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Abstract

We study and develop multilevel methods for the numerical approximation of a log-
concave probability π on Rd, based on (over-damped) Langevin diffusion. In the
continuity of [12] concentrated on the uniformly log-concave setting, we here study
the procedure in the absence of the uniformity assumption. More precisely, we
first adapt an idea of [8] by adding a penalization term to the potential to recover
the uniformly convex setting. Such approach leads to an ε-complexity of the order
ε−5π(|.|2)9/2d (up to logarithmic terms). Then, in the spirit of [14], we propose to
explore the robustness of the method in a weakly convex parametric setting where
the lowest eigenvalue of the Hessian of the potential U is controlled by the function
U(x)−r for r ∈ (0, 1). In this intermediary framework between the strongly convex
setting (r = 0) and the “Laplace case” (r = 1), we show that with the help of the
control of exponential moments of the Euler scheme, we can adapt some fundamental
properties for the efficiency of the method. In the “best” setting where U is C3 and
U(x)−r control the largest eigenvalue of the Hessian, we obtain an ε-complexity of the
order cρ,δε

−2−ρd1+
ρ
2
+(4−ρ+δ)r for any ρ > 0 (but with a constant cρ,δ which increases

when ρ and δ go to 0).
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1 Introduction

In this paper, we are interested in the sampling of probability distribution named

Gibbs measure whose density is π(dx) = 1
Z e
−U(x)

2σ2 λ(dx) where λ is the Lebesgue measure,

Z =
∫
Rd
e−

U(x)

2σ2 λ(dx) and U : Rd → R is a coercive function. Many applications require
the computation of these measures in high dimension state space including for example
machine learning, Bayesian estimation or statistical physics. Methods that are studied in
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Multilevel methods for non-uniformly log-concave distributions

this paper are based on the discretization of over-damped Langevin stochastic differential
equation (SDE)

dXt = −∇U(Xt)dt+ σdBt, (1.1)

where (Bt)t≥0 is a d-dimensional Brownian motion and σ ∈ R+
∗ . These methods received

a lot of attention in the last few years, in particular when U is strongly convex (in the
sense where, in the whole space, the smallest eigenvalue of its Hessian is lower bounded
by a positive α). This assumption may be certainly constraining in view of applications.
It is the reason why, in this paper, we suppose that U is not strongly convex but only
weakly convex.1

More precisely, we will assume that the potential U is a convex twice differentiable
function whose gradient is Lipschitz continuous. Under these assumptions, strong exis-
tence and uniqueness of a solution (Xt)t≥0 classically hold and the solution to (1.1) is an
ergodic Markov process whose invariant distribution is exactly the Gibbs distribution
π ∝ e−Udλ (for background, see e.g. [28], [22], [24], [19]).

We respectively denote by (Pt)t≥0 and L the related semi-group and infinitesimal genera-
tor. We recall that for a twice differentiable function f : Rd 7→ R by

Lf = −〈∇U,∇f〉+
σ2

2
∆f.

It is also well-known that in this log-concave setting, the distribution π satisfies the
Poincaré inequality (see e.g. [2]) and that convergence holds to equilibrium in distribu-
tion and in “pathwise average”: for any starting point x ∈ Rd, the occupation measure
converges to π in the following sense: for all continuous function f ∈ L2(π),

1

t

∫ t

0

f (Xx
s ) ds −→

t→+∞
π(f) a.s. (1.2)

In the continuity of [12], our multilevel methods will be based on discretized adaptations
of (1.2). More precisely, we first choose to approximate the stochastic process (Xt)t≥0

by the classical Euler-Maruyama scheme. When the related step size γ is constant, this
discretization scheme is defined by X̄0 = x ∈ Rd and:

∀n ≥ 0, X̄(n+1)γ = X̄nγ − γ∇U
(
X̄nγ

)
+ σ
√
γZn+1,

where (Zn)n∈N is an i.i.d sequence of d-dimensional standard Gaussian random variables.
In the long-time setting, these schemes and their convergence properties to equilibrium
were first studied in the nineties by [33] and [32]. This discretization of the Langevin
diffusion is widely studied in the literature under uniform convexity of the potential U
[5, 11, 10] and also under weaker assumptions [29, 34] (e.g. isoperimetry assumption).
Then, some decreasing step Euler schemes were investigated by [25] and [26] in order
to manage, in the same time, the discretization and long-time errors. Here, we choose to
keep the constant step size point of view in order to avoid some additional technicalities
but our ideas could be probably adapted to this setting.

We also introduced the continuous-time extension of (X̄nγ)n≥0 given by: for all n ∈ N
and for all t ∈ [nγ, (n+ 1)γ),

X̄γ
t := X̄nγ − (t− nγ)∇U

(
X̄nγ

)
+ σ

(
Bt −B(n+1)γ

)
. (1.3)

1We use in the sequel the usual terminology where “strongly convex” and “weakly convex” respectively
means “uniformly strongly convex” and “non-uniformly strongly convex”.
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Multilevel methods for non-uniformly log-concave distributions

If we denote by tγ the discretization time related to a positive number t, i.e.,

tγ = γ sup{n ≥ 1, nγ ≤ t}, (1.4)

we remark that

∀t ≥ 0, X̄t = x−
∫ t

0

∇U(X̄sγ
)ds+ σ

∫ t

0

dBs.

This “pseudo-diffusion” form is usually convenient for proofs but it is worth noting
that the procedure is only based on the discrete-time Euler scheme. If no confusion
arises, we will sometimes write t instead of tγ , and X̄t or X̄γ

t instead of X̄γ,x0

t to alleviate
the notations. We now mimic (1.2) with the Euler scheme to approximate the target
measure π. Thus, consider the following occupation measure (for background see [33]),
for N ∈ N

νγN (f) :=
1

N

N−1∑
i=0

f
(
X̄iγ

)
.

1.1 Multilevel methods

Multilevel methods introduced by [20] and [15] (see also [23]) initially used for the
approximation of E[f(XT )], are now widely exploited in many other settings, for example
in stochastic optimization (see [13, 9]) or to speed up MCMC methods (see e.g. [21, 18]).
The rough idea is the following: assume that the target E[X] is the expectation of a
random variable that cannot be sampled (with a reasonable cost) and consider a family
of random variables (Xj)j approximating X, with a cost of simulation and a precision
which typically increases with j. The principle of the multilevel is to stack correcting
layers with a low variance to a coarse approximation X0 of the target. More precisely,
writing

E[XJ ] = E[X0]︸ ︷︷ ︸
Coarse

+

J∑
j=1

E[Xj −Xj−1]︸ ︷︷ ︸
Correcting layer

, (1.5)

the multilevel method consists in building a procedure based on the addition of Monte-
Carlo approximations of E[X0] and of E[Xj −Xj−1], j = 1, . . . , J . Then, if the random
variables Xj −Xj−1 have low variance, the approximation of E[Xj −Xj−1] requires few
simulations and, in view of (1.5), we can obtain a procedure which has the bias related
to XJ but with a cost which may be much less than the one generated by a standard
Monte-Carlo method applied to estimate E[XJ ].

In the discretization setting, the family of random variables (Xj)j is a sequence of
Euler schemes (X̄γj )j where (γj)j is a family of decreasing time steps.2 Following the
heuristic (1.5), the (independent) correcting layers are built by coupling of Euler schemes
with steps γj−1 and γj . Note that in view of the simulation of the (synchronous) coupling,
we need γj−1 to be a multiple of γj (in this paper, we will assume that γj = γ02−j).

Multilevel methods have been already studied in the literature for the approximation
of the invariant distribution of the Langevin diffusion [16, 17, 27, 30, 35]. In [16], the
authors take advantage of the convergence in distribution to equilibrium. Thus, the
classical Monte-Carlo point of view is adopted: the approximation of π(f) is obtained by
sampling a large number of Euler schemes for each level. In [30]3 and [12], the point
of view is to take advantage of the convergence of the occupation measure. Thus, each
level is based on only one path of the Euler scheme or of the couple of Euler schemes

2Decreasing according the levels but constant for each layer.
3This paper is written in the multiplicative setting with a so-called Multilevel-Romberg point of view.
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Multilevel methods for non-uniformly log-concave distributions

whose length decreases (since the variance of the correcting layers decreases) and
discretization step increases. All these papers show that, in the uniformly strongly convex
setting, the integral π(f) against the invariant distribution can be approximated (for a
Lipschitz continuous functions f ) with a precision ε (in a L2-sense) using a Multilevel
procedure whose complexity is of order ε−2 or ε−2 logp(ε) with p ∈ [1, 3]. Moreover, in
[12], a particular attention is paid to the dependency in the dimension. In this case, it
is shown that one can build a multilevel procedure that produces an ε-approximation
of the target for a complexity cost proportional to dε−2 (with an explicit expression
of the dependence in the Lipschitz constant of the gradient of U and the contraction
parameter α).

The more involved weakly convex case seems to be less explored in the multilevel
paradigm but, in view of applications (for instance for Bayesian Lasso), it is natural to
ask about the robustness of these methods when one relaxes the contraction assumption.

1.2 Contributions and plan of the paper

The main goal of this paper is thus to extend the multilevel Langevin algorithm for the
Gibbs sampling to the weakly convex setting, and if possible to obtain some quantitative
bounds for the complexity related to the computation of an ε-approximation of the target
(see Section 1.4 for a definition of ε-approximation).

We first investigate the penalized multilevel method: in the continuity of [6] and
[8], we build a multilevel procedure based on the following observation: consider a
new equation with another potential Uα(x) := U(x) + α

2 |x|
2, this new equation has an

invariant distribution named πα which converges to π when α tends to 0 in Wasserstein
metric. The idea is that this new invariant distribution is easier to sample because
of the uniform convexity of the potential Uα. In Section 2.1, Theorem 2.1 combines
the benefits of the penalized approach and of the multilevel methods. For a Lipschitz
continuous function f : Rd → R and a C2-potential U , the multilevel procedure performs
an ε-approximation of π(f) with a complexity cost proportional to π(|.|2)3dε−5. As in
[8], our result depends on the generally unknown constant π(|.|2) which is at least
proportional to d (see Remark 2.2 for details and comparisons with [8]).

Because of the above remarks, we chose in a second part to try to develop some tools
which tackle the weakly convex setting from a dynamic point of view and which can
improve the complexity in terms of ε. More precisely, in the spirit of [14], we study an
intermediary framework (called weakly parametric convex setting in the sequel). We
assume that the eigenvalues of the Hessian matrix of U vanish when |x| goes to +∞, but
with a rate controlled by the function x 7→ U−r(x) with r ∈ [0, 1) (see Assumption (H1

r )).
The parameter r characterizes the “lack of strong convexity”, the case r = 1 referring to
the “Laplace case”4 whereas r = 0 corresponds to the uniformly convex setting. When
one assumes such an assumption, one can get some bounds for the exponential moments
of the Euler scheme (at the price of technicalities). One is also able to preserve some
confluence properties, i.e. two paths of the Euler scheme have a tendency to stick at
infinity. Finally, in this setting, it is also possible to control the distance between diffusion
paths and the related Euler schemes. These three ingredients (obtained with a lower
quality than in the strongly convex setting) allow us to tackle the multilevel procedure in
this framework.

4The “Laplace case” will refer to the setting where the potential has a flat gradient. The simplest example is
U(x) = |x|. In this case, the invariant distribution is a Laplace distribution. That is the reason why we use this
terminology.
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The related main contribution is Theorem 2.3. In this result, we provide a series of
statements under different sets of assumptions: when U is only C2 or when U is C3.
Under (H1

r ) only or under (H1
r ) and (H2

r ), where (H2
r ) denotes an additional assumption

which requires the highest eigenvalue to be also controlled by the function x 7→ U−r(x)

(we could roughly say that under (H1
r ) and (H2

r ), the potential is uniformly weakly convex
in the sense that “the decrease of the contraction is uniform”). In each statement, we
provide a multilevel procedure adapted to the assumptions. The related complexity
is exhibited in terms of d, ε but also in terms of the contraction parameter and the
Lipschitz constant of ∇U . Without going too much into the details, when U is only C2, the
complexity is of the order ε−3 whereas when U is C3, we can obtain a rate of the order
ε−2−ρ for any ρ > 0 and thus approach the “optimal” complexity ε−2. Now, in terms of
the dimension, when only (H1

r ) holds the dependence in the dimension of the complexity

is bounded by d
3
2

+( 9
2

+δ)r

1−r whereas when (H1
r ) and (H2

r ) hold, we obtain in d
3
2 +( 9

2 +δ)r when
U is C2 and d1+ ρ

2 +4r for any ρ > 0 when U is C3. This means that when U is C3 and (H1
r )

and (H2
r ) hold, the complexity is of the order ε−2−ρd1+ ρ

2 +4r for any ρ > 0. With respect
to the paper [14], our multilevel procedure improves the dependence in ε and is most
comparable in terms of the dimension. Note that when only (H1

r ) holds, the dependency
in the dimension dramatically increases on r. Whereas, when the potential is uniformly
weakly convex, the dependence in the dimension does not explode when r → 1 (see
Theorem 2.4 for more details).

Plan of the paper As detailed in the previous paragraphs, Sections 2.1 and 2.2 are
respectively devoted to the statement of the main theorems for the penalized multilevel
and in the parametric weakly convex case. Then, Section 3 is dedicated to the proof
of the first main theorem (Theorem 2.1). In Proposition 3.2, we obtain a Wasserstein
bound related to the bias induced by the penalization on the invariant distribution.
The proof of Theorem 2.1 is then an adaptation of [12, Theo 2.2]. From Section 4, we
focus on the proof of Theorem 2.3. In Section 4, we prove some preliminary results
on the diffusion and its Euler scheme under (H1

r ): we begin with some controls of the
exponential moments (Proposition 4.1 and Proposition 4.3) which in turn lead to some
bounds of the polynomial moments (Proposition 4.5). In this section, we also show that
the discretization error can be controlled in long time (Proposition 4.7) and finally obtain
an integrable rate of convergence to equilibrium for the Euler scheme (Proposition 4.11).
With the help of these fundamental bricks, in Section 5, we obtain some bounds on the
bias (Proposition 4.17) and of the variance of the procedure (Proposition 5.5) which in
turn allow us to finally provide the proof of Theorem 2.1 in Theorem 2.3.

1.3 Design of the algorithm

We now build the multilevel procedure. Let x ∈ Rd be the initialization of the
procedure, J ∈ N be a number of levels, (γj)0≤j≤J be a sequence of time steps, (Tj)0≤j≤J
be a sequence of final times. Define by Y(J, (γj)j , τ, (Tj)j , x, .) the multilevel occupation

measure: for all f : Rd → R,

Y(J, (γj)j , τ, (Tj)j , x, α, f) :=
1

T0 − τ

∫ T0

τ

f(X̄γ0,x
sγ0

)ds

+

J∑
j=1

1

Tj − τ

∫ Tj

τ

f(X̄γj ,x
sγj−1

)− f(X̄γj−1,x
sγj−1

)ds,

(1.6)

where trajectories on each level are coupled with the same Brownian motion. To ease
notation, we simplify Y(J, (γj)j , τ, (Tj)j , x, f) by Y(f). The parameter τ ≥ 0 is the time
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Multilevel methods for non-uniformly log-concave distributions

where we begin the average. Indeed, this “warm-start trick” can improve the precision
of the estimation in the case of exponential convergence to equilibrium of the process
toward its invariant distribution (see [12] for more information about this parameter).
However, we don’t always have this rate of convergence, and without it, the trick
becomes less effective. In this situation, we set τ to 0 (as in the second part of this work).

1.4 Notations

The usual scalar product on Rd and the induced Euclidean norm are respectively
denoted by 〈·, ·〉 and | · |. The setMd,d refers to the set of d× d-real matrices, we denote
by ‖ · ‖ the operator norm associated with the Euclidean norm. For a symmetric matrix A,
we denote respectively by λA and λ̄A its lowest and highest eigenvalues. The Frobenius
norm for A ∈Md,d is denoted by ‖A‖F .

