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Abstract

The theory of rapid mixing random walks plays a fundamental role in the study of
modern randomised algorithms. Usually, the mixing time is measured with respect to
the worst initial position. It is well known that the presence of bottlenecks in a graph
hampers mixing and, in particular, starting inside a small bottleneck significantly
slows down the diffusion of the walk in the first steps of the process. The average
mixing time is defined to be the mixing time starting at a uniformly random vertex
and hence is not sensitive to the slow diffusion caused by these bottlenecks.

In this paper we provide a general framework to show logarithmic average mixing
time for random walks on graphs with small bottlenecks. The framework is especially
effective on certain families of random graphs with heterogeneous properties. We
demonstrate its applicability on two random models for which the mixing time was
known to be of order (logn)2, speeding up the mixing to order logn. First, in the
context of smoothed analysis on connected graphs, we show logarithmic average
mixing time for randomly perturbed graphs of bounded degeneracy. A particular
instance is the Newman-Watts small-world model. Second, we show logarithmic
average mixing time for supercritically percolated expander graphs. When the host
graph is complete, this application gives an alternative proof that the average mixing
time of the giant component in the supercritical Erdős-Rényi graph is logarithmic.

Keywords: random walks; random graphs; mixing times; expanders; randomly perturbed
graphs.
MSC2020 subject classifications: 05C80; 05C81; 60G50.
Submitted to EJP on July 3, 2023, final version accepted on January 22, 2024.

*This research has been supported by the Spanish Agencia Estatal de Investigación under projects PID2020-
113082GB-I00 and the Severo Ochoa and María de Maeztu Program for Centers and Units of Excellence in
R&D (CEX2020-001084-M). Alberto Espuny Díaz was partially supported by the Carl Zeiss Foundation and
by DFG (German Research Foundation) grant PE 2299/3-1. Patrick Morris was supported by the DFG Walter
Benjamin program – project number 504502205.

†Technische Universität Ilmenau, 98684 Ilmenau, Germany. E-mail: alberto.espuny-diaz@tu-ilmenau.de
‡Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. E-mail: pmorrismaths@gmail.com
§Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. E-mail: guillem.perarnau@upc.edu
¶Universitat Politècnica de Catalunya (UPC), Barcelona, Spain. E-mail: oriol.serra@upc.edu

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1091
https://ams.org/mathscinet/msc/msc2020.html
mailto:alberto.espuny-diaz@tu-ilmenau.de
mailto:pmorrismaths@gmail.com
mailto:guillem.perarnau@upc.edu
mailto:oriol.serra@upc.edu


Speeding up random walk mixing by starting from a uniform vertex

1 Introduction

Random walks on graphs are one of the fundamental tools for sampling (see, e.g., [38]).
Applications are numerous in areas such as computer science, discrete mathematics
and statistical physics. Prominent examples include the polynomial-time algorithm to
estimate the volume of a convex body [19], computing the matrix permanent [28] or the
use of Glauber dynamics to sample from Gibbs distributions, in particular from proper
colourings [42].

Most usually, the size of the sampling space is exponential in the input size, and
fully exploring this space is computationally intractable. The Markov chain Monte
Carlo (MCMC) method consists of running a random walk in an appropriately chosen
graph, whose vertex set is the sample space, until its distribution is arbitrarily close to
equilibrium, regardless of the initial state. At that time we say the walk has mixed, and
the time until it does is called the (worst-case) mixing time. To obtain efficient sampling
algorithms it suffices to prove that the mixing time is poly-logarithmic in the input size.

The connection between rapid mixing and expanders is well-established. In the
context of random walks, expansion is measured by means of a graph parameter called
conductance; see Section 2.2 for the precise definition. Jerrum and Sinclair [28] gave an
upper bound on the mixing time depending on the conductance and the logarithm of the
minimum stationary value. This bound is central in the theory of Markov chains.

Random environments are particularly interesting sampling spaces and, in the last
20 years, researchers have developed the theory of random walks on random graphs.
As expected, the good expansion properties of random graphs ensure rapid mixing. By
the Jerrum-Sinclair bound, graphs with conductance bounded away from zero mix in
logarithmically many steps and usually exhibit cut-off, that is, the distribution converges
rapidly to the stationary distribution in a small window of time. Good examples are
random graph models with control on the degrees, such as random regular graphs [34],
random graphs with given degree sequences [6, 4], their directed analogues [9, 12], or
graphs perturbed by random perfect matchings [27].

Nonetheless, the presence of small obstructions slows down the mixing. A canonical
example is the giant component of a sparse Erdős-Rényi graph G(n, c/n) with c > 1. This
component contains relatively small bottlenecks, that is, connected sets that only have
few edges connecting them to the rest of the graph. In such cases, tools like the Jerrum-
Sinclair bound fail to pin down the correct order of the mixing time. Fountoulakis and
Reed [23] introduced a strengthening of the bound that is sensitive to small bottlenecks
and used it to show that the mixing time of the largest component in G(n, c/n) is
asymptotically almost surely (a.a.s. for short) O(log2 n) [24]. Indeed, this is the correct
order as the component contains paths of degree 2 vertices (also referred to as bare
paths) whose length is of order log n. Starting at the centre of such paths, a random walk
takes Ω(log2 n) steps in expectation to escape from it. We remark that the mixing time in
the supercritical random graph G(n, c/n) was also bounded independently by Benjamini,
Kozma and Wormald [5], using a different approach investigating the anatomy of the
giant component.

However, these local bottlenecks are a negligible part of the giant component and
the rest of the component has good expansion properties. This suggests that, if the
random walk started outside the bottlenecks, the mixing time would decrease. This was
implicit in the work of Benjamini, Kozma and Wormald [5] and their description of the
giant component, and such a speeding up of mixing time was also conjectured explicitly
by Fountoulakis and Reed [24]. Berestycki, Lubetzky, Peres and Sly [6] confirmed their
prediction, showing that there exists a = a(c) such that the mixing time starting at
a uniformly random vertex is asymptotically a log n with high probability (they in fact
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proved much more, establishing the value of a(c) precisely as well as cut-off for the
random walk). This result reinforces the idea that, in certain heterogeneous scenarios,
averaging over the starting position yields more efficient sampling algorithms.

The goal of this paper is to provide a general framework to show logarithmic average-
case mixing time for random walks on graphs with small bottlenecks.

1.1 Average mixing times

Given an n-vertex graph G, the lazy random walk over G is a Markov chain with state
space V (G) which can be defined as follows. If at any given time we are in a vertex
u ∈ V (G), the lazy random walk stays in u with probability 1/2, and with probability 1/2

it moves to a uniformly random neighbour of u in G. If G is a connected graph, it is well
known that the lazy random walk over G is ergodic and its distribution converges to the
(unique) stationary distribution πG (see, e.g., [33] for a comprehensive review of random
walks and mixing times).

The total variation distance dTV(µ, ν) between two probability distributions ν and µ
on the vertex set V (G) of a graph G is defined as

dTV(µ, ν) := max
A⊆V (G)

|µ(A)− ν(A)| = 1

2

∑
v∈V (G)

|µ(v)− ν(v)|. (1.1)

Let PG be the transition matrix of the lazy random walk over G. For ε > 0, the ε-mixing
time tmix(G, ε) of this lazy random walk is defined as

tmix(G, ε) := min

{
t ∈ N0 : max

u∈V (G)
dTV(µu0P

t
G, πG) ≤ ε

}
,

where µu0 is the distribution supported entirely on u ∈ V (G).
If instead of considering the worst-case initial vertex we consider a uniformly random

vertex v ∈ V (G), then the quantity dTV(µv0P
t
G, πG) is a random variable. We define the

average ε-mixing time t̄mix(G, ε) of the lazy random walk, to be the time at which the
expectation of this random variable falls below the ε. That is,

t̄mix(G, ε) := min

t ∈ N0 :
1

n

∑
u∈V (G)

dTV(µu0P
t
G, πG) ≤ ε

 .

Remark 1.1. In this work, we will focus on the quantity t̄mix(G, ε), which we believe is a
natural candidate for tracking mixing times starting from a uniform vertex. Nonetheless,
other related quantities have been used to measure the mixing time from a uniform
starting point.

Indeed, for a vertex u ∈ V (G), define

t
(u)
mix(G, ε) := min

{
t ∈ N0 : dTV(µu0P

t
G, πG) ≤ ε

}
and consider the random variable t

(Un)
mix = t

(Un)
mix (G, ε), where Un is a vertex chosen

uniformly at random from V (G). This notion was the one studied by Berestycki, Lubetzky,

Peres and Sly [6]. It is natural to compare t̄mix to E(t
(Un)
mix ): in the first case, we average

the total variation distance over starting vertices and take the smallest time t when
this average is smaller than ε; in the second one, we average the mixing times over
the starting vertices (see Figure 1). In general as functions, neither of these notions is
stronger than the other, in that one can design examples of trajectories for total variation
distances dTV(µu0P

t
G, πG) for different vertices u, showing that t̄mix cannot be bounded by

a function of E(t
(Un)
mix ) and vice versa. However, bounding either E(t

(Un)
mix ) or t̄mix implies
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that t(Un)
mix is small with high probability. In the first case this is a direct application of

Markov’s inequality. In the second one, define du(t) := dTV(µu0P
t
G, πG), for a vertex u,

then t̄mix(G, ε) is the time t at which the expected value of du(t) (averaged over starting
points) is less than ε. By Markov’s inequality, dUn

(t̄mix(G, ε2)) ≤ ε with probability at
least 1− ε.

Figure 1: Schematic plot of the total variation distance starting at different vertices and
the two average mixing times for ε = 0.05. In red, the function 1

n

∑
u∈V (G) dTV(µu0P

t
G, πG)

and the dot representing t̄mix(G, ε). In blue, the average of mixing times at different

thresholds and the dot representing E(t
(Un)
mix (G, ε)).

A related but very different notion is the time it takes to mix starting at µV , the
uniform distribution over V :

t
(V )
mix(G, ε) := min

{
t ∈ N0 : dTV(µV P

t
G, πG) ≤ ε

}
.

A similar notion has been studied for directed graphs, where the initial distribution is
the in-degree one; see, e.g., [9, Theorem 3]. In general, this latter notion of average
mixing time is much smaller than the previous notions and we expect this to also be the
case in the settings studied here, although we do not explore this direction.

