Remark 3.10. We have defined the three phases only inside the fan region AC < 1,
because Theorem 3.2 only works inside this region so our techniques can only produce
results therein. After the initial submission of this paper, [49] constructed Askey-Wilson
signed measures and rigorously obtained the density and fluctuations of open ASEP in
the shock region AC > 1, including the ‘coexistence line’ A = C > 1. It is possible that,
by applying similar techniques, we can also extend the phase diagram of the six-vertex
model on a strip to include the shock region. We defer this aspect to future research.

We now provide the proof of Theorem 1.2 in the introduction.
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Six-vertex model on a strip

Proof of Theorem 1.2. We first prove this theorem under condition (1.7). At the end of
the proof we show that when a+ c < 1 we can avoid this assumption by a two-species
attractive coupling argument (Proposition 3.13) similar to the one in [19, section 5],
which is of independent interest. We denote:

Ã = A
√
r, B̃ = B

√
r, C̃ = C/

√
r, D̃ = D/

√
r.

By (1.4) and AC < 1 we have:

Ã, C̃ > 0, ÃC̃ < 1, B̃ ∈ (−
√
r, 0), D̃ ∈ (−1/

√
r, 0). (3.10)

Denote Z̃N (t) = E(1 + rt+ 2
√
rtYrt)

N . By Corollary 3.8 we have

ZN (t) =

(
1− θ1
θ2(1− q)

)N
Z̃N (t).

Write:

Z̃N (t) = E(1 + rt+ 2
√
rtYrt)

N

=

∫ ∞
−∞

(1 + rt+ 2
√
rty)Nν(dy, Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)

=

∫ 1

−1
(1 + rt+ 2

√
rty)Nf(y, Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)dy

+
∑

yj(t)∈F (t)

(1 + rt+ 2
√
rtyj(t))

Np(yj(t); Ã
√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q),

(3.11)

where
yj(t) ∈ F (t) = F (Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)

are atoms generated by Ã
√
t, B̃
√
t, C̃/

√
t, D̃/

√
t and

f(y, Ã
√
t, B̃
√
t,
C̃√
t
,
D̃√
t
, q)

=
(q, tÃB̃, ÃC̃, ÃD̃, B̃C̃, B̃D̃, C̃D̃/t; q)∞

2π(ÃB̃C̃D̃; q)∞
√

1− y2

∣∣∣∣∣∣ (e2iθy ; q)∞

(Ã
√
teiθy , B̃

√
teiθy , C̃√

t
eiθy , D̃√

t
eiθy ; q)∞

∣∣∣∣∣∣
2

is the continuous part density, where y = cos θy ∈ [−1, 1]. In the following we denote

πt(y) := f(y, Ã
√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q). (3.12)

We make some observations on Askey-Wilson measure ν(dy, Ã
√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)

as t → 1. We first look at the behavior of atoms. By (3.10) all the possible atoms are
generated by Ã

√
t, C̃/

√
t and D̃/

√
t. In the high density phase Ã > 1 there are atoms

generated by Ã
√
t and in the low density phase C̃ > 1 there are atoms generated by

C̃/
√
t. In all three phases there may be atoms generated by D̃/

√
t. By the technical

condition (1.7), for t in a small neighborhood of 1, the number of atoms is constant. The
positions of atoms yj(t) and the corresponding masses p(yj(t); Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)

are smooth functions of t.

Fact 3.11. The Askey-Wilson measure ν(dy, Ã, B̃, C̃, D̃, q) is supported inside (−(1 +

r)/2
√
r,∞), where the function (1 + r + 2

√
ry)N of y is strictly positive and strictly

increasing.
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Six-vertex model on a strip

Proof of Fact 3.11. The continuous part is supported on [−1, 1]. The atoms generated
by Ã and by C̃ lie in [1,∞). When D̃ generates atoms, we have D̃ ∈ (−1/

√
r,−1), hence

the atoms generated by D̃ are bounded below by 1
2 (qiD̃ + 1

qiD̃
) ≥ 1

2 (D̃ + 1

D̃
) > − 1+r

2
√
r
, for

i = 0, 1, . . .

We then look at the behavior of continuous part density.