The Lipschitz constant of a given Lipschitz continuous function f : Rd → R is denoted by
[f ]1. A function f : Rd → R is Ck, k ∈ N, if all its partial derivatives are well-defined and
continuous up to order k. The gradient and Hessian matrix of f are respectively denoted
by ∇f and D2f . The probability space is denoted by (Ω,F ,P). The Laplace operator is
denoted by ∆: ∆f =

∑d
i=1 ∂

2
i,if . The Lp-norm on (Ω,F ,P) is denoted by ‖ · ‖p. For two

probability measures µ and ν, we define the Wasserstein distance of order p by

Wp(µ, ν) = inf
ζ∈Π(µ,ν)

(∫
Rd
|x− y|pdζ(x, y)

) 1
p

,

where Π(µ, ν) is the set of couplings of µ and ν.

• .P and .uc: For two positive real numbers a and b and a set of parameters P , one
writes a .P b if a ≤ CP b where CP is a positive constant which only depends on
the parameters P . When a ≤ Cb where C is a universal constant, we write a .uc b.

• ε-approximation: We say that Y is an ε-approximation (or more precisely an
ε-approximation of a for the L2-norm) if ‖Y − a‖2 = E[|Y − a|2]

1
2 ≤ ε. Equivalently,

Y is said to be an ε-approximation of a if the related Mean-Squared Error (MSE) is
lower than ε2.

• Complexity/ε-complexity: For a random variable Y built with some iterations of
a standard Euler scheme, we denote by C(Y), the number of iterations of the Euler
scheme which is needed to compute Y. For instance, C(X̄γ

nγ) = n. We sometimes
call ε-complexity of the algorithm, the complexity related to the algorithm which
produces an ε-approximation.

2 Main results

2.1 The penalized approach

In this section, we develop a penalized multilevel method to sample a non-strongly
log-concave probability distribution π. The idea is based on [8] and [7] where the authors
consider the potential Uα(x) := U(x)+ α

2 |x|
2 with α > 0 which is called penalized version

of U . We here assume that U satisfies the following assumption:

WCL: U is a non-zero C2-function and there exists L > 0 such that

∀x ∈ Rd, 0 4 D2U(x) 4 LIdRd , (2.1)

the inequalities being taken in the sense of symmetric matrices. Denote by πα the
invariant measure of the diffusion process (Xα

t )t≥0 solution of the stochastic differential
equation

dXα
t = −∇Uα(Xα

t )dt+ σdBt. (2.2)
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It appears that πα satisfies the Bakry-Émery criterion thus we can apply our multilevel
method that requires strong convexity to approximate πα. But our target is π then we
have to control the distance (in a Wasserstein sense) between π and πα. To this end, the
results of [3] and [8] ensure the convergence of πα when α goes to 0 with a bound of the
Kullback-Leibler divergence. This leads to the following theorem:

Theorem 2.1. Assume WCL. Let ε > 0, let f : Rd → R be a Lipschitz continuous
function, x ∈ Rd and define Yα as the multilevel procedure described in (1.6) using the
Euler schemes of the SDE (2.2). Then, there exist parameters such that,

‖Yα(f)− π(f)‖2 ≤ ε, (2.3)

with a complexity of order ε−5dπ(| · |2)9/2 up to logarithmic terms.
More precisely, the following parameters lead to the result.

J =
⌈
2 log2(15

√
2dm

3/2
2 ε−2)

⌉
, τ =

15
√

2

σ2m
3/2
2

ε−1 log(15
√

2dm
3/2
2 ε−1),

α =
εσ2

15
√

2m
3/2
2

, γ0 =
ε

15
√

2m
3/2
2 L2

, T0 =
550

σ2
d log(γ−1

0 )m3
2ε
−5J2,

∀j ∈ {0, . . . , J}, γj = γ02−j , Tj = T02−j ,

(2.4)

where m2 = Eπ[| · |2]. Furthermore, the complexity satisfies

C(Y) ≤ 10× 153

σ4
dm

9/2
2 ε−5L2

⌈
log2

(
15
√

2m
3/2
2 dε−3

)⌉3

log
(

15
√

2m
3/2
2 L2ε−1σ−2

)
. (2.5)

Remark 2.2. � Note that the dimension dependency is not really linear because there
may be some dependency hidden in m2. Indeed, when π is an isotropic probability,
π(|.|2) .uc d (see e.g. [1]5) and this implies that the complexity is of the order d11/2ε−5.

� Let us now compare with [8]: note that in this paper, the cost is not explicitly written.
As usual in the Monte-Carlo literature, the authors control the number of iterations of
the Euler scheme which is necessary to draw a random variable whose distance to the
target is lower than ε

√
m2 instead of giving the real cost. In the Langevin Monte-Carlo

case, when U is C2, they then obtain a number of iterations which is, up to logarithmic
terms, of order m2dε

−4. Normalizing ε (i.e. replacing ε by ε/
√
m2) leads to a number

of iterations of order m3
2dε
−4. But, to compare with our work, we need to include the

Monte-Carlo cost, i.e. to the number of simulations which is necessary to make the
variance lower than ε2. Then, we have to multiply the previous number of iterations by
Varπγα(f)ε−2. The moment of order two of πγα studied in [12] can be reasonably bounded
by d/α (since f is Lipschitz continuous). This means that the complexity of the penalized

Langevin Monte-Carlo in [8] is of the order m9/2
2 d2ε−7 (. d13/2ε−7 if π is isotropic). In

consequence, the multilevel method allows us to improve the result of [8]. Note that the
authors also provide other algorithms such as the Kinetic-LMC where the bound in ε is
improved.

� In the above result, we propose a Multilevel strategy based on a fixed penalization. A
natural question arises: could we take advantage of the Multilevel strategy by keeping
the same penalization for the highest level and progressively reducing it on the lower
layers? Indeed, this is precisely what we do with the discretization bias, thus we can
wonder about the effect of such a strategy for penalization. Indeed, the difference in
Wasserstein distance between two trajectories with different penalization parameters

5Note that the control of π(|.|2) is strongly linked to the so-called KLS-conjecture.
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can be controled. However, our computations show that the benefit of such a strategy
does not improve the dependency of the interest quantity (d, ε, L, etc...) in the complexity
cost. Therefore, to not overload the document with superficial technical issues, we have
chosen not to present this strategy.

2.2 Parametric weakly convex setting

The purpose of this section is to study the non-penalized multilevel procedure in the
weakly convex setting. Instead of penalizing the dynamics, it is actually natural to ask
about the robustness of the “standard” multilevel method in this case. To answer this
question, we have to prove a series of properties in the spirit of the assumptions Hi

(i ∈ {1, 2, 3, 4}) in [12]. These assumptions include the convergence to equilibrium of the
Euler scheme with a quantitative rate, the long-time control of the L2-distance between
the Euler scheme and the diffusion, the control of the Wasserstein distance between πγ

and π and the control of the moments. Some of these properties (especially the long-time
control of the L2-distance) seem hard to check in a general convex setting. We thus
propose to work in the parametric weakly convex setting used in [12] by introducing
(H1

r ) (see below) where we assume that the contraction vanishes at infinity but with a
rate controlled by U−r.

Let us now introduce our assumptions depending on a parameter r ∈ [0, 1):

(H1
r ): The potential U is a positive C2-convex function with a unique minimum x? such

that U(x?) = 1. ∇U is L-Lipschitz with L ≥ 1.6 The function x 7→ λD2U(x) is positive and
there exist L and c > 0 such that,

∀x ∈ Rd, λD2U(x) ≥ cU−r(x).

The lower-bound can be seen as the “lack of uniform strong convexity” for the potential.
Indeed, if r = 0 we recover the strong convexity and r = 1 corresponds to the weakest
convexity case where the gradient is flat at infinity. Note that the assumption on
the unique minimum is restrictive in the context of sampling or optimization. It is a
counterpart to the efficiency of the Multilevel method. Indeed, we need a (strong)
confluence between two trajectories of the Euler scheme to control the variance of each
layer. Although, weak confluence can be obtained when there are several minima (using
for example the arguments of [34]), the strong confluence is difficult to achieve without
this assumption.

The fact that ∇U is L-Lipschitz implies that x 7→ λ̄D2U(x) is upper-bounded by L. In
order to improve the dependence in the dimension, we also introduce an additional
assumption that deals with the case where the largest eigenvalue decreases at infinity
with an intensity that is of the same order as the lowest eigenvalue:

(H2
r ): There exists a positive c̄ such that for all x ∈ Rd, λ̄D2U(x) ≤ c̄U−r(x).

This second assumption is restrictive because we force the potential to be uniformly flat
at the infinity. However, there are a lot of interesting cases where the assumption (H2

r )

holds. As an example, the potential x 7→ (1 + |x|2)1/r+1 for r ∈ [0, 1) satisfies (H1
r ) and

(H2
r ). This type of potential arises, for example, in high-dimensional Bayesian learning

(in the construction of the posterior distribution). More precisely, the ridge Bayesian
method needs to compute the mean of a posterior distribution satisfying (H1

r ) and (H2
r )

6The fact that L is greater than 1 is clearly not fundamental but allows to simplify the usually technical
expressions which appear in the sequel.
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for r = 0 while the Lasso Bayesian method needs to compute the mean of a posterior
distribution satisfying (H1

r ) and (H2
r ) for r = 1. Although our study does not deal with

the r = 1 case, it is an intermediary between the simple case of the ridge and the more
difficult case of the Lasso.
Finally, as in [12], we can reduce the complexity cost by assuming greater regularity for
the potential. Let us therefore establish the following assumption:

(H3): U is a C3-function.

To facilitate the comprehension of the rest of this section, we define four settings
corresponding to different set of assumptions. The assumptions required for each setting
are summarized in Table 1.

Table 1: Descriptions of different sets of assumptions.

Setting 1 (H1
r )

Setting 2 (H1
r ) and (H2

r )

Setting 3 (H1
r ) and (H3)

Setting 4 (H1
r ), (H2

r ) and (H3)

Now, let us define the couple (γ?, Ψ̄) in function of the setting by:

(γ?, Ψ̄) =


(

1
4L , (1 + σ2)

(
dL+

(
1 + dL

c

) 1
1−r
))

in Setting 1 or 3(
1−r

4(c̄∨L) , cr
d(1+σ2)(c̄∨L)

c

)
in Setting 2 or 4,

(2.6)

where cr is a constant which only depends on r. γ? will denote the largest value for
γ0 whereas, Ψ̄ controls the moments of U(X̄nγ) (see Proposition 4.5 for details). It is
important to note that the (2.6) constants are better under stronger assumptions in the
sense that they depend less on dimension. More precisely, γ∗ depends on 1/d when only
(H1

r ) holds whereas it does not depend on d when both assumptions (H1
r ) and (H2

r ) hold.
As a consequence, the time step of our schemes can be larger in the second case which
automatically leads to a reduction of the complexity cost. Regarding Ψ̄, it depends on
d

1
1−r when only (H1

r ) holds and on d when both assumptions (H1
r ) and (H2

r ) hold. The
control of the moment U(X̄nγ) is then better in the second case since r < 1 which is also
an advantage for our method. The following result covers the 4 different settings of
Table 1. In particular, the reader have to keep in mind that the γ? and Ψ̄ values depend
on the setting we are in.
We are now ready to state our main theorem in this setting:

Theorem 2.3. Assume the assumptions of one of the settings described in Table 1. Let
γ? and Ψ̄ be the parameters defined in (2.6). Let ε > 0, let f : Rd → R be a Lipschitz
continuous function, γ0 ∈ (0, γ?], δ ∈ (0, 1/4] and x ∈ Rd such that U(x) .r Ψ̄. Let Y be
the multilevel procedure described in (1.6) where τ is set to 0.

(i) In setting 1 and 2, for δ small enough, there exist parameters such that

‖Y(f)− π(f)‖2 .r,δ ε. (2.7)

Moreover, the complexity satisfies

C(Y) ≤
√
L(c−

5
4 ∧ c− 7

2−δ)Ψ̄
3
2 +( 9

2 +δ)rε−3, (2.8)
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(ii) In setting 3 and 4, assume in addition that supx∈Rd
∑d
i=1 |∆(∂iU)|2 .r σ−4L3Ψ̄ and

let ρ ∈ [1/2, 1). Then, for δ small enough, there exists parameters such that

‖Y(f)− π(f)‖2 .r,δ ε. (2.9)

Moreover, the complexity satisfies

C(Y) ≤ γ−ρ0 L2ρ
(
c

5
4∧(2ρ)+δ ∨ c− 5

2−δ
)

Ψ̄1+ ρ
2 +(4−ρ+δ)rε−2−ρ. (2.10)

In particular, the following parameters lead to the result,

J =


⌈

log2

(
L

c
2

1−δ ∧c
Ψ̄1+(3+δ)rγ0ε

−2

)⌉
in Setting 1 and 2⌈

log2

(
c−

2
1−δL3Ψ̄1+ 2r

1−δ γ0ε
−1
)⌉

in Setting 3 and 4,

T0 =

(c−
3
4 ∨ c− 5

2−δ)Ψ̄
3
2 +( 9

2 +δ)rε−2 in Setting 1 and 2

L
ρ
2

(
c−( 5

4−ρ)∧(3ρ)+δ ∨ c− 5
2−δ
)

Ψ̄1+(4−2ρ+δ)rε−2 in Setting 3 and 4,

for all j ∈ {1, . . . , J}, γj = γ02−j and

Tj =

{
T02−

j
2 in Setting 1 and 2

T02−(1−ρ)j in Setting 3 and 4.

To facilitate the comprehension of this theorem, Table 2 summarizes the dependency
on dimension and precision ε for each setting. Additionally, this technical result deserves
several comments:

Table 2: Order in the dimension and ε of theoretical complexity for ε-approximation by
the Multilevel procedure in each setting.

Setting 1 Setting 2 Setting 3 Setting 4

d-dependency d
1+ 3

2
+( 9

2
+δ)r

1−r d1+ 3
2 +( 9

2 +δ)r d
1+

ρ
2

+(4−ρ+δ)r
1−r d1+ ρ

2 +(4−ρ+δ)r

ε-dependency ε−3 ε−3 ε−2−ρ ε−2−ρ

Remark 2.4. � Complexity in terms of ε. If we only consider the dependence in ε, we
obtain ε−3 when U is only C2 and ε−2−ρ for any ρ > 0 when U is C3 and an additional (but
reasonable7) assumption on ∆(∇U) is satisfied. We can thus theoretically approach the
complexity in ε−2. However, it is worth noting that the non-explicit constants depending
on ρ and δ go to∞ (independently of the other parameters) when ρ and δ go to 0. The
fact that we “only” obtain a complexity in ε−3 when U is C2 is due to the fact that in this
case, our bound of the 1-Wasserstein distance between πγ and π is of the order

√
γ. When

U is C3, the bound on the 1-Wasserstein distance between πγ and π is of order γ. This
allows us to clearly improve the complexity but it can be noted that we do not retrieve
the ε−2-bound of the uniformly convex case. This is due to the rate of convergence to

7See Remark 4.22 for details on this assumption.
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equilibrium. Actually, our rate is polynomial and not exponential, which in turn, implies a
“slight cost” on the dependence in ε. In fact, we could get some (sub)-exponential rates
but without controlling the dependency in the dimension which is of first importance for
applications.

� Complexity in terms of the dimension. The dependence in the dimension strongly
varies with the assumptions. In the “worst” case in setting 1 (i.e where U is only C2

and only (H1
r ) holds), the complexity is of the order d

3
2

+( 9
2

+δ)r

1−r . Unfortunately, when
r is close to 1, this means that this dependence seriously worsens. We retrieve this
same phenomenon in setting 3 (i.e. when U is C3 and only (H1

r ) holds) but with a better

bound of the order d
1+

ρ
2

+(4−ρ+δ)r
1−r for any positive ρ and δ. This bad behavior when r

goes to 1 is due to the fact that when only (H1
r ) holds, the bounds on the exponential

moments of supt≥0E[eU(X̄t) ] are of the order exp(d
1

1−r ). Introducing (H2
r ) in settings 2

and 4 dramatically improves this exponential bound since in this case, we are able to
prove that this is of the order ed (this implies that supt≥0E[Up(X̄t)] is of the order dp, see
Propositions 4.5 and 4.3 for details). It is worth noting that in this case, the dependence
in the dimension does not explode when r goes to 1 being of the order d1+ ρ

2 +(4−ρ+δ)r

for any ρ > 0. Remark that when r = 0, we formally approach the rate of the uniformly
convex case in dε−2 obtained in [12].

