
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 29 (2024), article no. 30, 1–27.
ISSN: 1083-6489 https://doi.org/10.1214/24-EJP1092

A conditional scaling limit of the KPZ fixed point with
height tending to infinity at one location*
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Abstract

We consider the asymptotic behavior of the KPZ fixed point {H(x, t)}x∈R,t>0 condi-
tioned on H(0, T ) = L as L goes to infinity. The main result is a conditional limit
theorem for the fluctuations of H in the region near the line segment connecting
the origin (0, 0) and (0, T ) for both step and flat initial conditions. The limit random
field can be represented as a functional of two independent Brownian bridges, and in
addition the limit random field depends also on the initial law of the KPZ fixed point.
In particular for temporal fluctuations, the limit process indexed by line segment
between (0, 0) and (0, T ), when the KPZ is with step initial condition, has the law of
the minimum of two independent Brownian bridges; and when the KPZ is with flat
initial condition the limit process has the law of the minimum of two independent
Brownian bridges, each in addition perturbed by a common Gaussian random vari-
able. For spatial-temporal fluctuations, the conditional limit theorem sheds light on
the asymptotic behaviors of the point-to-point geodesic of the directed landscape
conditioned on its length and as the length tends to infinity.

Keywords: KPZ fixed point; Brownian bridge; conditional scaling limit; directed landscape.
MSC2020 subject classifications: 60K35.
Submitted to EJP on June 16, 2023, final version accepted on January 29, 2024.

1 Introduction and main results

1.1 The model and main results

The object of this paper is the so-called Kardar–Parisi–Zhang (KPZ) fixed point, a
random two-dimensional field that arises from various models (random growth models,
last passage percolations and directed polymers) that are loosely called the KPZ univer-
sality class (e.g. [BDJ99, Joh00, Joh03, BFPS07, TW08, TW09, BC14, MQR21, DOV18,
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A conditional scaling limit of the KPZ fixed point

QS20, Vir20]). Throughout, we let {H(x, t)}x∈R,t≥0 denote the KPZ fixed point, where x
and t are the spatial and temporal parameters respectively. The field H also depends
on the initial condition H(x, 0) = h0(x) for some function h0. The KPZ fixed point was
conjectured to be the universal space-time limiting field of the height functions in all
the models in the KPZ universality class, while its first characterization was obtained
in [MQR21] only recently. Therein, the authors defined H as the limit of the rescaled
height function of an exactly solvable model in the KPZ universality class, the totally
asymmetric simple exclusion process (TASEP), and then characterized H as the unique
Markov process taking values in the space of upper-semicontinuous functions with
explicit formula for transition probability.

In general, it is challenging to obtain explicit formulas for the distributions of H.
Such formulas are usually quite involved and obtained by exploiting the connections
between certain exactly solvable models and the KPZ fixed point. Seminal works
[BDJ99, Joh00] revealed the role of Tracy–Widom distributions for marginal (one-point)
distributions. The finite-dimensional (multi-point) distribution in the spatial direction
(i.e., the law of (H(x1, t), . . . ,H(xd, t))) for a fixed time point t) were obtained afterwards
[PS02, Joh03, BFPS07, MQR21]. Most recently, the explicit formulas for joint cumulative
distribution function of finite-dimensional distributions in general, with possibly different
time points, with were obtained in [Joh17] (two-dimensional) and [JR21, Liu22a] (finite-
dimensional). The latter two newly developed formulas in fact take quite different
expressions, and a direct proof of their equivalence remains an interesting open question
at this moment.

With explicit formulas at hand, it becomes now possible to carry out detailed analysis
of path fluctuations of the KPZ fixed point. The main contribution of this paper is
to characterize a local extremal behavior of the KPZ fixed point, using the recently
developed formula [Liu22a]. More precisely, for some fixed T > 0 we investigate the
asymptotic joint behavior of {H(x, t)}x∈R,t∈(0,T ) when the value of H(0, T ) tends to infinity.
Note that H depends on the initial condition H(x, 0) = h0(x). We will focus on two
specific initial conditions: the step initial condition h0(x) = −∞1{x 6=0}, and the flat initial
condition h0(x) = 0. When needed, we will use Hstep and Hflat to denote the KPZ fixed
point with the step and flat initial conditions respectively.

Our main results are the following. We let
f.d.d.−−−→ denote convergence of finite-

dimensional distributions.

Theorem 1.1. For all T > 0, as L→∞,

Law


H( xT 3/4

√
2L1/4

, τT )− τH(0, T )
√

2T 1/4L1/4


x∈R,τ∈(0,1)

∣∣∣∣∣∣∣ H(0, T ) = L



f.d.d.−−−→



Law
({

min
{
Bbr

1 (τ) + x,Bbr
2 (τ)− x

}}
x∈R,τ∈(0,1)

)
,

if H = Hstep,

Law

({
min

{
Bbr

1 (τ) + x +
1− τ√

2
Z,Bbr

2 (τ)− x− 1− τ√
2
Z

}}
x∈R,τ∈(0,1)

)
,

if H = Hflat,

(1.1)

where on the right-hand side, {Bbr
1 (τ)}τ∈[0,1] and {Bbr

2 (τ)}τ∈[0,1] denote two i.i.d. Brown-
ian bridges over interval [0, 1], and in the case with flat initial condition Z is a standard
normal random variable independent from Bbr

1 ,B
br
2 .

Remark 1.2. An alternative interpretation of the limit random field is as follows. For
fixed τ , we describe the function fτ (x) := min

{
Bbr

1 (τ) + x,Bbr
2 (τ)− x

}
as a shifted down-
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ward right angle. It is convenient to describe this function via its graph (x, fτ (x))x∈R ⊂ R2.
Introduce the function f∗(x) = −|x| as the ‘downward right angle with vertex at (0, 0)’
(again think of its graph). Then, we can relate the graph of the two functions via

(x, fτ (x))x∈R = (x, f∗(x))x∈R + (v1(τ), v2(τ)) ≡ (x + v1(τ), f∗(x) + v2(τ))x∈R , (1.2)

where the graph of f∗ is shifted to the vertex at

(v1(τ), v2(τ)) =

(
−Bbr

1 (τ) +Bbr
2 (τ)

2
,
Bbr

1 (τ) +Bbr
2 (τ)

2

)
. (1.3)

As a bivariate process, the vertex process {v1(τ), v2(τ)}τ∈(0,1) given by (1.3) has the law
of a bivariate Brownian bridge: each coordinate process is an independent Brownian
bridge scaled by 1/

√
2.

Then, we can view the limiting random field as a moving downwards right angle,
with the vertex process following the law of a bivariate Brownian bridge for the case of
step initial condition. For the case of flat initial condition the limit random field can be
interpreted similarly: if we set fτ (x) = min{Bbr

1 (τ) + x + (1− τ)Z/
√

2,Bbr
2 (τ)− x− (1−

τ)Z/
√

2} accordingly, then (1.2) remains to hold with the same f∗ and now the vertex
process becomes

(v1(τ), v2(τ)) =

(
−Bbr

1 (τ) +Bbr
2 (τ)

2
− 1− τ√

2
Z,
Bbr

1 (τ) +Bbr
2 (τ)

2

)
.

Remark 1.3. We understand

P(· | H(0, T ) = L) := lim
ε↓0
P(· | H(0, T ) ∈ (L− ε, L+ ε)),

and the proof is based on the formula

P(H(x1, t1) > h1, . . . ,H(xm−1, tm−1) > hm−1 | H(xm, tm) = hm)

:=
∂

∂hm
P(H(x1, t1) > h1, . . . ,H(xm, tm) > hm)/

∂

∂hm
P(H(xm, tm) > hm).

The marginal distribution of Hstep (Hflat respectively) is the GUE (GOE resp.) Tracy–
Widom distribution, and the formula of joint cumulative distribution function we use was
obtained in [Liu22a].

The convergence (1.1) is understood similarly; see (3.1) and (3.3) below for a precise
statement.

Remark 1.4. Note that our limit theorem does not include the endpoints τ = 0, 1. We
do not include τ = 0 as the random field Hstep is not continuous at τ = 0+, and in fact
the formula we work with does not include τ = 0.

We do not include τ = 1 in the present work, however, for a different reason. There is
in fact a phase transition at τ = 1 for the conditional limit theorem of our interest. Indeed,
in an upcoming work [NZ22], the authors proved that for fixed τ > 1, the conditional
limit distribution of Hstep(x, τT ), properly normalized, given Hstep(0, T ) = L as L→∞ is
the GUE Tracy–Widom distribution, again by exploiting the formula from [Liu22a].

By exploiting the same formula, we expect that there is a different scaling limit
when τ = τL depends on L and τL → 0 (or 1) as L → ∞. We leave the two cases for
investigations in the future.

Remark 1.5. For the step initial condition, using the following invariance property of
the KPZ fixed point (see the skew stationary property of Lemma 10.2 in [DOV18])

{Hstep (x, t)}x∈R,t>0

d
=

{
Hstep

(
x+

X

T
t, t

)
− 1

t

((
x+

X

T
t

)2

− x2

)}
x∈R,t>0
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for any fixed X ∈ R and T > 0, we have

Law


Hstep( xT 3/4

√
2L1/4

+ τX, τT )− τHstep(X,T )
√

2T 1/4L1/4


x∈R,τ∈(0,1)

∣∣∣∣∣∣∣ Hstep(X,T ) = L


f.d.d.−−−→ Law

({
min

{
Bbr

1 (τ) + x,Bbr
2 (τ)− x

}}
x∈R,τ∈(0,1)

)
,

as L→∞.

For the flat initial condition, since {Hflat(x, t)}x∈R,t>0 has the same law as {Hflat(x+

c, t)}x∈R,t>0 for any fixed constant c ∈ R, our theorem implies

Law


Hflat(

xT 3/4
√

2L1/4
+X, τT )− τHflat(X,T )
√

2T 1/4L1/4


x∈R,τ∈(0,1)

∣∣∣∣∣∣∣ Hflat(X,T ) = L


f.d.d.−−−→ Law

({
min

{
Bbr

1 (τ) + x +
1− τ√

2
· Z,Bbr

2 (τ)− x− 1− τ√
2
· Z
}}

x∈R,τ∈(0,1)

)
,

as L→∞.

