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Abstract

We prove a new result relating solutions of the scaled fractional Allen–Cahn equation to
motion by mean curvature flow, motivated by the motion of hybrid zones in populations
that exhibit long range dispersal. Our proof is purely probabilistic and takes inspiration
from Etheridge et al. [30] to describe solutions of the fractional Allen–Cahn equation
in terms of ternary branching α-stable motions. To overcome technical difficulties
arising from the heavy-tailed nature of the stable distribution, we couple ternary
branching stable motions to ternary branching Brownian motions subordinated by
truncated stable subordinators.

Keywords: branching stable processes; mean curvature flow; hybrid zones.
MSC2020 subject classifications: 60J85; 92D15.
Submitted to EJP on September 25, 2023, final version accepted on January 17, 2024.

1 Introduction

Reaction-diffusion equations have been used to study a wide range of phenomena
within the natural sciences, and are a topic of great mathematical intrigue in their own
right. They appear as models for the spread of populations [33, 42, 3], phase transitions
[37, 59, 32], combustion [9, 8], and chemical reactions [1, 10]. In this work, we explore
fractional reaction-diffusion equations that model populations that exhibit long range
dispersal. Fractional reaction-diffusion equations are reaction-diffusion equations in
which the diffusive term is replaced by the generator of a pure jump process (namely, a
stable process). As a result, they present new challenges that have not yet been fully
explored in a probabilistic context.

In recent decades, fractional reaction-diffusion equations and reaction-diffusion
equations with anomalous diffusion have surged in popularity. This is in part due to
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Branching stable processes and motion by mean curvature flow

their relevance as physical models. From a purely mathematical viewpoint, they pose
technical difficulties that classical parabolic equations like the Fisher-KPP equation do
not. Much of the theoretical work on these topics, to date, has been led by the PDE
community [49, 34, 15, 16, 17, 50]. The effect of long range dispersal on various models
has also been studied numerically [45, 26, 35], and applied to data from epidemics [11]
and plant populations [24, 46, 20].

In the context of mathematical biology, fractional reaction-diffusion equations arise
naturally as models for populations that exhibit long range dispersal (i.e. the capacity
for offspring to, on rare occasions, establish very far away from their parent). This
behaviour is ubiquitous in nature and is a crucial survival mechanism for many organisms,
particularly those insular species that must travel vast distances to populate new regions.
Examples include the dispersal of plant seeds (which can travel by wind, water, and can
be transported internally or externally by animals) [19], fungi [14], and small insects such
as flies, moths, and bees (which have the secondary effect of facilitating the hybridisation
of the flora they pollinate) [4, 54]. The ability for certain organisms to populate islands
through long range dispersal can have a profound impact on the biological composition
of the land, increasing the genetic diversity of isolated regions [60, 36, 54]. One example
of this is the Hawaiian angiosperm flora, that cannot be attributed to a single mainland
source, but instead have the genetic composition of flora from across circum-Pacific
regions [21, 60]. Another recently observed instance of long range dispersal was that of
a single finch that travelled over 100 km to an island in the Galápagos where it went on
to produce hybrid offspring with the resident population [44, 54].

In this work, we use the fractional Allen–Cahn equation to model the motion of hybrid
zones in populations exhibiting long range dispersal. Hybrid zones are narrow geograph-
ical regions where two genetically distinct species meet and reproduce, resulting in
individuals of mixed ancestry (hybrid individuals). Hybrid zones have been observed
extensively in nature. Examples include the European house mouse [39] and North
American warbler birds [58] (see [5] for an extensive list of examples). There are two
primary mechanisms acting to maintain hybrid zones. This first is due to a change in
environment where the two populations meet. The second, which will be of interest to
this work, is when selection acts against hybrid individuals. In this setting, the hybrid
zone is maintained for large times through a balance of negative selection with the
dispersal of individuals. We will show that the long-time behaviour of hybrid zones
maintained by selection in populations that exhibit long range dispersal converges to
motion by mean curvature flow under a large range of possible spatial scalings. This new
family of scalings, as well as our explicit description of the interface width and speed
of convergence, distinguishes our work from that of [41], in which convergence of the
solution to the fractional Allen–Cahn equation to the indicator function of a region whose
boundary evolves according to mean curvature flow is considered under a diffusive
scaling.

1.1 The Allen–Cahn equation and hybrid zones

The one-dimensional Allen–Cahn equation is a reaction-diffusion equation that takes
the form

∂tu
ε(t, x) = ∆uε(t, x)− 1

ε2
f(uε(t, x)) (1.1)

for ε > 0 fixed and all t > 0, x ∈ R. This equation can be obtained from the unscaled
equation ∂tu(t, x) = ∆u(t, x)−f(u(t, x)) by defining uε(t, x) := u(ε2t, εx). Here, f ∈ C2(R)
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is assumed to have precisely three zeros, v−, v0 and v+, such that

f < 0 on (−∞, v−) ∪ (v0, v+),

f > 0 on (v−, v0) ∪ (v+,∞),

f ′(v−), f ′(v+) > 0 and f ′(v0) < 0.

In equation (1.1), the diffusive term ∆ acts to smooth solutions (in the context of
a biological model, this could be viewed as the ‘mixing’ of the population), while the
nonlinearity f drives solutions towards one of two states, v− or v+ (in a population, these
states might correspond to the prevalence of a particular allele). These opposing effects,
which are characteristic of reaction-diffusion equations, create a solution interface
separating the two states. Over large spatial and temporal scales (corresponding to
ε→ 0) this interface appears sharp and one can study its motion.

The Allen–Cahn equation was originally introduced in [1] to model the motion of
curved antiphase boundaries (APB) in crystalline solids. These are defective regions
in the crystal lattice where atoms have the opposite configuration to that predicted by
their lattice system, producing a positive excess of free energy in the system [1]. This is
a non-equilibrium state of the lattice, resulting in the diffusive movement of the APB to
minimise the total area of the boundary. The motion of the APB can then be modelled
by the solution interface of the Allen–Cahn equation. In fact, in their original work [1],
Allen and Cahn already note the relevance of long range dispersal to interfacial motion.
Allen and Cahn mention that interfacial motion sometimes requires long range dispersal,
citing the growth of a (solid) precipitate from a supersaturated solution and the motion
of interfaces with impurities as two examples. It was observed by Allen and Cahn in [1]
that, in the case of local dispersion, the velocity of the interfacial motion described by
equation (1.1) was proportional to the mean curvature of the boundary. Bronsard and
Kohn [12, 13] and Demottoni and Schatzman [27, 28] provided a rigorous proof of this
under a variety of dimensional and regularity restrictions, and in 1992, Chen proved this
result in all dimensions under relatively weak regularity assumptions [22].