Fact 3.12. There is a smooth function g(t, z) on a small neighborhood of {1}×{|z| = 1} ⊂
C× C which cannot take the value 0, such that:

πt(y) =
√

1− y2g(t, z), (3.13)

where z = eiθy for y ∈ [−1, 1]. In particular both πt(y) and ∂tπt(y) are both bounded on
(t, y) ∈ (1 − ε, 1 + ε) × [−1, 1] for some ε > 0, hence ∂t

(
(1 + rt+ 2

√
rty)Nπt(y)

)
is also

bounded on this region. Hence we can take differentiation under the integral sign in

∂t

(∫ 1

−1(1 + rt+ 2
√
rty)Nπt(y)dy

)
|t=1.

Proof of Fact 3.12. In numerator of πt(y) we have |(e2iθy ; q)∞|2 = 4(1− y2)|(e2iθyq; q)∞|2.
Define:

g(t, z) =
2(q, tÃB̃, ÃC̃, ÃD̃, B̃C̃, B̃D̃, C̃D̃/t; q)∞

π(ÃB̃C̃D̃; q)∞

∣∣∣∣∣∣ (qz2; q)∞

(Ã
√
tz, B̃

√
tz, C̃√

t
z, D̃√

t
z; q)∞

∣∣∣∣∣∣
2

.

By condition (1.7), when t and |z| are close to 1, |1 − sqj | > ε for some ε > 0, s =

Ã
√
tz, B̃

√
tz, C̃√

t
z, D̃√

t
z and j = 0, 1, 2, . . . Hence by the analyticity of q-Pochhammer

symbols, g(t, z) is smooth.

We return to the proof of the theorem.

(I) (High density phase Ã > 1). When t → 1 there are atoms generated by Ã
√
t

and also possible atoms generated by D̃/
√
t. By Facts 3.11 and 3.12 we can

observe that as N →∞ both Z̃N (1) and ∂tZ̃N (t)|t=1 are dominated by largest atom

y0(t) = 1
2

(
Ã
√
t+ 1

Ã
√
t

)
, i.e.

Z̃N (1) ∼ (1 + r + 2
√
ry0(1))Np(y0(1), Ã, B̃, C̃, D̃, q), (3.14)

∂tZ̃N (t)|t=1 ∼ N∂t(1+rt+2
√
rty0(t))|t=1(1+r+2

√
ry0(1))N−1p(y0(1), Ã, B̃, C̃, D̃, q),

(3.15)
where we use f(N) ∼ g(N) to denote limN→∞ f(N)/g(N) = 1. The details are
provided in Appendix A.1. Hence we have

lim
N→∞

Eµρ =
∂t(1 + rt+ 2

√
rty0(t))|t=1

(1 + r + 2
√
ry0(1))

=
∂t(1 + rt+Art+ 1/A)|t=1

1 + r +Ar + 1/A
=

Ar

Ar + 1
.

(II) (Low density phase C̃ > 1). The proof is similar to the high density phase. Both

Z̃N (1) and ∂tZ̃N (t)|t=1 are dominated by the largest atom y0(t) = 1
2

(
C̃√
t

+
√
t

C̃

)
.

Hence

lim
N→∞

Eµρ =
∂t(1 + rt+ 2

√
rty0(t))|t=1

(1 + r + 2
√
ry0(1))

=
∂t(1 + rt+ C + rt/C)|t=1

1 + r + C + r/C
=

r

C + r
.
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(III) (Maximal current phase Ã, C̃ < 1). The only possible atoms come from D̃/
√
t. By

Fact 3.12 we have |∂tπt(y)|t=1| ≤ M
√

1− y2 and π1(y) > ε
√

1− y2 on y ∈ [−1, 1],
for some M, ε > 0. We can observe that as N →∞ we have:

Z̃N (1) ∼
∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy, (3.16)

∂tZ̃N (t)|t=1

NZ̃N (1)
∼
∫ 1

−1(1 + r + 2
√
ry)N−1(r +

√
ry)π1(y)dy∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy

. (3.17)

The details are provided in Appendix A.2.

We use a similar method as [16, section 4.2] to obtain the asymptotics. We first
write

π1(y) =
(q, ÃB̃, ÃC̃, ÃD̃, B̃C̃, B̃D̃, C̃D̃; q)∞

2π(ÃB̃C̃D̃; q)∞
√

1− y2

∣∣∣∣∣ (e2iθy ; q)∞

(Ãeiθy , B̃eiθy , C̃eiθy , D̃eiθy ; q)∞

∣∣∣∣∣
2

=
√

1− y2 2(q, ÃB̃, ÃC̃, ÃD̃, B̃C̃, B̃D̃, C̃D̃; q)∞

π(ÃB̃C̃D̃; q)∞|(Ãeiθy , B̃eiθy , C̃eiθy , D̃eiθy ; q)∞|2
|(qe2iθy ; q)∞|2.

