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Abstract

For a Haar-distributed element H of a compact Lie group L, Eric Rains proved in
[10] that there is a natural number D = DL such that, for all d ≥ D, the eigenvalue
distribution of Hd is fixed, and Rains described this fixed eigenvalue distribution
explicitly. In the present paper we consider random elements U of a compact Lie
group with general distribution. In particular, we introduce a mild absolute continuity
condition under which the eigenvalue distribution of powers of U converges to that
of HD. Then, rather than the eigenvalue distribution, we consider the limiting
distribution of Ud itself.
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Asymptotics of powers of random elements of compact Lie groups

1 Introduction

Let U(N) be the group of N ×N unitary matrices, and let H be a Haar-distributed
random element of U(N). A topic of high interest in random matrix theory is understand-
ing the patterns in the eigenvalues of H, some of which arise in raising H to a power.
The joint density of the eigenvalues of H on (S1)N with respect to Haar measure on
(S1)N is given by the Weyl integration formula as

ρ(z1, . . . , zN ) =
∏

1≤j<k≤N

|zj − zk|2 ;

see for example [9]. In [10], Rains discussed that, because this formula is a Laurent
polynomial in N variables, and is of degree N − 1 in any one variable, the eigenvalues of
HN are iid uniform random variables on S1.

In fact, Rains showed that this occurs more generally [10, Theorem 2.1].

Theorem 1.1. Let L be a compact Lie group that has a maximal torus T of dimension
n, and let φ : L → GL(V ) be a unitary representation of L on a vector space V of
dimension N . Let C ⊆ L be a connected component of L, and suppose that H is Haar-
distributed on C. Let {Yj}1≤j≤n be iid uniform random variables on S1. Then there exist a
set of Laurent monomials {pj}1≤j≤N on Cn and D = DL ∈ N such that, for all d ≥ D, the
eigenvalue distribution of φ(Ud) has the distribution of the tuple (pj(Y1, . . . , Yn))1≤j≤N .

For example, let L = C = U(N). Then for d ≥ D := N , the eigenvalue distribution
of Hd is the distribution of (Y1, . . . , YN ). When L = C = SU(N), then for d ≥ D := N ,
the eigenvalue distribution of Hd is the distribution of (Y1, . . . , YN−1, Y1 . . . YN−1). For
N = 2n + 1, L = C = SO(N), for d ≥ D := N , the eigenvalue distribution of Hd is the
distribution of (Y1, . . . , Yn, Y1, . . . , Yn, 1).

From these examples, we see that we need the monomials {pj}1≤j≤N partly to model
the fact that the eigenvalues may have restrictions or be limited in their degrees of
freedom. Intuitively, this means thatH raised to a sufficiently high power has eigenvalues
that are as uniformly distributed as possible.

There is much more that can be said regarding patterns in the eigenvalues of Haar
measure arising from powers. For H Haar-distributed on a compact connected Lie group,
Rains in [11] explicitly describes the eigenvalue distributions of Hd for d < D. In [4]
Diaconis and Shahshahani show that for H Haar-distributed on U(N), the trace of Hm

is asymptotically normally distributed as N → ∞. There is also interest in analyzing
powers, traces, and moments for other distributions on U(N), such as unitary Brownian
[8, 2].

In this paper, we present results that are related to the results stated above, but
different in nature. In works like [10] and [11], the focus lies in using algebraic meth-
ods to derive exact formulas for powers of random Lie group elements with specific
distributions. In this work, we will instead use analysis techniques to show that, for a
wide class of random elements with a weak continuity-type assumption, an asymptotic
phenomenon occurs. Also in contrast to other works, we discuss the limit of the random
group element itself.

1.1 Background and notation

We set here the background and notation for compact Lie groups, much of which is
based on the presentation in [9] and [6]. A Lie group L is a differentiable manifold that
is also a group, such that the multiplication and inverse operators are smooth maps. For
simplicity, we will restrict to the case when L is connected. For a Lie group L, there
exists a translation-invariant measure µL, such that for all g ∈ L and measurable A ⊆ L,
µL(gA) = µL(A) = µL(Ag). Moreover, this measure is unique up to scalar multiple.
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When L is compact, µL(L) <∞, and thus we may normalize µL and assume µL(L) = 1.
Being absolutely continuous with respect to Haar measure intuitively means that there
is no “weight” or “mass” being assigned to submanifolds of smaller dimension, and
in particular means that the distribution does not have point-masses. For example, a
random matrix in SU(N) would not have distribution that is absolutely continuous with
respect to µU(N), nor would a random matrix that took on countably-many values with
probability 1.

A representation is a continuous homomorphism φ : L → GL(V ) for some vector
space V . If V is equipped with an inner-product, we say φ is unitary if φ(g) is unitary for
all g ∈ L. It is a theorem ([1, Proposition 2.2.1]) that, given a representation of a compact
Lie group φ : L → GL(V ), there exists an inner product on V that makes φ a unitary
representation. Thus, without loss of generality, we will assume that our representations
are unitary. Compact Lie groups can always be realized as closed subgroups of U(N) for
some N , and as such the results of this paper can be interpreted as statements about
random unitary matrices.

Every compact Lie group L has a maximal torus, which is a Lie subgroup that is
isomorphic as a Lie group to a torus, and is maximal under set inclusion over all such Lie
subgroups. For example, in U(N), the subset of all diagonal matrices is a maximal torus.
All elements of L lie in a maximal torus, and all maximal tori are conjugate to each other.
It follows that given a maximal torus T , for any element g ∈ L, there exists an element in
T conjugate to g.