Remark 1.6. We are not aware of any similar conditional (second order) scaling limit
theorems, but we mention two relevant results on conditional limit theorems on the
(first order) shape by proving certain concentration phenomena. The first is the recent
work by [GH22]. Their interest comes from a different aspect, and they proved various
interesting results. The most relevant result to our setup is [GH22, Theorem 1.9], where
in our setup they considered τ = 1 and proved

P

(
sup

x∈[−L1/2,L1/2]

∣∣Hstep(x, T )− L+ 2|x|L1/2
∣∣

L1/4
> ML

∣∣∣∣∣ Hstep(0, T ) = L

)
≤ exp

(
−C1M

2
L

)
with ML ≤ C2L

3/4 for some constants C1, C2 > 0. Note that they are interested in a
different scaling in the space parameter x, of order L1/2 away from the line segment
between (0, 0) and (0, T ) of out interest, and also their result concerns the case τ = 1

that we exclude in this paper.

Another relevant and recent result is due to [LLT21], who identified the first order
space-time limit shape of the so-called KPZ equation in the weak noise regime, also
conditioning on the value at a fixed location being large and tending to infinite. The model
considered therein is loosely related to but not exactly the KPZ fixed point investigated
here, and also they are interested in the shape away from the line segment as in [GH22].

In principle, our methodology can yield second order limit fluctuations at the different
scaling order considered in the two papers above, away from the nearby region of the
line segment between (0, 0) and (0, T ), although the analysis could be more involved. We
leave this task for a future work.

We searched for a simple explanation on why the limit involves the minimum of two
independent Brownian bridges, but without success yet. Nevertheless, our result is
consistent with, and actually provides insight to, some recent discoveries and conjectures
on point-to-point geodesics of directed landscape, as we explain now. Actually, the
previous Remark 1.2 on the moving downward right angle is inspired by this connection:
compare with Conjecture 1.8 below.
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1.2 Comments and conjectures regarding directed landscape

We discuss a few conjectures suggested by our Theorem 1.1, and the most interesting
conjectures concern the recently introduced directed landscape and its geodesics, to be
introduced in a moment. Originally, a main motivation of the present work was to better
understand the local extrema behavior around the so-called point-to-point geodesic,
when its length tends to infinity.

We shall start with a quick remark on Theorem 1.1. Our theorem is in the sense
of convergence of the finite-dimensional distributions, and a natural question is to
enhance the convergence to one in the space of C((0, 1))×C((0, 1)) (C denotes the space
of continuous functions defined on the given interval). The only missing piece is the
tightness of the normalized processes with respect to the conditional laws. We do not
know how to prove this, but expect it to hold.

To simplify the notation we introduce

Hstep,L(x, τ) :=
Hstep

(
xT 3/4

2L1/4 , τT
)
− τL

T 1/4L1/4
.

(The reason for the slightly different normalization as in Theorem 1.1 will become clear
in (1.5) below.) Then, we are interested in the argmax process and the max process{

argmax
x∈R

Hstep,L(x, τ)

}
τ∈(0,1)

and

{
max
x∈R

Hstep,L(x, τ)

}
τ∈(0,1)

,

respectively. The motivation of considering these two processes shall be clear, once we
introduce the directed landscape and its geodesics.

Recall that the KPZ fixed point has continuous sample path when restricted to t > 0.
The definition of the argmax process is delicate and actually nontrivial, as explained in
the next remark.

Remark 1.7. It has been known that for every fixed τ ∈ (0, 1), almost surely the argmax
of Hstep(·, τ) exists and is unique [CH14, MFQR13, Pim14]. However, it has been recently
shown [CHHM21, Dau22] that almost surely, there exists a non-empty fractal subset
say T of (0, 1) so that for τ ∈ T , the maximum of Hstep(·, τ) is not achieved uniquely.
Therefore, while the maximum is always achieved for all τ ∈ (0, 1) (so we can write
maxx∈R instead of supx∈R), to define the argmax process jointly in τ would require some
work.

Instead, to define the argmax process (without conditioning), one could first define
it via its finite-dimensional distributions (for every choice of fixed τ1, . . . , τd and they
are known to exist uniquely as aforementioned), which form a consistent family. Then,
this family in turn determines the argmax process as a random element in D((0, 1)),
the space of càdlàg functions [Bil99]. We let {argmaxx∈R Hstep,L(x, τ)}τ∈(0,1) denote the
so-defined process.

Now, to define the argmax process with respect to the conditional law, one should
also be careful regarding the uniqueness issue. In view of the discussions above and
Remark 1.3, the conditional law of argmax process given Hstep(0, T ) ∈ (L − ε, L + ε) is
again well-defined (first for fixed τ1, . . . , τd and then they determine the law on D((0, 1))),
and therefore taking the limit ε ↓ 0 we obtain the conditional law of the argmax process
given Hstep(0, T ) = L. Strictly speaking, we need to show there is a well-defined limit
when ε ↓ 0. We expect this to hold.

Then, the following conjecture can be proved if one shows the tightness for Theo-
rem 1.1 with step initial condition.
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Conjecture 1.8. For all T > 0, as L→∞,

Law

({
argmax

x∈R
Hstep,L(x, τ),max

x∈R
Hstep,L(x, τ)

}
τ∈(0,1)

∣∣∣∣∣ Hstep(0, T ) = L

)
→ Law

({
Bbr

1 (τ),Bbr
2 (τ)

}
τ∈(0,1)

)
, (1.4)

where Bbr
1 and Bbr

2 denote two independent Brownian bridges, and where the conver-
gence is in distribution in the space of D((0, 1),R)×D((0, 1),R).

Indeed, applying the continuous mapping theorem to Theorem 1.1, it would follow
that the limit of the left-hand side of (1.4) is{

argmax
x∈R

min

{√
2Bbr

1 (τ) + x,
√

2Bbr
2 (τ)− x

}
,

max
x∈R

min

{√
2Bbr

1 (τ) + x,
√

2Bbr
2 (τ)− x

}}
τ∈(0,1)

a.s.
=

{
Bbr

2 (τ)−Bbr
1 (τ)√

2
,
Bbr

1 (τ) +Bbr
2 (τ)√

2

}
τ∈(0,1)

, (1.5)

which has the claimed joint distribution. It is remarkable that the argmax process and
max process, two dependent objects, are asymptotically conditionally independent when
L→∞.

Conjecture 1.8 sheds light on the behavior of a closely related object, the geodesics
of directed landscape, under a similar rare event of our consideration. To understand
the extremal behavior of geodesics of directed landscape [DOV18] was in fact our main
motivation of the current work, following a recent result by one of us [Liu22b].

We first review some background exclusively regarding the directed landscape,
denoted by L. We then explain how our result and the Conjecture 1.8 above are relevant
to L. The directed landscape was introduced as the random field arising in limit theorems
for Brownian last passage percolation [DOV18]. Since then it has been proved to be
the limiting field for several other KPZ models [DV21]. A directed landscape is a four-
parameter random field

{L(x, s; y, t)}R4
↑

with R4
↑ :=

{
(x, s; y, t) ∈ R4 : s < t

}
,

with continuous sample path. Then, for any s < t, and continuous function π ∈ C([s, t]),
one can define the length of π with respect to the directed landscape L (see, for example
[RV21]) as

`s,t(π) := inf
n∈N

inf
s=t0<···<tn=t

n∑
i=1

L(π(ti−1), ti−1;π(ti), ti), with π = {π(r)}r∈[s,t] ∈ C([s, t]).

The geodesic of the directed landscape L between two fixed points (x, s) to (y, t),
with (x, s; y, t) ∈ R4

↑, is a continuous path π ∈ C([s, t]), with π(s) = x and π(t) = y,
which has the maximal length `s,t(π) with respect to L. It has been proved that the
geodesic exists and is unique almost surely [DOV18]. For such a geodesic π, we refer to
{L(x, s;π(r), r)}r∈[s,t] as the directed landscape along the geodesic π between (x, s) and
(y, t).

From now on, we let
π∗ := argmax

π∈C([0,T ])
π(0)=0,π(T )=0

`0,T (π) (1.6)
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denote the geodesic L from (0, 0) and (0, T ). It was proved that in [Liu22b] when
L(0, 0; 0, T ) = L goes to infinity, the geodesic π∗ becomes very rigid and has fluctuations
of order L−1/4, and the directed landscape along the geodesic L(0, 0;π∗(t), t) fluctuates
of order L1/4. Here we have the same issue regarding the definition of conditioning
on the event L(0, 0; 0, T ) = L, and again it is understood as P(· | L(0, 0; 0, T ) = L) =

limε↓0P(· | L(0, 0; 0, T ) ∈ (L− ε, L+ ε)). See [Liu22b]. (In [Liu22b], an exact formula for
the density function of π∗(t) for a fixed t without conditioning is known, and hence as
ε ↓ 0 it has a well-defined limit by examining the density formula. For our conjectures
later, we need to assume the joint density of (π∗(t1), . . . , π∗(td)) exists.

More precisely, the marginal conditional convergence was established as follows.

Theorem 1.9 ([Liu22b]). For any τ ∈ (0, 1), T > 0, as L→∞,

Law

((
2L1/4π∗(τT )

T 3/4
,
L(0, 0;π∗(τT ), τT )− τL

T 1/4L1/4

) ∣∣∣∣ L(0, 0; 0, T ) = L

)
→ Law

((√
τ(1− τ)Z1,

√
τ(1− τ)Z2

))
,

where Z1 and Z2 are two independent standard Gaussian random variables.

Now, we relate the KPZ fixed point H to the directed landscape L. Then the KPZ fixed
point H(x, t) can be expressed as (see [NQR20, Corollary 4.2])

H(x, t) = sup
y∈R
{h0(y) + L(y, 0;x, t)}, x ∈ R, t ≥ 0,

where h0(y) is the initial condition, and the above is understood as equal in distribution
for two processes indexed by t taking values in the space of upper-semicontinuous
functions. In particular, with the step initial condition h0(y) = −∞ · 1{y 6=0}, we have the
following representation of Hstep in terms of L

{Hstep(x, t)}x∈R,t>0

d
= {L(0, 0;x, t)}x∈R,t>0 . (1.7)

Note that we restrict to t > 0 so the above is understood as equal in distribution for

random elements in the space C(R × (0,∞)). Similarly,
d
= in the sequel stands for

equal in distribution with respect to the corresponding space of continuous functions.
Moreover, the conditional law of {Hstep(x, t)}x∈R,t>0 given Hstep(0, T ) = L is the same as
the conditional law of {L(0, 0;x, t)}x∈R,t>0 given L(0, 0; 0, T ) = L.