Remark 1.2. In the literature, the mixing time of the random walk is often defined as
tmix(G) := tmix(G, 1/4), since the distance to the stationary distribution is contractive
after this time. However, this might not be the case for t̄mix. Consider for instance the
lollipop graph Ln,k: a clique on k vertices and a path on n− k vertices joined by an edge
incident to one of the endpoints of the path. If k and n − k are both very large, then,
after one step, the total variation distance is roughly 0 if we start at the clique (almost
all the mass of πLn,k

is supported on the clique), and roughly 1 if we start at the path.
Taking k = dαne, then

1

n

∑
u∈V (G)

dTV(µu0PLn,k
, πLn,k

) ∼ 1− α. (1.2)

If α > 3/4, then t̄mix(Ln,k, 1/4) = 1. However, the time required to further decrease the
distance to the stationary distribution is of order Ω(n2), as this is the time required for
the walk starting at a typical vertex in the path to hit the clique.

1.2 Our results

Our results will apply to graphs satisfying certain natural structural conditions, which
we formalise in the following definition.
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Definition 1.3. Let G be an n-vertex graph. For α > 0, we say that a set S ⊆ V (G) is
α-thin in G if

|∂G(S)| := eG(S, V (G) \ S) < α|S|.

For D > 0, we say that a set S ⊆ V (G) is D-loaded in G if

eG(S) > D|S|.

We say that G is an (α,D)-spreader graph if it satisfies the following three properties:

(S1) For all (log n)1/5 ≤ k ≤ (1 − 1/D2)n, the number of G-connected α-thin sets

S ⊆ V (G) with |S| = k is less than ne−
√
k.

(S2) For all (log n)1/5 ≤ k ≤ (1 − 1/D2)n, the number of G-connected α−1-loaded sets

S ⊆ V (G) with |S| = k is less than ne−
√
k.

(S3) No set S ⊆ V (G) with |S| ≥ αn is D-loaded in G.

Note that, for k > log2 n, one has that ne−
√
k < 1, and thus the conditions on an n-

vertex graph G being an (α,D)-spreader graph guarantee that there are no G-connected
vertex subsets of size between log2 n and (1− 1/D2)n that have too few edges leaving
the set (S1) or too many edges contained inside the set (S2). These pseudo-random
conditions on expansion and edge distribution arise naturally in the context of random
graph models. Indeed, the density of a random graph within any vertex set and across
any vertex partition is expected to be the same as the density of the whole graph, and
concentration inequalities in conjunction with union bounds can be used to derive the
non-existence of such bad connected vertex sets with high probability. Moreover, the
conditions of Definition 1.3 bound the number of bad vertex sets of size between (log n)1/5

and log2 n, with exponential decay as one can expect from concentration inequalities
on binomial random variables. In the context of the current work, the conditions on
spreader graphs will guarantee that all bottlenecks are small and they are scarce in the
graph.

To digest the notion of spreader graphs, one can think of α > 0 as an arbitrarily
small constant and D as arbitrarily large. The parameter α > 0 controls conditions (S1)

and (S2) in the sense that, as α shrinks, these conditions become easier to satisfy and
thus the definition of spreader graphs captures more graphs. Similarly, the parameter
D controls (S3) and imposes in particular that the spreader graphs are sparse with
bounded average degree. It should be noted that, due to D appearing in (S1) and (S2)

and α appearing in (S3), our definition is not actually monotone in these parameters.
This is a technical subtlety that is needed in our proof to guarantee a trade-off between
the conditions. However, in all applications, the restraints given by D in (S1) and (S2)

and α in (S3) are never critical, as we have very good control over the edge distribution
in all linear sets.

We also remark that the constant 1/5 could be replaced by any constant ζ < 1/4.
Indeed, for sets smaller than (log n)ζ , we impose no restriction. The point is that,
as we will focus on connected spreader graphs G, even if a small set is an extreme
bottleneck, the random walk will not get stuck there for too long before exploring the
set enough to escape. In our proof, these bottlenecks contribute a factor (log n)4ζ (due
to a connected set of size s having conductance at least 1/s2 and Theorem 2.1 giving a
quadratic dependence on conductance, see Section 2.2 for details), hence a choice of
ζ < 1/4 guarantees that this contribution is negligible. It may be possible to replace this
constraint of 1/4 by 1/2 but not beyond this.

Finally, we remark that the constants α and D could be replaced with functions that
depend on n and the definition of spreader graphs could be adjusted so that our main
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theorem would still give bounds on average mixing times. However, as our focus is on
sparse graphs with constant average degree, we do not pursue this direction here.

Remark 1.4. The definition of (α,D)-spreader graphs bears resemblance with that of
α-AN graphs (or α-decorated expanders) introduced in [5]. An α-AN graph G is defined
in terms of the existence of an expander subgraph B whose complement is formed by a
small number of small components, similar to what can be deduced from (S1)-(S3), and
additionally requiring that not too many components of G − B are connected to each
v ∈ V (B). The backbone of the main result in [5] is to show that random walks on α-AN
graphs mix in O(log2 n) steps.

Our main theorem provides a tool to prove logarithmic average mixing time for
(α,D)-spreader graphs.

Theorem 1.5. For all ε > 0, D ≥ 4 and 0 < α < 1/D2, there exists a C > 0 such that
the following holds for all n sufficiently large. Suppose G is an n-vertex connected
(α,D)-spreader graph. Then,

t̄mix(G, ε) ≤ C log n.

We believe that in many cases, as in our two applications below, this theorem can
be used to quickly derive optimal bounds for average mixing times in settings where
worst-case mixing times are established via conductance bounds.

The proof of Theorem 1.5 bears some similarities with the proof in [6]. Both use the
idea of contracting badly connected sets and coupling the random walks in the original
and the contracted graphs. However, our proof is conceptually simpler as it does not
use the anatomy of the giant component [16], a powerful description of the largest
component in the supercritical regime. Instead, we rely on the Fountoulakis-Reed bound
for mixing [23] and recent progress on hitting time lemmas [35].

1.3 Application 1: Smoothed analysis on connected graphs

The idea of studying the effect of random perturbations on a given structure arose
naturally in several distinct settings. In theoretical computer science, Spielman and
Teng [40] (see also [41]) introduced the notion of smoothed analysis of algorithms. By
randomly perturbing an input to an algorithm, they could interpolate between a worst-
time case analysis and an average case analysis, leading to a better understanding of
the practical performance of algorithms on real life instances. This has been hugely
influential, leading to the study of smoothed analysis in a host of different settings, in-
cluding numerical analysis [39, 43], satisfiability [22, 14], data clustering [3], multilinear
algebra [7] and machine learning [29]. Almost simultaneously, in graph theory, Bohman,
Frieze and Martin [8] introduced the model of randomly perturbed graphs which, as
with smoothed analysis, allows one to understand the interplay between an extremal
and probabilistic viewpoint. The majority of work on the subject has focused on dense
graphs [10, 11, 26].

In the context of random walk mixing, it can be seen that small random perturbations
cannot speed up the mixing time on dense graphs significantly. Indeed, the canonical
examples leading to torpid mixing (e.g., two cliques connected by a long path) are robust
with respect to that property. Smoothed analysis of sparse graphs was introduced by
Krivelevich, Reichman and Samotij [31]. Here one starts with a connected graph of
bounded degree (in fact, bounded degeneracy often suffices) and applies a small random
perturbation by adding a copy of the binomial random graph R ∼ G(n, δ/n) for small
δ > 0. Although this perturbation is very slight, they showed that it greatly improves
the expansion properties of the graph. A graph G is said to be ∆-degenerate if there
is some ordering of the vertices of G such that each vertex has at most ∆ neighbours
in G that precede it in the ordering. To be precise, Krivelevich, Reichman and Samotij
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proved that, for any ∆ ∈ N and δ > 0, if G is an n-vertex ∆-degenerate connected
graph and R ∼ G(n, δ/n), then G′ := G ∪R a.a.s. satisfies that tmix(G′) = O(log2 n). By
considering, for example, a path on n vertices, which has mixing time Ω(n2), we see a
vast improvement after a slight random perturbation. We also note that the result is
tight on such examples, as the randomly perturbed path a.a.s. contains bare paths of
length Ω(log n).

Our first application of Theorem 1.5 shows that we can improve the mixing time yet
further in this model by starting from a uniformly chosen vertex, as in this case we avoid
the small bottlenecks that remain if the initial graph had poor expansion.

Theorem 1.6. For any ε, δ > 0 and ∆ ∈ N, there exists a C > 0 such that the following
holds. Let G be an n-vertex ∆-degenerate connected graph, choose R ∼ G(n, δ/n) and
let G′ := G ∪R. Then, a.a.s.

t̄mix(G′, ε) ≤ C log n.

Remark 1.7. Theorem 1.6 is tight, up to the constant factor C, for all graphs with
maximum degree ∆. Indeed, this follows from the fact that Nk(v) = O((2d̄)k log n) for
all vertices v ∈ V (G′), where Nk(v) denotes the number of vertices that are at distance
at most k from v in G′ and d̄ := ∆ + δ is an upper bound on the average degree in G′.
Such an upper bound can be shown easily by induction, see for example [13], and setting
k = c log n for c > 0 sufficiently small shows that at least half of the vertices cannot be
reached from v in k steps and hence t̄mix(G′, ε) ≥ k. Nonetheless, the converse of the
inequality in Theorem 1.6 is not true for all ∆-degenerate graphs. Consider for instance
a star: it is 1-degenerate, but the mixing time of the randomly perturbed star is O(1) as
we mix in the step after visiting the centre of the star for the first time.

Some time before the systematic study of random perturbations in the combinatorial
and theoretical computer science communities discussed above, the notion appeared
in physics literature with the study of so-called small-world networks. Here we will
concentrate on a model introduced by Newman and Watts [37, 36] where, for some
fixed k ∈ N, δ > 0 and n ∈ N large, one starts with n-vertices of the graph ordered
as v1, . . . , vn, adds all edges vivj for which i + 1 ≤ j ≤ i + k (with addition modulo n),
and then adds all remaining edges independently with probability p = δ/n. We denote
the resulting random graph as Hn,k,δ. It is easy to see that this graph fits into the
framework of Krivelevich, Reichman and Samotij [31], and so their result implies that,
for any k ∈ N and δ > 0, the Newman-Watts small world network Hn,k,δ a.a.s. satisfies
tmix(Hn,k,δ) = O(log2 n). In fact, this was established before their work by Addario-Berry
and Lei [1], improving on a previous bound of O(log3 n) due to Durrett [18]. Here, as a
direct consequence of Theorem 1.6, we conclude that the average mixing time on the
Newman-Watts small world network is of order O(log n).