What follows can be referenced in chapter 11 of [6]. This paper will include discussion
of the space L/T . Since we cannot expect T to be normal in L, L/T is not a group, but
we may still regard it as a collection of cosets, and it is a compact smooth manifold.
Furthermore, L naturally acts on L/T on the left via g · aT = gaT . L/T has an analogue
of Haar measure, µL/T , which is invariant under the action of L, so that for all g ∈ L and
measurable A ⊆ L/T , µL/T (gA) = µL/T (A). We define the smooth map ψ : L/T × T → L

as

ψ(vT, t) = vtv−1 . (1.1)

It is known that, on a set of full measure, ψ is a [N(T ) : T ]-to-1 map (where N(T ) is the
normalizer of T in L) with bijective differential dψ.

To summarize the notation that will be used, we assume that L is a compact, con-
nected Lie group, T is a maximal torus, and U is a random element of L. Let µL denote
Haar measure on L, and let HL denote a Haar-distributed element of L. Let D ∈ N
denote the exponent described in Theorem 1.1, so that the eigenvalues of (HL)d are
distributed as in Theorem 1.1 for any d ≥ D.

1.2 Statement of main results

To state the main results, we first offer a definition. We say that the random pair
(UL/T , UT ) ∈ L/T × T is a random preimage of U if (UL/T , UT ) ∈ ψ−1(U) almost surely.
This definition will be restated in Definition 2.9, along with discussion and examples. We
also fix a Lie group isomorphism z = (z1, . . . , zn) : T → (S1)n.

Section 2 will be devoted to demonstrating the following theorem.

Theorem 1.2. Let φ be a unitary representation of L on a vector space V of dimension
N and T a maximal torus of dimension n. For U a random element of L, let (UL/T , UT )

be a random preimage of U . If Law(UT )� µT (for example, if Law(U)� µL), then the
eigenvalues of φ(Um) converges in distribution to the eigenvalues of φ(HD

L ) as m→∞.
Moreover, if the marginal density of UT can be expressed as a finite Laurent polynomial
in the zj ’s in which the degree in any zj is at most M , then the eigenvalues of φ(Um) are
exactly equal in distribution to the eigenvalues of φ(HD

L ) for m > M .
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The first part of this theorem discusses the behavior for general distributions on L
under power maps, and is proven in this work with analysis techniques. On the other
hand, the second part of this theorem will follow from an observation already made in
[10], which is restated in Remark 2.4, and will apply to uniformly-distributed L-valued
random elements. Indeed, the Weyl integral formula tells us that the density of the
eigenvalues of HL will consist of a finite Laurent polynomial, and Rains showed that
this is also the case for a Haar-distributed element of a connected component of a
disconnected compact Lie group.

We will also discuss the limiting distribution Um itself. In Section 3, we will prove the
following.

Theorem 1.3. If Law(UT ) � µT , then Um converges in distribution to ψ(UL/T , Y ),
where Y is distributed as µT and independent of UL/T .

As will be pointed out in Remarks 2.2 and 3.2, it is interesting that the weak con-
vergence in Theorem 1.2 and Theorem 1.3 holds in spite of any dependence among the
eigenvalues or with UL/T .

Section 4 includes a few results illustrating that the conditions in Theorems 1.2
and 1.3 are independent of the choice of random preimage.

As a final remark before starting the proofs, it should be apparent that these results
will not hold for arbitrary random elements of L. For example, if the distribution of U
consisted of point masses, then the distribution of powers of U would also have point
masses, as would that of the eigenvalues, and the desired convergence could never be
achieved. However, the condition that this paper describes is actually weaker than the
absolute continuity of the distribution of U with respect to Haar measure on L, which
will be illustrated in Example 3.4.

2 Limiting distributions of eigenvalues

For this section, we let X1, . . . , Xn ∈ [0, 2π) be random angles, and let ν be the
distribution of X = (X1, . . . , Xn). Then for m ∈ N, we will denote the distribution
of mX = (mX1, . . . ,mXn) as ν(m), where mXj is interpreted modulo 2π. Let µ[0,2π)n

denote Lebesgue measure on Rn restricted to [0, 2π)n. We will demonstrate the following
theorem.

Theorem 2.1. If ν � µ[0,2π)n , then ν(m) converges weakly to µ[0,2π)n .

Remark 2.2. Phrased another way, Theorem 2.1 states that (mX1, . . . ,mXn) converges
in distribution to (Y1, . . . , Yn), where {Yj}nj=1 are iid uniform random variables on [0, 2π).
Raising elements of S1 to high powers will effectively spin them around S1, and one might
see how spinning a single random value would give rise to a uniform distribution on the
circle, but it might be less obvious why independence occurs in the limit when several
random values are spun at once. The key is to consider how the described spinning
affects the joint distribution.

We will provide two proofs of Theorem 2.1. In Section 2.1, we use Fourier analysis,
while in Section 2.2, we will use elementary measure theory, which provides a more
physical understanding how the distribution ν(m) changes in m. Section 2.3 will apply
this result to prove Theorem 1.2.

2.1 Fourier analysis approach

Given a measure α on [0, 2π)n (or an element f ∈ L1([0, 2π)n)), we let α̂ (resp. f̂ )
denote its Fourier transform. We first prove the following general result.
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Lemma 2.3. For ν, and ν(m) as described above, and for any (p1, . . . , pn) ∈ Zn,

ν̂(m)(p1, . . . , pn) = ν̂(mp1, . . . ,mpn) .

Proof.

ν̂(m)(p1, . . . , pn) =

∫
[0,2π)n

 ∏
1≤j≤n

e−ipjθj

 ν(m)(dθ)

= E

 ∏
1≤j≤n

e−ipjmXj


=

∫
[0,2π)n

 ∏
1≤j≤n

e−ipjmθj

 ν(dθ) = ν̂(mp1, . . . ,mpn) .

