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A phase transition in block-weighted random maps
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Abstract

We consider the model of random planar maps of size n biased by a weight u > 0 per
2-connected block, and the closely related model of random planar quadrangulations of
size n biased by a weight u > 0 per simple component. We exhibit a phase transition at
the critical value uC = 9/5. If u < uC , a condensation phenomenon occurs: the largest
block is of size Θ(n). Moreover, for quadrangulations we show that the diameter
is of order n1/4, and the scaling limit is the Brownian sphere. When u > uC , the
largest block is of size Θ(log(n)), the scaling order for distances is n1/2, and the
scaling limit is the Brownian tree. Finally, for u = uC , the largest block is of size
Θ(n2/3), the scaling order for distances is n1/3, and the scaling limit is the stable tree
of parameter 3/2.
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1 Introduction

Models of planar maps exhibit a form of universality: many “natural” classes of
random maps exhibit a similar behaviour when the size grows to infinity. This can be
made precise by considering scaling limits: when taking an object Mn uniformly among
all objects of size n in some class, then, after an appropriate rescaling, the sequence
(Mn)n>1 converges in distribution towards some random metric space. This was first
proved for uniform quandrangulations by Miermont [52] and independently for the cases
of uniform 2q-angulations (q > 2) and uniform triangulations by Le Gall [43], following a
sequence of results on this subject [48, 21, 41, 42, 44]. Since then, these results have
been extended to other families of maps: the sequence (Mn) converges towards the
Brownian sphere Me (also called Brownian map, see Fig. 1), always with a rescaling

*ENS de Lyon, UMPA, CNRS UMR 5669, 46 allée d’Italie, 69364 Lyon Cedex 07, France.
E-mail: william.fleurat@ens-lyon.fr

†Univ Gustave Eiffel, CNRS, LIGM, F-77454 Marne-la-Vallée, France.
E-mail: zephyr.salvy@univ-eiffel.fr

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1089
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2302.01723v2
mailto:william.fleurat@ens-lyon.fr
mailto:zephyr.salvy@univ-eiffel.fr


A phase transition in block-weighted random maps

Figure 1: Approximation of the Brownian sphere by a simple quadrangulation of size
50 000, using a generator by Éric Fusy.

by cn1/4 for some model-dependent c > 0. Gromov-Hausdorff’s topology allows to make
sense of the convergence of a sequence of maps to a certain limit, considering them as
(isometry classes of) compact metric spaces. In particular, uniform planar maps also
converge towards the Brownian sphere [12], as well as other families such as uniform
triangulations and uniform 2q-angulations (q > 2) [43], uniform simple triangulations
and uniform simple quadrangulations [2], bipartite planar maps with a prescribed face-
degree sequence [49], (2q + 1)-angulations [3] and Eulerian triangulations [19].

On the other hand, “degenerate” classes of maps that “look like” trees exhibit another
universality phenomenon. In particular, upon rescaling by cn1/2, there is a convergence
to the Brownian tree T (2) (see Fig. 2), the scaling limit of critical Galton-Watson trees with
finite variance [6, 40]. This is the case for classes of maps with a tree-decomposition such
as stack triangulations [5]; classes of maps with some particular boundary conditions,
such as quadrangulations of a polygon [11], outerplanar maps [18]; or, more generally
for “subcritical” classes [59] (see [53] for the case of graphs).

Models interpolating between the Brownian tree and the circle can be obtained
by using looptrees [24]. Curien and Kortchemski considered the boundary of large
percolation clusters in the uniform infinite planar triangulation (which is the local
limit of large triangulations) where each vertex is coloured (independently) white with
probability a ∈ (0, 1) and black otherwise. They showed that if a ∈ (0, 1/2), the scaling
limit is the Brownian tree, if a ∈ (1/2, 1) it is the unit circle and if a = 1/2 it is the stable
looptree of parameter 3/2 [23], which correspond to the stable tree of parameter 3/2

(see Fig. 3) where each branching point is replaced by a circle. Richier [55] also showed
that the boundary of critical Boltzmann planar maps with face-degrees in the domain
of attraction of a stable distribution with parameter α ∈ (1, 2] exhibit a similar phase
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Figure 2: Approximation of the Brownian tree by a binary tree of size approximately
70 000.

Figure 3: Approximation of the stable tree 3/2 by a tree of size approximately 150 000.
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transition: if α ∈ (1, 3/2), the scaling limit is the stable looptree of parameter (α−1/2)−1,
and, with Kortchemski, Richier showed that it is the circle of unit length if α ∈ (3/2, 2]

and conjectured that this holds also for α = 3/2 [39]. Stefánsson and Stufler showed
that face-weighted outerplanar maps have a similar phase diagram, with looptrees the
α-stable looptree being the scaling limit when their α ∈ (1, 2), the Brownian tree when
α = 2 and the deterministic circle of unit length when α = 1 [58]. In all three cases, the
parameter of the model allows the number of cut vertices appearing on the boundary to
be adjusted, thus changing from a “round” to a “tree” phase.

Some natural models also interpolate between the Brownian sphere and the Brownian
tree. For example, consider random quadrangulations with n faces and a boundary of
length `, where `/

√
n→ σ. When σ = 0, the scaling limit is the Brownian sphere, when

σ =∞ it is the Brownian tree, and for all σ ∈ (0,∞) it is the Brownian disk with boundary
length σ [11]. Another example is random bipartite planar maps with properly normalized
face-weights, which converge towards the Brownian tree when the distribution for the
weights has expected value smaller than 1 [34], and towards the Brownian map when
the expected value is 1 and the variance is finite [49]. Moreover, when the the expected
value is 1 and the distribution is in the domain attraction of a stable law of parameter
α ∈ (1, 2), these maps converge, at least along suitable subsequences, towards a limit
which is not the Brownian sphere, and is conjectured to be the stable map of parameter
α [44].

Model. The purpose of this paper is to propose yet another model interpolating between
the Brownian sphere and the Brownian tree, but where the transition does not appear
through the boundary. It relies on a parameter tuning the density of separating elements.
In this model, a map m is sampled with a probability that depends on its number b(m)

of maximal 2-connected components, or “blocks”, for which a precise definition will be
given later in Section 2.

In fact, we will consider two probability distributions on maps, both indexed by a
parameter u > 0. The first one is a fixed size model: for any n ∈ Z>0, we define

Pn,u (m) =
ub(m)

[zn]M(z, u)
for any m ∈Mn, (1.1)

where Mn is the set of maps with n edges, M(z, u) =
∑

m∈M ub(m)z|m| =∑
n∈Z>0

([zn]M(z, u)) zn and |m| is the number of edges of m. The second one is a
Boltzmann-type distribution which samples maps with random sizes. More precisely,
write ρ(u) for the radius of convergence of z 7→M(z, u). We define1:

Pu (m) =
ub(m)

M(ρ(u), u)
ρ(u)|m| for any m ∈M. (1.2)

The qualitative properties of maps sampled according to these measures change
drastically when u varies, and we will see that it gives rise to different regimes with
a phase transition. Examples of such maps are represented on Figs. 4 to 8. In this
paper, blocks will be either maximal 2-connected components of maps, or maximal
simple components of quadrangulations. Indeed, both models have the same underlying
structure, so one study gives results for both (see Sections 2.4 and 2.5), except for some
of the scaling limit results, where some convergence results for 2-connected maps are
missing. However, our approach could be generalised to many other models with an
underlying tree structure (see Table 3), such as the ones described in [9]. In particular,
the case u = 1 corresponds to sampling a uniform map and u→ 0 to sampling a uniform
block.
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Figure 4: Map drawn according to the
subcritical model Pn,1 of size around
55 000 (see larger version in Fig. 20).

Figure 5: Map drawn according to the
subcritical model Pn,8/5 of size around
55 000 (see larger version in Fig. 21).

Figure 6: Map drawn according to the critical model Pn,9/5 of size around 80 000 (see
larger version in Fig. 22).

Figure 7: Map drawn according to the
supercritical model Pn,5/2 of size around
75 000 (see larger version in Fig. 23).

Figure 8: Map drawn according to the
supercritical model Pn,5 of size around
50 000 (see larger version in Fig. 24).
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Block decompositions have already been used in the context of scaling limits, and
some joint convergences are known: a quadrangulation, its largest 2-connected block,
and its largest simple block jointly converge to the same Brownian sphere [4].

The scaling limit of a tree-decomposed model like ours depends on the geometries of
the blocks and of the underlying decomposition tree. In our setting, one of the behaviour
always ends up dominating, but this is not always the case: Sénizergues, Stefánsson and
Stufler study situations where both geometries play a role in the scaling limit, and define
the decorated α-stable trees which are the corresponding scaling limits [57]. Our results
for the scaling limits in the critical and supercritical cases confirm their conjecture in
[57, Remark 1.1]. They build on a model introduced by Archer, which, contrary to this
work, develops the local limit point of view [7, Chapter 6]. In particular, Archer shows
that the fractal dimension of the local limit for the critical and supercritical cases are
respectively 3 and 22. Both cases correspond to what Archer called the “tree regime”,
where the local geometry of the tree is preponderant in the limit. Both articles consider
only critical offspring distributions for the trees, which does not hold in our subcritical
regime.

The model with a weight per 2-connected blocks was already analysed with a combina-
torics point of view by Bonzom [14, §8] with physical applications in mind (see [26] for a
thorough discussion). The so-called quadric model studied in his work can be specialized
to our model. Bonzom obtains rational parametrisations for the generating series, and
exhibits the possible singular behaviours, which suggest the existence of three different
regimes: a “map behaviour”, a “tree-behaviour”, and in-between a “proliferation of baby
universes”. Since his focus is much broader, he does not go into details to study this
particular model from a probabilistic point of view, and this is the main topic of the
present article. For u = 1, which corresponds to sampling maps uniformly, this model
has also been studied with the point of view of block decomposition in [9] and [1].

Results. Our results are summarized in Table 1. In Section 4, we show that, with high
probability, when u < 9/5, there is condensation with one block of size Θ(n) and all others
of size O(n2/3), see Theorem 4.2; when u > 9/5, the largest block has size Θ(log(n)),
see Theorem 4.5; and when u = 9/5 the largest block is of size Θ(n2/3), see Theorem 4.6.

Table 1: Behaviour of the model when u varies.

Largest block Scaling Scaling limit
u < 9/5 Θ(n) n1/4 Brownian sphere3 Me

u = 9/5 Θ(n2/3) n1/3 Stable tree T (3/2)

u > 9/5 Θ(log(n)) n1/2 Brownian tree T (2)

In Section 5, we give a unified proof of the convergence towards T (2), after renor-
malising distances by n1/2, in the supercritical case u > 9/5; and towards T (3/2), after
renormalising distances by n2/3, in the critical case u = uC (Theorem 5.4). For u > 9/5,
we retrieve a previous result by Stufler for more general weighted models [59]. All these
results hold for both maps and their 2-connected cores, and quadrangulations and their
simple cores. Finally, when u < 9/5, we show in Theorem 5.22 that quadrangulations

1The finiteness of M(ρ(u), u) is justified in Section 2.2.
2This uses that the diameter for uniform blocks is Θ

(
n1/4

)
, which is known for simple quadrangulations

but only assumed for 2-connected maps.
3We only prove convergence to the Brownian sphere in the case of quadrangulations and their simple blocks,

see the discussion after Proposition 5.23.
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converge towards the Brownian sphere when renormalising distances by n1/4. In the
case of quadrangulations, these results are consistent with existing literature for the
case u = 1 [52, 43, 12], as well as when u→ 0 [2]. We rely crucially on the convergence
of uniform simple quadrangulations with the same normalisation, which is proven in
[2], and recalled in Proposition 5.23 below. A similar convergence result for uniform
2-connected maps would be needed in order to prove a version of Theorem 5.22 for
maps, see the discussion after the statement of Proposition 5.23. Such a convergence
is expected to hold and hinted at for instance by Lehéricy’s results [45], which show
that graph distances on a uniform map of size n and on its quadrangulation via Tutte’s
bijection behave similarly when n→∞.

Section 2 and Theorem 3.2 introduce tools to prove these theorems. We show that
maps and quadrangulations can be decomposed into blocks with an underlying tree
structure. We show that the law of such trees can be described by a Galton-Watson
model (as in several papers cited above). From there, we exhibit in Section 3 a phase
diagram going from a condensation phenomenon (u < 9/5) to a critical “generic” regime
(u > 9/5) going through a “non-generic” critical point (u = 9/5).

2 Tree decomposition of maps

2.1 Maps and their enumeration

A planar map m is the proper embedding into the two-dimensional sphere of a
connected planar finite multigraph, considered up to homeomorphisms. Let V (m) be the
set of its vertices, E(m) the set of its edges and F (m) the set of its faces. The size of a
planar map m — denoted by |m| — is defined as its number of edges.

A half-edge e is an oriented edge from u to v (with possibly v = u) and is represented
as half of an edge starting from u. Its starting vertex u is denoted by e− and its end
vertex v is denoted e+. Let

−→
E (m) be the set of half-edges of m.

A corner is the angular sector between two consecutive edges in counterclockwise
order around a vertex. Each half-edge is canonically associated to the corner that follows
it in counterclockwise order around its starting vertex. The degree of a face is the
number of corners incident to it.

All the maps considered in this paper are rooted, meaning that one of their half-edges
(or one of their corners) is distinguished. The set of rooted planar maps — simply called
maps in the following — is denoted byM. For n in Z>0, let mn be the number of maps
of size n and M(z) =

∑
n∈Z>0

mnz
n be the associated generating series. By convention,

we set m0 = 1 which corresponds to the vertex map: the map reduced to a single vertex.
Similarly, define the edge map as the map reduced to a single edge between two vertices.

Rooting simplifies the study by avoiding symmetry problems, however we expect our
results remain true in the non-rooted setting due to the general results of [56]. The
enumerative study of rooted planar maps was initiated by Tutte in the 60s. In particular,
he obtained the following result:

Proposition 2.1 ([61]). The number mn of maps of size n is equal to

mn =
2(2n)!3n

(n+ 2)!n!
∼ 2√

π
12nn−5/2, n→∞. (2.1)

This implies in particular that ρM = 1/12 and M(ρM ) <∞, where ρM denotes the radius
of convergence of M(z).

2.2 2-connected maps and block decomposition

Definition 2.2. A map m ∈ M is said to be separable if it is possible to partition its
edge-set E(m) into two non-empty sets E and E′ such that there is exactly one vertex
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Figure 9: Example of a separable map.
The circled black dot is a cut vertex.

Figure 10: The classes B0, B1 and B2 of
2-connected maps with respectively 0, 1

and 2 edges.

Figure 11: Decomposition of a map into
blocks.

Figure 12: Pendant submap: the block
to which the half-edges uv, vu and wu

belong is in blue.

(called cut vertex) incident to both a member of E and a member of E′. The map m is
said to be 2-connected otherwise, see Fig. 9.

Note that, by definition, the vertex map is 2-connected. For n ∈ Z>0, we write Bn for
the set of 2-connected maps of size n, and bn = |Bn|. From Fig. 10, we see that b0 = 1,
b1 = 2 and b2 = 1. Contrary to Tutte [61], we choose m0 = b0 = 1 (and not m0 = b0 = 0)
and express the results accordingly. Notice in particular that the only 2-connected map
with a loop is the map reduced to a loop-edge.

Definition 2.3. A block of a planar map m is a maximal 2-connected submap of positive
size. The number of blocks of m is denoted by b(m).

In the 60’s, Tutte introduced the so-called “block decomposition of maps” [61], which
roughly speaking corresponds to cutting the map at all cut-vertices, and is illustrated
on Fig. 11 (this is known for graphs as well and called block-cut tree, see e.g. [30]).

We describe here this decomposition drawing inspiration from Addario-Berry’s pre-
sentation [1, §2]. Let m be a map and let b be the block containing its root. For each
half-edge e of b, we define the pendant submap me of e as the maximal submap of m
disjoint from b except at e− and located to the left of e (it is possibly reduced to the
vertex map). If me has at least one edge, we root it at the half-edge of m following e in
counterclockwise order around e− (see Fig. 12).

From b and the 2|E(b)| pendant submaps {me, e ∈
−→
E (b)}, it is possible to reconstruct

the map m: for each me rooted at the half-edge ρ, insert me in the corner associated
to e in such a way that ρ is the first edge after e in counterclockwise order and merge
ρ− and e−. Thus, a map can be encoded as a block where each edge is decorated by
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two maps. This decomposition induces an identity of generating series, thanks to the
symbolic method [29, Ch1]. Letting B(y) =

∑
n∈Z>0

bny
n, Tutte’s block decomposition

translates into the following equality of generating series:

M(z) = B(zM(z)2). (2.2)

Thanks to (2.2) and an explicit expansion for M(z) obtained in [60], Tutte obtained the
following enumerative results for 2-connected maps.

Proposition 2.4 ([61]). The number bn of 2-connected maps of size n is

b0 = 1, and for n > 1, bn =
2(3n− 3)!

n!(2n− 1)!
∼
√

3

π

2

27

(
27

4

)n
n−5/2, n→∞. (2.3)

Moreover, writing ρB for the radius of convergence of the series B, we have

ρB =
4

27
, B(ρB) = 4/3 and ρB ·B′(ρB) =

∑
n∈Z>0

nbnρ
n
B = 4/9. (2.4)

In the following, we consider maps enumerated by both their number of edges and
their numbers of blocks. Namely, we consider the following bivariate series: M(z, u) =∑

m∈M z|m|ub(m) (recall that b(m) is the number of blocks of m and |m| is its number of
edges). Tutte’s decomposition of a map into blocks translates in the following refined
version of (2.2):

M(z, u)− 1 = u
(
B(zM(z, u)2)− 1

)
i.e. M(z, u) = uB(zM(z, u)2) + 1− u, (2.5)

where the term 1− u accounts for the fact that the vertex map has no block by Defini-
tion 2.3 (even if it is 2-connected). For u > 0, denote by ρ(u) the radius of convergence
of z 7→M(z, u). Since for z > 0 and u > 1

M(z, u) 6
∑
m∈M

z|m|u|m| = M(uz),

if |uz| < ρM = 1/12, then M(z, u) is a converging sum. Hence, for u > 1, ρ(u) > 1
12u > 0.

On the other hand, since ρ(u) is decreasing, for u 6 1 we have ρ(u) > ρ(1) = ρM = 1/12

(and ρ(u) 6 ρ(0) = ρB = 4/27).
In view of the form of the equation (2.5) and in particular that it is non-linear,

it holds that M(ρ(u), u) < ∞. Indeed, since B(y) > 1 + 2y for all y > 0, we get
M(z, u) > 1 + 2uzM(z, u)2. This shows that it is impossible that M(z, u) −−−−−−→

z→ρ(u)−
+∞.

2.3 Block tree of a map and its applications

Tutte’s block decomposition can also be applied recursively, i.e. we consider first the
root block and then apply the block decomposition to each of the pendant submaps. By
doing so, for any map m we can obtain a decomposition tree Tm, which was first explicity
described by Addario-Berry in [1, §2]. More precisely:

1. Let b = (b, ρ) be the maximal 2-connected submap containing the root ρ. The root
vρ of Tm represents b, and has 2|E(b)| children (in particular, if b is of size 0, vρ is a
leaf);

2. List the half-edges of b as a1, . . . , a2|E(b)| according to an arbitrarily fixed determin-
istic order on half-edges (e.g. the order in a left-to-right depth first search). Let mi
be the pendant submap in the corner corresponding to the half-edge ai in b. The
i-th pendant subtree of Tm is the subtree encoding Tmi .
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Figure 13: Block tree corresponding to a planar map.

An example of such a correspondence is described in Fig. 13. This decomposition has
three essential properties, that follow directly from its definition, and that we summarize
in the following proposition.