Corollary 1.8. For all k ∈ N and ε, δ > 0, there exists a C > 0 such that the following
holds. The Newman-Watts small world network Hn,k,δ a.a.s. satisfies

t̄mix(Hn,k,δ, ε) ≤ C log n.

1.4 Application 2: Giant components in random subgraphs of expanders

For p ∈ [0, 1] and a graph G, we define Gp to be the graph with the same vertex set
where each edge of G is retained in Gp independently with probability p. The graph G is
called the host graph, and the random subgraph Gp, the p-percolated one. Percolation on
graphs is a well-established topic in probability theory. Most classically, if the host graph
is the complete graph on n vertices Kn, then its p-percolated subgraph is the Erdős-Rényi
graph G(n, p). For any graph G, let L1(G) denote a largest connected component in G
and let `1(G) denote its order. In their seminal paper [21], Erdős and Rényi proved a
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phase transition for `1(G(n, p)). Namely, writing p = c/n for some constant c, if c < 1

then a.a.s. `1(G(n, p)) = O(log n), while if c > 1 then a.a.s. `1(G(n, p)) = Ω(n) and the
largest component, which is the unique component of linear size, is known as the giant
component.

A central question in random graph theory is whether other host graphs exhibit
the same phenomenon [2]. One quickly observes that, in order for Gp to have a sharp
threshold for the component structure, the host graph G should satisfy some additional
properties. A natural property to consider is the pseudo-random notion of expansion.
There is a strong connection between expansion and the graph spectrum. Given the
eigenvalues of the adjacency matrix of a d-regular graph G, say d = λ1 ≥ λ2 ≥ . . . ≥ λn,
we let λ(G) := max{|λ2|, |λn|} be the second largest eigenvalue. We then define an
(n, d, λ)-graph to be a d-regular graph G on n vertices with λ(G) = λ. When λ is small
compared to d, an (n, d, λ)-graph is said to be an expander and it enjoys many of the
same properties as a random graph with the same density. We refer the reader to the
excellent survey of Krivelevich and Sudakov [32] on the subject.

In terms of percolation, Frieze, Krivelevich and Martin [25] proved that, if G is an
(n, d, λ)-graph with λ = o(d), then `1(Gp) undergoes a phase transition at p = 1/d. They
obtained the following description of the supercritical regime: for δ > 0 and p = (1+δ)/d,
and provided that λ ≤ δ4d, a.a.s. `1(Gp) ∼ y(δ)n for some y(δ) ∈ (0, 1). Moreover,
as in G(n, p), the largest component L1(Gp) is a.a.s. the unique component of linear
size. Very recently, Diskin and Krivelevich [17] studied the mixing time of percolated
(n, d, λ)-graphs. More precisely, they showed that, in the supercritical regime, there
exists C = C(δ) such that a.a.s. tmix(L1(Gp)) ≤ C log2 n. This is indeed optimal for some
graphs, in particular for Erdős-Rényi random graphs [24, 5], as discussed above.

Our next application of our main result shows that for percolated pseudo-random
graphs the average mixing time is logarithmic.

Theorem 1.9. For all δ > 0 sufficiently small and all ε > 0, there exists a C > 0 such
that, if p = (1 + δ)/d and G is an (n, d, λ)-graph with λ ≤ δ4d, then a.a.s.

t̄mix(L1(Gp), ε) ≤ C log n.

Similarly as in Remark 1.7, it can be proven that Theorem 1.9 is tight up to multi-
plicative constant for all (n, d, λ)-graphs.

As a consequence, for G = Kn we obtain the following.

Corollary 1.10. For all δ > 0 sufficiently small and all ε > 0, there exists a C > 0 such
that, for p = (1 + δ)/n, a.a.s.

t̄mix(L1(G(n, p)), ε) ≤ C log n.

By Remark 1.1, t(Un)
mix = O(log n) a.a.s., where Un is chosen uniformly at random from

V (G). This result aligns with [6], although theirs is much stronger, showing cut-off for

t
(Un)
mix as previously mentioned.

1.5 Organisation

The rest of this paper is organised as follows. In Section 2 we introduce all the neces-
sary notation, definitions and tools for our proofs. We use these to prove Theorem 1.5
in Section 3. This section is structured in subsections where we build different tools to
be used in our main proof; in particular, we discuss the main ideas of the proof in Sec-
tion 3.1. Sections 4 and 5 are devoted to proving Theorems 1.6 and 1.9, respectively.
Finally, we discuss some open problems in Section 6.
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2 Preliminaries

2.1 Basic notation

Let N0 = {0, 1, 2, . . .} denote the set of non-negative integers. If n is a positive
integer, we set [n] := {1, . . . , n}. Throughout, we will consider both simple graphs
and multigraphs. The word graph will refer to simple graphs, that is, each pair of
vertices forms at most one edge. Our multigraphs, which will be allowed to have
parallel edges but no loops, will be clearly identified as such. All our graphs are
labelled, so whenever we discuss an n-vertex (multi)graph G, we implicitly assume that
V (G) = [n]. Given a (multi)graph G = (V,E) and disjoint sets A,B ⊆ V (G), we write
EG(A) for the (multi)set of edges of G contained in A, and EG(A,B) for the (multi)set
of edges with one endpoint in A and the other in B. We set eG(A) := |EG(A)| and
eG(A,B) := |EG(A,B)|. If A = {a}, we write EG(a,B) := EG({a}, B), and similarly in all
related notation. For simplicity, we write e(G) := eG(V (G)). We write G[A] := (A,EG(A)).
We say that A is G-connected if G[A] is connected. For each vertex v ∈ V (G), we write
degG(v) := eG({v}, V (G) \ {v}) for its degree. We denote ∂G(A) := EG(A, V (G) \A) and
degG(A) :=

∑
v∈A degG(v) = 2eG(A) + |∂G(A)|.

In many of our statements we will consider an n-vertex graph satisfying a set of
conditions or a conclusion, which are often asymptotic in nature. This is in fact an
abuse of notation. To be precise, one must consider a sequence (Gk)k≥1 of graphs
on an increasing number of vertices so that the graphs in the sequence satisfy the
conditions. This abuse of notation greatly simplifies the statements, so we will assume
it throughout. (This also includes any asymptotic statements about random graphs.)
For any sequence of graphs (Gk)k≥1 with |V (Gk)| → ∞, we say that a graph property P
holds asymptotically almost surely (a.a.s.) if limk→∞P[Gk ∈ P] = 1.

2.2 Random walks

Given an arbitrary connected multigraph G, the lazy random walk over G is a Markov
chain on state space V (G) defined by the transition matrix PG = (PG(i, j))i,j∈V (G) given
by

PG(i, j) =

{
1/2 if i = j,

eG(i, j)/(2 degG(i)) if i 6= j.
(2.1)

That is, the lazy random walk is a sequence of random variables (Xt)t≥0 with probability
distributions (µt)t≥0, respectively, over V (G), where µ0 is the starting distribution
and, for each t ≥ 1, the distribution of µt is obtained from the distribution of µt−1 as
µt = µt−1PG = µ0P

t
G. The sequence of distributions thus depends only on G and the

starting distribution. In the special case when there is a vertex x ∈ V (G) such that
µ0(x) = 1, we will write (µxt )t≥0 to denote the resulting sequence of distributions.

If G is connected, the lazy random walk over G converges to a stationary distribu-
tion πG (that is, a distribution satisfying πG = πGPG), independently of the starting
distribution µ0. It is well known (see, e.g., [33]) that this stationary distribution satisfies

πG(u) =
degG(u)

2e(G)
(2.2)

for all u ∈ V (G). Given a set S ⊆ V (G), we define πG(S) :=
∑
v∈S πG(v). It follows

from (2.2) that

πG(S) =
degG(S)

2e(G)
=

2eG(S) + |∂G(S)|
2e(G)

. (2.3)

We define πmin(G) := minv∈V (G) πG(v) and πmax(G) := maxv∈V (G) πG(v).
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Recall the definition of mixing times in the introduction. The mixing time of a random
walk on a connected (multi)graph G is deeply tied with the concept of conductance.
Given a set S ⊆ V (G), we define

QG(S) :=
∑
i∈S

∑
j∈V (G)\S

πG(i)PG(i, j) =
|∂G(S)|
4e(G)

, (2.4)

where the equality follows from (2.1) and (2.2). Observe that QG(S) = QG(V (G) \ S).
Finally, we define the conductance ΦG(S) of S as

ΦG(S) :=
QG(S)

πG(S)πG(V (G) \ S)
. (2.5)

From the definitions in (2.3), (2.4) and (2.5) and the fact that degG(A) ≤ 2e(G) for any
set A ⊆ V (G), it follows that

ΦG(S) =
e(G)|∂G(S)|

degG(S) degG(V (G) \ S)
≥ |∂G(S)|

2 degG(S)
. (2.6)

Our approach to estimate the mixing time of the lazy random walk over a multigraph
G is based on ideas of Fountoulakis and Reed [23, 24]. Roughly speaking, their main
contribution is the fact that the mixing time of an abstract irreducible, reversible,
aperiodic Markov chain (which we may represent using a weighted graph H on its state
space) can be bounded from above using the conductances of different H-connected sets
of states of various sizes. The fact that we may restrict ourselves to H-connected sets is
crucial to obtain tighter bounds than would be obtained through other classical means.
For simplicity, here we only state a version of the result of Fountoulakis and Reed [23]
which is applicable to our setting. For any p ∈ (πmin(G), 1), we let ΦG(p) be the minimum
conductance ΦG(S) over all G-connected sets S ⊆ V (G) such that p/2 ≤ πG(S) ≤ p (if no
such set S exists, we set ΦG(p) = 1).

Theorem 2.1 (Fountoulakis and Reed [23]). Let G be a connected multigraph. There
exists an absolute constant C0 such that

tmix(G) ≤ C0

dlog2 πmin(G)−1e∑
j=1

Φ−2G (2−j).

Another parameter of interest is the hitting time to a vertex (or set of vertices) in the
random walk on a multigraph G. Given any v ∈ V (G) and the lazy random walk (Xt)t≥0
with starting distribution µ0, we define the hitting time to v as

τG(µ0, v) := inf{t ∈ N0 : Xt = v,X0 ∼ µ0}.