Remark 2.4. This lemma rationalizes the stationary behavior exhibited in Rains’ Theo-
rem 1.1 (and is explained well in [9, Lemma 3.15]). Indeed, suppose that ρ is the density
of ν with respect to µ[0,2π)n , and ρ(m) is the density of ν(m). Then if ρ is the finite Fourier
series

ρ(~θ) =
∑
~p∈Zn

a~p
∏

1≤j≤n

eipjθj ,

then ρ(m) is also a finite Fourier series, but with fewer nonzero terms, namely

ρ(m)(~θ) =
∑
~p∈Zn

m|pj ∀j

a~p
∏

1≤j≤n

ei
pj
m θj .

Thus, if m is greater than max{pj : 1 ≤ j ≤ n , a~p 6= 0}, then we see that the Fourier
series of ρ(m) will consist of merely the constant term 1.

This observation on its own would not be suitable to prove Theorem 2.1, as it does
not account for infinite Fourier series or the type of convergence of such series. Instead,
we use the following argument.

Proof of Theorem 2.1. Let ρ be the L1 density of ν with respect to µ[0,2π)n . By the
Riemann-Lebesgue lemma, ρ̂ ∈ c0(Zn). In other words, for any sequence (~p(`))` ⊆ Zn
with ‖~p(`)‖ → ∞, ν̂(~p(`)) = ρ̂(~p(`)) → 0 as ` → ∞. For fixed ~p ∈ Zn \ {~0} by Lemma 2.3,

ν̂(m)(~p) = ν̂(m~p), and as m → ∞, ν̂(m~p) → 0, while ν̂(m)(~0) = 1 for all m, so that

ultimately ν̂(m)(~p) → δ~0(~p) = µ̂[0,2π)n(~p). Since convergence of the Fourier coefficients
provides convergence of the measures ([1, Theorem 4.2.5], for example), ν → µ[0,2π)n

weakly.

2.2 Standard measure theory approach

We now begin the second proof of Theorem 2.1, which relies on examining more
closely how the distributions ν(m) change as m increases. The transformation below
describes how the density of ν(m) changes in m specifically for n = 1.

Lemma 2.5. For any m ∈ N, the transformation R(m) : L1([0, 2π))→ L1([0, 2π)) defined
as

(R(m)f)(x) =
1

m

m−1∑
k=0

f

(
x+ 2πk

m

)
preserves the value of the integral, so that

∫
[0,2π)

R(m)f =
∫

[0,2π)
f , and R(m) is a con-

traction. Furthermore, if ρ ∈ L1([0, 2π)) is a probability density for X, then R(m)ρ is a
probability density for mX.
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Proof. Using a change of variables, we may directly calculate that∫
[0,2π)

1

m

m−1∑
k=0

f

(
x+ 2πk

m

)
dx =

m−1∑
k=0

∫
[0,2π)

1

m
f

(
x+ 2πk

m

)
dx

=

m−1∑
k=0

∫
[2π k

m ,2π k+1
m )

f(u)du

=

∫
[0,2π)

f(u)du .

To show that R(m) is a contraction map, observe that by the triangle inequality,
|R(m)f | ≤ R(m)|f |, so that

∫
|R(m)f | ≤

∫
R(m)|f | =

∫
|f |.

Lastly, for a measurable subset A ⊆ [0, 2π), let m−1(A) denote the inverse image of A
under the map x 7→ mx (mod 2π). Then it can be seen that

m−1(A) = {x ∈ [0, 2π) : mx ∈ A}

=
1

m
A ∪

(
1

m
A+

2π

m

)
∪ . . . ∪

(
1

m
A+

2π(m− 1)

m

)
,

which is necessarily a disjoint union (finding these disjoint sets directly corresponds to
finding mth roots on S1). Then

P (mX ∈ A) = P (X ∈ m−1(A)) =

∫
m−1(A)

ρ =

∫
A

R(m)ρ ,

where the last equality follows again by a change of variables. Thus, R(m)ρ is a density
of mX.

To offer some intuition for this proof of Theorem 2.1, for f ∈ L1([0, 2π)), and for any
x ∈ [0, 2π), R(m)ρ(~x) can be thought of as an approximation of the Riemann integral of
f , even though f need not be Riemann integrable. This issue can be circumvented by
approximating f by a Riemann integrable function.

Recall that a simple function is a sum of characteristic functions
∑k
j=1 χEj

. A step
function s : Rn → R is a simple function in which the sets are rectangles, that is, Ej =

[a1, b1]× . . .× [an, bn] ⊆ Rn for aj , bj ∈ R. The following is a well-known lemma, a version
of which can be found in [12, Theorem 4.3] (while the cited theorem claims pointwise
almost everywhere convergence, the construction indeed provides L1 convergence as
well).

Lemma 2.6. Any integrable function [0, 2π)n → R can be approximated in L1 by a step
function.

With this lemma, we can now, once again, prove Theorem 2.1.

Second proof of Theorem 2.1. Let ρ : [0, 2π)n → R be a (representative of the L1-)
density of (X1, . . . , Xn) with respect to Lebesgue measure. Then for m ∈ N, consider the

map R(m)
n : L1([0, 2π)n)→ L1([0, 2π)n)

(R(m)
n f)(~x) =

1

mn

m−1∑
k1=0

· · ·
m−1∑
kn=0

f

(
x1 + 2πk1

m
, . . . ,

xn + 2πkn
m

)
.