Set y = 1− u
2N . Fix u > 0, as N →∞ we have eiθy → 1 and (qe2iθy ; q)∞ → (q; q)∞.

Hence

π1(y) ∼ 2c

√
u

N
, and π1(y) ≤M

√
u

N
,

where

c =
(q; q)3∞(ÃB̃, ÃC̃, ÃD̃, B̃C̃, B̃D̃, C̃D̃; q)∞

π(ÃB̃C̃D̃; q)∞(Ã, B̃, C̃, D̃; q)2∞
,

and M is a large constant (may be different from M used before). We write:∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy

=

∫ ∞
0

1u≤4N

(
1 + r + 2

√
r − u

√
r

N

)N
π1

(
1− u

2N

) du

2N

=
(1 +

√
r)2N

2N
3
2

∫ ∞
0

1u≤4N

(
1− u

√
r

N(1 +
√
r)2

)N
π1

(
1− u

2N

)√
Ndu.

As N →∞ the integrand is bounded above by a constant times exp
(
− u

√
r

(1+
√
r)2

)√
u,

which is integrable on u ∈ (0,∞). We can use dominated convergence theorem to
take N →∞:∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy ∼ (1 +

√
r)2N

N
3
2

c

∫ ∞
0

exp

(
− u

√
r

(1 +
√
r)2

)√
udu

= 2c
(1 +

√
r)2N

N
3
2

∫ ∞
0

exp

(
−

√
r

(1 +
√
r)2

t2
)
t2dt

=

√
π

2
c
(1 +

√
r)2N+3

N
3
2 r

3
4

,
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where we have used
∫∞
0
e−st

2

t2dt = 1
4

√
π
s3 for s > 0 and took s =

√
r

(1+
√
r)2

. Hence:

Eµρ =
∂tZ̃N (t)|t=1

NZ̃N (1)
∼
∫ 1

−1(1 + r + 2
√
ry)N−1(r +

√
r)π1(y)dy∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy

=
1

2
+
r − 1

2

∫ 1

−1(1 + r + 2
√
ry)N−1π1(y)dy∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy

∼ 1

2
+

r − 1

2(1 +
√
r)2

=

√
r

1 +
√
r
.

We show that under an extra condition a+c < 1 we can avoid technical condition (1.7):

|A
√
r|, |B

√
r|, |C/

√
r|, |D/

√
r| 6= q−i for i = 0, 1, 2, . . .

Denote the right hand side of (1.8) as ρ(A,C), which is a continuous function of A,C
and hence a continuous function of a, b, c, d, θ1, θ2. Suppose (a, b, c, d, θ1, θ2) satisfy (1.4),
AC < 1 and a + c < 1. We can choose a sequence (an, bn, cn, dn) ∈ (0, 1)4, n = 1, 2 . . .

approaching (a, b, c, d), such that

an ≤ a, bn ≥ b, cn ≥ c, dn ≤ d, a+ cn < 1, bn + d < 1,

and the corresponding parameters (An, Bn, Cn, Dn) (Definition 3.1) satisfy AnCn < 1 and

|An
√
r|, |Bn

√
r|, |Cn/

√
r|, |Dn/

√
r| 6= q−i for i = 0, 1, 2, . . .

Denote by Πn
N the six-vertex model on a strip with width N and with parameters

(an, bn, cn, dn, θ1, θ2), for n = 1, 2 . . . Denote the six-vertex model on a strip with width N
with parameters (a, b, c, d, θ1, θ2) by ΠN . Assume these models have empty initial condi-
tion. By Proposition 3.13 we have a coupling of Πn

N with ΠN such that their occupation
variables satisfy ηnN (e) ≤ ηN (e) for every edge e of the strip, where ηnN is the occupation
variable of Πn

N and ηN is the occupation variable of ΠN . We then consider the interacting
particle systems on a horizontal path related to those six-vertex models. Since they
are finite ergodic Markov chains, as time (vertical coordinate) goes to infinity they
converge to their stationary measures µnN and µN . In particular Eµn

N
ρ ≤ EµN

ρ for every
n,N ∈ Z+. Since the parameters (an, bn, cn, dn, θ1, θ2) satisfy technical condition (1.7),
we have shown that limN→∞Eµn

N
ρ = ρ(An, Cn). Hence limN→∞EµN

ρ ≥ limN→∞Eµn
N
ρ =

ρ(An, Cn). We then take n → ∞ and get limN→∞EµN
ρ ≥ limN→∞ ρ(An, Cn) = ρ(A,C).