� Comparison with the literature: In this setting, the only paper which we may reason-
ably compare with is [14] since we use similar assumptions. Compared with this paper,
our multilevel procedure certainly improves the dependence in ε, replacing ε−4 by ε−3

when U is C2 and ε−3 by ε−2−ρ when U is C3. In terms of the dimension, our approach
slightly increases the dependence on the dimension. For instance, when (H1

r ) and (H2
r )

hold, [14] obtain a bound in d1+4r when U is C2 or C3. We here retrieve a dependence
which is somewhat similar when U is C3 but when U is C2, our bound in d

3
2 +( 9

2 +δ)r is
clearly worse.

� About the parameters. In applications, the dependence in the parameters, L, c, and c̄
may be of importance (think for instance to applications to Bayesian estimation where
these parameters can strongly depend on the number of observations). This is why here,
we chose to keep all these dependencies in the main result even if it sometimes adds
many technicalities in the proof.

3 Proof of Theorem 2.1

This section is devoted to the proof of the first main result. We first quantify the bias
induced by the approximation of π by πα. To this end, we use the Talagrand concentration
inequality that estimates the Wasserstein distance between these two measures by their
Kullback-Leibler divergence.

Proposition 3.1. Assume that WCL hold. Then for all α ≥ 0, there is a universal
constant C such that

W1(π, πα) ≤ C
√
DKL(π|πα).

We refer to [3, Cor 2.4] to find a proof of this result. In addition, in [8] the authors
show that C ≤

√
2Eπ[|X|2] (page 24). It remains to compute the Kullback Leibler

divergence of π from πα, to bound the bias induced by the penalization.

Proposition 3.2. Assume that WCL hold. Then for all α ≥ 0,

W1(π, πα) ≤ 15
√

2α

σ2
Eπ[|.|2]3/2.
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We refer to [8, Proposition 1] to find a proof of this result for σ =
√

2. We won’t repeat
it here since an easy adaptation leads to the result for all σ > 0.

Now we switch to the proof of the main theorem. With the two previous propositions,
we control the bias induced by the penalization, then it remains to compute the error
and the complexity of a multilevel procedure in a uniformly convex setting. To this end,
we use [12, Theorem 2.2] which gives parameters to perform an ε-approximation of the
invariant distribution with an explicit complexity in terms of the parameters, especially
in terms of the contraction parameter. Here, this is exactly our penalization parameter
α and we will thus optimize its choice in the proof.

Proof of Theorem 2.1. Let ε be a positive number and f : Rd → R be a Lipschitz con-
tinuous function. By the bias/variance decomposition, triangular inequality and the
Monge-Kantorovich duality, we have

‖Y(f)− π(f)‖22 ≤ E [|Y(f)− π(f)|]2 + Var(Y(f))

≤ 2|πα(f)− π(f)|2 + 2E[Y(f)− πα(f)]2 + Var(Y(f)))

.uc W2
1 (π, πα)︸ ︷︷ ︸
P1

+E[Y(f)− πα(f)]2 + Var(Y(f))︸ ︷︷ ︸
P2

.
(3.1)

The second term denoted by P2 is the mean squared error of a Multilevel procedure for
the approximation of πα. This penalized measure is invariant for the diffusion process
defined with the potential Uα. By assumption WCL, Uα satisfies the following property
Cα: For all x, y ∈ Rd,

〈∇Uα(x)−∇Uα(y), x− y〉 ≥ α|x− y|2.

[12, Theorem 2.2] ensures that with α/L2 ≤ 1, σ2α−1d ≥ 1, |Uα(x0)|2 .uc σ2αd and the
following parameters8:

J = d2 log2(σ2dα−1ε−1)e, Tj =
σ2d log(γ−1

0 )

α2
ε−2J22−j ,

r ∈ {0, . . . , J}, γ0 = α/(2L2), τ = α−1 log(σ2dα−1),

(3.2)

we have
P2 ≤ ε,

with a complexity satisfying

C(Y) ≤ 5 log

(
2L2

α

)
L2

2α3
σ2dε−2

⌈
log2

(
σ2d

α
ε−2

)⌉3

. (3.3)

It remains to calibrate the penalization parameter α. Proposition 3.2 implies

P1 .uc
550α2

σ4
Eπ[|.|2]3,

so that P1 ≤ ε2 for

α =
εσ2

15
√

2Eπ[|.|2]3/2
.

Putting α in (3.2) and (3.3),

C(Y) ≤ 10× 153

σ4
ε−5dm

9/2
2 L2

⌈
log2

(
15
√

2m
3/2
2 dε−3

)⌉3

log
(

15
√

2m
3/2
2 L2ε−1σ−2

)
,

where m2 = Eπ[|.|2].
8To ease notation we have voluntarily omitted an assumption about ε: we have to consider ε small enough,

we refer to [12] to get more precision.
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4 Preliminary bounds under (H1
r) and (H2

r):

From now, we switch to the proof of the second part of the main results i.e. we
consider the weakly convex case under the parametric assumptions (H1

r ) and (H2
r ). As

mentioned before, these hypotheses deal with the behavior of the lowest and highest
eigenvalues of the Hessian matrix of U . In some sense, (H1

r ) quantifies the strict con-
vexity of the potential which in turn implies the contraction of the dynamics. Note that
such an assumption also appears in [4] where the authors obtain exponential rates to
equilibrium under this parametric assumption.

In this preliminary section we state a series of results related to the diffusion and its
Euler scheme under Assumption (H1

r ). For the upper-bounds of the eigenvalues of
D2U , we distinguish two cases: the first one where we assume that we have a uniform
upper-bound by L (in others words that ∇U is L-Lipschitz) and the second one, we add
Assumption (H2

r ) where the largest eigenvalues also decrease at infinity with a rate
which is comparable to the one of the lowest eigenvalues. In fact, in the second case,
we will see that we are able to preserve a dependency of the moments in the dimension
which is linear, whereas, without this assumption, the dependency is O(d

1
1−r ).

In the second part we state a result about the longtime pathwise control of the distance
between the diffusion and its Euler scheme. Third, we study the convergence to equilib-
rium for the Euler scheme. Finally, we quantify the bias induced by the discretization
with some results on the 1-Wasserstein distance between π and πγ (the invariant measure
of the Euler scheme).

4.1 Bounds on the exponential moment

In order to study the confluence between the continuous time process and its Euler
scheme, let us start this section by a control of the moment of the continuous time
process and the discrete time when the potential U is supposed convex. We first state a
result on the control of the exponential moment of the continuous time process.

Proposition 4.1. For all x ∈ Rd and t > 0,

sup
t≥0

Ex

[
e
U(Xt)

σ2

]
≤ e

U(x)

σ2 +

e
1
σ2 (1+ dL

2c )
1

1−r
under (H1

r )

dL
2c e

1
σ2 (4

1
1−r ∨ dc̄c ) under (H1

r ) and (H2
r ).

We preface the proof by a technical lemma.

Lemma 4.2. Let θ ∈ (0, 2
σ2 ) and M > 0, then

CM :=

{
x ∈ Rd; (1− θ) |∇U(x)|2 − σ2

2
θ∆U(x) ≤M

}
⊂
{
x ∈ Rd, U(x) ≤ KM

}
,

where,

KM =


(

1 + (2M+θσ2dL)
2c(2−θσ2)

) 1
1−r

under (H1
r )

max

((
M(1−r)

(4−2θσ2)c ∨ 4
) 1

1−r
, 2σ2dθc̄
c(2−θσ2)

)
under (H1

r ) and (H2
r ).

In particular, CM is a compact set (since it is included in a level set of a coercive function).

Proof. Denote by y the solution of the ordinary differential equation y′(t) = −∇U(y(t))

starting from y(0) = x. Define the function f : t 7→ |∇U(y(t))|2 we have by chain rule for
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all t ∈ R+. By (H1
r ),

d

dt
f(t) = 2 〈y′′(t), y′(t)〉

= 2
〈
D2U(y(t))y′(t), y′(t)

〉
≥ 2c

〈
U−r(y(t))y′(t), y′(t)

〉
=

2c

1− r
d

dt

(
U1−r(y(t))

)
,

Since lim
t→+∞

y(t) = x?, we get by integration

|∇U(x)|2 ≥ 2c

1− r
(
U1−r(x)− U1−r(x?)

)
. (4.1)

Therefore,(
1− θσ2

2

)
|∇U(x)|2 − σ2θ

2
∆U(x) ≥ 2(1− θ)c

1− r
(
U1−r(x)− U1−r(x?)

)
− σ2θ

2
∆U(x).

Since ∆U = Tr(D2U) ≤ dλ̄D2U ≤ dL (where λ̄A stands for the largest eigenvalue of
symmetric matrix A) and U(x?) = 1, it follows that(

1− θσ2

2

)
|∇U(x)|2 − σ2

2
θ∆U(x) ≥

2(1− θσ2

2 )c

1− r
(U1−r(x)− U1−r(x?))− θσ2dL

2
,

so that

CM ⊂

{
x ∈ Rd;U(x) ≤

(
1 +

2M + θσ2dL

2c(2− θσ2)

) 1
1−r
}
. (4.2)

If we now consider the case where (H2
r ) also holds, we use that ∆U ≤ cU−r(x) to obtain:(

1− θσ2

2

)
|∇U(x)|2 − σ2

2
θ∆U(x)

≥ (2− θσ2)c

1− r
U1−r(x)

(
1− Ur−1(x)− (1− r)σ2θc̄d

2c(2− θσ2
)U(x)

)
.

To ensure that the right-hand member is lower-bounded by M , it is enough to ensure
that

(2− θσ2)c

1− r
U1−r(x) >

M

2
, Ur−1(x) ≤ 1

4
and

σ2θc̄d

c(4− 2θσ2
)U(x) ≤ 1

4
.

This concludes the proof.

Proof of Proposition 4.1. Let θ ∈ (0, 1), (to be chosen latter) and for all x ∈ R define,

fθ(x) := eθU(x), (4.3)

show that fθ is a Lyapunov function for the dynamic L:

Lfθ(x) = −θfθ(x)

((
1− θσ2

2

)
|∇U(x)|2 − θσ2

2
∆U(x)

)
≤ −θMfθ(x)− θfθ(x)

((
1− θσ2

2

)
|∇U(x)|2 − θσ2

2
∆U(x)

)
1CM (x),

where CM is defined in Lemma 4.2. In the proof of this lemma we showed that CM is
included in a level set LKM = {x ∈ Rd | U(x) ≤ KM}. Thus,

−θfθ(x)

((
1− θσ2

2

)
|∇U(x)|2 − σ2

2
θ∆U(x)

)
1CM (x) ≤ θ2σ2

2
fθ(x)∆U(x)1LKM

≤ θ2σ2dL

2
eθKM 1LKM .
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Finally fθ is a Lyapunov function for the dynamics: i.e. for all x ∈ Rd,

Lfθ(x) ≤ −θMfθ(x) +
θ2σ2dL

2
eθKM 1LKM (x),

Hence by a Gronwall argument we get,

Ptfθ(x) ≤ e−θMtfθ(x) +
θσ2dL

2M
eθKM .

Choosing θ = 1
σ2 , M = θσ2dL

2 under (H1
r ) and M = (4−2θσ2)c

1−r under (H1
r ) and (H2

r ) leads
to the result.

We now state an analogous result for the Euler scheme.

Proposition 4.3. (i) Assume (H1
r ). Then, if γ ∈ (0, 1

4L ] and θ ∈ [0, 1
8σ2 ],

sup
n≥0

Ex

[
eθU(X̄nγ)

]
≤ eθU(x) + eθ(1+ 8dL

c )
1

1−r +θdLcosh(θγdL).

(ii) Assume (H1
r ) and (H2

r ). If γ ∈ (0, 1−r
4c̄∨L ] and θ ∈ [0, 1

8σ2 ∧ 1], then for all x ∈ Rd and
n ∈ N we have

sup
n≥0

Ex

[
eθU(X̄nγ)

]
≤ eθU(x) + cecr

θd(1+σ2)c̄
c ,

where c denotes a constant independent of the parameters and cr a constant which
only depends on r.

The proof of this proposition is postponed in Section 6.

Remark 4.4. The reader will find more explicit (but more technical) bounds in the
proof of the second case. It is worth noting that we can preserve a condition on γ does
not depend on d (as in the strongly convex setting). This is of first importance in our
multilevel setting where it is much more efficient if the rough layers of the method can
be implemented with step sequences with large sizes. The proof is very close to [14]
but the bounds are refined. In particular, compared to this paper, we precisely do not
require that the step size decreases with d.

Thanks to the two previous results we are now able to control the moment of the
continuous time and the discrete time processes.

Proposition 4.5. Assume (H1
r ).

(i) For all x ∈ Rd, p ≥ 0,
sup
t≥0

Ex [Up (Xt)] .p (U(x) + Ψ)
p
.

where

Ψ =

(1 + σ2)
(

1 + dL
c

) 1
1−r

under (H1
r ) only

4
1

1−r ∨ (1+σ2)(c̄∨L)
c d under (H1

r ) and (H2
r ),

(ii) Let γ ∈ (0, γ?] with γ? defined by (2.6). Then,

sup
n≥0

Ex
[
Up
(
X̄nγ

)]
.p (U(x) + Ψ̄)p

where Ψ̄ is defined by (2.6)
(iii) In particular,

max

(
sup
t≥0

Ex [Up (Xt)] , sup
t≥0,γ∈(0,γ?]

Ex
[
Up
(
X̄t

)])
.r,p (U(x) + Ψ̄)p. (4.4)
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and

max

(∫
Up(x)π(dx), sup

γ∈(0,γ?]

∫
Up(x)πγ(dx)

)
.r,p Ψ̄p. (4.5)

Proof. The proof similar to [14, Prop B.4] is postponed in Section 7.

Remark 4.6. In order to avoid the distinction between cases in all the proofs, we
choose to adopt only one notation for Ψ and Ψ̄ but the reader has to keep in mind
that the definition of these quantities depends on the fact that (H2

r ) is satisfied or not.
Let us also recall that the notation .r,p means that the constant only depends on r

and p. These constants are certainly locally bounded: for any compact subset K of
[0, 1) × [1,+∞), there exists a universal constant c such that for any (r, p) ∈ K, the
underlying constant cr,p related to .r,p is bounded by c. Finally, note that we chose to
keep all the dependencies in the other parameters.

4.2 Longtime strong discretization error under (H1
r ):

The following proposition studies the L2-error induced by the discretization of the
SDE under (H1

r ). The notations γ? and Ψ̄ come from Proposition 4.5.

Proposition 4.7. Assume (H1
r ) and let x ∈ Rd, γ ∈ (0, γ?] and δ ∈ (0, 1). Then,

sup
t≥0

Ex
[
|Xt − X̄t|2

]
.r

Lγ

cδ

(
U(x) + Ψ̄

)1+2r

(
Γ

(
1

δ

)
+

(U(x) + Ψ̄)r+
2δr
1−δ

c1+ 2δ
1−δ

)

where Γ is the gamma function.

Remark 4.8. The control of the L2-distance between the diffusion and its Euler scheme
is a fundamental property for the efficiency of the multilevel method. Actually, it allows
us to control the variance of each level. The fact that we are able to obtain such a
property in this (semi)-weakly convex setting is new.

We start with two technical lemmas.

Lemma 4.9. Assume (H1
r ) then for all x ∈ Rd we have

|x− x?|2 ≤ U1+r(x)− U1+r(x?)

c(1 + r)
.

Proof. First, one can check that for all x ∈ Rd and for all eigenvalue of the Hessian we
have

λD2U1+r(x) ≥ (1 + r)Ur(x)λD2U(x) ≥ (1 + r)c, (4.6)

where in the last inequality we have used assumption (H1
r ). By the Taylor formula,

U1+r(x)− U1+r(x?) = 〈∇U1+r(x?), x− x?〉+

∫ 1

0

〈D2U1+r(ξθ)(x− x?), x− x?〉dθ,

where ξθ = λx+ (1− λ)x∗. By (4.6) and the fact that ∇U1+r(x?) = 0, we get

U1+r(x)− U1+r(x?) ≥ (1 + r)c

∫ 1

0

|x− x?|2dθ.