Then note that Lemma 2.5 generalizes to n-dimensions, so R
(m)
n ρ is the density of

(mX1, . . . ,mXn), and R
(m)
n is a contraction. Using Lemma 2.6, approximate ρ in L1

by a step function s : [0, 2π)n → R, so that ‖ρ − s‖1 < ε. Then for any ~x, (R
(m)
n s)(~x)
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is an approximation of the Riemann integral of s. Consequently, we have that, for
every ~x, (R

(m)
n s)(~x) → ‖s‖1. Since s is a step function, it is bounded, so s ≤ c for

some c ∈ R. But this implies that R(m)
n s ≤ c as well, so by the bounded convergence

theorem, R(m)
n s → ‖s‖1 in L1. Hence, we may choose m sufficiently large such that∥∥R(m)

n s− ‖s‖1
∥∥

1
< ε.

Then we have∥∥R(m)
n ρ− ‖ρ‖1

∥∥
1
≤
∥∥R(m)

n ρ−R(m)
n s

∥∥
1

+
∥∥R(m)

n s− ‖s‖1
∥∥

1
+
∥∥‖s‖1 − ‖ρ‖1∥∥1

≤ ‖ρ− s‖1 +
∥∥R(m)

n s− ‖s‖1
∥∥

1
+ ‖ρ− s‖1

< 3ε .

Thus, R(m)
n ρ, the joint-density of (mX1, . . . ,mXn), converges in L1 to the constant

function ‖ρ‖1 = 1.
The L1 convergence of the joint-densities is sufficient to conclude the convergence of

the measures. This is because, for any measurable A ⊆ [0, 2π)n,

ν(m)(A) =

∫
A

R(m)
n ρ

m→∞−−−−→
∫
A

1 = µ[0,2π)n(A) .

2.3 Eigenvalue distributions

We can reinterpret Theorem 2.1 for elements on a torus. For the rest of this section,
fix a Lie group isomorphism z = (z1, . . . , zn) : T → (S1)n. Then we may view each zj as a
projection onto a copy of S1. Then, by considering this map, along with equating S1 with
[0, 2π) and including the observation in Remark 2.4, we may restate Theorem 2.1 as the
following.

Theorem 2.7. If Z is a random element of any torus T ∼= (S1)n with distribution abso-
lutely continuous with respect to µT , then Zm ⇒ Y , a random variable with distribu-
tion µT . Moreover, if the density of Z with respect to µT consists of a finite Laurent
polynomial in the zj ’s, then Zm will be exactly distributed as µT for m greater than the
highest degree of any zj .

Remark 2.8. This is enough information to already prove our eigenvalue result in the
case of U(N). If U has a distribution that is absolutely continuous with respect to
µU(N), and if (Z1, . . . , ZN ) are the eigenvalues of U , then the distribution of (Z1, . . . , ZN )

is absolutely continuous with respect to µ(S1)N , and eigenvalues of Um are given as
(Zm1 , . . . , Z

m
N ), which according to Theorem 2.7 converges in distribution to a uniformly

distributed random variable on (S1)N . This is not sufficient for other groups. For
example, the eigenvalues of elements in SO(2n+ 1) are in complex-conjugate pairs, so
eigenvalue distributions of random elements of SO(2n+ 1) are not absolutely continuous
with respect to µ(S1)2n+1 . Instead, we need to investigate the “degrees of freedom” of the
eigenvalues becoming uniformly distributed for large m.

For the following definition, recall that we let T be a maximal torus of L, and the map
ψ as defined in (1.1).

Definition 2.9. We say that the random pair (UL/T , UT ) ∈ L/T×T is a random preimage
of U if (UL/T , UT ) ∈ ψ−1(U) almost surely.

Example 2.10. For almost all x ∈ L, ψ−1(x) consists of [N(T ) : T ] elements. Provided
that this is almost surely the case for ψ−1(U), by ignoring outcomes on a set of measure
0, we may define a random preimage (UL/T , UT ) by choosing uniformly amongst the
[N(T ) : T ] preimages of U (and independently of U ).

Example 2.11. Suppose that there exists a region O ⊆ T such that each set vOv−1 for
v ∈ N(T ) is disjoint, and if U ∈ ψ(

⋃
v∈N(T ) vOv−1) almost surely, then for almost all
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values of U , we may choose (UL/T , UT ) such that UT is almost surely in O. Thus, the
preimage is almost surely determined by the value of U .

For example, for L = U(N), and T the subset of diagonal matrices, we may set

O =


 eiθ1 0

. . .

0 eiθN

 : 0 ≤ θ1 < . . . < θN < 2π

 ⊆ T .

Then as long as the eigenvalues of U are almost surely distinct, we may define (UL/T , UT )

as the unique preimage of U for which UT ∈ O.

For the remainder of this paper, let (UL/T , UT ) be any random preimage of U . Note
that ψ(UL/T , UT ) = U almost surely, and UT is a random element of T that is almost
surely conjugate to U . As such, the distribution of the eigenvalues of Um is equivalent
to that of (UT )m. Hence, we can characterize the eigenvalues of high powers of U by
characterizing high powers of UT .

As with Theorem 2.7, in order for the main results of this paper, Theorem 1.2 and
Theorem 1.3, to hold, we need a type of absolute continuity on the distribution of U .
Specifically, the criterion of interest is the absolute continuity of the distribution of
UT with respect to µT . Since UT determines the eigenvalues of U , and since T has
the same degrees of freedom as the eigenvalues of elements in L (see Lemma 2.13),
we may consider this a type of absolute continuity on the eigenvalue component of U .
However, this is not the same as saying that the distribution of eigenvalues is absolutely
continuous with respect to µ(S1)N .