By viewing the Allen–Cahn equation as a model for a hybrid zone in a population with
local dispersal, Chen’s result has a biological interpretation. As explained in [30], the
connection between the hybrid zones and the Allen–Cahn equation can be motivated
as follows. Consider a single genetic locus in a diploid population with allelic types
a and A in Hardy-Weinberg proportions. That is, if the proportion of a-alleles in the
parental population is w, then the proportions of parents of type aa, aA and AA are
w2, 2w(1− w) and (1− w)2, respectively. To reflect our assumption that the hybrid zone
is maintained by selection against heterozygotes, we assign to each of the allele pairs
aa, aA and AA the relative fitnesses 1, 1− s and 1, for s > 0 a small selection parameter.
These fitnesses refer to the relative proportion of germ cells produced by heterozygotes
and homozygotes during reproduction. It follows that if w is the proportion of type a
alleles before reproduction, then the proportion of type a alleles after reproduction is

w∗ =
w2 + w(1− w)(1− s)

1− 2sw(1− w)
= w + sw(1− w)(2w − 1) +O(s2).

Taking s = 1
N and measuring time in units of N generations, the above calculation

implies that, as N →∞, dwdt = w(1− w)(2w − 1). Adding (local) dispersal and applying a
diffusive scaling t 7→ ε2t, x 7→ εx for t > 0 and x ∈ R2 gives

∂w

∂t
= ∆w +

1

ε2
w(1− w)(2w − 1). (1.2)

Chen’s result tells us that solutions to the scaled Allen–Cahn equation (1.2) (also known
as Nagumo’s equation, see [52, 47]) converge as ε→ 0 to the indicator function of a set
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whose boundary evolves according to motion by mean curvature flow. Since the hybrid
zone of a diploid population should correspond to a narrow region around the level
w(t, x) = 1

2 for w a solution of (1.2), Chen’s result tells us that hybrid zones will follow
motion by mean curvature flow when viewed over large spatial and temporal scales. We
note that, although x ∈ R2 is the biologically relevant case, Chen’s result and our own
hold in all spatial dimensions d ≥ 2.

In Etheridge et al. [30], the authors used purely probabilstic techniques to reprove
Chen’s result. This was accomplished by constructing a probabilistic dual to (1.2) in
terms of ternary branching Brownian motions. Additionally, their proof could be adapted
to incorporate genetic drift, which refers to the randomness inherent in reproduction
within finite populations. This was achieved via a so-called Spatial-Λ-Fleming-Viot
process. It was shown in [30] that, provided the genetic drift is not too strong, the
limiting mean curvature flow behaviour observed in the deterministic case is preserved
by the scaled stochastic model. This stochastic result can be extended to the stable
setting, and appears in the DPhil thesis of the first author [7]. An interesting avenue for
further research would be to find the critical strength of genetic drift that determines if
motion by mean curvature flow is preserved. This has been accomplished by Etheridge
et al. [31] in the Brownian setting, but is more difficult to identify in the stable setting.

To model the motion of hybrid zones in populations that exhibit long range dispersal,
we consider the fractional Allen–Cahn equation

∂tu(t, x) = −(−∆)
α
2 u(t, x) + su(t, x)(1− u(t, x))(2u(t, x)− 1), (1.3)

for all t > 0 and x ∈ R where s is a small selection parameter and −(−∆)
α
2 is the

generator of an α-stable process. In view of Chen’s result, it is natural to ask: will mean
curvature flow be preserved in populations that exhibit long range dispersal? The answer
to this should, of course, depend on the strength of the dispersal mechanism. This is
determined by the index α ∈ (0, 2]. When α = 2, the fractional Laplacian and ordinary
Laplacian coincide, so in view of Chen’s result [22], we expect mean curvature flow to
be preserved for α sufficiently close to 2. As α approaches 0, the severity and frequency
of large jumps increases, so for small α it seems unlikely that motion by mean curvature
flow will be seen in the limit. This intuition is supported by results in the PDE literature,
with the threshold between the two behaviours occurring at α = 1. For example, in
[18], Caffarelli and Souganidis consider a threshold dynamics type algorithm to simulate
a moving front governed by the fractional heat equation. The resulting interface was
shown to converge to mean curvature flow for α ≥ 1 and ‘weighted’ mean curvature
flow for 0 < α < 1. The results from the unpublished manuscript [41] suggest that
equation (1.3), with a diffusive scaling, should converge as ε → 0 to motion by mean
curvature flow when α ∈ (1, 2), however such a result is certainly out of reach with our
techniques. As we will see, our result is stated for a large family of possible scalings of
equation (1.3), which does not include the diffusive scaling taken in [41].

We now briefly outline the structure of this paper. First, in Section 2, we state
our main result, Theorem 2.5. In Section 3, we go on to construct a probabilistic
representation of solutions to the fractional Allen–Cahn equation. We then prove a
one-dimensional analogue of our main result in Section 4. This will enable us to prove
Theorem 2.5 in Section 5. Supplementary calculations will be provided in the appendix.

2 Main results

To begin, we recall the definition of the mean curvature at a point on a hypersurface
M ⊂ Rd. Let n : M → Rd be the Gauss map, i.e. the map that assigns to each point
p ∈ M the outward facing unit vector n(p) orthogonal to the tangent space of M at p,
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denoted TpM . By choosing an appropriate orthonormal basis of the tangent space TpM
for all p ∈M , we can define the shape operator Sp at p (locally) as the negative Jacobian
of n at p. It can be shown that there exists an inner product on TpM (called the first
fundamental form) and Sp can be diagonalised, Sp = diag(κ1(p), ..., κd−1(p)). The mean
curvature at p is then

κ(p) :=
1

d− 1

d−1∑
i=1

κi(p).

Definition 2.1 (Motion by mean curvature flow). Fix T > 0. Let Sd−1 ⊂ Rd be the unit
sphere and (Γt)0≤t<T be a family of smooth embeddings Sd−1 → Rd. Let n = nt(φ) be
the unit inward normal vector to Γt at φ and let κ = κt(φ) be the mean curvature of Γt at
φ. Then (Γt)0≤t<T is a mean curvature flow if, for all t and φ,

∂Γt(φ)

∂t
= κt(φ)nt(φ). (2.1)

It can be shown that mean curvature flow in dimension d = 2 (also called curve
shortening flow) terminates after a finite time T , and by the theorems of Gage and
Hamilton (1986) and Grayson (1987), any smoothly embedded closed curve shrinks to
a point as t ↑ T . When d > 2, this does not always hold as singularities may develop.
Following Chen [22], we shall impose sufficient regularity conditions to ensure the
existence of a finite time T before which the mean curvature flow exists and does not
develop a singularity. For an overview of existence results for mean curvature flow see
[30].

