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How smooth can the convex hull of a Lévy path be?*
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Abstract

We describe the rate of growth of the derivative C′ of the convex minorant of a Lévy
path at times where C′ increases continuously. Since the convex minorant is piecewise
linear, C′ may exhibit such behaviour either at the vertex time τs of finite slope s = C′τs
or at time 0 where the slope is −∞. While the convex hull depends on the entire
path, we show that the local fluctuations of the derivative C′ depend only on the fine
structure of the small jumps of the Lévy process and are the same for all time horizons.
In the domain of attraction of a stable process, we establish sharp results essentially
characterising the modulus of continuity of C′ up to sub-logarithmic factors. As a
corollary we obtain novel results for the growth rate at 0 of meanders in a wide class
of Lévy processes.
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1 Introduction

The class of Lévy processes with paths whose graphs have convex hulls in the plane
with smooth boundary almost surely has recently been characterised in [4]. In fact, as
explained in [4], to understand whether the boundary is smooth at a point with tangent
of a given slope, it suffices to analyse whether the right-derivative C ′ = (C ′t)t∈(0,T ) of
the convex minorant C = (Ct)t∈[0,T ] of a Lévy process X = (Xt)t∈[0,T ] is continuous as
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How smooth can the convex hull of a Lévy path be?

Table 1: The table gives a general overview of the main objects and regimes studied in
the paper, and references to the theorems in which they are considered.

Regimes: Finite slope (FS) Infinite slope (IS)

Setting:
s ∈ L∗, i.e. C ′ non-constant at

vertex time τs

Infinite variation X, i.e.
limt↓0 C

′
t = −∞ and

non-constant C ′ at time 0

Upper functions:
lim supt↓0(C ′t+τs − s)/f(t)

(Theorem 2.7)
lim supt↓0 |C ′t|f(t)

(Theorem 2.9)

Lower functions:
lim inft↓0(C ′t+τs − s)/f(t)

(Theorem 2.2)
lim inft↓0 |C ′t|f(t)

(Theorem 2.13)

it attains that slope (recall that C is the pointwise largest convex function satisfying
Ct ≤ Xt for all t ∈ [0, T ]). The main objective of this paper is to quantify the smoothness
of the boundary of the convex hull of X by quantifying the modulus of continuity of C ′

via its lower and upper functions. In the case of times 0 and T , we quantify the degree of
smoothness of the boundary of the convex hull by analysing the rate at which |C ′t| → ∞
as t approaches either 0 or T (see YouTube [2] for a short presentation of our results).

It is known that C is a piecewise linear convex function [29, 17] and the image of
the right-derivative C ′ over the open intervals of linearity of C is a countable random
set S with a.s. deterministic limit points that do not depend on the time horizon T ,
see [4, Thm 1.1]. These limit points of S determine the continuity of C ′ on (0, T )

outside of the open intervals of constancy of C ′, see [4, App. A]. Indeed, the vertex time
process τ = (τs)s∈R, given by τs := inf{t ∈ (0, T ) : C ′t > s} ∧ T (where a ∧ b := min{a, b}
and inf ∅ :=∞), is the right-inverse of the non-decreasing process C ′. The process τ finds
the times in [0, T ] of the vertices of the convex minorant C (see [17, Sec. 2.3]), so the only
possible discontinuities of C ′ lie in the range of τ . Clearly, it suffices to analyse only the
times τs for which C ′ is non-constant on the interval [τs, τs+ ε) for every ε > 0 (otherwise,
τs is the time of a vertex isolated from the right). At such a time, the continuity of C ′ can
be described in terms of a limit set of S. In the present paper we analyse the quality of
the right-continuity of C ′ at such points. By time reversal, analogous results apply for
the left-continuity of t 7→ C ′t on (0, T ) (i.e., as t ↑ τs for s ∈ R) and for the explosion of C ′t
as t ↑ T . Throughout the paper, the variable s ∈ R will be reserved for slope, indexing
the vertex time process τ .

1.1 Contributions

We describe the small-time fluctuations of the derivative of the boundary of the
convex hull of X at its points of smoothness. This requires studying the local growth
of C ′ in two regimes: at finite slope (FS) s in the deterministic set L∗ ⊂ R of points s
that are a.s. in the set L+(S) of right-limit points1 of the set of slopes S and at infinite
slope (IS) for Lévy processes of infinite variation, see Figure 1 below. In terms of times,
regime (FS) with s ∈ L∗ analyses how C ′ leaves the slope s at vertex time τs in [0, T )

and regime (IS) analyses how C ′ enters from −∞ at time 0 = limu↓−∞ τu. At all other
times t ∈ (0, T ) \ {τs : s ∈ L∗}, the derivative C ′ is a.s. constant on [t, t + ε) for some
sufficiently small ε > 0. In particular, in what follows we exclude all Lévy processes that
are compound Poisson with drift, since C ′ only takes finitely many values in that case.
In Table 1 above we refer the reader to the corresponding theorem in all four regimes
considered in this work. Table 2 below concretises our results in all four regimes in the
special case of α-stable processes in terms of a parametric family of functions.

1A point x is a right-limit point of A ⊂ R, denoted x ∈ L+(A) if A ∩ (x, x+ ε) 6= ∅ for all ε > 0 (see also [4,
App. A]).
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How smooth can the convex hull of a Lévy path be?

Figure 1: The picture on the left shows the path of an α-stable Lévy process X with α ∈ (1, 2)

and its convex minorant C starting at time 0. The picture on the right shows the post-minimum
process (Xt+τ0 −Xτ0)t∈[0,T−τ0] of an α-stable process with α ∈ (0, 1) and its corresponding convex
minorant (Ct+τ0 − Cτ0)t∈[0,T−τ0]. Note that, in the case α ∈ (0, 1), the derivative C′ is continuous
only at τ0, i.e. at t = 0 in the graph, and at no other contact point between the path and its convex
minorant.

Table 2: The table gives an overview of the upper and lower functions, in both the finite
and infinite slope regimes, when X is an α-stable process (which is driftless γ0 = 0 when
α ∈ (0, 1)) in terms of the function Fq : t 7→ t1−1/α logq(1/t). The results in this table
follow from the corresponding theorems cited in Table 1 above.

Finite slope (FS) Infinite slope (IS)
α ∈ (0, 1) and ρ = P(Xt > 0) ∈ (0, 1] α ∈ (1, 2) and ρ = P(Xt > 0) ∈ (0, 1)

lim sup
t↓0

C ′t+τ0Fq(t) =

{
∞, qρ > 1− 1

α ,

0, qρ < 1− 1
α ,

lim sup
t↓0

|C ′t|Fq(t) =

{
∞, q ≥ − 1

α

0, q < − 1
α

lim inf
t↓0

C ′t+τ0Fq(t) =

{
∞, q ≥ 1,

0, q < 1,
lim inf
t↓0

|C ′t|Fq(t) =

{
∞, q(1− ρ) > 1− 1

α ,

0, q(1− ρ) < 1− 1
α ,

Regime (FS): C ′ immediately after τs. Given a slope s ∈ R, we have s /∈ S a.s.
by [17, Thm 3.1] since the law of X is diffuse. By [4, Thm 1.1], s ∈ L∗ if and only if, with
probability 1, the derivative C ′ attains level s at a unique time τs ∈ (0, T ) (i.e. C ′τs = s)
and is not constant on every interval [τs, τs + ε), ε > 0, a.s. Moreover, s ∈ L∗ if and only
if
∫ 1

0
P(Xt/t ∈ (s, s + ε))t−1dt = ∞ for all ε > 0. The regime (FS) includes an infinite

variation process X if it is strongly eroded2 (implying L∗ = R) or, more generally, if
(Xt − st)t≥0 is eroded (implying s ∈ L∗), see [4]. Moreover, regime (FS) includes a finite
variation process X at slope s ∈ L∗ if and only if the natural drift γ0 = limt↓0Xt/t equals

s and
∫ 1

0
P(Xt > γ0t)t

−1dt = ∞ or, equivalently, if the positive half-line is regular for
(Xt − γ0t)t≥0 (see [4, Cor. 1.4] for a characterisation in terms of the Lévy measure of X
or its characteristic exponent).

Our results in regime (FS) are summarised as follows. For any process with s ∈ L∗,
Theorem 2.2 establishes general sufficient conditions identifying when lim inft↓0(C ′t+τs −
s)/f(t) is either 0 a.s. or ∞ a.s. In particular, we show that lim inft↓0(C ′t+τs − s)/f(t)

cannot take a positive finite value if X has jumps of both signs and is an α-stable with
α ∈ (0, 1] (recall that, if α > 1, then L∗ = ∅ by [4, Prop. 1.6]).

For processes X in the small-time domain of attraction of an α-stable process with
α ∈ (0, 1) (see Subsection 2.2 below for definition), Theorem 2.7 finds a parametric
family of functions f that essentially determine the upper fluctuations of C ′t+τs − s up to
sublogarithmic factors. In particular, Theorem 2.7 determines when lim supt↓0(C ′t+τs −

2Following [4, par. 1, p. 3], we say that X is eroded if 0 ∈ L(S) is both a right- and a left-limit point of S a.s.,
i.e. S ∩ (0, ε) 6= and S ∩ (−ε, 0) 6= a.s. for all ε > 0. A process X is strongly eroded if L(S) = R a.s., in which
case L+(S) = R a.s. and L∗ = R.
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s)/f(t) equals 0 a.s. or∞ a.s., essentially characterising the right-modulus of continuity3

of C ′ at τs. The family of functions f is given in terms of the regularly varying normalising
function of X.

Regime (IS): C ′ immediately after 0. The boundary of the convex hull of X is smooth
at the origin if and only if limt↓0 C

′
t = −∞ a.s., which is equivalent to X being of infinite

variation (see [4, Prop. 1.5 & Sec. 1.1.2]). If X has finite variation, then C ′ is bounded
(see [4, Prop. 1.3]). In this case, C ′ has positive probability of being non-constant on the
interval [0, ε) for every ε > 0 if and only if the negative half-line is not regular. Moreover,
if this event occurs, then C ′t approaches the natural drift γ0 as t ↓ 0 by [4, Prop. 1.3(b)]
and the local behaviour of C ′ at 0 would be described by the results of regime (FS). Thus,
in regime (IS) we only consider Lévy processes of infinite variation.

Our results in regime (IS) are summarised as follows. For any infinite variation
process X, Theorem 2.9 establishes general sufficient conditions for lim supt↓0 |C ′t|f(t)

to equal either 0 a.s. or∞ a.s. In particular, we show that lim supt↓0 |C ′t|f(t) cannot take
a positive finite value if X is α-stable with α ∈ [1, 2) and has (at least some) negative
jumps.

If the Lévy process lies in the domain of attraction of an α-stable process, with α ∈
(1, 2], Theorem 2.13 finds a parametric family of functions f that essentially determine
the lower fluctuations of C ′ up to sublogarithmic functions. The function f is given in
terms of the regularly varying normalising function of X. Again, these results describe
the right-modulus of continuity of the derivative of the boundary of the convex hull of
X (as a closed curve in R2) at the origin. In this case, for a sufficiently small ε > 0,
we may locally parametrise the curve ((t, Ct); t ∈ [0, ε]), as ((ς(t), t); t ∈ [Cε, 0]), using
a local inverse ς(t) of Ct with left-derivative ς ′(t) = 1/C ′ς(t) that vanishes at 0 (since
limt↓0 1/|C ′t| = 0 a.s.). Thus, the left-modulus of continuity of ς at 0 is described by the
upper and lower limits of (|C ′t|f(t))−1 as t ↓ 0, the main focus of our results in this regime.

Consequences for the path of a Lévy process and its meander. In Subsection 2.5
we present some implications the results in this paper have for the path of X. We find
that, under certain conditions, the local fluctuations of X can be described in terms of
those of C ′, yielding novel results for the local growth of the post-minimum process of X
and the corresponding Lévy meander (see Lemma 2.15 and Corollaries 2.16 and 2.17
below).

1.2 Strategy and ideas behind the proofs

An overview of the proofs of our results is as follows. First we show that, under
our assumptions, the local properties of C ′ do not depend on the time horizon T . This
reduces the problem to the case where the time horizon T is independent of X and
exponentially distributed (the corresponding right-derivative is denoted Ĉ ′). Second, we
translate the problem of studying the local behaviour of Ĉ ′ to the problem of studying the
local behaviour of its inverse: the vertex time process τ̂ . Third, we exploit the fact that,
since the time horizon T is an independent exponential random variable with mean 1/λ,
the vertex time process τ̂ is a time-inhomogeneous non-decreasing additive process (i.e.,
a process with independent but non-stationary increments) and its Laplace exponent is
given by (see [17, Thm 2.9]):

E[e−wτ̂u ] = e−Φu(w), Φu(w) :=

∫ ∞
0

(1− e−wt)e−λtP(Xt ≤ ut)
dt

t
, w ≥ 0, u ∈ R. (1.1)

3We say that a non-decreasing function ϕ : [0,∞) → [0,∞) is a right-modulus of continuity of a right-
continuous function g at x ∈ R if lim supy↓x |g(y)− g(x)|/ϕ(y − x) <∞.
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These three observations reduce the problem to the analysis of the fluctuations of the
additive process τ̂ .

The local properties of C ′ are entirely driven by the small jumps of X. However,
different facets of the small-jump activity of X dominate in each regime, resulting in
related but distinct results and criteria. Indeed, regime (FS) corresponds to the short-
term behaviour of τ̂s+u − τ̂s as u ↓ 0 while regime (IS) corresponds to the long-term
behaviour of τ̂u as u→ −∞ (note that, when X is of infinite variation, τ̂u > 0 for u ∈ R
and limu→−∞ τ̂u = 0 a.s.). This bears out in a difference in the behaviour of the Laplace
exponent Φ of τ̂ at either bounded or unbounded slopes and leads to an interesting
diagonal connection in behaviour that we now explain.

Our main tool is the novel description of the upper and lower fluctuations of a non-
decreasing time-inhomogeneous additive process Y started at Y0 = 0, in terms of its
time-dependent Lévy measure and Laplace exponent. In our applications, the process Y
is given by (τ̂u+s − τ̂s)u≥0 in regime (FS) and (τ̂−1/u)u≥0 (with conventions −1/0 = −∞
and τ̂−∞ = 0) in regime (IS). Then our main technical tools, Theorems 3.1 and 3.3 of
Section 3 below, describing the upper and lower fluctuations of Y , also serve to describe
the lower and upper fluctuations, respectively, of the right-inverse L of Y . Since, in
regime (FS), we have Ĉ ′t+τ̂s − s = Lt but, in regime (IS), we have Ĉ ′t = −1/Lt, the

lower (resp. upper) fluctuations of Ĉ ′ in regime (FS) will have a similar structure to
the upper (resp. lower) fluctuations of Ĉ ′ in regime (IS). This diagonal connection is a
priori surprising as the processes considered by either regime need not have a clear
connection to each other. Indeed, regime (FS) considers most finite variation processes
and only some infinite variation processes while regime (IS) considers exclusively infinite
variation processes. This diagonal connection is reminiscent of the duality between
stable process with stability index α ∈ (1, 2] and a corresponding stable process with
stability index 1/α ∈ [1/2, 1) arising in the famous time-space inversion first observed by
Zolotarev for the marginals and later studied by Fourati [14] for the ascending ladder
process (see also [21] for further extensions of this duality).

The lower and upper fluctuations of the corresponding process Y require varying
degrees of control on its Laplace exponent Φ in (1.1). The assumptions of Theorem 3.1
require tight two-sided estimates of Φ, not needed in Theorem 3.3. When applying
Theorem 3.1, we are compelled to assume X lies in the domain of attraction of an
α-stable process. In regime (FS) this assumption yields sharp estimates on the density of
Xt as t ↓ 0, which in turn allows us to control the term P(0 < Xt− st ≤ ut) for small t > 0

in the Laplace exponent Φs+u−Φs of τ̂u+s− τ̂s as u ↓ 0, cf. (1.1) above. The growth rate of
the density of Xt as t ↓ 0 is controlled is by lower estimates on the small-jump activity of
X given in Lemma 4.4 below, a refinement of the results in [28] for processes attracted
to a stable process. In regime (IS) we require control over the negative tail probabilities
P(Xt ≤ ut) for small t > 0 appearing in the Laplace exponent Φu of τ̂u as u → −∞,
cf. (1.1). The behaviour of these tails are controlled by upper estimates of the small-jump
activity of X, which are generally easier to obtain. In this case, moment bounds for
the small-jump component of the Lévy process and the convergence in Kolmogorov
distance implied by the attraction to the stable law, give sufficient control over these tail
probabilities.