There is a natural concern when dealing with this criterion, namely whether
Law(UT ) � µT depends on the choice of random preimage (UL/T , UT ). As it turns
out, this property is independent of the choice of (UL/T , UT ). This result is convenient to
show with extra tools, and thus is addressed in Theorem 4.3 in Section 4. At the moment,
we can at least offer some assurance through Theorem 2.12.

Theorem 2.12. If Law(U)� µL, then Law(UT )� µT .

Proof. Suppose that A ⊆ T is such that µT (A) = 0. Then define B = ψ(L/T × A) =

{`a`−1 : ` ∈ L, a ∈ A}. Then (µL/T ⊗µT )(L/T×A) = 0. Since ψ is a smooth map between
manifolds of the same dimension, B must have outer measure 0 (see [7, Theorem 6.9],
noting that the concept of “measure zero” in that context corresponds to a set having
outer measure 0 with respect to µL/T ⊗ µT and µL), so that B ⊆ B′ for some Borel
measurable B′ with µL(B′) = 0. Since UT is conjugate to U , we may say UT ∈ A implies
that U ∈ B (and U ⊆ B′), so that

P (UT ∈ A) ≤ P (U ∈ B′) .

By the absolute continuity of the distribution of U , the right-hand side of the above must
be 0, so that the left-hand side is also 0, which proves the desired absolute continuity.

We now state a simplified version of [10, Lemma 2.6], which highlights the connection
between T and eigenvalues of elements in L.

Lemma 2.13. Let L be a compact Lie group with maximal torus T of dimension n and
unitary representation φ : L → GL(V ) with dim(V ) = N . Then there exists a set of
monomials {pj}1≤j≤N such that the eigenvalues of an element t ∈ T are given as{

pj
(
z1(t), . . . , zn(t)

)}
1≤j≤N

.
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Proof (sketch). Any irreducible unitary representation of (S1)n can be realized as a
homomorphism (S1)n → S1, which is necessarily a Laurent monomial in each coordinate,
that is, a map of the form (x1, . . . , xn) 7→ xk11 . . . xknn . Then for any unitary representation
φ : T → GL(V ), we may define a unitary representation p : (S1)n → GL(V ) as p = φ ◦ z−1.
Then p is a product of irreducible representations, which implies that p can be realized as
a homomorphism p = (p1, . . . , pN ) : (S1)n → (S1)N . Then each pj is a Laurent monomial,
and the eigenvalues of p(x1, . . . , xn) are given as the set {pj(x1, . . . , xn)}1≤j≤N . Thus, for
any t ∈ T , the eigenvalues of φ(t) = p(z(t)) are given as {pj(z1(t), . . . , zn(t))}1≤j≤N .

The monomials described in Lemma 2.13 are precisely the monomials that come
into Theorem 1.1. For example, the monomials for SU(N) can be realized as pj = zj for
1 ≤ j ≤ N − 1, and pN = z1 . . . zN−1.

We may now put all of our accumulated facts together into a proof of Theorem 1.2.

Proof of Theorem 1.2. Define Zj = zj(UT ) and Z = (Z1, . . . , Zn) = (z1(UT ), . . . , zn(UT )).
By the absolute continuity of the distribution of UT with respect to µT , since z is a
diffeomorphism, we may deduce that the distribution of Z is absolutely continuous
with respect to µ(S1)n . Then take Laurent monomials {pj}1≤j≤N as in Lemma 2.13 and
p = (p1, . . . , pN ),

If Y ∈ (S1)n is distributed as µ(S1)n , then by Theorem 2.7, Zm ⇒ Y , so p(Zm)⇒ p(Y ).
Or, written more explicitly,

(p1(Zm1 , . . . , Z
m
n ), . . . , pN (Zm1 , . . . , Z

m
n ))⇒ (p1(Y1, . . . , Yn), . . . , pN (Y1, . . . , Yn)) .

Therefore, the eigenvalue distribution of (UT )m, which is equivalent to the eigenvalue
distribution of Um, converges weakly to the eigenvalue distribution of HD

L .
To prove the second part of the theorem, we use the second part of Theorem 2.7,

which tells us that if m is greater than the highest degree of any zj in the density of UT ,
then Zm is distributed as Y , for which we will see p(Zm) is distributed as p(Y ), so the
eigenvalue distribution of Um will be distributed as that of HD

L .

3 Limiting distributions of powers of group elements

This section considers the distribution of powers of a random Lie group element itself,
which results in statements stronger than those regarding distributions of eigenvalues.
There is one result of this nature that we may already deduce: if the distribution of U
conjugate-invariant and Law(U) � µL, then Um converges in distribution to HD

L . To
offer a brief justification, if U has conjugate-invariant distribution, then the distribution
of U is determined by the distribution of the eigenvalues, as can be said of Um, as well
as its limit in m. Hence, if the eigenvalues achieve convergence in distribution, so must
Um, and it must converge to HD

L . A rigorous justification of this fact will follow from the
more general result of this section, Theorem 1.3.

Recall the definition of random preimage in Definition 2.9. While the previous section
and the discussion above focused on UT , our results of this section will require the
distribution of UL/T to be considered. Lemma 3.1, stated on its own for the sake of
discussion, hints at the connection between UL/T and the limiting distribution of Um.

Lemma 3.1. (UL/T , U
m
T ) is a random preimage of Um.

Proof. Note that, for any a ∈ L/T and b ∈ T , ψ(a, b)m = ψ(a, bm). Then ψ(UL/T , U
m
T ) =

ψ(UL/T , UT )m = Um almost surely.