Let d ≥ 1 and denote the standard Euclidean distance in Rd by | · |. The fractional
Laplacian is defined on functions u : Rd → R with sufficient decay by

−(−∆)
α
2 u(x) := Cα lim

r→0

∫
Rd\Br(x)

u(y)− u(x)

|y − x|d+α
dy,

where Cα :=
α2α−1Γ(α+d

2 )

π
d
2 Γ(1−α2 )

and Br(x) ⊂ Rd is the sphere of radius r about x. We will

show that in dimension d ≥ 2, for suitable initial conditions, the solution of the scaled
fractional Allen–Cahn equation{

∂tu
ε = −σαI(ε)α−2(−∆)

α
2 uε + ε−2uε(1− uε)(2uε − 1), t ≥ 0, x ∈ Rd

uε(0, x) = p(x), x ∈ Rd
(2.2)

converges as ε→ 0 to the indicator function of a set whose boundary evolves according
to mean curvature flow. Here,

σα :=
(

2−α
α

)α
2 Γ
(
1− α

2

)
(2.3)

is a normalising constant that will simplify our later calculations, and I can be any
function satisfying the following.

Assumptions 2.2. For some δ > 0, assume that I : (0, δ)→ (0,∞) satisfies

(A) lim
ε→0

I(ε)| log ε|k = 0 ∀ k ∈ N,

(B) lim
ε→0

ε2

I(ε)2
| log ε| = 0,

(C) lim
ε→0

I(ε)2α

ε2
| log ε|α = 0.

EJP 29 (2024), paper 25.
Page 5/59

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1087
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Branching stable processes and motion by mean curvature flow

The rate of convergence and width of the ‘solution interface’ in our convergence
result will ultimately depend on this choice of I. Note that Assumption 2.2 (B) and
Assumption 2.2 (C) are incompatible as soon as α ≤ 1. When α > 1 a standing example
that fulfills all the conditions is I(ε) = ε| log ε|.

In Imbert and Souganidis’ work [41], they consider a class of reaction-diffusion
equations with diffusive term given by a singular integral operator. In the case when
this operator is the fractional Laplacian (−∆)

α
2 with α ∈ (1, 2), their scaled equation

amounts to

∂tu
ε = −εα−2(−∆)

α
2 uε + ε−2f(uε) (2.4)

for a bistable nonlinearity f . The authors consider the convergence of solutions to
(2.4) to the indicator function of a set whose boundary evolves under motion by mean
curvature flow as ε→ 0. This regime is distinct from our own, since we consider a family
of possible scalings I(ε). In particular, our result does not include the case when I(ε) = ε,
which is when equations (2.2) and (2.4) coincide, and indeed our proofs do not extend to
that case.

Remark 2.3. Equation (2.2) can be obtained from the unscaled fractional Allen–Cahn
equation by scaling time and space by

t 7→ ε2t and x 7→
(
σαI(ε)α−2ε2

) 1
α x.

To see this, let ιε :=
(
σαI(ε)α−2ε2

) 1
α and define

uε(t, x) := u(ε2t, ιεx).

Then, by definition of the fractional Laplacian,

−(−∆)
α
2 u(ε2t, ιεx) = −ιαε (−∆)

α
2 uε(t, x),

so using that u is a solution to the unscaled equation ∂tu = −(−∆)
α
2 u + f(u) where

f(u) = u(1− u)(2u− 1), we have

∂tu
ε(t, x) = ε−2 ∂tu(ε2t, ιεx)

= ε−2
(
−(−∆)

α
2 u(ε2t, ιεx) + f(u(ε2t, ιεx)

)
= −ε−2ιαε (−∆)

α
2 uε(t, x) + ε−2f(uε(t, x)),

which is equivalent to (2.2) by definition of ιε.

Using the definition of σα from (2.3), as α → 2−,
(
σαI(ε)α−2ε2

) 1
α x → εx which is

consistent with the diffusive scaling considered in the local setting of [30]. Note that the

spatial scaling factor in the fractional setting,
(
σαI(ε)α−2ε2

) 1
α , converges to zero faster

than the spatial scaling factor in the local setting, ε. This follows by Assumption 2.2 (B),
since

lim
ε→0

(
σαI(ε)α−2ε2

) 1
α

ε
= lim
ε→0

(
ε

I(ε)

) 2−α
α

= 0.

This suggests that, with our method of proof, to observe a hybrid zone evolving by motion
by mean curvature in the original spatial coordinates, one must ‘zoom out’ much more
in the stable (non-local) setting than in the local setting. We discuss the origin of our
chosen scaling more in Section 3.2.

Our assumptions on the initial condition p in (2.2) mirror those in [30]. First, p is
assumed to take values in [0, 1]. Set

Γ0 :=
{
x ∈ Rd : p(x) = 1

2

}
. (2.5)
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Assume Γ0 is a smooth hypersurface and is the boundary of an open set homeomorphic
to a sphere. Further suppose the following.

Assumptions 2.4. Let p : Rd → [0, 1] and Γ0 be as in (2.5). Denote the shortest
Euclidean distance between a point x ∈ Rd and the surface Γ0 by dist(x,Γ0).

(A) Γ0 is Ca for some a > 3.

(B) For x inside Γ0, p(x) < 1
2 , and for x outside Γ0, p(x) > 1

2 .

(C) There exist r, γ > 0 such that, for all x ∈ Rd,
∣∣p(x)− 1

2

∣∣ ≥ γ(dist(x,Γ0) ∧ r).

Assumption 2.4 (B) establishes a sign convention, and Assumption 2.4 (C) ensures p(x)

is bounded away from 1
2 when x is away from the interface. Together, these conditions

ensure that the mean curvature flow started from Γ0, (Γt(·))t≥0, exists up until some
finite time T .

Following [30], we let d(x, t) be the signed distance from Γt to x, which we choose to
be negative inside Γt and positive outside Γt. Then, as sets,

Γt =
{
x ∈ Rd : d(x, t) = 0

}
.

Lastly, define F (ε) by

F (ε) =
I(ε)2

ε
2
α

| log ε|+ I(ε)α−1. (2.6)

Note that, for any α ∈ (1, 2) and function I : (0, δ)→ (0,∞) satisfying Assumptions 2.2,
F (ε)→ 0 as ε→ 0.

The scaling function I and parameter α will be fixed throughout this work. Just as we
have done for F , when defining new functions, we will typically not make explicit their
dependence on the choice of I and choice of α. Our main theorem is the following.

Theorem 2.5. Let α ∈ (1, 2), d ≥ 2 and fix a function I satisfying Assumptions 2.2.
Suppose uε solves equation (2.2) with initial condition p satisfying Assumptions 2.4.
Let T and d(x, t) be as above, F be as in (2.6) and fix T ∗ ∈ (0,T ). Then there exists
εd(α), ad(α), cd(α),m > 0 such that, for ε ∈ (0, εd) and adε2| log ε| ≤ t ≤ T ∗,

(1) for x with d(x, t) ≥ cdI(ε)| log ε|, we have uε(t, x) ≥ 1−m ε2

I(ε)2 −mF (ε),

(2) for x with d(x, t) ≤ −cdI(ε)| log ε|, we have uε(t, x) ≤ m ε2

I(ε)2 +mF (ε).

Remark 2.6. In Theorem 2.5, we exclude the possibility of α ∈ (0, 1]. This is because, to
prove our result, we rely on Assumptions 2.2, which can only hold simultaneously when
α > 1.