Proposition 2.5 ([61, 1]). The block tree Tm of a map m satisfies the following proper-
ties:

• The edges of Tm correspond to the half-edges of m;

• The internal nodes of Tm correspond to the blocks of m: if an internal node v of Tm
has r children, then the corresponding block bv of m has size r/2;

• The map m is entirely determined by (Tm, (bv, v ∈ Tm)) where bv is the block of m
represented by v in Tm if v is an internal node; else, by convention, bv is the vertex
map.

By abuse of language, we might refer to (bv, v ∈ Tm) as the family of blocks (even if
blocks necessarily have positive size). A direct consequence of this proposition is that
to study the block sizes of a map m, it is sufficient to study the degree distribution of
Tm. This is precisely the strategy developed by Addario-Berry in [1]. This allows him to
study the block sizes of a uniform random map Mn of size n, by describing TMn as a
Galton-Watson tree with an explicit degree distribution conditioned to have 2n edges,
and one of our contributions is to extend his result to our model.

2.4 Block tree of a quadrangulation

We describe in this section how a quadrangulation can be decomposed into maximum
simple quadrangular components, in the same way that a map can be decomposed into
maximum 2-connected components.

Definition 2.6. A quadrangulation is a map with all faces of degree 4.

Planar quadrangulations are bipartite, i.e. their vertices can be properly bicolored in
black and white. In the following, we always assume that they are endowed with the
unique such coloring having a black root vertex. Although quadrangulations are maps,
when an object is explicitly defined as a quadrangulation, its size will be its number of
faces. Thus, a quadrangulation of size n has 2n edges.

Definition 2.7. A quadrangulation of the 2-gon is a map where the root face — the face
containing the corner associated to the root — has degree 2 and all other faces have
degree 4.

A quadrangulation of the 2-gon with at least two faces can be identified with a
quadrangulation of the sphere by simply gluing together both edges of the root face.
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Figure 14: The image of the map of Fig. 13 via Tutte’s bijection, and its block tree.

Definition 2.8. A quadrangulation is called simple if it has neither loops nor multiple
edges.

Definition 2.9. Let e1e2 be a 2-cycle of a quadrangulation q, its interior is the submap
of q between e1 and e2 (both included) which does not contain the root corner of q. A
2-cycle is maximal when it does not belong to the interior of another 2-cycle.

Definition 2.10. Let e1e2 be a maximal 2-cycle of a quadrangulation q, its pendant
subquadrangulation is defined as its interior, which is turned into a quadrangulation of
the 2-gon by rooting it at the corner incident to the unique black vertex of e1e2.

Let e be a half-edge of a quadrangulation q. If e is oriented from black to white
and there exists a half-edge f such that ef is a maximal 2-cycle of q, then the pendant
subquadrangulation of e is the pendant subquadrangulation of ef . Else, it is the edge
map (which is also a quadrangulation of the 2-gon).

For q a quadrangulation, its simple core qs — the simple block containing the root — is
obtained by collapsing the interior of every maximal 2-cycle of q. Similarly as for maps, a
decomposition tree T (q)

q can be associated to a quadrangulation q, by recursively decom-
posing the pendant subquadrangulations at the simple core, see Fig. 14. Simple blocks
are recursively defined as the simple cores appearing in the underlying arborescent
decomposition. We then have an exact parallel with the situation of maps and their
2-connected components.

Given a simple quadrangulation qs and a collection of |E(qs)| = 2|qs| quadrangulations
of the 2-gon {me, e ∈ E(qs)}, it is possible to construct a quadrangulation: for each me of
root ρe replace e by me such that ρe has the orientation e. See Fig. 15 for an illustration.
This transformation is invertible. Thus, a quadrangulation can be encoded as a simple
quadrangulation where each edge is decorated by one quadrangulation of the 2-gon, i.e.
each face is decorated by two quadrangulations of the 2-gon:

Q(z, u) + 1 = uS(z(Q(z, u) + 1)2) + 1− u, (2.6)

where Q is the generating series for quadrangulations (with a weight z for faces, and u
for simple blocks) and S is the generating series for simple quadrangulations (with a
weight z for faces). Note that this equation is isomorphic to (2.5).
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Figure 15: Reconstructing a quadrangulation from its simple core and the pendant
subquadrangulations.

Figure 16: The quadrangulation corresponding to a map via Tutte’s bijection.

This decomposition and the former one presented for general maps are in fact two
sides of the same coin. Indeed, they can be related via Tutte’s bijection as we now
present: there exists an explicit bijective construction between quadrangulations of size
n and (general) maps of size n. More precisely, for a map m (rooted in ρ), its image by ϕ,
called its angular map, can be constructed as follows, see Fig. 16.

1. Add a (white) vertex inside each face of m and draw an edge from this new (white)
vertex to each corner around the face (respecting the order of the corners);

2. The half-edge e created in the corner of ρ is now the root, oriented from black to
white;

3. Remove the original edges.

Proposition 2.11. For n ∈ Z>0, the function ϕ is a bijection between maps of size n and
quadrangulations of size n. Moreover, it maps bijectively 2-connected maps of size n > 1

to simple quadrangulations of size n.

The construction ϕ is due to Tutte [61, §5] (he defines the notion of derived map,
from which the angular map is extracted by deleting one of the 3 classes of vertices, as
explained in [16, §7]). The specialization to 2-connected maps is explained e.g. in [16].
In particular, it implies that S(y) = B(y). Moreover, given Equations (2.5) and (2.6), this
gives M(z, u) = Q(z, u) + 1.

Finally, when constructing the decomposition tree T (q)
q , if the deterministic orders

used for the half-edges of 2-connected maps and for the edges of simple quadrangulations
are consistent via Tutte’s bijection, then the decomposition trees of m and of ϕ(m)

are the same, and for each node v of the tree, the 2-connected map (resp. simple
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quadrangulation) at v are in correspondence by Tutte’s bijection, e.g. the example
of Fig. 13 is consistent with the example of Fig. 14 via Tutte’s bijection. This can be
rephrased as the following result.

Proposition 2.12. For all m ∈M,

T
(q)
ϕ(m) = Tm

and, for all v ∈ T (q)
ϕ(m),

b(q)
v = ϕ(bv).

2.5 Probabilistic consequences

Recall the model defined in Equations (1.1) and (1.2) for general maps. As promised,
we now define its analogue on quadrangulations, and show their equivalence. To that
end, we set for all m ∈Mn, and for all q ∈ Qn,

Pmap
n,u (m) =

ub(m)

[zn]M(z, u)
∝ ub(m) and Pquad

n,u (q) =
ub(q)

[zn]Q(z, u)
∝ ub(q),

and consider for all m ∈M and q ∈ Q the singular Boltzmann laws (remember that, as
explained in Section 2.2, M(ρ(u), u) = Q(ρ(u), u) <∞)

Pmap
u (m) =

ub(m)ρ(u)|m|

M(ρ(u), u)
and Pquad

u (q) =
ub(q)ρ(u)|q|

Q(ρ(u), u)
,

then
Pmap
n,u = Pmap

u (· | Mn) and Pquad
n,u = Pquad

u (· | Qn) .

By Proposition 2.12, one has:

Proposition 2.13. For all q ∈ Q and n ∈ Z>0,

Pquad
n,u (q) = Pmap

n,u

(
ϕ−1(q)

)
and Pquad

u (q) = Pmap
u

(
ϕ−1(q)

)
,

so, denoting by ∗ the pushforward, for all n ∈ Z>0,

Pquad
n,u = ϕ∗P

map
n,u and Pquad

u = ϕ∗P
map
u .

2.6 A word on the probabilistic setting

We denote by M : M → M the canonical random variable on the space of maps,
and let Q = ϕ(M). We denote by T the block tree associated to M (and also to Q

by Proposition 2.12). In this way, under Pu (resp. Pn,u), M has law Pmap
u (resp. Pmap

n,u ),
and, by Proposition 2.13, Q has law Pquad

u , (resp. Pquad
n,u ). Therefore, we will simply use

Pn,u and Pu as a shorthand notation for Pmap
n,u and Pmap

u .
Maximal simple components of quadrangulations will also be called “blocks” because

everything that has been said about blocks (in the sense of maximum 2-connected
components) can also be said about the maximum simple quadrangular components of
quadrangulations; and likewise in everything that follows. As a consequence, every result
about the size of the blocks of a map of size n is valid for blocks of quadrangulations of
size n as well.

For v a vertex of T, we denote by bMv (resp. bQv ) the 2-connected block of M (resp. sim-
ple block of Q) represented by v in T. By Proposition 2.12, it holds that bQv = ϕ(bMv ) for
all v ∈ T, where ϕ is Tutte’s bijection.

These random variables will be studied under probability measures Pu and (Pn,u)n>1,
which were introduced in Section 2.5. We write accordingly Eu[. . . ] and En,u[. . . ] the
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expectations with respect to these probability measures. Unless mentioned otherwise or
if it is clear from context, other random variables shall be viewed as defined on some
probability space (Ω, P ), and the according expectations will be written as E [. . . ]. In
particular we will use the following random variables defined on (Ω, P ):

• For each u > 0, the triplet (Tn,u,Mn,u,Qn,u) is (T,M,Q) under the law Pn,u.

• For each k > 1, the pair (Bmap
k , Bquad

k ) consists of a 2-connected map Bmap
k with

k edges sampled uniformly, together with Bquad
k = ϕ(Bmap

k ) its image by Tutte’s
bijection. By Proposition 2.11, the latter is a simple quadrangulation with k faces
sampled uniformly.

3 Phase diagram

For µ a probability distribution on Z>0 and n ∈ Z>0, we denote by GW (µ, n) the law
of a Galton-Watson tree with offspring distribution µ and conditioned to have n edges.
Following [1], for u > 0 we aim at finding a measure µu such that T under Pn,u has
law GW (µu, 2n). To that end, for any y ∈ [0, ρB ] we introduce the following probability
distribution

µy,u(2j) :=
bjy

ju1j 6=0

1 + u(B(y)− 1)
and µy,u(2j + 1) := 0 for all j ∈ Z>0 (3.1)

where bj and B are defined in Proposition 2.4. Moreover (see Remark 3.3 for a discus-
sion), we set

y(u) := ρ(u)M2(ρ(u), u) and µu := µy(u),u for any u > 0, (3.2)

where we recall that ρ(u) is the radius of convergence of z 7→M(z, u). On Fig. 17, the
value of y(u) is represented, using an explicit expression (see Remark 3.4). Notice that
in view of (2.5), y(u) 6 ρB for all u > 0 and

1 + u(B(y(u))− 1) = M(ρ(u), u). (3.3)

Then, by (2.3), for all u > 0, we have:

µu({2j}) ∼
√

3

π

2

27

u

M(ρ(u), u)

(
27

4
y(u)

)j
j−5/2, as j →∞,

so that by setting

c(u) =

√
3

π

2

27

u

M(ρ(u), u)
, (3.4)

it holds that

µu({2j}) ∼ c(u)

(
27

4
y(u)

)j
j−5/2, as j →∞. (3.5)

The following proposition extends [1, Proposition 3.1] to our setting.

Proposition 3.1. Let (Bv, v ∈ T) be either the family (bMv )v∈T of blocks of M, or (bQv )v∈T
of blocks of Q. For every u > 0, under Pu, the law of tree of blocks (T, (Bv, v ∈ T)) can
be described as follows.

• T follows the law GW (µu);

• Conditionally given T = t, the blocks (Bv, v ∈ t) are independent random variables,
and, for v ∈ t, Bv follows a uniform distribution on the set of blocks of size kv(t)/2,
where kv(t) is the number of children of v in t.
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Figure 17: Plot of y as a function of u.

For every n > 1, the same statements hold under Pn,u, only replacing GW (µu) with
GW (µu, 2n).

Proof. It suffices to prove the statement for Pu as, by Proposition 2.5, the block-tree of a
map of size n has size 2n.

Let t be a tree where each vertex has an even number of children, and let (bv, v ∈ t)

be a family of (2-connected, or simple) blocks, with 2|bv| = kv(t) for any v ∈ t. Let m be
the map (or quadrangulation) with block decomposition given by (t, (bv, v ∈ t)).

Then, we have

Pu (T = t,Bv = bv ∀v ∈ t) = Pu(m)

=
ρ(u)|m|ub(m)

M(ρ(u), u)
=
ρ(u)

∑
v∈t kv(t)/2u

∑
v∈t 1kv(t)6=0

M(ρ(u), u)

∏
v∈t

b kv(t)
2

b kv(t)
2

=
1

M(ρ(u), u)

(
y(u)

M2(ρ(u), u)

)∑
v∈t kv(t)/2∏

v∈t
b kv(t)

2
u1kv(t)6=0 ×

∏
v∈t

1

b kv(t)
2

=

∏
v∈t b kv(t)

2
y(u)kv(t)/2u1kv(t) 6=0

M(ρ(u), u)1+
∑
v∈t kv(t)

×
∏
v∈t

1

b kv(t)
2

=
∏
v∈t

b kv(t)
2
y(u)kv(t)/2u1kv(t)6=0

M(ρ(u), u)
×
∏
v∈t

1

b kv(t)
2

= GW (µu)(t)×
∏
v∈t

1

b kv(t)
2

.

This concludes the proof.

Theorem 3.2. Recall the definition of c(u) given in (3.4). Then, depending on the value
of u, the model Pu undergoes the following phase transition, driven by the properties of
µu:
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Subcritical case. For u < uC := 9/5,

E(u) := E [µu] =
8u

3(3 + u)
< 1 and µu({2j}) ∼ c(u)j−5/2 (3.6)

where c(u) =
√

3
π

2u
9(3+u) ;

Critical case. For u = uC := 9/5,

E [µuC ] = 1 and µuC ({2j}) ∼ 1

4
√

3π
j−5/2;

Supercritical case. For u > 9/5,

E [µu] = 1 and µu({2j}) ∼ c(u)

(
27

4
y(u)

)j
j−5/2,

where y(u) < 4/27 so that µu has exponential moments.

Notice that the case u = 1, which corresponds to uniform planar maps, as studied by
Addario-Berry [1], falls in the subcritical regime.

Proof of Theorem 3.2. Let us first explain how the value uC := 9/5 appears. Let u > 0

and y ∈ (0, 4/27]. By (3.1),

E [µy,u] =
∑
j∈Z>0

2jbjy
ju1j 6=0

1 + u(B(y)− 1)
=

2uyB′(y)

1 + u(B(y)− 1)
. (3.7)

It follows that

E [µy,u] = 1⇔ u =
1

2yB′(y)−B(y) + 1
. (3.8)

The mapping y ∈ (0, 4/27] 7→ d(y) := 2yB′(y)−B(y) + 1 is increasing. Indeed, for all
y ∈ (0, 4/27],

d(y) =
∑
n>1

2nbny
n −

∑
n>0

bny
n + 1 =

∑
n>1

(2n− 1)bny
n.

Moreover, if follows from (2.4) that d(0) = 0 and d(4/27) = 5/9. So 1/d(y) maps
bijectively (0, 4/27] to [9/5,+∞). Therefore, there exists y ∈ (0, 4/27] such that the law
µy,u is critical if and only if u ∈ [9/5,+∞), and this y is unique.

We now conclude the proof of the theorem. For the sake of completeness, we recall
an argument from [14, §8.2.2]. Recall (2.5):

M(z, u) = uB(zM(z, u)2) + 1− u.

For a fixed u, there are two possible sources of singularity:

1. The pair (z0 = ρ(u),m0 = M(ρ(u), u)) satisfies ∂H
∂m (z0,m0) = 0 for H : (z,m) 7→

m− uB(zm2)− 1 + u, thus being a singularity by the contraposition of the implicit
function theorem. In this case,

1− 2ρ(u)M(ρ(u), u)uB′(ρ(u)M2(ρ(u), u)) = 0, so 2ρ(u)M(ρ(u), u)uB′(y(u)) = 1.

Then, by (3.3),

2y(u)B′(y(u))−B(y(u))+1 =
2ρ(u)M2(ρ(u), u)

2uρ(u)M(ρ(u), u)
−M(ρ(u), u) + u− 1

u
+1 =

1

u
, (3.9)

which is to say that y(u) = ρ(u)M2(ρ(u), u) satifies (3.8). This is possible if and only
if u > 9/5. Then, it follows that E [µu] = 1, and (3.5) gives the asymptotic behaviour
of µu(2j).
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2. A singularity of B is reached so ρ(u)M2(ρ(u), u) = ρB = 4/27 i.e. y(u) = 4/27.
Then, the value of E(u) is obtained as an immediate consequence of Equations (2.4)
and (3.7), and the asymptotic behaviour of µu(2j) comes from Equations (3.4)
and (3.5). This happens iff u 6 9/5.

Notice that at u = uC , both types of singularity are reached.

Remark 3.3. The proof of Theorem 3.2 highlights the reasons behind our choice of y(u)

in (3.2). When u > 9/5, we choose y(u) such that E(u) = 1. When u < 9/5, this is not
possible, and we choose the value of y(u) maximising E(u) so that, when conditioning
the trees to be of size 2n, the conditioning is as little degenerated as possible. See [33,
§7] for further details.

Remark 3.4. Using (3.8), we obtain an explicit expression for y in terms of u for u > uC .
By [61], the series B is algebraic and for all y ∈ [0, 4/27],

B(y)3 −B(y)2 − 18yB(y) + 27y2 + 16y = 0. (3.10)

This gives an expression of B′ in terms of B, and taking the resultant between this new
equation and (3.8) allows to eliminate B. Initial conditions then give

u =
1

2yB′(y)−B(y) + 1
⇔ y =

(
1−

√
1− 1

u

)(
1− 1

u

)
. (3.11)

4 Study of the size of the largest blocks

4.1 Subcritical case

To investigate the distribution of the size of the largest blocks, in the subcritical case,
we follow the approach developped in [1], which consists in studying the degrees in the
block tree of a map. To that end, we rely on results of condensation in Galton-Watson
trees: exactly one of the nodes has a degree linear in the size. To that end, we rely on
Janson’s survey [33], in which there is a refinement of the study of the largest degree of
a subcritical Galton-Watson tree with condensation by Jonsson and Stefánsson [35]. The
condensation phenomenon is visible in the following result where, denoting by dTV the

total variation distance, we write Xn

(d)
≈ Yn if dTV (Xn, Yn)→ 0 as n→∞:

Proposition 4.1 ([33, Theorem 19.34]). Let µ be a probability distribution on Z>0

such that µ(0) > 0, E [µ] < 1 and there exists c satisfying µ(k) ∼k→∞ ck−5/2. Let
Dn,1 > Dn,2 > · · · > Dn,n be the ranked list of the number of children of a µ-Galton-
Watson tree conditioned to have n edges. Then, letting ξ1, . . . , ξn−1 be a family of n− 1

independent random variables of law µ and
(
ξ

(n)
1 , . . . , ξ

(n)
n−1

)
their decreasing reordering,

it holds that:

(Dn,1, . . . , Dn,n)
(d)
≈

(
n−

n−1∑
i=1

ξi, ξ
(n)
1 , . . . , ξ

(n)
n−1

)
. (4.1)

We combine this proposition with the fact that T is a Galton-Watson tree under Pu to
get the following generalization of [1, Theorem 3.3]4 to every value of u ∈ (0, 9/5). This
is a rephrasing of the results for trees of [33], to which we add the proof of the joint
convergence. For m a map of size n, denote by LB1(m) > · · · > LBb(m)(m) the sizes of its
blocks in decreasing order. By convention, we set LBk(m) = 0 if k > b(m).

4One may notice that our c(1) differs from Addario-Berry’s c which is because there is a small miscalculation
for c in [1] due to the fact that Tn,u does not have n edges but 2n edges.
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Theorem 4.2. Let u ∈ (0, 9/5). Recall that E(u) and c(u) are defined in Equations (3.4)
and (3.6). Then,

LB1(Mn,u) = (1− E(u))n+OP(n2/3) and LB2(Mn,u) = OP(n2/3).