Remark 3.2. Based on this lemma and Theorem 2.7, it may be easy to think that
Um ∼ ψ(UL/T , U

m
T ) converges in distribution to ψ(UL/T , Y ), where Y is uniform on T
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and independent of UL/T . However, Lemma 3.1 on its own does not imply this, neither
guaranteeing independence in the limit, nor proving that such a limit exists in the first
place. Nevertheless, independence will be achieved in the limit, as stated in the last
main result, Theorem 1.3, but as with the independence in Theorem 2.1, it requires
more careful reasoning to show. For this result, we will once again use the condition
Law(UT ) � µT , and in particular we do not require Law(U) � µL, which will be
highlighted in the example to follow. Possibly more surprising is that the statement of
Theorem 1.3 implies that the distribution of ψ(UL/T , Y ) is the same regardless of choice
of random preimage (UL/T , UT ). Indeed this can be proven true independent of the
methods used here, and is addressed in detail in Section 4, Theorem 4.4.

Proof of Theorem 1.3. We will show this by first showing that (UL/T , UT ) ⇒ (UL/T , Y ).
Fix a measurable set A ⊆ L/T . Suppose that P (UL/T ∈ A) > 0. Then consider
P ((UL/T ,UT )∈A×·)

P (UL/T∈A) as a measure on T . In fact, this is the probability distribution of

UT conditioned on UL/T ∈ A, which we will define as VA. Or more precisely, define

Ω′ = {UL/T ∈ A} and P ′ =
P ((UL/T∈A)∩·)
P (UL/T∈A) , so that (Ω′, P ′) is a probability space, and

then define VA := UT |Ω′ . It should be noted that VA must have distribution absolutely
continuous with respect to µT , because if B ⊆ T where µT (B) = 0, then

P (VA ∈ B) · P (UL/T ∈ A) = P ((UL/T , UT ) ∈ A×B) ≤ P (UT ∈ B) = 0 ,

where the last equality follows from the absolute continuity of the distribution of UT
with respect to µT . Thus, P (VA ∈ B) = 0, proving the absolute continuity of the
distribution of VA with respect to µT . Next, note that the distribution of (VA)m is given

as
P ((UL/T ,(UT )m)∈A×·)

P (UL/T∈A) . If we define Y to be uniform on T and independent of UL/T , then

using Theorem 2.7, (VA)m converges in distribution to Y , so for any measurable B ⊆ T ,
P ((UL/T ,(UT )m)∈A×B)

P (UL/T∈A) → P (Y ∈ B), or in other words,

P ((UL/T , (UT )m) ∈ A×B)→ P (UL/T ∈ A)P (Y ∈ B) = P ((UL/T , Y ) ∈ A×B) . (3.1)

If P (UL/T ∈ A) = 0, then P ((UL/T , (UT )m) ∈ A × B) ≤ P (UL/T ∈ A) implies that
the convergence in (3.1) trivially occurs, so it must occur for all measurable A. Since
{A×B : A ⊆ L/T,B ⊆ T measurable} is a π-system that generates the Borel σ-algebra
of L/T × T , the convergence in (3.1) occurs for all measurable subsets of L/T × T .
Hence, (UL/T , (UT )m) converges to (UL/T , Y ) in distribution. By Lemma 3.1, Um ∼
ψ(UL/T , (UT )m), which must converge in distribution to ψ(UL/T , Y ).

We now prove the aforementioned corollary.

Corollary 3.3. If the distribution of U is conjugate-invariant and absolutely continuous
with respect to µL, then Um converges in distribution to HD

L .

Proof. If U is conjugate-invariant, then for any g ∈ L, gUg−1 ∼ U . Let (UL/T , UT ) be
a uniform random preimage of U as described in Example 2.10. Then, almost surely,
ψ(UL/T , UT ) = U and ψ(gUL/T , UT ) = gUg−1, so it can be seen that (gUL/T , UT ) is a
uniform random preimage of gUg−1. The distribution of a uniform random preimage is
determined by the distribution of the image, so gUg−1 ∼ U implies that (gUL/T , UT ) ∼
(UL/T , UT ), and in particular gUL/T ∼ UL/T , which forces UL/T to have µL/T as its
distribution by the uniqueness of Haar measure. By Theorem 1.3, Um must converge in
distribution to ψ(UL/T , Y ), where Y is independent of UL/T ∼ µL/T , which is indeed the
distribution of HD

L .
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We end with an example, considering a random variable that does not have absolutely
continuous distribution with respect to µL. In particular, this construction will be such
that UL/T consists of point masses. In the example, we will explicitly compute UT and
UL/T , using a uniform random preimage, as described in Example 2.10, and use it to
compute the limiting distribution of Um.

Example 3.4. Consider L = U(2), and T the set of diagonal matrices of U(2). Let D1 and
D2 be random elements of T with distributions absolutely continuous with respect to µT .
Let X be a random variable, independent of D1 and D2, with P (X = 0) = P (X = 1) = 1

2 .
Define

a =

( √
2/2 −

√
2/2√

2/2
√

2/2

)
, p =

(
0 1

1 0

)
.

Note that ap swaps the 2 columns of a, while for t ∈ T , ptp∗ = ptp swaps the diagonal
entries of t.

Define U = XD1 + (1−X)aD2a
∗. We will now compute the distribution of a uniform

random preimage (UL/T , UT ). Note that P (U ∈ T ∪ aTa∗) = 1. If t ∈ T and is a regular
value of ψ (or in other words, if t has distinct diagonal entries), then letting e ∈ L denote
the identity, then ψ−1(t) = {(eT, t), (pT, ptp)} and ψ−1(ata∗) = {(aT, t), (apT, ptp)}. If we
let X̂ be an independent random variable with P (X̂ = 0) = P (X̂ = 1) = 1

2 , then UT is
distributed as

XX̂D1 +X(1− X̂)pD1p+ (1−X)X̂D2 + (1−X)(1− X̂)pD2p .