Of course, we could have stated Theorem 2.5 in terms of an error function F ′(ε) :=

F (ε) + ε2

I(ε)2 . We choose to make the ε2

I(ε)2 term explicit since it will also appear in the
one-dimensional analogue of Theorem 2.5.

Throughout this work, we often discuss the solution interface and its corresponding
width. The term solution interface refers to the spatial region outside of which the
solution uε(t, ·) is very close to zero or one. Explicitly, in Theorem 2.5 the solution
interface at time t is the set of x ∈ Rd for which |d(x, t)| ≤ cdI(ε)| log ε|, and we call
2cdI(ε)| log ε| the interface width. We will refer to the error bounds on uε in Theorem 2.5
as the sharpness of the interface. In the following example, we observe that neither
the F (ε) or the ε2

I(ε)2 terms in the sharpness of the interface are the dominant term, in
general.
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Example 2.7. Suppose α ∈ (1, 2).

(1) It is easy to verify that I(ε) = ε| log ε| satisfies Assumptions 2.2, so for this
choice of I the interface width is O

(
ε| log ε|2

)
. One can also check that F (ε) =

O(εα−1| log ε|α−1), which is dominated by ε2

I(ε)2 , so the sharpness of the interface in

Theorem 2.5 is O
(
ε2I(ε)−2

)
= O

(
| log ε|−2

)
.

(2) We now provide an example in which F (ε) dominates ε2I(ε)−2. Set I(ε) = εq where
q = 3α+1

2α(1+α) . This choice of I satisfies Assumptions 2.2, and the resulting interface

width and sharpness given by Theorem 2.5 are O (εq| log ε|) and O
(
ε
α−1
α+1 | log ε|α

)
,

respectively.

We often reference the Brownian analogue of Theorem 2.5 proved using probabilistic
techniques in [30]. This result, originally due to Chen [22], is given as follows (here we
state the version found in [30, Theorem 1.3]).

Theorem 2.8 ([22]). Let uε solve{
∂tu

ε = ∆uε + ε−2uε(1− uε)(2uε − 1), t ≥ 0, x ∈ Rd

uε(0, x) = p(x), x ∈ Rd
(2.7)

with initial condition p satisfying Assumptions 2.4. Let T and d(x, t) be as above. Fix
T ∗ ∈ (0,T ) and k ∈ N. Then there exists εd(k), ad(k), cd(k) > 0 such that, for all
ε ∈ (0, εd) and t with adε2| log ε| ≤ t ≤ T ∗,

(1) for x such that d(x, t) ≥ cdε| log ε|, we have uε(t, x) ≥ 1− εk,

(2) for x such that d(x, t) ≤ −cdε| log ε|, we have uε(t, x) ≤ εk.

Remark 2.9. The interface width O(ε| log ε|) in Theorem 2.8 is not achievable in The-
orem 2.5, but we may approximate it by choosing I(ε) = εδ where 1

α < δ < 1, and
considering δ → 1. The interface width and sharpness in this case are O(εδ| log ε|) and
ε2−2δ, respectively.

We note some key differences between our result, Theorem 2.5, and Theorem 2.8.
Firstly, in Theorem 2.8, the width of the solution interface is O(ε| log ε|), compared to the
strictly larger width of O(I(ε)| log ε|) in the fractional setting. Secondly, the sharpness
of the interface in Theorem 2.8, εk, is much better than the sharpness in Theorem 2.5.
Both of these differences are consistent with our intuition by considering the (soon to
be formalised) probabilistic representation of solutions to the ordinary and fractional
Allen–Cahn equations in terms of Brownian and α-stable motions, respectively. In the
stable case, the rare large jumps of the α-stable motion act to ‘fatten’ the interface
compared to the Brownian case. While the effect of these large jumps is small enough
that we still observe mean curvature flow (as α > 1), it does result in a much less sharp
interface.

As we have mentioned, to prove our result, we adapt techniques from Etheridge et
al. [30]. However, our work significantly differs from that of Etheridge et al. since the
method of proof in [30] cannot be applied to the stable setting in a straightforward way.
To overcome this, we devote a significant portion of this paper to constructing a series
of couplings that enable us to compare the probabilistic dual to equation (2.2) to another
quantity for which the proofs in [30] can more easily be adapted.
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3 Majority voting in one dimension

3.1 A probabilistic dual

In this section, we define a probabilistic dual to the scaled fractional Allen–Cahn
equation (2.2), which is very similar to the probabilistic dual to the ordinary Allen–
Cahn equation developed in [30]. In our setting, we consider a ternary-branching
α-stable motion in which each individual, independently, follows an α-stable motion,
until the end of its exponentially distributed lifetime (with mean ε2) at which point it
splits into three particles. Let Y (t) denote a d-dimensional α-stable process and Y (t)

denote a d-dimensional historical ternary branching α-stable motion. That is, Y (t)

traces out the space-time trees that record the position of all particles alive at time
s for s ∈ [0, t]. Throughout this work, we adopt the following convention. Recall that

σα :=
(

2−α
α

)α
2 Γ
(
1− α

2

)
.

Assumption 3.1. All α-stable motions have generator −σαI(ε)α−2(−∆)
α
2 for a fixed

α ∈ (1, 2).

To record the genealogy of the process we employ the Ulam-Harris notation to label
individuals by elements of U =

⋃∞
m=0{1, 2, 3}m. For example, (3, 1) represents the particle

which is the first child of the third child of the initial ancestor ∅. Let N(t) ⊂ U denote
the set of individuals alive at time t.

We call T a time-labelled ternary tree if T is a finite subset of U with each internal
vertex v labelled with a time tv > 0, where tv is strictly greater than the label of the
parent vertex of v. Ignoring the spatial position of individuals, we see that Y (t) traces
out a time-labelled ternary tree which associates to each branch point the time of the
branching event. Let Yi(t) be the α-stable motion traced out by individual i in Y (t).
Denote the time-labelled ternary tree traced out by Y (t) by T (Y (t)). We shall refer to
any individual i in Y (t) that does not have any children a leaf.

Definition 3.2 (Vp). Fix p : Rd → [0, 1] and define the majority voting procedure on
T (Y (t)) as follows.

(1) each leaf i of T (Y (t)) independently votes 1 with probability p(Yi(t)) and otherwise
votes 0;

(2) at each branching event in T (Y (t)), the vote of the parent particle j is given by
the majority vote of its offspring (j, 1), (j, 2), (j, 3).

This voting procedure runs inward from the leaves of T (Y (t)) to the root ∅. Under this
voting procedure, define Vp(Y (t)) to be the vote associated to the root ∅ of the ternary
branching stable tree.

For x ∈ Rd, we shall write Px and Ex for the probability measure and expectation
associated to the law of a stable motion starting at x. Write Pεx for the probability
measure under which (Y (t), t ≥ 0) has the law of the historical process of a ternary
branching α-stable motion in Rd with branching rate ε−2 started from a single particle
at location x at time 0. We write Eεx for the corresponding expectation. We emphasise
that the variable ε used to define the speed of the stable process, I(ε)α−2, is the same
variable ε that defines the branch rate, ε−2. Then the root vote Vp(Y (t)) provides us
with a dual to equation (2.2) in the following sense.