Moreover, the following joint convergence holds:(
1

2nc(u)

)2/3

((1− E(u))n− LB1(Mn,u), (LBj(Mn,u), j> 2))
(d)−−−−→
n→∞

(
L1,
(
∆L(j−1), j > 2

))
(4.2)

where (Lt)t∈[0,1] is a Stable process of parameter 3/2 such that

E
[
e−sL1

]
= eΓ(−3/2)s3/2

and ∆L(1) > ∆L(2) > . . . is the ranked sequence of its jumps.

When u→ 0, we have 1− E(u)→ 1: as expected, if the map has only one block, its
size is n.

Remark 4.3. If (Lt)t∈[0,1] is a Stable process of parameter 3/2 satisfying E
[
e−sL1

]
=

eΓ(−3/2)s3/2 for s such that Re(s) > 0; then, it is known that (see [10, Theorem 1] and its
proof):

L1
(d)
= lim

ε→0

∑
j:∆L(j)>ε

∆L(j) −
2√
ε
.

Proof of Theorem 4.2. Recall that the subcritical case corresponds to u ∈ (0, 9/5), for
which we have

ρ(u)M2(ρ(u), u) = 4/27.

We follow essentially the same lines of proof as in [1], but refining the arguments
so as to establish the joint convergence stated in (4.2). Theorem 3.2 shows that the
hypotheses of Proposition 4.1 are satisfied in the subcritical case.

Let (ξi)i>1 be a family of iid random variables of law µu and let
(
ξ

(n)
1 , . . . , ξ

(n)
n

)
be the

decreasing reordering of its first n variables (take the convention ξ(n)
i = 0 if i > n). Let

us consider the following cumulative process:

L
(n)
t =

∑d2nte
i=1 ξi − 2ntE(u)

C(u)(2n)2/3
for t ∈ [0, 1], where C(u) = 2c(u)2/3.

It is standard [28, Theorem XVII.5.2] [32, Chapter VII, Corollary 3.6] that there exists
a Lévy process (Lt)t∈[0,1] with Lévy measure π(dx) = x−5/2dx1{x>0} so that for s such
that Re(s) > 0,

E
[
e−sL1

]
= eΓ(−3/2)s3/2 ,

and such that the following convergence holds in the Skorokhod topology(
L

(n)
t

)
t∈[0,1]

(d)−−−−→
n→∞

(Lt)t∈[0,1] . (4.3)

By definition of the process L(n)
t , ξi

C(u)(2n)2/3
is its i-th jump. In particular, denoting by

∆Pt the jump of the process (Pt) at time t (which may equal 0),

ξ
(2n)
1

C(u)(2n)2/3
= sup

06t61
∆L

(n)
t .
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By [32, Chapter VI, Proposition 2.4], (4.3) gives

ξ
(2n)
1

C(u)(2n)2/3

(d)−−−−→
n→∞

sup
06t61

∆Lt := ∆L(1).

By construction of a Lévy process, (∆L(j))j>1 has same law as the decreasing rearrange-
ment of the atoms of a Poisson random measure with intensity π on R+ (see e.g. [10,
Theorem 1]). By denoting t

(n)
1 the time at which the jump ξ

(2n)
1 of the process L(n)

t is
realised, one has:

ξ
(2n)
2

C(u)(2n)2/3
= sup

06t61
∆

(
L

(n)
t − ξ

(2n)
1

C(u)(2n)2/3
1
t>t(n)

1

)
t

.

So, applying again [32, Chapter VI, Proposition 2.4], one gets, denoting by t1 the time of
the largest jump of (L1):

ξ
(2n)
2

C(u)(2n)2/3

(d)−−−−→
n→∞

sup
06t61

∆
(
Lt −∆L(1)1t>t1

)
t

= ∆L(2).

It is again possible to iterate by subtracting the largest jump: for all k > 1,

1

C(u)(2n)2/3

(
ξ

(2n)
1 , . . . , ξ

(2n)
k

)
(d)−−−−→
n→∞

(
∆L(1), . . . ,∆L(k)

)
. (4.4)

However, by Proposition 4.1 and (4.1), one has (recall that a map of size n has 2n + 1

components, some of which might be empty):

2 (LB1(Mn,u), . . . ,LB2n+1(Mn,u))
(d)
≈

(
2n−

2n∑
i=1

ξi, ξ
(2n)
1 , . . . , ξ

(2n)
2n

)
.

Therefore, for all k > 2 fixed(
(1− E(u))n− LB1(Mn,u)

1
2C(u)(2n)2/3

,
LB2(Mn,u)

1
2C(u)(2n)2/3

, . . . ,
LBk(Mn,u)

1
2C(u)(2n)2/3

)
(d)
≈

(∑2n
i=1 ξi − 2E(u)n

C(u)(2n)2/3
,

ξ
(2n)
1

C(u)(2n)2/3
, . . . ,

ξ
(2n)
k

C(u)(2n)2/3

)
(d)−−−−→
n→∞

(
L1,∆L(1), . . . ,∆L(k)

)
.

This allows to conclude since k is arbitrary.

4.2 Supercritical case

The supercritical case corresponds to u ∈ (9/5,+∞) and y(u) = ρ(u)M2(ρ(u), u) ∈
(0, 4/27). Recall that in this case T is distributed under Pu as a critical Galton-Watson
tree with finite exponential moments by Proposition 3.1 and Theorem 3.2.

Properties of the maximum degree of critical Galton-Watson trees have been exten-
sively studied by Janson [33], building on work by Meir and Moon [50]. For the case
where the offspring distribution admits finite exponential moments, Janson shows the
following result.

Proposition 4.4 ([33, Theorem 19.16]). Let µ be a probability distribution on Z>0 such
that µ(0) > 0, and µ(k + 1)/µ(k) converges to a finite limit as k → ∞. Let Dn,i be
the i-th maximal number of children of nodes in a µ-Galton-Watson tree conditioned to
have n edges. Denote by ρ the radius of convergence of Φ : t 7→

∑
k∈Z>0

µ(k)tk, and

ν = limx→ρ− x
Φ′(x)
Φ(x) . Suppose ν > 1. Then, denoting k(n) = max{k ∈ Z>0 | µ(k) > 1/n},

for all j > 1,
Dn,j = k(n) +OP(1).
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In our case, the asymptotic of k(n) can be computed thanks to results about the
Lambert W function, which is the compositional inverse of x ∈ R 7→ xex ∈ [−e−1,+∞).
This gives the following theorem.

Theorem 4.5. Let u > uC . For all fixed j > 1, it holds as n→∞ that

LBj(Mn,u) =
ln(n)

2 ln
(

4
27y(u)

) − 5 ln(ln(n))

4 ln
(

4
27y(u)

) +OP(1).

Proof. The probability µu({2k}) is decreasing with k. So, by (3.5), for n large enough, to
study k(n) it is sufficient to study for which k one has

c(u)

(
27

4
ρ(u)M2(ρ(u), u)

)k
k−5/2 (1 + o(1)) >

1

n
.

For sake of compactness, set w(u) =
(

27
4 ρ(u)M2(ρ(u), u)

)−1
=
(

27
4 y(u)

)−1
. Note that

w(u) > 1 since u > uC . Consequently, the previous inequality is equivalent to

w(u)kk5/2 6 c(u)n (1 + o(1)) .

Notice that this is equivalent to

2

5
ln(w(u))k · e 2

5 ln(w(u))k 6
2

5
ln(w(u))(nc(u))2/5 (1 + o(1)) .

Therefore, k(n) is the largest integer such that:

2

5
ln(w(u))k(n) 6W

(
2

5
ln(w(u))(nc(u))2/5 (1 + o(1))

)
where W denotes the Lambert W function. It is known that W satisfies, for x→∞,

W (x) = ln(x)− ln(ln(x)) + o(1),

which concludes the proof.

4.3 Critical case

The critical case corresponds to u = 9/5 and ρ(u)M2(ρ(u), u) = 4/27. As shown
in Theorem 3.2, the offspring distribution has a power law tail in cj−α−1, where α =

3/2 ∈ (1, 2). In this case, the variance is infinite, so that the method of Section 4.2 cannot
be used. However, this case is directly treated in Janson’s survey [33, Example 19.27
and Remark 19.28].

Theorem 4.6. The following convergence holds:(
LBj(Mn,uc)

n2/3
, j > 1

)
(d)−−−−→
n→∞

(
E(j), j > 1

)
,

where the
(
E(j)

)
are the ordered atoms of a Point Process E on [0,∞], satisfying that the

random variable Ea,b = # (E ∩ [a, b]) has a probability generating function convergent
for all z ∈ C with

E
[
zEa,b

]
=

1

2πg(0)

∫ ∞
−∞

exp

(
cΓ(−3/2)(−it)3/2 + (z − 1)c

∫ b

a

x−5/2eitxdx

)
dt,

where

g : x 7→ 1

2π

∫ ∞
−∞

e−ixt+cΓ(−3/2)(−it)3/2dt.
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The intensity measure π of E satisfies, for x > 0,

π(dx) = cx−5/2 g(−x)

g(0)
dx,

and, for all j > 1,
E(j) > 0 almost surely.

Remark 4.7. By Theorem 3.2 and [27, Proposition 4.3]5, one has the convergence of
the (appropriately) rescaled Łukasiewicz path of Tn,uC towards a 3/2-stable excursion.
Therefore, using [32, Chapter VI, Proposition 2.4] and following the same line of argu-
ments as in the proof of Theorem 4.2, one gets that the E(j) are distributed like the
reordered jumps of a 3/2-stable excursion (multiplied by a constant factor).

5 Scaling limits

The preceding sections exhibited, via a study of the block-tree, a phase transition of
a combinatorial nature, in terms of the size of the largest blocks, when the parameter u
reaches uC = 9/5, both for the model on general maps and the one on quadrangulations.
The goal of the present section is to expand on this phase transition by considering
metric properties of the models in each phase, in the sense of taking scaling limits,
see Section 5.1 for definitions.

Because Tutte’s bijection commutes with the block decomposition of both models
under consideration, as stated in Proposition 2.12, the combinatorial picture of Section 4
is the same for both models. However, obtaining global metric properties under either
model requires a good understanding of the metric behaviour of the underlying blocks.
As of now, the required results exist only for simple quadrangulations. Consequently, our
scaling limit results are complete only for the quadrangulation model.

In Section 5.1, we introduce the relevant formalism to state our scaling limit results,
as well as a deviation estimate for the diameters of blocks, which will be useful for all
values of u.

In Section 5.2, we prove Theorem 5.4, which identifies scaling limits simultaneously
when u > uC and u = uC . For both models, there is convergence after suitable rescaling
to a random continuous tree, namely a Brownian tree when u > uC and a 3/2 stable tree
when u = uC . This convergence holds in the Gromov-Hausdorff-Prokhorov (GHP) sense –
between measured metric spaces – when maps and quadrangulations are equipped with
the uniform measure on their vertices.

Finally in Section 5.3, we prove Theorem 5.22 which deals with the GHP scaling limit
when u < uC . In this phase, the one-big-block identified in Theorem 4.2 converges after
rescaling to a scalar multiple of the Brownian sphere, and the contribution of all other
blocks is negligible. This result is proved only for the quadrangulation model since it
relies crucially on the scaling limit result for uniform simple quadrangulations obtained
in [2]. No such result is available yet for uniform 2-connected general maps, although
one expects that it should hold.

5.1 Preliminaries

5.1.1 The Gromov-Hausdorff and Gromov-Hausdorff-Prokhorov topologies

Originating from the ideas of Gromov, the following notions of metric geometry have
become widely used in probability theory to state scaling limit results. We refer the
interested reader to [17] for general background on metric geometry and [51, Section 6]

5The result is stated under an aperiodicity hypothesis for the reproduction law, which can be omitted; see
the discussion in the proof of Proposition 5.10.
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for an exposition of the main properties of the Gromov-Hausdorff and Gromov-Hausdorff-
Prokhorov topologies, and especially their definition via correspondences and couplings
that we use here.

Define a correspondence between two sets X and Y as a subset C of X × Y such
that for all x ∈ X, there exists y ∈ Y such that (x, y) ∈ C, and vice versa. The set of
correspondences between X and Y is denoted as Corr(X,Y ). If (X, dX) and (Y, dY ) are
compact metric spaces and C ∈ Corr(X,Y ) is a correspondence, one may define its
distortion:

dis(C; dX , dY ) = sup
{
|dX(x, x̃)− dY (y, ỹ)| : (x, y) ∈ C, (x̃, ỹ) ∈ C

}
.

This allows to define the Gromov-Hausdorff distance between (isometry classes of)
compact metric spaces

dGH

(
(X, dX), (Y, dY )

)
=

1

2
inf
{

dis(C; dX , dY ) : C ∈ Corr(X,Y )
}
.

One can modify this notion of distance in order to get a distance between compact
measured metric spaces. For measured spaces (X, νX) and (Y, νY ) such that νX and νY
are probability measures, let us denote by Coupl(νX , νY ) the set of couplings between
νX and νY , i.e. the set of measures γ on X × Y with respective marginals νX and νY .
Then the Gromov-Hausdorff-Prokhorov distance is defined as

dGHP

(
(X, dX , νX), (Y, dY , νY )

)
= inf

{
max

(
1
2 dis(C; dX , dY ), γ

(
(X × Y ) \ C

))
: C ∈ Corr(X,Y ), γ ∈ Coupl(νX , νY )

}
.

When (X, dX) and (Y, dY ) are the same metric space, one can bound this distance by the
Prokhorov distance between the measures νX and νY . This distance is defined for ν1

and ν2 two Borel measures on the same metric space (X, d) by

d
(X,d)
P (ν1, ν2) = inf

{
ε > 0: ν1(A) 6 ν2(Aε)+ε and ν2(A) 6 ν1(Aε)+ε,∀A ∈ B(X)

}
, (5.1)

where Aε is the set of points x ∈ X such that d(x,A) < ε. The bound mentioned above
then corresponds to the inequality

dGHP

(
(X, d, ν1), (X, d, ν2)

)
6 d

(X,d)
P (ν1, ν2), (5.2)

which is a consequence of Strassen’s Theorem, see [25, Section 11.6].
Finally we will use the following fact, the proof of which is left to the reader. For

a ∈ [0, 1) and Borel probability measures µ, ν and ν′ on some metric space (X, d), it holds
that

d
(X,d)
P

(
aµ+ (1− a)ν, aµ+ (1− a)ν′

)
= (1− a)d

(X,d)
P (ν, ν′). (5.3)

5.1.2 Formulation of the GHP-scaling limit problem

Let us begin by setting the notation for the measured metric spaces that one can
canonically associate to the combinatorial objects under consideration. We associate to
a tree (resp. map or quadrangulation) the following measured metric spaces:

• For t a tree, denote by V (t) the set of its vertices, by dt the distance that the graph
distance induces on V (t), by νt the uniform probability measure on V (t) and by t

the measured metric space t = (V (t), dt, νt). Recall that for v ∈ t, the number of
children of v is denoted by kv(t).
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• For m a map, recall that V (m) is its vertex set, and denote by dm the graph distance
on V (m), by νm the uniform probability measure on V (m) and by m the measured
metric space m = (V (m), dm, νm).

• For q a quadrangulation, denote by V (q) its vertex set, by dq the graph distance on
V (q), by νq the uniform probability measure on V (q) and by q the measured metric
space q = (V (q), dq, νq).

The problem of finding a GHP-scaling limit consists in finding a suitable rescaling of
a sequence of random compact measured metric spaces so that it admits a non-trivial
limit in distribution for the GHP-topology. Let us introduce a convenient notation for the
rescaling operation on a measured metric space. For X = (X, d, ν) a measured metric
space and λ > 0, we denote by λ ·X the measured metric space (X,λd, ν).

5.1.3 A useful deviation estimate

We shall now prove a deviation estimate for the diameters of the blocks of M and
Q. It will prove useful for all values of u > 0. We recall the definition of stretched-
exponential quantities, as this notion provides a concise way to deal with the probabilities
of exceptional events.

Definition 5.1. A sequence (pn) of real numbers is said to be stretched-exponential as
n→∞ if there exist constants γ,C, c > 0 such that

|pn| 6 C exp(−cnγ).

As is evident from the definition, if (pn)n and (qn)n are stretched-exponential se-
quences, then so are the sequences (pn + qn)n, (pnqn)n, (nαpn)n and (nα supk>nβ pk)n
with arbitrary α, β > 0.

The input we shall rely on to derive our estimate is a deviation estimate for the
diameter of one block, in both the case of 2-connected blocks of maps and simple blocks
of quadrangulations.

Proposition 5.2. For any ε > 0, the probabilities

P
(

diam(Bmap
k ) > k1/4+ε

)
and P

(
diam(Bquad

k ) > k1/4+ε
)

are stretched-exponential as k →∞.

Proof. The estimate for uniform 2-connected maps (Bmap
k )k>0 is obtained from [20,

Theorem 3.7, specialized to x = 1]. To obtain the estimate for uniform simple blocks
of quadrangulations (Bquad

k )k>0, one easily checks that for any path of length l > 0 in a
map m, there exists a path with same endpoints and length at most 2l in ϕ(m), its image
by Tutte’s bijection. Therefore for every map m one has diam(ϕ(m)) 6 2 diam(m). In
particular diam(Bquad

k ) 6 2 diam(Bmap
k ), and the conclusion follows from the estimate for

(Bmap
k )k>0

This deviation estimate for the diameter of one block allows to control the deviations
of the diameter of every block of Mn,u and Qn,u, in the sense of the following corollary.

Corollary 5.3. For all u > 0 and all δ > 0, the probabilities

P
(
∃v ∈ Tn,u, diam(bMn,u

v ) > max
(
n1/6, kv(Tn,u)(1+δ)/4

))
, n > 1, (5.4)

P
(
∃v ∈ Tn,u, diam(bQn,u

v ) > max
(
n1/6, kv(Tn,u)(1+δ)/4

))
, n > 1, (5.5)

are stretched-exponential as n→∞.
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Proof. Let b be either a 2-connected map, or a simple quadrangulation. Then diam(b) is
bounded by its number of edges, which is |b| if b is a map, and 2|b| if it is a quadrangula-
tion. In particular, recalling that the outdegrees in the block-tree are twice the sizes of
the respective blocks, we get for all u > 0 and n > 1, that

∀v ∈ Tn,u,
[
diam(bMn,u

v ) 6 kv(Tn,u)/2
]

and
[
diam(bQn,u

v ) 6 2 · kv(Tn,u)/2
]
.

Denote by A(Mn,u) the “bad” subset of Tn,u made of the vertices v such that both

kv(Tn,u)/2 > n1/6 and diam(b
Mn,u
v ) > kv(Tn,u)(1+δ)/4. By the above trivial bound on

diameters, to show that the probabilities (5.4) are stretched-exponential as n→∞, it
suffices to see that the probability of the event {A(Mn,u) 6= ∅} is stretched-exponential
as n→∞.

By Proposition 3.1, conditionally on Tn,u, each block b
Mn,u
v is sampled uniformly from

2-connected maps with size kv(Tn,u)/2 respectively. Therefore, conditionally on Tn,u, for
each vertex v in Tn,u we have

P
(
v ∈ A(Mn,u) |Tn,u

)
= 1{kv(Tn,u)/2>n1/6}P

(
diam(Bmap

k/2 ) > k(1+δ)/4
) ∣∣∣

k=kv(Tn,u)

6 sup
k/2>n1/6

P
(

diam(Bmap
k/2 ) > k(1+δ)/4

)
6 sup
k>n1/6

P
(

diam(Bmap
k ) > k(1+δ)/4

)
.

Since Tn,u has 2n+ 1 vertices, this yields by a union bound,

P (A(Mn,u) 6= ∅) 6 (2n+ 1) sup
k>n1/6/2

P
(

diam(Bmap
k ) > k(1+δ)/4

)
,

which is stretched-exponential as n → ∞ by Proposition 5.2, as announced. A similar
use of Proposition 5.2 proves that the probabilities (5.5) are stretched-exponential as
n→∞.