1.3 Connections with the literature

In [8], Bertoin finds the law of the convex minorant of Cauchy process on [0, 1]

and finds the exact asymptotic behaviour (in the form of a law of interated logarithm
with a positive finite limit) for the derivative C ′ at times 0, 1 and any τs, s ∈ R. The
methods in [8] are specific to Cauchy process with its linear scaling property, making
the approach hard to generalise. In fact, the results in [8] are a direct consequence of
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the fact that the vertex time process τ̂ has a Laplace transform Φ in (1.1) that factorises
as Φu(w) = P(X1 ≤ u)Φ∞(w), making τ̂ a gamma subordinator under the deterministic
time-change u 7→ P(X1 ≤ u), cf. Example 4.3 below.

Paul Lévy showed that the boundary of the convex hull of a planar Brownian motion
has no corners at any point, see [24], motivating [13] to characterise the modulus of
continuity of the derivative of that boundary. Given the recent characterisation of the
smoothness of the convex hull of a Lévy path [4], the results in the present paper are
likewise motivated by the study of the modulus of continuity of the derivative of the
boundary in this context.

The literature on the growth rate of the path of a Lévy process X is vast, particularly
for subordinators, see e.g. [22, 7, 16, 15, 37, 33, 32]. The authors in [16, 15] study the
growth rate of a subordinator at 0 and∞. In [15] (see also [7, Prop 4.4]) Fristedt fully
characterises the upper fluctuations of a subordinator in terms of its Lévy measure,
a result we generalise in Theorem 3.3 to processes that need not have stationary
increments. In [7, Thm 4.1] (see also [16, Thm 1], a function essentially characterising
the exact lower fluctuations of a subordinator is constructed in terms of its Laplace
exponent. These methods are not easily generalised to the time-inhomogeneous case
since the Laplace exponent is now bivariate and there is neither a one-parameter lower
function to propose nor a clear extension to the proofs.

In [31], Sato establishes results for time-inhomogeneous non-decreasing additive
processes similar to our result in Section 3. The assumptions in [31] are given in terms
of the transition probabilities of the additive process, which are generally intractable,
particularly for the processes (τ̂−1/u)u>0 and (τ̂u+s− τ̂s)u≥0, considered here. Our results
are also easier to apply in other situations as well, for example, to fractional Poisson
processes (see definition in [5]).

The upper fluctuations of a Lévy process at zero have been the topic of numerous
studies, see [6, 32] for the one-sided problem and [22, 37, 33] for the two-sided problem.
Similar questions have been considered for more general time-homogeneous Markov
processes [23, 12]. The time-homogeneity again plays an important role in these results.
The lower fluctuations of a stochastic process is only qualitatively different from the
upper fluctuations if the process is positive. This is the reason why this problem has
mostly only been addressed for subordinators (see the references above) and for the
running supremum of a Lévy process, see e.g. [1]. We stress that the results in the
present paper, while related in spirit to this literature, are fundamentally different in
two ways. First, we study the derivative of the convex minorant of a Lévy path on
[0, T ], which (unlike e.g. the running supremum) cannot be constructed locally from the
restriction of the path of the Lévy process to any short interval. Second, the convex
minorant and its derivative are neither Markovian nor time-homogeneous. In fact, the
only result in our context prior to our work is in the Cauchy case [8], where the derivative
of the convex minorant is an explicit gamma process under a deterministic time-change,
cf. Example 4.3 below.

1.4 Organisation of the article

In Section 2 we present the main results of this article. We split the section in four,
according to regimes (FS) and (IS) and whether the upper or lower fluctuations of C ′ are
being described. The implications of the results in Section 2 for the Lévy process and
meander are covered in Subsection 2.5. In Section 3, technical results for general time-
inhomogeneous non-decreasing additive processes are established. Section 4 recalls
from [17] the definition and law of the vertex time process τ and provides the proofs of
the results stated in Section 2. Section 5 concludes the paper.
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2 Growth rate of the derivative of the convex minorant

Let X = (Xt)t≥0 be an infinite activity Lévy process (see [30, Def. 1.6, Ch. 1]). Let
C = (Ct)t∈[0,T ] be the convex minorant of X on [0, T ] for some T > 0. Put differently,
C is the largest convex function that is piecewise smaller than the path of X (see [17,
Sec. 3,p. 8]). In this section we analyse the growth rate of the right derivative of C,
denoted by C ′ = (C ′t)t∈(0,T ), near time 0 and at the vertex time τs = inf{t > 0 : C ′t > s}∧T
of the slope s ∈ R (i.e., the first time C ′ attains slope s). More specifically, we give
sufficient conditions to identify the values of the possibly infinite limits (for appropriate
increasing functions f with f(0) = 0): lim supt↓0(C ′t+τs−s)/f(t) & lim inft↓0(C ′t+τs−s)/f(t)

in the finite slope (FS) regime and lim supt↓0 |C ′t|f(t) & lim inft↓0 |C ′t|f(t) in the infinite
slope (IS) regime. The values of these limits are constants in [0,∞] a.s. by Corollary 4.2
below. We note that these limits are invariant under certain modifications of the law of
X, which we describe in the following remark.

Remark 2.1.

(a) Let P be the probability measure on the space where X is defined. If the limits
lim supt↓0 |C ′t|f(t), lim inft↓0 |C ′t|f(t), lim supt↓0(C ′t+τs − s)/f(t) and lim inft↓0(C ′t+τs −
s)/f(t) are P-a.s. constant, then they are also P′-a.s. constant with the same value
for any probability measure P′ absolutely continuous with respect to P. In particular,
we may modify the Lévy measure of X on the complement of any neighborhood of 0

without affecting these limits (see e.g. [30, Thm 33.1–33.2]).
(b) We may add a drift process to X without affecting the limits at 0 since such a drift

would only shift |C ′t| by a constant value and f(t)→ 0 as t ↓ 0. Similarly, for the limits
of (C ′t+τs − s)/f(t) as t ↓ 0, it suffices to analyse the post-minimum process (i.e., the
vertex time τ0) of the process (Xt − st)t≥0. For ease of reference, our results are
stated for a general slope s.

2.1 Regime (FS): lower functions at time τs

The following theorem describes the lower fluctuations of C ′t+τs − s as t ↓ 0. Recall
that L∗ is the deterministic set of points that are a.s. right-limit points of the set of
slopes S.

Theorem 2.2. Let s ∈ L∗ and f be continuous and increasing, satisfying f(t) ≤ 1 = f(1)

for t ∈ (0, 1] and f(0) = 0 = limc↓0 lim supt↓0 f(ct)/f(t). Let c > 0 and consider the
following conditions: ∫ 1

0

P(0 < (Xt − st)/t ≤ f(t/c))
dt

t
<∞, (2.1)∫ 1

0

E

[
t

f−1((Xt − st)/t)2
1{f(t/2)<(Xt−st)/t≤1}

]
dt <∞, (2.2)

2n
∫ 2−n

0

P(f(t/2) < (Xt − st)/t ≤ f(2−n))dt→ 0, as n→∞. (2.3)

Then the following statements hold.

(i) If (2.1)–(2.3) hold for c = 1, then lim inft↓0(C ′t+τs − s)/f(t) =∞ a.s.
(ii) If (2.1) fails for every c > 0, then lim inft↓0(C ′t+τs − s)/f(t) = 0 a.s.

(iii) If lim inft↓0(C ′t+τs − s)/f(t) > 1 a.s., then (2.1) holds for any c > 1.

Some remarks are in order.

Remark 2.3.

(a) Any continuous regularly varying function f of index r > 0 satisfies the assumption
in the theorem: limc↓0 limt↓0 f(ct)/f(t) = limc↓0 c

r = 0. Moreover, the assumption
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f(t) ≤ 1 = f(1) for t ∈ (0, 1] is not necessary but makes conditions (2.1)–(2.3) take a
simpler form.

(b) The proof of Theorem 2.2 is based on the analysis of the upper fluctuations of τ
at slope s. Condition (2.1) ensures (τu+s − τs)u≥0 jumps finitely many times over
the boundary u 7→ f−1(u), condition (2.3) makes the small-jump component of
(τu+s − τs)u≥0 (i.e. the sum of the jumps at times v ∈ [s, u+ s] of size at most f−1(v))
have a mean that tends to 0 as u ↓ 0 and condition (2.2) controls the deviations of
(τu+s − τs)u≥0 away from its mean.

(c) Note that (2.3) holds if
∫ 1

0
P(f(2−nt/2) < (X2−nt − s2−nt)/(2−nt) ≤ f(2−n))dt→ 0 as

n→∞, which, by the dominated convergence theorem, holds if we have the limit
P(f(u/2) < (Xu − su)/u ≤ f(u/t))→ 0 as u ↓ 0 for a.e. t ∈ (0, 1).

(d) Condition (2.2) in Theorem 2.2 requires access to the inverse f−1 of the function f .
In the special case when the function f is concave, this assumption can be replaced
with an assumption given in terms of f (cf. Proposition 3.5 and Corollary 3.7).
However, it is important to consider non-concave functions f , see Corollary 2.4
below.

2.1.1 Simple sufficient conditions for the assumptions of Theorem 2.2

Let f be as in Theorem 2.2. By Theorem 3.3(c) below (with the measure Π(dx,dt) =

P((Xt − st)/t ∈ dx)t−1dt), the following condition implies (2.2)–(2.3):∫ 1

0

E

[
1

f−1((Xt − st)/t)
1{f(t/2)<(Xt−st)/t≤1}

]
dt <∞. (2.4)

If estimates on the density of Xt are available (e.g., via assumptions on the generating
triplet of X), (2.4) can be simplified further, see Corollary 2.4 below.

Throughout, we denote by (γ, σ2, ν) the generating triplet of X (corresponding to the
cutoff function x 7→ 1(−1,1)(x), see [30, Def. 8.2]), where γ ∈ R is the drift parameter,
σ2 ≥ 0 is the Gaussian coefficient and ν is the Lévy measure of X on R. We also define
the functions

σ2(ε) := σ2 + σ2
+(ε) + σ2

−(ε), σ2
+(ε) :=

∫
(0,ε)

x2ν(dx), σ2
−(ε) :=

∫
(−ε,0)

x2ν(dx), for ε > 0.

Recall that, in regime (FS), we have σ2 = 0 (see [4, Prop. 1.6]). Given two positive
functions g1 and g2, we say g1(ε) = O(g2(ε)) as ε ↓ 0 if lim supε↓0 g1(ε)/g2(ε) < ∞.
Similarly, we write g1(ε) ≈ g2(ε) as ε ↓ 0 if g1(ε) = O(g2(ε)) and g2(ε) = O(g1(ε)).

Corollary 2.4. Fix β ∈ (0, 1] and let s ∈ L∗ and f be as in Theorem 2.2.
(a) If lim infε↓0 ε

β−2σ2(ε) > 0, f is differentiable with positive derivative f ′ > 0 and the in-

tegrals
∫ 1

0

∫ 1

t/2
(f ′(y)/y)t1−1/βdydt and

∫ 1

0
t−1/βf(t)dt are finite, then lim inft↓0(C ′t+τs−

s)/f(t) =∞ a.s.
(b) Assume

∫ 1

0
((t−1/βf(t)) ∧ t−1)dt =∞ and either of the following hold:

(i) σ2(ε) ≈ ε and |
∫

(−1,1)\(−ε,ε) xν(dx)| = O(1) as ε ↓ 0,

(ii) β ∈ (0, 1) and σ2
±(ε) ≈ ε2−β as ε ↓ 0 for both signs of ±,

then lim inft↓0(C ′t+τs − s)/f(t) = 0 a.s.

We stress that the sufficient conditions in Corollary 2.4 are all in terms of the
characteristics of the Lévy process X and the function f .

Remark 2.5.
(a) The assumptions in Corollary 2.4 are satisfied by most processes in the class Zα,ρ of

Lévy processes in the small-time domain of attraction of an α-stable distribution, see
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Subsection 2.2 below (cf. [19, Eq. (8)]). Thus, the assumptions of part (a) in Corol-
lary 2.4 hold for any X ∈ Zα,ρ and β < α (by Karamata’s theorem [9, Thm 1.5.11],
we can take β = α if the normalising function g of X satisfies lim inft↓0 t

−1/αg(t) > 0).
Moreover, the assumptions of cases (b-i) and (b-ii) hold for processes in the domain
of normal attraction (i.e. if the normalising function equals g(t) = t1/α for all t > 0)
with ρ ∈ (0, 1) and β = α ∈ (0, 1], see [19, Thm 2]. In particular, these assumptions
are satisfied by stable processes with α ∈ (0, 1] and ρ ∈ (0, 1).

(b) Both integrals in part (a) of Corollary 2.4 are finite or infinite simultaneously when-
ever f ′ is regularly varying at 0 with nonzero index by Karamata’s theorem [9,
Thm 1.5.11]. Thus, in that case, under the conditions of either (b-i) or (b-ii), the
limit lim inft↓0(C ′t+τs − s)/f(t) equals 0 or∞ according to whether

∫ 1

0
t−1/βf(t)dt is

infinite or finite, respectively.
(c) The case β > 1 is not considered in Corollary 2.4(a) and (b-ii) since in this case we

would have L∗ = ∅ by [4, Prop. 1.6].

Proof of Corollary 2.4. Assume without loss of generality that s = 0 ∈ L∗ (equivalently,
we consider the process (Xt − st)t≥0 for s ∈ L∗).

(a) Our assumptions and [28, Thm 3.1] show that the density x 7→ pX(t, x) of Xt

exists for t > 0 and moreover supx∈R pX(t, x) ≤ Ct−1/β for some C > 0 and all t ∈ (0, 1].
Thus, (2.4) is implied by∫ 1

0

∫ t

tf(t/2)

1

f−1(x/t)
t−1/βdxdt =

∫ 1

0

∫ 1

t/2

f ′(y)

y
t1−1/βdydt <∞, (2.5)

where we have used the change of variable x = tf(y). Similarly, the bound on the density
of Xt shows that condition (2.1) holds if

∫ 1

0
t−1/βf(t)dt < ∞. Thus, the result follows

from Theorem 2.2.
(b) In either case (i) or (ii), our assumptions and [28, Thm 4.3] show that Ct−1/β ≤

pX(t, x) for some C > 0 and all |x| ≤ t1/β. Thus P(0 < Xt ≤ tf(t/c)) ≥ ((tf(t/c)) ∧
t1/β)Ct−1/β , implying that (2.1) fails for some c > 0 whenever

∫ 1

0
((t−1/βf(t/c))∧ t−1)dt =

∞. A simple change of variables shows that this integral is either finite for all c > 0 or
infinite for all c > 0. The result then follows from Theorem 2.2(ii).

The following is another simple corollary of Theorem 2.2. This result can also be
established using similar arguments to those used in [8, Cor. 3], see the discussion
ensuing the proof of [8, Cor. 3].

Corollary 2.6. Let X be a Cauchy process, f be as in Theorem 2.2 and pick s ∈ R. Then
lim inft↓0(C ′t+τs − s)/f(t) equals 0 (resp. ∞) a.s. if

∫ 1

0
t−1f(t)dt is infinite (resp. finite).

Proof. Assume without loss of generality that s = 0. Then the law of Xt/t does not
depend on t > 0 and hence the integral in (2.4) equals∫ 1

0

E

[
1{t/2<f−1(X1)≤1}

f−1(X1)

]
dt = E

[ ∫ 1

0

1{t/2<f−1(X1)≤1}

f−1(X1)
dt

]
≤ 2P(X1 ∈ (0, 1]) <∞.