Theorem 3.3. Let p : Rd → [0, 1]. Then

uε(t, x) := Pεx[Vp(Y (t)) = 1] (3.1)

is a solution to equation (2.2) with initial condition uε(0, x) = p(x).
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Sketch of proof of Theorem 3.3. In this proof we neglect the superscript ε on uε and
Eεx. Let τ be the time of the first branching event in the ternary branching stable
process (Y (s))s≥0. We partition over the events {τ ≤ t} and {τ > t}. Note that if τ ≤ t,
then (Y (s))τ≤s≤t can be viewed as three ternary branching stable processes that are
conditionally independent given (τ,Y (τ)), where Y (τ) is the spatial position of the initial
ancestor at the time of the first branch. Let V1, V2 and V3 denote the votes of these three
conditionally independent stable processes. Then (still conditional on τ ≤ t), the root
vote of T (Y (t)) will equal one if and only if at most one of V1, V2 and V3 is zero. It follows
from this, and using that τ ∼ Exp(ε−2), that

u(t, x) =
1

ε2

∫ t

0

Ex
[
u(t− s, Ys)3 + 3u(t− s, Ys)2(1− u(t− s, Ys))

]
e−s/ε

2

ds

+ e−t/ε
2

Ex [p(Yt)]

=
1

ε2

∫ t

0

Ex
[
u(r, Yt−r)

3 + 3u(r, Yt−r)
2(1− u(r, Yt−r))

]
e−(t−r)/ε2dr

+ e−t/ε
2

Ex [p(Yt)]

which we recognise as the mild form of equation (2.2) (noting that u3 + 3u2(1− u)− u =

u(1− u)(2u− 1)).

With this in mind, we can restate Theorem 2.5 as follows.

Theorem 3.4. Fix a function I satisfying Assumptions 2.2. Suppose the initial condition
p satisfies Assumptions 2.4. Let T and d(x, t) be as in Section 2, F be as in (2.6) and
fix T ∗ ∈ (0,T ). Then there exist εd(α), ad(α), cd(α), m > 0 such that, for ε ∈ (0, εd) and
adε

2| log ε| ≤ t ≤ T ∗,

(1) for x with d(x, t) ≥ cdI(ε)| log ε|, Pεx [Vp(Y (t)) = 1] ≥ 1−m ε2

I(ε)2
−mF (ε),

(2) for x with d(x, t) ≤ −cdI(ε)| log ε|, Pεx [Vp(Y (t)) = 1] ≤ m ε2

I(ε)2
+mF (ε).

For the sake of completeness, we mention the Brownian analogue of Theorem 3.3
and Theorem 3.4 from [30]. There, the authors considered a historical ternary branching
d-dimensional Brownian motion (W (t), t ≥ 0) with branching rate ε−2. Let Pεx and Vp be
defined as above but for the process (W (t), t ≥ 0). Then, by [30, Theorem 2.2], given
p : Rd → [0, 1],

uε(t, x) := Pεx[Vp(W (t)) = 1] (3.2)

is a solution to equation (2.7), and Theorem 2.8 can be restated in terms ofPεx[Vp(W (t)) =

1]. We will refer to the restatement of Theorem 2.8 in terms of Pεx[Vp(W (t)) = 1] as the
‘probabilistic version of Theorem 2.8’.

Remark 3.5. The duality representation (3.2) developed in Etheridge et al. [30] is
similar to that of solutions to the Fisher–KPP equation in terms of binary branching
Brownian motions developed by Skorohod, McKean and Ikeda et al. [57, 48, 40]. The
dual described in [30] was novel in that it generalised Skorohod and McKean’s result
to equations with an Allen–Cahn type non-linearity. It was later found in the Master’s
thesis of O’Dowd [53], and in [2], that a semilinear heat equation can be expressed in
this way if and only if the nonlinearity of the equation belongs to a certain very general
family of polynomials.
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Notation 3.6. It will be convenient to distinguish between one-dimensional and mul-
tidimensional α-stable processes. We adopt the convention that X(t) will denote the
one-dimensional α-stable process, with the corresponding historical branching stable
process denoted by X(t). When d > 1, we denote the α-stable process by Y (t) and
denote the corresponding historical branching stable process by Y (t).

3.2 Remarks on the choice of scaling

Now that we have described the probabilistic dual to the fractional Allen–Cahn
equation, we can explain the origin of the scaling taken in equation (2.2). As we will
see, this choice of scaling is intimately linked to our strategy of proof for Theorem 3.4.
To explain this, we will need to consider stable processes run at varying speeds. For
this reason, in this section (and this section only) we do not adopt Assumption 3.1, so
the speeds of all stable process, stable subordinators, and historical stable trees will be
made explicit.

Let (Y εt )t≥0 be a d-dimensional ε-truncated α-stable process with α ∈ (1, 2), i.e. Y εt is
a Lévy process with Lévy measure given (up to a multiplicative constant) by

ν(dx) = |x|−α−d1|x|<ε.

By [25, Proposition 3.2], for some cα > 0,

cαε
α
2−1Y εt

w−→Wt as ε→ 0 (3.3)

where (Wt)t≥0 is a standard d-dimensional Brownian motion and
w−→ denotes weak

convergence. It is straightforward to show using characteristic exponents and the
Lévy-Khintchine formula that

ε
α−2
α Y ε

2/α

t
D
= Y εεα−2t, (3.4)

where (Y ε
2/α

t )t≥0 denotes the ε2/α-truncated α-stable process. Therefore, by replacing ε
by ε2/α in (3.3), and applying (3.4), we see that

cαY
ε
εα−2t

w−→Wt as ε→ 0. (3.5)

More generally, one could replace ε in (3.5) by a function I(ε), satisfying I(ε)→ 0 as

ε→ 0. The I(ε)-truncated stable process Y I(ε)I(ε)α−2t will approximate a Brownian motion,
so it is reasonable to expect that the probabilistic version of Theorem 2.8 holds when the
branching Brownian motion is replaced by a branching I(ε)-truncated stable process,
run at speed I(ε)α−2. Therefore to prove Theorem 3.4, it should suffice to show:

Step 1: the probabilistic version of Theorem 2.8 holds when W (t) is replaced by a
d-dimensional ternary branching I(ε)-truncated stable tree run at speed I(ε)α−2,
denoted Y I(ε)(I(ε)α−2t);

Step 2: there exists a coupling of the root votes of Y (I(ε)α−2t) and Y I(ε)(I(ε)α−2t) in
such a way that Step 1 implies Theorem 3.4.

The purpose of this two-step approach is that, by using a truncated stable process (which
is not heavy tailed) we can more readily adapt proofs from the Brownian case of [30].