5.2 The supercritical and critical cases

5.2.1 Statement of the result

For 1 < θ 6 2, let us denote by T (θ) a θ-stable Lévy tree equipped with its mass measure.
There are several equivalent constructions of these objects. A common way is to define
them via excursions of θ-stable Lévy processes. Namely, T (θ) is the real tree encoded by
the height process of an excursion of length one of a θ-stable Lévy process, see [27]. To
fix a normalization for T (θ), we consider in the construction an excursion obtained by
a cyclic shift from a θ-stable Lévy Bridge with Laplace exponent λ 7→ λθ. Note that the
measured metric space T (2) corresponds to

√
2 times the Brownian Continuum Random

Tree, which is encoded by an excursion of length 1 of the standard Brownian motion.
The precise definition via excursions is not important for our statement and one can
take Proposition 5.10 below as an alternative definition.

Theorem 5.4. There exist positive constants (κmap
u , κquad

u )u>uC such that we have the
following joint convergences in distribution, in the Gromov-Hausdorff-Prokhorov sense:

1. If u > uC , we have

σ(u)√
2

(2n)−1/2 ·
(
Tn,u,Mn,u,Qn,u

)
GHP, (d)−−−−−−→
n→∞

(
T (2), κmap

u · T (2), κquad
u · T (2)

)
,

where we set

σ(u)2 = 1 +
4u (y(u))

2
B′′ (y(u))

uB (y(u)) + 1− u
=

3u− 3 + 2
√
u (u− 1)

5u− 9
. (5.6)
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Figure 18: Plot of σ as a function of u. The vertical line corresponds to u = uC .

2. If u = uC = 9/5, we have

2

3
(2n)−1/3 ·

(
Tn,uC

,Mn,uC
,Q

n,uC

)
GHP, (d)−−−−−−→
n→∞

(
T (3/2), κmap

uC · T
(3/2), κquad

uC · T (3/2)
)
.

Additionally, the constants (κmap
u , κquad

u )u>uC can be expressed as follows.

κmap
u =

∑
j>1

2jµu(2j)Dmap
j and κquad

u =
∑
j>1

2jµu(2j)Dquad
j , (5.7)

where Dmap
j (resp. Dquad

j ) is the expectation of the distance, in a uniform 2-connected
map with j edges (resp. simple quadrangulation with j faces) of the distance of the root
vertex to the base vertex of a uniform corner (resp. to the closest endpoint of a uniform
edge).

Remark 5.5. Let us explain how one gets the second equality of (5.6), which allows to
draw Fig. 18. From the proof of the convergence, one gets:

σ(u)2 = 1 +
4u (y(u))2B′′(y(u))

uB(y(u)) + 1− u
.

Differentiating the algebraic equation (3.10) satisfied by B with respect to y and
taking (3.8) as a fourth equation gives a polynomial system from which one can get
B(y(u)) and B′′(y(u)) as functions of u only (using the resultant or a Gröbner basis
algorithm). Then, one can conclude from the expression of σ(u) in (5.6).

Remark 5.6. The quantity κquad
u could in principle be obtained via the explicit formula

obtained in [15] for the generating function g` of simple edge-rooted quadrangulations
with a distinguished edge at prescribed distance ` from the root vertex.
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5.2.2 Discussion and overview of the proof

Let u > uC .

Consider a geodesic in either Mn,u or Qn,u between two distant blocks b and b̃,
respectively indexed by v and ṽ in the block-tree. This geodesic must go through all
the blocks whose index w in the block-tree Tn,u is on the path from v to ṽ, in the order
induced by this path in the tree.

We have seen in Proposition 3.1 that under the law of Mn,u or Qn,u, the blocks are
independent conditionally on the block-tree, and when u > uC they tend to all have
non-macroscopic o(n) size by Theorems 4.5 and 4.6. One therefore expects that when n
is large, the distance between two distant blocks b and b̃ falls into a law of large numbers
behaviour and is of the same order as dTn,u(v, ṽ).

According to this heuristic, the macroscopic distances in Mn,u and Qn,u should be
concentrated around a deterministic scalar multiple of the distances in Tn,u. But Tn,u

is a critical Galton-Watson tree conditioned to have 2n + 1 vertices, with explicit tail
asymptotic given by Theorem 3.2 for its offspring distribution, yielding that its scaling
limit is a stable tree.

To make this heuristic work, one needs to understand the typical distribution of
degrees on a typical path in the tree. It turns out that on a typical path in a size-n
critical Galton-Watson tree, the degrees are asymptotically independent and identically
distributed; and moreover they are distributed as the size-biased version of the offspring
distribution. This will be obtained by a spine decomposition for trees, adapted to our
context.

We bring the attention of the reader to the fact that a proof similar in spirit has
been done for the Gromov-Hausdorff metric in the general abstract setup of enriched
trees by Stufler [59, Theorem 6.60], and we could readily apply this result to deal
with the case u > uC , modulo a technical complication regarding the additivity of
distances in the quadrangulation case. When u = uC however, the distances within
blocks have fat tails, so we fall outside the scope of Stufler’s result. To deal with this,
our last technical ingredient is a suitable large deviation estimate: we show that after an
adequate truncation of the variables depending on n, large (and moderate) deviation
events still have very small probability.

We now proceed with the proof.

5.2.3 Additivity of the distances along consecutive blocks

In Lemmas 5.7 and 5.8, we justify that a macroscopic distance is indeed a sum of
distances on “in-between” blocks, in the case of blocks lying on the same branch in the
block-tree.

The map case. For b a 2-connected map, and l an integer in {1, . . . , 2|b|}, let us denote
by D(b, l) the graph distance in b between its root vertex and the vertex on which lies the
l-th corner of b in breadth-first order (or in whatever arbitrary ordering rule is chosen in
the block-tree decomposition, see Section 2.3).

Fix a vertex x on m. Let v? be the vertex v of the block-tree t, closest to the root of t,
such that x is a vertex of bmv . Denote by h? := ht(v?), and by (vi)06i6h? the ancestor line
of v? in t, with v0 the root and vh? = v?. For 0 6 i 6 h?, let xi be the root vertex of bmvi .
Finally, let (li)06i<h? be the respective breadth-first index of the corner in bmvi in which
the block bmvi+1

is attached. The situation is illustrated on Fig. 19.
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Figure 19: Situation of Lemma 5.7.

Lemma 5.7. For 0 6 i 6 h?, we have

dm(x, xi) = dbm
v?

(x, xh?) +
∑

i6j<h?

D(bmvj , lj).

Proof. By definition, D(bmvj , lj) = dm(xj , xj+1) for i 6 j < h?. We get by the triangle
inequality that the left-hand-side is at most the right-hand side. Therefore it suffices
to show that any geodesic path in m from x to xi visits each of the points (xj)i<j6h? , in
decreasing order of j.

Let j be such that i < j 6 h?. Denote by tj the tree of descendants of vj in t (rooted
in vj) and also mj and m̃j the submaps of m made of the blocks (bmv )v∈tj and (bmv )v∈t\tj
respectively. By the recursive description of the block-tree, the submaps mj and m̃j
share only the vertex xj . But x is a vertex of mj since v? is a descendant of vj , and xi is
a vertex of m̃j since vi is an ancestor of vj . Hence any injective path between x and xi
must visit xj in decreasing order of j; and in particular for a geodesic path.

Notice that it does not require the (xj) to be mutually distinct. This concludes the
proof.

The quadrangulation case. A slight complication arises for quadrangulations be-
cause the “interface” between two blocks is a double edge, containing two vertices
instead of a single vertex in the map case. At first sight it is thus unclear through which
of these vertices a geodesic should go. We show that there is a canonical choice: the
vertex between those two which is closest to the root vertex. This relies crucially on the
fact that quadrangulations are bipartite.

Fix a quadragulation q. For b a simple block of q, and l an integer in {1, . . . , 2|b|}, let
us denote by Dq(b, l) the graph distance in b between the endpoint of the l-th edge of
b in the ordering described thereafter, and the endpoint of the root edge of b which is
closest to the root vertex of q. The order on the edges of b that we use is the image of the
lexicographic order on vertices of t via the block-tree decomposition. This is consistent
with the ordering of corners in the map case.

Fix a vertex x on q. Similarly to the map case, let v? be the vertex v of the block-tree
t, closest to the root of t, such that x is a vertex of bqv. Define accordingly h? = ht(v?) and
the ancestor line (vi)06i6h? of v? in the block-tree t, with v0 the root and vh? = v?. Let
also (xi)06i6h? be the respective root vertex of bvi . Finally, let (li)06i<h? be the respective
breadth-first index of the edge in bqvi to which the root edge of bqvi+1

is attached.
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Lemma 5.8. For all 0 6 i 6 h?, there exists δx,xi ∈ {0,±1,±2} such that

dq(x, xi) = δx,xi + dbq
v?

(x, xh?) +
∑

i6j<h?

Dq(bqvj , lj).

Proof. The idea is quite similar in principle as in the preceding lemma, except that
consecutive blocks share two vertices in the quadrangulation case, instead of one.

For 0 6 j 6 h?, denote by yj the endpoint of the root-edge of bqvj which is closest
to the root vertex of q. In particular y0 is the root vertex of q. Let 0 6 i 6 h?. Then,
by construction, yi and xi are adjacent to the root edge of bqvi . Notice that a geodesic
from x to xi must visit at least one of the endpoints of the root-edge of bv? , which is at
distance 0 or 1 of yh? , and that xi and yi are at distance 0 or 1. Therefore, there exists
some δx,xi ∈ {0,±1,±2} such that

dq(x, xi) = δx,xi + dbq
v?

(x, xh?) + dq(yh? , yi).

We shall prove the following, which are sufficient to conclude:

1. For 0 6 i 6 h?, it holds that dq(yh? , yi) =
∑
i6j<h?

dq(yj+1, yj);
2. For 0 6 j < h?, it holds that dq(yj+1, yj) = Dq(bqvj , lj).

It is even sufficient to show the following:

∀0 6 i 6 j 6 k 6 h?, dq(yi, yk) = dq(yi, yj) + dq(yj , yk). (5.8)

Indeed, assuming (5.8) holds, by applying it iteratively, we directly get that dq(yh? , yi) =∑
i6j<h?

dq(yj+1, yj). To verify the second set of identities, recall that yj is defined as the
endpoint of the root edge of bqvj which is closest to the root vertex y0 of q. Denote by y′j
the other endpoint. Then, for 0 6 j < h? we have

Dq(bqvj , lj) = min
(
dbq

vj
(yj+1, yj), dbq

vj
(y′j+1, yj)

)
= min

(
dq(yj+1, yj), dq(y′j+1, yj)

)
.

The first equality comes from the definition of Dq(bqvj , lj), and the second one from the
fact that within a block b of q, the graph distance respective to q and the graph distance
respective to b coincide. Then, assuming (5.8), it holds that

dq(yj+1, yj) = dq(yj+1, y0)− dq(yj , y0) 6 dq(y′j+1, y0)− dq(yj , y0) 6 dq(y′j+1, yj),

where the first inequality comes from the definition of yj+1, and the second inequality
from triangle inequality. In particular, the above minimum is dq(yj+1, yj) and we have, as
needed, dq(yj+1, yj) = Dq(bqvj , lj).

It still remains to prove (5.8). Let us first prove the case i = 0 and then deduce the
general case. Let 0 6 j 6 k 6 h?, and let γ be a geodesic path from y0 to yk. If γ visits
yj , we readily have

dq(y0, yk) = dq(y0, yj) + dq(yj , yk). (5.9)

Otherwise it visits y′j , and denote by γ1, γ2 the portions of γ form y0 to y′j , and from y′j
to yk respectively. By definition of yj , we have dq(y0, yj) 6 dq(y0, y

′
j). But since q is a

quadrangulation, it is bipartite and the inequality is strict dq(y0, yj) < dq(y0, y
′
j). Form

γ̃1 the concatenation of a geodesic path from y0 to yj and of the oriented edge (yj , y
′
j).

Then, from the strict inequality we mentioned, len(γ̃1) 6 len(γ1), and in particular the
concatenation of γ̃1 and γ2 is a geodesic path from y0 to yk which visits yj . Therefore,
the identity (5.9) also holds.

Finally, let us deduce the case i 6= 0. Let 0 6 i 6 j 6 k 6 h?. We have

dq(yi, yk) = dq(y0, yk)− dq(y0, yi) = (dq(y0, yk)− dq(y0, yj)) + (dq(y0, yj)− dq(y0, yi))

= dq(yj , yk) + dq(yi, yj).

This proves (5.8) and concludes the proof of Lemma 5.8.
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5.2.4 Scaling limit and largest degree of critical Galton-Watson trees

A slight technical complication that arises in our setting is that the block-tree has a
lattice offspring distribution with span 2, in the sense of the following definition

Definition 5.9. A measure µ on Z is called lattice if its support is included in a subset
b + dZ of Z, with d > 2. The largest such d is called its span. If d = 1, µ is called
non-lattice.

The results that we need [36, Theorem 3] are stated for non-lattice offspring distri-
butions. This turns out to be purely for convenience and we state the following more
general result that is suited to our needs.

We recall that a probability distribution µ with mean mµ is said to be in the domain
of attraction of a stable law of index θ ∈ (1, 2] if there exist positive constants (Cn)n>0

such that we have the following convergence in distribution

U1 + · · ·+ Un − nmµ

Cn

(d)−−−−→
n→∞

X(θ), (5.10)

where (U1, . . . Un) are i.i.d. samples of the law µ, and X(θ) is a random variable with
Laplace transform E

[
exp(−λX(θ))

]
= exp(λθ).

Proposition 5.10. For all 1 < θ 6 2, there exists a random measured metric space
T (θ) =

(
T (θ), d(θ), ν(θ)

)
satisfying the following scaling limit result.

Let µ be a probability distribution on Z>0, with µ(1) 6= 1, and which is assumed to be
critical. Assume additionally that it is in the domain of attraction of a stable law of index
θ ∈ (1, 2]. Let d > 1 be the span of the measure µ. Then under those assumptions, we
have

1. For all m large enough, the GWµ(dT )-probability that T has dm edges is positive.
This probability is equivalent to cθ/(Cdmdm) for some constant cθ > 0.

2. If we denote by Tn a GWµ-tree conditioned to have n edges, then(
Cdm
dm

)
· T dm

(d)−−−−−→
m→∞

T (θ),

in the Gromov-Hausdorff-Prokhorov sense, with (Cn)n>0 the sequence in (5.10).

3. The largest degree in Tdm is of order at most Cdm, in the sense that for any ε > 0

P
(
∃v ∈ Tdm, kv(Tdm) > (Cdm)1+ε

)
−−−−→
m→∞

0.

Proof. The first statement can be obtained by a straightforward adaptation of the proof
of [36, Lemma 1], which relies on a local limit theorem and the cycle lemma. We
specify below how this local limit theorem should be adapted. The cycle lemma adapts
straightforwardly.

For the second statement, let us justify that [36, Theorem 3] still applies when the
non-lattice (or aperiodic) assumption is dropped, but with the number of vertices n+ 1

taken only along the subsequence (dm+ 1)m>0. This will prove functional convergence
of the contour functions of the trees (Tdm)m when properly rescaled, to the contour
function of T (θ). This convergence of contour functions is sufficient to get the announced
Gromov-Hausdorff-Prokhorov convergence.

The local limit theorem [36, Theorem 2, (ii)] changes as follows

lim
n→∞

sup
k∈Z

∣∣∣∣and P (Yn = k)− p1

(
k

an

)∣∣∣∣ = 0.
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See for instance [31, Theorem 4.2.1]. Notice that the only difference with the non-lattice
(d = 1) local limit theorem is the factor 1/d in the last display. Examining the details
of Kortchemski’s arguments, this extra 1/d factor would appear only in the discrete
absolute continuity relations which are used in the proof. But in each instance, it would
appear in both the numerator and denominator of some fraction. Hence the fraction
simplifies and this factor has no impact on the proof, which carries without change,
except that the integer n, which in the paper is the number of vertices, should now only
be taken in dZ+ 1.

Finally, in order to get the third statement, one can take as a basis the local limit
theorem above. From this, one can get the functional convergence of the Łucasiewicz
path of Tdm, when it is rescaled by dm in time and Cdm in space. In particular, (Cdm)−1

times the largest degree in Tdm is tight, and one obtains the claimed probabilistic bound.
One could for instance use the same arguments as in the proof of [38, Proposition 3.4]

Corollary 5.11 then just identifies the explicit scaling constants in specific instances
of the above-mentioned scaling limit theorem.

Corollary 5.11. Let µ be a critical probability distribution on Z>0 with span d > 1, and
with µ(1) 6= 1. Denote by Tn a GWµ-tree conditioned to have n edges, for n ∈ dZ large
enough. Then the following holds.

1. If µ has finite variance σ2, then P (|T | = dm) ∼ cm−3/2 for some constant c > 0, and

(dm)−1/2 · T dm
GHP, (d)−−−−−−−−−→
m→∞

√
2

σ
· T (2).

Additionally for all ε > 0 the largest degree of Tdm is o(m1/2+ε) in probability.

2. If µ ([x,+∞)) ∼
x→∞

cx−θ for some c > 0 and θ ∈ (1, 2), then P (|T | = dm) ∼
c′θm

−(1+1/θ) for some constant c′θ > 0, and

(dm)−(1−1/θ) · T dm
GHP, (d)−−−−−−−−−→
m→∞

[
θ − 1

cΓ(2− θ)

]1/θ

· T (θ).

Additionally for all ε > 0 the largest degree of Tdm is o(m1/θ+ε) in probability.

Proof. Note that in the case where ν has finite exponential moments, [48] treats the
case of lattice distributions. That would suffice for our applications when u > uC . We
still need the second statement to treat the case u = uC . Let us apply the preceding
proposition and identify the right constants, in these two cases.

Statement 1. If µ has finite variance σ2, then by the Central Limit Theorem, for i.i.d.
samples (Ui)i of the law µ, we have the convergence in distribution

U1 + · · ·+ Un − n
σ · n1/2

(d)−−−−→
n→∞

G,

where G is a standard normal variable. In particular, G has the same law as 1√
2
·X(2).

Therefore, the hypotheses of Proposition 5.10 are satisfied, with

Cn = σ√
2
· n1/2,

and the conclusion follows from this proposition.
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Statement 2. We consider the case where µ ([x,+∞)) ∼
x→∞

cx−θ with θ ∈ (1, 2) and

c > 0. Let U := U1 and let us also introduce the notation

M1(x) =

∫ ∞
x

µ(dy) = µ ([x,+∞))

M2(x) =

∫ ∞
x

M1(y) dy

M3(x) =

∫ x

0

M2(y)dy.

The function M3 is non-decreasing and using the assumed tail asymptotic of µ, one
has the asymptotic M3(x) ∼ cx2−θ/(2− θ)(θ − 1). We may therefore use the Karamata
Tauberian theorem [13, Theorem 1.7.1] to get

M̂3(h) ∼ cΓ(3− θ)
(2− θ)(θ − 1)

hθ−2 =
cΓ(2− θ)
θ − 1

hθ−2,

where M̂3 is the Laplace-Stieltjes transform of M3, defined — e.g. in [13, Paragraph
1.7.0b] — as

M̂3(h) = h

∫ ∞
0

e−hxM3(x)dx

for all h for which the integral converges absolutely. Then, if we integrate by parts three
times, we obtain

E [exp(−h(U − 1))] =

∫ ∞
0

e−h(x−1) µ(dx) = eh − hehM2(0) + h3eh
∫ ∞

0

e−hxM3(x) dx

= eh − hehM2(0) + h2eh M̂3(h),

This, together with the fact that M2(0) = 1 since it is the expectation of µ, yields the
following expansion when h→ 0+,

E [exp(−h(U − 1))] = 1 +
cΓ(2− θ)
θ − 1

· hθ (1 + o(1)) . (5.11)

Now, if we set

Cn =

(
cΓ(2− θ)
θ − 1

)1/θ

n1/θ,

and plug h = λ/Cn into (5.11), we get for all λ > 0,

E
[
exp

(
−λ U1+···+Un−n

Cn

)]
=
(
E
[
exp(− λ

Cn
(U − 1))

])n
−−−−→
n→∞

exp
(
λθ
)
.