Moreover, condition (2.1) simplifies to
∫ 1

0
P(0 < X1 ≤ f(t/c))t−1dt < ∞, which is

equivalent to the integral
∫ 1

0
t−1f(t/c)dt being finite since X1 has a bounded density that

is bounded away from zero on [0, 1]. The change of variables t′ = t/c shows that this
integral is either finite for all c > 0 or infinite for all c > 0. Thus, Theorem 2.2 gives the
result.
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2.2 Regime (FS): upper functions at time τs

The upper fluctuations of C ′t+τs − s are harder to describe than the lower fluctuations
studied in Subsection 2.1 above. The main reason for this is that in Theorem 2.7 below
the lim sup of C ′ at a vertex time τs can be expressed in terms of the lim inf of the
vertex time process τ , which requires strong two-sided control on the Laplace exponent
Φu+s(w) − Φs(w), defined in (1.1), of the variable τu+s − τs as w → ∞ and u ↓ 0. (In
the proof of Theorem 2.2, lim sup of the vertex time process τ is needed, which is
easier to control.) In turn, by (1.1), this requires sharp two-sided estimates on the
probability P(0 < Xt − st ≤ ut) as a function of (u, t) for small u, t > 0. In particular, it is
important to have strong control on the density of Xt for small t > 0 on the “pizza slice”
{(t, x) : s < x/t ≤ u+ s} as u ↓ 0. We establish these estimates for the processes in the
domain of attraction of an α-stable process, leading to Theorem 2.7 below.

We denote by Zα,ρ the class of Lévy processes in the small-time domain of attraction
of an α-stable process with positivity parameter ρ ∈ [0, 1] (see [19, Eq. (8)]). In the case
α < 1, relevant in the regime (FS) at slope s equal to the natural drift γ0, for each Lévy
process X ∈ Zα,ρ there exists a normalising function g that is regularly varying at 0 with
index 1/α and an α-stable process (Zu)u∈[0,T ] with ρ = P(Z1 > 0) ∈ [0, 1] such that the

weak convergence ((Xut − γ0ut)/g(t))u∈[0,T ]
d−→ (Zu)u∈[0,T ] holds as t ↓ 0. Given X ∈ Zα,ρ

with normalising function g, we define G(t) := t/g(t) for t ∈ (0,∞).

Theorem 2.7. Suppose X ∈ Zα,ρ for some α ∈ (0, 1) and ρ ∈ (0, 1]. Define f : (0, 1) →
(0,∞) through f(t) := 1/G(t logp(1/t)), t ∈ (0, 1), for some p ∈ R. Then the following hold
for s = γ0:

(i) if p > 1/ρ, then lim supt↓0(C ′t+τs − s)/f(t) = 0 a.s.,
(ii) if p < 1/ρ, then lim supt↓0(C ′t+τs − s)/f(t) =∞ a.s.

The class Zα,ρ is quite large and the assumption X ∈ Zα,ρ is essentially reduced to the
Lévy measure of X being regularly varying at 0, see [19, §4] for a full characterisation of
this class. In particular, α agrees with the Blumenthal–Getoor index βBG defined in (2.12)
below. Moreover, for α < 1 and ρ ∈ (0, 1], the assumption X ∈ Zα,ρ implies that X is of
finite variation with P(Xt − γ0t > 0)→ ρ as t ↓ 0, implying L∗ = {γ0} by [4, Prop. 1.3 &
Cor. 1.4].

Note that the function f in Theorem 2.7 is regularly varying at 0 with index 1/α− 1.
The appearance of the positivity parameter ρ, a nontrivial function of the Lévy measure
of X, in Theorem 2.7 suggests that the upper fluctuations of C ′ at time τs (for s = γ0)
are more delicate than its lower fluctuations described in Theorem 2.13. Indeed, if
X ∈ Zα,ρ is in the domain of normal attraction (i.e. g(t) = t1/α) and ρ ∈ (0, 1), then
the fluctuations of C ′ at vertex time τs, characterised by Corollary 2.4(a) & (b-ii) (with
β = α) and Remark 2.5(a), do not involve parameter ρ. In particular, by Theorem 2.7 and
Corollary 2.4(b-ii), we have lim inft↓0(C ′t+τs − s)/f(t) = 0 and lim supt↓0(C ′t+τs − s)/f(t) =

∞ a.s. for f(t) = t1/α−1 logq(1/t) and any q ∈ [−1, (1/α − 1)/ρ), demonstrating the gap
between the lower and upper fluctuations of C ′ at vertex time τs.

Remark 2.8.
(a) The case where X is attracted to Cauchy process with α = 1 is expected to hold

for the functions f in Theorem 2.7. For such X ∈ Z1,ρ, a multitude of cases arise
including X having (i) less activity (e.g., X is of finite variation), (ii) similar amount
of activity (i.e., X is in the domain of normal attraction) or (iii) more activity than
Cauchy process (see, e.g. [4, Ex. 2.1–2.2]). In terms of the normalising function g

of X, these cases correspond to the limit limt↓0 t
−1/αg(t) being equal to: (i) zero, (ii)

a finite and positive constant or (iii) infinity. (Recall that in cases (ii) and (iii) X is
strongly eroded with L∗ = R, see [4, Ex. 2.1–2.2], and in case (i) X may be strongly
eroded, by [4, Thm 1.8], or of finite variation with L∗ = {γ0} by [4, Prop. 1.3] and
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the fact that limt↓0P(Xt > 0) = ρ ∈ (0, 1).) However, we stress that our methodology
can be used to obtain a description of the lower fluctuations of C ′ at τs in cases (i),
(ii) and (iii). This would require an application of Theorem 3.1 along with two-sided
estimates of the Laplace exponent Φ of the vertex time process in (1.1), generalising
Lemma 4.5 to the case α = 1. In the interest of brevity we do not give the details of
this extension.

(b) The boundary case p = 1/ρ can be analysed along similar lines. In fact, our
methods can be used to get increasingly sharper results, determining the value
of lim supt↓0(C ′t+τs − s)/f(t) for functions f containing powers of iterated logarithms,
when stronger control over the densities of the marginals of X is available. Such
refinements are possible when X is a stable process cf. Section 5. In particular, we
may prove the following law of iterated logarithm given in [8, p. 54] for a Cauchy
process X with density x 7→ pX(t, x) at time t > 0: for any s ∈ R and the function
f(t) = (log log log(1/t))/ log(1/t), we have lim supt↓0(C ′t+τs − s)/f(t) = 1/pX(1, s) a.s.

2.3 Regime (IS): upper functions at time 0

Throughout this subsection we assume X has infinite variation, which is equivalent
to lim inft↓0 C

′
t = −∞ a.s. [4, Sec. 1.1.2]. The following theorem describes the upper

fluctuations of C ′t as t ↓ 0.

Theorem 2.9. Let f be continuous and increasing with limc↓0 lim supt↓0 f(ct)/f(t) = 0,
f(0) = 0 and f(t) ≤ 1 = f(1) for t ∈ (0, 1]. Let c > 0, denote F (t) := t/f(t) for t > 0 and
consider the conditions ∫ 1

0

P(Xt ≤ −cF (t))
dt

t
<∞, (2.6)∫ 1

0

E[(Xt/F (t))21{−2F (t)<Xt≤−t}]
dt

t
<∞, (2.7)

2n
∫ 2−n

0

P(−t/f(2−n) ≥ Xt > −2F (t/2))dt→ 0, as n→∞. (2.8)

Then the following statements hold.

(i) If (2.6)–(2.8) hold for c = 1 and f is concave, then lim supt↓0 |C ′t|f(t) = 0 a.s.
(ii) If (2.6) fails for all c > 0, then lim supt↓0 |C ′t|f(t) =∞ a.s.

(iii) If lim supt↓0 |C ′t|f(t) < 1 a.s., then (2.6) holds for any c > 1.

Some remarks are in order.

Remark 2.10.

(a) Any continuous regularly varying function f of index r > 0 satisfies the assumption
in the theorem, see Remark 2.3(a) above.

(b) The proof of Theorem 2.9 is based on the analysis of the upper fluctuations of the
vertex time τ−1/u as u ↓ 0. The interpretation and purpose of conditions (2.6)–(2.8)
are analogous to those of conditions (2.1)–(2.3), respectively, see Remark 2.3(b)
above.

(c) Note that (2.8) holds if
∫ 1

0
P(−2F (2−nt/2) < X2−nt ≤ −tF (2−n))dt → 0 as n → ∞,

which, by the dominated convergence theorem, is the case if we have the limit
P(−2F (u/2) < Xu ≤ −tF (u/t))→ 0 as u ↓ 0 for a.e. t ∈ (0, 1).

(d) The assumed concavity of f in part (ii) can be dropped by modifying assumption (2.7)
into a condition involving the inverse of f (cf. Corollary 3.7 and Proposition 3.5). We
do not make this explicit in the statement of Theorem 2.9 because the functions of
interest in this context are typically concave.
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2.3.1 Simple sufficient conditions for the assumptions of Theorem 2.9

The tail probabilities of Xt appearing in the assumptions of Theorem 2.9 are not an-
alytically available in general. In this subsection we present sufficient conditions, in
terms of the generating triplet (γ, σ2, ν) of X, implying the assumptions in (2.6)–(2.8) of
Theorem 2.9. Recall that σ2(ε) = σ2 +

∫
(−ε,ε) x

2ν(dx) for ε > 0, and define:

γ(ε) := γ −
∫

(−1,1)\(−ε,ε)
xν(dx), ν(ε) := ν(R \ (−ε, ε)), for all ε > 0. (2.9)

Let f and F be as in Theorem 2.9 and note that F (t) ∈ (0, 1] since f is concave with
f(1) = 1. The inequalities in Lemma A.1 (with p = 2, ε = F (t) ∈ (0, 1] and K = cF (t)),
applied to P(|Xt| ≥ cF (t)) and E[min{X2

t , 4F (t)2}] ≥ E[X2
t 1{|Xt|≤2F (t)}], show that the

condition ∫ 1

0

[
F (t)−2

(
γ2(F (t))t+ σ2(F (t))

)
+ ν(F (t))

]
dt <∞, (2.10)

implies (2.6)–(2.7). Similarly, by Remark 2.10(c) and Lemma A.1, the following condition
implies (2.8): [

F (t)−2
(
γ2(F (t))t+ σ2(F (t))

)
+ ν(F (t))

]
t→ 0, as t ↓ 0. (2.11)

These simplifications lead to the following corollary.

Corollary 2.11. Suppose ν(ε) + ε−2σ2(ε) + ε−1|γ(ε)| = O(ε−β) as ε ↓ 0 for some β ∈ [1, 2]

and, as before, let F (t) = t/f(t). If we have F (t)−βt→ 0 as t→ 0 and
∫ 1

0
F (t)−βdt <∞,

then lim supt↓0 |C ′t|f(t) = 0 a.s.

Proof. By virtue of Theorem 2.9(i), it suffices to verify (2.10) and (2.11). By assumption,
we have [F (t)−2σ2(F (t)) + ν(F (t))]t = O(F (t)−βt) and F (t)−2γ(F (t))2t2 = O((F (t)−βt)2),
which tend to 0 as t ↓ 0, implying (2.11). Condition (2.10) follows similarly, completing
the proof.

Define the Blumenthal–Getoor index βBG ∈ [0, 2] of X [11] as follows:

βBG := inf{q ∈ [0, 2] : Iq <∞}, where Iq :=

∫
(−1,1)\{0}

|x|qν(dx), q > 0. (2.12)

Note that, in our setting, X has infinite variation and hence βBG ≥ 1. Since Iβ < ∞
for any β > βBG, [18, Lem. 1] shows that β satisfies the assumptions of Corollary 2.11.
Hence lim supt↓0 |C ′t|tp = 0 a.s. for any p > 1− 1/βBG ∈ [0, 1/2] by Corollary 2.11.

Stronger results are possible when stronger conditions are imposed on the law of X.
For instance, for stable processes we have the following consequence of Theorem 2.9.

Corollary 2.12. Let X be an α-stable process with α ∈ [1, 2). Then the following
statements hold.
(a) If t 7→ t−1/αF (t) is bounded as t ↓ 0, then lim supt↓0 |C ′t|f(t) =∞ a.s.

(b) If t−1/αF (t)→∞ as t ↓ 0 and X is not spectrally positive, then lim supt↓0 |C ′t|f(t) is

equal to∞ (resp. 0) a.s. if the integral
∫ 1

0
F (t)−αdt is infinite (resp. finite).

Proof. The scaling property of X gives P(Xt ≤ −cF (t)) = P(X1 ≤ −ct−1/αF (t)) for any
c, t > 0. If t 7→ t−1/αF (t) is bounded, then lim inft↓0P(Xt ≤ −cF (t)) > 0 making (2.6)
fail for all c > 0. In that case, we have lim supt↓0 |C ′t|f(t) = ∞ a.s. by Theorem 2.9(ii),
proving part (a).

To prove part (b), suppose X is not spectrally positive and let t−1/αF (t) → ∞ as
t ↓ 0. Then xαP(X1 ≤ −x) converges to a positive constant as x → ∞, implying the
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following equivalence:
∫ 1

0
t−1P(Xt ≤ −ct−1/αF (t))dt <∞ if and only if

∫ 1

0
F (t)−αdt <∞,

where we note that the last integral does not depend of c > 0. If
∫ 1

0
F (t)−αdt < ∞,

then (2.10)–(2.11) hold and Theorem 2.9(i) gives lim supt↓0 |C ′t|f(t) = 0 a.s. If instead∫ 1

0
F (t)−αdt =∞, then

∫ 1

0
t−1P(Xt ≤ −ct−1/αF (t))dt =∞ for all c > 0, so Theorem 2.9(ii)

implies that lim supt↓0 |C ′t|f(t) =∞ a.s., completing the proof.

For a Cauchy process (i.e. α = 1), Corollary 2.12 contains the dichotomy in [8,
Cor. 3] for the upper functions of C ′ at time 0. We note here that results analogous
to Corollary 2.12 can be derived for a spectrally positive stable process X (and for
Brownian motion), using the exponential (instead of polynomial) decay of the probability
P(X1 ≤ x) in x as x→ −∞, see [34, Thm 4.7.1].

2.4 Regime (IS): lower functions at time 0

As explained before, obtaining fine conditions for the lower fluctuations of C ′ is more
delicate than in the case of upper fluctuations of C ′ at 0. The main reason is that the
proof of Theorem 2.13 requires strong control on the Laplace exponent Φu(w) of τu,
defined in (1.1), as w →∞ and u→ −∞. This in turn requires sharp two-sided estimates
on the negative tail probability P(Xt ≤ ut) as a function of (u, t) as u → −∞ and t ↓ 0

jointly.
Due to the necessity of such strong control, in the following result we assume

X ∈ Zα,ρ for some α > 1. In other words, we assume there exist some normalising
function g that is regularly varying at 0 with index 1/α and an α-stable process (Zs)s∈[0,T ]

with ρ = P(Z1 > 0) ∈ (0, 1) such that (Xut/g(t))u∈[0,T ]
d−→ (Zu)u∈[0,T ] as t ↓ 0. Recall that

G(t) = t/g(t) for t > 0.

Theorem 2.13. Let X ∈ Zα,ρ for some α ∈ (1, 2] (and hence ρ ∈ (0, 1)). Let f : (0, 1)→
(0,∞) be given by f(t) := G(t logp(1/t)), for some p ∈ R and all t ∈ (0, 1). Then the
following statements hold:

(i) if p > 1/(1− ρ), then lim inft↓0 |C ′t|f(t) =∞ a.s.,
(ii) if p < 1/(1− ρ), then lim inft↓0 |C ′t|f(t) = 0 a.s.