The discussion above explains why the fractional Laplacian in equation (2.2) is sped
up by a factor of I(ε)α−2: this is the precise speed that the truncated stable process must
run at in order for it to approximate a Brownian motion, allowing us to prove Step 1.
However, we have not addressed our choice of I(ε) as outlined by Assumptions 2.2. In
particular, we require limε→0

ε
I(ε) = 0, so I(ε) 6= ε, which might be unexpected in view of
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the limit (3.5), and the result of [41] where the scaling I(ε) = ε was used. This is because
we must carefully balance two opposing effects: the truncation level must be small
enough that the truncated motion is ‘similar’ to a Brownian motion (to prove Step 1),
but it must be large enough so that the truncated motion and original stable motion are
themselves ‘similar’ (to prove Step 2). In particular, the truncation level must be large
enough so that the probability of an individual in the ternary stable tree Y making a
jump larger than the truncation is sufficiently small, enabling Y and Y I(ε) to be coupled.

Although Step 1 will hold when I(ε) = ε, Step 2 does not. More concretely, consider

Assumption 2.2 (B): limε→0
ε2

I(ε)2 | log ε| = 0. Recall that the ternary branching stable

motion branches at rate ε−2. Suppose τ ∼ Exp(ε−2) is the time of one such branching
event. Then, for k ∈ N, conditional on τ ≤ kε2| log ε| (which happens with probability
1− εk), an individual in the tree Y (I(ε)α−2t) is expected to make, at most,

k
ε2

I(ε)2
| log ε| (3.6)

jumps larger than I(ε) in its lifetime, because the arrival rate of jumps larger than I(ε)

made by a stable process run at speed I(ε)α−2 is

O

(
I(ε)α−2

∫ ∞
I(ε)

x−α−1dx

)
= O

(
I(ε)−2

)
. (3.7)

This follows because the arrival rate of jumps larger than I(ε) made by the d-dimensional
process YI(ε)α−2t is proportional to I(ε)α−2

∫
x∈Rd:|x|>I(ε) ν(dx) where ν(dx) = |x|−α−ddx

is the Lévy measure of (Yt)t≥0 (see, for instance, [43, Section 5.6]). To prove Step 2,
each individual stable motion in Y (I(ε)α−2t) should approximate (asymptotically in ε) an
I(ε)-truncated process, so the quantity (3.6) should converge to zero with ε, which is
precisely Assumption 2.2 (B). The remaining assumptions on I(ε) from Assumptions 2.2
arise from several technical lemmas needed to prove Theorem 3.4.

To the best of our knowledge, Theorem 3.4 is the first result on the solution interface
of equation (2.2) with our chosen scaling. The work of [41] suggests that our result
should hold even when I(ε) = ε. However, it does not seem likely that we can achieve
the I(ε) = ε scaling using our current method of proof and, conversely, it is unclear if
the method of proof in [41] could be adapted to handle our chosen scaling.

The two-step proof described above motivates our choice of scaling. However, in

reality, we opt to work with W
(
R
I(ε)2

I(ε)α−2t

)
, a Brownian motion subordinated by an I(ε)2-

truncated α
2 -stable subordinator run at speed I(ε)α−2, instead of the I(ε)-truncated stable

process Y I(ε)I(ε)α−2t. The central idea of our proof remains the same as before, however, we
found the subordinated process easier to work with (more on this below). Moreover, the

error made by approximating the stable process YI(ε)α−2t by W
(
R
I(ε)2

I(ε)α−2t

)
is roughly

equal to the error we would obtain using Y I(ε)I(ε)α−2 . Recall that YI(ε)α−2t
D
= W (RI(ε)α−2t), a

Brownian motion subordinated by an α
2 -stable subordinator. The arrival rate of jumps

larger that I(ε)2 made by the α
2 -stable subordinator is

O

(
I(ε)α−2

∫ ∞
I(ε)2

x−
α
2−1dx

)
= O

(
I(ε)−2

)
,

which is the same order as the arrival rate of jumps larger than I(ε) made by a stable
process from (3.7).

Like the truncated stable process, the subordinated Brownian motion is not heavy
tailed, and its explicit description in terms of a Brownian motion allows us to more

EJP 29 (2024), paper 25.
Page 12/59

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1087
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Branching stable processes and motion by mean curvature flow

elegantly adapt the Brownian proof of [30]. In Step 1 of our approach, it is much more
straightforward to compare this subordinated Brownian motion to a standard Brownian
motion, than it would have been to compare a truncated stable process to a Brownian

motion. This error made by estimating the subordinated Brownian motion W
(
R
I(ε)2

I(ε)α−2t

)
by a standard Brownian motion can be quantified by considering the difference∣∣∣RI(ε)2I(ε)α−2t − t

∣∣∣ .
We will see in Section 4.4 that this difference is ultimately the source of the error term
F (ε) in our main result, Theorem 2.5.

4 Majority voting in one dimension

In this section, we prove a one-dimensional analogue of Theorem 3.4, which will be
used in the proof of Theorem 3.4 in Section 5. This parallels the structure of proof for
the Brownian result, Theorem 2.8.

For each x ∈ R, let Px be the law of a one-dimensional α-stable processX(t) satisfying
Assumption 3.1 started at x, with corresponding expectation Ex. Write Pεx for the
probability measure under which (X(t), t ≥ 0) has the law of a one-dimensional historical
ternary branching α-stable motion, with branching rate ε−2 started from a single particle
at location x at time 0. Write Eεx for the corresponding expectation. In accordance with
Assumption 3.1, each particle in (X(t), t ≥ 0) is assumed to run at speed σαI(ε)α−2 for
σα given in (2.3).

Define

p0(x) = 1{x≥0}. (4.1)

With this choice of initial condition, under majority voting (Definition 3.2), the leaves of
T (X(t)) will vote one if and only if they are on the right half line. Denote the root vote
of T (X(t)) under majority voting with initial condition (4.1) by V(X(t)) := Vp0(X(t)).
The following result is the natural analogue of Theorem 3.4 in one dimension.

Theorem 4.1. Let T ∗ ∈ (0,∞). Suppose I satisfies Assumptions 2.2 (A)-(B). Then there
exist c1(α), ε1(α) > 0 such that, for all t ∈ [0, T ∗] and all ε ∈ (0, ε1),

(1) for x ≥ c1I(ε)| log ε|, we have Pεx[V(X(t)) = 1] ≥ 1− ε2

I(ε)2 ,

(2) for x ≤ −c1I(ε)| log ε|, we have Pεx[V(X(t)) = 1] ≤ ε2

I(ε)2 .

This result tells us that, for positive x, ‘typical’ leaves of the tree T (X(t)) based at x
are more likely to vote 1 than 0. We will see that Theorem 4.1 is weaker than the actual
one-dimensional result that will be used to prove Theorem 3.4 (at this stage, we have not
developed the technical jargon needed to state it). This stronger result (Theorem 4.7)
will be developed in Section 4.1, and shown to imply Theorem 4.1.