Now, thanks to (1.7),{
max
x∈R

L(0, 0; xT 3/4

2L1/4 , τT )− τL
T 1/4L1/4

}
τ∈(0,1)

d
=

{
max
x∈R

Hstep( xT 3/4

2L1/4 , τT )− τL
T 1/4L1/4

}
τ∈(0,1)

,

Conjecture 1.8 says that the left-hand side above converges in distribution to a Brownian
bridge, with respect to the conditional law given L(0, 0; 0, T ) = L, as L→∞.

As we argued in Remark 1.7, the argmax process of Hstep with respect to the con-
ditional law is expected to exist uniquely. Therefore, so is the corresponding argmax

process for L. Set x∗(τT ) = argmaxx∈R L(0, 0; xT 3/4

2L1/4 , τT ). So we now know

L(0, 0; x∗(τT ) T
3/4

2L1/4 , τT )− τL
T 1/4L1/4

and
L(0, 0;π∗(τT ), τT )− τL

T 1/4L1/4

have the same conditional limit distribution (for the convergence of the second, recall
Theorem 1.9). In view of the uniqueness of the argmax process, it is plausible to expect
the following.
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Conjecture 1.10. For every τ ∈ (0, 1), T > 0, conditionally given L(0, 0; 0, T ) = L, as
L→∞,

2L1/4π∗(τT )

T 3/4
− argmax

x∈R
L
(

0, 0;
xT 3/4

2L1/4
, τT

)
→ 0,

in probability.

The above conjecture would elaborate the rigidity phenomenon from a different
aspect: the definition of the geodesic π∗ via (1.6) is much more involved than the argmax
process, and yet they become the same in the limit.

Now, following Conjectures 1.8 and 1.10 we arrive at the following conjecture. This
would extend the marginal convergence (for fixed τ ∈ (0, 1)) in Theorem 1.9.

Conjecture 1.11. For all T > 0, as L→∞,

Law

({
2L1/4π∗(τT )

T 3/4
,
L(0, 0;π∗(τT ), τT )− τL

T 1/4L1/4

}
τ∈(0,1)

∣∣∣∣∣ L(0, 0; 0, T ) = L

)
→ Law

({
Bbr

1 (τ),Bbr
2 (τ)

}
τ∈(0,1)

)
,

where Bbr
1 and Bbr

2 are two i.i.d. Brownian bridges over interval [0, 1].

Remark 1.12. In [BG19, right before Section 9], the authors suggested that for the
closely related exponential last passage percolation on Z2, Brownian bridge might arise
as the scaling limit of the transversal fluctuations of the geodesic in the upper large
deviation regime.

Remark 1.13. Later in [GHZ23, Theorem 1.1], the authors considered the geodesic in
the directed landscape and proved 2L1/4π∗ conditioned on a positive probability event
L(0, 0; 0, 1) > L converges to a standard Brownian bridge weakly in the topology of
uniform convergence as L→∞.

The paper is organized as follows. In Section 2, we recall the formula we shall work
with from [Liu22a]. In Sections 3 and 4 we prove Theorem 1.1 for the step and flat initial
conditions, respectively.

2 Preliminaries

Recall that we let H denote the KPZ fixed point with h0 its initial condition, and it
satisfies the famous 1 : 2 : 3-scaling-invariance property. Namely,{

λH
(
λ−2x, λ−3t;λ−1h0(λ2·)

)}
x∈R,t>0

d
= {H (x, t; h0(·))}x∈R,t>0 . (2.1)

The invariance property holds for general h0. We shall work with Hstep (with h0(x) =

−∞1{x 6=0}) and Hflat (with h0(x) = 0) specifically in this paper.

2.1 Explicit formulas for marginal distributions

In the spatial direction, for fixed t > 0, [PS02] proved that {Hstep(x, t)}x∈R is the so-
called Airy2 process (minus a parabola). The process {Hstep(x, 1)}x∈R + x2 is a stationary
process, and it is well-known that the marginal law, say, Hstep(0, 1), has the Tracy–Widom
GUE distribution. Namely, let the function u = u(x) be the Hastings–McLeod solution to
the Painlevé-II equation u′′ = 2u3 + xu that satisfies the boundary condition u(x) ∼ Ai(x)

as x → ∞, where Ai(x) is the Airy function satisfying Ai′′(x) = xAi(x). Then, it is
well-known that

u(x) ∼ Ai(x) ∼ 1

2
√
πx1/4

e−
2
3x

3/2

, as x→∞.
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Throughout, we write a(x) ∼ b(x) as x→∞ if limx→∞ a(x)/b(x) = 1. Then,

P (Hstep(0, 1) ≤ L) = FGUE(L) = exp

(
−
∫ ∞
L

(`− L)u2(`)d`

)
.

See [BBD08] for more details and more related asymptotics. In particular, the corre-
sponding probability density function pstep,0,1(L) satisfies

pstep,0,1(L) = pGUE(L) ∼ 1

8πL
e−

4
3L

3/2

as L→∞. (2.2)

We also need later the GOE Tracy–Widom distribution, which has cumulative distribu-
tion function

FGOE(L) = F
1/2
GUE(L) exp

(
−1

2

∫ ∞
L

u(s)ds

)
,

with the function u as before. Therefore, its probability density function satisfies

pGOE(L) ∼ 1

4
√
πL1/4

e−
2
3L

3/2

as L→∞.

This distribution is related to Hflat via P(Hflat(0, 1) ≤ L) = FGOE(22/3L), and hence

pflat,0,1(L) = 22/3pGOE(22/3L) ∼ 1

(8π
√
L)1/2

e−
4
3L

3/2

as L→∞.

2.2 Explicit formulas for joint distributions

For the rest of this section we focus on Hstep. The corresponding derivation for
Hflat is similar and provided later in Section 4 when needed. Throughout we write
h = (h1, . . . , hm) ∈ Rm,x = (x1, . . . , xm) ∈ Rm, and

τ = (τ1, . . . , τm) with 0 = τ0 < τ1 < · · · < τm.

Since we are proving for convergence of conditional distributions, we shall work with
the conditional tail probability

P (Hstep(xj , τj) > hj , j = 1, . . . ,m− 1 | Hstep(xm, τm) = hm) , (2.3)

of which we derive an expression for the rest of this section. The formula we shall work
with is summarized at the end in Lemma 2.2. The derivation below is already quite
involved. The reason of not working directly with possibly equal time points is that the
corresponding formula would become even more sophisticated; see [Liu22a, Section
2.2.3].

We start with following formula (2.4) from [Liu22a]. The formula was not provided
explicitly therein, but can be derived from [Liu22a, Proposition 2.9, Definition 2.25]. (We
point out that the corresponding formula was first derived for TASEP therein, and then
the fact that TASEP converges to KPZ fixed point was used.) We have

P (H(x1, τ1) > h1, . . . ,H(xm−1, τm−1) > hm−1,H(xm, τm) ≤ hm)

= (−1)m−1

∮
>1

· · ·
∮
>1

Dstep,x,τ (z,h)
dz1

2πiz1(1− z1)
· · · dzm−1

2πizm−1(1− zm−1)
, (2.4)

where each
∮
>1

is integrated over a circle around the origin in the counter-clockwise
direction with radii strictly larger than 1,

Dstep,x,τ (z,h) :=
∑
n∈Nm

0

1

(n!)2
D

(n)
step,x,τ (z,h),
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with N0 := {0, 1, . . . } and

D
(n)
step,x,τ (z,h) := (−1)n1+···+nm

×
m∏
j=2

 nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,left

dξ
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,left

dξ
(j)
ij

2πi

)
n1∏
i1=1

∫
C1,left

dξ
(1)
i1

2πi

×
nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,right

dη
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,right

dη
(j)
ij

2πi

)
n1∏
i1=1

∫
C1,right

dη
(1)
i1

2πi


×
m−1∏
j=1

(
∆(ξ(j);η(j+1))∆(η(j); ξ(j+1))

∆(ξ(j); ξ(j+1))∆(η(j);η(j+1))
(1− zj)nj

(
1− 1

zj

)nj+1
)

×
m∏
j=1

(
∆(ξ(j))∆(η(j))

∆(ξ(j);η(j))

)2 m∏
j=1

nj∏
ij=1

fx̃j ,τ̃j (ξ
(j)
ij
, h̃j)

fx̃j ,τ̃j (η
(j)
ij
, h̃j)

,

and the notations are further explained as follows.
First, the second and third lines above are understood as a compact form of linear

combinations of 2(n1 + · · ·+ nm)-multiple contour integrals with respect to ξ(j)
ij
, η

(j)
ij
, j =

1, . . . ,m, ij = 1, . . . , nj , and the fourth and fifth row are the integrands. Here and below,

we fix n = (n1, . . . , nm) ∈ Nm0 , and for each j, ξ(j) = (ξ
(j)
1 , . . . , ξ

(j)
nj ),η(j) = (η

(j)
1 , . . . , η

(j)
nj ) ∈

Cnj . Throughout we write, with w = (w1, . . . , wk) and w′ = (w′1, . . . , w
′
k′),

∆(w) :=
∏

1≤i<j≤k

(wj − wi) and ∆(w;w′) :=

k∏
i=1

k′∏
i′=1

(wi − w′i′),

with the convention
∏0
i=1(· · · ) = 1. Moreover,

fx̃,τ̃ (ζ, h̃) := exp

(
−1

3
τ̃ ζ3 + x̃ζ2 + h̃ζ

)
. (2.5)

We also set

τ̃j := τj − τj−1, x̃j := xj − xj−1, h̃j := hj − hj−1, j = 1, . . . ,m,

and x0 = h0 = τ0 = 0. In particular,
∑m
j=1 τ̃j = τm and

∑m
j=1 h̃j = hm.

The choice of the contours C
in/out
j,left/right is delicate and plays a crucial role in our

analysis later, and we summarize some key features in the following remark.

Remark 2.1. Throughout we only need and work with the formula with τ̃j > 0 for all
j = 1, . . . ,m. We describe the choice of the contours (actually, only the direction towards
infinity matters regarding integrability of the multiple integrals), starting with

C in
m,left, . . . , C

in
2,left, C1,left, C

out
2,left, . . . , C

out
m,left.

These contours in the left half-plane are non-intersecting. To guarantee integrability,
we may take each starting from e−2πi/3∞ to e2πi/3∞, located from left to the right. The
choice of the angle is such that the leading term −τ̃j(ξ(j)

ij
)3 in the exponential function

has a negative real part as ξ(j)
ij

tends to infinity along the contour (in both directions).