In more generality, given any set S ⊆ V (G), we define the hitting time to S as

τG(µ0, S) := inf{t ∈ N0 : Xt ∈ S,X0 ∼ µ0}.

Given any vertex u ∈ V (G), let Pu be the matrix obtained from the transition matrix
PG by removing the row and column corresponding to u. If Pu is primitive (i.e., all entries
of Pmu are positive for some m ≥ 1), by Perron-Frobenius, the largest eigenvalue of Pu,
denoted by λu, is real, of multiplicity 1 and satisfies λu < 1.

We will make use of the first visit time lemma of Cooper and Frieze [15]. Here we
state a more recent version with weaker hypotheses due to Manzo, Quattropani and
Scoppola [35].
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Theorem 2.2 (First Visit Time Lemma, Manzo, Quattropani and Scoppola [35]). Let G be
an n-vertex connected multigraph. Suppose that there exist a real number c > 2 and a
diverging sequence T = T (n) such that the following conditions hold:

(HP1) Fast mixing: maxx,y∈V (G) |µxT (y)− πG(y)| = o(n−c).

(HP2) Small πmax: T · πmax(G) = o(1).

(HP3) Large πmin: πmin(G) = ω(n−2).

Then, for all u ∈ V (G), we have

sup
t≥0

∣∣∣∣P[τG(πG, u) > t]

λtu
− 1

∣∣∣∣ −−−−→n→∞
0 (2.7)

and ∣∣∣∣ 1− λu
πG(u)/RT (u)

− 1

∣∣∣∣ −−−−→n→∞
0, (2.8)

where

RT (u) :=

T∑
t=0

µut (u) > 1

is the expected number of indices t ∈ [T ] ∪ {0} for which the lazy random walk (Xt)t≥0
on G starting at X0 = u satisfies Xt = u.

From the intuitive point of view, the theorem says that the hitting time to u is roughly
distributed as a geometric random variable with success probability πG(u)/RT (u). If
one wants to hit u by independently sampling vertices according to πG, then it would
be a geometric random variable with success probability πG(u). The factor RT (u) is the
price to pay for taking into account the geometry of the graph: the more likely it is to
return from u to u, the less connected u is to the rest of the graph, and the smaller the
probability to hit it at a given (large) time is.

Remark 2.3. In the proof of Theorem 2.2, one can check that, if we only want (2.7) to
hold for a given u ∈ V (G), then (HP2) can be replaced by

(HP2′) Small πG(u): T · πG(u) = o(1).

Remark 2.4. The following holds as a corollary of Theorem 2.2. For any fixed D > 0 and
n-vertex connected multigraph G satisfying (HP1), (HP2) (or (HP2′)) and (HP3) with the
additional property that e(G) ≤ Dn, if u ∈ V (G) and t0 = t0(n) is such that λt0u = 1− o(1),
then

1

n

∑
v∈V (G)

P[τG(µv0, u) ≤ t0] = o(1). (2.9)

Indeed, for ε > 0, Theorem 2.2 implies that P[τG(πG, u) ≤ t0] ≤ ε2. Then, Bε := {v ∈
V (G) : P[τG(µv0, u) ≤ t0] ≥ ε} satisfies πG(B) ≤ ε. Moreover, as G is connected, we have
that πG(B) ≥ |B|/(2e(G)) ≥ |B|/(2Dn) and so |B| ≤ 2εDn. Therefore,∑

v∈V (G)

P[τG(µv0, u) ≤ t0] =
∑

v∈V (G)\B

P[τG(µv0, u) ≤ t0] +
∑
v∈B

P[τG(µv0, u) ≤ t0]

≤ (2D + 1)εn,

which can be made arbitrarily small, by taking ε small with respect to D. This estab-
lishes (2.9).
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3 A general approach to average mixing times

3.1 Proof overview

As discussed in the introduction, the main tool we will use to bound the mixing times
of random walks is the result of Fountoulakis and Reed (Theorem 2.1) which relates the
(worst-case) mixing time of a random walk in a graph G to the conductance (see (2.5)) of
the G-connected vertex subsets S of G. We think of vertex subsets S whose conductance
is poor (those for which ΦG(S) = o(1)) as bottlenecks: they have more edges internally
in S than leaving S and so the random walk is likely to get held up in S. The spreader
graphs (see Definition 1.3) we are interested in studying here have only few small
bottlenecks. Indeed, any vertex subset which can lead to small bottlenecks must either
be thin or loaded and our upper bounds on the number of these sets in a spreader graph
readily imply that any vertex set with poor conductance is of at most polylogarithmic size
(size (log2 n) to be precise, see Remark 3.3). Now, if a set with poor conductance is very
small (size at most (log n)1/5), it will not slow down mixing significantly as our random
walk will not get stuck for very long in these sets before leaving them. Therefore, it is
the intermediate size sets which pose a problem, and we will first show in Section 3.2
(see Lemma 3.4) that the set U of bad vertices contained in some intermediate set which
has poor conductance contains a negligible proportion of the overall vertex set of our
spreader graph.

Intuitively, we can then see how starting at an average vertex in G speeds up the
mixing time. Indeed, we are very unlikely to start at a bad vertex in U and, moreover, we
are in fact very unlikely to visit a vertex in U in the first O(log n) time steps, by which time
we aim to show that the distribution of the random walk is already well-mixed. In order
to formalise this intuition, we adjust our spreader graph G by shrinking the intermediate
sets with poor conductance and thus removing troublesome small bottlenecks. The
resulting (multi-)graph we will call G∗. Using that the number of bad vertices |U | is
negligible, or rather that the number of edges incident to U , degG(U), is negligible
(Lemma 3.4), we show in Section 3.3 that switching from G to G∗ does not have a big
effect on the edge distribution and that, in particular, the stationary distributions on G
and G∗ are comparable. We then show in Section 3.4 that, after contracting intermediate
sets with poor conductance, we can apply Theorem 2.1 of Fountoulakis and Reed to
conclude that the worst-case mixing time in G∗ is logarithmic. Here we will need that G∗

is defined carefully to preserve connectivity between sets after contractions (see (3.7)).
Finally, we will prove Theorem 1.5 by coupling the random walk from an average vertex
on G with the random walk in G∗. As the random walk in G∗ from any starting point
mixes rapidly, we can conclude that the random walk in G also mixes rapidly as long
as the two random walks stay coupled for long enough. For this, our final ingredient
is to show that the random walk in G is unlikely to hit our bad vertices U , which we
do in Section 3.5 by appealing to the First Visit Time Lemma (Theorem 2.2) of Manzo,
Quattropani and Scoppola.

3.2 Badly connected sets

We will make use of the following simple definition.

Definition 3.1. For γ > 0 and a connected multigraph G, we say a set S ⊆ V (G) is
γ-bad in G if

|∂G(S)|
degG(S)

< γ,

and that it is γ-good otherwise.

The following lemma gives us a basic property of bad sets in a connected multigraph
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and quickly ties them with our notion of (α,D)-spreader graphs. Note that the notions of
thin and loaded sets extend naturally to multigraphs.

Lemma 3.2. Let G be a multigraph. For 0 < α ≤ 1, if a set S ⊆ V (G) is (α2/4)-bad in G,
then

(1) |∂G(S)| ≤ 2eG(S), and

(2) either S is α-thin in G or it is α−1-loaded in G (or both).

Proof. The assertion (1) follows easily since, if |∂G(S)| > 2eG(S), then

|∂G(S)|
degG(S)

=
|∂G(S)|

2eG(S) + |∂G(S)|
≥ |∂G(S)|

2|∂G(S)|
=

1

2
≥ α2

4
,

a contradiction.
For the second assertion, suppose that S is neither α-thin nor α−1-loaded in G. Then,

we have that

|∂G(S)|
degG(S)

=
|∂G(S)|

2eG(S) + |∂G(S)|
≥ |∂G(S)|

4eG(S)
≥ α|S|

4α−1|S|
=
α2

4
,

a contradiction. Here we used that |∂G(S)| ≤ 2eG(S) from (1) in the first inequality and
the definitions of α-thin and α−1-loaded in the second.

We will also make use of the following simple observation.

Remark 3.3. Let α,D > 0, and let G be an n-vertex graph satisfying (S1) and (S2). Then,
there are no G-connected α-thin or α−1-loaded sets S of size (log n)2 ≤ |S| ≤ (1−1/D2)n.

Given any α > 0 and D > 0, we define β := 1/D2 and γ := α2/4. Given any n-vertex
graph G, let

S(α,D) :=
{
S ⊆ V (G) : S is G-connected and γ-bad, (log n)1/5 ≤ |S| ≤ (1− β)n

}
. (3.1)

Further, we define U(α,D) ⊆ V (G) to be the set of vertices that lie in sets in S(α,D),
that is,

U(α,D) :=
⋃

S∈S(α,D)

S. (3.2)

We now give bounds on |U(α,D)| and degG(U(α,D)).

Lemma 3.4. Let α ∈ (0, 1] and D > 0. Let G be an n-vertex connected graph which
satisfies (S1) and (S2). If n is sufficiently large, then

|U(α,D)| ≤ n exp(−(log n)1/11) (3.3)

and
degG(U(α,D)) ≤ n exp(−(log n)1/11). (3.4)

In particular,
πG(U(α,D)) ≤ exp(−(log n)1/11). (3.5)

Proof. Let S = S(α,D) and U = U(α,D). By Lemma 3.2(2), all sets S ∈ S must be
α-thin or α−1-loaded. By (S1) and (S2), for each (log n)1/5 ≤ k ≤ (1− β)n, the number of
α-thin or α−1-loaded sets of size k in G is less than 2n exp(−

√
k). Moreover, as stated in

Remark 3.3, there are no α-thin or α−1-loaded sets of size k ≥ (log n)2. Thus,

|S| < 2n

(logn)2∑
k=(logn)1/5

e−
√
k ≤ 2n(log n)2e−(logn)

1/10

. (3.6)

EJP 29 (2024), paper 26.
Page 13/25

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1091
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Speeding up random walk mixing by starting from a uniform vertex

Therefore, by the definition of U , the bound on the size of the largest S ∈ S, and assuming
n is sufficiently large, we conclude that

|U | ≤
∑
S∈S
|S| ≤ |S|(log n)2 < 2n(log n)4e−(logn)

1/10

≤ ne−(logn)
1/11

.