Remark 2.14.
(a) The assumption X ∈ Zα,ρ for some α > 1 implies that X is of infinite variation. Note

that the function f in Theorem 2.13 is regularly varying at 0 with index 1− 1/α. The
‘negativity’ parameter 1− ρ = limt↓0P(Xt < 0) ∈ (0, 1) is a nontrivial function of the
Lévy measure of X. The fact that 1− ρ features as a boundary point in the power
of the logarithmic term in Theorem 2.13 indicates that the lower fluctuations of C ′

at time 0 depends in a subtle way on the characteristics of X. Such dependence
is, for instance, not present for the upper fluctuations of C ′ at time 0 when X is
α-stable, see Corollary 2.12 above. Indeed, for an α-stable process X, Theorem 2.13
and Corollary 2.12(b) show that lim inft↓0 |C ′t|f(t) = 0 and lim supt↓0 |C ′t|f(t) =∞ a.s.

for f(t) = t1−1/α logq(1/t) and any q ∈ [−1/α, (1− 1/α)/(1− ρ)), demonstrating the
gap between the lower and upper fluctuations of C ′ at time 0.

(b) The case where X is attracted to Cauchy process with α = 1 is expected to hold for
the functions f in Theorem 2.13. As explained in Remark 2.8(a) above, many cases
arise, with even some abrupt processes being attracted to Cauchy process (see [4,
Ex. 2.2]). We again stress that, in this case, our methodology can be used to obtain a
description of the upper fluctuations of C ′ at time 0 via Theorem 3.3 and two-sided
estimates, analogous to Lemma 4.6, of the Laplace exponent Φ in (1.1) of the vertex
time process. In the interest of brevity, we omit the details of such extensions.

(c) As with Theorem 2.7 above (see Remark 2.8(b)), the boundary case p = 1/(1 − ρ)

in Theorem 2.13 can be analysed along similar lines. In fact, our methods can be
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used to get increasingly sharper results for the lower fluctuations of C ′ at time
0 when stronger control over the negative tail probabilities for the marginals X
is available. Such improvements are possible, for instance, when X is α-stable.
We decided to leave such results for future work in the interest of brevity. For
completeness, however, we mention that the following law of iterated logarithm
proved in [8, Cor. 3] can also be proved using our methods (see Example 4.3 below):
lim inft↓0 |C ′t|f(t) = pX(1, 0) a.s., where x 7→ pX(t, x) is the density of Xt.

2.5 Upper and lower functions of the Lévy path at vertex times

In this section we establish consequences for the lower (resp. upper) fluctuations
of the Lévy path at vertex time τs (resp. time 0) in terms of those of C ′. Recall
Xt− := limu↑tXu for t > 0 (and X0− := X0) and define ms := min{Xτs , Xτs−} for s ∈ L∗.
Lemma 2.15. Suppose s ∈ L∗. Let the function f : [0,∞) → [0,∞) be continuous and
increasing and define the function f̃(t) :=

∫ t
0
f(u)du, t ≥ 0. Then the following statements

hold for any M > 0.
(i) If lim inft↓0(C ′t+τs − s)/f(t) > M a .s. then lim inft↓0(Xt+τs −ms − st)/f̃(t) ≥M a.s.

(ii) If lim supt↓0(C ′t+τs − s)/f(t) < M a.s. then lim inft↓0(Xt+τs −ms − st)/f̃(t) ≤M a.s.

The proof of Lemma 2.15 is pathwise. The lemma yields the following implications
(i) lim inft↓0(C ′t+τs − s)/f(t) =∞ =⇒ lim inft↓0(Xt+τs −ms − st)/f̃(t) =∞,

(ii) lim supt↓0(C ′t+τs − s)/f(t) = 0 =⇒ lim inft↓0(Xt+τs −ms − st)/f̃(t) = 0.
The upper fluctuations of X at vertex time τs cannot be controlled via the fluctuations of
C ′ since the process may have large excursions away from its convex minorant between
contact points. Moreover, the limits lim inft↓0(C ′t+τs − s)/f(t) = 0 or lim supt↓0(C ′t+τs −
s)/f(t) = ∞, do not provide sufficient information to ascertain the value of the lower
limit lim inft↓0(Xt+τs−ms−st)/f̃(t), since this limit may not be attained along the contact
points between the path and its convex minorant.

Theorems 2.2 and 2.7 give sufficient conditions, in terms of the law of X, for the
assumptions in Lemma 2.15 to hold. This leads to the following corollaries.

Corollary 2.16. Let s ∈ L∗ and let f be a continuous and increasing function with f(0) =

0 = limc↓0 lim supt↓0 f(ct)/f(t), f(1) = 1 and f(t) ≤ 1 for t ∈ (0, 1]. If conditions (2.1)–

(2.3) hold for c = 1, then lim inft↓0(Xt+τs − ms − st)/f̃(t) = ∞ a.s. where we denote

f̃(t) :=
∫ t

0
f(u)du.

Denote by $(t) := t−1/αg(t) the slowly varying (at 0) component of the normalising
function g of a process in the class Zα,ρ. Recall that G(t) = t/g(t) for t > 0.

Corollary 2.17. Let X ∈ Zα,ρ for some α ∈ (0, 1) and ρ ∈ (0, 1]. Given p ∈ R, denote

f̃(t) :=
∫ t

0
G(u logp(u−1))−1du for t > 0. Then the following statements hold for s = γ0.

(i) If p > 1/ρ, then lim inft↓0(Xt+τs −ms − st)/f̃(t) = 0 a.s.
(ii) If α ∈ (1/2, 1), p < −α/(1 − α) and ($(c/t)/$(1/t) − 1) log log(1/t) → 0 as t ↓ 0 for

some c ∈ (0, 1), then lim inft↓0(Xt+τs −ms − st)/f̃(t) =∞ a.s.
(iii) If α ∈ (0, 1/2], then lim inft↓0(Xt+τs −ms − st)/tq =∞ a.s. for any q > 1/α ≥ 2.

Remark 2.18.
(a) The function f̃ is regularly varying at 0 with index 1/α. This makes conditions in

Corollary 2.17 nearly optimal in the following sense: the polynomial rate in all three
cases is either 1/α (cases (i) and (ii) in Corollary 2.17) or arbitrarily close to it (case
(iii) in Corollary 2.17). If α > 1/2, then the gap is in the power of the logarithm in
the definition of f̃ .

(b) When the natural drift γ0 = 0, Corollary 2.17 describes the lower fluctuations (at time
0) of the post-minimum process X→ = (X→t )t∈[0,T−τ0] given by X→t := Xt+τ0 −m0

(note that m0 = inft∈[0,T ]Xt). The closest result in this vein is [36, Prop. 3.6] where
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Vigon shows that, for any infinite variation Lévy process X and r > 0, we have
lim inft↓0X

→
t /t ≥ r a.s. if and only if

∫ 1

0
P(Xt/t ∈ [0, r])t−1dt < ∞. Our result

considers non-linear functions and a large class of finite variation processes.
(c) By [35, Thm 2], the assumption X ∈ Zα,ρ and γ0 = 0 implies that the post-minimum

process, conditionally given τ0, is a Lévy meander. Hence, Corollary 2.17 also
describes the lower functions of the meanders of Lévy processes in Zα,ρ. A similar
remark applies to the results in Corollary 2.16.

When X has infinite variation, the process X and C touch each other infinitely often
on any neighborhood of 0 (see [4]), leading to the following connection in small time
between the paths of X and its convex minorant C.

Lemma 2.19. Let f : [0,∞) → [0,∞) be continuous and increasing with f(0) = 0 and
finite f̃(t) :=

∫ t
0
f(u)−1du, t ≥ 0. Then the following statements hold for any M > 0.

(i) If lim supt↓0 |C ′t|f(t) < M a.s., then lim supt↓0(−Xt)/f̃(t) ≤M a.s.

(ii) If lim inft↓0 |C ′t|f(t) > M a.s., then lim supt↓0(−Xt)/f̃(t) ≥M a.s.

Theorem 2.9 and the corollaries thereafter give sufficient explicit conditions for the
assumption in Lemma 2.19(i) to hold. Similarly, Theorem 2.13 gives a fine class of
functions f satisfying the assumption in Lemma 2.19(ii) for a large class of processes.
Such conclusions on the fluctuations of the Lévy path of X would not be new as the
fluctuations of X at 0 are already known, see [12, 33, 32]. In particular, the upper
functions of X and −X at time 0 were completely characterised in [32] in terms of the
generating triplet of X. Let us comment on some two-way implications of our results,
the literature and Lemma 2.19.

Remark 2.20.

(a) By [22], the assumption in Theorem 2.9(ii) implies lim supt↓0 |Xt|/F (t) = ∞ a.s.
where we recall that F (t) = t/f(t). Similarly, by [22], if lim supt↓0 |Xt|/F (t) =

∞ a.s. then the assumption in Theorem 2.9(ii) must hold for either X or −X,
which, by time reversal, implies that at least one of the limits lim supt↓0 |C ′t|f(t) or
lim supt↓0 |C ′T−t|f(t) is infinite a.s. This conclusion is similar to that of Lemma 2.19,

the main difference being the use of either f̃ or F . Note however, that if f is regularly
varying with index different from 1, then [9, Thm 1.5.11] implies limt↓0 f̃(t)/F (t) ∈
(0,∞).

(b) The contrapositive statements of Lemma 2.19 give information on C ′ in terms of −X.
Indeed, if we have lim supt↓0(−Xt)/f̃(t) > 0, then lim supt↓0 |C ′t|f(t) > 0. Similarly, if

lim supt↓0(−Xt)/f̃(t) <∞, then lim inft↓0 |C ′t|f(t) <∞.

The connections between the fluctuations of X and those of C ′ at time 0 are intricate.
Although the one-sided fluctuations of X at 0 were essentially characterised in [32,
Thm 3.1], its combination with Lemma 2.19 is not sufficiently strong to obtain condi-
tions for any of the following statements: lim supt↓0 |C ′t|f(t) = 0, lim supt↓0 |C ′t|f(t) > 0,
lim inft↓0 |C ′t|f(t) <∞ or lim inft↓0 |C ′t|f(t) =∞ a.s.

3 Small-time fluctuations of non-decreasing additive processes

Consider a pure-jump right-continuous non-decreasing additive (i.e. with independent
and possibly non-stationary increments) process Y = (Yt)t≥0 with Y0 = 0 a.s. and its
mean jump measure Π(dt, dx) for (t, x) ∈ [0,∞) × (0,∞), see [20, Thm 15.4]. Then, by
Campbell’s formula [20, Lem. 12.2], its Laplace transform satisfies

E
[
e−uYt

]
= e−Ψt(u), where Ψt(u) :=

∫
(0,∞)

(1− e−ux)Π((0, t],dx), for u ≥ 0. (3.1)
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Let Lt := inf{u > 0 : Yu > t} for t ≥ 0 (with convention inf ∅ = ∞) denote the right-
continuous inverse of Y . Our main objective in this section is to describe the upper and
lower fluctuations of L, extending known results for the case where Y has stationary
increments (making Y a subordinator) in which case Π(dt, dx) = Π((0, 1],dx)dt for all
(t, x) ∈ [0,∞)× (0,∞) (see e.g. [7, Thm 4.1]).

3.1 Upper functions of L

The following theorem is the main result of this subsection.

Theorem 3.1. Let f : (0, 1)→ (0,∞) be increasing with limt↓0 f(t) = 0 and φ : (0,∞)→
(0,∞) be decreasing with limu→∞ φ(u) = 0. Let (θn)n∈N be positive and non-decreasing
with limn→∞ θn =∞ and define the associated sequence (tn)n∈N via tn := φ(θn), n ∈ N.
(a) If we have

∑∞
n=1 exp(θntn −Ψf(tn)(θn)) <∞ then the following inequality holds a.s.

lim supt↓0 Lt/f(t) ≤ lim supn→∞ f(tn)/f(tn+1).
(b) If we have limu→∞ φ(u)u = ∞,

∑∞
n=1[exp(−Ψf(tn)(θn)) − exp(−θntn)] = ∞ and∑∞

n=1 Ψf(tn+1)(θn) <∞, then we a.s. have lim supt↓0 Lt/f(t) ≥ 1.

Remark 3.2.
(a) Theorem 3.1 plays a key role in the proofs of Theorems 2.7 and 2.13. Before applying

Theorem 3.1, one needs to find appropriate choices of the free infinite-dimensional
parameters φ and (θn)n∈N. This makes the application of Theorem 3.1 hard in
general and is why, in Theorems 2.7 and 2.13, we are required to assume that X lies
in the domain of attraction of an α-stable process.

(b) If Y has stationary increments (making Y a subordinator), the proof of [7, Thm 4.1]
follows from Theorem 3.1 by finding an appropriate function f and sequences (θn)n∈N
(done in [7, Lem. 4.2 & 4.3]) satisfying the assumptions of Theorem 3.1. In this case,
the function f is given in terms of the single-parameter Laplace exponent Ψ1, see
details in [7, Thm 4.1].

Proof of Theorem 3.1. (a) Since L is the right-inverse of Y , we have {Ltn > f(tn)} =

{tn ≥ Yf(tn)} for n ∈ N. Using Chernoff’s bound (Markov’s inequality), we obtain

P
(
tn ≥ Yf(tn)

)
≤ eθntnE

[
exp

(
− θnYf(tn)

)]
= exp(θntn −Ψf(tn)(θn)), for all n ≥ 1.

The assumption
∑∞
n=1 exp(θntn−Ψf(tn)(θn)) <∞ thus implies

∑∞
n=1P(Ltn > f(tn)) <∞.

Hence, the Borel–Cantelli lemma yields lim supn→∞ Ltn/f(tn) ≤ 1 a.s. Since L is non-
decreasing and (tn)n∈N is decreasing monotonically to zero, we a.s. have

lim sup
t↓0

Lt
f(t)

≤ lim sup
n→∞

sup
t∈[tn+1,tn]

Ltn
f(t)

≤ lim sup
n→∞

Ltn
f(tn)

lim sup
n→∞

f(tn)

f(tn+1)
≤ lim sup

n→∞

f(tn)

f(tn+1)
,

which gives (a).
(b) It suffices to establish the following limits: lim supn→∞ Yf(tn+1)/tn ≤ δ a.s. for

any δ > 0 and lim infn→∞(Yf(tn) − Yf(tn+1))/tn ≤ 1 a.s. Indeed, by taking δ ↓ 0 along
a countable sequence, the first limit gives lim supn→∞ Yf(tn+1)/tn = 0 a.s. and hence
lim infn→∞ Yf(tn)/tn ≤ 1 a.s. For any t > 0 with Yf(t) ≤ t we have Lt > f(t). Since the
former holds for arbitrarily small values of t > 0 a.s., we obtain lim supt↓0 Lt/f(t) ≥ 1 a.s.

We now use the Borel–Cantelli lemmas to prove that lim infn→∞(Yf(tn)−Yf(tn+1))/tn ≤
1 a.s. and lim supn→∞ Yf(tn+1)/tn ≤ δ a.s. for any δ > 0. Applying Markov’s inequality, we
obtain the upper bound P(Yt > s) ≤ (1− e−θs)−1E[1− e−θYt ] for all t, s, θ > 0, implying

P
(
Yf(tn) ≤ tn

)
≥

exp(−Ψf(tn)(θn))− exp(−θntn)

1− exp(−θntn)
, for all n ≥ 1.

Since θntn = θnφ(θn) → ∞ as n → ∞, the denominator of the lower bound in the
display above tends to 1 as n→∞, and hence the assumption

∑∞
n=1[exp(−Ψf(tn)(θn))−
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exp(−θntn)] =∞ implies
∑∞
n=1P(Yf(tn) < tn) =∞. Since Y has non-negative indepen-

dent increments and

∞∑
n=1

P(Yf(tn) − Yf(tn+1) < tn) ≥
∞∑
n=1

P(Yf(tn) < tn) =∞,

the second Borel–Cantelli lemma yields lim infn→∞(Yf(tn) − Yf(tn+1))/tn ≤ 1 a.s.

To prove the second limit, use Markov’s inequality and the elementary bound 1−e−x ≤
x to get

P
(
Yf(tn+1) > δtn

)
≤
E[1− exp(−θnYf(tn+1))]

1− exp(−δθntn)

=
1− exp(−Ψf(tn+1)(θn))

1− exp(−δθntn)
≤

Ψf(tn+1)(θn)

1− exp(−δθntn)
,

for all n ∈ N. Again, the denominator tends to 1 as n → ∞ and the assumption∑∞
n=1 Ψf(tn+1)(θn) <∞ implies

∑∞
n=1P(Yf(tn+1) > δtn) <∞. The Borel–Cantelli lemma

implies lim supn→∞ Yf(tn+1)/tn ≤ δ a.s. and completes the proof.