Similarly, one can pick, Cout
m,right, . . . , C

out
2,right, C1,right, C

in
2,right, . . . , C

in
m,right are contours in

the right half-plane, non-intersecting, each starting from e−πi/3∞ to eπi/3∞, and located
from left to the right.

See Figure 2.2 for an illustration of the contours when m = 2.
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0

Cout
2,left

C1,left

Cin
2,left

Cout
2,right

C1,right

Cin
2,right

Figure 1: Illustrations of the contours in the formula of D(n)
step,x,τ (z,h) when m = 2.

From the above we derive an expression of the tail probability that we work with.
The formula takes a similar form as in (2.4). Introduce

Πn(~ξ
(m)

, ~η(m)) ≡ Πn(ξ(1), · · · , ξ(m);η(1), · · · ,η(m))

:= (−1)n1+···+nm

m−1∏
j=1

∆(ξ(j);η(j+1))∆(η(j); ξ(j+1))

∆(ξ(j); ξ(j+1))∆(η(j);η(j+1))

m∏
j=1

(
∆(ξ(j))∆(η(j))

∆(ξ(j);η(j))

)2

·
nm∑
im=1

(
ξ

(m)
im
− η(m)

im

)
, (2.6)

and

D̂
(n)
step,x,τ (z,h) :=

∂

∂hm
D

(n)
step,x,h(z,h)

=

m∏
j=2

[
(1− zj−1)nj−1

(
1− 1

zj−1

)nj

×
nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,left

dξ
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,left

dξ
(j)
ij

2πi

)
×

n1∏
i1=1

∫
C1,left

dξ
(1)
i1

2πi

×
nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,right

dη
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,right

dη
(j)
ij

2πi

)
×

n1∏
i1=1

∫
C1,right

dη
(1)
i1

2πi

]

×Πn(~ξ
(m)

, ~η(m))×
m∏
j=1

nj∏
ij=1

fx̃j ,τ̃j (ξ
(j)
ij
, h̃j)

fx̃j ,τ̃j (η
(j)
ij
, h̃j)

.

(2.7)

Lemma 2.2. We have

P (Hstep(xj , τj) > hj , j = 1, . . . ,m− 1 | Hstep(xm, τm) = hm) =
Q̂step,x,τ (h)

pstep,0,τm(hm)
,

for all h ∈ Rm, (2.8)

where pstep,0,τm is the probability density function of Hstep(0, τm),

Q̂step,x,τ (h) :=
∑
n∈Nm

0

1

(n!)2
Q̂

(n)
step,x,τ (h),

with

Q̂
(n)
step,x,τ (h) := (−1)m−1

∮
>1

· · ·
∮
>1

D̂
(n)
step,x,τ (z,h)

dz1

2πiz1(1− z1)
· · · dzm−1

2πizm−1(1− zm−1)
,

(2.9)
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for each n ∈ Nm, where where each
∮
>1

is integrated over a contour around the origin
in the counter-clockwise direction.

Proof. Note that the function Q̂step,x,τ can be defined as

Q̂step,x,τ (h) :=
∂

∂hm
P (H(x1, τ1) > h1, . . . ,H(xm−1, τm−1) > hm−1,H(xm, τm) ≤ hm) .

One then readily checks the stated formula. Note that the only difference between
D̂

(n)
step,x,τ and D

(n)
step,x,τ is the extra factor in the second line of (2.6) (note that we are

differentiating with respect to hm, not h̃m = hm − hm−1).

3 Proof for the case with step initial condition

Thanks to the scaling invariance property of the KPZ fixed point in (2.1), it is sufficient
to prove (1.1) in Theorem 1.1 for the case of T = 1, which we assume throughout this
section. We shall then prove the following restatement of Theorem 1.1 in the case with
step initial condition:

L

{Hstep( x√
2L1/4

, τ)− τHstep(0, 1)
√

2L1/4

}
x∈R,τ∈(0,1)

∣∣∣∣∣∣ Hstep(0, 1) = L


f.d.d.−−−→ L

({
min

{
Bbr

1 (τ) + x,Bbr
2 (τ)− x

}}
x∈R,τ∈(0,1)

)
, (3.1)

as L→∞, where Bbr
1 and Bbr

2 are two independent Brownian bridges.
We shall prove the above in two steps. For most part of this section before Section 3.5,

we consider convergence of finite-dimensional distributions at distinct time points
τ0, . . . , τm. Then in Section 3.5, we prove the general case when some time points may
be the same.

Fix m ≥ 2, and set

0 = τ0 < τ1 < · · · < τm = 1,

h1, . . . , hm−1 ∈ R, h0 = hm = 0,

x1, . . . , xm−1 ∈ R, x0 = xm = 0,

and

hL,j = τjL+ hj ·
√

2L1/4 and xL,j = xj ·
1√

2L1/4
, j = 1, . . . ,m, L > 0. (3.2)

We also write x = (x1, . . . , xm−1), h = (h1, . . . , hm−1), xL = (xL,1, . . . , xL,m), hL =

(hL,1, . . . , hL,m) and τ = (τ1, . . . , τm). Then, in accordance to (2.3) we consider,

P (Hstep(xL,j , τj) > hL,j , j = 1, . . . ,m− 1 | Hstep(0, 1) = L) =
Q̂step,xL,τ (hL)

pGUE(L)
,

with Q̂step,xL,τ (hL) in Lemma 2.2. Recall the asymptotic probability density function of
pGUE in (2.2). Write the corresponding tail probability in the limit as

Qx,τ (h) := P
(
min

{
Bbr

1 (τj) + xj ,B
br
2 (τj)− xj

}
> hj , j = 1, . . . ,m− 1

)
.

Therefore, (3.1) is equivalent to

Q̂step,xL,τ (hL)

pGUE(L)
∼ Q̂step,xL,τ (hL)

(8πL)−1 exp
(
− 4

3L
3/2
) → Qx,τ (h) as L→∞. (3.3)
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The goal of the rest of this section is to prove (3.3). We start by recalling
Q̂step,xL,τ (hL) =

∑
n∈Nm

0

1
(n!)2 Q̂

(n)
step,xL,τ (hL) in Lemma 2.2. Then, (3.3) follows imme-

diately from the following three lemmas, with τj all distinct.

Lemma 3.1. If n ∈ Nm0 \Nm, that is, nj = 0 for some j = 1, . . . ,m, then Q̂(n)
step,x,τ (h) = 0.

Lemma 3.2. As L→∞, with 1 ≡ (1, . . . , 1) ∈ Nm,

Q̂
(1)
step,xL,τ (hL) ∼ 1

8πL
e−

4
3L

3/2

× Qx,τ (h).

Lemma 3.3. For every ε′ ∈ (0,minj=1,...,m τ̃j) (recall that τ̃j = τj − τj−1), there exists a
constant C > 0 such that∑

n∈Nm\{1}

1

(n!)2

∣∣∣Q̂(n)
step,xL,τ (hL)

∣∣∣ ≤ C exp

(
−4(1 + ε′)

3
L3/2

)
,

for all L large enough.

We prove the three lemmas in Sections 3.2, 3.3 and 3.4 respectively. For the case τj
are not all distinct, the theorem then follows from a bootstrap argument by combining
the above and a general lemma in Section 3.5, which is of its own interest.

Before, in Section 3.1 we present some auxiliary results on Brownian bridges.
Throughout, we let C > 0 denote a constant that may change from line to line, but
not depending on n nor L.

3.1 Auxiliary formula of Brownian bridge

Let φσ(x) = (
√

2πσ)−1e−x
2/(2σ2) denote the probability density function of a centered

Gaussian random variable with variance σ2, σ > 0. It is well-known that the joint
probability density function of a Brownian bridge Bbr at times 0 = a0 < a1 < · · · <
am−1 < am = 1 has the formula

pbr
a1,...,am−1

(b1, . . . , bm−1) =
√

2π

m∏
j=1

φaj−aj−1
(bj − bj−1),

for b1, . . . , bm−1 ∈ R, b0 = bm = 0.
We will need a formula for the joint cumulative distribution function of Bbr at different

times, as shown in the following lemma. Define

f(u; a, b) := exp

(
1

2
au2 + bu

)
, u ∈ C, a, b ∈ R. (3.4)

Note the simple identity

φa(b) =

∫
Γ

f(u; a, b)
du

2πi
, (3.5)

if a > 0 and Γ is an arbitrary contour parallel to the y-axis with upward orientation.

Lemma 3.4. Let Γ1, . . . ,Γm be disjoint contours listed from left to right, each parallel
to the y-axis with upwards orientation. We have for all 0 = a0 < a1 < · · · < am = 1 and
b1, . . . , bm−1 ∈ R, b0 = bm = 0,

√
2π

∫
~Γ

∏m
j=1 f(uj ; aj − aj−1, bj − bj−1)∏m−1

j=1 (uj+1 − uj)
du

(2πi)m
= P

(
Bbr(aj) > bj , j = 1, . . . ,m− 1

)
,

(3.6)
with abbreviation ~Γ ≡ Γ1 × · · · × Γm and du ≡ du1 · · · dum (with the convention u1 ∈
Γ1, . . . , um ∈ Γm).
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Proof. We view the left-hand side of (3.6) as a function of b1, . . . , bm−1, denoted by
Q(b1, . . . , bm−1) below. First we note that Q(b1, . . . , bm−1) is well-defined since the inte-
grand is uniformly bounded and decays super-exponentially fast along the integration
contours. The function Q is continuous on each bi. Moreover, if we write the integrand
of left-hand side of (3.6) as∏m

j=1 f(uj ; aj − aj−1, 0)∏m−1
j=1 (uj+1 − uj)

·
m−1∏
j=1

exp (bj(−uj+1 + uj)) , (3.7)

we can see that the integrand converges to 0 uniformly if one of bj → +∞ since
Re(−uj+1 + uj) < 0 by our choice of the contours. Hence Q(b1, . . . , bm−1)→ 0 and

Q(b1, . . . , bm−1)− P
(
Bbr(aj) > bj , j = 1, . . . ,m− 1

)
→ 0 (3.8)

as any of bj → +∞.
Now we consider (∂m−1/∂b1 · · · ∂bm−1)Q. We use the form (3.7) of the integrand of

Q, and change the order of derivative and integral to obtain

∂m−1Q(b1, . . . , bm−1)

∂b1 · · · ∂bm−1
=
√

2π(−1)m−1

∫
~Γ

m∏
j=1

f(uj ; aj − aj−1, bj − bj−1)
du

(2πi)m
. (3.9)

To justify the change of the order of integration and differentiation, it suffices to notice
that the product

∏m
j=1 f(uj ; aj − aj−1, bj − bj−1) is continuous in bj ’s and in uj ’s, and

decays super-exponentially fast along the integration contours.
Now we combine (3.9) and (3.5), and obtain

∂m−1Q(b1, . . . , bm−1)

∂b1 · · · ∂bm−1
=
√

2π(−1)m−1
m∏
j=1

φaj−aj−1
(bj − bj−1)

= (−1)m−1pbr
a1,··· ,am−1

(b1, . . . , bm−1)

=
∂m−1P

(
Bbr(aj) > bj , j = 1, . . . ,m− 1

)
∂b1 · · · ∂bm−1

.