We now turn our attention to (3.4). By the definition of U , we have that

degG(U) ≤
∑
S∈S

degG(S),

and using Lemma 3.2(1) this simplifies to

degG(U) ≤
∑
S∈S

4eG(S).

Now, for each S ∈ S, let b(S) be some G-connected set such that (log n)2 ≤ |b(S)| ≤
(log n)3 and S ⊆ b(S). Note that this is possible because G is connected and every S ∈ S
has size less than (log n)2. By (S2) and the bounds on |b(S)|, for each S ∈ S we have that

eG(b(S)) ≤ α−1|b(S)| ≤ α−1(log n)3.

Therefore, using (3.6) and for n sufficiently large,

degG(U) ≤
∑
S∈S

4eG(S) ≤
∑
S∈S

4eG(b(S)) ≤ 4α−1(log n)3|S| ≤ ne−(logn)
1/11

.

In particular, since G is connected (so e(G) ≥ n/2), it follows from (2.3) that

πG(U) =
degG(U)

2e(G)
≤ e−(logn)

1/11

.

3.3 Stationary distributions

Let α > 0 and D > 0 be given, let G be some n-vertex graph, and consider the
set U = U(α,D). We now define G∗ = G∗(α,D) to be the multigraph obtained by
contracting all the connected components of G[U ] to single vertices. To be more precise,
let U = U1 ∪ . . . ∪ Ut be a partition of U into sets each of which induces a connected
component in G[U ] and let U∗ := {u1, . . . , ut} be a set of t new vertices. Then, let
V (G∗) = (V (G) \ U) ∪ U∗ and, for each x ∈ V (G), let

f(x) =

{
x if x /∈ U,
ui if x ∈ Ui ⊆ U.

(3.7)

In particular, f(U) = U∗. Finally, we define the multiset

E(G∗) := {f(x)f(y) : xy ∈ E(G), f(x) 6= f(y)}.

Observe that G∗ is connected if and only if G is connected, and that U∗ must be an
independent set in G∗.

Given some connected graph G, we want to compare the behaviour of the lazy random
walk on G and its contracted form G∗. In particular, we wish to compare their stationary
distributions. In order to do this, we need to make them comparable by having them
on the same state space. Let us describe this in full generality. Let H1 = (V1, E1) and
H2 = (V2, E2) be two connected multigraphs (possibly with V1 ∩V2 6= ∅). Then, we define
an auxiliary multigraph H := H1 ∪ H2 = (V1 ∪ V2, E1 ∪ E2) as the union of H1 and H2.
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Given the stationary distributions πH1
and πH2

, we define two distributions σ1 and σ2 on
H, where, for each v ∈ V (H),

σ1(v) =

{
πH1

(v) if v ∈ V1,
0 otherwise;

σ2(v) =

{
πH2

(v) if v ∈ V2,
0 otherwise.

(3.8)

For the sake of notation, for any vertex v ∈ V (H) \ V1 we set degH1
(v) = 0 and, similarly,

for any v ∈ V (H) \ V2 we set degH2
(v) = 0. With this setup, we abuse notation slightly

and write dTV(πH1
, πH2

) for dTV(σ1, σ2).

Lemma 3.5. Let D ≥ 1 and 0 < α < 1/D2. Let G be an n-vertex connected graph which
satisfies (S1) and (S2). If n is sufficiently large, we have that

dTV(πG, πG∗) ≤ exp(−(log n)1/12).

Proof. Let U = U(α,D), and let U∗ = f(U) ⊆ V (G∗). We also fix G̃ := G ∪G∗, and recall
the distributions defined in (3.8). Observe that∑

v∈V (G̃)

|degG(v)− degG∗(v)| =
∑
v∈U

degG(v) +
∑
v∈U∗

degG∗(v) ≤ 2 degG(U). (3.9)

The equality uses the fact that, for all v ∈ V (G) \ U , we have degG(v) = degG∗(v). In the
inequality, we simply note that

∑
v∈U degG(v) = degG(U) by definition and that, by the

definition of G∗, this gives an upper bound for the second sum. Moreover, from (1.1) and
the triangle inequality we have

dTV(πG, πG∗) =
1

2

∑
v∈V (G̃)

∣∣∣∣degG(v)

2e(G)
− degG∗(v)

2e(G∗)

∣∣∣∣
≤ 1

2

∑
v∈V (G̃)

(∣∣∣∣degG(v)− degG∗(v)

2e(G)

∣∣∣∣+

∣∣∣∣degG∗(v)

2e(G)
− degG∗(v)

2e(G∗)

∣∣∣∣) . (3.10)

The second term in the sum can be evaluated as∑
v∈V (G̃)

∣∣∣∣degG∗(v)

2e(G)
− degG∗(v)

2e(G∗)

∣∣∣∣ =
∑

v∈V (G̃)

e(G)− e(G∗)
2e(G)e(G∗)

degG∗(v)

=
e(G)− e(G∗)

e(G)

=
1

2e(G)

∑
v∈V (G̃)

(degG(v)− degG∗(v))

≤ 1

2e(G)

∑
v∈V (G̃)

|degG(v)− degG∗(v)|.

Introducing this in (3.10) together with (3.9) and using Lemma 3.4 and that e(G) ≥ n/2,
we conclude that

dTV(πG, πG∗) ≤
∑

v∈V (G̃)

∣∣∣∣degG(v)− degG∗(v)

2e(G)

∣∣∣∣ ≤ degG(U)

e(G)
≤ exp(−(log n)1/12).
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3.4 Mixing time after contractions

The following result shows the mixing properties of contracted spreader graphs.

Proposition 3.6. For all D ≥ 4, 0 < α < 1/D2 and ε > 0, there exists a C > 0 such
that the following holds for all n sufficiently large. Suppose G is an n-vertex connected
(α,D)-spreader graph. Then,

tmix(G∗(α,D), ε) ≤ C log n.

In order to prove Proposition 3.6, we will rely on the following lemma.

Lemma 3.7. For all D ≥ 4 and 0 < α < β = 1/D2, the following holds for all n suffi-
ciently large. Suppose G is an n-vertex connected (α,D)-spreader graph. Then, taking
G∗ = G∗(α,D), for all G∗-connected S∗ ⊆ V (G∗) such that (log n)1/2/n ≤ πG∗(S∗) ≤ 1/2

we have that ΦG∗(S∗) ≥ α2/8.

Proof. Let U := U(α,D) and γ := α2/4. Recall our definition of f : V (G) → V (G∗)

from (3.7). The proof will make use of the following claim.

Claim 3.8. Any G∗-connected set S∗ ⊆ V (G∗) with |S∗| ≥ 2 and such that (log n)1/5 ≤
|f−1(S∗)| ≤ (1− β)n is γ-good in G∗.

Proof. Take any such S∗ ⊆ V (G∗) and let S := f−1(S∗) = {v ∈ V (G) : f(v) ∈ S∗}. Note
that S must be G-connected. We claim that the bounds on |S| imply that it must be γ-good
in G. Indeed, if S was γ-bad in G, it would be a G-connected subset of U (recall (3.1)
and (3.2)) and so would be mapped by f to a single vertex. As f is surjective and |S∗| ≥ 2,
this is clearly not possible. It also follows from the definition of G∗ that eG(S) ≥ eG∗(S∗)

and |∂G(S)| = |∂G∗(S∗)|. Therefore,

|∂G∗(S∗)|
degG∗(S∗)

=
|∂G∗(S∗)|

2eG∗(S∗) + |∂G∗(S∗)|
=

|∂G(S)|
2eG∗(S∗) + |∂G(S)|

≥ |∂G(S)|
2eG(S) + |∂G(S)|

≥ γ,

and so S∗ is γ-good in G∗. J

We will also need the fact that none of the sets from the statement are too large.

Claim 3.9. Let S∗ ⊆ V (G∗) be a G∗-connected set such that πG∗(S∗) ≤ 1/2. Then,
|S∗| ≤ (1− 2β)n.

Proof. Assume for a contradiction that there is such a set with |S∗| > (1− 2β)n. Letting
S̄∗ := V (G∗)\S∗, we have that πG∗(S∗)+πG∗(S̄∗) = 1 and |∂G∗(S∗)| = |∂G∗(S̄∗)|, implying
that

eG∗(S̄∗) ≥ eG∗(S∗) ≥ |S∗| − 1 ≥ (1− 3β)n > 3n/4,

where we used here that S∗ is G∗-connected and the fact that β = 1/D2 ≤ 1/16. Let
T ⊆ V (G) be some set of size 3βn such that f−1(S̄∗) ⊆ T , noting that this is possible
since, by Lemma 3.4, we have |f−1(S̄∗)| ≤ |S̄∗|+ |U | ≤ 3βn. Now, by (S3), we have that
eG∗(S̄∗) ≤ eG(T ) ≤ D|T | ≤ 3Dβn ≤ 3n/4, a contradiction, where we again appealed to
the facts that β = 1/D2 and D ≥ 4. J

Now suppose that there exists some G∗-connected set S∗ ⊆ V (G∗) with (log n)1/2/n ≤
πG∗(S∗) ≤ 1/2 and ΦG∗(S∗) < α2/8. By the bound on the conductance, it follows
from (2.6) that S∗ is γ-bad in G∗ and so, by Lemma 3.2(1), we have |∂G∗(S∗)| ≤ 2eG∗(S∗).
This implies that

4eG∗(S∗) ≥ degG∗(S∗) = πG∗(S∗) · 2e(G∗)

≥ (log n)1/2

n
2e(G∗)
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≥ (log n)1/2(2e(G)− degG(U))

n

≥ (log n)1/2

2
, (3.11)

where in the last inequality we used the fact that degG(U) = o(n) from Lemma 3.4 and
the fact that e(G) ≥ n/2 as G is connected.

Observe that, since γ < 1 and G∗ is connected, no set S∗ ⊆ V (G∗) with |S∗| = 1 can
be γ-bad, so we must have |S∗| ≥ 2. Then, Claim 3.8 implies that S := f−1(S∗) has size
|S| < (log n)1/5 or |S| > (1 − β)n. If |S| > (1 − β)n, then |S∗| ≥ |S| − |U | > (1 − 2β)n

(again by Lemma 3.4), and we know this cannot happen by Claim 3.9, so we must have
|S| < (log n)1/5. As, trivially, any vertex set S′ ⊆ V (G) has eG(S′) ≤ |S′|2, we have that
eG∗(S∗) ≤ eG(S) ≤ (log n)2/5. This contradicts (3.11).