This concludes the proof.

The next lemma is a bound on the moments of the increment of the Euler scheme
(with the notations γ? and Ψ̄ introduced in Proposition 4.5).
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Lemma 4.10. Assume (H1
r ) with r ∈ [0, 1). Let γ ∈ (0, γ?]. Then for all t > 0 and k ∈ N∗,

Ex

[∣∣X̄t − X̄t

∣∣2k]1/k .r,k L
2(t− t)2

(
U(x) + Ψ̄

)1+r
+ (t− t)dσ2.

Proof. By the definition of the Euler scheme we have

Ex

[∣∣X̄t − X̄t

∣∣2k]1/k = Ex

[(∣∣−(t− t)∇U
(
X̄t

)
+ σ(Bt −Bt)

∣∣2)k]1/k

≤ Ex
[(

2(t− t)2
∣∣∇U (X̄t

)∣∣2 + 2σ2
∣∣Bt −Bt∣∣2)k]1/k

.

Then, by Minkowski inequality,

Ex

[∣∣X̄t − X̄t

∣∣2k]1/k ≤ 2(t− t)2Ex

[∣∣∇U (X̄t

)∣∣2k]1/k + 2σ2Ex

[∣∣Bt −Bt∣∣2k]1/k
≤ 2L2(t− t)2Ex

[∣∣X̄t − x?
∣∣2k]1/k + 2(t− t)σ2Ex

[
|Z|2k

]1/k
,

where in the last line we used the L-Lipschitz continuous property of ∇U and the fact
that Bt −Bt ∼

√
t− tZ with Z ∼ N (0, Id). Finally, by Lemma 4.9 and Proposition 4.5, we

obtain

Ex

[∣∣X̄t − X̄t

∣∣2k]1/k ≤ 2L2(t− t)2

1 + r
sup
n≥0

E[
(
U1+r(X̄nγ)

)2k
]

1
2k + 2dσ2

(
(2k)!

2kk!

)1/k

(t− t)

.r,k L
2(t− t)2

(
U(x) + Ψ̄

)1+r
+ (t− t)dσ2.

We are now ready to prove Proposition 4.7.

Proof of Proposition 4.7. Let x ∈ Rd and consider the following process in Rd ×Rd,{
Xt = x−

∫ t
0
∇U(Xs)ds+ σBt

X̄t = X̄t − (t− t)∇U(X̄t) + σ
(
Bt −Bt

)
,

with X̄0 = x. Denote by Fx(t) := |Xt − X̄t|2. By the Lebesgue differentiability theorem,

F ′x(t) = 2
〈
Xt − X̄t,∇U(X̄t)−∇U(Xt)

〉
= 2

〈
Xt − X̄t,∇U(X̄t)−∇U(Xt)

〉︸ ︷︷ ︸
E1

+2
〈
Xt − X̄t,∇U(X̄t)−∇U(X̄t)

〉︸ ︷︷ ︸
E2

.

To control E1 we use a Taylor expansion and obtain,

E1 = −2

〈
Xt − X̄t,

∫ 1

0

D2U
(
λXt + (1− λ)X̄t

)
(Xt − X̄t)dλ

〉
= −2

∫ 1

0

〈
Xt − X̄t, D

2U
(
λXt + (1− λ)X̄t

)
(Xt − X̄t)

〉
dλ.

Since D2U is a symmetric matrix,

E1 ≤ −2ξt
∣∣Xt − X̄t

∣∣2 ,
where ξt =

∫ 1

0
λD2U(λXt+(1−λ)X̄t)dλ. For the second term E2, using the inequality 〈a, b〉 ≤

ξt
2 |a|

2 + 1
2ξt
|b|2 and the fact that ∇U is L-Lipschitz, we get

E2 ≤ ξt
∣∣Xt − X̄t

∣∣2 +
L2

ξt

∣∣X̄t − X̄t

∣∣2 .
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Thus,

F ′x(t) ≤ −ξtFx(t) +
L2

ξt

∣∣X̄t − X̄t

∣∣2 ,
and a Gronwall argument leads to

Fx(t) ≤
∫ t

0

L2

ξs

∣∣X̄s − X̄s

∣∣2 e− ∫ ts ξududs.

Taking the expectation, the Fubini’s theorem implies

Ex
[
|Xt − X̄t|2

]
≤
∫ t

0

Ex

[
1

ξs

∣∣X̄s − X̄s

∣∣2 e− ∫ ts ξudu

]
︸ ︷︷ ︸

As

ds.

Now let φ be a real non negative function, φ : t 7→ φ(t)

As ≤ Ex
[

1

ξs

∣∣X̄s − X̄s

∣∣2 e− ∫ ts ξudu1{
∫ t
s
ξudu>φ(s)}

]
+ Ex

[
1

ξs

∣∣X̄s − X̄s

∣∣2 e− ∫ ts ξudu1{
∫ t
s
ξudu≤φ(s)}

]
≤ Ex

[
1

ξs

∣∣X̄s − X̄s

∣∣2] e−φ(s)︸ ︷︷ ︸
A

(1)
s

+Ex

[
1

ξs

∣∣X̄s − X̄s

∣∣2 1{
∫ t
s
ξudu≤φ(s)}

]
︸ ︷︷ ︸

A
(2)
s

,

(4.7)

Using (H1
r ), the convexity of x 7→ U(x) and t 7→ t−r and the Jensen inequality, we have

ξt =

∫ 1

0

λD2U(λXt+(1−λ)X̄t)dλ ≥ c
∫ 1

0

U−r
(
λXt + (1− λ)X̄t

)
dλ

≥ c
∫ 1

0

(
λU (Xt) + (1− λ)U

(
X̄t

))−r
dλ

≥ c
(∫ 1

0

λU (Xt) + (1− λ)U
(
X̄t

)
dλ

)−r
≥ 2rc

(
U (Xt) + U

(
X̄t

))−r
.

Thus by the inequality (a+ b)p ≤ ap + bp for a, b ≥ 0 and p ∈ [0, 1],

ξ−1
t ≤ 1

2rc

(
U (Xt) + U

(
X̄t

))r ≤ 1

2rc

(
Ur (Xt) + Ur

(
X̄t

))
. (4.8)

By Cauchy-Schwarz inequality, Proposition 4.5(iii) and Lemma 4.10 we get

A(1)
s ≤ E[ξ−2

s ]
1
2E[|X̄s − X̄s|4]

1
2 e−φ(s)

.r e
−φ(s)c−1

(
U(x) + Ψ̄

)r [
L2(s− s)2

(
U(x) + Ψ̄

)1+r
+ (s− s)dσ2

]
.r e

−φ(s)Lγ

c

(
U(x) + Ψ̄

)1+2r
, (4.9)

where in the last line, we used that dσ2 ≤ Ψ̄ and γL ≤ 1.
For the second term use Cauchy-Schwarz inequality,

A(2)
s ≤ Ex

[(
1

ξs

∣∣X̄s − X̄s

∣∣2)2
]1/2

Px

(∫ t

s

ξudu ≤ φ(s)

)1/2

≤ Ex
[

1

ξ4
s

]1/4

Ex

[∣∣X̄s − X̄s

∣∣8]1/4Px(∫ t

s

ξudu ≤ φ(s)

)1/2

.
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With the help of Inequality (4.8) and Proposition 4.5, we have

A(2)
s .r

(
U(x) + Ψ̄

)r
c

[
L2(s− s)2

(
U(x) + Ψ̄

)1+r
+ (s− s)dσ2

]
Px

(∫ t

s

ξudu ≤ φ(s)

)1/2

.

For the third term of this product, let κ be a positive number and use Markov inequality:

Px

(∫ t

s

ξudu ≤ φ(s)

)1/2

≤ Px

((∫ t

s

ξudu

)−κ
≥ φκ(s)

)1/2

≤ φκ/2(s)E

[(∫ t

s

ξudu

)−κ]1/2

.

The function x 7→ x−κ being convex on (0,+∞) it follow from Jensen inequality that

Px

(∫ t

s

ξudu ≤ φ(s)

)1/2

≤ φκ/2(s)(t− s)−κ/2E
[

1

t− s

∫ t

s

ξ−κu du

]1/2

.

Using again inequality (4.8) and Proposition 4.5,

Px

(∫ t

s

ξudu ≤ φ(s)

)1/2

.r c
−κ2

(
φ(s)

t− s

)κ/2
sup
u∈[s,t]

E
[
Uκr (Xt) + Uκr

(
X̄t

)]1/2
.r c

−κ2

(
φ(s)

t− s

)κ/2 (
U(x) + Ψ̄

)κr
2 .

Finally, we get

A(2)
s .r c

−1−κ2
(
U(x) + Ψ̄

)r+κr
2

[
L2(s− s)2

(
U(x) + Ψ̄

)1+r
+ (s− s)dσ2

]( φ(s)

t− s

)κ/2
.

Now let φ(s) = t−s
(t+1−s)1−δ with a > 0, δ ∈ (0, 1) and κ = 2(1+δ)

1−δ we have

A(2)
s .r c

−2− 2δ
1−δ

[
L2(s− s)2(U(x) + Ψ̄)1+3r+ 2δr

1−δ

+ (s− s)dσ2(U(x) + Ψ̄)2r+ 2δr
1−δ

]( 1

t+ 1− s

)1+δ

.

As a consequence, since γL ≤ 1 and dσ2 ≤ Ψ̄, we obtain

A(2)
s .r

Lγ

c2+ 2δ
1−δ

(U(x) + Ψ̄)1+3r+ 2δr
1−δ

(
1

t+ 1− s

)1+δ

.

Back to (4.7), we deduce from (4.9) and from the above inequality that

Ex

[
|Xt − X̄t|2

]
≤
∫ t

0

A(1)
s ds+

∫ t

0

A(2)
s ds

.r
Lγ

c

(
U(x) + Ψ̄

)1+2r

(∫ t

0

e
− u

(u+1)1−δ du+
(U(x) + Ψ̄)r+

2δr
1−δ

c1+ 2δ
1−δ

∫ t

0

(
1

1 + u

)1+δ

du

)

.r
Lγ

c

(
U(x) + Ψ̄

)1+2r

(∫ t

0

e−u
δ

du+
(U(x) + Ψ̄)r+

2δr
1−δ

δc1+ 2δ
1−δ

)

.r
Lγ

cδ

(
U(x) + Ψ̄

)1+2r

(
Γ

(
1

δ

)
+

(U(x) + Ψ̄)r+
2δr
1−δ

c1+ 2δ
1−δ

)
The result follows.
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4.3 Convergence to equilibrium for the Euler Scheme under (H1
r ):

We now proceed to establish the weak error between the discrete semi group and its
invariant measure denoted by πγ . The proof of this result is based on the control of the
so-called tangent process T̄ xt := ∇Xx

t .

Proposition 4.11. Assume (H1
r ) and let x ∈ Rd, γ ∈ (0, γ?]. Let κ > 0 and φ : R+ → R

be a positive function. Assume that U(x) .r Ψ̄. Then, for any r ∈ [0, 1), there exists
a constant cr,κ (depending only on r and κ) such that for all n > 0, for all Lipschitz
continuous function f : Rd → R,∣∣Ex [f(X̄nγ)

]
− πγ(f)

∣∣ ≤ cr,κ[f ]1hφ,κ(n),

where

hφ,κ(n) = c−
1
2 Ψ̄

1+r
2 e−φ(n) + c−

κ+1
2 Ψ̄

1+r(1+κ)
2

(
φ(n)

nγ

)κ
2

,

with γ? and Ψ̄ defined in Proposition 4.5.

Remark 4.12. � In order to alleviate the purpose, the result is stated under the assump-
tion that the initial condition x satisfies U(x) .r Ψ̄ but the reader will find some bounds
without this assumption in the proofs.

� The function hφ,κ plays the role of convergence rate to equilibrium. In this setting
where the Hessian is not lower-bounded, we adopt a strategy which consists in sepa-
rating the space into two parts. In the first one, we assume that we have some good
contraction properties parametrized by the function φ and in the other one, we try simply
to control the probability that such a good contraction does not occur. This leads to a
balance between two terms depending on φ and κ. In the following, we will choose φ
and κ in order that hφ,κ is summable with the smallest impact on the dependence in the
dimension.

Note that in [4], some exponential rates are exhibited under similar assumptions in the
continuous case (with the help of concentration inequalities). However, this exponential
rate depends on some constants whose control seems to be difficult to obtain (typically,
when the starting distribution is absolutely continuous with respect to the invariant
distribution, the constants involve the L2-moment of the related density). Probably, some
ideas could be adapted to the Euler scheme (starting from a deterministic point) but
with technicalities that seem to carry us too far for this paper.

We preface the proof of Proposition 4.11 by a lemma about the shape of the first
variation process of the continuous time Euler scheme, T̄ xt = ∇xX̄x

t .

Lemma 4.13. For all n ∈ N, x ∈ Rd and γ ∈ [0, 1),

T̄ x(n+1)γ =

n∏
i=0

(
IdRd − γD2U

(
X̄x
iγ

))
.

Proof of Lemma 4.13. First, observe that for all n ∈ N,

T̄ x(n+1)γ − T̄
x
nγ

γ
= ∇x

(
X̄x

(n+1)γ − X̄
x
nγ

γ

)
,

and by the definition of the Euler scheme and the chain rule,

T̄ x(n+1)γ − T̄
x
nγ

γ
= ∇x

(
−∇xU

(
X̄x
nγ

)
+ σ

(
B(n+1)γ −B(n−1)γ

))
= −D2U

(
X̄x
nγ

)
T̄ xnγ .
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Then we get,

T̄ x(n+1)γ = T̄ xnγ
(
IdRd − γD2U

(
X̄x
nγ

))
,

and the proof follows by a simple induction.

Consider two paths defined with the same Brownian motion and different starting
points: x, y ∈ Rd. The following proposition shows that there is a pathwise confluence,
i.e. the two trajectories get closer when n goes to infinity.

Proposition 4.14. Assume (H1
r ) and let x, y ∈ Rd, γ ∈ (0, γ?], κ > 0. Let φ : R+ → R be

a positive function. Then,

sup
n≥0

E(x,y)

[∣∣X̄x
nγ − X̄y

nγ

∣∣2] .r,κ |x− y|2 hφ,κ,x,y(n),

where,

hφ,κ,x,y(n) = e−2φ(n) +

(
φ(n)

nγ

)κ
c−κ(U(x) + U(y) + Ψ̄)κr,

with γ? and Ψ̄ given by Proposition 4.5.

Remark 4.15. In the sequel, this property is typically applied with a polynomial function
φ which leads to polynomial rates to equilibrium. It is worth noting that the proof could
be adapted to provide exponential rates (the idea would be to consider an exponentially
decreasing convex function instead of x 7→ x−κ in the proof below). However, with our
method, such rates would lead to exponential dependence in the dimension. This is why
we do not give such bounds here.

Proof of Proposition 4.14. For x, y ∈ Rd and n ∈ N, let us start by a Taylor expansion of
the function x 7→ X̄x

nγ ,

∣∣X̄x
nγ − X̄y

nγ

∣∣2 =

∣∣∣∣∫ 1

0

T̄λx+(1−λ)y
nγ (x− y)dλ

∣∣∣∣2
= |x− y|2

∣∣∣∣∫ 1

0

T̄λx+(1−λ)y
nγ dλ

x− y
|x− y|

∣∣∣∣2
≤ |x− y|2

∥∥∥∥∫ 1

0

T̄λx+(1−λ)y
nγ dλ

∥∥∥∥2

,

where ‖.‖ is the operator norm associated with the Euclidean norm. By Jensen inequality
and Lemma 4.13,

∣∣X̄x
nγ − X̄y

nγ

∣∣2 ≤ |x− y|2 ∫ 1

0

∥∥∥∥∥
n−1∏
i=0

IdRd − γD2U
(
X̄
λx+(1−λ)y
iγ

)∥∥∥∥∥
2

dλ

≤ |x− y|2
∫ 1

0

n−1∏
i=0

∥∥∥IdRd − γD2U
(
X̄
λx+(1−λ)y
iγ

)∥∥∥2

dλ.