Hence there is convergence in distribution of U1+···+Un−n
Cn

to X(θ), as required in Propo-
sition 5.10. So this proposition applies with the above-chosen sequence (Cn)n, and the
conclusion follows.

5.2.5 Scaling limit of critical Galton-Watson trees equipped with a random
measure

We shall need a version of the GHP scaling limits in Corollary 5.11, when the trees t

under consideration are equipped with some random measure on their vertices, instead
of the uniform measure νt. Let us describe more specifically our setting.

Let µ be a probability measure on Z>0 and η = (ηk)k>0 be a family of Borel probability
measures on R>0. We shall define an enriched version L(µ, η) of the Galton-Watson law
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GW(µ), defined on the set of pairs (t, f) such that t is a tree and f is a non-negative
function f : V (t) → R>0. Namely, to sample a random pair (T, f) with law L(µ, η) first
sample T according to GW(µ), and then sample conditionally on T the variables f(v) for
v ∈ T, independently of each other, according to the laws ηkv(T)(dx) respectively.

In particular, the random non-negative function f defines a random measure on V (T)

assigning weight f(v) to the vertex v. We shall use the same notation f for this measure,
and denote by |f | its total weight.

Proposition 5.12. Let µ be a critical offspring distribution with span d > 1 such that
µ(1) 6= 1. Let also (ηk)k>0 be Borel probability laws that are supported on R>0. For
n ∈ dZ large enough, denote by (Tn, fn) a sample of the law L(µ, η) conditioned to the
event {|T| = n}. If the annealed measure

∑
k µ(k)ηk(ds) admits a positive and finite first

moment, then the following holds.

1. If µ has finite variance σ2, then

(dm)−1/2 ·
(
V (Tdm), dTdm ,

fdm
|fdm|

)
GHP, (d)−−−−−−−−−→
m→∞

√
2

σ
· T (2).

2. If µ ([x,+∞)) ∼
x→∞

cx−θ for some c > 0 and θ ∈ (1, 2), then

(dm)−(1−1/θ) ·
(
V (Tdm), dTdm ,

fdm
|fdm|

)
GHP, (d)−−−−−−−−−→
m→∞

[
θ − 1

cΓ(2− θ)

]1/θ

· T (θ).

We shall first prove a rather general functional law of large numbers for the cu-
mulative sum s 7→

∑
i6sn fn(vi), where (vi)i are the vertices of Tn listed in depth-first

order.

Lemma 5.13. Let µ be a critical offspring distribution with span d > 1, and with µ(1) 6= 1.
Let also (ηk)k>0 be Borel probability laws on R>0. For n ∈ dZ large enough, denote by
(Tn, fn) a sample of the law L(µ, η) conditioned to the event {|T| = n}. Assume that the
annealed measure

∑
k µ(k)ηk(ds) admits a positive and finite first moment and denote

by η > 0 its expectation. Assume also that µ is in the domain of attraction of a stable
distribution of index α with 1 < α 6 2. Then there holds the following convergence in
probability

sup
s∈[0,1]

∣∣∣∣ 1n∑i6sn fn(vi)− sη
∣∣∣∣ P−−−−−−−−→
n→∞, n∈dZ

0,

where (v0, . . . , vn) are the vertices of Tn listed in depth-first order.

Proof. Let us denote by (ṽi)06i6n a uniform cyclic shift of the sequence (vi)06i6n, that is
to say ṽi = vi+τn mod (n+1) for all 0 6 i 6 n, where τn is a uniformly random element of
{0, . . . , n}, sampled independently from other variables. Then an elementary re-arranging
of sums yields that

sup
s∈[0,1]

∣∣∣∣ 1n ∑
i6sn

fn(vi)− sη
∣∣∣∣ 6 2 sup

06s6t61

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi)− (t− s)η
∣∣∣∣.

Distinguishing upon whether s and t are smaller than 1/2, and cutting the sum at 1/2 in
the case s < 1/2 < t, we can bound further

sup
06s6t61

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi)− (t− s)η
∣∣∣∣

6 2 sup
06s6t61/2

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi)− (t− s)η
∣∣∣∣+ 2 sup

1/26s6t61

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi)− (t− s)η
∣∣∣∣
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= 2 sup
06s6t61/2

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi)− (t− s)η
∣∣∣∣+ 2 sup

06s6t61/2

∣∣∣∣ 1n ∑
sn6i6tn

fn(ṽi+dn/2e)− (t− s)η
∣∣∣∣

6 4 sup
06t61/2

∣∣∣∣ 1n ∑
i6tn

fn(ṽi)− tη
∣∣∣∣+ 4 sup

06t61/2

∣∣∣∣ 1n ∑
i6tn

fn(ṽi+dn/2e)− tη
∣∣∣∣.

Now notice that (ṽi+dn/2e)06i6n is itself a uniform cyclic shift of the sequence (vi)06i6n,
so that the second term in the last display has the same law as the first one, and we only
need to bound this one. We have reduced the problem to showing that the following
convergence in probability holds

sup
06t61/2

∣∣∣∣ 1n ∑
i6tn

fn(ṽi)− tη
∣∣∣∣ P−−−−−−−−→
n→∞, n∈dZ

0. (5.12)

We now appeal to the so-called cycle lemma, see [54, Paragraph 6.1] and more
precisely Lemma 6.1 for the cycle lemma and Lemma 6.3 for its application to trees.
In our setting it implies that the cyclically shifted sequence of degrees (kṽi(Tn))06i6n

has the same law as that of an i.i.d. sequence (ξi)06i6n of samples of the law µ condi-
tioned to the event {

∑
0,6i6n(ξi − 1) = −1}. Now recall that conditionally on Tn, each

variable f(vi) is sampled according to the law ηkvi (Tn) and independently of the family
(f(vj))j 6=i. Therefore the identity in distribution obtained from the cycle lemma admits a
straightforward generalization for the cyclically shifted sequence

(
kṽi(Tn), fn(ṽi)

)
06i6n

.

More precisely, let (ξi, Xi)i>0 be an i.i.d. sequence such that ξ0 has law µ, and such that
conditionally on ξ0 the variable X0 has law ηξ0 . Then, there holds the following identity
in distribution

Law
((
kṽi(Tn), fn(ṽi)

)
06i6n

;P
)

= Law
((
ξi, Xi

)
06i6n

;P
(
·
∣∣∣ ∑06i6n(ξi − 1) = −1

))
.

Using the Markov property at time bn/2c for the random walk (
∑

06i6k(ξi − 1))k>0, we

get for every non-negative Borel function F : (Z×R)bn/2c+1 → R>0 the following

E
[
F
((
kṽi(Tn), fn(ṽi)

)
06i6n/2

)]
= E

F((ξi, Xi

)
06i6n/2

) 1{∑
06i6n(ξi − 1) = −1

}
P
(∑

06i6n(ξi − 1) = −1
)


= E

[
F
((
ξi, Xi

)
06i6n/2

)qn−bn/2c(−1−
∑

06i6n/2(ξi − 1))

qn+1(−1)

]
,

where we used the notation qk(j) = P
(∑

16i6k(ξi − 1) = j
)
. Let us remark that there

exists n0 such that qn(−1) 6= 0 for all the integers n > n0 which belong to dZ, and that

sup
n>n0, n∈dZ

sup
j∈Z

qn−bn/2c(l)

qn+1(−1)
< +∞. (5.13)

Indeed, we may use the local limit theorem [31, Theorem 4.2.1] which covers the case of
random walks on Z whose increments have law a (possibly non-aperiodic) distribution in
the domain of attraction of a stable distribution with index α ∈ (1, 2], such as the random
walk

(∑
06i6k(ξi − 1)

)
k>0

. This gives us

lim
k→∞

sup
j∈Z

∣∣∣∣Bkd qk(j)− g
(
j

Bk

)∣∣∣∣ = 0,

where g is the density function of some stable distribution with index α satisfying
notably g(0) 6= 0, and where (Bk)k is a sequence of numbers such that (k−1/αBk)k is
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slowly varying by [31, Paragraph 2.2]. We easily deduce (5.13) from the last display.
Therefore there exists a constant C > 0 such that for every non-negative Borel function
F : (Z×R)bn/2c+1 → R>0, we have for n > n0,

E
[
F
((
kṽi(Tn), fn(ṽi)

)
06i6n/2

)]
6 C · E

[
F
((
ξi, Xi

)
06i6n/2

)]
.

We deduce for every ε > 0 and every n > n0,

P

 sup
06t61/2

∣∣∣∣ 1n ∑
i6tn

fn(ṽi)− tη
∣∣∣∣ > ε

 6 C · P

 sup
06t61/2

∣∣∣∣ 1n ∑
i6tn

Xi − tη
∣∣∣∣ > ε

 . (5.14)

Notice that the variables (Xi)i>0 are i.i.d. with mean η by definition. By the strong law
of large numbers, it holds almost surely that for all t ∈ [0, 1] ∪Q,

1

N

∑
i6tN

Xi −−−−→
N→∞

tη.

Since the variables (Xi) are non-negative, the left-hand-side is a (random) non-decreasing
function of t for all N > 1. In particular, the pointwise almost sure convergence above
yields by Dini’s theorem almost sure convergence in the sup norm, namely

sup
06t61/2

∣∣∣∣ 1n ∑
i6tn

Xi − tη
∣∣∣∣ a.s.−−−−−−−−→
n→∞, n∈dZ

0.

Combining this with (5.14), we obtain the desired convergence in probability (5.12) and
this concludes the proof.

Proof of Proposition 5.12. Let U be sampled uniformly and independently of other vari-
ables and for n ∈ dZ large enough, let (v0, . . . , vn) be the vertices of Tn listed in depth-first
order. We denote by xn(U) the vertex vb(n+1)Uc. Let also yn(U) be the vertex vkn(U),
where kn(U) is the smallest index k ∈ {0, . . . , n} such that

∑
i6k fn(vi) > U |fn|. By

construction, conditionally on (Tn, fn), the random vertex xn(U) has law νTn and yn(U)

has law fn/|fn|. Now by Lemma 5.13, the sequence of functions (s 7→ 1
|fn|
∑
i6sn fn(vi))n

converges in probability for the uniform norm to the identity function s 7→ s when n

tends to∞ in dZ. We deduce using the definition of kn(U) that
∣∣∣kn(U)

n − U
∣∣∣ converges to

0 in probability, and in particular that the same goes for
∣∣∣kn(U)
n+1 −

b(n+1)Uc
n+1

∣∣∣.
Let θ = 2 if µ has finite variance as in case 1. of the statement, or let θ be such

that µ ([x,+∞)) ∼
x→∞

cx−θ for some c > 0 and θ ∈ (1, 2) as in case 2. of the statement.

Let us set Dn = n−(θ−1)/θ dTn the rescaled distance function on V (Tn) and hn : s ∈
[0, 1] 7→ n−(θ−1)/θ hTn(vb(n+1)sc) be the rescaled height process of Tn. Using the following
well-known bound on distances in a tree

dTn(vi, vk) 6 hTn(vi) + hTn(vk)− 2 inf
j∈{i,...,k}

hTn(vj) + 2,

we get the bound

Dn(xn(U), yn(U)) =
1

n(θ−1)/θ
dTn(vkn(U), vb(n+1)Uc)

6 2ωhn

(∣∣∣kn(U)
n+1 −

b(n+1)Uc
n+1

∣∣∣)+
2

n(θ−1)/θ
,

where ωhn(δ) = sup|x−y|6δ |hn(x)− hn(y)| is the modulus of continuity of hn defined for
all δ > 0.
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We justified in the proof of Corollary 5.11 that [36, Theorem 3] applies, even if µ is
not assumed to be aperiodic in our setting. This theorem tells us in particular that the
rescaled height process hn converges in distribution as n tends to infinity to some limit,
in the Skhorokhod topology. Since the limit is almost surely continuous, properties of
the Skhorokhod topology imply that the convergence actually holds in distribution with
respect to the topology of uniform convergence. By characterization of tightness for this
topology, we have for all ε > 0,

lim
n→∞

lim sup
δ→0

P (ωhn(δ) > ε) = 0,

from which we deduce that

Dn(xn(U), yn(U))
P−−−−−−−−→

n→∞, n∈dZ
0. (5.15)

Recall that conditionally on (Tn, fn), the vertices xn(U) and yn(U) have law νTn and
fn/|fn| respectively. This yields using the definition (5.1) a bound for the Prokhorov
distance between these two measures

d
V (Tn),Dn
P

(
νTn ,

fn
|fn|

)
6 inf

{
ε > 0: P

(
Dn(xn(U), yn(U)) > ε

∣∣∣ Tn) 6 ε
}
.

In particular, we have for ε > 0,

P
(
d
V (Tn),Dn
P

(
νTn ,

fn
|fn|

)
> ε
)
6 P

(
P
(
Dn(xn(U), yn(U)) > ε

∣∣ Tn) > ε
)

6 ε−1P
(
Dn(xn(U), yn(U)) > ε

)
,

where we used Markov’s inequality to get the last upper bound. By (5.15), we get the
convergence in probability

d
V (Tn),Dn
P

(
νTn ,

fn
|fn|

)
P−−−−−−−−→

n→∞, n∈dZ
0.

By inequality (5.2), we deduce that

dGHP

(
(V (Tn), Dn, νTn) ,

(
V (Tn), Dn,

fn
|fn|

))
P−−−−−−−−→

n→∞, n∈dZ
0.

We conclude the proof by combining the last display with Corollary 5.11.

5.2.6 The spine decomposition and size-biased laws

In this section we present a size-biasing relation for the block-tree, in the sense of [47].
Actually, we extend in a straightforward way this size-biasing relation to our setting,
where we have a Galton-Watson tree and some decorations, namely the blocks. More
precisely, consider the following measure on maps with a distinguished vertex of their
block tree (m, v)

Pu(dM)
∑
v∈T

δv(dV?),

where δv is the Dirac measure A 7→ δv(A) = 1{v∈A}. Then this σ-finite measure can be

decomposed as a sum of probability measures
∑
h>1 P̂u,h(dM,dV?), where under P̂hu the

vertex V? has height h in T, its ancestors’ degrees having size-biased law as defined
below. The present section makes that precise.
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Description of P̂u,h.

Definition 5.14. Let ν be a probability distribution on Z>0 with finite expectation mν .
Then the size-biased distribution ν̂ is defined by

∀k ∈ Z>0, ν̂(k) =
k ν(k)

mν
.

When ν is a (sub-)critical offspring distribution with ν(0), ν(1) 6= 0, denote by(
ĜWν,h

)
h>0

the following family of laws, on the sets of discrete trees with a distin-

guished vertex at height h respectively. It may be described algorithmically:

• Each vertex will either be mutant or normal, and their number of offspring are
sampled independently from each other;

• Normal vertices have only normal children, whose number is sampled according
to ν;

• Mutant vertices of height less than h have a number of children sampled according
to the size-biased distribution ν̂, all of which are normal except one, chosen
uniformly, which is mutant;

• The only mutant vertex at height h reproduces like a normal vertex and is the
distinguished vertex V?.

This yields a pair (T, V?), where T is a discrete tree and V? is a distinguished vertex
of T with height h. We denote by (Vi)06i6hT(V?) the ancestor line of V?, and Li the
order of Vi+1 in the children of Vi respectively. Observe that the construction gives that
(kVi(T))i are i.i.d. with law ν̂, and conditionally on those variables, the variables (Li)i
are independent with uniform law on {1, . . . , kVi(T)} respectively.

We may now define the family of probability measures (P̂u,h)h>0 as follows. Let h > 0.

• Sample (T, V?) according to the law ĜWµu,h.

• For each v ∈ T, sample independently and uniformly a 2-connected map bMv with
kv(T)/2 edges.

• Build the map M whose block decomposition is (bMv )v∈T, and Q = ϕ(M) its image
by Tutte’s bijection.

We are now equipped to state the size-biasing relation.

Proposition 5.15. For u > uC , the σ-finite measure Pu(dM)
∑
v∈T δv(dV?) on maps with

a distinguished vertex of their block-tree decomposes as the following sum of probability
measures,

Pu(dM)
∑
v∈T

δv(dV?) =
∑
h>0

P̂u,h(dM,dV?).

Proof. The standard size-biasing relation for (sub-)critical Galton-Watson trees reads

GWν(dt)
∑
v∈t

δv(dv?) =
∑
h>0

(mν)h · δh(ht(v?)) · ĜWν,h(dt,dv?).

When u > uC , the offspring distribution µu is critical, so mµu = 1. Specializing the last
display to ν = µu and to the value of t corresponding to the block-tree of some map m,
this gives for all such (m, v?),

GWµu(t) =
∑
h>0

δh(ht(v?))ĜWµu,h(t, v?).
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Therefore, if we multiply both sides by
∏
v∈t

1
bkv(t)/2

, we get the following by Proposi-

tion 3.1:

Pu(m) =
∑
h>0

δh(ht(v?)) · ĜWµu,h(t, v?) ·
∏
v∈t

1

bkv(t)/2
=
∑
h>0

P̂u,h(m, v?).

Since
∑
v∈t δv(v?) = 1, the last display expresses the measure Pu(dM)

∑
v∈t δv(dV?) as a

sum of the probability measures (P̂u,h)h>0.

Probabilistic properties of P̂u,h. Since we need metric information on blocks whose
size follows the size-biased law µ̂u, let us introduce adequate notation. Let u > uC . De-
note by ξ̂u a sample of the distribution µ̂u on some probability space (Ω, P ). Then jointly
define the random variables B̂map

u and B̂quad
u as sampled uniformly among respective

blocks with size ξ̂u/2, in such a way that they are linked by Tutte’s bijection, i.e. their
joint law satisfies (

B̂map
u , B̂quad

u

)
(d)
=
(
Bmap

ξ̂u/2
, Bquad

ξ̂u/2

)
.

Furthermore, conditionally on ξ̂u, sample independently U a uniform label in {1, . . . , ξ̂u}.
This yields the following 4-tuple(

ξ̂u , B̂
map
u , B̂quad

u , U
)
.

Lemma 5.16. For all h > 1, we have the identity in law

Law

((
kVi(T) , bMVi , b

Q
Vi
, Li

)
06i<h

; P̂u,h

)
=
[
Law

((
ξ̂u , B̂

map
u , B̂quad

u , U
)

; P
)]⊗h

where Law(X;Q) is the law of X under Q.

Proof. Recall that under P̂u,h, the pair (T, V?) has law ĜWµu,h. By definition of the

law ĜWµu,h, the ancestor line of the distinguished vertex V? in T is made of mutant
vertices. This means that the family (kvi(T))0,6i<h is i.i.d. sampled from the size-biased

distribution µ̂u, which is the law of ξ̂u, and that independently of each other, each Vi+1

has uniform rank Li among the kVi(T) children of Vi. Hence we have the identity in law

Law

((
kVi(T) , Li

)
06i<h

; P̂u,h

)
=
[
Law

((
ξ̂u , U

)
;P
)]⊗h

.

Now under P̂u,h the conditional law of the blocks (bMv )v∈T with respect to T is that of
independent blocks, sampled uniformly from blocks with size (kV (T)/2)v∈T respectively.
In particular, the blocks (bMVi )06i<h are sampled independently, uniformly from blocks
with size (kVi(T)/2)06i<h respectively. Therefore the preceding identity in law extends
to the following one

Law

((
kVi(T) , bMVi , Li

)
06i<h

; P̂u,h

)
=
[
Law

((
ξ̂u , B̂

map
u , U

)
;P
)]⊗h

.

Finally, recall from Proposition 2.12 that bQVi is the image of bMVi by Tutte’s bijection.