By the same argument we also have limN→∞EµN
ρ ≤ ρ(A,C). Hence limN→∞EµN

ρ =

ρ(A,C).

Proposition 3.13 (Two-species attractive coupling). Suppose a, b, c, d, a′, b′, c′, d′, θ1, θ2 ∈
(0, 1) such that

a ≤ a′, b ≥ b′, c ≥ c′, d ≤ d′, a′ + c < 1, b+ d′ < 1.

Consider two six-vertex models Π1,Π2 on a strip with the same width N , with parameters
respectively (a, b, c, d, θ1, θ2) and (a′, b′, c′, d′, θ1, θ2). Denote the occupation variables of
Π1 and Π2 by η1(e) ∈ {0, 1} and η2(e) ∈ {0, 1}, where e runs through edges of the strip.

Suppose that η1(e) ≤ η2(e) for any edge e in the initial condition (outgoing edge of a
down-right path P). Then there exists a coupling of Π1 and Π2 such that η1(e) ≤ η2(e)
for any edge e.
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Six-vertex model on a strip

Proof. We construct a six-vertex model on the strip Π with arrows in two colors 1, 2,
and we use 0 to denote the absence of an arrow. We then show that two marginals
of this model equal respectively Π1 and Π2. Denote the occupation variable of Π by
η(e) ∈ {0, 1, 2}, where e runs through edges of the strip. The initial condition of Π is
defined by η(e) = η1(e) + η2(e) for all initial edges e.

The sampling dynamics of the model Π is defined by the following vertex weights:

• Bulk weights: For every 0 ≤ i ≤ 2 we have

P

 i

i

i i

 = 1.

For every pair of 0 ≤ i < j ≤ 2 we have

P

 i

i

j j

 = θ2, P

 j

i

j i

 = 1− θ2,

P

 j

j

i i

 = θ1, P

 i

j

i j

 = 1− θ1.

• Right boundary weights:

P

(
0

0

)
= 1− d′, P

(
0

1

)
= d′ − d, P

(
0

2

)
= d,

P

(
1

0

)
= b′, P

(
1

1

)
= 1− b′ − d, P

(
1

2

)
= d,

P

(
2

0

)
= b′, P

(
2

1

)
= b− b′, P

(
2

2

)
= 1− b.

• Left boundary weights:

P

(
0

0

)
= 1− a′, P

(
0

1

)
= a′ − a, P

(
0

2

)
= a,

P

(
1

0

)
= c′, P

(
1

1

)
= 1− c′ − a, P

(
1

2

)
= a,

P

(
2

0

)
= c′, P

(
2

1

)
= c− c′, P

(
2

2

)
= 1− c.

We can check that two marginals

η1(e) := 1η(e)≥2, η2(e) := 1η(e)≥1, ∀ edge e on the strip

of the above model Π coincide respectively with Π1 and Π2. It is immediate that
η1(e) ≤ η2(e).
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A Details in the proof of Theorem 1.2

A.1 Proofs of (3.14) and (3.15) in the high density phase

On high density phase Ã > 1, when t is in a small interval of 1, the measure
ν(dy, Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q) has atoms y0(t) > · · · > y`−1(t) > 1 generated by Ã

√
t

and also possibly some atoms −1 > y`(t) > · · · > yk(t) generated by D̃/
√
t, where

k ≥ `− 1 ≥ 0. We take t = 1 in Z̃N (t) given by (3.11) and get:

Z̃N (1) =(1 + r + 2
√
ry0(1))Np(y0(1); Ã, B̃, C̃, D̃, q)

+

k∑
j=1

(1 + r + 2
√
ryj(1))Np(yj(1); Ã, B̃, C̃, D̃, q) +

∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy,

where πt(y) is defined in (3.12). The first term divided by (1+r+2
√
ry0(1))N is a positive

constant independent of N . By Fact 3.11, every other terms divided by (1+r+2
√
ry0(1))N

goes to 0 as N →∞. Hence we obtain (3.14):

Z̃N (1) ∼ (1 + r + 2
√
ry0(1))Np(y0(1), Ã, B̃, C̃, D̃, q).