3.2 Lower functions of L

To describe the lower fluctuations of L, it suffices to describe the upper fluctuations
of Y . The following result extends known results for subordinators (see, e.g. [15, Thm
1]). Given a continuous increasing function h with h(0) = 0 and h(1) = 1, consider the
following statements, used in the following result to describe the upper fluctuations
of Y :

lim sup
t↓0

Yt/h(t) = 0, a.s., (3.2)

lim sup
t↓0

Yt/h(t) < 1, a.s., (3.3)

Π({(t, x) : t ∈ (0, 1], x ≥ h(t)}) <∞, (3.4)∫
(0,1]×(0,1)

x2

h(t)2
1{2h(t)>x}Π(dt, dx) <∞, (3.5)

2n
∫

(0,h−1(2−n)]×(0,2−n)

x1{2h(t)>x}Π(dt,dx) ↓ 0, as n→∞, and (3.6)∫
(0,1]×(0,1)

x

h(t)
1{2h(t)>x}Π(dt,dx) <∞. (3.7)

Theorem 3.3. Let h be continuous and increasing with h(0) = 0 and h(1) = 1. Then the
following implications hold:

(a) (3.2) =⇒ (3.3) =⇒ (3.4),
(b) (3.4)–(3.6) =⇒ (3.2),
(c) (3.7) =⇒ (3.5)–(3.6).

Remark 3.4. If h is as in Theorem 3.3 and Π({(t, x) : t ∈ (0, 1], x ≥ ch(t)}) =∞ for all
c > 0, then it follows from the negation of Theorem 3.3(a) that lim sup↓0 Yt/h(t) =∞ a.s.

In the description of the lower fluctuations of L, we are typically given the function
h−1 directly instead of h. In those cases, the conditions in Theorem 3.3 may be hard to
verify directly (see e.g. the proof of Theorem 2.9(i)). To alleviate this issue, we introduce
alternative conditions describing the upper fluctuations of Y in terms of the function h−1.
However, this requires the additional assumption that h−1 is concave, see Proposition 3.5
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Figure 2: A graphical representation of the implications in Theorem 3.3 and Proposi-
tion 3.5.

below. Consider the following conditions on h−1:∫
(0,1]×(0,1)

h−1(x)2

t2
1{2t≥h−1(x)}Π(dt,dx) <∞, (3.8)

2n
∫

(0,2−n]×(0,h(2−n))

h−1(x)1{2t≥h−1(x)}Π(dt, dx) ↓ 0, as n→∞, and (3.9)∫
(0,1]×(0,1)

h−1(x)

t
1{2t≥h−1(x)}Π(dt, dx) <∞. (3.10)

Proposition 3.5. Let h be convex and increasing with h(0) = 0 and h(1) = 1. Then the
following implications hold:
(a) (3.8) =⇒ (3.5),
(b) (3.10) =⇒ (3.8)–(3.9),
(c) (3.4) and (3.8)–(3.9) =⇒ (3.2).

The relation between the assumptions of Theorem 3.3 and Proposition 3.5 (concerning
h and h−1) is described in Figure 2. The following elementary result explains how the
upper fluctuations of Y (described by Theorem 3.3) are related to the lower fluctuations
of L.

Lemma 3.6. Let h be a continuous increasing function with h(0) = 0 and denote by h−1

its inverse. Then the following implications hold for any c > 0:
(a) lim inft↓0 Lt/h

−1(t/c) > 1 =⇒ lim supt↓0 Yt/h(t) ≤ c,
(b) lim supt↓0 Yt/h(t) < c =⇒ lim inft↓0 Lt/h

−1(t/c) ≥ 1.

Proof. The result follows from the implications Lu > t =⇒ u ≥ Yt =⇒ Lu ≥ t for any
t, u > 0. Indeed, if lim infu↓0 Lu/h

−1(u/c) > 1 then Lu > h−1(u/c) for all sufficiently small
u > 0 implying that Yt ≤ ch(t) for all sufficiently small t > 0 and hence lim supt↓0 Yt/h(t) ≤
c. This establishes part (a). Part (b) follows along similar lines.

A combination of Lemma 3.6, Theorem 3.3, Proposition 3.5 and Remark 3.4 yield the
following corollary.

Corollary 3.7. Let h be a continuous and increasing function with h(0) = 0 and h(1) = 1

such that limc↓0 lim supt↓0 h
−1(ct)/h−1(t) = 0. Then the following results hold:

(i) If lim inft↓0 Lt/h
−1(t/c) > 1 a.s. for some c ∈ (0, 1) then (3.4) holds.

(ii) Suppose (3.4)–(3.6) hold, then lim inft↓0 Lt/h
−1(t) =∞ a.s.

(ii’) Suppose h is convex and conditions (3.4) and (3.8)–(3.9) hold, then we a.s. have
lim inft↓0 Lt/h

−1(t) =∞.
(iii) If Π({(t, x) : t ∈ (0, 1], x ≥ ch(t)}) =∞ for all c > 0 then lim inft↓0 Lt/h

−1(t) = 0 a.s.
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To prove Theorem 3.3 we require the following lemma. For all t ≥ 0 denote by
∆t := Yt − Yt− the jump of Y at time t, so that Yt =

∑
u≤t ∆u since Y is a pure-jump

additive process. We also let N denote the Poisson jump measure of Y , given by
N(A) := |{t : (t,∆t) ∈ A}| for A ⊂ [0,∞) × (0,∞) and note that its mean measure is
Π(dt,dx).

Lemma 3.8. Let h be continuous and increasing with h(0) = 0 and h(1) = 1. As-
sume (3.4)–(3.6) hold, then lim supt↓0 Yt/h(t) = lim supt↓0 Yh−1(t)/t = 0 a.s.

Proof. For all n ∈ N, we let Bn := [2−n,∞) and set Cn := h−1((2−n−1, 2−n])×Bn. Then
we have ∑

n∈N
P(N(Cn) ≥ 1) =

∑
n∈N

(
1− e−Π(Cn)

)
≤
∑
n∈N

Π(Cn),

by the definition of N and the inequality 1 − e−x ≤ x. Note that
∑
n∈N Π(Cn) < ∞

by (3.4), since ∑
n∈N

Π(Cn) ≤ Π({(t, x) : t ∈ [0, 1], x ≥ h(t)}) <∞.

By the Borel–Cantelli lemma, there exists some n0 ∈ N with N(h−1((2−n−1, 2−n])×Bn) =

0 a.s. for all n ≥ n0. By the mapping theorem, the random measure Nh(A × B) :=

N(h−1(A)×B) for any measurable A,B ⊂ [0,∞), is a Poisson random measure with mean
measure Πh(A × B) := Π(h−1(A), B). Note that Yh−1(t) =

∫
(0,h−1(t)]×(0,∞)

xN(du,dx) =∫
(0,t]×(0,∞)

xNh(du,dx) for t ≥ 0 and, for any n ≥ n0 and t ∈ (2−n−1, 2−n], we have

|Yh−1(t)/t| ≤ ζn := 2n+1
∑∞
m=n ξm, where

ξm :=

∫
(2−m−1,2−m]×(0,2−m)

xNh(du,dx), m ∈ N.

To complete the proof, it suffices to show that ζn ↓ 0 a.s. as n → ∞. Fubini’s theorem
yields

2−n−1E[ζn] =

∞∑
m=n

∫
(2−m−1,2−m]×(0,2−m)

xΠh(du,dx)

=

∫
(0,2−n]×(0,2−n)

x

∞∑
m=n

1{x<2−m}1{u≤2−m<2u}Πh(du,dx)

≤
∫

(0,2−n]×(0,2−n)

x1{2u>x}Πh(du,dx)

=

∫
(0,h−1(2−n)]×(0,2−n)

x1{2h(v)>x}Π(dv,dx).

By assumption (3.6), we deduce that E[ζn] ↓ 0 as n→∞. Similarly, note that

Var(ζn) = 4n+1
∞∑
m=n

∫
(2−m−1,2−m]×(0,2−m)

x2Πh(du,dx),
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and hence, by Fubini’s theorem and assumption (3.5), we have

∞∑
n=1

Var(ζn) =

∞∑
m=1

m∑
n=1

4n+1

∫
(2−m−1,2−m]×(0,2−m)

x2Πh(dt, dx)

≤
∞∑
m=1

4m+2

∫
(2−m−1,2−m]×(0,2−m)

x2Πh(du,dx)

=

∫
(0,1]×(0,1)

x2
∞∑
m=1

4m+21{x<2−m}1{u<2−m<2u}Πh(du,dx)

≤ 42

∫
(0,1]×(0,1)

x2

u2
1{2u>x}Πh(du,dx)

= 42

∫
(0,h−1(1)]×(0,1)

x2

h(v)2
1{2h(v)>x}Π(dv,dx) <∞.

Thus, we find that the sum
∑∞
n=1(ζn−E[ζn])2 has finite mean equal to

∑∞
n=1 Var(ζn) <∞

and is thus finite a.s. Hence, the summands must tend to 0 a.s. and, since E[ζn]→ 0, we
deduce that ζn ↓ 0 a.s. as n→∞.

Proof of Theorem 3.3. It is obvious that (3.2) implies (3.3). If (3.3) holds, then Yt < h(t)

for all sufficiently small t. Thus, the path bound Yt ≥ ∆t implies P(N({(t, x) : t ∈
[0, 1], x > h(t)}) < ∞) = 1 and hence (3.4). By Lemma 3.8, conditions (3.4)–(3.6)
imply (3.2), so it remains to show that (3.7) implies (3.5) and (3.6).

It is easy to see that (3.7) implies (3.5). Moreover, if (3.7) holds, then

2n
∫

(0,h−1(2−n)]×(0,2−n)

x1{2h(t)>x}Π(dt, dx)

≤
∫

(0,h−1(1)]×(0,1)

x

h(t)
1{2h(t)>x}1(0,h−1(2−n)]×(0,2−n)(t, x)Π(dt, dx),

where the upper bound is finite for all n ∈ N and tends to 0 as n→∞ by the monotone
convergence theorem, implying (3.6).

Proof of Proposition 3.5. Since h−1 is concave with h−1(0) = 0, then x 7→ h−1(x)/x is
decreasing, so the condition h(t) > x/2 implies (x/2)/h(t) ≤ h−1(x/2)/t ≤ h−1(x)/t. The
inequality h−1(x)/x ≤ h−1(x/2)/(x/2) gives {(t, x) : 2h(t) > x} ⊂ {(t, x) : 2t > h−1(x)},
proving the first claim: (3.8) implies (3.5).

Since h−1 is concave with h−1(0) = 0, it is subadditive, implying

ζt :=
∑
u≤t

h−1(∆u) ≥ h−1(Yt).

Since lim supt↓0 ζt/t ≤ c implies lim supt↓0 Yt/h(ct) ≤ 1 for c > 0 and h is a convex function,
it suffices to show that lim supt↓0 ζt/t = 0 a.s. Note that ζ is an additive process with
jump measure Π(dt, h(dx)). Applying Theorem 3.3 to ζ with the identity function yields
the result, completing the proof.

Remark 3.9. We now show that, when the increments of Y are stationary (making Y a
subordinator), Theorem 3.3 gives a complete characterisation of the upper functions of
Y , recovering [15, Thm 1] (see also [7, Prop. 4.4]). This is done in two steps.

Suppose h is convex and Y has stationary increments with mean jump measure
Π(dt,dx) = Π((0, 1],dx)dt. Then h−1 is concave and the non-decreasing additive process
Ỹt :=

∑
s≤t h

−1(∆s) ≥ h−1(Yt) has mean jump measure Π(dt, h(dx)), making it a subordi-

nator. Theorem 3.3 applied to Ỹ and the identity function makes all conditions (3.4)–(3.6)
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equivalent to
∫

(0,1)
h−1(x)Π((0, 1],dx) <∞ and therefore, by Theorem 3.3, also equiva-

lent to the condition lim supt↓0 Ỹt/t = 0 a.s.

Note that condition (3.4) for Ỹ and the identity function coincides with condition (3.4)
for Y and h. This equivalence, together with the fact that the limit lim supt↓0 Ỹt/t = 0

implies lim supt↓0 Yt/h(t) = 0, shows that both limits are either 0 a.s. or positive a.s.
jointly. Thus, lim supt↓0 Yt/h(t) = 0 a.s. if and only if

∫
(0,1)

h−1(x)Π((0, 1],dx) <∞ and, if

the latter condition fails, then lim supt↓0 Yt/h(t) =∞ a.s. by Remark 3.4. This is precisely
the criterion given in [15, Thm 1] (see also [7, Prop. 4.4]).

Remark 3.9 shows that condition (3.4) perfectly describes the upper fluctuations of
Y when Y has stationary increments, making conditions (3.5) & (3.6) appear superflu-
ous. These conditions are, however, not superfluous since (3.4) by itself cannot fully
characterise the upper fluctuations of Y , as the following example shows.

Example 3.10. Let Π(dt,dx) =
∑
n∈N n

−12nδ(2−n,2−n/n)(dt, dx), where δx denotes the
Dirac measure at x, and consider the corresponding additive process Y (whose existence
is ensured by [20, Thm 15.4]). Since P(ξ ≥ µ) ≥ 1/5 for every Poisson random variable
ξ with mean µ ≥ 2 [26, Eq. (6)], we get

∑
n∈NP(N({(2−n, 2−n/n)}) ≥ 2n/n) = ∞. The

second Borel–Cantelli lemma then shows that ∆2−n ≥ 1/n2 i.o. Thus, Y2−n/2
−n ≥

2n∆2−n ≥ 2n/n2 i.o., implying lim supt↓0 Yt/t = ∞ a.s. even when condition (3.4) holds.
In fact, Π({(t, x) : t ∈ (0, 1], x ≥ ct}) <∞ for all c > 0.

4 The vertex time process and the proofs of the results in Sec-
tion 2

We first recall basic facts about the vertex time process τ = (τs)s∈R. Fix a determinis-
tic time horizon T > 0, let C be the convex minorant of X on [0, T ] with right-derivative
C ′ and recall the definition τs = inf{t > 0 : C ′t > s} for any slope s ∈ R. By the
convexity of C, the right-derivative C ′ is non-decreasing and right-continuous, making
τ a non-decreasing right-continuous process with lims→−∞ τs = 0 and lims→∞ τs = T .
Intuitively put, the process τ finds the times in [0, T ] at which the slopes increase as
we advance through the graph of the convex minorant t 7→ Ct chronologically. We
remark that the vertex time process can be constructed directly from X without any
reference to the convex minorant C, as follows (cf. [25, Thm 11.1.2]): for each slope
s ∈ R and time epoch t ≥ 0, define X

(s)
t := Xt − st, X(s)

t := infu∈[0,t]X
(s)
u and note

τs = sup
{
t ∈ [0, T ] : X

(s)
t− ∧ X

(s)
t = X

(s)
T

}
, where X

(s)
u− := limv↑uX

(s)
u− for u > 0 and

X
(s)
0− := X

(s)
0 = 0. Put differently, subtracting a constant drift s from the Lévy process X

“rotates” the convex hull so that the vertex time τs becomes the time the minimum of
X(s) during the time interval [0, T ] is attained.

4.1 The vertex time process over exponential times

Fix any λ > 0 and let E be an independent exponential random variable with unit
mean. Let Ĉ := (Ĉt)t∈[0,E/λ] be the convex minorant of X over the exponential time-

horizon [0, E/λ] and denote by τ̂ the right-continuous inverse of Ĉ ′, i.e. τ̂s := inf{u ∈
[0, E/λ] : Ĉ ′u > s} for s ∈ R. Hence, in the remainder of the paper, the processes with
(resp. without) a ‘hat’ will refer to the processes whose definition is based on the path of
X on [0, E/λ] (resp. [0, T ]), where E is an exponential random variable with unit mean
independent of X and T > 0 is fixed and deterministic.