With this, we can prove Proposition 3.6.

Proof of Proposition 3.6. Let G∗ := G∗(α,D). Observe that (S3) implies e(G∗) ≤ e(G) ≤
Dn. By Lemma 3.7, for any G∗-connected set S∗ ⊆ V (G∗) with (log n)1/2/n ≤ πG∗(S∗) ≤
1/2 we have ΦG∗(S∗) ≥ α2/8. Consider now any G∗-connected set S∗ ⊆ V (G∗) with
πG∗(S∗) ≤ (log n)1/2/n (in particular, S∗ 6= V (G∗)). The fact that G∗ is connected
together with (2.4) and (2.5) ensures that

ΦG∗(S∗) ≥ |∂G∗(S∗)|
4e(G∗) · πG∗(S∗)

≥ 1

4DnπG∗(S∗)
.

Let J denote the set of indices j ≥ 1 such that 2−j ≤ (log n)1/2/n, and note that
min(J) ≤ log n. It then follows that

dlog2 πmin(G
∗)−1e∑

j=1

Φ−2G∗(2−j) ≤ log n · 64

α4
+
∑
j∈J

2−2j(4Dn)2

≤ log n · 64

α4
+ 2 max

j∈J
{2−2j} · 16D2n2 ≤

(
64

α4
+ 32D2

)
log n,

where in the last inequality we use the definition of J . By Theorem 2.1 we have

tmix(G∗) ≤ C0

(
64

α4
+ 32D2

)
log n,

where C0 is some absolute constant. Since the total variation distance decreases
exponentially fast after the mixing time (see, e.g., [33, section 4.5]), we get

tmix(G∗, ε) ≤ C0

(
64

α4
+ 32D2

)
dlog2(1/ε)e log n,

and the proposition holds by taking C appropriately.

3.5 Hitting time of bad vertices

Let D ≥ 4 and 0 < α < 1/D2 and consider a connected (α,D)-spreader graph G. We
now wish to study the hitting time to the set of bad vertices U(α,D) in G and show that
a.a.s. it is not too small.

Lemma 3.10. Let D ≥ 4 and 0 < α < 1/D2. Let G be an n-vertex connected (α,D)-
spreader graph, and let U = U(α,D). Then,

1

n

∑
v∈V (G)\U

P[τG(µv0, U) ≤ (log n)2] = o(1).
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Proof. In this proof we will use a new auxiliary multigraph Ĝ. Let us introduce it here.
Consider the multigraph G∗ = G∗(α,D), and let U∗ := f(U) ⊆ V (G∗). Recall that the
definition of U∗ implies that it is an independent set in G∗. Now, Ĝ is obtained from
G∗ by contracting U∗ to a single new vertex u∗. The fact that U∗ is an independent
set in G∗ guarantees that e(G∗) = e(Ĝ), and since vertices outside U∗ do not see their
degree changed by this operation, it follows that πĜ(v) = πG∗(v) for all v ∈ V (G) \U and
πĜ(u∗) = πG∗(U∗).

Let (Xt)t≥0 and (X̂t)t≥0 denote lazy random walks on G and Ĝ starting on some
vertex v ∈ V (G) \ U . Let us denote τvU := τG(µv0, U) and τ̂vu∗ := τĜ(µv0, u

∗). Define the

natural coupling (Xt, X̂t)t≥0 as follows: for any t ≥ 1, while Xt /∈ U , let X̂t = Xt; if there
is a t ≥ 1 such that Xt ∈ U , then for the smallest such t we let X̂t = u∗; otherwise (that
is, for all t > τvU ), we let Xt and X̂t evolve independently. Observe that this is indeed a
valid coupling since for all v ∈ V (G) \ U we have eG(v, U) = eĜ(v, u∗). With this natural

coupling, conditional on τvU > t, we have Xt = X̂t and so τvU = τ̂vu∗ ; in particular, for any
T0 ≥ 0 we have

P[τvU > T0] = P[τ̂vu∗ > T0]. (3.12)

We will study the hitting times τ̂vu∗ using Theorem 2.2 on Ĝ with T = T (n) = (log n)6

and c = 3. We start with the following claim (which we make no efforts to optimise).

Claim 3.11. We have that tmix(Ĝ) ≤ (log n)4.

Proof. First we prove that, for any Ĝ-connected set Ŝ ⊆ V (Ĝ) such that πĜ(Ŝ) ≤ 1/2, we

have that ΦĜ(Ŝ) ≥ 1/(2 log n). Indeed, fix such an Ŝ and define S∗ ⊆ V (G∗) as

S∗ =

{
Ŝ if u∗ /∈ Ŝ,
(Ŝ \ {u∗}) ∪ U∗ if u∗ ∈ Ŝ.

Further, let S∗ = S1 ∪ . . . ∪ Sr for some r ∈ N be a decomposition of S∗ into G∗-
connected components (note that r = 1 if u∗ /∈ Ŝ). Now, as degĜ(Ŝ) = degG∗(S∗)

and e(Ĝ) = e(G∗), we have that πG∗(S∗) ≤ 1/2 and hence π(Si) ≤ 1/2 for all i ∈ [r].
Moreover, as U∗ is an independent set in G∗, we have that |∂Ĝ(Ŝ)| =

∑r
i=1 |∂G∗(Si)| and

degĜ(Ŝ) =
∑r
i=1 degG∗(Si).

Returning to analyse the conductance of Ŝ, from (2.6), we have that

ΦĜ(Ŝ) ≥
|∂Ĝ(Ŝ)|

2 degĜ(Ŝ)
=

∑r
i=1 |∂G∗(Si)|

2
∑r
i=1 degG∗(Si)

≥ 1

2
min
i∈[r]

|∂G∗(Si)|
degG∗(Si)

=
|∂G∗(Si0)|

2 degG∗(Si0)
, (3.13)

letting i0 ∈ [r] be a minimising index. If degG∗(Si0) ≤ log n, then we are done due to
the fact that |∂G∗(Si0)| ≥ 1 as G∗ is connected. If degG∗(Si0) > log n, then πG∗(Si0) =

degG∗(Si0)/(2e(G∗)) ≥ (log n)1/2/n, using that e(G∗) ≤ e(G) ≤ Dn from (S3). Therefore,
using (2.6) and (3.13), we have that

ΦĜ(Ŝ) ≥ |∂G∗(Si0)|
2 degG∗(Si0)

=
ΦG∗(Si0) degG∗(V (G∗) \ Si0)

2e(G∗)
≥ ΦG∗(Si0)

2
≥ α2

16
,

where we used Lemma 3.7 in last inequality and the fact that πG∗(Si0) = 1−πG∗(V (G∗) \
Si0) ≤ 1/2 in the penultimate inequality.

So we have established that ΦĜ(Ŝ) ≥ 1/(2 log n) for all Ĝ-connected sets Ŝ with

πĜ(Ŝ) ≤ 1/2. Now notice that πmin(Ĝ) ≥ 1/(2e(Ĝ)) ≥ 1/(2Dn) due to (S3), and hence,
when applying Theorem 2.1, there are logarithmically many terms in the sum. This
establishes the desired upper bound on tmix(Ĝ). J
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Using (1.1) and Claim 3.11 and as the total variation distance decreases exponentially
fast after the mixing time (see, e.g., [33, section 4.5]), we have

max
x,y∈V (Ĝ)

|µx0PTĜ (y)− πĜ(y)| ≤ 2 max
x∈V (Ĝ)

dTV(µx0P
T
Ĝ
, πĜ) = o(n−3)

and (HP1) is satisfied.
Let us now prove that πĜ(u∗) is small. By Remark 2.3, to prove our statement it

suffices to have (HP2′) for u = u∗. By Lemma 3.4 (3.5), πG(U) = o((log n)−6). Moreover,
as mentioned earlier, πĜ(u∗) = πG∗(U∗). By Lemma 3.5, we have that

πĜ(u∗) = πG(U) +O(dTV(πG, πG∗)) = o((log n)−6). (3.14)

It follows that T · πĜ(u∗) = o(1) and (HP2′) holds.

Finally, since G is a connected (α,D)-spreader graph with D fixed and α < 1, Ĝ
is a connected multigraph with e(Ĝ) ≤ e(G) ≤ Dn, by (S3). It follows by (2.2) that
πmin(Ĝ) ≥ 1/2e(Ĝ) = ω(n−2) and (HP3) is satisfied.

Now, recalling the relevant definitions from Theorem 2.2 and letting T0 := d(log n)2e,
as n goes to infinity we have

λT0
u∗ =

(
1− (1 + o(1))

πĜ(u∗)

RT (u∗)

)T0

≥ 1− (1 + o(1))
T0πĜ(u∗)

RT (u∗)
= 1− o(1),

where we used (1 − x)T0 ≥ 1 − T0x, (3.14) and RT (u∗) ≥ 1. Therefore, appealing to
Remark 2.4, we have that

1

n

∑
v∈V (G)\U

P[τ̂vu∗ ≤ T0] ≤ 1

|V (Ĝ)|

∑
v∈V (G)\U

P[τ̂vu∗ ≤ T0]

≤ 1

|V (Ĝ)|

∑
v∈V (Ĝ)

P[τ̂vu∗ ≤ T0] = o(1).

Together with (3.12), this completes the proof of the lemma.

3.6 Proof of the main theorem

We are finally ready to prove Theorem 1.5.

Proof of Theorem 1.5. Let U = U(α,D) and G∗ = G∗(α,D). Let (Xt)t≥0 and (X∗t )t≥0
denote lazy random walks on G and G∗, respectively. For x ∈ V (G), let τxU := τG(µx0 , U).
Similarly as in the proof of Lemma 3.10, we consider a natural coupling (Xt, X

∗
t )t≥0 of

the random walks so that for t < τU we let X∗t = Xt and otherwise we let the walks
evolve independently.