This and (3.8) then imply Q(b1, . . . , bm−1) = P
(
Bbr(aj) > bj , j = 1, . . . ,m− 1

)
. This com-

pletes the proof.

3.2 Proof of Lemma 3.1

The case nm = 0 is trivial since the last factor
∑nm

ij=1(ξ
(m)
im
− η(m)

im
) in (2.6) becomes

zero. Note that if nm 6= 0 and n ∈ Nm0 \ Nm, then necessarily for some j = 2, . . . ,m,
(nj−1, nj) = (0, nj) with nj ∈ N. Consider such a j. We have∮

>1

D̂
(n)
step,x,τ (z,h)

dzj−1

2πi · zj−1(1− zj−1)
=

∮
>1

dzj−1

2πi · zj−1(1− zj−1)

×

{(
1− 1

zj−1

)nj
nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,left

dξ
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,left

dξ
(j)
ij

2πi

)

×

(
1

1− zj−1

∫
Cin

j,right

dη
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,right

dη
(j)
ij

2πi

)}
× (· · · ),

where we skipped the factor without the variable zj−1. To see that this integral is zero,
it suffices to increase the radius of the contour. Note that the factor involving zj−1 is of
order O(|zj−1|−2) as the radius of the contour tends to infinite. It then follows that the
integral equals to zero.

EJP 29 (2024), paper 30.
Page 14/27

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1092
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A conditional scaling limit of the KPZ fixed point

3.3 Proof of Lemma 3.2

We first simplify Q̂(1)
step,x,τ (recalling (2.9)) in Lemma 3.5 below. Now with n = 1, for

each j = 1, . . . ,m, ξ(j) = (ξ
(j)
1 ) is one-dimensional. So we simply write ξ(j) ≡ ξ

(j)
1 , j =

1, . . . ,m and similarly for η(j), and

~ξ(m) = (ξ(1), . . . , ξ(m)) and ~η(m) = (η(1), . . . , η(m)).

Lemma 3.5. We have

Q̂
(1)
step,xL,τ (hL) = (−1)m−1

∫
~C

Π1(~ξ(m), ~η(m))×
m∏
j=1

fx̃L,j ,τ̃j (ξ(j), h̃L,j)

fx̃L,j ,τ̃j (η(j), h̃L,j)

d~ξ(m)d~η(m)

(2πi)2m
, (3.10)

with
~C := C1,left × Cout

2,left × · · · × Cout
m,left × C1,right × Cout

2,right × · · · × Cout
m,right,

and

Π1(~ξ(m), ~η(m)) := (−1)m
m−1∏
j=1

(ξ(j) − η(j+1))(η(j) − ξ(j+1))

(ξ(j) − ξ(j+1))(η(j) − η(j+1))

1

(ξ(j) − η(j))2
× 1

ξ(m) − η(m)
.

(3.11)

Proof. We first remark that (3.11) is the same as Πn in (2.6) when n = 1. For (3.10),
recall (2.9) and we choose the contours to be |z1| = |z2| = · · · = |zm| = R and let R
become large. Note that if we expand the product of the integrals in (2.7) with n = 1

as a summation of 2m-multiple integrals, we find that D̂(1)
step,x,τ (z,h) has the following

leading term of order O(Rm−1) from the integral corresponding to ~C,

m−1∏
j=1

(1− zj)
∫
~C

Π1(~ξ(m), ~η(m))×
m∏
j=1

fx̃j ,τ̃j (ξ(j), h̃j)

fx̃j ,τ̃j (η(j), h̃j)

d~ξ(m)

(2πi)m
d~η(m)

(2πi)m
,

plus an error term (the sum of the remaining integrals) of orderO(Rm−2). The integration
of the leading term above with respect to zj , j = 1, . . . ,m− 1 yields desired right-hand
side of (3.10). Similarly, the integration of each of the rest 2m-multiple integrals is
bounded by∮

|z1|=R
· · ·
∮
|zm|=R

O(Rm−2)
|dz1|

2πR|1− z1|
· · · |dzm−1|

2πR|1− zm−1|
= O(R−1)

since
∫
|z|=R

dz
|1−z| is bounded by a constant for large R. Letting R→∞, we see that the

upper bound goes to zero, and hence the integration of the error term must be zero. We
have proved (3.10).

Since we do not have any contours C in
j,left or C in

j,right in the formula (3.10), we drop
the superscripts out in the integration contours of (3.10) in this subsection for notation
simplification. In other words, Cj,left = Cout

j,left and Cj,right = Cout
j,right for j = 2, . . . ,m in this

subsection.

In the next step, we compute the asymptotics of Q̂(1)
step,xL,τ (hL) using (3.10) and

prove Lemma 3.2. We need to deform the integration contours in (3.10) as follows (now
depending on L): for j = 1, . . . ,m,

Cj,left,L := −
√
L+ 2−1/2L−1/4Σj,left, Cj,right,L :=

√
L+ 2−1/2L−1/4Σj,right

where
Σj,left := {j −m− 1 + re±2πi/3 : r > 0}, and Σj,right := −Σj,left. (3.12)
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The orientations of Σleft and Σright in the integrals below are from∞e−2πi/3 to∞e2πi/3,

and from ∞e−πi/3 to ∞eπi/3 respectively. With these contours, for ξ(j)
L ∈ Cj,left,L and

η
(j)
L ∈ Cj,right,L we can parametrize

ξ
(j)
L = ξ

(j)
L (uj) = −

√
L+ 2−1/2L−1/4uj , η

(j)
L = η

(j)
L (vj) =

√
L+ 2−1/2L−1/4vj ,

for some uj ∈ Σj,left and vj ∈ Σj,right. Recall the definitions of f in (2.5) and f in (3.4),
and note the scaling of the parameters (3.2). We have, after a direct computation,

fx̃L,j ,τ̃j

(
ξ

(j)
L , h̃L,j

)
= exp

(
−1

3
τ̃j(ξ

(j)
L )3 + x̃L,j(ξ

(j)
L )2 + h̃L,jξ

(j)
L

)
(3.13)

= exp

(
−2

3
τ̃jL

3/2 +

(
x̃j√

2
−
√

2 · h̃j
)
L3/4

)
· f(uj ; τ̃j , h̃j − x̃j) · gL(uj ; τ̃j , x̃j),

and similarly,

fx̃L,j ,τ̃j

(
η

(j)
L , h̃L,j

)
= exp

(
2

3
τ̃jL

3/2 +

(
x̃j√

2
+
√

2 · h̃j
)
L3/4

)
· 1

f(vj ; τ̃j ,−h̃j − x̃j)
· gL(vj ; τ̃j , x̃j),

where τ̃j = τj − τj−1, x̃j = xj − xj−1, h̃j = hj − hj−1, and x̃j = xj − xj−1, h̃j = hj − hj−1,
and

gL(w; τ̃ , x̃) := exp

((
− 1

6
√

2
τ̃w3 +

x̃

2
√

2
w2

)
L−3/4

)
.

We see that gL(w; τ̃ , x̃) decays super-exponentially fast when w ∈ Σj,left →∞ and grows
super-exponentially fast when w ∈ Σj,right →∞, if τ̃ > 0.

Note that
∑m
j=1 τ̃j = τm = 1,

∑m
j=1 x̃j = xm = 0 and

∑m
j=1 h̃j = hm = 0. Hence taking

the product over j = 1, . . . ,m we have
m∏
j=1

fx̃L,j ,τ̃j

(
ξ

(j)
L , h̃L,j

)
= e−

2
3L

3/2
m∏
j=1

f(uj ; τ̃j , h̃j − x̃j) · gL(uj ; τ̃j , x̃j), (3.14)

m∏
j=1

fx̃L,j ,τ̃j

(
η

(j)
L , h̃L,j

)
= e

2
3L

3/2
m∏
j=1

1

f(vj ; τ̃j ,−h̃j − x̃j)
· gL(vj ; τ̃j , x̃j). (3.15)

We also write (3.11) as

Π1(~ξ
(m)
L , ~η

(m)
L ) = 2m−2Lm/2−1JL(u1, . . . , um, v1, . . . , vm) (3.16)

where

JL(u1, . . . , um, v1, . . . , vm)

:=

m−1∏
j=1

(1− 2−3/2(uj − vj+1)L−3/4)(1 + 2−3/2(vj − uj+1)L−3/4)

(uj − uj+1)(vj − vj+1)(1− 2−3/2(uj − vj)L−3/4)2

× 1

1− 2−3/2(um − vm)L−3/4
. (3.17)

Note also that d~ξ(m)d~η(m) = 2−mL−m/2dudv. By inserting (3.14), (3.15) and (3.16)
in (3.10), we arrive at

Q̂
(1)
step,xL,τ (hL)

(8πL)−1e−
4
3L

3/2
= 2π(−1)m−1

∫
~Σleft×~Σright

m∏
j=1

(
f(uj ; τ̃j , h̃j − x̃j) · f(vj ; τ̃j ,−h̃j − x̃j)

)
× JL(u1, . . . , um, v1, . . . , vm) · gL(uj ; τ̃j , x̃j)

gL(vj ; τ̃j , x̃j)

du

(2πi)m
dv

(2πi)m
,
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with ~Σleft/right := Σ1,left/right×· · ·×Σm,left/right. Note that
∏m
j=1(f(uj ; τ̃j , h̃j−x̃j)·f(vj ; τ̃j , h̃j+

x̃j)) is uniformly bounded, integrable along the integration contours, and not depending
on L. Note that for fixed uj and vj , 1 ≤ j ≤ m, we have