It is more convenient to consider the vertex time processes over an independent
exponential time horizon rather than the fixed time horizon T , as this does not affect
the small-time behaviour of the process (see Corollary 4.2 below), while making its law
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Figure 3: The picture shows a path of X (black) and its convex minorants C (red) on
[0, T ] and Ĉ (blue) on [0, E/λ]. Both convex minorants agree until time m, after which
they may behave very differently.

more tractable. Moreover, as we will see, to analyse the fluctuations of Ĉ ′ over short
intervals, it suffices to study those of τ̂ . By [17, Thm 2.9], the process τ̂ has independent
but non-stationary increments and its Laplace exponent is given by

E[e−uτ̂s ] = e−Φs(u), where Φs(u) :=

∫ ∞
0

(1− e−ut)e−λtP(Xt ≤ st)
dt

t
, (4.1)

for all u ≥ 0 and s ∈ R. The following lemma states that, after a vertex time, the convex
minorants C and Ĉ must agree for a positive amount of time, see Figure 3 for a pictorial
description.

Lemma 4.1. For any s ∈ L∗, on the event {τs < E/λ ≤ T}, we have τs = τ̂s and the
convex minorants C and Ĉ agree on and interval [0, τs + m] for a random m > 0. If X
is of infinite variation, the functions C and Ĉ agree on an interval [0,m] for a random
variable m satsifying 0 < m ≤ min{T,E/λ} a.s.

Since the Lévy process X and the exponential time E are independent, we have
P(τs < E/λ ≤ T ) > 0.

Proof. The proof follows directly from the definition of the convex minorant of f as the
greatest convex function dominated by the path of f over the corresponding interval. Let
f be a measurable function on [0, t] with piecewise linear convex minorant M (t). Then,
for any vertex time v ∈ (0, t) of M (t) and any u ∈ (v, t], the convex minorant M (u) of f
on [0, u] equals M (t) over the interval [0, v]. The result then follows since the condition
s ∈ L∗ (resp. X has infinite variation) implies that there are infinitely many vertex times
immediately after τs (resp. 0).

The following result shows that local properties of C agree with those of Ĉ. Multiple
extensions are possible, but we opt for the following version as it is simple and sufficient
for our purpose.

Corollary 4.2. Fix any measurable function f : (0,∞)→ (0,∞).
(a) If s ∈ L∗, then the following limits are a.s. constants on [0,∞]:

lim sup
t↓0

C ′t+τs − s
f(t)

= lim sup
t↓0

Ĉ ′t+τ̂s − s
f(t)

and lim inf
t↓0

C ′t+τs − s
f(t)

= lim inf
t↓0

Ĉ ′t+τ̂s − s
f(t)

.
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(b) If X is of infinite variation, then the following limits are a.s. constants on [0,∞]:

lim sup
t↓0

C ′t/f(t) = lim sup
t↓0

Ĉ ′t/f(t) and lim inf
t↓0

C ′t/f(t) = lim inf
t↓0

Ĉ ′t/f(t).

Proof. We will prove part (a) for lim inf, with the remaining proofs being analogous.
First note that the assumption s ∈ L∗ implies that (τu+s − τs)u≥0 and the additive
processes (τ̂u+s − τ̂s)u≥0 have infinite activity as u ↓ 0 a.s. Thus, applying Blumenthal’s
0–1 law [20, Cor. 19.18] to (τ̂u+s − τ̂s)u≥0 (and using the fact that Ĉ ′τ̂s = s a.s.), implies

that lim inft↓0(Ĉ ′t+τ̂s − s)/f(t) is a.s. equal to some constant µ in [0,∞]. Moreover, by the
independence of the increments of τ̂s, this limit holds even when conditioning on the
value of τ̂s. Recall further that τ̂s = τs on the event {τs < E/λ ≤ T} by Lemma 4.1. By
Lemma 4.1 and the independence of E and X, we a.s. have

0 < P(τs < E/λ ≤ T | τs) = P
(

lim inf
t↓0

(Ĉ ′t+τ̂s − s)/f(t) = µ, τs < E/λ ≤ T
∣∣∣ τs)

= P
(

lim inf
t↓0

(C ′t+τs − s)/f(t) = µ, τs < E/λ ≤ T
∣∣∣ τs)

= P
(

lim inf
t↓0

(C ′t+τs − s)/f(t) = µ
∣∣∣ τs)P(τs < E/λ ≤ T | τs),

implying that lim inft↓0(C ′t+τs − s)/f(t) = µ a.s.

By virtue of Corollary 4.2 it suffices to prove all the results in Section 2 for Ĉ instead
of C. This allows us to use the independent increment structure of the right inverse τ̂ of
the right-derivative Ĉ ′.

Example 4.3 (Cauchy process). If X is a Cauchy process, then the Laplace exponent
of τ̂u factorises Φu(w) = P(X1 ≤ u)

∫∞
0

(1 − e−wt)e−λtt−1dt for any u ∈ R and w ≥ 0.
This implies that τ̂ has the same law as a gamma subordinator time-changed by the
distribution function u 7→ P(X1 ≤ u) = 1

2 + 1
π arctan(cu + µ) for some c > 0 and µ =

tan(π( 1
2 − ρ)). This result can be used as an alternative to [8, Thm 2], in conjunction

with classical results on the fluctuations of a gamma process (see, e.g. [7, Ch. 4]), to
establish [8, Cor. 3] and all the other results in [8].

The proofs of the results in Section 2 are based on the results of Section 3: we will
construct a non-decreasing additive process Y = (Yt)t≥0, started at 0, in terms of τ̂ and
apply the results in Section 3 to Y and its inverse L = (Lu)u≥0. These proofs are given
in the following subsections.

4.2 Upper and lower functions at time τs - proofs

Let s ∈ L∗. Fix any λ > 0 and let Yu := τ̂u+s − τ̂s, u ≥ 0. Then the right-inverse
Lu := inf{t > 0 : Yt > u} of Y equals Lu = Ĉ ′u+τ̂s

− s for u ≥ 0. Note that Y has
independent increments and (4.1) implies

Ψu(w) := − logE[e−wYu ] =

∫ ∞
0

(1− e−wt)Π((0, u],dt), for all w, u ≥ 0, (4.2)

where Π(du,dt) = e−λtP((Xt − st)/t ∈ du)t−1dt is the mean jump measure of Y .

Proof of Theorem 2.2. Since s ∈ L∗, all three parts of the result follow from a direct
application of Proposition 3.5 and Corollary 3.7 to the definitions of Y and L above.

To prove Theorem 2.7, we require the following two lemmas. The first lemma
establishes some general regularity for the densities of Xt as a function of t and the
second lemma provides a strong asymptotic control on the function Ψs(u) as s ↓ 0 and
u → ∞. Recall that, when X is of finite variation, γ0 = limt↓0Xt/t denotes the natural
drift of X.
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Lemma 4.4. Let X ∈ Zα,ρ for some α ∈ (0, 1) and ρ ∈ (0, 1] and denote by g its normalis-
ing function.

(a) Define Qt := (Xt−γ0t)/g(t), then Qt has an infinitely differentiable density pt such

that pt and each of its derivatives p(k)
t are uniformly bounded: supt∈(0,1] supx∈R |p

(k)
t (x)| <

∞ for any k ∈ N ∪ {0}.
(b) Define Q̃t := Xt/

√
t, then Q̃t has an infinitely differentiable density p̃t such that

p̃t and each of its derivatives p̃(k)
t are uniformly bounded: supt∈[1,∞) supx∈R |p̃

(k)
t (x)| <∞

for any k ∈ N ∪ {0}.
Given f1, f2 : (0,∞)→ (0,∞) we say f1(t) ∼ f2(t) as t ↓ 0 if limt↓0 f1(t)/f2(t) = 1.

Proof of Lemma 4.4. Part (a). We assume without loss of generality that g(t) ≤ 1 for
t ∈ (0, 1], and note that Qt is infinitely divisible. Denote by νQt the Lévy measure of Qt,
and note for A ⊂ R that νQt(A) = tν(g(t)A) and

σ2
Qt(u) :=

∫
(−u,u)

x2νQt(dx) =
t

g(t)2

∫
(−ug(t),ug(t))

x2ν(dx) =
t

g(t)2
σ2(ug(t)),

for t ∈ (0, 1] and u ∈ R \ {0}. The regular variation of ν (see [19, Thm 2]), Fubini’s
theorem and Karamata’s theorem [9, Thm 1.5.11(ii)] imply that, as u ↓ 0,

σ2(u) = −
∫ u

0

x2ν(dx) = −
∫ u

0

2

∫ x

0

zdzν(dx) = −
∫ u

0

∫ u

z

2zν(dx)dz

=

∫ u

0

2z(ν(z)− ν(u))dz =

∫ u

0

2zν(z)dz − u2ν(u) ∼ α

2− α
u2ν(u).

Since X ∈ Zα,ρ, [19, Thm 2] implies that g−1(u)u−2σ2(u) → c0 for some c0 > 0 as
u ↓ 0. Thus,

0 < inf
z∈(0,1]

g−1(z)

z2
σ2(z) ≤ inf

u,t∈(0,1]

g−1(ug(t))

u2g(t)2
σ2(ug(t)).

Since g is regluarly varying with index 1/α, we suppose that g(t) = t1/α$(t) for a
slowly varying function $. Thus, Potter’s bounds [9, Thm 1.5.6] imply that, for some
constant c > 1 and all t, u ∈ (0, 1], we have $(t)/$(tuβ) ≤ cu−βδ for δ = 1/β − 1/α > 0.
Hence, we obtain ug(t) ≤ cg(tuβ) and moreover g−1(ug(t)) ≤ cβtuβ for all t ∈ (0, 1] and
u ∈ (0, 1/c]. Multiplying the rightmost term on the display above (before taking infimum)
by tuβ/g−1(ug(t)) gives

inf
t∈(0,1]

inf
u∈(0,1/c]

uβ−2σ2
Qt(u) = inf

t∈(0,1]
inf

u∈(0,1/c]

tuβ

u2g(t)2
σ2(ug(t)) > 0. (4.3)

Hence, [28, Lem. 2.3] gives the desired result.
Part (b). As before, we see that σ2

Q̃t
(u) = σ2(u

√
t). Hence, the left side of (4.3) gives

inf
t∈[1,∞)

inf
u∈(0,1]

uβ−2σ2
Q̃t

(u) = inf
u∈(0,1]

uβ−2σ2(u) > 0,

for any β ∈ (0, α). Thus, [28, Lem. 2.3] gives the desired result.

Lemma 4.5. Let X ∈ Zα,ρ for some α ∈ (0, 1) and ρ ∈ (0, 1], denote by g its normalising
function and define G(t) = t/g(t) for t > 0. The following statements hold for any
sequences (un)n∈N ⊂ (0,∞) and (sn)n∈N ⊂ (0,∞) such that un → ∞ and sn ↓ 0 as
n→∞:

(i) if unG−1(s−1
n )→∞, then Ψsn(un) ∼ ρ log(unG

−1(s−1
n )),

(ii) if unG−1(s−1
n ) → 0, then Ψsn(un) = O([unG

−1(s−1
n )]q + sn) for any q ∈ (0, 1] with

q < 1/α− 1.
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Proof. Part (i). Define Qt := (Xt − γ0t)/g(t) and note that

Ψsn(un) =

∫ ∞
0

(1− e−tun)e−λtP
(
0 < Qt ≤ snG(t)

)dt

t
, for all n ∈ N.

Fix δ ∈ (0, ρ/3), let κn := G−1(δ/sn) and note that κn ↓ 0 as n→∞. We will now split the
integral in the previous display at κn and 1 and find the asymptotic behaviour of each of
the resulting integrals.

The integral on [1,∞) is bounded as n→∞:∫ ∞
1

(1− e−tun)e−λtP
(
0 < Qt ≤ snG(t)

)dt

t
≤
∫ ∞

1

e−λt
dt

t
<∞.

Next, we consider the integral on [κn, 1). By Lemma 4.4(a), there exists a uniform upper
bound C > 0 on the densities of Qt, t ∈ (0, 1]. An application of [9, Thm 1.5.11(i)] gives,
as n→∞,∫ 1

κn

(1− e−unt)e−λtP
(
0 < Qt ≤ snG(t)

)dt

t
≤ C

∫ 1

κn

snG(t)
dt

t
∼ αC

1− α
snG(κn) =

δαC

1− α
,

which is finite. Since we will prove that Ψsn(un) → ∞ as n → ∞, the asymptotic
behaviour of Ψsn(un) will be driven by asymptotic behaviour of the integral on (0, κn):

J0
n :=

∫ 1

0

(1− e−unκnt)e−λκntP
(
0 < Qκnt ≤ snG(κnt)

)dt

t
. (4.4)

We will show that, asymptotically as n→∞, we may replace the probability in the
integrand with the probability P(0 < Z < δt1−1/α) in terms of the limiting α-stable
random variable Z. Since Z has a bounded density (see, e.g. [34, Ch. 4]), the weak

convergence Qt
d−→ Z as t ↓ 0 implies that the distributions functions converge in

Kolmogorov distance by [27, 1.8.31–32, p. 43]. Thus, since κn → 0 as n → ∞, there
exists some Nδ ∈ N such that

sup
n≥Nδ

sup
t∈(0,κn]

sup
x∈R
|P(0 < Qt ≤ x)− P(0 < Z ≤ x)| < δ,

where δ ∈ (0, ρ/3) is as before, arbitrary but fixed. In particular, the following inequality
holds supn≥Nδ supt∈(0,κn] |P(0 < Qt ≤ snG(t))− P(0 < Z ≤ snG(t))| < δ. For any N ≥ Nδ
the triangle inequality yields

Bδ,N := sup
n≥N

sup
t∈(0,1]

|P(0 < Z < δt1−1/α)− P(0 < Qtκn ≤ snG(tκn))|

≤ δ + sup
n≥N

sup
t∈(0,1]

|P(0 < Z < δt1−1/α)− P(0 < Z ≤ snG(tκn))|

≤ δ + sup
n≥N

sup
t∈(0,1]

P(mt,n < Z < Mt,n),

where mt,n := min{snG(tκn), δt1−1/α} and Mt,n := max{snG(tκn), δt1−1/α}. We aim to
show that Bδ,N ′δ < 2δ for some N ′δ ∈ N.

By [34, Ch. 4], there exists K > 0 such that the stable density of Z is bounded by the
function x 7→ Kx−α−1 for all x > 0. Thus, since Mt,n −mt,n = |δt1−1/α − snG(tκn)|, we
have

P(mt,n < Z < Mt,n) ≤ Km−α−1
t,n |δt1−1/α − snG(tκn)|

≤ K((δt1−1/α)−α−1 + (snG(tκn))−α−1)|δt1−1/α − snG(tκn)|.
(4.5)
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To show that this converges uniformly in t ∈ (0, 1], we consider both summands. First,
we have

(δt1−1/α)−α−1|δt1−1/α − snG(tκn)| = δ−α
∣∣∣∣t1−α − (tκn)(1−α2)/αG(tκn)

κ
(1−α2)/α
n G(κn)

∣∣∣∣,
which tends to 0 as n→∞ uniformly in t ∈ (0, 1] by [9, Thm 1.5.2] since t 7→ t(1−α

2)/αG(t)

is regularly varying at 0 with index 1− α > 0 (recall that g is regularly varying at 0 with
index 1/α and G(t) = t/g(t)). Similarly, since sn = δ/G(κn), we have

(snG(tκn))−α−1|δt1−1/α − snG(tκn)| = δ−α
∣∣∣∣ (tκn)1−1/αG(tκn)−α−1

κ
1−1/α
n G(κn)−α−1

− G(tκn)−α

G(κn)−α

∣∣∣∣.
Since both terms in the last line converge to δαt1−α as n → ∞ uniformly in t ∈ (0, 1]

by [9, Thm 1.5.2], the difference tends to 0 uniformly too. Hence, the right side of (4.5)
converges to 0 as n→∞ uniformly in t ∈ (0, 1]. Thus, for a sufficiently large N ′δ, we have

sup
n≥N ′δ

sup
t∈(0,1]

|P(0 < Z < δt1−1/α)− P(0 < Qtκn ≤ snG(tκn))| = Bδ,N ′δ < 2δ. (4.6)

We now analyse a lower bound on the integral J0
n in (4.4). By (4.6), for all n ≥ N ′δ, we

have

J0
n ≥

∫ 1

0

(1− e−unκnt)e−λκnt
(
P
(
0 < Z ≤ δt1−1/α

)
− 2δ

)dt

t
.