The operator norm associated with the Euclidean norm of a symmetric matrix is equal to
its spectral radius, so we get

∣∣X̄x
nγ − X̄y

nγ

∣∣2 ≤ |x− y|2 ∫ 1

0

n−1∏
i=0

(
1− γλ

D2U
(
X̄
λx−(1−λ)y
iγ

))2

dλ

≤ |x− y|2
∫ 1

0

e
−2γ

∑n−1
i=0 λ

D2U(X̄λx−(1−λ)y
iγ )dλ,
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and

E(x,y)

[∣∣X̄x
nγ − X̄y

nγ

∣∣2] ≤ |x− y|2 ∫ 1

0

E(x,y)

[
e−2ξn(λ)

]
dλ, (4.10)

with,

ξn(λ) := γ

n−1∑
i=0

λ
D2U

(
X̄
λx−(1−λ)y
iγ

) =

∫ nγ

0

λ
D2U

(
X̄
λx−(1−λ)y
u

)du.

For a given real non negative function φ : R→ R we have

E(x,y)

[
e−2ξn(λ)

]
≤ E(x,y)

[
e−2ξn1{ξn>φ(n)}

]
+ E(x,y)

[
e−2ξn1{ξn≤φ(n)}

]
≤ e−2φ(n) + E(x,y)

[
1{ξn≤φ(n)}

]
≤ e−2φ(n) + P(x,y)

(∫ nγ

0

λ
D2U

(
X̄
λx−(1−λ)y
u

)du ≤ φ(n)

)
.

For a positive number κ we have

E(x,y)

[
e−2ξn(λ)

]
≤ e−2φ(n) + P(x,y)

((∫ nγ

0

λ
D2U

(
X̄
λx−(1−λ)y
u

)du

)−κ
≥ φ−κ(n)

)
,

and using the Markov inequality,

E(x,y)

[
e−2ξn(λ)

]
≤ e−2φ(n) + φκ(n)E(x,y)

[(∫ nγ

0

λ
D2U

(
X̄
λx−(1−λ)y
u

)du

)−κ]
.

The function x 7→ x−κ is convex on (0,+∞) then by Jensen inequality,

E(x,y)

[
e−2ξn(λ)

]
≤ e−2φ(n) + φκ(n)(nγ)−κE(x,y)

[
1

nγ

∫ nγ

0

λ−κ
D2U

(
X̄
λx−(1−λ)y
u

)du

]
≤ e−2φ(n) +

(
φ(n)

nγ

)κ
sup

k∈{0,...,n−1}
E

[
λ−κ
D2U

(
X̄
λx−(1−λ)y
kγ

)] .
Observe that assumption (H1

r ) implies,

E(x,y)

[
e−2ξn(λ)

]
≤ e−2φ(n) +

(
φ(n)

nγ

)κ
sup

k∈{0,...,n−1}
E
[
c−κUκr

(
X̄
λx+(1−λ)y
kγ

)]
.

By Proposition 4.5 and the convexity of U , this implies that for any γ ∈ (0, γ?],

E(x,y)

[
e−2ξn(λ)

]
.r,κ e

−2φ(n) +

(
φ(n)

nγ

)κ
c−κ(U(x) + U(y) + Ψ̄)κr.

Thanks to this confluence property we are now able to prove the convergence to
equilibrium of the Euler scheme and to give the rate of this convergence.

Proof of Proposition 4.11. Since πγ is invariant for
(
X̄nγ

)
n∈N we deduce from Fubini’s

Theorem and Jensen inequality that

∣∣Ex [f(X̄nγ)
]
− πγ(f)

∣∣2 =

∣∣∣∣∫
Rd
E(x,y)

[
f(X̄x

nγ)− f(X̄y
nγ)
]
πγ(dy)

∣∣∣∣2
≤
∫
Rd
E(x,y)

[∣∣f(X̄x
nγ)− f(X̄y

nγ)
∣∣2]πγ(dy).
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The Lipschitz property of f implies that∣∣Ex [f(X̄nγ)
]
− πγ(f)

∣∣2 ≤ [f ]21

∫
Rd
E(x,y)

[∣∣X̄x
nγ − X̄y

nγ

∣∣2]πγ(dy),

where [f ]1 is the Lipschitz constant of f . Proposition 4.14 implies∣∣Ex [f(X̄nγ)
]
− πγ(f)

∣∣2 .r,κ [f ]21

∫
Rd
|x− y|2 hφ,κ,x,y(n)πγ(dy). (4.11)

By Lemma 4.9,

|x− y|2 ≤ 2(|x− x?|2 + |y − y?|2) ≤ 2

c(1 + r)

(
U1+r(x) + U1+r(y)

)
.

With the help of the Young inequality, we also have

|x− y|2(U(x) + U(y))rκ .r,κ c
−1
(
U1+r(1+κ)(x) + U1+r(1+κ)(y)

)
.

Plugging these controls into (4.11) yields

∣∣Ex [f(X̄nγ)
]
− πγ(f)

∣∣2 .r,κ
[f ]21
c

(
U1+r(x) + πγ(U1+r)

)
e−2φ(n)

+ [f ]21c
−κ−1

(
U1+r(1+κ)(x) + πγ(U1+r(1+κ))

)(φ(n)

nγ

)κ
.

+ [f ]21c
−κ−1Ψ̄rκ

(
U1+r(x) + πγ(U1+r)

)(φ(n)

nγ

)κ
.

(4.12)

To conclude, we now use the bound (4.5) of Proposition 4.5(iii) and the assumption
U(x) .r Ψ̄.

4.4 Bias induced by the discretization under (H1
r ):

We now need to provide estimates ofW1(π, πγ). We provide two results: Lemma 4.16
where we directly derive from Proposition 4.7 a bound in O(

√
γ) which “only” requires

the potential U to be C2. However, such a bound has a serious impact on the dependency
in ε of the complexity. Thus, we propose a second result when U is C3 where we recover
a bound in O(γ).

4.4.1 A first bound in O(
√
γ)

As mentioned before, a first estimate can be directly deduced from Proposition 4.7.
Actually, since in this result, the L2-error between the process and its discretization is
controlled uniformly in time, this leads to a similar bound forW1(π, πγ) by letting t go to
∞. More precisely,

Lemma 4.16. Assume (H1
r ). Let γ ∈ (0, γ?]. Then,

W1(π, πγ)2 .r,δ
Lγ

c
2

1−δ ∧ c
Ψ̄1+3r+ 2δr

1−δ . (4.13)

Proof. Owing to the stationarity of π, we have for every n ≥ 0,

W1(π, πγ) ≤ W1(πPnγ , πP̄nγ) +W1(πP̄nγ , π
γ),

so that
W1(π, πγ) ≤ lim sup

n→+∞
W1(πPnγ , πP̄nγ),
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since W1(πP̄nγ , π
γ)

n→+∞−−−−−→ 0 by Proposition 4.11 (more precisely, this property can
be deduced from an integration of (4.12) with respect to π and from the fact that
π(Up) < +∞ for any p by Proposition 4.5).
Now, integrating with respect to π the bound of Proposition 4.7 and using that π(Up) .r
Ψ̄p by Proposition 4.5 leads to the result.

4.4.2 A second bound in O(γ)

Even if the above bound is quite explicit in terms of its dependency with respect to L, c,
c̄ and d, the fact that it is in O(

√
γ) dramatically impacts the complexity in terms of ε (at

least).
In fact, it is possible to get a 1-Wasserstein error of the order γ by using a combination

of the control of the rate of convergence to equilibrium of the continuous process and of
the finite-time weak error (between the process and its discretization). Such a strategy
is used in several papers: in [31], this idea is developed in a multiplicative setting with
a so-called “domino” approach for the control of the 1-Wasserstein and TV distances
between the process and its discretization, uniformly in time. For the control ofW1(π, πγ)

itself, our approach follows [11] which provides a series of bounds in many models and
sets of assumptions which are mainly based on the following principle (see Lemma 1 of
[11]). Taking advantage of the stationarity of πγ , for any p ≥ 1, for any t > 0,

Wp(π, π
γ) ≤ Wp(π, π

γPt) +Wp(π
γPt, π

γP̄t),

so that if we assume that

Wp(π, π
γPt) ≤ ε1(t)Wp(π, π

γ) and Wp(π
γPt, π

γP̄t) ≤ ε2(t),

then,

Wp(π, π
γ) ≤ inf

{
ε2(t)

1− ε1(t)
, t > 0

}
. (4.14)

We thus propose to estimate ε1(t) and ε2(t) under Assumption (H1
r ) (with or without

(H2
r )). This is the purpose of Lemmas 4.19 and 4.21 respectively. These two estimates

lead to the following proposition

Proposition 4.17. Assume (H1
r ) and let δ ∈ (0, 1). Assume that U is C3 and ‖∆(∇U)‖22,∞

.r σ−4L3Ψ̄ (with ‖∆(∇U)‖2,∞ defined in Lemma 4.21). Then, a constant cr,δ (depending
only on r and δ) exists such that for all γ ∈ (0, γ?],

W2(π, πγ) ≤ cr,δ
(
c−

1
1−δL

3
2 Ψ̄

1
2 + r

1−δ

)
γ.

Remark 4.18. � Note that this result is clearly in the spirit of [11, Theorem 6]. However,
there are several differences. First, we need here to adapt our proof to a setting where we
only have polynomial convergence to equilibrium (instead of exponential convergence).
Second, under our assumptions on U which are more restrictive than the one of [11,
Theorem 6], we can improve the constants (and in particular avoid some exponential
dependence in the Lipschitz constant L of ∇U ).

� Compared with Lemma 4.16, this result improves the dependence in γ but it is worth
noting that the bound is also better with respect to Ψ̄ (and thus to the dimension).

Proof. With the notations of [11, Theorem 6], let trel = inf{t > 0, ε1(t) ≤ 1/
√

2}. Using
Lemma 4.19, one can upper-bound trel by asking the two right-hand terms of (4.15) to be
bounded by 1/4. With φ(t) = tδ with δ ∈ (0, 1), this leads to:

trel .r max{(log 4)δ, (4c−1)
1

1−δ Ψ̄
r

1−δ }.
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By (4.14) and Lemma 4.21(ii), we get for any λ ∈ (0, 1],

W2(π, πγ) ≤ cr
γ

λ

√
eλtrelL3Ψ̄.

Let λ = t−1
rel . In this case, we obtain

W2(π, πγ) ≤ crγtrel

√
L3Ψ̄ .r,δ γc

− 1
1−δL

3
2 Ψ̄

1
2 + r

1−δ .

Lemma 4.19. Assume (H1
r ). Then, for any γ ∈ (0, γ?] and for any positive function

φ : R+ → R,

W2
2 (π, πγPt) .r W2

2 (π, πγ)

(
e−2φ(t) +

φ(t)

ct
Ψ̄r

)
. (4.15)

Remark 4.20. � The proof of (i) is mostly a continuous-time version of the one of
Proposition 4.14.

� As mentioned in Remark 4.15, the proof can be adapted to provide exponential rates
but unfortunately our method would lead to exponential dependence in the dimension.
For this section, the lack of exponential rate does not have a serious impact on the
bounds.
Nevertheless, if we needed to improve our bounds, an idea would be to apply [4,
Theorem 5.6]. In this result, the authors provide exponential rates under assumptions
which are similar to ours. However the related constant depends on the density of
the semi-group and it would be necessary to be able to control it with respect to the
parameters of the model.

Proof. Denoting by T xt = ∂xX
x
t , the first variation process related to (Xx

t )t≥0, we have:

Xy
t −Xx

t =

∫ 1

0

T
x+λ(y−x)
t (y − x)dλ.

Thus,

|Xy
t −Xx

t |2 ≤
∫ 1

0

‖T x+λ(y−x)
t ‖2|y − x|2dλ,

where ‖.‖ stands for the operator norm associated with the Euclidean norm. Since T x is
the solution to dT xt = −D2U(Xx

t )T xt dt with T x0 = Id, one easily checks that

‖T x+λ(y−x)
t ‖2 ≤ e−2

∫ t
0
λU (Xx+λ(y−x)

s )ds.

Thus,

|Xy
t −Xx

t |2 ≤ |x− y|2
∫ 1

0

e−2
∫ t
0
λU (Xx+λ(y−x)

s )dsdλ.

Following the arguments of Proposition 4.14, we get for any positive function φ,

E
[
e−2

∫ t
0
λU (Xx+λ(y−x)

s )ds
]
≤ e−2φ(t) +

φ(t)

t
E

[
1

t

∫ t

0

λ−1

D2U
(
X
x+λ(y−x)
u

)du

]
≤ e−2φ(t) +

φ(t)

t
sup

s∈[0,t]}
E

[
λ−1

D2U
(
X
x+λ(y−x)
s

)] .
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By (H1
r ), one deduces that

E[|Xy
t −Xx

t |2] ≤ |x− y|2
(
e−2φ(t) +

φ(t)

ct
sup
t≥0]}

E
[
Ur
(
X

(1−λ)x+λy
t

)])

.uc |x− y|2
(
e−2φ(t) +

φ(t)

ct
(Ur(x) + Ur(y) + Ψr)

)
,

where in the second line, we used Proposition 4.5 and the convexity of U .
Let now ν be a coupling of π and πγ . We have

W2
2 (π, πγPt) ≤

∫
|x− y|2(ν(dx, dy)

(
e−2φ(t) +

φ(t)

ct
(π(Ur) + πγ(Ur) + Ψr)

)
.

Taking the infimum over the set of couplings ν of π and πγ and using again Proposition 4.5,
this yields

W2
2 (π, πγPt) .r W2

2 (π, πγ)

(
e−2φ(t) +

φ(t)

ct
Ψ̄r

)
.

Lemma 4.21. (i) Let U be a C3-convex function. Then,

E[|Xx
γ − X̄y

γ |2] ≤ |x− y|2eλγ + cγ,λ(x, y)γ3.

with

cγ,λ(x, y) =
eλγ

6λ

(
L2|∇U(y)|2 + σ4‖∆(∇U)‖22,∞ + 2λσL‖D2U‖2,∞ (

√
γ)
)

where

‖D2U‖2,∞ = sup
x∈Rd

‖D2U‖F , ‖∆(∇U)‖2,∞ = sup
x∈Rd

d∑
i=1

|∆∂iU |2,

and S(x, γ) = supu∈[0,γ]E[|b(Xx
u)|2]

1
2 .

(ii) Let (H1
r ) hold. Assume that U is C3 with ‖∆(∇U)‖22,∞ .r σ−4L3Ψ̄. Then, a constant

cr exists such that for all γ ∈ (0, γ?], for all λ ∈ (0, 1],

W2
2 (πγPnγ , π

γ) ≤ cr
γ2

λ2
eλ(n+1)γL3Ψ̄.

Remark 4.22. The assumption on ∆(∇U) is calibrated to control its contribution by
L3Ψ̄. That simplifies the purpose and we could keep its specific contribution at the price
of technicalities. However, this assumption is not really restrictive: denoting by A(x) the
d× d-matrix defined by Ai,j(x) = D3

i,j,jU(x). One easily checks that

‖∆(∇U)‖22,∞ = sup
x∈Rd

‖A(x)‖2F ≤ d sup
x∈Rd

λ̄A(x),

the second inequality coming from a classical inequality related to the Frobenius norm.
Since L ≥ supx∈Rd λ̄D2U(x), the assumption is for instance true if

sup
x∈Rd

λ̄A(x) ≤ σ−2 sup
x∈Rd

(λ̄D2U(x))
4 Ψ̄

σ2dL
.

To conclude, note that Ψ̄
σ2dL is well controlled: for instance, under (H1

r ) and (H2
r ),

Ψ̄

σ2dL
.r c

−1
( c̄
L
∨ 1
)
.
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Remark 4.23. The calibration of the parameter λ is of first importance in the proof of
Proposition 4.17 in order to avoid exponential dependence in the dimension.

Proof. The proof is an adaptation of Lemma 5.2 and Proposition 5.3 of [12] but with the
viewpoint that U is only convex. More precisely, we start with a one-step control of the
error between the diffusion and its Euler scheme by setting

Fx,y(t) =
1

2
E[|Xx

t − X̄
y
t |2], t ∈ [0, γ].