JL(u1, . . . , um, v1, . . . , vm)→
m−1∏
j=1

1

(uj − uj+1)(vj − vj+1)
,

gL(uj ; τ̃j , x̃j)→ 1, gL(vj ; τ̃j , x̃j)→ 1,

as L→∞. Moreover, we can see that

sup
L

sup
uj∈Σj,left,
vj∈Σj,right,
j=1,...,m

∣∣∣∣∣∣JL(u1, . . . , um, v1, . . . , vm)

m∏
j=1

gL(uj ; τ̃j , x̃j)

gL(vj ; τ̃j , x̃j)

∣∣∣∣∣∣ <∞. (3.18)

Indeed, we have |uj−uj+1| ≥ dist(Σj,left,Σj+1,left) =
√

3/2 and similarly |vj−vj−1| ≥
√

3/2.
Moreover, |1 − 2−3/2(uj − vj)L−3/4| ≥ Re(1 − 2−3/2(uj − vj)L−3/4) ≥ 1. Plugging these
bounds to (3.17) and using the simple inequality |1 + a+ b| ≤ (1 + |a|)(1 + |b|), we obtain

|JL(u1, . . . , um, v1, . . . , vm)| ≤ C
m∏
j=1

(1 + 2−3/2|uj |L−3/4)2(1 + 2−3/2|vj |L−3/4)2 (3.19)

for some constant C independent of L. Both functions (1 + 2−3/2|uj |L−3/4)2gL(uj ; τ̃j , x̃j)
and (1 + 2−3/2|vj |L−3/4)2/gL(vj ; τ̃j , x̃j) are uniformly bounded because of the super-
exponential decay of gL(uj ; τ̃j , x̃j) when uj ∈ Σj,left → ∞ and 1/gL(vj ; τ̃j , x̃j) when vj ∈
Σj,right →∞. Together with (3.19) we obtain (3.18).

Now we apply the bounded convergence theorem, and have

lim
L→∞

Q̂
(1)
step,xL,τ (hL)

(8πL)−1e−
4
3L

3/2

= 2π(−1)m−1

∫
~Σleft

∏m
j=1 f(uj ; τ̃j , h̃j − x̃j)∏m−1
j=1 (uj − uj+1)

du

(2πi)m

∫
~Σright

∏m
j=1 f(vj ; τ̃j ,−h̃j − x̃j)∏m−1

j=1 (vj − vj+1)

dv

(2πi)m
.

(3.20)

We remark that now in the expression of the right-hand side of (3.20), we are free to
deform the contours Σj,left and Σj,right on the right-hand side of the above equation to
vertical lines as long as the order of the contours are not changed. Therefore, we apply
Lemma 3.4 and obtain

√
2π

∫
~Σleft

∏m
j=1 f(uj ; τ̃j , h̃j − x̃j)∏m−1
j=1 (uj − uj+1)

du

(2πi)m
= P

(
Bbr(τj) > hj − xj , j = 1, . . . ,m− 1

)
.

Applying Lemma 3.4 again but with the indices j → m+ 1− j (due to the different order
of the contours), we obtain

√
2π(−1)m−1

∫
~Σright

∏m
j=1 f(vj ; τ̃j ,−h̃j − x̃j)∏m−1

j=1 (vj − vj+1)

dv

(2πi)m

= P
(
Bbr(1− τj) > hj + xj , j = 1, . . . ,m− 1

)
= P

(
Bbr(τj) > hj + xj , j = 1, . . . ,m− 1

)
,
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where the last step follows by the reversibility of Brownian bridge. Inserting the above
formulas to (3.20), we obtain

lim
L→∞

Q̂
(1)
step,xL,τ (hL)

(8πL)−1e−
4
3L

3/2

= P
(
Bbr(τj) > hj − xj , j = 1, . . . ,m− 1

)
P
(
Bbr(τj) > hj + xj , j = 1, . . . ,m− 1

)
= Qx,τ (h),

as desired.

3.4 Proof of Lemma 3.3

Recall Q̂(n)
step,x,τ (h) in (2.9) and D̂

(n)
step,x,τ in (2.7). For every n ∈ Nm \ {1}, we first

control

|D̂(n)
step,xL,τ (z,hL)| ≤

n1∏
i1=1

∫
C1,left

|dξ(1)
i1
|

2π

n1∏
i1=1

∫
C1,right

|dη(1)
i1
|

2π

×
m∏
j=2

[
|1− zj−1|nj−1

∣∣∣∣1− 1

|zj−1|

∣∣∣∣nj

×
nj∏
ij=1

(
1

|1− zj−1|

∫
Cin

j,left

|dξ(j)
ij
|

2π
+
|zj−1|
|1− zj−1|

∫
Cout

j,left

|dξ(j)
ij
|

2π

)

×

(
1

|1− zj−1|

∫
Cin

j,right

|dη(j)
ij
|

2π
+
|zj−1|
|1− zj−1|

∫
Cout

j,right

|dη(j)
ij
|

2π

)]

× |Πn(~ξ
(m)

L , ~η
(m)
L )| ×

m∏
j=1

nj∏
ij=1

∣∣∣∣∣fx̃L,j ,τ̃j (ξ
(j)
ij
, h̃L,j)

fx̃L,j ,τ̃j (η
(j)
ij
, h̃L,j)

∣∣∣∣∣ . (3.21)

Again, the above is a compact way of writing the sum of 2n1+···+nm number of (2n1 + · · ·+
2nm)-multiple integrals with respect to ξ(j)

ij
, η

(j)
ij
, j = 1, . . . ,m, ij = 1, . . . , nj . This time we

consider
C

in/out
j,left =

{
−
√
L+ 2−1/2L−1/4u : u ∈ Σ

in/out
j,left

}
with each Σ

in/out
j,left defined as before in (3.12). The contours are then disjoint, and the

minimal distance among all the pairs is denoted by cdistL
−1/4 with cdist =

√
3/2.

As argued in [Liu22b], the first two factors in the definition of Πn(~ξ
(m)

L , ~η
(m)
L ) in (2.6),

where we recall

~ξ
(m)

L =
(
ξ

(1)
L , . . . , ξ

(m)
L

)
with ξ

(j)
L =

(
ξ

(j)
L,1, . . . , ξ

(j)
L,nj

)
∈
(
C

in/out
j,left

)nj

, j = 1, . . . ,m,

can be re-written as

m−1∏
j=1

∆(ξ(j);η(j+1))∆(η(j); ξ(j+1))

∆(ξ(j); ξ(j+1))∆(η(j);η(j+1))

m∏
j=1

(
∆(ξ(j))∆(η(j))

∆(ξ(j);η(j))

)2

=
∆(ξ(1))∆(η(1))

∆(ξ(1);η(1))

×
m−1∏
j=1

∆(ξ(j);η(j+1))∆(η(j); ξ(j+1))

∆(ξ(j); ξ(j+1))∆(η(j);η(j+1))

∆(ξ(j))∆(η(j))

∆(ξ(j);η(j))

∆(ξ(j+1))∆(η(j+1))

∆(ξ(j+1);η(j+1))

∆(ξ(m))∆(ξ(m))

∆(ξ(m);η(m))
,

and each of the three terms can be interpreted as, up to a possible sign depending on n,
a determinant. Then by Hadamard’s inequality, we have (e.g. compare with B1, B2, B3 in
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[Liu21, Section 3.1]),∣∣∣∣∣∆(ξ(1))∆(η(1))

∆(ξ(1);η(1))

∣∣∣∣∣ ≤ nn1/2
1

(
1

cdistL−1/4

)n1

,

∣∣∣∣∣∆(ξ(m))∆(η(m))

∆(ξ(m);η(m))

∣∣∣∣∣ ≤ nnm/2
m

(
1

cdistL−1/4

)nm

,

and∣∣∣∣∣∆(ξ(j);η(j+1))∆(η(j); ξ(j+1))

∆(ξ(j); ξ(j+1))∆(η(j);η(j+1))

∆(ξ(j))∆(η(j))

∆(ξ(j);η(j))

∆(ξ(j+1))∆(η(j+1))

∆(ξ(j+1);η(j+1))

∣∣∣∣∣
≤ (nj + nj+1)(nj+nj+1)/2

(
1

cdistL−1/4

)nj+nj+1

, j = 1, . . . ,m− 1.

We also bound |
∑nm

im=1(ξ
(m)
L,im

− η(m)
L,im

)| ≤
∏nm

im=1((1 + |ξ(m)
L,im
|)(1 + |η(m)

L,im
|)). Therefore,

|Πn(~ξ
(m)

L , ~η
(m)
L )| ≤ n

n1
2

1

m−1∏
j=1

(nj + nj+1)
nj+nj+1

2

n
nm
2
m · (c−2

distL
1/2)n1+···+nm

×
nm∏
im=1

(
(1 + |ξ(m)

L,im
|)(1 + |η(m)

L,im
|)
)
. (3.22)

Next, we examine the last term in (3.21). We eventually shall integral over Σj,left/right

and we view

ξ
(j)
L,ij

= ξ
(j)
L,ij

(u
(j)
ij

) =
√
L+2−1/2L−1/4u

(j)
ij

for u(j)
ij
∈ Σ

in/out
j,left , j = 1, . . . ,m, ij = 1, . . . , nj ,

as a function of u(j)
ij

. Recalling the analysis of fx̃L,j ,τ̃j in (3.13), we have

nj∏
ij=1

fx̃L,j ,τ̃j (ξ
(j)
L,ij

, h̃L,j) = exp

 m∑
j=1

nj∑
ij=1

(
−2

3
τ̃jL

3/2 +

(
x̃j√

2
−
√

2 · h̃j
)
L3/4

)
×

m∏
j=1

nj∏
ij=1

f
(
u

(j)
ij

; τ̃j , h̃j − x̃j
)
gL

(
u

(j)
ij

; τ̃j − x̃j
)
.

We see that for every ε > 0, one can take L large enough so that

−2

3
τ̃jL

3/2 +

(
x̃j√

2
−
√

2 · h̃j
)
L3/4 ≤ −2(1− ε)

3
τ̃jL

3/2, j = 1, . . . ,m.