Recall that κn = G−1(δ/sn), define ξn := G−1(1/sn) and note from the regular variation
of G−1 that κn/ξn → δα/(α−1) as n→∞, implying log(unκn) ∼ log(unξn) as n→∞ since
unξn →∞. We split the integral from the display above at log(unκn)−1 and note that∫ 1

log(unκn)−1

(1− e−unκnt)e−λκnt
(
P
(
0 < Z ≤ δt1−1/α

)
+ 2δ

)dt

t

≤
(
1+2δ

) ∫ 1

log(unκn)−1

dt

t
=
(
1+2δ

)
log(log(unκn)) ∼

(
1+2δ

)
log(log(unξn)), as n→∞.

For the integral over (0, log(unκn)−1), first note that, for all sufficiently large n ∈ N, we
have

P(0 < Z ≤ δt1−1/α) ≥ P(0 < Z ≤ δ log(unκn)1/α−1) > ρ− δ, t ∈ (0, log(unκn)−1),

since unκn →∞. Thus, we have∫ log(unκn)−1

0

(1− e−unκnt)e−λκnt
(
P
(
0 < Z ≤ δt1−1/α

)
− 2δ

)dt

t

≥
(
ρ−3δ

)
e−λκn/ log(unκn)

∫ log(unκn)−1

0

(1−e−unκnt)dt

t
∼
(
ρ−3δ

)
log(unξn), as n→∞,

where the asymptotic equivalence follows from the fact that unκn/ log(unκn)→∞ as n→
∞ and

∫ 1

0
(1− e−xt)t−1dt ∼ log x as x→∞. (In fact, we have

∫ 1

0
(1− e−xt)t−1dt = log x+

Γ(0, x)+γ for x > 0 where Γ(0, x) =
∫∞
x
t−1e−tdt is the upper incomplete gamma function

and γ is the Euler–Mascheroni constant.) This shows that lim infn→∞ J0
n/ log(unξn) ≥

ρ− 3δ > 0 since δ ∈ (0, ρ/3).
Similarly, (4.6) implies that for all n ≥ N ′δ, we have

J0
n ≤

∫ 1

0

(1− e−unκnt)e−λκnt
(
P
(
0 < Z ≤ δt1−1/α

)
+ 2δ

)dt

t

≤ (ρ+ 2δ)

∫ 1

0

(1− e−unκnt)dt

t
∼ (ρ+ 2δ) log(unξn), as n→∞,
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implying lim supn→∞ J0
n/ log(unξn) ≤ ρ+ 2δ. Altogether, we deduce that

ρ− 3δ ≤ lim inf
n→∞

Ψsn(un)/ log(unξn) ≤ lim sup
n→∞

Ψsn(un)/ log(unξn) ≤ ρ+ 2δ.

Since δ ∈ (0, ρ/3) is arbitrary and the sequence Ψsn(un)/ log(unξn) does not depend on δ,
we may take δ ↓ 0 to obtain Part (i).

Part (ii). We will bound each of the terms in Ψsn(un) = J1
n + J2

n + J3
n, where ξn =

G−1(1/sn) and

J1
n :=

∫ ξn

0

(1− e−unt)e−λtP(0 < Qt ≤ snG(t))
dt

t
,

J2
n :=

∫ 1

ξn

(1− e−unt)e−λtP(0 < Qt ≤ snG(t))
dt

t
and

J3
n :=

∫ ∞
1

(1− e−unt)e−λtP(0 < Xt − γ0t ≤ snt)
dt

t
.

Recall that our assumption in part (ii) states that unξn → 0 as n → ∞. Using the
elementary inequality 1 − e−x ≤ x for x ≥ 0, we obtain J1

n = O(unξn) as n → ∞. Next
we bound J3

n. Lemma 4.4(b) shows the existence of a uniform upper bound C̃ > 0 on
the densities of Xt/

√
t. Thus, P(0 < Xt − γ0t ≤ snt) = P(γ0

√
t < Xt/

√
t ≤ (γ0 + sn)

√
t) ≤

C̃sn
√
t and hence

J3
n ≤ C̃sn

∫ ∞
1

t−1/2e−λtdt = O(sn), as n→∞.

It remains to bound J2
n. Let q ∈ (0, 1] with q < 1/α− 1 and C > 0 be a uniform bound

on the densities of Qt (whose existence is guaranteed by Lemma 4.4(a)). The elementary
bound 1− e−x ≤ xq for x ≥ 0 for q ∈ (0, 1] and [9, Thm 1.5.11(i)] yield

J2
n ≤ Cuqnsn

∫ 1

ξn

tqG(t)
dt

t
∼ C

1/α− q − 1
uqnsnG(ξn)ξqn = O(uqnξ

q
n), as n→∞.

Proof of Theorem 2.7. Throughout this proof we let φ(u) := γu−1(log log u)r, for some
γ > 0, r ∈ R.

Part (i). Since p is arbitrary on (1/ρ,∞) and f(t) = 1/G(t logp(1/t)), it suffices to show
that lim supt↓0(Ĉ ′t+τ̂s−s)/f(t) = lim supt↓0 Lt/f(t) <∞ a.s. (Recall that Lt = C ′t+τ̂s−s and
Ψu(w) = − logE[e−wYu ] for all u,w ≥ 0.) By Theorem 3.1(a), it suffices to find a positive
sequence (θn)n∈N with limn→∞ θn =∞ such that

∑∞
n=1 exp(θntn −Ψf(tn)(θn)) <∞ and

lim supn→∞ f(tn)/f(tn+1) <∞ where tn := φ(θn).
Let θn := en and r = 0. By the regular variation of f at 0, lim supn→∞ f(tn)/f(tn+1) =

limn→∞ f(tn)/f(tn+1) = e1−1/α. Thus, it suffices to prove that the series above is finite.
Since tn = φ(θn), it follows that tnθn = γ. Note from the definition of f that, as u→∞,

uG−1(f(φ(u))−1) = uh(u)(log(φ(u)−1))p = γ(log(γ−1u))p ∼ γ(log u)p →∞. (4.7)

Since θnG−1(f(tn)−1) ∼ γ(log θn)p → ∞ as n → ∞ by (4.7), Lemma 4.5(i) implies that
Ψf(tn)(θn) ∼ ρ log(θnG

−1(f(tn)−1)) as n→∞.
Fix some ε > 0 with (1 − ε)ρp > 1. Note that Ψf(tn)(θn) ≥ (1 − ε)ρp log log θn for all

sufficiently large n. It suffices to show that the following sum is finite:

∞∑
n=1

exp
(
γ − (1− ε)ρp log log θn

)
.
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Since (1− ε)ρp > 1, the sum in the display above is bounded by a multiple of the series∑∞
n=1 n

−(1−ε)ρp <∞.
Part (ii). Since p is arbitrary in (0, 1/ρ), it suffices to show that lim supt↓0 Lt/f(t) ≥

1 a.s. By Theorem 3.1(b), it suffices to find a positive sequence (θn)n∈N satisfying
limn→∞ θn =∞,

∑∞
n=1(exp(−Ψf(tn)(θn))− exp(−θntn)) =∞ and

∑∞
n=1 Ψf(tn+1)(θn) <∞.

Let r = γ = 1, choose σ > 1 and ε > 0 to satisfy σ(1 + ε)ρp < 1 and set θn := en
σ

for
n ∈ N. We start by showing that the second sum in the paragraph above is finite. Since
σ > 1, (4.7) yields

θnG
−1(f(tn+1)−1) ∼ θn

θn+1
(log θn+1)p log log θn+1 ↓ 0, as n→∞. (4.8)

Hence, Lemma 4.5(ii) with q ∈ (0, 1] and q < 1/α− 1 and (4.8) imply

Ψf(tn+1)(θn) = O
(
[θnG

−1(f(tn+1)−1)]q + f(tn+1)
)
, as n→∞.

By (4.8), it is enough to show that

∞∑
n=1

(
θn
θn+1

(log θn+1)p log log θn+1

)q
<∞, and

∞∑
n=1

f(tn+1) <∞.

Newton’s generalised binomial theorem implies that θn/θn+1 = exp(nσ − (n + 1)σ) ≤
exp(−σnσ−1/2) for all sufficiently large n. Since log θn+1 ∼ nσ, we conclude that the first
series in the previous display is indeed finite. The second series is also finite since f ◦ h
is regularly varying at infinity with index (α− 1)/α < 0 (recall that tn+1 = φ(θn+1)).

Next we prove that
∑∞
n=1(exp(−Ψf(tn)(θn)) − exp(−θntn)) = ∞. Note that we have

exp(−θntn) = exp(− log log θn) = n−σ, which is summable. Applying Lemma 4.5(i)
and (4.7), we see that Ψf(tn)(θn) ∼ ρ log(θnG

−1(f(tn)−1)) as n → ∞. As in Part (i),
it is easy to see that for every ε > 0, the inequality Ψf(tn)(θn) ≤ (1 + ε)ρp log log θn holds
for all sufficiently large n. Thus exp(−Ψf(tn)(θn)) ≥ n−σ(1+ε)ρp is not summable (since
σ(1 + ε)ρp < 1):

∑∞
n=1 exp(−Ψf(tn)(θn)) =∞, completing the proof.

4.3 Upper and lower functions at time 0 – proofs

Fix any λ > 0. Let Ys := τ̂−1/s for s ∈ (0,∞) and note that the mean jump measure of
Ys is given by

Π(ds,dt) := t−1e−λtP(−t/Xt ∈ ds)dt,

implying Π((0, s],dt) = t−1e−λtP(Xt ≤ −t/s)dt. Since Ĉ ′ is the right-inverse of τ̂ , we
have the identity Ĉ ′t = −1/Lt where Lt := inf{s > 0 : Ys > t}. Thus, lim supt↓0 |Ĉ ′t|f(t)

equals 0 (resp. ∞) if and only if lim inft↓0 Lt/f(t) equals∞ (resp. 0). Corollary 3.7 and
Proposition 3.5 above are the ingredients in the proof of Theorem 2.9.

Proof of Theorem 2.9. Since the conditions in Theorem 3.3 only involve integrating the
mean measure Π of Y near the origin, we may ignore the factor e−λt in the definition of
the mean measure Π above. After substituting Π(du,dt) = t−1P(−t/Xt ∈ du)dt in condi-
tions (3.4) and (3.8)–(3.9), we obtain the conditions in (2.6)–(2.8). Thus, Corollary 3.7
and the identity Ĉt = −1/Lt yield the claims in Theorem 2.9.

The following technical lemma which establishes the asymptotic behaviour of the
characteristic exponent Φ defined in (4.1). This result plays an important role in the
proof of Theorem 2.13. We will assume that X ∈ Zα,ρ. For simplicity, by virtue of [9,
Eq. (1.5.1) & Thm 1.5.4], we assume without loss of generality that: g(t) = 1 for t ≥ 1, g
is continuous and decreasing on (0, 1] and the function G(t) = t/g(t) is continuous and
increasing on (0,∞). Hence, the inverse G−1 of G is also continuous and increasing.

EJP 29 (2024), paper 38.
Page 28/36

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1095
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


How smooth can the convex hull of a Lévy path be?

Lemma 4.6. Let X ∈ Zα,ρ for some α ∈ (1, 2] and ρ ∈ (0, 1) and assume E[X2
1 ] < ∞

and E[X1] = 0. The following statements hold for any sequences (un)n∈N ⊂ (0,∞) and
(sn)n∈N ⊂ R− such that un →∞ and sn → −∞ as n→∞:

(i) if unG−1(|sn|−1)→∞, then Φsn(un) ∼ (1− ρ) log(unG
−1(|sn|−1)),

(ii) if unG−1(|sn|−1) ↓ 0, then Φsn(un) = O([unG
−1(|sn|−1)](α−1)/2 + |sn|−2).

Proof. Part (i). Denote Qt := Xt/g(t) and note that, for all n ∈ N,

Φsn(un) =

∫ ∞
0

(1− e−tun)e−λtP
(
Qt ≤ snG(t)

)dt

t
.

For every δ > 0 let κn := G−1(δ/|sn|) and note that κn ↓ 0 as n→∞. The integral in the
previous display is split at κn and we control the two resulting integrals.

We start with the integral on [κn,∞). For any q ∈ (0, α) we claim that K :=

supt≥0E[|Qt|q] <∞. Indeed, since E[X2
t ] <∞, t−1/2g(t)Qt converges weakly to a normal

random variable as t → ∞. Applying [3, Lem. 3.1] gives supt≥1E[|Qt|q]t−q/2g(t)q < ∞,

and hence supt≥1E[|Qt|q] < ∞ since t−1/2g(t) is bounded from below for t ≥ 1. Sim-
ilarly, [10, Lem. 4.8–4.9] imply that supt≤1E[|Qt|q] < ∞, and thus K < ∞. Markov’s
inequality then yields

K ≥ sup
n∈N

sup
t≥κn

|sn|qG(t)qP(Qt ≤ snG(t)). (4.9)

Let q′ := q(1 − 1/α) > 0 and note that G(t)−q is regularly varying at 0 with index −q′.
By (4.9) we have P(Qt ≤ snG(t)) ≤ K|sn|−qG(t)−q for all t ≥ κn and n ∈ N. Hence,
Karamata’s theorem [9, Thm 1.5.11] gives∫ ∞

κn

(1− e−unt)e−λtP
(
Qt ≤ snG(t)

)dt

t
≤ K

∫ ∞
κn

|sn|−qe−λtG(t)−q
dt

t

∼ K

q′
|sn|−qG(κn)−q =

K

q′δq
<∞, as n→∞.

Thus, the integral
∫∞
κn

(1− e−unt)e−λtP
(
Qt ≤ snG(t)

)
t−1dt is bounded as n→∞.

It remains to establish the asymptotic growth of the corresponding integral on (0, κn).
Since the limiting α-stable random variable Z has a bounded density (see, e.g. [34,

Ch. 4]), the weak convergence of Qt
d−→ Z as t ↓ 0 extends to convergence in Kolmogorov

distance by [27, 1.8.31–32, p. 43]. Thus, there exists some Nδ ∈ N such that

sup
n≥Nδ

sup
t∈[0,κn]

|P(Qt ≤ snG(t))− P(Z ≤ snG(t))| < δ.

Since G(κn) = δ/|sn| and P(Z ≤ 0) = 1− ρ, the triangle inequality yields

Bδ := sup
n≥Nδ

sup
t∈[0,κn]

|1− ρ− P(Qt ≤ snG(t))| ≤ |1− ρ− P(Z ≤ −δ)|+ δ.

which tends to 0 as δ ↓ 0.
Define ξn := G−1(1/|sn|) for and note from the regular variation of G−1 that κn/ξn →

δα/(α−1) as n→∞, implying log(unκn) ∼ log(unξn) as n→∞ since unξn →∞. As in the
proof of Lemma 4.5 above, we have

∫ 1

0
(1− e−xt)t−1dt ∼ log x as x→∞. Since unξn →∞

and ξn ↓ 0 as n→∞, we have∫ κn

0

(1− e−unt)e−λtP
(
Qt ≤ snG(t)

)dt

t
≤ (1− ρ+Bδ)

∫ κn

0

(1− e−unt)e−λt dt
t

∼ (1− ρ+Bδ) log(unξn), as n→∞.
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This implies that lim supn→∞Φsn(un)/ log(unξn) ≤ 1− ρ+Bδ. A similar argument can be
used to obtain lim infn→∞ Φsn(un)/ log(unξn) ≥ 1− ρ−Bδ. Since δ > 0 is arbitrary and
Bδ ↓ 0 as δ ↓ 0, we deduce that Φsn(un) ∼ (1− ρ) log(unξn) as n→∞.