Remark 4.2. There is some evidence in the literature that the interface width in The-
orem 4.1 could be improved. Let f be any bistable nonlinearity and consider the
one-dimensional equation (−∆)

α
2 u(y) = f(u(y)) ∀ y ∈ R,

lim
y→∞

u(y) = 1, lim
y→−∞

u(y) = 0.
(4.2)

Then, by [34, Proposition 3.2], a solution u ∈ C2(R) to (4.2) satisfies

A

yα
≤ 1− u(y) ≤ B

yα
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for all y > 1 and some A,B > 0 (with a similar inequality holding if y ≤ −1). We rewrite
this equation under our scaling by setting z = ε

2
α I(ε)1− 2

α y, and obtain

Aε2I(ε)α−2

zα
≤ 1− u(z) ≤ Bε2I(ε)α−2

zα
.

Therefore if z ≥ I(ε), 1−u(z) is of order ε2

I(ε)2 , the interface sharpness from Theorem 4.1.

This suggests that Theorem 4.1 should hold for an interface of width I(ε), and that this
would be the narrowest width possible for the given interface sharpness. However, we
were only able to prove Theorem 4.1 for an interface width of order I(ε)| log ε|.

The choice of initial condition p0(x) = 1{x≥0} affords us several useful inequalities.
First, for all x1, x2 ∈ R with x1 ≤ x2, we have

Pεx1
[V(X(t)) = 1] ≤ Pεx2

[V(X(t)) = 1]. (4.3)

For any time-labelled ternary tree T , write

Ptx(T ) := Pεx[V(X(t)) = 1 | T (X(t)) = T ].

It then follows by symmetry of α-stable motions and the definition of p0(x) that, for any
x ∈ R and t > 0,

Ptx(T ) = 1− Pt−x(T ). (4.4)

Setting x = 0 in equation (4.4) yields Pt0(T ) = 1
2 , so by monotonicity (4.3)

Ptx(T ) ≥ 1
2 for x > 0, and Ptx(T ) ≤ 1

2 for x < 0. (4.5)

It will be convenient in our later calculations to introduce notation for the majority
voting system. Mimicking [30], define the function g : [0, 1]3 → [0, 1] by

g(p1, p2, p3) = p1p2p3 + p1p2(1− p3) + p2p3(1− p1) + p3p1(1− p2). (4.6)

This is the probability that a majority vote gives the result 1, in the special case when
the three voters are independent and have probabilities p1, p2 and p3 of voting 1. We will
abuse notation slightly and write g(q) := g(q, q, q). Note that, for all q ∈ [0, 1],

g(q) = 1− g(1− q). (4.7)

4.1 A coupling of voting systems

In this section, we will couple the root vote of T (X(t)) under majority voting to the
root vote of another ternary branching process under a different voting system. This
other branching process will be a ternary branching subordinated Brownian motion, with
subordinator given by a truncated α

2 -stable subordinator. We endow this process with
a voting procedure that we call ‘marked majority voting’. Once we have achieved this
coupling of root votes, we state a more general theorem in terms of this new branching
process that will imply Theorem 4.1.

The intuition behind marked majority voting, which we denote by V×, is straightfor-
ward. However, formally proving a coupling of the majority and marked majority systems
V and V× is more challenging. To aid us with this, we introduce an intermediate voting
system V̂ that can be readily compared to both voting systems. We call this the ‘expo-
nentially marked’ voting procedure. The definition of the exponentially marked voting
procedure, together with a proof that it couples with the ordinary majority voting system
in the appropriate sense (Theorem 4.4) make up the content of Section 4.1.1. After this,
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in Section 4.1.2, we define the marked majority voting procedure that will be carried
through the one-dimensional proof, and prove (using the intermediate voting system)
that it can be coupled to majority voting. Theorem 4.1 will then be a consequence of a
more general theorem stated in terms of the marked voting system on the subordinated
Brownian tree (Theorem 4.7), which will be proved in Section 4.2.

4.1.1 Exponentially marked voting

In this section we will couple the majority voting system on T (X(t)) with the expo-
nentially marked voting system defined on a ternary branching subordinated Brownian
motion. Fix ε > 0 throughout. We will consider an I(ε)2-truncated α

2 -stable subordinator
denoted Rεt . Assumption 3.1 will also be adopted for all stable subordinators. To be
precise, if

ν(dx) :=
α

2Γ
(
1− α

2

)x−1−α2 dx

is the Lévy measure of the α
2 -stable subordinator, then the Lévy measure of Rεt is given

by

σαI(ε)α−2ν(dx)10≤x≤ 2−α
α I(ε)2 .

Here, the term ν(dx)10≤x≤ 2−α
α I(ε)2 arises because Rεt is an α

2 -stable subordinator, trun-

cated at level 2−α
α I(ε)2, and the coefficient σαI(ε)α−2 arises because Rεt is (implicitly)

assumed to run at speed σαI(ε)α−2t. Henceforth, when we use the notation Rεt we
suppress the true speed of the process, which was made explicit previously in Sec-
tion 3.2. Moreover, although we technically truncate at level 2−α

α I(ε)2, we shall refer to
this simply as the I(ε)2-truncated stable subordinator. Let BRε(t) denote the historical
process of a ternary branching Rεt -subordinated Brownian motion with branching rate
ε−2. Unless stated otherwise, all subordinators in this work will be zero at time zero.

Let us now make precise the form of the coupling that we desire. As before, let
V(X(t)) denote the root vote of T (X(t)) under majority voting (Definition 3.2). We will
define a voting system on T (BRε(t)) with root vote V̂(BRε(t)) satisfying

Pεx [V(X(t)) = 1] ≥ Pεx
[
V̂(BRε(t)) = 1

]
for all x ≥ 0, (4.8)

with the reverse inequality holding for x < 0. Having obtained this, it will suffice to
prove the analogue of Theorem 4.1 with V(X) replaced by V̂(BRε). In this way, we will
have incorporated the problematic ‘large jumps’ of the α-stable process X(t) into the
voting system V̂.

To define the voting system on T (BRε(t)), consider a collection of independent α
2 -

stable subordinators, {Ri}i∈M(t), where M(t) denotes the set of individuals that have
ever been alive in T (X(t)). For each i ∈M(t), let τ×i be the first time that Ri makes a
jump of size larger than 2−α

α I(ε)2 (these are the exponential times after which the voting
system is named). Explicitly,

τ×i := inf
{
t ≥ 0 : |Ri(t)−Ri(t−)| > 2−α

α I(ε)2
}
.

For each i, τ×i is exponentially distributed with parameter∫ ∞
2−α
α I(ε)2

σαI(ε)α−2ν(dx)10≤x≤ 2−α
α I(ε)2

= α
2

(
2−α
α

)α
2 I(ε)α−2

∫ ∞
2−α
α I(ε)2

x−
α
2−1dx

= I(ε)−2
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using the definition of σα from (2.3) (indeed, we chose σα so that the above equality
would hold). Therefore {τ×i }i∈M(t) is a family of i.i.d. Exp(I(ε)−2) variables. We associate
to the particle in T (BRε(t)) with label i their lifetime, τi ∧ t, for τi ∼ Exp(ε−2).