Since by definition B̂quad
u is also the image of B̂map

u by this bijection, the identity in law
extends to the one in the proposition.

We get in particular from Lemma 5.16 that the variables
(
D(bMVi , Li)

)
06i<h

are i.i.d. un-

der P̂u,h. It is a bit less clear that the variables
(
DQ(bQVi , Li)

)
06i<h

from Lemma 5.8 are
also i.i.d., since they seem to simultaneously depend on global metric properties of Q.
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Lemma 5.17. Denote by D(b, l) the distance in a simple quadrangulation b between
its root vertex and the closest endpoint of the l-th edge in the order induced by the
block-tree decomposition, the same order as the one introduced before Lemma 5.8. Then
for all h > 1, there is the identity in law

Law
(

(DQ(bQVi , Li))06i<h ; P̂u,h

)
=
[
Law

(
D(B̂quad

u , U) ; P
)]⊗h

.

Proof. Recall from the notation introduced for Lemma 5.8 that for b a simple block of
a quadrangulation q, and l an integer in {1, . . . , 2|b|}, Dq(b, l) is the graph distance in b

between the endpoints of the l-th edge of b in breadth-first order, and the endpoint of
the root edge of b which is closest to the root vertex of q.

Denote by b 7→ F (b) the mapping which reverses the rooted oriented edge of a simple
quadrangulation. Introduce also for b a simple quadrangulation, fb the permutation of
{1, . . . , 2|b|} which maps the breadth-first order on b to the breadth-first-order on F (b).
Finally, define the event Ei that the root vertex of bQVi is closer to the root vertex of Q

than the other endpoint of the root edge of bQVi . Then by definition, for all 0 6 i < h we
have that

DQ(bQVi , Li) = 1Ei ·D
(
bQVi , Li

)
+ (1− 1Ei) ·D

(
F (bQVi), fbQ

Vi

(Li)
)
.

Let Fi denote the sigma-algebra of the variables (kVj (T) , bMVj , b
Q
Vj
, Lj)06j<i. Then

by Lemma 5.16, we have that the tuple (kVi(T) , bMVi , b
Q
Vi
, Li) is independent of Fi, and

has the same law as
(
ξ̂u , B̂

map
u , B̂quad

u , U). Now the crucial point is that the event Ei
is Fi-measurable, since it can be decided whether or not it holds by looking only at the
first i blocks on the spine. In particular it is independent of (kVj (T) , bMVj , b

Q
Vj
, Lj)j>i.

This implies the following

Law

((
DQ(bQVi , Li)

)
06i<h

; P̂u,h

)
=
⊗

06i<h

[
P̂u,h(Ei) · Law

(
D(B̂quad

u , U)
)

+ (1− P̂u,h(Ei)) · Law
(
D
(
F (B̂quad

u ), fB̂quad
u

(U)
))]

.

The proposition is therefore proved if we justify the identity in law

D(B̂quad
u , U)

(d)
= D

(
F (B̂quad

u ), fB̂quad
u

(U)
)
. (5.16)

To check this, first notice that F is a bijection since it is involutive, so that in particular
the uniform law on simple quadrangulations with k edges is invariant under F . By
definition, for b a simple quadrangulation, fb is also a bijection so that the uniform
measure on {1, . . . , 2|b|} is invariant under it. Denoting Uk a uniform random variable on
{1, . . . , 2k}, this gives for each k > 1 the identity in law

D(Bquad
k , Uk)

(d)
= D

(
F (Bquad

k ), fBquad
k

(Uk)
)
.

Since the pair (B̂quad
u , U) is the ξ̂u/2-mixture of the laws (Bk, Uk)k>1, the identity in

law (5.16) also holds and this conludes the proof.

Moments of typical distances in a size-biased block. We may now examine how
fat are the tails of this i.i.d. family of distances along the spine, which we wish to sum.

Proposition 5.18. Let D be either the variable D(B̂map
u , U) or D(B̂quad

u , U). Then for
u > uC , there exists ε > 0 such that E[exp(tD)] < ∞ for all real t < ε. And for u = uC ,
we have E

[
Dβ
]
<∞ for all 0 < β < 2.
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Proof. The variable D is defined as a distance in B̂u, where B̂u is either B̂map
u or B̂quad

u .
Hence it suffices to prove that the above moments are finite when we replace D by
diam(B̂u).

Let u > uC . Then diam(B̂u) 6 ξ̂u, and the latter variable has finite exponential
moments since P (ξ̂u > x) =

∑
2j>x 2jµu({2j}), where µu has a tail decaying exponentially

fast by Theorem 3.2.
Now take u = uC = 9/5 and let δ ∈ (0, 2). Also let ε > 0 to be chosen later depending

on δ. Using the notation Bk for Bmap
k or Bquad

k , set

pε(k) = P
(

diam(Bk) > k1/4+ε
)
.

By Proposition 5.2, we have that pε(k) decays stretched exponentially as k → ∞.
Therefore we get a constant C > 0 such that k2pε(k) 6 C for all k. Recall that
we have diam(B̂u) 6 ξ̂u. Distinguishing upon whether diam(B̂u) 6 (ξ̂u)1/4+ε or
diam(B̂u) > (ξ̂u)1/4+ε and taking a conditional expectation with respect to ξ̂u, we get

E
[(

diam(B̂u)
)2−δ]

6 E

[(
(ξ̂u)

1/4+ε
)2−δ

1{diam(B̂u)6(ξ̂u)1/4+ε}

]
+ E

[
(ξ̂u)2−δ pε

(
ξ̂u

)]
6 E

[
(ξ̂u)(1/4+ε)(2−δ)

]
+ C

=
∑
2j>0

(2j)(1/4+ε)(2−δ) · 2jµuC ({2j}) + C.

If ε is small enough so that (1/4 + ε)(2 − δ) < 1/2, then the last sum is finite since

by Theorem 3.2 we have µuC ({2j}) = O(j−5/2). Therefore E
[(

diam(B̂u)
)2−δ]

<∞.

Let us make a brief commentary, and justify that when u = uC , Proposition 5.18
is optimal, in the sense that D(B̂quad

uC , U) does not have moments of order β for β > 2.
Firstly, one easily checks that functionals on pointed measured metric spaces of the form

(X,x0, dX , νX) 7→
∫
X

νX(dx)
(
dX(x0, x)

)β
are continuous with respect to the Gromov-Hausdorff-Prokhorov topology. Addario-Berry
and Albenque [3] prove the GHP convergence of size k uniform simple quadrangulations,
rescaled by cst · k−1/4, to the measured Brownian sphere (S, D∗, λ). This holds when
putting either the uniform measure on vertices of Bquad

k or the size-biased one by [4]. In
particular, by the abovementioned continuity, we have the convergence in distribution

E

[(
cst · k−1/4D(Bquad

k , Uk)
)β ∣∣∣ Bquad

k

]
(d)−−−−→
k→∞

∫
S
λ(dx)

(
D∗(x0, x)

)β
,

where Uk is uniform on {1, . . . , 2k} and x0 is the distinguished point on the Brown-

ian sphere. Since the variable
∫
S λ(dx)

(
D∗(x0, x)

)β
is almost surely positive, the left-

hand-side forms a tight sequence of (0,∞)-valued random variables. Therefore it is
bounded away from 0 with uniform positive probability. This implies a lower bound

E
[
D(Bquad

k , Uk)β
]
> c(k1/4)β , for some c = c(β) > 0. In particular,

E
[
D(B̂quad

uC , U)β
]

=
∑
2j>0

E
[
D(Bquad

j , Uj)
β
]
· µ̂uC ({2j}) >

∑
2j>0

cjβ/4 · 2jµuC ({2j})

=
∑
2j>0

Θ(jβ/4+1−5/2).

The latter sum is infinite when β > 2, which proves that D(B̂quad
uC , U) does not have

moments of order β for β > 2. The same argument would hold for D(B̂map
uC , U), but we

lack at the moment the GHP convergence of size-k uniform 2-connected maps.
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5.2.7 Moderate deviations estimate

When increments of a random walk possess only a polynomial moment of order β > 1, as
is the case of D(B̂map

u , U) and D(B̂quad
u , U) when u = uC , moderate and large deviation

events can possibly have probabilities which decay slowly, that is polynomially with n.
In the case of heavy-tailed increments, this indeed happens since those moderate and
large deviation events can be realised by taking one large increment. This one-big-jump
behaviour is actually precisely how these large deviations events are realised. This
phenomenon, which we have already encountered in Section 3 for u < uC , is known as
condensation. For a more precise statement, see [33, 8, 1].

One could hope that if we prevent the variables from condensating, we could still
get stretched-exponentially small probabilities for large deviation events. We make this
precise in the following proposition, by stating that this is the case when we suitably
truncate the increments. We were not able to find an instance of such an estimate in the
literature, although it has certainly been encountered in some form. We thus include a
short proof, which as usual relies on a Chernoff bound.

Proposition 5.19. Let X be a real random variable with i.i.d. copies (Xi)i>1. Assume
that there exists β ∈ (1, 2] such that E

[
|X|β

]
<∞ and that we have E [X] = 0.

Then, for all δ > 0, γ ∈ (0, 1/β + δ), and ν ∈
(
0, δ ∧ (1/β + δ − γ)

)
, there exists a

constant C > 0 such that for all n > 1,

P

(
max

16k6n

k∑
i=1

Xi1{Xi6nγ} > n1/β+δ

)
6 C exp(−nν).

Remark 5.20. A straightforward adaptation of the proof shows that the conclusion still
holds if the only assumptions on the variables (Xi)i are E

[
Xi

∣∣ X1, . . . , Xi−1

]
6 0 and

supi>1E
[
|Xi|β

∣∣ X1, . . . , Xi−1

]
<∞.

Proof of Proposition 5.19. Fix an arbitrary θ such that max(γ, 1/β) < θ < 1/β + δ. By
Chernoff’s bound, we get for all 1 6 k 6 n,

P

(
k∑
i=1

Xi1{Xi6nγ} > n1/β+δ

)
6 exp(−n1/β+δ−θ)

(
E
[
exp
(
n−θX1{X6nγ}

)])k
6 exp(−n1/β+δ−θ)

(
1 ∨ E

[
exp
(
n−θX1{X6nγ}

)])n
.

Therefore we obtain by a union bound the estimate

P

(
max

16k6n

k∑
i=1

Xi1{Xi6nγ} > n1/β+δ

)
6 n ·exp(−n1/β+δ−θ)

(
1∨E

[
exp
(
n−θX1{X6nγ}

)])n
.

Since θ is arbitrary in the interval
(
max(γ, 1/β) , 1/β+ δ

)
, the exponent ν := 1/β+ δ−θ is

arbitrary in the interval
(
0, δ ∧ (1/β+ δ− γ)

)
. As a consequence, to prove the proposition

it is sufficient to show that

E
[
exp
(
n−θX1{X6nγ}

)]
6 1 +O(n−1). (5.17)

Notice that since β ∈ (1, 2], for all M > 0 the following inequality holds for t near 0

or −∞:
exp(t) 6 1 + t+M |t|β .

Therefore, if one takes M large enough it holds for all t ∈ (−∞, 1]. Fix such a constant
M .
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Given λ, s > 0, distinguishing upon whether λx ∈ (−∞, 1] or not and using that
x1{x6s} 6 x and x1{λx61} 6 x (even when x < 0), we get for all x ∈ R,

exp
(
λx1{x6s}

)
6
(

1 + λx1{x6s} +Mλβ |x|β1{x6s}
)
· 1{λx61} + exp(λx1{x6s}) · 1{λx>1}

6 1 + λx+Mλβ |x|β + exp(λs) · 1{λx>1}. (5.18)

Applying this inequality with x = X, λ = n−θ, s = nγ and taking expectations we obtain

E
[
exp
(
n−θX1{X6nγ}

)]
6 1 + n−θE [X] +Mn−βθE

[
|X|β

]
+ exp

(
nγ−θ

)
· P
(
X > nθ

)
.

Recall that E[X] = 0 by hypothesis, that γ − θ < 0 by choice of θ, and use Markov’s
inequality. This yields

E
[
exp
(
n−θX1{X6nγ}

)]
6 1 + 0 +Mn−βθE

[
|X|β

]
+ exp(1) · n−βθE

[
|X|β

]
.

Since by hypothesis E
[
|X|β

]
<∞, we have

E
[
exp
(
n−θX1{X6nγ}

)]
6 1 +O(n−βθ) 6 1 +O(n−1)

where the last inequality comes from the choice of θ, which is greater than 1/β. There-
fore (5.17) is satisfied and the proposition is proved.

5.2.8 A lemma to compare m, q and t

Let us state a lemma that elaborates on the additivity of distances on consecutive blocks,
so that we can bound the GHP-distance between a map (resp. a quadrangulation) and
its block-tree scaled by some constant. Let κ1 and κ2 be positive constants. Let m be a
map, q its associated quadrangulation by Tutte’s bijection, and t their block-tree.

For x a vertex of either m or q, denote as in Lemmas 5.7 and 5.8 by v? the vertex v of
t closest to the root of t such that x is a vertex of bmv (resp. bqv). Set similarly h? = ht(v?)

the height of v? in t, and (vi)06i6h? the ancestor line of v? in t, with v0 the root of t and
vh? = v?. Also denote by xi the root vertex of bmvi (resp. bqvi). Finally, let (li)06i<h? be the
respective breadth-first index of the corner in bmvi (resp. the edge in bqvi) to which the
root corner of bmvi+1

(resp. the root edge of bqvi+1
) is attached. Finally, denote by ∆(m)

(resp. ∆(q)) the largest diameter of a block of m (resp. q). We set the quantities

R(m, v?, κ1) = max
06i<h?

∣∣∣∣∣∣
h?−1∑
j=i

(
D(bmvj , lj)− κ1

)∣∣∣∣∣∣ ,
and R(q, v?, κ2) = max

06i<h?

∣∣∣∣∣∣
h?−1∑
j=i

(
Dq(bqvj , lj)− κ2

)∣∣∣∣∣∣ .
Notice that the preceding quantities depend on x only through v? and therefore make
sense as functions of only (m, v?, κ1) and (q, v?, κ2) respectively.

Lemma 5.21. Let fm and fq be the functions on V (t) defined by fm(v) = |V (bmv )| − 1 and
fq(v) = |V (bqv)| − 2 respectively. With the above notation, we have for all ε > 0,

dGHP

(
ε ·m , εκ1 ·

(
t, dt,

fm

|fm|
))

6 κ1ε+
3ε

2
∆(m) + ε max

v?∈V (t)
R(m, v?, κ1) +

2

|fm|
,

and

dGHP

(
ε · q , εκ2 ·

(
t, dt,

fq

|fq|
))

6 (κ2 + 3)ε+
3ε

2
∆(q) + ε max

v?∈V (t)
R(q, v?, κ2) +

4

|fq|
.
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Proof. Let us first treat the inequality involving q, which is a bit more involved. Consider
the correspondence C between V (q) and V (t) defined as follows. A vertex x of q is set in
correspondence with a vertex v of t if and only if v is the vertex v? defined as above from
x; and let ρ(x) := v?. Put differently, a vertex v of t is put in correspondence precisely
with the fq(v) = |V (bqv)| − 2 vertices of the block bqv which are not incident to the root
edge of bqv (except when v is the root vertex in which case v is in correspondence with
all the vertices of bqv).

Let γ be the uniform measure on the previously defined set C = {(x, ρ(x)) : x ∈
V (q)} ⊂ V (q) × V (t). Let the function π : C → V (t) be the restriction of the projection
πt : (x, y) ∈ V (q) × V (t) 7→ y ∈ V (t). The preimages of π have cardinal |π−1(v)| =

|ρ−1(v)| = fq(v) + 2δroot(v), where δroot(v) is an indicator that x is incident to the root-
edge of q. Tautologically, the measure γ defines a coupling between its images by the
projections πq : (x, y) ∈ V (q)× V (t) 7→ x ∈ V (q) and πt. That is to say, γ is a coupling of
the measures νq and fq+2δroot

|fq|+2 . It is also supported by C, i.e. γ
(
(V (q)× V (t)) \C

)
= 0. By

the triangle inequality and the preceding observations, we have

dGHP

(
ε · q , εκ2 ·

(
t, dt,

fq

|fq|
))

6 dGHP

(
ε · q , εκ2 ·

(
t, dt,

fq+2δroot
|fq|+2

))
+ dGHP

(
εκ2 ·

(
t, dt,

fq+2δroot
|fq|+2

)
, εκ2 ·

(
t, dt,

fq

|fq|
))

6
ε

2
dis(C; dq, κ2dt) + d

(V (t),εκ2dt)
P ( fq+2δroot

|fq|+2 , fq

|fq| ).

The last inequality uses (5.2) to bound the second GHP distance by a Prokhorov dis-
tance. Now, the Prokhorov distance between two measures is bounded by their total
variation distance, and for measures µ and ν we have elementarily dTV( µ+ν

|µ|+|ν| ,
µ
|µ| ) 6

2|ν|
|µ| .

Therefore, we have

d
(V (t),εκ2dt)
P

(
fq + 2δroot

|fq|+ 2
,
fq

|fq|

)
6 dTV

(
fq + 2δroot

|fq|+ 2
,
fq

|fq|

)
6

4

|fq|
.

It remains to bound the distortion dis(C; dq, κ2dt). This amounts to bounding
|dq(x, x̃) − κ2dt(ρ(x), ρ(x̃))| uniformly for all pairs of vertices (x, x̃) in V (q) × V (q). Let
x and x̃ be vertices of q. As before, we define the vertices v? = ρ(x) and ṽ? = ρ(x̃) in
V (t), their respective heights h? and h̃?, their ancestor lines (vi)06i6h? and (ṽi)06i6h? ,

the labels (li)06i<h? and (l̃i)06i<h? , and the vertices (xi)06i6h? and (x̃i)06i6h? .
Let i be such that vi = ṽi is the last common ancestor of v? and ṽ? in t. First notice

that there exists δ0 ∈ {0,±1,±2} such that

dq(x, x̃) = δ0 + dq(x, xi+1) + dbq
vi

(xi+1, x̃i+1) + dq(x̃i+1, x̃). (5.19)

Indeed, similarly as in the proof of Lemma 5.8, a geodesic from x to x̃ must visit, once
and in that order,

• the vertex x,

• either xi+1, or x′i+1 the other endpoint of the root-edge of bqvi+1
,

• either x̃i+1, or x̃′i+1 the other endpoint of the root-edge of bqṽi+1
,

• the vertex x̃.

Since xi+1 and x′i+1, as well as x̃i+1 and x̃′i+1, are at distance 1 respectively, and since
a geodesic between points in bvi must stay in bvi , we get that (5.19) holds, for some
δ0 ∈ {0,±1,±2}. Then, Lemma 5.8 allows to decompose the distances dq(x, xi+1) and

dq(x̃i+1, x̃), with some δ, δ̃ in {0, 1}. Combining this with (5.19), this gives

dq(x, x̃) = δ0 +

δ + dbq
v?

(x, xh?) +
∑

i+16j<h?−1

Dq(vj , lj)

+ dbqvi
(xi+1, x̃i+1)
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+

δ̃ + dbq
ṽ?

(x̃, x̃h̃?) +
∑

i+16j<h̃?−1

Dq(ṽj , l̃j)


= δ0 + δ + δ̃ + dbq

v?
(x, xh?) + dbq

vi
(xi+1, x̃i+1) + dbq

ṽ?
(x̃, x̃h̃?)

+
∑

i+16j<h?−1

(Dq(vj , lj)− κ2) +
∑

i+16j<h̃?−1

(
Dq(ṽj , l̃j)− κ2

)
+ κ2(h? − i− 1) + κ2(h̃? − i− 1).