First, observe that, by Lemma 3.5 and the triangle inequality (and adopting the abuse
of notation introduced in Section 3.3), for any x ∈ V (G) we have

dTV(µx0P
t
G, πG) ≤ dTV(µx0P

t
G, πG∗) + dTV(πG, πG∗) = dTV(µx0P

t
G, πG∗) + o(1). (3.15)

For every x ∈ V (G) \ U and y ∈ V (G), we can write

µx0P
t
G(y) = P[Xt = y | X0 = x]

= P[Xt = y, τU > t | X0 = x] + P[Xt = y, τU ≤ t | X0 = x]

= P[X∗t = y, τU > t | X0 = x] + P[Xt = y, τU ≤ t | X0 = x]

≤ µx0P tG∗(y) + P[Xt = y, τU ≤ t | X0 = x],
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where we let µx0P
t
G∗(y) = 0 if y ∈ U . Let A := {y ∈ V (G) : µx0P

t
G(y) ≥ πG∗(y)}. It follows

that

dTV(µx0P
t
G, πG∗) =

∑
y∈A

(µx0P
t
G(y)− πG∗(y))

≤
∑
y∈A

(µx0P
t
G∗(y)− πG∗(y)) +

∑
y∈A

P[Xt = y, τU ≤ t | X0 = x]

≤ dTV(µx0P
t
G∗ , πG∗) + P[τxU ≤ t]. (3.16)

Let C > 0 be the constant given by Proposition 3.6 with ε/2 playing the role of ε, and
let T0 := dC log ne. By Proposition 3.6, we have that dTV(µx0P

T0

G∗ , πG∗) ≤ ε/2. Combining
these bounds with (3.15) and (3.16), we obtain for all x ∈ V (G) \ U that

dTV(µx0P
T0

G , πG) ≤ ε/2 + P[τxU ≤ T0] + o(1).

By Lemma 3.4 (3.3) and Lemma 3.10, we conclude that

1

n

∑
x∈V (G)

dTV(µx0P
T0

G , πG) ≤ |U |
n

+
n− |U |
n

(ε
2

+ o(1)
)

+
1

n

∑
x∈V (G)\U

P[τxU ≤ T0] ≤ ε

and t̄mix(G, ε) ≤ T0, concluding the proof.

4 Smoothed analysis on connected graphs

We next want to show applications of Theorem 1.5. We use this section to prove
Theorem 1.6.

Proof of Theorem 1.6. Let D := 2(∆ + 1 + δ) and 0 < α < δ/D2 be a sufficiently small
constant. If G′ is a connected (α,D)-spreader graph, the statement follows from The-
orem 1.5. Since G′ is connected by assumption, it suffices to show that a.a.s. G′ is an
(α,D)-spreader graph.

We need to verify that (S1), (S2) and (S3) hold a.a.s. in G′ = G ∪R. The fact that (S2)

and (S3) hold a.a.s. follows directly from the fact that G is ∆-degenerate and that
e(R[S]) < max{2, 2δ}|S| for all S ⊆ V (R) (see, for example, [31, Lemma 8]). The fact that
property (S1) holds a.a.s. in G′ follows from the proof of [31, Theorem 3]. Indeed, for
each (log n)1/5 ≤ k ≤ (1− 1/D2)n, let Xk denote the number of G′-connected α-thin sets
S ⊆ V (G) with |S| = k. Then (see [31, eq. (4)] and the claim immediately after), one can
check that the expected number of such sets satisfies

E[Xk] ≤
αk∑
m=1

αk∑
b=m

nm exp (Cα log(1/α)k)

(
δ

n

)m−1
P

[
Bin

(
k(n− k),

δ

n

)
< αk

]
,

where C is some absolute constant. Following again the proof in [31] and choosing α

sufficiently small and n sufficiently large, one concludes that

E[Xk] ≤ k2n exp

((
Cα log(1/α)− δ

8D2

)
k

)
≤ n exp

(
− δ

20D2
k

)
.

Property (S1) then follows by Markov’s inequality and a union bound over all (log n)1/5 ≤
k ≤ (1− 1/D2)n.
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5 Random subgraphs of expanders

In order to prove Theorem 1.9, we will rely on several known properties of the giant
component of a random subgraph of an (n, d, λ)-graph. Recall from Section 2.1 that
when we refer to asymptotic statements holding in an (n, d, λ)-graph, implicitly what
is meant is that the statement holds for any sequence (Gn)n≥1 of (n, d, λ)-graphs that
satisfy the stated condition.

Lemma 5.1. Let δ > 0 be a sufficiently small constant and let G be an (n, d, λ)-graph
with λ ≤ δ4d. Let p = (1 + δ)/d and let L1 be a largest component in Gp. Then, a.a.s. the
following properties hold:

(a) L1 has (1 + o(1))(2δ + g(δ))n vertices, where g(δ) = o(δ) as δ tends to 0.

(b) There exists some absolute constant c > 0 such that, for any Gp-connected S ⊆
V (L1) with 16 log n/δ2 ≤ |S| ≤ δ2n/50, we have that

|∂Gp(S)| ≥ cδ2|S|
log(1/δ)

.

(c) There exists some absolute constant c′ > 0 such that, for any S ⊆ V (L1) with
δ2n/50 ≤ |S| ≤ 12δn/11, we have that

|∂Gp
(S)| ≥ c′δ2|S|

log(1/δ)
.

Proof. Statement (a) follows from [25, Theorem 1]; see also the discussion following [17,
Theorem 1.1]. Statement (b) is a consequence of [17, Theorem 1 (1)], while (c) is given
in [17, Theorem 2].

With this, we can prove Theorem 1.9.

Proof of Theorem 1.9. Let L1 := L1(Gp). Fix D := 12, c0 := min{c, c′} (where c and c′

are the absolute constants from Lemma 5.1(b) and (c)) and α := c0δ
2/(D2 log(1/δ)). By

Theorem 1.5, it suffices to show that a.a.s. L1 is an (α,D)-spreader graph. That is, we
need to show that (for sufficiently small δ > 0) a.a.s. L1 satisfies properties (S1)–(S3).

We are first going to show that (S1) and (S2) hold a.a.s. in Gp, rather than L1, for
sets of size at least (log n)1/6. Similarly as happened in the proof of Theorem 1.6, in this
case properties (S1) (for |S| ≤ δ2n/50) and (S2) can be obtained by following the proofs
of [17, Theorem 1 (1)] and [17, Lemma 2.4], respectively. Let us give here a brief sketch.
Let us first consider (S1) (for |S| ≤ δ2n/50). For each (log n)1/6 ≤ k ≤ δ2n/50, let Xk

denote the number of Gp-connected sets S ⊆ V (G) with |S| = k which are α-thin. Then,
following [17, Theorem 1 (1)], we have E[Xk] ≤ 3n exp(−δ2k/8). By Markov’s inequality
and a union bound over all (log n)1/6 ≤ k ≤ δ2n/50, we conclude that a.a.s.

(d) for all (log n)1/6 ≤ k ≤ δ2n/50, the number of Gp-connected α-thin sets S ⊆ V (G)

with |S| = k is less than ne−
√
k.

Similarly, for each k ≥ (log n)1/6, one can check from the proof of [17, Lemma 2.4] that,
if we let Yk denote the number of Gp-connected sets S ⊆ V (G) with |S| = k such that
eGp

(S) ≥ 10k, then E[Yk] ≤ n exp(−2k). Again by Markov’s inequality and a union bound
over all k ≥ (log n)1/6, we conclude that a.a.s.

(e) for all (log n)1/6 ≤ k ≤ n, the number of Gp-connected α−1-loaded sets S ⊆ V (G)

with |S| = k is less than ne−
√
k.
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We next work towards property (S3). We are going to show that no set S ⊆ V (G)

with |S| ≥ δαn is D-loaded in Gp. Fix some δαn ≤ k ≤ n and let η := k/n. If δ > 0 is
sufficiently small, we have that δ4 < αδ ≤ η. Now, by the expander mixing lemma (see,
for example, [17, Lemma 2.1]), for any set S ⊆ V (G) with |S| = k = ηn we have that

eG(S) ≤ dk2

n
+ λk ≤ (η + δ4)dk ≤ 2ηdk,

using that λ ≤ δ4d. Hence, the probability that S contains Dk edges in Gp is at most(
2ηdk

Dk

)
pDk ≤

(
2ηde

D

)Dk (
1 + δ

d

)Dk
≤
(

6η

D

)Dk
.

Taking a union bound over all possible sets of size k, we have that the probability of
there existing a D-loaded set of size k in Gp is at most

(
n

k

)(
6η

D

)Dk
≤
(ne

k

)k (6η

D

)Dk
=

(
e

η

(
6η

D

)D)k
=

(
eηD−1

(
1

2

)D)k
≤
(

1

2

)αδn
.

By a union bound over all αδn ≤ k ≤ n we conclude that a.a.s.

(f) no set S ⊆ V (G) with |S| ≥ δαn is D-loaded in Gp.

Condition on the event that Lemma 5.1(a) and (c) as well as (d), (e) and (f) hold in
Gp, which a.a.s. occurs. Let n′ := |V (L1)| = (1 + o(1))(2δ + g(δ))n by (a). It follows that
(log n′)1/5 ≥ (log n)1/6 and so, by (d), (S1) holds in L1 for sets of size at most δ2n/50;
similarly, (S2) holds by (e), and (S3) holds by (f). Thus, it only remains to establish (S1)

for sets S ⊆ V (L1) such that δ2n/50 ≤ |S| ≤ (1 − 1/D2)n′. For δ2n/50 ≤ |S| ≤ 12δn/11,
this is immediate from (c), and we can also use (c) for larger sets S. Indeed, suppose
12δn/11 ≤ |S| ≤ (1 − 1/D2)n′ and let S̄ := V (L1) \ S. It follows from (a), by taking a
sufficiently small δ, that

|S̄| = |L1| − |S| ≤ n′ −
12

11
δn <

n′

2
≤ 12

11
δn,

where in the last two inequalities we use that δ
2δ+g(δ) tends to 1/2 as δ tends to 0 due to

the fact that g(δ) = o(δ). We also have that |S̄| ≥ n′/D2 ≥ |S|/D2 ≥ δ2n/50, using also
here that δ is sufficiently small. Hence, we can apply (c) to S̄ and we obtain that

|∂L1(S)| = |∂L1(S̄)| ≥ c′δ2|S̄|
log(1/δ)

≥ c′δ2|S|
D2 log(1/δ)

≥ α|S|.

6 Open problems

Theorem 1.5 is only effective on graphs where the mixing is slowed down by few
small bottlenecks. This is the case in the two applications presented. Nevertheless, there
are other cases where both small and large bottlenecks exist. It would be interesting to
study average-case mixing times in such scenarios and determine which improvement
with respect to the worst-case can be attained. One such example is the small-world
model of Kleinberg [30], whose mixing time has been studied in [20].