Next we take the derivative of Z̃N (t) at t = 1. We have:

∂tZ̃N (t)|t=1

=N∂t(1 + rt+ 2
√
rty0(t))|t=1(1 + r + 2

√
ry0(1))N−1p(y0(1); Ã, B̃, C̃, D̃, q)

+ (1 + r + 2
√
ry0(1))N∂tp(y0(t); Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)|t=1

+

k∑
j=1

N∂t(1 + rt+ 2
√
rtyj(t))|t=1(1 + r + 2

√
ryj(1))N−1p(yj(1); Ã, B̃, C̃, D̃, q)

+

k∑
j=1

(1 + r + 2
√
ryj(1))N∂tp(yj(t); Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)|t=1

+

∫ 1

−1
N∂t(1 + rt+ 2

√
rty)|t=1(1 + r + 2

√
ry)N−1π1(y)dy

+

∫ 1

−1
(1 + r + 2

√
ry)N∂tπt(y)|t=1dy.

The first term divided by N(1 + r + 2
√
ry0(1))N is a positive constant independent of N ,

and every other terms divided by N(1 + r + 2
√
ry0(1))N goes to 0 as N →∞. Hence we

obtain (3.15):

∂tZ̃N (t)|t=1 ∼ N∂t(1 + rt+ 2
√
rty0(t))|t=1(1 + r + 2

√
ry0(1))N−1p(y0(1), Ã, B̃, C̃, D̃, q).

A.2 Proof of (3.16) and (3.17) in the maximal current phase

On the maximal current phase Ã < 1, C̃ < 1, when t is close to 1 the measure
ν(dy, Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q) can only have possible atoms −1 > y0(t) > · · · > yk(t)

generated by D̃/
√
t, where k ≥ −1. We have:

Z̃N (1) =

∫ 1

−1
(1+r+2

√
ry)Nπ1(y)dy+

k∑
j=0

(1+r+2
√
ryj(1))Np(yj(1); Ã, B̃, C̃, D̃, q) = C1+C2.

Observe that the density π1(y) can only take zero at y = −1, 1. When N → ∞, the
integral C1 divided by (1 + r − 2

√
r)N is bounded below by

∫ 1

−1 π1(y)dy > 0, and each
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summand in C2 divided by (1 + r − 2
√
r)N goes to 0. We obtain (3.16):

Z̃N (1) ∼
∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy.

Next we evaluate ∂tZ̃N (t)|t=1 and look at ∂tZ̃N (t)|t=1

NZ̃N (1)
as N →∞:

∂tZ̃N (t)|t=1

=

∫ 1

−1
N(r +

√
ry)(1 + r + 2

√
ry)N−1π1(y)dy +

∫ 1

−1
(1 + r + 2

√
ry)N∂tπt(y)|t=1dy

+

k∑
j=0

N∂t(1 + rt+ 2
√
rtyj(t))|t=1(1 + r + 2

√
ryj(1))N−1p(yj(1); Ã, B̃, C̃, D̃, q)

+

k∑
j=0

(1 + r + 2
√
ryj(1))N∂tp(yj(t); Ã

√
t, B̃
√
t, C̃/

√
t, D̃/

√
t, q)|t=1

=D1 +D2 +D3 +D4.

Note that Z̃N (1) ≥
∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy. When N → ∞, NZ̃N (1) divided by

N(1 + r − 2
√
r)N is bounded below by

∫ 1

−1 π1(y)dy > 0, and each summand in D3 and D4

divided by N(1 + r − 2
√
r)N goes to 0. For the integral D2, observe that by Fact 3.12

we have |∂tπt(y)|t=1| ≤ M
√

1− y2 and π1(y) > ε
√

1− y2 for some M, ε > 0. Hence on
y ∈ [−1, 1] we have∣∣(1 + r + 2

√
ry)N∂tπt(y)|t=1

∣∣ ≤ M

ε
(1 + r + 2

√
ry)Nπ1(y).

Integrate over [−1, 1], we get∫ 1

−1
|(1 + r + 2

√
ry)N∂tπt(y)|t=1|dy ≤

M

ε

∫ 1

−1
(1 + r + 2

√
ry)Nπ1(y)dy.

Hence ∣∣∣∣∣ D2

NZ̃N (1)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ 1

−1(1 + r + 2
√
ry)N∂tπt(y)|t=1dy

N
∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy

∣∣∣∣∣ ≤ M/ε

N
→ 0.

Hence we obtain (3.17):

∂tZ̃N (t)|t=1

NZ̃N (1)
∼ D1

NZ̃N (1)
=

∫ 1

−1(1 + r + 2
√
ry)N−1(r +

√
ry)π1(y)dy∫ 1

−1(1 + r + 2
√
ry)Nπ1(y)dy

.
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