Note that this has absolutely continuous distribution with respect to µT , which implies
that Theorem 1.3 holds, so Um converges in distribution to ψ(UL/T , Y ) where Y is
independent and distributed as µT . To compute ψ(UL/T , Y ), we see that UL/T satisfies

P (UL/T = eT ) = P (UL/T = pT ) = P (UL/T = aT ) = P (UL/T = apT ) =
1

4
.

Then by noting that pY p ∼ Y , and thus X̂Y + (1− X̂)pY p ∼ Y , we have

ψ(UL/T , Y ) ∼ XX̂Y +X(1− X̂)pY p+ (1−X)X̂aY a∗ + (1−X)(1− X̂)apY pa∗

∼ XY + (1−X)aY a∗ .

Thus, we may explicitly describe limits of distributions of random elements of compact
Lie groups with weaker conditions than absolute continuity with respect to µL.

4 Regarding random preimages

In stating our theorems, we chose to discuss arbitrary random preimages, from
opposed to merely making a fixed choice, in order to offer freedom and generality in
applying these methods; there are reasons that the preimages described in Examples 2.10
and 2.11 are both useful. However, the provided generality may cause further questions.

There are two facts that this section will address, demonstrating that the assumptions
and consequences of our main results, Theorem 1.2 and Theorem 1.3, do not depend on
the choice of random preimage (UL/T , UT ). We will first show Theorem 4.3, which states
that the property Law(UT ) � µT does not depend on the choice of random preimage.
Secondly, we will show Theorem 4.4, which states that if Law(UT ) � µT , and if Y is
distributed as µT and independent of UL/T , then the distribution of ψ(UL/T , Y ) does not
depend on the choice of random preimage. It should be mentioned that Theorem 4.4 is
technically a consequence of Theorem 1.3, even though Theorem 1.3 offers no intuition
whatsoever as to why this is true. Thus, this section will offer a proof of this independent
of the methods used in Theorem 1.3.
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In order to show these facts, it will be convenient to use an extra tool, namely the
Weyl group, which will now be described based on [1] and [6]. We denote the normalizer
of T in L as

N(T ) = {a ∈ L : ata−1 ∈ t for all t ∈ T} .

We call the group N(T )/T the Weyl group of L. Note that [N(T ) : T ] is always finite.
The Weyl group acts on T by conjugation, that is, if vT ∈ N(T )/T and t ∈ T , then
vT · t := vtv−1. We will also need the fact that the map T → T defined as t 7→ vT · t is not
only a diffeomorphism, but also preserves the measure µT by the translation invariance
of µT .

The Weyl group also acts on L/T via right multiplication, so for vT ∈ N(T )/T and
aT ∈ L/T , vT · aT := aTv−1 = av−1T . Then we may define an action of N(T )/T on
L/T × T , namely

vT · (aT, t) := (av−1T , vtv−1) . (4.1)

This action will preserve the value of ψ, so that if w ∈ N(T )/T , then ψ(w · (aT, t)) =

ψ(aT, t). Phrased another way, if (aT, t) ∈ ψ−1(x), then w · (aT, t) ∈ ψ−1(x). If we know
x = ψ(aT, t), where t is an element of T ′ as described in Theorem 4.1, then the Weyl
group will act freely and transitively on ψ−1(x). This result can be mostly reconstructed
from results in [6], specifically Proposition 11.4 and Lemma 11.26.

Lemma 4.1. There exists a Borel measurable set T ′ ⊆ T satisfying the following

(i) µT (T ′) = 1.

(ii) T ′ is invariant under the action of N(T )/T defined in (4.1).

(iii) For all t ∈ T ′ and all nontrivial w ∈ N(T )/T , w · t 6= t.

(iv) If t ∈ T ′, s ∈ T and ψ(aT, t) = ψ(bT, s), then there exists a unique w ∈ N(T )/T such
that w · (aT, t) = (bT, s), and s ∈ T ′.

Proof. If 〈t〉 is the closure of the subgroup generated by t, then set T ′ = {t ∈ T : 〈t〉 = T}.
Then T \T ′ consists of countably-many subtori of dimension less than the dimension of T .
To see this, first take a Lie group isomorphism z = (z1, . . . , zn) : T → Sn, then observe
that z(T ′) is the set of tuples (e2πiθ1 , . . . , e2πiθn) such that 1, θ1, . . . , θn are Q-linearly
independent (see [6, Proposition 11.4]). Then z(T ) \ z(T ′) corresponds to a set of tuples
(θ1, . . . , θn) ∈ [0, 1)n such that there exist q0, . . . , qn ∈ Q where q0 + q1θ1 + . . .+ qnθn = 0,
meaning that this set of tuples in [0, 1)n is a countable union of closed hyperplanes of
smaller dimension. We may then deduce that z(T ) \ z(T ′) is a union of countably-many
subtori of smaller dimension, so the same can be said of T \ T ′. Therefore, T ′ is a
measurable set and of full measure.

If t ∈ T ′, and if w = vT ∈ N(T )/T , then

〈w · t〉 = 〈vtv−1〉 = v〈t〉v−1 = vTv−1 = T ,

so w · t ∈ T ′ as well. And if w · t = t, then vtv−1 = t, and for any n ∈ Z, vtnv−1 = tn.
Then the diffeomorphism t 7→ w · t fixes 〈t〉, a dense subset of T , so it must fix all of T .
Equivalently, we can say that v commutes with every element of T . By the maximality of
T , we must have v ∈ T (or else v and T would be contained in a torus larger than T ), so
that w = vT = eT .