Then, setting b = −∇U , we have

F ′x,y(t) = E
[
〈Xx

t − X̄
y
t , b(X

x
t )− b(y)〉

]
= E

[
〈Xx

t − X̄
y
t , b(X

x
t )− b(X̄y

t )〉
]

+ E
[
〈Xx

t − X̄
y
t , b(X̄

y
t )− b(y)〉

]
≤ E

[
〈Xx

t − X̄
y
t , b(X̄

y
t )− b(y)〉

]
,

where in the last line we used the convexity of U which involves that

〈∇U(x)−∇U(y), x− y〉 ≥ 0.

We then write

E
[
〈Xx

t − X̄
y
t , b(X̄

y
t )− b(y)〉

]
= E

[
〈Xx

t − X̄
y
t , b(X̄

y
t )− b(y + σBt)〉

]
(4.16)

+ E
[
〈Xx

t − X̄
y
t , b(y + σBt)− b(y)〉

]
. (4.17)

Let λ > 0. For the right-hand side of (4.16), we use the elementary inequality, |uv| ≤ λ
2 |u|

2

+ 1
2λ |v|

2 to obtain

E
[
〈Xx

t − X̄
y
t , b(X̄

y
t )− b(y + σBt)〉

]
≤ λ

2
Fx,y(t) +

t2

2λ
L2|b(y)|2. (4.18)

For (4.17), the Itô formula applied to bi = −∂iU leads to

bi(y + σBt)− bi(y) = σ2

∫ t

0

∆bi(y + σBs)ds+ σ

∫ t

0

〈∇bi(y + σBs), dBs〉.

On the one hand, setting ∆b = (∆bi)
d
i=1,

E

[
〈Xx

t − X̄
y
t , σ

2

∫ t

0

∆b(y + σBs)ds〉
]
≤ λ

2
Fx,y(t) +

σ4

2λ
t2‖∆b‖22,∞,

where

‖∆b‖22,∞ = sup
x∈Rd

d∑
i=1

|∆bi(x)|2.

On the other hand, using the fact that M defined by Mt =
∫ t

0
〈∇b(y + σBs), dBs〉 is a

martingale (we refer to [12] for the details), we get

|E
[
〈Xx

t − X̄
y
t , σ

∫ t

0

〈∇b(y + σBs), dBs〉〉
]
| ≤ σL‖∇b‖2,∞

(
s

3
2S(x, γ) + σs

√
d
)
,

where S(x, γ) = supu∈[0,γ]E[|b(Xx
u)|2]

1
2 and

‖∇b‖2,∞ = sup
x∈Rd

‖∇b(x)‖F .
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Finally, from what precedes, we deduce that

F ′x,y(t) ≤ λFx,y(t) +
t2

2λ

(
L2|b(y)|2 + σ4‖∆b‖22,∞ + 2λL‖∇b‖2,∞

(√
tS(x, γ) + σ

√
d
))

.

A standard Gronwall argument then leads to

E[|Xx
γ − X̄y

γ |2] ≤ |x− y|2eλγ

+

∫ γ

0

s2eλ(γ−s)ds
(
L2|b(y)|2 + σ4‖∆b‖22,∞ + 2λσL‖∇b‖2,∞

(√
tS(x, γ) + σ

√
d
))

≤ |x− y|2eλγ + γ3cγ,λ(x, y),

with

cγ,λ(x, y) =
eλγ

6λ

(
L2|b(y)|2 + σ4‖∆b‖22,∞ + 2λσL‖∇b‖2,∞

(√
γS(x, γ) + σ

√
d
))

.

(ii) Iterating the above inequality, we obtain for each n ≥ 1,

E[|Xx
nγ − X̄x

nγ |2] ≤ γ3
n−1∑
k=0

E[cγ,λ(Xx
kγ , X̄

x
kγ))]eλ(n−k)γ

Integrating the initial condition with respect to πγ , we get

W2(πγPnγ , π
γ) ≤ γ2eλnγ sup

k≥0

∫
E[cγ,λ(Xx

kγ , X̄
x
kγ))]πγ(dx)

≤ γ2

λ2
eλ(n+1)γ

(
L2πγ(|b|2) + σ4‖∆b‖22,∞

+ 2λσL‖∇b‖2,∞
(
√
γ sup
n≥0

∫
E[S(Xx

nγ , γ)]πγ(dx) + σ
√
d

))
,

where in the second line, we used the stationarity property of πγ . Now, under (H1
r ),

|b|2 = |∇U |2 ≤ 2LU (with the same idea than one which leads to (4.1)) so that by
Proposition 4.5(iii), πγ(|b|2) .r LΨ̄. On the other hand, by the Itô formula and the fact
that ∆U ≤ dL,

E[U(Xx
t )] ≤ U(x) + σ2

∫ t

0

E[∆U(Xx
s )]ds ≤ U(x) + σ2dL,

so that
S(x, γ) ≤

√
2L sup

u∈[0,γ]

E[U(Xx
u)]

1
2 ≤

√
2LU(x) + σ

√
2dL.

Again, with the help of Proposition 4.5(iii),

sup
n≥0

∫
E[S(Xx

nγ , γ)]πγ(dx) .r
√
LΨ̄

1
2 + σ

√
dL.

Thus, using that γ ≤ L−1,

W2(πγPnγ , π
γ) .r

γ2

λ2
eλ(n+1)γ

(
L3Ψ̄ + σ4‖∆b‖22,∞ + σλ‖∇b‖2,∞(

√
Ψ̄ + σ

√
dL)

)
.

Since for a symmetric d × d-matrix A, ‖A‖F ≤
√
dλ̄A, one deduces that ‖∇b‖2,∞ =

‖D2U‖2,∞ ≤
√
dL. It easily follows that σλL‖∇b‖2,∞(

√
Ψ̄ + σ

√
dL) ≤ L3Ψ̄ (using that

L ≥ 1 and Ψ̄ ≥ d). The result follows.
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5 Proof of Theorem 2.3

Following the bias-variance decomposition of the MSE:

‖Y(f)− π(f)‖22 ≤ [E[Y(f)]− π(f)]
2

+ Var(Y(f)),

we successively study the bias and the variance contributions and end the section by the
proof of Theorem 2.3.

5.1 Step 1: Bias of the procedure

In the sequel, Y(J, (γj)j , (Tj)j , f) is usually written Y(f) for the sake of simplicity.
We start with a telescopic-type decomposition:

Y(f)− π(f) =
1

T0

∫ T0

0

f(X̄γ0,x0
sγ0

)− πγ0(f)ds

+

J∑
j=1

(
1

Tj

∫ Tj

0

f(X̄γj ,x0
sγj−1

)− πγj (f)ds− 1

Tj

∫ Tj

0

f(X̄γj−1,x0
sγj−1

)− πγj−1(f)ds

)
+ πγJ (f)− π(f). (5.1)

Let us now study the bias generated by the first and second terms of the right-hand side
of (5.1).

Lemma 5.1. Assume (H1
r ) and γ0 ∈ (0, γ?]. Let x ∈ Rd such that U(x) .r Ψ̄. Then, for

any r ∈ [0, 1) and δ ∈ (0, 1
2 ], there exists a constant cr,δ (depending only on r and δ) such

that for all T ≥ 1, for all Lipschitz continuous function f : Rd → R,∣∣∣∣∣ 1

T

∫ T

0

Ex[f(X̄γ,x0
s )]− πγ(f)ds

∣∣∣∣∣
2

≤ cr,δ
[f ]21C

(1)
bias

T 2
,

with C
(1)
bias =

(
c−

1
2 ∨ c−3− 4δ

1−δ

)
Ψ̄1+3r+ 4δr

1−δ .

Proof. Let us apply Proposition 4.11 with φ(n) = nγ
(nγ+1)1−δ and κ = 2(1+δ)

1−δ = 2 + 4δ
1−δ for

δ ∈ (0, 1/2]. Using that φ(n) ≥ (nγ)δ, we have∣∣∣∣∣ 1

T

∫ T

0

Ex[f(X̄γ,x0
s )]− πγ(f)ds

∣∣∣∣∣ .r,κ [f ]1
T

∫ T

0

hφ,κ(s)ds

.r
[f ]1
T

(
c−

1
2 Ψ̄

1+r
2

∫ T

0

e−t
δ

dt+ c−
3
2−

2δ
1−δ Ψ̄

1+3r
2 + 2δr

1−δ

∫ T

0

(1 + t)
−1−δ

dt

)

.r
[f ]1
δT

(
Γ

(
1

δ

)
c−

1
2 Ψ̄

1+r
2 + c−

3
2−

2δ
1−δ Ψ̄

1+3r
2 + 2δr

1−δ

)
,

where in the last line, we used standard arguments of comparisons between series and
integrals. The result follows.

We are now ready to state a proposition about the control of the bias of the procedure.

Proposition 5.2. Assume (H1
r ) and γ0 ∈ (0, γ?]. Let x ∈ Rd such that U(x) .r Ψ̄. Let

δ ∈ (0, 1
2 ] and let f be a Lipschitz continuous function with [f ]1 = 1. Let J ∈ N∗. Then,

(i)

|Ex[Y(f)]− π(f)|2 .r,δ C
(1)
bias

J∑
j=0

1

T 2
j

+ C
(2,1)
bias γJ with C

(2,1)
bias =

L

c
2

1−δ ∧ c
Ψ̄1+3r+ 2δr

1−δ .
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(ii) If the assumptions of Proposition 4.17 are fulfilled,

|Ex[Y(f)]− π(f)|2 .r,δ C
(1)
bias

J∑
j=0

1

T 2
j

+ C
(2,2)
bias γ

2
J with C

(2,2)
bias = c−

2
1−δL3Ψ̄1+ 2r

1−δ .

Proof. (i) Taking the expectation in (5.1), we obtain:

|Ex[Y(f)− π(f)]| ≤

∣∣∣∣∣ 1

T0

∫ T0

0

Ex0

[
f(X̄γ0,x0

sγ0
)
]
− πγ0(f)ds

∣∣∣∣∣
+

J∑
j=1

1

Tj

∣∣∣∣∣
∫ Tj

0

E
[
f(X̄γj ,x0

sγj−1

)
]
− πγj (f)ds

∣∣∣∣∣
+

J∑
j=1

1

Tj

∣∣∣∣∣
∫ Tj

0

E
[
f(X̄γj−1,x0

sγj−1

)
]
− πγj−1(f)ds

∣∣∣∣∣+ |πγJ (f)− π(f)| .

For the three first terms, we apply Lemma 5.1 and for the last one, Lemma 4.16. The
result follows.

(ii) It is the same proof using Proposition 4.17 to control the last term (instead of
Lemma 4.16).

5.2 Step 2: Control of the variance

Now we have to control the variance of our estimator. Owing to the independency
between the layers,

Var(Y(J, (γj)j , (Tj)j , f)) = Var

(
1

T0

∫ T0

0

f(X̄γ0,x
sγ0

)ds

)
+

J∑
j=1

Var

(
1

Tj

∫ Tj

0

Gγjs ds

)
, (5.2)

where for some given γ > 0 and s > 0,

Gγs = f
(
X̄

γ
2 ,x
sγ

)
− f

(
X̄γ,x
sγ

)
.

Before going further, let us recall that in order that the multilevel method be efficient,
the correcting layers must have a small variance. In the long-time setting, this involves
to be able to control the L2-distance between couplings of Euler schemes with steps γ
and γ/2. By Proposition 4.7, this is still possible under (H1

r ), and such a property allows
to obtain the following result:

Lemma 5.3. Assume (H1
r ) and γ0 ∈ (0, γ?]. Let x ∈ Rd such that U(x) .r Ψ̄. Let

δ ∈ (0, 1
2 ] and κ > 2

1−δ . Let f be a Lipschitz continuous function.Then, for all T > 0,

Var

(
1

T

∫ T

0

Gγsds

)
.r,δ,κ [f ]21

C
(1)
var(κ, δ)γ

1− 1
κ(1−δ)

T
,

where

C(1)
var(κ, δ) = L1− 1

κ(1−δ) (c
− 3−δ
κ(1−δ)2 ∨ c−

3+κ−(κ+1)δ

κ(1−δ)2 )Ψ̄1+(4− 2
κ )r+ε(δ,κ)r with

ε(δ, κ) =

(
3− 2

κ
− 2

κ(1− δ)

)
δ

1− δ
.

Remark 5.4. In the uniformly convex case, the variance is controlled by γ log(1/γ)
T

whereas, here, we are only able to obtain γ
1− 1

κ(1−δ)

T . This difference is due to the
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lack of exponential convergence to equilibrium under our assumptions. Note that if we
leave κ go to∞, we are moving ever closer to the uniformly convex bound. However, the
constant depends on κ and explodes when κ → +∞. The interesting point is that the
exponent of Ψ̄ remains bounded when κ → +∞, which means that the dependence in
the dimension is slightly impacted by the choice of κ.

Proof. A standard computation shows that

Var

(
1

T

∫ T

0

Gγsds

)
≤ 2

T 2

∫ T

0

∫ T

u

Cov (Gγs , G
γ
u) dsdu.

First, at the price of replacing f by f/[f ]1,we can assume in the sequel that [f ]1 ≤ 1.
Then,

|Gγs | ≤ |X̄
γ
2 ,x
sγ −Xsγ

|+ |X̄γ,x
sγ
−Xsγ

|.

By Proposition 4.7 and the fact that U(x) .uc Ψ̄, we deduce that for every δ ∈ (0, 1],

E[|Gγu|2] .r,δ
Lγ

c
2

1−δ
Ψ̄1+3r+ 2δr

1−δ . (5.3)

This yields a first bound for Cov (Gγs , G
γ
u):

Cov (Gγs , G
γ
u) ≤ E[|Gγs |2]

1
2E[|Gγu|2]

1
2 .r,δ

Lγ

c
2

1−δ
Ψ̄1+3r+ 2δr

1−δ .

Hence, for any t0 > 0, ∫ u+t0

u

Cov (Gγs , G
γ
u) ds .r,δ

Lγt0

c
2

1−δ
Ψ̄1+3r+ 2δr

1−δ . (5.4)

We now want to take advantage of the convergence to equilibrium to get a second bound
when s− u ≥ t0: since Gγu is Fuγ -measurable, we have for any s ≥ uγ ,

E [GγsG
γ
u] = E[E[Gγs |Fuγ ]Gγu].

Setting F(γ, t, x) = E[f(X̄γ,x
t )]− πγ(f), we deduce from the Markov property that

E[Gγs |Fuγ ] = F
(γ

2
, sγ − uγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ − uγ , X̄γ,x

uγ

)
+ (πγ − π

γ
2 )(f),

and hence,

E [GγsG
γ
u] = E

[(
F
(γ

2
, sγ − uγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ − uγ , X̄γ,x

uγ

))
Gγu

]
+ (πγ − π

γ
2 )(f)E[Gγu].

On the other hand,

E[Gγs ]E[Gγu] = E
[(

F
(γ

2
, sγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ , X̄

γ,x
uγ

))]
E [Gγu] + (πγ − π

γ
2 )(f)E[Gγu].

As a consequence,

Cov (Gγs , G
γ
u) = E

[(
F
(γ

2
, sγ − uγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ − uγ , X̄γ,x

uγ

))
Gγu

]
(5.5)

− E
[(

F
(γ

2
, sγ , x

)
− F

(
γ, sγ , x

))]
E [Gγu] . (5.6)
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Let us study the two right-hand members successively. For (5.5), the Cauchy-Schwarz
inequality and (5.3) yield:

E
[(

F
(γ

2
, sγ − uγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ − uγ , X̄γ,x

uγ

))
Gγu

]
.r,δ

(∥∥∥F(γ
2
, sγ − uγ , X̄

γ
2 ,x
uγ

)∥∥∥
2

+
∥∥∥F(γ, sγ − uγ , X̄γ,x

uγ

)∥∥∥
2

)√ Lγ

c
2

1−δ
Ψ̄1+3r+ 2δr

1−δ .