Part (ii). We will bound each of the terms in Φsn(un) = J1
n + J2

n + J3
n, where ξn =

G−1(1/|sn|) and

J1
n :=

∫ ξn

0

(1− e−unt)e−λtP(Xt ≤ snt)
dt

t
, J2

n :=

∫ ∞
1

(1− e−unt)e−λtP(Xt ≤ snt)
dt

t
,

and J3
n :=

∫ 1

ξn

(1− e−unt)e−λtP(Qt ≤ snG(t))
dt

t
.

The elementary inequality 1 − e−x ≤ x for x ≥ 0 implies that the integrand of J1
n is

bounded by un. Hence, we have J1
n = O(unξn) = O((unξn)(α−1)/2) as n→∞.

To bound J2
n, we use Markov’s inequality as follows: since E[X2

t ] = E[X2
1 ]t for all

t > 0, we have P(Xt ≤ snt) ≤ E[X2
1 ]t/(|sn|2t2) = E[X2

1 ]|sn|−2t−1, for all n ∈ N, t > 0.
Thus, we get

J2
n ≤

E[X2
1 ]

|sn|2

∫ ∞
1

dt

t2
=
E[X2

1 ]

|sn|2
= O(|sn|−2), as n→∞.

It remains to bound J3
n. Let r := (α − 1)/2, pick any q ∈ (α/2, α) and recall from

Part (i) that K = supt≥0E[|Qt|q] < ∞. Note that q′ = q(1 − 1/α) > r, so Karamata’s
theorem [9, Thm 1.5.11], the inequality in (4.9) and the elementary bound 1− e−x ≤ xr
for x ≥ 0 yield

J3
n ≤ Kurn

∫ 1

ξn

tr|sn|−qG(t)−q
dt

t
∼ Kurn
q′ − r

ξrn|sn|−qG(ξn)−q =
K

q′ − r
(unξn)r, as n→∞.

We conclude that J3
n = O((unξn)r) as n→∞, completing the proof.

Proof of Theorem 2.13. Throughout this proof we let φ(u) := γu−1(log log u)r, for some
γ > 0 and r ∈ R. By Remark 2.1 we may and do assume without loss of generality that
(Xt)t≥0 has a finite second moment and zero mean.

Part (i). Since p is arbitrary on the interval (1/(1 − ρ),∞), it suffices to show that
lim inft↓0 |Ĉ ′t|f(t) > 0 a.s. where f(t) = G(t logp(1/t)). Since Ĉ ′t = −1/Lt, this is equiva-
lent to lim supt↓0 Lt/f(t) < ∞ a.s. Recall that Ψu(w) = logE[e−wYu ] = logE[e−wτ̂−1/u ] =

Φ−1/u(w) for all u > 0 and w ≥ 0. By virtue of Theorem 3.1(a), it suffices to show that∑∞
n=1 exp(θntn −Ψf(tn)(θn)) <∞ and lim supn→∞ f(tn)/f(tn+1) <∞ for tn := φ(θn) and

a positive sequence (θn)n∈N with limn→∞ θn =∞.
Let θn := en and r = 0. By the regular variation of f at 0, lim supn→∞ f(tn)/f(tn+1) =

limn→∞ f(tn)/f(tn+1) = e1−1/α. Thus, it suffices to prove that the series is finite. Since
tn = φ(θn), it follows that tnθn = γ. Note from the definition of f that, as u→∞,

uG−1(f(φ(u))) = uφ(u)(log(φ(u)−1))p = γ(log(γ−1u))p ∼ γ(log u)p →∞. (4.10)

By Lemma 4.6(i) we have Ψf(tn)(θn) = Φ−1/f(tn)(θn) ∼ (1 − ρ) log(θnG
−1(f(tn))) as

n→∞, since θnG−1(f(tn)) ∼ γ(log θn)p →∞ as n→∞ by (4.10).
Fix ε > 0 with (1− ε)(1− ρ)p > 1. Note that Ψf(tn)(θn) ≥ (1− ε)(1− ρ)p log log θn for

all sufficiently large n. It is enough to show that the following sum is finite:

∞∑
n=1

exp
(
γ − (1− ε)(1− ρ)p log log θn

)
.

Since (1− ε)(1− ρ)p > 1, this sum is bounded by a multiple of
∑∞
n=1 n

−(1−ε)(1−ρ)p <∞.
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Part (ii). As before, since p is arbitrary in (0, 1/(1 − ρ)), it suffices to show that
we have lim inft↓0 |Ĉ ′t|f(t) < ∞ a.s. By Theorem 3.1(b), it suffices to show that there
exists some r > 0 and a positive sequence (θn)n∈N satisfying limn→∞ θn =∞, such that∑∞
n=1(exp(−Ψf(tn)(θn))− exp(−θntn)) =∞ and

∑∞
n=1 Ψf(tn+1)(θn) <∞.

Let γ = r = 1, choose σ > 1 and ε > 0 satisfying σ(1+ε)p(1−ρ) < 1 (recall p(1−ρ) < 1)
and set θn := en

σ

. We start by showing that the second sum is finite. Since σ > 1, (4.10)
yields

θnG
−1(f(tn+1)) ∼ θn

θn+1
(log θn+1)p ↓ 0, as n→∞. (4.11)

Hence, the time-change Ĉ ′t = −1/Lt, Lemma 4.6(ii) and (4.11) imply

Ψf(tn+1)(θn) = Φ−1/f(tn+1)(θn) = O
(
[θnG

−1(f(tn+1))](α−1)/2 + f(tn+1)2
)
, as n→∞.

By (4.11), it is enough to show that

∞∑
n=1

(
θn
θn+1

(log θn+1)p log log θn+1

)(α−1)/2

<∞, and
∞∑
n=1

f(tn+1)2 <∞.

Newton’s generalised binomial theorem implies that θn/θn+1 = exp(nσ − (n + 1)σ) ≤
exp(−σnσ−1/2) for all sufficiently large n. Since log θn+1 ∼ nσ, we conclude that the first
series in the previous display is indeed finite. The second series is also finite since f ◦ h
is regularly varying at infinity with index −(α− 1)/α (recall that tn+1 = φ(θn+1)).

Next we prove that
∑∞
n=1(exp(−Ψf(tn)(θn)) − exp(−θntn)) = ∞. First observe that

the terms exp(−θntn) = exp(− log log θn) = n−σ are summable. Applying Lemma 4.6(i)
and (4.10), we obtain Ψf(tn)(θn) ∼ (1 − ρ) log(θnG

−1(f(tn))) as n → ∞. As in Part (i),
Ψf(tn)(θn) ≤ (1 + ε)p(1− ρ) log log θn for all sufficiently large n. Thus exp(−Ψf(tn)(θn)) ≥
n−σ(1+ε)p(1−ρ) and, since σ(1+ε)p(1−ρ) < 1, we deduce that

∑∞
n=1 exp(−Ψf(tn)(θn)) =∞,

completing the proof.

4.4 Proofs of Subsection 2.5

In this subsection we prove the results stated in Subsection 2.5.

Proofs of Lemmas 2.15 and 2.19. We first prove Lemma 2.15. Let s ∈ L∗ and let the
function f : [0,∞)→ [0,∞) be continuous and increasing with f(0) = 0 and define the
function f̃(t) :=

∫ t
0
f(u)du, t ≥ 0. Note that ms = Xτs ∧ Xτs− equals Cτs since τs is a

contact point between t 7→ Xt ∧Xt− and its convex minorant C.

Part (i). By assumption, for any M > 0 there exists δ > 0 such that C ′t+τs − s ≥Mf(t)

for t ∈ (0, δ). Since
∫ t

0
(C ′u+τs−s)du = Ct+τs−ms−st it follows that Ct+τs−ms−st ≥Mf̃(t)

for all t ∈ [0, δ). Note that the path of X stays above its convex minorant, implying
Ct+τs − ms − st ≤ Xt+τs − ms − st. Thus, Xt+τs − ms − st ≥ Mf̃(t) for all t ∈ [0, δ),
implying that lim inft↓0(Xt+τs −ms − st)/f̃(t) ≥M .

Part (ii). Assume that f̃ is convex on a neighborhood of 0, and that lim supt↓0(C ′t+τs −
s)/f(t) = 0. Then, for all M > 0 there exists some δ > 0 such that C ′t+τs − s ≤ Mf(t)

for all t ∈ [0, δ). Integrating this inequality gives Ct+τs − ms − st ≤ Mf̃(t) for all
t ∈ [0, δ). Since s ∈ L∗, there exists a decreasing sequence of slopes sn ↓ s such
that tn = τsn − τs ↓ 0 and Xtn+τs ∧ Xtn+τs− = Ctn+τs for all n ∈ N. Thus, either
Xtn+τs − ms − stn ≤ Mf̃(tn) i.o. or Xtn+τs− − ms − stn ≤ Mf̃(tn) i.o. Since f̃ is
continuous, we deduce that lim inft↓0(Xt+τs −ms − st)/f̃(t) ≤M .

The proof of Lemma 2.19 follows along similar lines with f̃(t) =
∫ t

0
f(u)−1du, t > 0,

the slope s = −∞ and m−∞ = X0 = 0.
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Proof of Corollary 2.17. Part (i) follows from Theorem 2.7 and Lemma 2.15(ii).
Part (ii). Assume α ∈ (1/2, 1). By Theorem 2.2 and Lemma 2.15(i) it suffices to

prove that (2.1)–(2.3) hold for c = 1. As described in Subsection 2.1.1, condition (2.5)
implies (2.2)–(2.3). By Lemma 4.4, the density of (Xt − st)/g(t) is uniformly bounded in
t > 0. Hence, the following condition implies (2.5):∫ 1

0

∫ 1

f(t/2)

1

f−1(x)
dx

t

g(t)
dt <∞. (4.12)

Similarly, (2.1) holds with c = 1 if
∫ 1

0
(f(t)/g(t))dt < ∞. Thus, it remains to show

that (4.12) holds and
∫ 1

0
(f(t)/g(t))dt <∞.

We first establish (4.12). Let a = α/(1 − α) and note that f(t) := 1/G(t(log t−1)p) =

t1/a$̃(t) where the slowly varying function $̃ is given by $̃(t) = logp/a(1/t)$(t logp(1/t)).
Thus, by [9, Thm 1.5.12], the inverse f−1 of f admits the representation f−1(t) = ta$̂(t)

for some slowly varying function $̂(t). This slowly varying function satisfies

t = f−1(f(t)) = f(t)a$̂(f(t)) =⇒ $̂(f(t)) ∼ t/f(t)a ∼ 1/$̃(t)a, as t ↓ 0. (4.13)

Since a > 1, the function f−1 is not integrable at 0. Thus, by Karamata’s theorem [9,
Thm 1.5.11] and (4.13), the inner integral in (4.12) satisfies∫ 1

f(t/2)

1

f−1(x)
dx ∼ 1

a− 1
f(t/2)1−a$̂(f(t))−1 ∼ 2(a−1)/a

a− 1
f(t)1−a$̃(t)a, as t ↓ 0.

Since t/g(t) = t−1/a/$(t) for t > 0, condition (4.12) holds if and only if the following
integral is finite∫ 1

0

f(t)1−a $̃(t)a

$(t)
t−1/adt =

∫ 1

0

logp/a(1/t)
$(t logp(1/t))

$(t)

dt

t
.

The integrand is asymptotically equivalent to logp/a(1/t)t−1 since $(t logp(1/t))/$(t)→ 1

as t ↓ 0 uniformly on [0, 1] by [9, Thm 2.3.1] and our assumption on $. Thus, the condition
p < −a makes the integral in display finite, proving condition (4.12).

To prove that
∫ 1

0
(f(t)/g(t))dt < ∞, take any δ > 0 with p(1/a − δ) < −1 (recall

p/a < −1 by assumption) and apply Potter’s bound [9, Thm 1.5.6(iii)] with δ to obtain,
for some constant K > 0,∫ 1

0

f(t)

g(t)
dt =

∫ 1

0

g(t logp(1/t))

g(t) logp(1/t)

dt

t
≤ K

∫ 1

0

logp(1/a−δ)(1/t)
dt

t
<∞.

Part (iii). The result follows from Corollary 2.4 and Lemma 2.15(i).

5 Concluding remarks

The points on the boundary of the convex hull of a Lévy path where the slope
increases continuously were characterised (in terms of the law of the process) in our
recent paper [4]. In this paper we address the question of the rate of increase for the
derivative of the boundary at these points in terms of lower and upper functions, both
when the tangent has finite slope and when it is vertical (i.e. of infinite slope). Our
results cover a large class of Lévy processes, presenting a comprehensive picture of
this behaviour. Our aim was not to provide the best possible result in each case and
indeed many extensions and refinements are possible. Below we list a few that arose
while discussing our results in Section 2 as well as other natural questions.
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• Find an explicit description of the lower (resp. upper) fluctuations in the finite
(resp. infinite) slope regime for Lévy processes in the domain of attraction of an
α-stable process in terms of the normalising function (cf. Corollaries 2.4 and 2.12).
In the finite slope regime, this appears to require a refinement of [28, Thm 4.3] for
processes in this class.

• In Theorems 2.7 and 2.13 we find the correct power of the logarithmic factor, in
terms of the positivity parameter ρ, in the definition of the function f for processes
in the domain of attraction of an α-stable process. It is natural to ask what powers of
iterated logarithm arise and how the boundary value is linked to the characteristics
of the Lévy process. This question might be tractable for α-stable processes since
power series and other formulae exist for their transition densities [34, Sec. 4],
allowing higher order control of the Laplace transform Φ in Lemmas 4.5 and 4.6.

• Find the analogue of Theorems 2.7 and 2.13 for processes attracted to Cauchy
process (see Remarks 2.8(a) and 2.14(b) for details).

• Find Lévy processes for which there exists a deterministic function f such that any of
the following limits is positive and finite: lim supt↓0(C ′t+τs − s)/f(t), lim inft↓0(C ′t+τs −
s)/f(t), lim supt↓0 |C ′t|f(t) or lim inft↓0 |C ′t|f(t). By Corollaries 2.4 and 2.12, such a
function does not exist for the limits lim inft↓0(C ′t+τs − s)/f(t) or lim supt↓0 |C ′t|f(t)

within the class of regularly varying functions and α-stable processes with jumps of
both signs.

A Elementary estimates

Recall that (γ, σ2, ν) is the generating triplet of X and the definition of the functions
γ, σ2 and ν in (2.9) above.

Lemma A.1. For any p ∈ (0, 2], t,K > 0 and ε ∈ (0, 1], the following bounds hold

E[(|Xt| ∧K)p] ≤ (γ(ε)2t2 + σ2(ε)t)p/2 +Kpν(ε)t,

P(|Xt| ≥ K) ≤ (γ(ε)2t2 + σ2(ε)t)/K2 + ν(ε)t.

Proof. Let Xt = γ(ε)t+ Jt +Mt be the Lévy-Itô decomposition of X at level ε, where J
is compound Poisson containing all of the jumps of X with magnitude at least ε and Mt

is a martingale with jumps of size smaller than ε. Fix t > 0 and define the event A of not
observing any jump of J on the time interval [0, t]. Clearly 1− P(A) = 1− e−ν(ε)t ≤ ν(ε)t.
Consider the elementary inequality |Xt|p ∧ Kp ≤ |γ(ε)t + Mt|p1A + Kp1Ac . Taking
expectations and applying Jensen’s inequality (with the concave function x 7→ xp/2 on
(0,∞)), we obtain the bound

E
(
|Xt|p ∧Kp

)
≤
(
γ(ε)2t2 + E

[
M2
t

])p/2
+Kp(1− P(A)),

because EMt = 0. The first inequality readily follows. The second inequality follows
from the first one: using Markov’s inequality we get

P(|Xt| ≥ K) = P(|Xt| ∧K ≥ K) ≤ E(X2
t ∧K2)/K2.

Thus, the second result follows from the first with p = 2.
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