Lastly, if t ∈ T ′ and s ∈ T where ψ(aT, t) = ψ(bT, s), then ata−1 = bsb−1, and
t = (a−1b)s(a−1b)−1, so that

T = 〈t〉 = (a−1b)〈s〉(a−1b)−1 ⊆ (a−1b)T (a−1b)−1 .
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Since (a−1b)T (a−1b)−1 is a torus, by the maximality of T , we must have T = (a−1b)T (a−1b)−1,
so that a−1b ∈ N(T ), implying that (b−1a)T ∈ N(T )/T , and

(b−1a)T · (aT, t) = (a(a−1b)T, (b−1a)t(a−1b)) = (bT, s) .

It follows that s ∈ T ′.

Lemma 4.1 and the commentary above tell us that the Weyl group action can often
map one preimage of a fixed value x to another. The next result tells us that a random
element of the Weyl group can be used to convert between random preimages.

Lemma 4.2. If (U
(1)
L/T , U

(1)
T ) and (U

(2)
L/T , U

(2)
T ) are both random preimages of U , and if

Law(U
(1)
T ) � µT , then there exists a random element of the Weyl group W ∈ N(T )/T

such that, almost surely,

W · (U (1)
L/T , U

(1)
T ) = (U

(2)
L/T , U

(2)
T ) .

Proof. Take T ′ ⊆ T as in Lemma 4.1. Then for any w ∈ N(T )/T , define

Pw = {((u, t), w · (u, t)) : u ∈ L/T , t ∈ T ′} ⊆ (L/T × T ′)2 .

Then each Pw is Borel measurable. Furthermore, if v, w ∈ N(T )/T are such that
((aT, t), (bT, s)) ∈ Pw∩Pv, then w·t = s = v ·t, and (v−1w)·t = t, and since t ∈ T ′, we must
have w = v. Hence, the collection {Pw}w∈N(T )/T is disjoint. Then set P =

⋃
w∈N(T )/T Pw,

and define ω : P → N(T )/T as ω((aT, t), w · (aT, t)) = w. Then for any w ∈ N(T )/T ,
ω|Pw ≡ w, so we see that ω is well-defined and measurable. Then observe that, for any
(aT, t) ∈ L/T × T ′ and w ∈ N(T )/T ,

ω((aT, t), w · (aT, t)) · (aT, t) = w · (aT, t) .

By the absolute continuity of U (1)
T , we have that P (U

(1)
T ∈ T ′) = 1. Then almost

surely ψ(U
(1)
L/T , U

(1)
T ) = U = ψ(U

(2)
L/T , U

(2)
T ), so by Lemma 4.1, P (U

(2)
T ∈ T ′) = 1, and(

(U
(1)
L/T , U

(1)
T ), (U

(2)
L/T , U

(2)
T )
)
∈ P almost surely, so that we may give the almost sure

definition of W ∈ N(T )/T as W = ω
(
(U

(1)
L/T , U

(1)
T ), (U

(2)
L/T , U

(2)
T )
)
. Thus, we see that

W · (U (1)
L/T , U

(1)
T ) = (U

(2)
L/T , U

(2)
T ) almost surely.

We now use Lemma 4.2 to immediately prove Theorems 4.3 and 4.4 in succession.

Theorem 4.3. If (U
(1)
L/T , U

(1)
T ) and (U

(2)
L/T , U

(2)
T ) are both random preimages of U , then

the distribution of U (1)
T is absolutely continuous with respect to µT if and only if the

distribution of U (2)
T is.

Proof. Suppose that U (1)
T has distribution absolutely continuous with respect to µT . Then

by Lemma 4.2, there exists a random W ∈ N(T )/T such that W · U (1)
T = U

(2)
T . Then if

µT (A) = 0, then

P (U
(2)
T ∈ A) = P (W · U (1)

T ∈ A)

=
∑

w∈N(T )/T

P (w · U (1)
T ∈ A , W = w)

=
∑

w∈N(T )/T

P (U
(1)
T ∈ w−1 ·A , W = w)

≤
∑

w∈N(T )/T

P (U
(1)
T ∈ w−1 ·A) = 0 .

This proves the absolute continuity of the distribution of U (2)
T with respect to µT .
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Theorem 4.4. Suppose that (U
(1)
L/T , U

(1)
T ) and (U

(2)
L/T , U

(2)
T ) are both random preimages

of U , and U (1)
T has absolutely continuous distribution with respect to µT , and Y ∈ T is

distributed as µT and is independent of U (1)
L/T and U (2)

L/T . Then ψ(U
(1)
L/T , Y ) ∼ ψ(U

(2)
L/T , Y ).

Proof. By Lemma 4.2, there exists a random W ∈ N(T )/T such that W · U (1)
L/T = U

(2)
L/T .

For w ∈ N(T )/T , w · Y ∼ Y , because P (w · Y ∈ A) = P (Y ∈ w−1 ·A) = P (Y ∈ A). Then
we have, for any measurable A ⊆ L,

P
(

(ψ(U
(2)
L/T , Y ) ∈ A

)
= P

(
ψ(W · U (1)

L/T , Y ) ∈ A
)

=
∑

w∈N(T )/T

P
(
ψ(w · U (1)

L/T , Y ) ∈ A , W = w
)

=
∑

w∈N(T )/T

P
(
ψ(U

(1)
L/T , w

−1 · Y ) ∈ A , W = w
)

=
∑

w∈N(T )/T

P
(
ψ(U

(1)
L/T , Y ) ∈ A , W = w

)
= P

(
ψ(U

(1)
L/T , Y ) ∈ A

)
.

This proves the claim.

In conclusion, we may say with certainty that the choice of random preimage does
not impact the conditions or results of Theorems 1.2 and 1.3.
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