By Proposition 4.11 or more precisely by (4.12) combined with Proposition 4.5(iii)9

applied with φ(n) = (nγ)δ,∥∥∥F(γ
2
, sγ − uγ , X̄

γ
2 ,x
uγ

)∥∥∥
2

+
∥∥∥F(γ, sγ − uγ , X̄γ,x

uγ

)∥∥∥
2

.r,δ,κ c
− 1

2 Ψ̄
1+r

2 e−(sγ−uγ)δ + c−
κ+1

2 Ψ̄
1+r(1+κ)

2 (sγ − uγ)−
κ(1−δ)

2 .

Now, let us remark that if s − u ≥ t0, t0 ≥ 2 and γ ∈ (0, γ?], then sγ − uγ ≥ 1 (since

γ? ≤ 1). Noting that for any t ≥ 1, e−t
δ

.δ t−
κ(1−δ)

2 and that for any κ > 2
1−δ ,∫ T

(u+t0)∧T
(sγ − uγ)−

κ(1−δ)
2 ds ≤

∫ +∞

u+t0

(s− u− γ)−
κ(1−δ)

2 ds

≤ (t0 − γ)1−κ(1−δ)
2

κ(1−δ)
2 − 1

.κ,δ

(
t0
2

)1−κ(1−δ)
2

.

We deduce that for any t0 ≥ 2 and for any γ ∈ (0, γ?]∫ T

(u+t0)∧T
E
[(

F
(γ

2
, sγ − uγ , X̄

γ
2 ,x
uγ

)
− F

(
γ, sγ − uγ , X̄γ,x

uγ

))
Gγu

]
ds

.r,δ,κ
(γL)

1
2 Ψ̄1+2r+ δr

1−δ+κr
2

c
3
2 + δ

1−δ ∧ c
3+κ

2 + δ
1−δ

(
t0
2

)1−κ(1−δ)
2

.

For (5.6), using that sγ ≥ sγ − uγ , we remark that we can obtain the same bound so that:∫ T

(u+t0)∧T
Cov (Gγs , G

γ
u) ds .r,δ,κ

(γL)
1
2

c
3
2 + δ

1−δ ∧ c
3+κ

2 + δ
1−δ

Ψ̄1+2r+ δr
1−δ+κr

2

(
t0
2

)1−κ(1−δ)
2

.

In view of the above bound and of the one obtained in (5.4), we now optimize the choice
of t0 by taking t0 solution to:

(γL)
1
2

c
3
2 + δ

1−δ ∧ c
3+κ

2 + δ
1−δ

Ψ̄1+2r+ δr
1−δ+κr

2

(
t0
2

)1−κ(1−δ)
2

=
Lγt0

c
2

1−δ
Ψ̄1+3r+ 2δr

1−δ .

i.e.,

t0 = 21− 2
κ(1−δ) (c

1
2 + δ

1−δ ∨ c
1−κ

2 + δ
1−δ )

2
κ(1−δ) (Lγ)−

1
κ(1−δ) Ψ̄

(1− 2
κ ) r

1−δ−
2δ

κ(1−δ)2
r
.

Plugging this value of t0 into (5.4), this leads to: for any κ > 2
1−δ ,∫ T

u

Cov (Gγs , G
γ
u) ds .r,δ,κ (γL)1− 1

κ(1−δ) (c−
3
2−

δ
1−δ ∨ c−

3+κ
2 −

δ
1−δ )

2
κ(1−δ) Ψ̄1+(4− 2

κ )r+ε(δ,κ)r,

where ε(δ, κ) = (3− 2
κ −

2
κ(1−δ) ) δ

1−δ . The result follows.

9 In fact, Proposition 4.11 is written under the assumption U(x) . Ψ̄ but here, we need to integrate with
respect to the initial condition. To extend to this setting, the idea is to start from (4.12) and to use the bounds
of Proposition 4.5(iii). This allows us to retrieve controls which are similar to Proposition 4.11.
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In the next proposition, we are now able to work on the variance of the multilevel
procedure.

Proposition 5.5. Assume (H1
r ) and γ0 ∈ (0, γ?]. Let x ∈ Rd such that U(x) .r Ψ̄. Let

δ ∈ (0, 1
2 ] and κ > 2

1−δ . Let f be a Lipschitz continuous function.Then,

Var(Y(J, (γj)j , (Tj)j , f)) .r,δ,κ [f ]21

C(1)
var(κ, δ)

J∑
j=1

γ
1− 1

κ(1−δ)
j

Tj
+

C
(2)
var

T0

 ,

where C
(1)
var(κ, δ) is defined in Lemma 5.3 and C

(2)
var =

(
c−

3
2 ∨ c−

5
2−

2δ
1−δ

)
Ψ̄1+2r+ 2δr

1−δ .

Proof. We assume (without loss of generality) that [f ]1 = 1 and f(x?) = 0. In view of the
decomposition (5.2), we apply Lemma 5.3 for each level j ∈ {1, . . . , J} with T = Tj and
γ = γj−1. We obtain for any δ ∈ (0, 1/2] and κ > 2/(1− δ),

Var(Y(J, (γj)j , (Tj)j , f)) ≤ Var

(
1

T0

∫ T0

0

f(X̄γ0,x0
sγ0

)ds

)
+ C(1)

var(κ, δ)

J∑
j=1

γ
1− 1

κ(1−δ)
j

Tj
.

It remains to control the first term, i.e. the variance related to the first level. We use
similar arguments as in the proof of Lemma 5.3 (see in particular (5.5) and what follows).
First, one can check that for every 0 ≤ u ≤ s ≤ T ,

Cov
(
f(X̄γ0,x0

uγ0
), f(X̄γ0,x0

sγ0
)
)

= E
[
F
(
γ0, sγ0

− uγ0
, X̄γ0,x

uγ0

)
f(X̄γ0,x0

uγ0
)
]
− E

[
F
(
γ0, sγ0

, x
)]
E
[
f(X̄γ0,x0

uγ0
)
]

≤
(∥∥∥F(γ0, sγ0

− uγ0
, X̄γ0,x

uγ0

)∥∥∥
2

+
∥∥F (γ0, sγ0

, x
)∥∥

2

)∥∥∥f (X̄γ0,x0
uγ0

)∥∥∥
2
,

by Cauchy-Schwarz inequality. Then, by Proposition 4.11 (and footnote 9) applied with
φ(n) = nγ and κ = 2(1+δ)

1−δ , one deduces that (we leave the details to the reader),∫ T

u

Cov
(
f(X̄γ0,x0

uγ0
), f(X̄γ0,x0

sγ0
)
)
ds .r,δ

(
c−

1
2 ∨ c−

3
2−

2δ
1−δ

)
Ψ̄

1+3r
2 + 2δr

1−δ × sup
u≥0

∥∥∥f (X̄γ0,x0
uγ0

)∥∥∥
2

.r,δ
(
c−

3
2 ∨ c−

5
2−

2δ
1−δ

)
Ψ̄1+2r+ 2δr

1−δ ,

where in the second line, we used Proposition 4.5(iii) and the fact that (by Lemma 4.9)

|f(x)|2 = |f(x)− f(x?)|2 ≤ |x− x?|2 ≤ U1+r(x)

c
.

5.3 Step 3: Proof of Theorem 2.3

Back to the bias-variance decomposition, we deduce from Proposition 5.2 and Propo-
sition 5.5 that, up to a constant depending on κ, δ and r, the MSE is lower than ε2 if the
following conditions are satisfied (with δ ∈ (0, 1/2] and κ > 2/(1− δ)):

(i.a) : C
(1)
bias

J∑
j=0

1

T 2
j

≤ ε2, (i.b) : C
(2,1)
bias γJ ≤ ε

2 or (i.b)′ : C
(2,2)
bias γ

2
J ≤ ε2,

(ii.a) :
C

(2)
var

T0
≤ ε2, (ii.b) : C(1)

var(κ, δ)

J∑
j=1

γ
1− 1

κ(1−δ)
j

Tj
≤ ε2.

(5.7)
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Note that (i.b) corresponds to Proposition 5.2(i) whereas (i.b) ’ corresponds to Proposi-
tion 5.2(ii). Let us assume that

γj = γ02−j and Tj = T02−(1−ρ)j ,

where ρ ≥ 1/2, γ0 and T0 are positive numbers which will calibrated further. With these
choices, the above conditions read (up to universal constants):

(i.a) : T0 ≥ 2(1−ρ)J
√
C

(1)
biasε

−1 (i.b) : 2J ≥ C
(2,1)
bias γ0ε

−2 or (i.b)′ : 2J ≥
√

C
(2,2)
bias γ0ε

−1,

(ii.a) : T0 ≥ C(2)
varε

−2, (ii.b) : T0 ≥ C(1)
var(κ, δ)γ

1− 1
κ(1−δ)

0

J∑
j=1

2(−ρ+ 1
κ(1−δ) )jε−2.

(5.8)
Proof of Theorem 2.3 (i) In this case, we have to calibrate the parameters according to
(i.a), (i.b), (ii.a) and (ii.b) are satisfied. First, for (i.b), we need 2J ≥ C

(2,1)
bias γ0ε

−2 so we
can set:

J =
⌈
log2

(
C

(2,1)
bias γ0ε

−2
)⌉
.

Then, set ρ = 1/2. With the above value of J and the condition κ > 2/(1− δ),

2
J
2 ≤

√
2γ0C

(2,1)
bias ε

−1 and
J∑
j=1

2(− 1
2 + 1

κ(1−δ) )j .κ,δ 1.

Hence, (i.a), (ii.a), (ii.b) are satisfied (up to a constant depending on κ, δ and r only) if

T0 ≥ Cε−2 with C = max

(√
γ0C

(1)
biasC

(2,1)
bias ,C

(2)
var,C

(1)
var(κ, δ)γ

1− 1
κ(1−δ)

0

)
.

The complexity of the procedure is then:

C(Y) = 2

T0

γ0
+

J∑
j=1

Tj
γj

 .
T0

γ0
2
J
2 .r,δ,κ

C

√
C

(2,1)
bias ε

−3

√
γ0

.

To deduce the result, it is now enough to remark that with κ = 2(1+δ)
1−δ , γ0 ≤ 1/(4L),

C ≤ (c−
3
4 ∨ c−

5
2−

2δ
1−δ )Ψ̄1+3r+ 3δr

1−δ so that C

√
C

(2,1)
bias ≤

√
L(c−

5
4 ∧ c−

7
2−

3δ
1−δ )Ψ̄

3
2 + 9

2 r+
4δr
1−δ ,

as soon as δ < 1/3. The main result then follows from a change of variable replacing δ
by δ̃ = aδ with a small enough.

(ii) In this case, we have to calibrate the parameters according to (i.a), (i.b) ’, (ii.a) and

(ii.b). First, for (i.b) ’, we need 2J ≥
√
C

(2,2)
bias γ0ε

−1 so we can set:

J =

⌈
log2

(√
C

(2,2)
bias γ0ε

−1

)⌉
.

Then, if ρ > 1
κ(1−δ) , (i.a), (ii.a), (ii.b) are satisfied (up to a constant depending on κ, δ and

r only) if

T0 ≥ C̃ε−2 with C̃ = max

(√
C

(1)
bias

(
γ2

0C
(2,2)
bias

) 1−ρ
2

,C(2)
var,C

(1)
var(κ, δ)γ

1− 1
κ(1−δ)

0

)
,
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and the complexity of the procedure satisfies:

C(Y) .
T0

γ0
2ρJ .r,δ,κ,ρ

C̃(C
(2,2)
bias )

ρ
2 ε−2−ρ

γρ0
.

Set κ = 1+δ
ρ(1−δ) = 1

ρ + 2δ
ρ(1−δ) . For δ small enough and γ0 ≤ 1/L,

γ
1− 1

κ(1−δ)
0 C(1)

var(κ, δ) ≤ (c−3ρ(1− δ
1−δ ) ∨ c−(1+3ρ)−5δ)Ψ̄1+(4−2ρ)r+ 4δr

1−δ .

Using that γ0 ≤ 1/(4L),√
C

(1)
bias

(
γ2

0C
(2,2)
bias

) 1−ρ
2 ≤ L

ρ
2 (c−

1
4−

1−ρ
1−δ ∨ c−

3
2−

1−ρ
1−δ−

2δ
1−δ )Ψ̄1− ρ2 + 5−2ρ

2 r+(3−ρ) δr
1−δ .

Using that ρ ≤ 1/2, this yields (at the price of replacing δ by aδ for a small enough)

C̃ ≤ L
ρ
2

(
c−( 5

4−ρ)∧(3ρ)+δ ∨ c− 5
2−δ
)

Ψ̄1+(4−2ρ+δ)r.

The result follows.

Supplementary Material

6 Proof of Proposition 4.3

Consider the process
(
X̄t

)
t>0

defined by X̄t = x − t∇U(x) + σ
√
tZ where Z =

(Z1, . . . , Zd) ∼ N (0, IdRd). By a Taylor expansion with integral remainder of the function
U we have

U(X̄t) = U(x) + 〈∇U(x), X̄t − x〉+

∫ 1

0

〈D2U(ξλ)(X̄t − x), X̄t − x〉dλ

≤ U(x) + 〈∇U(x), X̄t − x〉+
∣∣X̄t − x

∣∣2 ∫ 1

0

λ̄D2U(ξλ)dλ, (6.1)

where ξλ = λX̄t + (1− λ)x.

(i) In this first part, we only assume that ∇U is L-Lipschitz so that λ̄D2U(ξλ) ≤ L. Thus,
since

|X̄t − x|2 ≤ 2t2|∇U(x)|2 + 2tσ2|Z|2, (6.2)

we get
U(X̄t) ≤ U(x)− t|∇U(x)|2(1− 2Lt) + σ

√
t〈∇U(x), Z〉+ 2Lσ2t|Z|2.

Let θ > 0 and define,
fθ : x 7→ eθU(x) (6.3)

We deduce from the previous inequality that

E[fθ
(
X̄t

)
] ≤ fθ(x)e−θt|∇U(x)|2(1−2Lt)E

[
eθσ
√
t〈∇U(x),Z〉+2θLσ2t|Z|2

]
≤ fθ(x)e−θt|∇U(x)|2(1−2Lt)

d∏
i=1

E[eαiZi+βi|Zi|
2

],

where αi = θσ
√
t∂iU(x) and βi = 2θLσ2t. A standard computation shows that for any

u ∈ R and any v < 1/2,

EZ1∼N (0,1)[e
uZ1+vZ2

1 ] =
1√

1− 2v
e

u2

2(1−2v) . (6.4)
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Thus,
d∏
i=1

E[eαiZi+βi|Zi|
2

] =

(
1

1− 2θLσ2t

) d
2

e
θ2σ2t|∇U(x)|2

2(1−2θLσ2t)

This yields

E[fθ
(
X̄t

)
] ≤ fθ(x)e−θt|∇U(x)|2(1−2Lt)e−

d
2 log(1−2θLσ2t) exp

(
θ2σ2t|∇U(x)|2

2(1− 2θLσ2t)

)
.

Since, γL ≤ 1/4 and θσ2 ≤ 1/8, 2θLσ2t ∈ [0, 1/2] and we can use the elementary
inequality log(1− x) ≥ −2x for all x ∈ [0, 1/2] to obtain:

E[fθ
(
X̄t

)
] ≤ fθ(x)e−ct,x,θ|∇U(x)|2+2dθLσ2t with ct,x = θt

(
1− 2Lt− θσ2

)
≥ θt

4
.

For t = γ, this yields

E[fθ
(
X̄t

)
] ≤ fθ(x)e−

θγ
4 (|∇U(x)|2−8dL).

Let

CM := {x ∈ Rd, |∇U(x)|2 − 8dL ≤M}.

We get

E[fθ
(
X̄t

)
] ≤ fθ(x)e2θγdL1{x∈CM} + fθ(x)e−

θγM
4 1{x∈CcM}

≤ fθ(x)e−
θγM

4 + sup
x∈CM

fθ(x)(e2θγdL − e−
θγM

4 )

In order to control supx∈CM fθ(x), one needs to include CM in a level set of U . By (4.1)
and the fact that U(x?) = 1, one checks that

CM ⊂

{
x ∈ Rd, U(x) ≤

(
1 +

M + 8dL

2c

) 1
1−r
}

so that with t = γ,

E[fθ
(
X̄γ

)
] ≤ e−

θγM
4 fθ(x)+c(M,γ, θ) with c(M,γ, θ) = eθ(1+M+8dL

2c )
1

1−r
(e2θγdL−e−

θγM
4 ).