We shall assume the above holds in the sequel. Moreover, we have seen that
sup

L>0,uj∈Σ
in/out
j,left

|gL(u
(j)
ij

; τ̃j − x̃j)| < ∞ (see (3.18)). Similar analysis applies to∏nj

ij=1 fx̃L,j ,τ̃j (ξ
(j)
L,ij

, h̃L,j). We have, for every ε > 0 fixed and then for L large enough,

|D̂(n)
step,xL,τ (z,hL)| ≤ C exp

−4(1− ε)
3

m∑
j=1

τ̃jnjL
3/2

 (3.23)

×
m∏
j=2

|1− zj−1|nj−1

∣∣∣∣1− 1

zj−1

∣∣∣∣nj

× n
n1
2

1

m−1∏
j=1

(nj + nj+1)
nj+nj+1

2

n
nm
2
m · Cn1+···+nm × Cn(L)Dn(L),
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with

Cn(L) =

n1∏
i1=1

∫
Σ1,left

∣∣∣f (u(1)
i1

; τ̃1, h̃1 − x̃1

)∣∣∣d|u(1)
i1
|

×
m−1∏
j=2

nj∏
ij=1

∫
Σin

j,left∪Σout
j,left

∣∣∣f (u(j)
ij

; τ̃j , h̃j − x̃j
)∣∣∣ d|u(j)

ij
|

×
nm∏
im=1

∫
Σin

m,left∪Σout
m,left

∣∣∣f (u(m)
im

; τ̃m, h̃m − x̃m
)∣∣∣ (1 + |ξ(m)

L,im
(u

(m)
im

)|
)

d|u(m)
im
|,

and a similar expression for Dn(L). Note that we have canceled the factor L(n1+···+nm)/2

from (3.22) and those from dξ
(j)
ij

= 2−1/2L−1/4du
(j)
ij

and dη
(j)
ij

= 2−1/2L−1/4dv
(j)
ij

. Then,

Cn(L) ≤ Cn1+···+nmLnm/2.

The same upper bound for Dn(L) holds.
Therefore, for every ε > 0, there exists C > 0 such that for L large enough,∣∣∣∣ ∮
>1

· · ·
∮
>1

D̂
(n)
step,xL,τ (z,hL)

dz1

2πiz1(1− z1)
· · · dzm−1

2πizm−1(1− zm−1)

∣∣∣∣
≤ n

n1
2

1

m−1∏
j=1

(nj + nj+1)
nj+nj+1

2

n
nm
2
m

× Cn1+···+nm × Lnm/2 exp

−4(1− ε)
3

m∑
j=1

τ̃jnjL
3/2

 ,

for all n ∈ Nm \ {1}. We also have, for L large enough,

Lnm/2 exp

−4(1− ε)
3

m∑
j=1

τ̃jnjL
3/2

 ≤ exp

−4(1− 2ε)

3

m∑
j=1

τ̃jnjL
3/2


≤ exp

(
−4(1− 2ε)

3

(
1 + min

j=1,...,m
τ̃j

)
L3/2

)
.

In the last step, we used the fact that
∑m
j=1 τ̃j = 1, τ̃j > 0 and nj ≥ 1 for j = 1, . . . ,m,

and at least for one j, nj ≥ 2. We write 1 + ε′ ≡ (1− 2ε)(1 + minj=1,...,m τ̃j). Notice that
in this way, by taking ε > 0 small enough, we have ε′ ∈ (0,minj=1,...,m τ̃j) as desired.

It remains to show that the factors involving n1, . . . , nm above are summable. For
n1 ≤ · · · ≤ nm we have

n
n1
2

1

m−1∏
j=1

(nj + nj+1)
nj+nj+1

2

n
nm
2
m ≤ 2n2+···+nmn

n1/2
1 nn2

2 · · ·n
nm−1

m−1 n
3nm/2
m .

Therefore, by Stirling’s formula, with n! = n1! · · ·nm!,

∑
n∈Nm\{1}

n
n1
2

1

(∏m−1
j=1 (nj + nj+1)

nj+nj+1
2

)
n

nm
2
m

(n!)2
× Cn1+···+nm

≤ Cm!
∑

1≤n1≤···≤nm

Cn1+···+nm
n
nm/2
m

n!
<∞.

Combining the above we have proved the desired estimate.
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3.5 Joint convergence in general: with time points not necessarily distinct

The following general fact is of its own interest. This section does not require specific
laws of the models involved earlier. Let, for each n ∈ N, {Yn(x, t)}x∈R,t∈(0,T ) be a random
field, and we are interested in the convergence of finite-dimensional distributions to
another random field {Y (x, t)}x∈R,t∈(0,T ), as n→∞. We impose a general condition for
the limit random field as follows. Consider the joint cumulative distribution function of
the limit random field {Y (x, t)}x∈R,t∈(0,T ),

Fx1,...,xd,t1,...,td(y1, . . . , yd) := P(Y (xi, ti) ≤ yi, i = 1, . . . , d),

viewed as a function of t1, . . . , td, y1, . . . , yd: we assume that this is a continuous function
from (0, T )d ×Rd to [0, 1], for all x1, . . . , xd fixed.

Lemma 3.6. Assume that

(Yn(xi, ti))i=1,...,d ⇒ {Y (xi, ti)}i=1,...,d

as n→∞ for all d ∈ N, xi ∈ R, ti ∈ (0, T ), i = 1, . . . , d, such that all t1, . . . , td are distinct.
Assume also that the joint cumulative distribution function is continuous in the sense
above. Then, as n→∞

{Yn(x, t)}x∈R,t∈(0,T )
f.d.d.−−−→ {Y (x, t)}x∈R,t∈(0,T ) .

Proof. We first prove the case d = 2. We shall prove

lim
n→∞

P (Yn(x1, t) > y1, Yn(x2, t) > y2) = P (Y (x1, t) > y1, Y (x2, t) > y2) ,

for all x1, x2, y1, y2 ∈ R, t ∈ (0, T ). First, we write, for ε ∈ R such that t+ ε ∈ (0, T ) and
δ > 0,

P (Yn(x1, t) > y1, Yn(x2, t) > y2)

≥ P (Yn(x1, t) > y1, Yn(x2, t) > y2, Yn(x2, t+ ε) > y2 + δ)

= P (Yn(x1, t) > y1, Yn(x2, t+ ε) > y2 + δ)

− P (Yn(x1, t) > y1, Yn(x2, t) ≤ y2, Yn(x2, t+ ε) > y2 + δ)

≥ P (Yn(x1, t) > y1, Yn(x2, t+ ε) > y2 + δ)− P (Yn(x2, t) ≤ y2, Yn(x2, t+ ε) > y2 + δ) .

Note that in the last expression above, each probability concerns the joint law of random
field at distinct time points. Therefore, we have

lim inf
n→∞

P (Yn(x1, t) > y1, Yn(x2, t) > y2)

≥ P (Y (x1, t) > y1, Y (x2, t+ ε) > y2 + δ)− P (Y (x2, t) ≤ y2, Y (x2, t+ ε) > y2 + δ) .

Letting ε, δ ↓ 0, by continuity of the joint law we have

lim inf
n→∞

P (Yn(x1, t) > y1, Yn(x2, t) > y2) ≥ P (Y (x1, t) > y1, Y (x2, t) > y2) . (3.24)

For the other direction, write

P (Yn(x1, t) > y1, Yn(x2, t) > y2)

= P (Yn(x1, t) > y1, Yn(x2, t) > y2, Yn(x2, t+ ε) > y2 − δ)
+ P (Yn(x1, t) > y1, Yn(x2, t) > y2, Yn(x2, t+ ε) ≤ y2 − δ)
≤ P (Yn(x1, t) > y1, Yn(x2, t+ ε) > y2 − δ) + P (Yn(x2, t) > y2, Yn(x2, t+ ε) ≤ y2 − δ) .

EJP 29 (2024), paper 30.
Page 21/27

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1092
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A conditional scaling limit of the KPZ fixed point

Again, first taking lim sup as n→∞, and then letting ε, δ ↓ 0, we have

lim sup
n→∞

P (Yn(x1, t) > y1, Yn(x2, t) > y2) ≤ P (Y (x1, t) > y1, Y (x2, t) > y2) .

Combining with (3.24), we have proved the convergence for d = 2. For larger d ∈ N, the
proof can be carried out by the same method and induction on the number of ti that take
the same values. The details are omitted.

4 Proof for the case with flat initial condition

Assume that Z is a standard normal random variable, and let Bbr,Z/
√

2
1 be a Brownian

bridge with initial value Z/
√

2 at t = 0 and value 0 at t = 1, and Bbr,Z/
√

2
2 be another pro-

cess defined similarly, and the two are conditionally independent given Z. Equivalently,
the two processes can be defined via

B
br,Z/

√
2

i (τ) := Bbr
i (τ) +

1− τ√
2
Z, τ ∈ [0, 1], i = 1, 2,

where Bbr
1 ,B

br
2 are two i.i.d. standard Brownian bridge, independent from Z. We shall

prove the following restatement of Theorem 1.1 in the case with flat initial condition:

L

{Hflat(
x√

2L1/4
, τ)− τHflat(0, 1)
√

2L1/4

}
x∈R,τ∈(0,1)

∣∣∣∣∣∣ Hflat(0, 1) = L


f.d.d.−−−→ L

({
min

{
B

br,Z/
√

2
1 (τ) + x,B

br,−Z/
√

2
2 (τ)− x

}}
x∈R,τ∈(0,1)

)
,

as L→∞.

The proof follows the same strategy as in the case of step initial condition. So we
only sketch the key calculations. We use the same notation for x, τ ,h,xL,hL as in (3.2).
Again we prove the case τ0, . . . , τm are all distinct and then apply Lemma 3.6. This time,
we consider

P (Hflat(xL,j , τj) > hL,j , j = 1, . . . ,m− 1 | Hflat(0, 1) = L) =
Q̂flat,xL,τ (hL)

pflat,0,1(L)
.

The derivation of the expression of Q̂flat,x,τ is similar to the one of (2.8) as before
following [Liu22a, Proposition 2.9 and Definition 2.26]. More precisely, we have

Q̂flat,x,τ (h) := P (Hflat(xj , τj) > hj , j = 1, . . . ,m− 1,Hflat(xm, τm) = hm)

=
∑
n∈Nm

0

1

(n!)2
Q̂

(n)
flat,x,τ (h),

where

Q̂
(n)
flat,x,τ (h) := (−1)m−1

∮
>1

· · ·
∮
>1

D̂
(n)
flat,x,τ (z,h)

dz1

2πiz1(1− z1)
· · · dzm−1

2πizm−1(1− zm−1)
,
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with

D̂
(n)
flat,x,τ (z,h) :=

n1∏
i1=1

∫
C1,left

dξ
(1)
i1

2πi

∫
C1,right

dη
(1)
i1

2πi
det

({
δ(−η(1)

k , ξ
(1)
` )
}
k,`=1,...,n1

)

×
m∏
j=2

[
(1− zj−1)nj−1

(
1− 1

zj−1

)nj

×
nj∏
ij=1

(
1

1− zj−1

∫
Cin

j,left

dξ
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,left

dξ
(j)
ij

2πi

)

×

(
1

1− zj−1

∫
Cin

j,right

dη
(j)
ij

2πi
− zj−1

1− zj−1

∫
Cout

j,right

dη
(j)
ij

2πi

)]

× Π̃n(~ξ
(m)

, ~η(m))

m∏
j=1

nj∏
ij=1

fx̃j ,τ̃j (ξ
(j)
ij
, h̃j)

fx̃j ,τ̃j (η
(j)
ij
, h̃j)

,

with

Π̃n(~ξ
(m)

, ~η(m)) := Πn(~ξ
(m)

, ~η(m))× (−1)n1(n1+1)/2 ∆(ξ(1);η(1))

∆(ξ(1))∆(η(1))
.