The sum of the first six terms has absolute value at most 6 + 3∆(q), the two sums have
absolute value at most R(q, x, κ2) and R(q, x̃, κ2) respectively, and the two remaining
terms sum to κ2(h? − i− 1) + κ2(h̃? − i− 1) = κ2dt(v, ṽ)− 2κ2. Therefore by the triangle
inequality,

|dq(x, x̃)− κ2dt(v, ṽ)| 6 2κ2 + 6 + 3∆(q) +R(q, x, κ2) +R(q, x̃, κ2).

Since this holds for every (x, v) = (x, ρ(x)) ∈ C and (x̃, ṽ) = (x̃, ρ(x̃)) ∈ C, the max of
the right-hand side over x, x̃ ∈ V (q) is actually a bound on the distortion dis(C; dq, κ2dt),
which is precisely what we needed to conclude.

For the inequality involving m, the reasoning is quite similar. Take C the corre-
spondence such that x ∈ V (m) is in correspondence with v ∈ V (t) if and only if v is
the vertex ρ(x) = v?. Equivalently, a vertex v of t is put in correspondence with the
fm(v) = |V (bmv )| − 1 non-root vertices of the block bmv , except when v is the root vertex
of t in which case v is in correspondence with all the vertices of bmv . Then, similarly,
the uniform measure γ on C defines a coupling between the measures νm and fm+δroot

|fm|+1 ,

where δroot(x) is the indicator that x is the root vertex of m. As in the quadrangulation
case, we have

dGHP

(
ε ·m , εκ1 ·

(
t, dt,

fm

|fm|
))

6
ε

2
dis(C; dm, κ1dt) + d

(V (t),εκ1dt)
P ( fm+δroot

|fm|+1 , fm

|fm| ),

with the similar bound

d
(V (t),εκ1dt)
P

(
fm + δroot

|fm|+ 1
,
fm

|fm|

)
6

2

|fm|
.

The distortion of C is bounded with a very similar argument as above involving Lemma 5.7
instead of Lemma 5.8, except that we do not need to introduce δ0, δ, δ̃. We leave the
details to the reader. This gives for all (x, v) ∈ C and (x̃, ṽ) ∈ C, the bound

|dm(x, x̃)− κ1dt(v, ṽ)| 6 2κ1 + 3∆(m) +R(m, x, κ1) +R(m, x̃, κ1),

which proves the inequality involving m in the statement.

5.2.9 Proof of Theorem 5.4

Let u > uC . Let us first prove the claimed scaling limit for the block-tree Tn,u. By Propo-
sition 3.1, Tn,u has law GW(µu, 2n), where the distribution µu has span 2.

Scaling limit of Tn,u for u > uC . If u > uC , then by the third statement of Theo-
rem 3.2, µu is critical and admits a variance σ(u)2 < ∞. Corollary 5.11 thus gives the
announced scaling limit for Tn,u,

(2n)−1/2 ·Tn,u

GHP,(d)−−−−−−−−−→
n→∞

√
2

σ(u)
· T (2).
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The expression for σ(u) in terms of the generating function B which is given in the
statement comes from a straightforward computation from the generating function of
µu, which by (3.1) is ∑

k>0

xkµu(k) =
uB(x2y(u)) + 1− u
uB(y(u)) + 1− u

.

This expression admits the explicit form in terms of u which is given in the statement
and explained in Remark 5.5.

Scaling limit of Tn,u for u = uC . If u = uC , then by the second statement of Propo-
sition 3.1, µuC is critical and satisfies µuC ({2j}) ∼ 1

4
√

3π
j−5/2. Therefore we get the

equivalent

µuC ([x,∞)) =
∑
2j>x

µuC ({2j}) ∼
∫ ∞
x/2

1

4
√

3π
s−5/2 ds =

1

3

√
2

3π
x−3/2.

Therefore, using Corollary 5.11 with θ = 3/2, we get

(2n)1−2/3 ·Tn,uC

GHP,(d)−−−−−−−−−→
n→∞

 3
2 − 1

1
3

√
2

3πΓ(2− 3
2 )

2/3

· T (3/2).

Using that Γ(1/2) =
√
π, the constant on the right-hand side simplifies and this translates

as announced to
2

3
(2n)−1/3 ·Tn,uC

GHP,(d)−−−−−−−−−→
n→∞

T (3/2).

Restatement of the problem. We let α = 2 when u > uC , and α = 3/2 when u = uC .
We have identified the GHP-limit of n−(α−1)/α ·Tn,u. By Proposition 5.12, the measured
metric spaces

n−(α−1)/α ·
(
V (Tn,u), dTn,u ,

fMn,u

|fMn,u |

)
and n−(α−1)/α ·

(
V (Tn,u), dTn,u ,

fQn,u

|fQn,u |

)
,

also converge to the same limit. It remains to compare them in the GHP sense to the
measured metric spaces n−(α−1)/α ·Mn,u and n−(α−1)/α ·Q

n,u
respectively. Let κ1 = κmap

u

and κ2 = κquad
u . For the ease of reading, we introduce for η > 0 the following “bad”

events,

BM
n,η =

{
dGHP

(
n−

α−1
α ·M , n−

α−1
α κ1 ·

(
V (T), dT,

fM

|fM|

))
> 2η

}
,

BQ
n,η =

{
dGHP

(
n−

α−1
α ·Q , n−

α−1
α κ2 ·

(
V (T), dT,

fQ

|fQ|

))
> 2η

}
,

as well as auxiliary events for η, δ > 0,

AM
1;n,η =

{
∃v ∈ V (T), R(M, v, κ1) > ηn

α−1
α

}
,

AQ
1;n,η =

{
∃v ∈ V (T), R(Q, v, κ2) > ηn

α−1
α

}
,

AM
2;n,δ =

{
∆(M) 6 n(1+δ)2(α−1)/2α

}
,

AQ
2;n,δ =

{
∆(Q) 6 n(1+δ)2(α−1)/2α

}
,

AM
3;n,η =

{
κ1n

−α−1
α + 3n−

α−1
α

2 ∆(M) +
2

|fM|
> η

}
,
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AQ
3;n,η =

{
(κ2 + 3)n−

α−1
α +

3n−
α−1
α

2
∆(Q) +

4

|fQ|
> η

}
.

With this notation, what we have to show is

lim
η→0

lim sup
n→∞

Pn,u(BM
n,η) = 0 and lim

η→0
lim sup
n→∞

Pn,u(BQ
n,η) = 0.

Using Lemma 5.21. Thanks to the GHP upper bounds in Lemma 5.21, we have

Pn,u(BM
n,η) 6 Pn,u(AM

1;n,η)+Pn,u(AM
3;n,η) and Pn,u(BQ

n,η) 6 Pn,u(AQ
1;n,η)+Pn,u(AQ

3;n,η).

(5.20)

Bounding the diameters of the blocks. By Corollary 5.3, for δ > 0, the maximum
diameter of blocks of either Mn,u or Qn,u is bounded with probability 1 − o(1) by
max(n1/6,W (Tn,u)(1+δ)/4), where W (t) denotes the largest degree of t. By Corollary 5.11,
W (Tn,u) is o

(
n(1+δ)/α

)
in probability. Since (1 + δ)2/4α > 1/6, what precedes gives that

for all δ > 0,

max
(
∆(Mn,u),∆(Qn,u)

)
= o

(
n(1+δ)2/4α

)
in probability.

Notice that for δ small enough, (1 + δ)2/4α < (1 + δ)2(α − 1)/2α since α > 3/2. This
implies that for all δ > 0 sufficiently small, we have

lim sup
n→∞

Pn,u

(
(AM

2;n,δ)
c
)

= 0 and lim sup
n→∞

Pn,u

(
(AQ

2;n,δ)
c
)

= 0.

By Lemma 5.13, the quantities |fM| and |fQ| are Θ(n) in probability under Pn,u. There-
fore, the preceding bound on diameters also implies the following

lim
η→0

lim sup
n→∞

Pn,u(AM
3;n,η) = 0 and lim

η→0
lim sup
n→∞

Pn,u(AQ
3;n,η) = 0.

Thanks to (5.20), it suffices to show that for sufficiently small δ > 0,

lim
η→0

lim sup
n→∞

Pn,u(AM
1;n,η ∩AM

2;n,δ) = 0 and lim
η→0

lim sup
n→∞

Pn,u(AQ
1;n,η ∩A

Q
2;n,δ) = 0.

Bounding the height of Tn,u. We have identified above the scaling limit of Tn,u and
the appropriate normalization of distances. In particular, n(α−1)/α ·Tn,u is tight in the
GHP-topology. An immediate consequence is that n−(α−1)/αH(Tn,u) is tight, where
H(Tn,u) is the height of Tn,u. In particular, our problem reduces once more to showing
that for sufficiently small δ > 0,

lim
η→0

lim sup
n→∞

Pn,u

(
AM

1;n,η ∩AM
2;n,δ ∩

{
H(T) 6 η−1n

(α−1)
α

})
= 0

and lim
η→0

lim sup
n→∞

Pn,u

(
AQ

1;n,η ∩A
Q
2;n,δ ∩

{
H(T) 6 η−1n

(α−1)
α

})
= 0. (5.21)

Using the spine decomposition. Fix δ > 0, as small as necessary. Let us only treat
the term involving Q in (5.21), as the expression for R(q, x, κ2) we used to define the
event AQ

1;n,η carries more dependence than that of R(m, x, κ1). Indeed the summands
Dq(bqvi , li) involve in their definition a global metric property of q. The case of the term
involving M is similar and easier to deal with.

Recall that by definition, the law Pn,u is the law Pu, conditioned on the event
{|T| = n}. Since Pu(|T| = n) decays polynomially by Corollary 5.11, we may get rid
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of the conditioning if the unconditional versions of the probabilities we wish to bound
decay sufficiently fast. Namely, it suffices to prove that for all η > 0, the following
(unconditional) probability is stretched-exponential in n

Pu

(
AQ

1;n,η ∩A
Q
2;n,δ ∩ {H(T) 6 η−1n

(α−1)
α }

)
. (5.22)

By a union bound and then by Proposition 5.15, one can bound this by

Eu

 ∑
v∈V (T)

1{
R(Q,v,κ2)>ηn

α−1
α

}1{
H(T)6η−1n

α−1
α

}1{AQ
2;n,δ}


=
∑
h>1

P̂u,h

(
{R(Q, V?, κ2) > ηn

α−1
α } ∩ {H(T) 6 η−1n

α−1
α } ∩AQ

2;n,δ

)

=

bη−1n
α−1
α c∑

h=1

P̂u,h

(
{R(Q, V?, κ2) > ηn

α−1
α } ∩AQ

2;n,δ

)

=

bη−1n
α−1
α c∑

h=1

P̂u,h

 max
06i<h

∣∣∣∣∣∣
h−1∑
j=i

(
DQ(bQvj , Lj)− κ2

)∣∣∣∣∣∣ > ηn
α−1
α

 ∩AQ
2;n,δ


6
bη−1n

α−1
α c∑

h=1

[
P̂u,h

(
max

06i<h

h−1∑
j=i

ψn,δ

(
DQ(bQVj , Lj)− κ2

)
> ηn

α−1
α

)

+ P̂u,h

(
max

06i<h

h−1∑
j=i

ψn,δ

(
κ2 −DQ(bQVj , Lj)

)
> ηn

α−1
α

)]
,

where

ψn,δ(x) = x1{x6max(κ2,n(1+δ)2(α−1)/2α)}.

The last inequality may require some explanations. First we apply a union bound with
respect to the sign of the expression under the absolute value. Then we use the control
that AQ

2;n,δ offers on ∆(Q) the maximum diameter of blocks of Q, and the positivity of

the distances DQ(bQvj ), to insert an indicator function. Hence the appearance of ψn,δ.

Reducing to a large deviations event with truncated variables. We let(
ξ̂u,j , B̂

quad
u,j , Uj

)
j>0

be an i.i.d. sequence of copies of the triple
(
ξ̂u , B̂

quad
u , U

)
. We also

let Xj = D
(
B̂quad
u,j , Uj

)
− κ2. Then by Lemma 5.17, the arguments of the function ψn,δ

that appear in the last upper bound we obtained, are actually i.i.d. and have joint law
under P̂u,h the law of (Xj)06j<h. Therefore this last upper bound is equal to

bη−1n
α−1
α c∑

h=1

P
 max

06i<h

h−1∑
j=i

ψn,δ (Xj) > ηn
α−1
α

+ P

 max
06i<h

h−1∑
j=i

ψn,δ (−Xj) > ηn
α−1
α

 .
Since the sequence (Xj)06j<h is i.i.d., we re-order the terms of the two sums which
appear inside the probabilities in the last display, so that they run on indices j = 1, . . . , i.
Hence, if we set hn = n(α−1)/α, then we can bound the last display by

η−1hn

P
 max

06i<η−1hn

i∑
j=1

ψn,δ (Xj) > ηhn

+ P

 max
06i<η−1hn

i∑
j=1

ψn,δ (−Xj) > ηhn

 .
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Using the moderate deviations estimate. Let γ = γ(δ) = (1+δ)2/2. Then (hn)γ > κ2

for n large, so

ψn,δ(x) = x1{x6max(κ2,(hn)γ)} = x1{x6(hn)γ}.

Let us check that the choice of κ2 = κquad
u , the latter quantity being defined in (5.7),

makes the variables (Xj) centered. Conditionally on the event {|B̂quad
u | = k}, the variable

B̂quad
u is a uniform simple quadrangulation with k edges, and U is uniform in {1, . . . , 2k}.

Therefore it holds that

E
[
D
(
B̂quad
u,j , Uj

)]
=
∑
k>1

P
(
|B̂quad

u | = k
)
E
[
D
(
B̂quad
u , U

)
| |B̂quad

u | = k
]

=
∑
k>1

µ̂u(2k)Dquad
k = κ2,

where we used successively the definition of (b, l) 7→ D(b, l) in Lemma 5.17, the definition
of Dquad

k after (5.7), and the definition of κ2 = κquad
u in (5.7). Therefore, the i.i.d. variables

(Xj) are indeed centered. Now by Proposition 5.18, they possess moments of order β for
all 1 6 β < 2. Since for δ sufficiently small we have γ < 1, Proposition 5.19 yields that

P

 max
06i<η−1hn

i∑
j=1

Xj1{Xj6(hn)γ} > ηhn


is stretched-exponential as n→∞, and the same holds when replacing (Xj) by (−Xj).

This proves that for each η > 0, the probability (5.22) is indeed stretched-exponential
in n, and concludes the proof.

5.3 Scaling limit of the quadrangulations in the subcritical case

Let us finally identify the scaling limit of the quadrangulation Q
n,u

when u < uC .

5.3.1 Statement of the result

Denote by S = (S, D∗, λ) the Brownian sphere, also known as the Brownian Map. One
may take Proposition 5.23 below as a definition.

Theorem 5.22. Assume u < uC = 9/5. We have the following convergence in distribu-
tion for the Gromov-Hausdorff-Prokhorov topology(

9(3 + u)

8(9− 5u)

)1/4

n−1/4 ·Q
n,u

(d),GHP−−−−−−−−−→
n→∞

S.

In the case u = 1, one recovers the Brownian sphere as the scaling limit of uniform
quadrangulations with n faces, which has been proven in [43] and [52]. It is also the
scaling limit of uniform simple quadrangulations with n faces, which was proven in [2].
The latter corresponds informally to the case u→ 0.

We emphasize that those results, and especially the one of [2], serve as an input in
our proof and we do not provide a new proof of them. Accordingly, let us precisely state
the latter result, so that we can use it in the subsequent proof.

Proposition 5.23 ([2]). Uniform simple quadrangulations with k faces admit the Brow-
nian sphere as scaling limit, with the following normalization(

3

8k

)1/4

·Bquad
k

(d),GHP−−−−−−−−−→
k→∞

S.
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This is precisely the result [2, Theorem 1.1], restricted to the case of simple quadran-
gulations. Notice that in their result, the scaling limit is stated in terms of Mn, a uniform
simple quadrangulation with n vertices, not faces. This is not a problem since by Euler’s
formula, a quadrangulation has n vertices if and only if it has n − 2 faces. Therefore
Bquad
k has the same law as Mk+2.

Note that Theorem 5.22 only deals with the quadrangulation Q
n,u

, but not the map

Mn,u. Let us detail what would be needed to obtain a similar statement for Mn,u.

• To obtain a Gromov-Hausdorff scaling limit, the missing ingredient is the equivalent
for 2-connected maps of the result of [2], that is to say GH(P) convergence of
uniform 2-connected maps with n edges, rescaled by a constant times n−1/4, to the
Brownian sphere.

• In order to strengthen this to GHP convergence when the map is equipped with the
uniform measure on vertices, one would need the above mentioned convergence of
2-connected maps, but in the GHP sense. It would also require a way to compare,
in the Prokhorov sense, the degree-biased measure on vertices of Mn,u, and the
uniform measure. For quadrangulations on the other hand, this comparison can be
done using [4, Lemma 5.1].

The paper [4] makes precise the relationship between the convergence of uniform
quadrangulations with n faces [43, 52], and the convergence of simple uniform quad-
rangulations with n faces [2]. It is shown that a quadrangulation sampled uniformly
among those which have size n and whose biggest block has size k(n) ∼ cn with an
adequate c > 0, converges jointly with said biggest block to the Brownian sphere, in the
GHP sense.

The proof of Gromov-Hausdorff convergence for these quadrangulations amounts
to showing that pendant submaps that are grafted on the macroscopic block have
negligible diameter, that is o

(
n1/4

)
, which is done by [4, Proposition 1.12]. The strategy

of proof is not directly applicable here, since it uses an a priori diameter bound on the
pendant submaps, which we do not have for general u. As explained in what follows, it is
sufficient to have an a priori diameter bound on single blocks themselves, which is why
we need Proposition 5.2. To strengthen GH convergence to GHP convergence however,
we use the same arguments as those exposed in [4] modulo some technical details.

5.3.2 Sketch of the proof

On the combinatorics side, Theorem 4.2 characterizes the phase u < uC by a conden-
sation phenomenon: when n is large, there is precisely one block of linear size, while
others have size O(n2/3). This theorem is stated for a map with law Pn,u, that is the law
of Mn,u, but by Section 2.5, Tutte’s bijection commutes with the block decomposition, so
that the same happens for Qn,u.

On the metric side, there is not much more going on. The block-tree is subcritical
in this phase by Theorem 3.2 and therefore has small height. Combining this with
the O(n2/3) bound on the size of non-macroscopic blocks, and the deviation estimate
of Proposition 5.2 on diameters of blocks, we get that Qn,u is approximately equal to its
largest block, in the Gromov-Hausdorff sense in the scale n1/4. This argument is rather
general and should be easy to adapt to other models of graphs or maps with a block-tree
decomposition under a condensation regime.

In order to strengthen this convergence to one in the Gromov-Hausdorff-Prokhorov
sense, we use the rather general result [4, Corollary 7.2], by comparing the mass measure
on vertices with a projection on the macroscopic block, which is modulo some technical
details an exchangeable vector on the edges where the pendant submaps are attached.
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This corollary tells that this random measure is well-approximated by its expectation,
which is uniform on the edges of the macroscopic block, or equivalently that it is degree-
biased on its vertices. The last part of the argument is specific to quadrangulations, for
which we can compare the degree-biased and the uniform measure on vertices by [4,
Lemma 6.1].

5.3.3 Comparison of a quadrangulation and its biggest block

Let us introduce some notation. Let v◦ be the vertex of t with largest outdegree,
choosing one arbitrarily if there are several, and let q◦ = bqv◦ . Denote by t[v] the
subtree of descendants of a node v in t, rooted at v. For an edge e of q◦ = bqv◦ , the
block-tree decomposition associates to it a vertex v, so that we can denote by q[e] the
quadrangulation whose block-tree decomposition is (bqw)w∈t[v]. Recall that by convention,
if v is a leaf then q[e] is the edge map, with 2 vertices and 1 edge, the edge e. Write also q+

for the quadrangulation whose block decomposition is (bqv)v∈t[v◦]. In particular, q◦ is the
simple core of q+, and its other blocks are the blocks of the pendant subquadrangulations

(q[e])e∈E(q◦). Finally, let πq+

q◦ be the probability measure on vertices of q◦ obtained by
projection of the contribution to νq of each pendant map (q[e])e∈E(q◦) to the biggest block
q◦. More formally, for each edge e of q◦, let {e+, e−} be its extremities. Then,

πq+

q◦ =
1

|V (q+)| − |V (q◦)|
∑

e∈E(q◦)

(∣∣V (q[e])
∣∣− 2

) (
1
2δe− + 1

2δe+
)
.