An induction leads to

sup
n≥0

E[fθ
(
X̄nγ

)
] ≤ fθ(x) +

c(M,γ, θ)

1− e− θγM4
.

Setting M = 8dL,

c(M,γ, θ)

1− e− θγM4
=
eθ(1+ 8dL

c )
1

1−r
sinh(2θγdL)

e−θγdLsinh(θγdL)
= eθ(1+ 8dL

c )
1

1−r +θdLcosh(θγdL).

(ii) We now deal with the additional assumption (H2
r ). The idea is now to refine the

controls by taking into account that the largest eigenvalue also decreases at infinity.
Unfortunately, this refinement will require additional technicalities and concentration
arguments. By (6.1), (6.2) and (H2

r ),

U(X̄t) ≤ U(x)− t|∇U(x)|2(1− 2tL) + σ
√
t〈∇U(x), Z〉+ 2c̄σ2t|Z|2

∫ 1

0

U−r(ξλ)dλ.
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Keeping in mind that fθ(x) = eθU(x), this leads to

E
[
fθ
(
X̄t

)]
≤ fθ(x)e−θt|∇U(x)|2(1−2tL)E

[
exp

(
θσ
√
t〈∇U(x), Z〉+ 2θc̄σ2t|Z|2

∫ 1

0

U−r(ξλ)dλ

)]
︸ ︷︷ ︸

=:E

.

(6.5)

In order to get a sharp bound of the expectation E, we choose to divide it into two parts
depending on a parameter K which will be calibrated below:

E = E
[
exp

(
θσ
√
t〈∇U(x), Z〉+ 2θc̄σ2t|Z|2

)
1{|Z|2≥K}

]
︸ ︷︷ ︸

=:E1

+ E

[
exp

(
θσ
√
t〈∇U(x), Z〉+ 2θc̄σ2t|Z|2

∫ 1

0

U−r(ξλ)dλ

)
1{|Z|2<K}

]
︸ ︷︷ ︸

=:E2

,

Bound for E1: By Cauchy-Schwarz inequality we have

E1 ≤ E
[
exp

(
2θσ
√
t〈∇U(x), Z〉+ 4θc̄σ2t|Z|2

)]1/2
P
(
|Z|2 ≥ K

)1/2
≤

d∏
i=1

EZi∼N (0,1)

[
exp

(
2θσ
√
t∂iU(x)Zi + 4θc̄σ2tZ2

i

)]1/2
P
(
|Z|2 ≥ K

)1/2
.

By (6.4), this yields

E1 ≤

((
1

1− 8θc̄σ2t

) d
2

exp

(
2θ2σ2t|∇U(x)|2

1− 8θc̄σ2t

))1/2

P
(
|Z|2 ≥ K

)1/2
≤ exp

(
−d

4
log
(
1− 8θc̄σ2t

)
+

2θ2tσ2|∇U(x)|2

1− 8θc̄tσ2

)
P
(
|Z|2 ≥ K

)1/2
.

By exponential Markov inequality and (6.4) applied with u = 0 and v = 1/4,

E1 ≤ exp

(
−d

4
log
(
1− 8θc̄σ2t

)
+

2θ2tσ2|∇U(x)|2

1− 8θc̄tσ2
− K

8

)
E

[
e
|Z|2

4

]1/2

≤ exp

(
−d

4
log
(
1− 8θc̄σ2t

)
+

2θ2tσ2|∇U(x)|2

1− 8θc̄tσ2
− K

8
+
d log 2

4

)
.

Under the assumptions on θ and c̄, 8θc̄σ2t ≤ 1
4 for any t ∈ [0, γ]. Using the elementary

inequality log(1− x) ≥ −2x for all x ∈ [0, 1/2],

E1 ≤ exp

(
4dθc̄σ2t+

2θ2tσ2|∇U(x)|2

1− 8θc̄tσ2
− K

8
+
d log 2

4

)
≤ exp

(
2θ2tσ2|∇U(x)|2

1− 8θc̄tσ2
− K

8
+
d

8
+
d log 2

4

)
.

Using again that θσ2 ≤ 1/8 and 8θc̄σ2t ≤ 1
4 , we deduce that

E1 ≤ exp

(
θt

3
|∇U(x)|2 − cK

)
, with cK =

1

8
(K − d (1 + 2 log 2)) . (6.6)

Bound for E2: First, we have

sup
ξ∈[x,X̄t]

1{|Z|2≤K}U
−r(ξ) ≤ sup

ξ∈B(x,t|∇U(x)|+
√
tKσ2)

U−r(ξ) =: CU,K(x),
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that gives

E2 ≤ E
[
exp

(
σθ
√
t〈∇U(x), Z〉+ 2σ2θc̄t|Z|2CU,K(x)

)]
.

Using again (6.4), this involves that

E2 ≤ exp

(
−d

2
log
(
1− 4θc̄σ2tCU,K(x)

)
+
σ2θ2t|∇U(x)|2

2(1− 4θc̄tσ2)

)
≤ exp

(
4dθc̄σ2tCU,K(x) +

σ2θ2t|∇U(x)|2

2(1− 4θc̄tσ2)

)
,

where in the last line we used the inequality log(1− x) ≥ −2x for all x ∈ [0, 1/2]. Once
again, under θσ2 ≤ 1/8 and tc̄ ≤ 1/4, one checks that σ2θ(2(1− 4θc̄tσ2))−1 ≤ 2/7 ≤ 1/3.
Thus,

E2 ≤ exp

(
4dθc̄σ2tCU,K(x) +

tθ

3
|∇U(x)|2

)
. (6.7)

Plugging (6.6) and (6.7) into (6.5), we obtain

E
[
fθ
(
X̄t

)]
≤ fθ(x) exp

(
−θt|∇U(x)|2

(
(1− 2tL− 1

3

))(
e−cK + e4dσ2θc̄tCU,K(x)

)
≤ fθ(x)e−cK + fθ(x) exp

(
−t
(
θ

6
|∇U(x)|2 − 4dσ2θc̄CU,K(x)

))
,

where in the second line, we used that 2tL ≤ 1/2. Now, let us follow the same strategy
as in the first case by setting

C̄M =

{
x ∈ Rd; θ

6
|∇U(x)|2 − 4dσ2θc̄CU,K(x) ≤M

}
.

Then

E
[
fθ
(
X̄t

)]
≤ fθ(x)e−cK + fθ(x)e−tM1C̄cM (x)

+ fθ(x) exp

(
4tdσ2θc̄CU,K(x)− θt

6
|∇U(x)|2

)
1C̄M (x)

≤ fθ(x)
(
e−cK + e−tM

)
+ fθ(x)

(
exp

(
4tdσ2θc̄CU,K(x)− θt

6
|∇U(x)|2

)
− e−tM

)
1C̄M ,

(6.8)

Now, let us show that C̄M is included in a level set of U . First, following the arguments
which lead to (4.1)

|∇U(x)|2 ≥ 2c

1− r
(
U1−r(x)− U1−r(x?)

)
. (6.9)

in the main document, one is also able to show that

|∇U(x)|2 ≤ 2c̄

1− r
U1−r(x), (6.10)

which in turn implies that |∇
√
U | is bounded by

√
c̄

2(1−r) . Thus,
√
U is

√
c̄

2(1−r) -Lipschitz10

and

∀ξ ∈ B
(
x, t|∇U(x)|+

√
tKσ2

)
, U1/2(ξ) ≥ U1/2(x)−

√
c̄

2(1− r)
|ξ − x|.

10
√
U is also

√
L/2-Lipschitz. This could be alternatively used in this proof.
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By the triangular inequality we get

CU,K(x) ≤ U−r(x)

(
1− t |∇U(x)|

U1/2(x)

√
c̄

2(1− r)
− U−1/2(x)

√
tKσ2c̄

2(1− r)

)−2r

,

≤ U−r(x)

(
1− tc̄

(1− r)
− U−1/2(x)

√
γKσ2c̄

2(1− r)

)−2r

,

where in the second line, we used (6.10) and the fact that t ∈ [0, γ]. Since tc̄
1−r ≤

1
4 , one

can check here that if U(x) ≥ 8γKσ2c̄
1−r , we have for every t ∈ [0, γ],

1− t c̄

(1− r)
− U−1/2(x)

√
γKσ2c̄

2(1− r)
≥ 1

2
=⇒ CU,K(x) ≤ 2U−r(x).

With the help of (4.1), this implies that{
x ∈ Rd; θc

3(1− r)
(U1−r(x)− U1−r(x?))− 8dσ2θc̄U−r(x) > M

}
⋂{

x ∈ Rd;U(x) ≥ 8γKσ2c̄

1− r

}
⊂ CcM .

(6.11)

Keeping in mind that U(x?) = 1, one can write

θc

3(1− r)
(U1−r(x)− U1−r(x?))− 8dσ2θc̄U−r(x)

=
θc

3(1− r)
U1−r(x)

(
1− Ur−1(x)− 24(1− r)dσ2c̄

cU(x)

)
,

and one can deduce that this term is greater than M if

θc

3(1− r)
U1−r(x) > 2M, Ur−1(x) ≤ 1

4
and

24(1− r)dσ2c̄

cU(x)
≤ 1

4
.

From these conditions and (6.11), we finally get

CM ⊂

x ∈ R
d;U(x) ≤ max

(
96dσ2c̄

c
,

(
2M(1− r)

θc̄
∨ 4

) 1
1−r

,
8γKσ2c̄

1− r

)
︸ ︷︷ ︸

mK

 .

Going back to (6.8) (and using that CU,K(x) ≤ 1 for all x), we obtain

∀t ∈ [0, γ], E
[
fθ
(
X̄t

)]
≤ fθ(x)

(
e−cK + e−tM

)
+ eθmK

(
e4tc̄σ2θd − e−tM

)
.

If we now assume that the parameters are chosen in such a way that

e−cK + e−γM < 1, (6.12)

an induction leads to

sup
n≥0

Ex
[
fθ
(
X̄nγ

)]
≤ fθ(x) + eθm̄K

e4γc̄σ2θd − e−γM

1− e−cK − e−γM
. (6.13)

From now on, assume that

K = d(1 + 2 log 2) +
4(1− r)
θγc̄

and M =
4θc̄

1− r
.
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In this case, denoting by cr a positive constant which only depends on r (and which may
change from line to line), we have

mK ≤ cr
d(1 + σ2)c̄

c
and e−cK ≤ θγc̄

1− r
,

where for the second inequality, we used that e−x ≤ 1/(2x) for x ≥ 1 and 1−r
2θγc ≥ 1 (θ ≤ 1).

One also checks that γM ≤ 1 since θ ≤ 1. By the inequality e−x ≤ 1 − 1
2x for x ∈ [0, 1],

this implies that

e−γM ≤ 1− 2γθc̄

1− r
=⇒ e−cK + e−γM ≤ 1− γθc̄

1− r
< 1.

Plugging into (6.13) and using the inequality e−x ≥ 1− x for x ≥ 0, this yields

sup
n≥0

Ex
[
fθ
(
X̄nγ

)]
≤ fθ(x) + ecr

θd(1+σ2)c̄
c

(1− r)(e4γc̄σ2θd − 1) + 2γθc̄

γθc̄
.

To conclude, we need to separate two situations. If γθc̄d ≤ 1, then the inequality
ex ≤ 1 + 4x for x ∈ [0, 1] leads to

sup
n≥0

Ex
[
fθ
(
X̄nγ

)]
≤ fθ(x) + ecr

θd(1+σ2)c̄
c (16σ2d+ 2).

If θγc̄d ≥ 1 (so that θγc̄ ≥ 1/d), we obtain the following bound:

sup
n≥0

Ex
[
fθ
(
X̄nγ

)]
≤ fθ(x) + ecr

θd(1+σ2)c̄
c (de4γc̄σ2θd + 2) ≤ fθ(x) + 3decr

θd(1+σ2)c̄
c

where in the last inequality, we used that 4γc̄ ≤ 1 ≤ c̄
c . This concludes the proof.

(iii) Noting that Ψ .r Ψ̄, the first bound is obvious. For the second one, it is enough
to note that under (H1

r ), (Xt)t≥0 and (X̄nγ)n≥0 converge in distribution to π and πγ

respectively so that with a uniform integrability argument combined with the first bound
of (iii), the convergence holds for along functions Up for any p > 0.

7 Proof of Proposition 4.5

The idea is to use Jensen inequality to derive controls of the polynomial moments
from exponential moments. To this end, we begin with the following lemma:

Lemma 7.1. Let V denote a non negative random variable which satisfies

E[eθV ] < ea + ρeb for positive θ, a, ρ and b.

Then, for any p ≥ 1,
E[V p] ≤ θ−p (p− 1 + a+ b+ log(2ρ))

p
. (7.1)

Proof. Let p ≥ 1 and remark that

E[V p] = θ−pE
[
logp(eθV )

]
≤ θ−pE

[
logp(ep−1+θV )

]
.

The function x 7→ logp(x) being concave on [ep−1,+∞), we deduce from the Jensen
inequality that

E[V p] ≤ θ−p(p− 1 + log(E[eθV ]))p ≤ θ−p
(
p− 1 + log

(
ea + ρeb

))p
.

The lemma then follows from the following inequality: for a, b > 0 and ρ ≥ 1, log(ea +

ρeb) ≤ a+ b+ log(2ρ) (since ea + ρeb ≤ 2ρea+b).
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Proof of Proposition 4.5. Let us consider separately the continuous and discrete cases.
Let us also remark that it is enough to prove the result for p ≥ 1 (when p ≤ 1, one can
use the bound obtained for p = 1 combined with the Jensen inequality).

(i) Owing to Proposition 4.1, we can apply Lemma 7.1 with θ = σ−2, V = U(Xt), a = U(x)
σ2

and

(ρ, b) =


(

1, 1
σ2 (1 + dL

2c )
1

1−r

)
under (H1

r )(
dL
2c ,

1
σ2 (4

1
1−r ∨ dc̄

c )
)

under (H1
r ) and (H2

r ).

When only (H1
r ) holds, this yields

Ex[Up(Xt)] ≤

(
σ2(p− 1) + U(x) +

(
1 +

dL

2c

) 1
1−r
)p

≤ cp

(
Up(x) +

(
(1 + σ2)

(
1 +

dL

2c

) 1
1−r
)p)

.

Under (H1
r ) and (H2

r ), we get

Ex[Up(Xt)] ≤
(
σ2(p− 1) + σ2 log

(
dL

c

)
+ U(x) + 4

1
1−r ∨ dc̄

c

)p
.

Using that log(x) ≤ x and that L ≤ c̄ (since U(x) ≥ 1), the second bound follows.

(ii) Assume (H1
r ). Owing to Proposition 4.1 (i) applied with θ = 1/(8σ2), we can use

Lemma 7.1 with V = U(X̄nγ), a = eθU(x), ρ = 1 and b = θ
(

1 + 8dL
c

) 1
1−r

+ 2θdL (we used

that cosh(u) ≤ eu for u ≥ 0). This yields

Ex[Up(X̄nγ)] ≤ θ−p
(
p− 1 + θU(x) + θ

(
1 +

8dL

c

) 1
1−r

+ 2θdL

)p

≤

(
p− 1

θ
+ U(x) +

(
1 +

8dL

c

) 1
1−r

+ 2dL

)p

≤

(
U(x) + cp(1 + σ2)

(
dL+

(
1 +

dL

c

) 1
1−r
))p

.

This yields the bound under (H1
r ) only. For the bound under (H1

r ) and (H2
r ), Proposition

4.2 (ii) applied with θ = 1 ∧ 1/(8σ2) allows us to use Lemma 7.1 with V = U(X̄nγ),

a = eθU(x), ρ = c (c denoting a universal constant) and b = cr
θd(1+σ2)c̄

c . This yields

Ex[Up(X̄nγ)] ≤
(
p− 1 + log(2c)

θ
+ U(x) + cr

d(1 + σ2)c̄

c

)p
,

and the last bound easily follows.
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