In particular, the same factor Πn in the previous section appears again, and the only
difference is the second factor on the right-hand side above. Moreover, the above
multiple integrals assume the additional assumption that

C1,left = −C1,right

(equality as two sets), and the δ function is such that∫
C1,left

δ(−η, ξ)f(ξ)
dξ

2πi
= f(−η), for all f ∈ L2

(
C1,left,

dξ

2πi

)
, η ∈ C1,right. (4.1)

Throughout, we follow the same notations as in Section 3. Again, we have similarly as
before the following:

(i) the term Q̂
(1)
flat,xL,τ

(hL) has the desired asymptotic behavior.

(ii) when n ∈ Nm0 \Nm, Q̂(1)
flat,x,τ (h) = 0.

(iii) the remainder is negligible:

∑
n∈Nm\{1}

Q̂
(n)
flat,xL,τ

(hL)

(n!)2
= o

(
Q̂

(1)
flat,xL,τ

(hL)
)
. (4.2)

The proof for the second fact above is the same as in the proof of Lemma 3.1. The proof
for (4.2) follows closely the proof of Lemma 3.3, and the difference is on the estimates of
Π̃n and also on the estimate of |D̂(n)

flat,xL,τ
(z,hL)| in place of (3.23), of which the details

are omitted. So we arrive at

Q̂flat,xL,τ (hL)

pflat,0,1(L)
∼
Q̂

(1)
flat,xL,τ

(hL)

pflat,0,1(L)
as L→∞,
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and we only focus on the contributing term. By (4.1),

D̂
(1)
flat,x,τ (z,h) =

∫
C1,right

dη(1)

2πi
×

m∏
j=2

[
(1− zj−1)

(
1− 1

zj−1

)

×

(
1

1− zj−1

∫
Cin

j,left

dξ(j)

2πi
− zj−1

1− zj−1

∫
Cout

j,left

dξ(j)

2πi

)

×

(
1

1− zj−1

∫
Cin

j,right

dη(j)

2πi
− zj−1

1− zj−1

∫
Cout

j,right

dη(j)

2πi

)]

× Π̃1(~ξ(m), ~η(m))

m∏
j=1

fx̃j ,τ̃j (ξ(j), h̃j)

fx̃,τ̃j (η(j), h̃j)
,

with ~ξ(m) = (ξ(1), . . . , ξ(m)) and ~η(m) = (η(1), . . . , η(m)),

Π̃1(~ξ(m), ~η(m)) = Π1(~ξ(m), ~η(m))× (η(1) − ξ(1)),

and the convention
ξ(1) = −η(1).

We have, in place of (3.10) for the case with step initial condition, by the same derivation,

Q̂
(1)
flat,xL,τ

(hL) = (−1)m−1

∮
>1

· · ·
∮
>1

D̂
(1)
flat,x,τ (z,h)

dz1

2πi · z1(1− z1)
· · · dzm−1

2πi · zm−1(1− zm−1)

=

∫
~C∗L,left×~CL,right

(−1)m−1Π̃1(~ξ(m), ~η(m))

m∏
j=1

fx̃L,j ,τ̃j (ξ(j), h̃L,j)

fx̃L,j ,τ̃j (η(j), h̃L,j)

d~ξ(m),∗d~η(m)

(2πi)2m−1
,

with

~C∗L,left := Cout
2,L,left × · · · × Cout

m,L,left,

~CL,right := C1,L,right × Cout
2,L,right × · · · × Cout

m,L,right,

and ~ξ(m),∗ = (ξ(2), . . . , ξ(m)). We shall work with

ξ
(j)
L = −

√
L+ uj

1√
2L1/4

and η
(j)
L =

√
L+ vj

1√
2L1/4

,

as before as functions of uj , vj , respectively. Write ~Σ∗left = Σ2,left × · · · × Σm,left and
du∗ = du2 · · · dum accordingly. When writing u1 in the sequel we follow the convention
u1 = −v1, so that several key calculations in the case of step initial condition can be
borrowed directly.

In place of (3.16) we have

Π̃1(~ξ
(m)
L , ~η

(m)
L ) = 2m−2Lm/2−1JL(u1, . . . , um, v1, . . . , vm)×

(
2
√
L+ 21/2L−1/4v1

)
∼ 2m−1L(m−1)/2JL(u1, . . . , um, v1, . . . , vm),

the same formulas and hence asymptotics for f as in (3.14), (3.15) hold. This time,
d~ξ(m),∗d~η(m) = 2−(2m−1)/2L−(2m−1)/4du∗dv. Then, in place of (3.20) we arrive at

Q̂
(1)
flat,xL,τ

(hL)

pflat,0,1(L)
∼

Q̂
(1)
flat,xL,τ

(hL)

(8π
√
L)−1/2 exp(− 4

3L
3/2)

→
√

4π

∫
~Σ∗left×~Σright

(−1)m−1

∏m
j=1 f(uj ; τ̃j , h̃j − x̃j)f(vj ; τ̃j ,−h̃j − x̃j)∏m−1

j=1 (uj − uj+1)(vj − vj+1)

du∗dv

(2πi)2m−1
, (4.3)
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as L → ∞. (We only explained the pointwise convergence and omitted the details for
dominated convergence.) Notice that the factorization into two m-multiple integrals as
in (3.20) no longer holds here. Some extra work is needed.

To arrive at the desired formula, we first write the integrand of (4.3) as, for
u1, . . . , um, v1, . . . , vm fixed,

(−1)m−1

∏m
j=1 f(uj ; τ̃j , h̃j − x̃j)f(vj ; τ̃j ,−h̃j − x̃j)∏m−1

j=1 (uj − uj+1)(vj − vj+1)

=

∏m
j=1 f(uj ; τ̃j , 0)f(vj ; τ̃j , 0)∏m−1

j=1 (uj+1 − uj)(vj − vj+1)

m−1∏
j=1

exp ((hj − xj)(−uj+1 + uj) + (−hj − xj)(−vj+1 + vj))

=

∫
bj≥hj−xj
cj≤−hj−xj
j=1,...,m−1

m∏
j=1

f(uj ; τ̃j , 0)f(vj ; τ̃j , 0)

m−1∏
j=1

exp (bj(−uj+1 + uj) + cj(−vj+1 + vj)) dbdc

=

∫
bj≥hj−xj
cj≤−hj−xj
j=1,...,m−1

m∏
j=1

f(uj ; τ̃j , b̃j)f(vj ; τ̃j , c̃j)dbdc,

where b̃j = bj − bj−1, c̃j = cj − cj−1, j = 1, . . . ,m and b0 = c0 = bm = cm = 0 as usual, and
in the first equality we used the fact that Re(uj − uj+1) < 0 and Re(vj − vj+1) > 0. Next,
we recognize

∫
~Σ∗left×~Σright

m∏
j=1

f(uj ; τ̃j , b̃j)f(vj ; τ̃j , c̃j)
du∗dv

(2πi)2m−1

=

∫
Σ1,right

f(−v1; τ1, b1)f(v1; τ1, c1)
dv1

2πi

×
m∏
j=2

∫
Σj,left

f(uj ; τ̃j , b̃j)
duj
2πi
×

m∏
j=2

∫
Σj,right

f(vj ; τ̃j , c̃j)
dvj
2πi

= φ2τ1(c1 − b1)×
m∏
j=2

φτ̃j (̃bj)×
m∏
j=2

φτ̃j (c̃j), (4.4)

where in the last step for each integral the identity (3.5). Also, by the semigroup property
φ2τ1(c1 − b1) =

∫
R
φτ1(z − b1)φτ1(c1 − z)dz, (4.4) becomes

∫
R

φτ1(b1 − z)
m∏
j=2

φτ̃j (̃bj)× φτ1(c1 − z)
m∏
j=2

φτ̃j (c̃j)dz

=

∫
R

φ2
1(z)pbr,z

τ1,...,τm−1
(b1, . . . , bm−1)pbr,z

τ1,...,τm−1
(c1, . . . , cm−1)dz

=
1√
4π

∫
R

φ1/2(z)pbr,z
τ1,...,τm−1

(b1, . . . , bm−1)pbr,z
τ1,...,τm−1

(c1, . . . , cm−1)dz,

where pbr,z
τ1,...,τm−1

is the conditional joint probability density function of Bbr,Z , given Z = z,
at time points τ1, . . . , τm−1.
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Now, combining all the above, we have shown

lim
L→∞

Q̂
(1)
flat,xL,τ

(hL)

pflat(L)

=
√

4π

∫
~Σ∗left×~Σright

(−1)m−1

∏m
j=1 f(uj ; τ̃j , h̃j − x̃j)f(vj ; τ̃j ,−h̃j − x̃j)∏m−1

j=1 (uj − uj+1)(vj − vj+1)

du∗dv

(2πi)2m−1

=
√

4π

∫
bj≥hj−xj
cj≤−hj−xj
j=1,...,m−1

∫
~Σ∗left×~Σright

m∏
j=1

f(uj ; τ̃j , b̃j)f(vj ; τ̃j , c̃j)
du∗dv

(2πi)2m−1
dbdc

= P
(
B

br,Z/
√

2
1 (τj) ≥ hj − xj ,B

br,Z/
√

2
2 (τj) ≤ −hj − xj , j = 1, . . . ,m− 1

)
= P

(
B

br,Z/
√

2
1 (τj) ≥ hj − xj ,B

br,−Z/
√

2
2 (τj) ≥ hj + xj , j = 1, . . . ,m− 1

)
,

where the last step follows by symmetry (−Bbr,Z/
√

2 has the same law as Bbr,−Z/
√

2).
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