In recent years, the theory of random walks in random directed graphs has attracted
a considerable amount of attention. As in the case of random regular graphs, under
mild conditions on the bidegree sequence, the mixing time is logarithmic [9, 12]. From
the point of view of smoothed analysis, a natural question is whether randomly per-
turbing a deterministic strongly connected digraph can yield logarithmic mixing time.
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Conductance-based bounds such as Jerrum-Sinclair and Fountoulakis-Reed are not valid
in the non-reversible setting, which requires new ideas. Finally, we mention an analo-
gous result to the mixing time in randomly perturbed connected graphs by Krivelevich,
Reichman and Samotij [31], for graphs perturbed by a random perfect matching, has
been obtained by Hermon, Sly and Sousi [27]. Considering such a model in the directed
setting would also be interesting.
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[21] P. Erdős and A. Rényi. On the evolution of random graphs. Publ. Math. Inst. Hung. Acad. Sci.,
Ser. A, 5(1):17–60, 1960. MR0125031

[22] U. Feige. Refuting smoothed 3CNF formulas. In 48th Annual IEEE Symposium on Foundations
of Computer Science, FOCS ‘07, pages 407–417, Providence, RI, USA, 2007. Institute of
Electrical and Electronics Engineers, doi: 10.1109/FOCS.2007.16.

[23] N. Fountoulakis and B. A. Reed. Faster mixing and small bottlenecks. Probab. Theory Related
Fields, 137(3-4):475–486, 2007, doi: 10.1007/s00440-006-0003-8. MR2278465

[24] N. Fountoulakis and B. A. Reed. The evolution of the mixing rate of a simple random walk on
the giant component of a random graph. Random Struct. Algorithms, 33(1):68–86, 2008, doi:
10.1002/rsa.20210. MR2428978

[25] A. Frieze, M. Krivelevich, and R. Martin. The emergence of a giant component in random
subgraphs of pseudo-random graphs. Random Struct. Algorithms, 24(1):42–50, 2004, doi:
10.1002/rsa.10100. MR2020308

[26] J. Han, P. Morris, and A. Treglown. Tilings in randomly perturbed graphs: bridging the gap
between Hajnal-Szemerédi and Johansson-Kahn-Vu. Random Struct. Algorithms, 58(3):480–
516, 2021, doi: 10.1002/rsa.20981. MR4234994

[27] J. Hermon, A. Sly, and P. Sousi. Universality of cutoff for graphs with an added random
matching. Ann. Probab., 50(1):203–240, 2022, doi: 10.1214/21-AOP1532. MR4385126

[28] M. Jerrum and A. Sinclair. Conductance and the rapid mixing property for markov chains:
the approximation of permanent resolved. In Proceedings of the Twentieth Annual ACM
Symposium on Theory of Computing, STOC ‘88, pages 235–244, New York, NY, USA, 1988.
Association for Computing Machinery, doi: 10.1145/62212.62234. MR1025467

[29] A. T. Kalai, A. Samorodnitsky, and S.-H. Teng. Learning and smoothed analysis. In 50th Annual
IEEE Symposium on Foundations of Computer Science, FOCS ‘09, pages 395–404, Atlanta,
GA, USA, 2009. Institute of Electrical and Electronics Engineers, doi: 10.1109/FOCS.2009.60.
MR2648420

[30] J. Kleinberg. The small-world phenomenon: An algorithmic perspective. In Proceed-
ings of the Thirty-Second Annual ACM Symposium on Theory of Computing, STOC ‘00,
pages 163–170, New York, NY, USA, 2000. Association for Computing Machinery, doi:
10.1145/335305.335325. MR2114529

[31] M. Krivelevich, D. Reichman, and W. Samotij. Smoothed analysis on connected graphs. SIAM
J. Discrete Math., 29(3):1654–1669, 2015, doi: 10.1137/151002496. MR3395121

[32] M. Krivelevich and B. Sudakov. Pseudo-random graphs. In More sets, graphs and numbers,
pages 199–262. Springer, 2006, doi: 10.1007/978-3-540-32439-3_10. MR2223394

[33] D. A. Levin, Y. Peres, and E. L. Wilmer. Markov chains and mixing times. American Mathemat-
ical Society, Providence, RI, 2009, doi: 10.1090/mbk/058. With a chapter by James G. Propp
and David B. Wilson. MR2466937

[34] E. Lubetzky and A. Sly. Cutoff phenomena for random walks on random regular graphs. Duke
Math. J., 153(3):475–510, 2010, doi: 10.1215/00127094-2010-029. MR2667423

[35] F. Manzo, M. Quattropani, and E. Scoppola. A probabilistic proof of Cooper and Frieze’s
“First Visit Time Lemma”. arXiv e-prints, 2021, arXiv:2101.10748. MR4332217

[36] M. E. J. Newman and D. J. Watts. Renormalization group analysis of the small-world net-
work model. Phys. Lett., A, 263(4-6):341–346, 1999, doi: 10.1016/S0375-9601(99)00757-4.
MR1732095

[37] M. E. J. Newman and D. J. Watts. Scaling and percolation in the small-world network model.
Phys. Rev. E, 60:7332–7342, 1999, doi: 10.1103/PhysRevE.60.7332.

EJP 29 (2024), paper 26.
Page 24/25

https://www.imstat.org/ejp

http://dx.doi.org/10.1145/102782.102783
https://mathscinet.ams.org/mathscinet-getitem?mr=1095916
http://dx.doi.org/10.1145/3382208
https://mathscinet.ams.org/mathscinet-getitem?mr=4120525
https://mathscinet.ams.org/mathscinet-getitem?mr=0125031
http://dx.doi.org/10.1109/FOCS.2007.16
http://dx.doi.org/10.1007/s00440-006-0003-8
https://mathscinet.ams.org/mathscinet-getitem?mr=2278465
http://dx.doi.org/10.1002/rsa.20210
https://mathscinet.ams.org/mathscinet-getitem?mr=2428978
http://dx.doi.org/10.1002/rsa.10100
https://mathscinet.ams.org/mathscinet-getitem?mr=2020308
http://dx.doi.org/10.1002/rsa.20981
https://mathscinet.ams.org/mathscinet-getitem?mr=4234994
http://dx.doi.org/10.1214/21-AOP1532
https://mathscinet.ams.org/mathscinet-getitem?mr=4385126
http://dx.doi.org/10.1145/62212.62234
https://mathscinet.ams.org/mathscinet-getitem?mr=1025467
http://dx.doi.org/10.1109/FOCS.2009.60
https://mathscinet.ams.org/mathscinet-getitem?mr=2648420
http://dx.doi.org/10.1145/335305.335325
https://mathscinet.ams.org/mathscinet-getitem?mr=2114529
http://dx.doi.org/10.1137/151002496
https://mathscinet.ams.org/mathscinet-getitem?mr=3395121
http://dx.doi.org/10.1007/978-3-540-32439-3_10
https://mathscinet.ams.org/mathscinet-getitem?mr=2223394
http://dx.doi.org/10.1090/mbk/058
https://mathscinet.ams.org/mathscinet-getitem?mr=2466937
http://dx.doi.org/10.1215/00127094-2010-029
https://mathscinet.ams.org/mathscinet-getitem?mr=2667423
https://arXiv.org/abs/2101.10748
https://mathscinet.ams.org/mathscinet-getitem?mr=4332217
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
https://mathscinet.ams.org/mathscinet-getitem?mr=1732095
http://dx.doi.org/10.1103/PhysRevE.60.7332
https://doi.org/10.1214/24-EJP1091
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Speeding up random walk mixing by starting from a uniform vertex

[38] D. Randall. Rapidly mixing markov chains with applications in computer science and physics.
Comput. Sci. Eng., 8(2):30–41, 2006, doi: 10.1109/MCSE.2006.30.

[39] A. Sankar, D. A. Spielman, and S.-H. Teng. Smoothed analysis of the condition numbers
and growth factors of matrices. SIAM J. Matrix Anal. Appl., 28(2):446–476, 2006, doi:
10.1137/S0895479803436202. MR2255338

[40] D. A. Spielman and S.-H. Teng. Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. J. ACM, 51(3):385–463, 2004, doi: 10.1145/990308.990310.
MR2145860

[41] D. A. Spielman and S.-H. Teng. Smoothed analysis: an attempt to explain the behavior of
algorithms in practice. Commun. ACM, 52(10):76–84, 2009, doi: 10.1145/1562764.1562785.

[42] E. Vigoda. Improved bounds for sampling colorings. J. Math. Phys., 41(3):1555–1569, 2000,
doi: 10.1063/1.533196. MR1757969

[43] V. H. Vu and T. Tao. The condition number of a randomly perturbed matrix. In Proceed-
ings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, STOC ‘07,
pages 248–255, New York, NY, USA, 2007. Association for Computing Machinery, doi:
10.1145/1250790.1250828. MR2402448

Acknowledgments. The authors would like to thank Matteo Quattropani for fruitful
discussions on the First Visit Time Lemma (FVTL). They would also like to thank the
anonymous referees for their insightful comments, in particular for spotting a misuse
of the FVTL and for pointing out the non-contractivity of the average mixing time (see
Remark 1.2).

EJP 29 (2024), paper 26.
Page 25/25

https://www.imstat.org/ejp

http://dx.doi.org/10.1109/MCSE.2006.30
http://dx.doi.org/10.1137/S0895479803436202
https://mathscinet.ams.org/mathscinet-getitem?mr=2255338
http://dx.doi.org/10.1145/990308.990310
https://mathscinet.ams.org/mathscinet-getitem?mr=2145860
http://dx.doi.org/10.1145/1562764.1562785
http://dx.doi.org/10.1063/1.533196
https://mathscinet.ams.org/mathscinet-getitem?mr=1757969
http://dx.doi.org/10.1145/1250790.1250828
https://mathscinet.ams.org/mathscinet-getitem?mr=2402448
https://doi.org/10.1214/24-EJP1091
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Average mixing times
	Our results
	Application 1: Smoothed analysis on connected graphs
	Application 2: Giant components in random subgraphs of expanders
	Organisation

	Preliminaries
	Basic notation
	Random walks

	A general approach to average mixing times
	Proof overview
	Badly connected sets
	Stationary distributions
	Mixing time after contractions
	Hitting time of bad vertices
	Proof of the main theorem

	Smoothed analysis on connected graphs
	Random subgraphs of expanders
	Open problems
	References