Observe that V (q◦) shares exactly two elements with each (V (q[e]))e∈E(q◦), when those
vertex-sets are naturally embedded in V (q). Hence the last display indeed defines a
probability measure.

Lemma 5.24. For any ε > 0, it holds that

dGHP(ε · q, ε · q◦) 6 2rGH + rP +
(
1− |V (q◦)|

|V (q+)|
)
d

(V (q◦),εdq)
P

(
πq+

q◦ , νq◦
)
,

where

rGH = 2εH(t) max
v 6=v◦

diam(bqv) and rP =
2
∣∣V (q) \ V (q+)

∣∣
|V (q)|

.

Proof. There are successive comparisons to be made for the GHP distance.

Metric comparison. The term rGH bounds how distant the spaces ε · q, ε · q+ and ε · q◦
are, from a metric point of view, i.e. in the GH sense. Recall that we can see q and
q+ as their biggest block q◦, together with some maps attached to it. Therefore one
needs to bound the maximal diameter of the attached maps. We use a brutal bound on
the diameter of the non-macroscopic blocks by their maximal diameter, together with
a bound on the number of consecutive blocks in the attached maps. This number is
bounded by diam(t) 6 2H(t). Therefore the maximal diameter of attached maps in ε · q
or ε · q+ is bounded by

rGH := 2εH(t) max
v 6=v◦

diam(bqv).

In particular, take the correspondence B1 on V (q) × V (q+) such that x ∈ V (q) is in
correspondence with only itself if it belongs to V (q+), or otherwise with both endpoints
of the root-edge of q+ if it belongs to V (q) \ V (q+). The uniform measure on B1 is a
coupling between νq and some measure µ+ on V (q+). One therefore gets, using the
triangle inequality and (5.2),

dGHP(ε · q, ε · q+) 6 rGH + d
(V (q+),εdq)
P (µ+, νq+). (5.23)
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Similarly, take the correspondence B2 on V (q+) × V (q◦) such that x ∈ V (q+) is in
correspondence with only itself if it belongs to V (q◦), or otherwise with both endpoints
{e+, e−} of the root-edge of q[e] if x belongs to V (q[e]) \ {e+, e−} for some edge e ∈ E(q◦).
Then the uniform measure on B2 is a coupling between νq+ and some measure µ◦ on
V (q+). We get as above

dGHP(ε · q+, ε · q◦) 6 rGH + d
(V (q◦),εdq)
P (µ◦, νq◦). (5.24)

Comparing the uniform measures on vertices of q and q+. Observe that νq+ is the
counting measure on V (q+) renormalized to a probability distribution, while µ+ is the
renormalized version of the same counting measure but with additional mass

m := |V (q) \ V (q+)| − 2,

the latter being split equally on the endpoints of the root-edge of q+. Elementarily, this
yields a total variation bound, as follows

dTV(µ+, νq+) 6
2m

V (q)
6

2|V (q) \ V (q+)|
V (q)

=: rP.

Since the Prokhorov distance is bounded by the total variation distance, we have

d
(V (q+),εdq)
P (µ+, νq+) 6 rP. (5.25)

Comparing the uniform measures on vertices of q+ and q◦. From the definition of

πq+

q◦ and from the following partitioning, under the natural embedding of the vertex-sets
in V (q),

V (q+) = V (q◦)
⊔

e∈E(q◦)

V (q[e]) \ {e+, e−},

observe that the measure µ◦ obtained from the correspondence B2 above decomposes
as follows

µ◦ = |V (q◦)|
|V (q+)|νq◦ + |V (q+)|−|V (q◦)|

|V (q+)| πq+

q◦ .

In particular, we obtain from (5.3) that

d
(V (q◦),εdq)
P (µ◦, νq◦) =

(
1− |V (q◦)|

|V (q+)|

)
d

(V (q◦),εdq)
P

(
πq+

q◦ , νq◦
)
. (5.26)

Concluding the proof. By the triangle inequality, we have

dGHP(ε · q, ε · q◦) 6 dGHP(ε · q, ε · q+) + dGHP(ε · q+, ε · q◦).

Using (5.23) and (5.25) to bound the first term, and (5.24) and (5.26) to bound the second
one, we get the claimed inequality.

5.3.4 Exchangeable decorations

We aim to use Addario-Berry & Wen’s argument for [4, Lemma 6.2] which tells that
for exchangeable attachments of mass on edges of Qn, a quadrangulation with n faces
sampled uniformly, the resulting measure on Qn is asymptotically close to the uniform
measure on vertices, in the sense of the Prokhorov distance on n−1/4 ·Qn. They use the
following ingredients:
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1. A concentration inequality [4, Lemma 5.2] which compares the measure with
exchangeables attachments of mass on edges, to the degree-biased measure on
vertices.

2. A Prokhorov comparison [4, Lemma 5.1] between the degree-biased and uniform
measure on vertices of a quadrangulation.

3. GHP convergence of n−1/4 ·Q
n

to the Brownian sphere.

4. Properties of the Brownian sphere such as compacity and re-rooting invariance.

The first ingredient is rather general and actually stated for any graph in [4, Lemma 5.3].
We will ever-so-slightly adapt its proof since there is a double edge in their setting which
we do not have, and the mass is not projected on vertices in the exact same way. The
second ingredient is specific to quadrangulations and one may need different arguments
to compare the degree-biased and uniform measures for other classes of maps.

Let us state which result we extract for our purpose from Addario-Berry & Wen’s
paper. For n = (n(e))e∈E(G) a family of nonnegative numbers indexed by edges of a
graph G, we denote its p-norm for p > 1 by

|n|p :=

 ∑
e∈E(G)

(n(e))p

1/p

.

Then define the following measure on V (G):

µn
G :=

1

|n|1

∑
e∈E(G)

n(e)
(

1
2δe+ + 1

2δe−
)
,

with {e+, e−} the set of endpoints of the edge e. Notice that this definition is slightly
different from that of νnG in [4, Section 5], because the mass of an edge is projected
uniformly and independently on either of its enpoints in their case, while we determinis-
tically split this mass on both endpoints. This does not change much except that we find
it easier to work with. One of their results translates as the following.

Proposition 5.25 ([4, Corollary 6.2]). Let Qk = Bquad
k , which is a simple quadrangu-

lation with k faces, sampled uniformly. Consider for each k > 1, a random family
nk = (nk(e))e∈E(Qk) of nonnegative numbers, such that conditionally on Qk it is an
exchangeable family. Assume that |nk|2/|nk|1 → 0 in probability as k →∞. Then there
holds the convergence in probability

d
(V (Qk),εkdQk )

P

(
µnk
Bk
, νQk

)
P−−−−→

k→∞
0,

where νQk is the uniform measure on vertices of Qk and εk = k−1/4.

This is the statement of [4, Corollary 6.2], adapted to our setting. The proof goes
mutatis mutandi, except for an adjustement in the concentration inequality [4, Lemma
5.3], which we adapt below in Lemma 5.26.

Lemma 5.26 ([4, Lemma 5.3]). Let G be a graph and n = (n(e))e∈G a random and
exchangeable family of nonnegative numbers with |n|2 > 0 almost surely. Then for any
V ⊂ V (G), and any t > 0,

P

(∣∣∣µn
G(V )− νG(V )

∣∣∣ > 2t

|n|1

∣∣∣∣ |n|2) 6 2 exp

(
− 2t2

|n|22

)
.

The proof goes the same way as that of [4, Lemma 5.3], except that we do not have a
double edge here, and the mass on edges is projected deterministically on vertices in
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our case, instead of randomly. The reader may notice that there is an extra term inside
the probability in their lemma. This term accounts for the double edge, which we do not
have here. The same line of arguments still works though. Indeed, we have

µn
G(V ) =

∑
e∈E(G[V ])

n(e)

|n|1
+

1

2

∑
e∈∂eV

n(e)

|n|1
,

with G[V ] the induced-graph on V by G, and ∂eV the subset of the edges of V who have
only one endpoint which belongs to V . By exchangeability, we have the expectation

E

 ∑
e∈E(G[V ])

n(e) +
1

2

∑
e∈∂eV

n(e)
∣∣∣ |n|1

 = |n|1
|E(G[V ])|
|E(G)|

+ |n|1
1
2 |∂eV |
|E(G)|

= |n|1νG(V ).

The last equality holds because the degree biased-measure counts twice each edge of
G[V ], since this edge appears in the degree of both its endpoints, while the edges of ∂eV
are only counted once, in the degree on the only one of its endpoints which is in V .

Then one concludes as in the proof of [4, Lemma 5.3], by a Hoeffding-type bound for
exchangeable vectors.

5.3.5 Proof of Theorem 5.22

Scaling limit of the biggest block. By Proposition 2.5 and Proposition 2.11, the
biggest block of Qn,u, whose size we denote C(n, u), is a simple quadrangulation sampled
uniformly with size C(n, u). Also by Theorem 4.2, this size is asymptotically in probability,

C(n, u) = (1− E(u))n+OP(n2/3) =
9− 5u

3(3 + u)
n+OP(n2/3).

By conditioning on C(n, u) and using Proposition 5.23, we therefore get the following
GHP scaling limit for the biggest block(

3

8C(n, u)

)1/4

·Q◦
n,u

(d),GHP−−−−−−−−−→
n→∞

S,

which by the preceding equivalent in probability for C(n, u) reduces to(
9(3 + u)

8(9− 5u)

)1/4

n−1/4 ·Q◦
n,u

(d),GHP−−−−−−−−−→
n→∞

S.

GHP comparison of Qn,u with its biggest block. By the preceding scaling limit, and
the use of Lemma 5.24 with q = Qn,u and ε = n−1/4, the proof of the theorem reduces to
showing the convergence to 0 in probability of the following quantities

rGH :=
2

n1/4
H(Tn,u) max

v 6=v◦
diam(bQn,u

v )

rP :=
2
∣∣V (Qn,u) \ V (Q+

n,u)
∣∣

|V (Qn,u)|

dP := d
(V (Q◦n,u),εndQn,u )

P

(
π
Q+
n,u

Q◦n,u
, νQ◦n,u

)
,

where εn = n−1/4.
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Bounding rGH. By Theorem 4.2, the second-biggest block of Qn,u has size O(n2/3)

in probability. Combining this with Corollary 5.3, one gets for all δ > 0 the bound in
probability

max
v 6=v◦

diam(bQn,u
v ) = o

(
n(1+δ)/6

)
.

Also, by Theorem 3.2, Tn,u is a non-generic subcritical Galton-Watson tree conditioned
to have 2n+ 1 vertices, in the terminology of [37]. We may therefore use [37, Theorem
4] to get for all δ > 0 the bound in probability

H(Tn,u) = o
(
nδ
)
.

Combining the two preceding estimates, we get in probability

rGH = o

(
n−

1
4 +δ+

(1+δ)
6

)
−−−−→
n→∞

0,

provided that we chose δ > 0 small enough so that δ + (1 + δ)/6 < 1/4.

Bounding rP. First, notice that since Qn,u is a quadrangulation we have

|V (Qn,u)| = |E(Qn,u)| = 2n,

and by the block-tree decomposition which puts in correspondence edges of Qn,u and
edges of Tn,u, we also have∣∣V (Qn,u) \V (Q+

n,u)
∣∣ =

∣∣E(Qn,u)
∣∣− ∣∣E(Q+

n,u)
∣∣ =

∣∣E(Tn,u)
∣∣− ∣∣E(T+

n,u)
∣∣ =

∣∣E(Tn,u \T+
n,u)

∣∣.
Therefore we have to bound the size of the subtree Tn,u \T+

n,u. A moment of thought
shows that it is bounded by

U→(Tn,u) + U←(Tn,u),

where U→(t) is the index in lexicographical order of the vertex with largest degree of
the tree t, and U←(t) is the index in reverse lexicographical order of that same vertex.
Now, [37, Theorem 2] shows that (U→(Tn,u))n>1 is a tight sequence. Since U←(Tn,u)

has the same law as U→(Tn,u), the respective sequence is also tight. All in all, we get in
probability

rP = O(1/n) −−−−→
n→∞

0.

Bounding dP. Notice that

dP = d
(V (Q◦n,u),εndQn,u )

P

(
π
Q+
n,u

Q◦n,u
, νQ◦n,u

)
= d

(V (Q◦n,u),εndQn,u )

P

(
µn
Qn,u

, νQ◦n,u

)
,

where n = nn,u is the family of nonnegative numbers defined by

∀e ∈ E(Q◦n,u), n(e) = |V (Qn,u[e])| − 2.

Let us argue that conditionally on Q◦n,u, this family n is exchangeable. Recall that Qn,u

has the law of Q under Pu, conditioned to the event {|Q| = n}. By the symmetries of the
Galton-Watson law and Proposition 3.1, the family

(|V (Q[e])| − 2)e∈E(Q◦) = (|E(T[ve])| − 2)e∈E(Q◦)

is i.i.d. conditionally on Q◦, where ve is the child of v◦ that the block-tree decomposition
associates to e. In particular, this family is exchangeable. Since the event {|Q| = n}
is invariant by each permutation of the subtrees attached to the node v◦ with their
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respective blocks, the above family stays exchangeable when conditioning by this event.
Therefore n is indeed exchangeable.

Now, [37, Corollary 1] tells that the subtrees (T[ve])e∈Q◦n,u have size O(n2/3) in
probability, uniformly in the edge e. We thus get that

|n|2 = O
(√

n5/3
)
.

On the other hand, we have in probability

|n|1 = |V (Qn,u) \ V (Q+
n,u)| ∼ cn,

for some constant c > 0. Hence, in probability

|n|2
|n|1

= O
(
n−1/6

)
−−−−→
n→∞

0.

All the hypotheses of Proposition 5.25 have been checked, so that we may apply it, after
conditioning by the size of Q◦n,u, since conditionally on its size k it is a uniform simple
quadrangulation of size k. We obtain in probability

d
(V (Q◦n,u),εndQn,u )

P

(
µn
Qn,u

, νQ◦n,u

)
−−−−→
n→∞

0.

Hence, dP also tends to 0 in probability and this concludes the proof.

6 Concluding remarks and perspectives

We have exhibited a phase transition phenomenon for two closely related models of
random maps with a weight u > 0 per block. The phase transition occurs at u = 9/5, and
we have established the existence of three regimes, regarding the size of the largest
block, and regarding the scaling limit (and the order of magnitude of distances).

Extension to other models. Our method can be generalised to other models which
can be decomposed into appropriate blocks with an underlying tree structure, for
example the models described in [9, Table 3], which is partially reproduced in Table 2. A
triangulation is a map where all faces have degree 3. It is irreducible if every 3-cycle
defines a face. In this section, we use the same notation for the various models as in the
rest of the article.

Models described in [9, Table 3] where maps are decomposed into blocks weighted
with a weight u > 0 undergo a phase transition at the critical value uC written down
in Table 3. More precisely, Theorems 3.2 to 4.6 hold for these models with the constants
of Table 3. Notice that for the decomposition of general maps into 2-connected maps
(i.e. the schema linkingM1 andM4) — which is the case studied in this paper — we get
results consistent with Theorem 3.2. Moreover, the values of uC and E(u) are consistent
since it always holds that E(uC) = 1. Furthermore, for u = 1, we retrieve the results of
[9, Table 4]: indeed, our 1− E(1) equals their α0

6.
Models from [9, Table 3] are amenable to computations similar to this article’s in

order to get the values above. We show in Table 3 the most obvious results and models
requiring more care will be described in a separate note. In the cases of Table 2, there

6It is not obvious at first glance that this should be the case for the case of simple triangulations decomposed
into irreducible cores, because each node of the Galton-Watson tree corresponds to a sequence of blocks.
However, an extreme condensation phenomenon occurs and the mass is concentrated in only one element of
the sequence, so the behaviour remains similar.
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Table 2: Partial reproduction of [9, Table 3], which describes composition schemas of
the formM = C ◦ H except the last one whereM = (1 +M)× C ◦ H. The parameter z
counts vertices (up to a fixed shift) in the case of triangulations, edges otherwise. Some
terms have been changed to correspond to the conventions used in this article.

maps, M(z) cores, C(z) submaps, H(z)

loopless, M2(z) simple, M3(z) z(1 +M)

all, M1(z) 2-connected, M4(z) z(1 +M)2

2-connected M4(z)− z 2-connected simple, M5(z) z(1 +M)

bipartite, B1(z) bipartite simple, B2(z) z(1 +M)

bipartite, B1(z) bipartite 2-connected, B4(z) z(1 +M)2

bipartite 2-connected, B4(z) bipartite 2-connected simple B5(z) z(1 +M)

loopless triangulations, T1(z) simple triangulations, z + zT2(z) z(1 +M)3

simple triangulations, T2(z) irreducible triangulations, T3(z) z(1 +M)2

Table 3: Values of uC , E(u) when u 6 uC and 1−E(1) for all the decomposition schemes
of Table 2.

Maps Cores uC E(u) 1− E(1)

M2 M3
81
17

32u
3(5u+27)

2
3

M1 M4
9
5

8u
3(u+3)

1
3

M4 −Z M5
135
7

32u
5(5u+27)

4
5

B1 B2
36
11

20u
9(u+4)

5
9

B1 B4
52
27

40u
13(u+4)

5
13

B4 B5
68
3

20u
17(u+4)

13
17

T1 Z + Z × T2
16
7

9u
2(u+8)

1
2

T2 T3
64
37

27u
2(32−5u)

1
2

is d ∈ Z>0 such that H(z) = z(1 + M)d, and the corresponding law µu (except for
triangulations) comes naturally as:

µu(dm) =
1m 6=0ubmy(u)m + 1m=0

uB(y(u)) + 1− u
, µu(m) = 0 when d - m.

The cases dealing with triangulations require more care as the series are counted by
vertices but the substitution is done on edges in one case, and on internal faces in the
other; but keeping this in mind, the same methods can be applied.

For all models, we expect to get similar regimes as in Table 1 (assuming the con-
vergence of the family of blocks is known, as well as diameter estimates). However,
conditioning is more difficult for some models, as the size of the map is not always imme-
diately deduced from the size of the Galton Watson tree (e.g. for simple triangulations
(T2) decomposed into irreducible triangulations (T3), the size is the number of leaves of
the Galton-Watson tree).
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Figure 20: Map drawn according to the subcritical model Pn,1 of size around 55 000.

Perspectives. We plan to study similar models in the context of decorated planar maps
(e.g. tree-rooted maps or Schnyder woods), where the generating series exhibit different
singular behaviours. In future work, we also want to investigate more closely the rate of
the phase transition at the critical value u = 9/5, in analogy to the study of the largest
component for the Erdös-Rényi random graph [22].

Finally, as mentioned in the introduction, the model of maps with a weight u per
2-connected block has been studied as encoding certain discrete spaces of dimension
larger than 2, with motivations from theoretical physics [14, 46]. The metric properties
are however modified via the correspondence, and it would be interesting to determine
if the scaling limits remain the same.
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Figure 21: Map drawn according to the subcritical model Pn,8/5 of size around 55 000.

Figure 22: Map drawn according to the critical model Pn,9/5 of size around 80 000.

EJP 29 (2024), paper 34.
Page 57/61

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1089
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A phase transition in block-weighted random maps

Figure 23: Map drawn according to the supercritical model Pn,5/2 of size around 75 000.

Figure 24: Map drawn according to the supercritical model Pn,5 of size around 50 000.
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