Definition 4.3 (V̂p). Fix ε > 0. For p : R→ [0, 1], define the exponentially marked voting
procedure on T (BRε(t)) as follows.

(1) Each individual Bi(Rεi ) is said to be marked if τ×i < τi. Each marked individual
votes 1 with probability 1

2 and otherwise votes 0.

(2) Each unmarked leaf i of T (BRε(t)), independently, votes 1 with probability

p(Bi(R
ε
i (t))) and otherwise votes 0.

(3) At each branch point in T (BRε(t)), if the parent particle k is unmarked, she votes
according to the majority vote of her three offspring (k, 1), (k, 2) and (k, 3).

Under this voting procedure, define V̂p(BRε(t)) to be the vote associated to the root ∅ of
T (BRε(t)).

When an individual in T (BRε(t)) is marked, its vote is independent of the votes of
its ancestors. Therefore if at least two individuals born at the same branching event
are marked, the vote of their parent is independent of all of its ancestors, making it
effectively random. Reassuringly, this scenario is very unlikely, since down a ‘typical’
line of descent in T (BRε(t)), two individuals will not be marked at the same branching
event.

We now describe the intuition behind the exponentially marked voting procedure. Re-
call that an α

2 -stable subordinated Brownian motion is equal in distribution to an α-stable
process, so we may consider the historical ternary branching α

2 -stable subordinated
Brownian motion BR(t) in place of X(t). Suppose the trees T (BR(t)) and T (BRε(t))

rooted at x > 0 have been generated up to time t and that they have the same branching
structure, written as T (BRε(t)) = T (BR(t)). Then each individual Bi(Ri) in T (BR(t))

can be associated to the individual Bi(Rεi ) in T (BRε(t)). If the subordinator Ri has not
made a large jump (i.e. a jump bigger than I(ε)2) in its lifetime (τ×i ≥ τi), then Bi(R

ε
i )

votes in the same way as Bi(Ri) according to majority voting. However, if Ri does make
a large jump (τ×i < τi), then, since x > 0, Bi(Ri) is more likely to jump into right-half
line than the left. Therefore the vote of Bi(Ri) should be one with probability strictly
greater than 1/2. In contrast, when τ×i < τi, Bi(Rεi ) votes one with probability exactly
1/2, which reduces the probability that the root vote of T (BRε(t)) will equal one, so we
expect (4.8) to hold.

Now, instead of considering the initial condition p0(x) = 1{x≥0} as we did for majority
voting, we will use

p̂0(x) = u+1{x≥0} + u−1{x≤0}, (4.9)

where 0 < u− < u+ < 1 satisfy 1− u+ = u−. We will fix a choice of u− and u+ later (see
(4.26) and (4.27)). For this choice of initial condition, we write V̂ := V̂p̂0 . Noting that p̂0

is symmetric, for any x1 ≤ x2 ∈ R,

Pεx1

[
V̂(BRε(t)) = 1

]
≤ Pεx2

[
V̂(BRε(t)) = 1

]
. (4.10)

Let T be a time-labelled ternary tree and define

P̂εx(T ) := Pεx

[
V̂(BRε(t)) = 1 | T = T (BRε(t))

]
.

Then, since 0 and 1 are exchangeable in the exponentially marked voting system,

P̂tx(T ) = 1− P̂t−x(T ) (4.11)
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for all x ∈ R and t ≥ 0. Setting x = 0 in equation (4.11) shows that P̂t0(T ) = 1
2 for all

t > 0, and together with monotonicity (4.10), this gives

P̂εx(T ) ≥ 1
2 for x > 0, P̂εx(T ) ≤ 1

2 for x < 0.

To conclude this section, we prove the claimed coupling of voting systems.

Theorem 4.4. Let ε > 0 and t ≥ 0. Then

(1) for all x ≥ 0, Pεx[V(X(t)) = 1] ≥ Pεx
[
V̂(BRε(t)) = 1

]
,

(2) for all x ≤ 0, Pεx[V(X(t)) = 1] ≤ Pεx
[
V̂(BRε(t)) = 1

]
.

Proof. We only prove the first inequality, since the second inequality will follow by
the symmetry relations (4.4) and (4.11). Recall the initial conditions for V(X(t)) and
V̂(BRε(t)) are given by

p0(x) = 1{x≥0} and p̂0(x) = u+1{x≥0} + u−1{x≤0}

respectively. To ease notation, let p ≡ p0 and p̂ ≡ p̂0 for the remainder of this proof.
First, by coupling branching structures and branching times of both trees, we can

assume T (BRε(t)) = T (X(t)), so it suffices to show that

Ptx(T ) ≥ P̂tx(T ) for all x ≥ 0 (4.12)

for any time-labelled ternary tree T . Denote the time of the first branching event
in T (BRε(t)) = T (X(t)) by τ (which corresponds to τ∅ in Definition 4.3). Let τ× ∼
Exp(I(ε)−2) be the exponential random variable that determines if the ancestral individ-
ual in T (BRε(t)) is marked. We proceed by induction on the number of branching events
in T .

To prove the base case, let T0 denote the tree with a root and a single leaf. Condi-
tional on {T0 = T (BRε(t))}, let B(Rεt ) be the position of the single individual at time t
where (Bs)s≥0 is a standard Brownian motion and (Rεs)s≥0 is an I(ε)2-truncated α

2 -stable
subordinator. Under the exponentially marked voting procedure, this individual votes 1

with probability p̂(B(Rεt )) if she is unmarked (i.e. τ× ≥ τ ), or she votes 1 with probability
1
2 if she is marked (τ× < τ ). Since the event {T (BRε(t)) = T0} is equivalent to {τ > t},
we have, for all x ≥ 0,

P̂tx(T0) = Eεx
[
p̂ (B(Rεt ))1τ×≥τ | τ > t

]
+ 1

2P
ε
x[τ× < τ | τ > t]

= Eεx [p̂ (B(Rεt )) | τ > t]Pεx[τ× ≥ τ | τ > t] + 1
2P

ε
x[τ× < τ | τ > t], (4.13)

where in the second line we have used that, conditional on the event {τ > t}, the events
{B(Rεt ) > 0} and {τ× ≥ τ} are independent. We next observe that

Eεx [p̂ (B(Rεt )) | τ > t]Pεx[τ× ≥ τ | τ > t] + 1
2P

ε
x[τ× < τ | τ > t]

≤ Eεx [p̂ (B(Rεt )) | τ > t]Pεx[τ× ≥ t] + 1
2P

ε
x[τ× < t]. (4.14)

To see this, first note that since τ× and τ are independent, P[τ× > t]−P[τ× > τ |τ > t] ≥ 0

and P[τ× < τ |τ > t] − P[τ× < t] ≥ 0. Now, since x ≥ 0, by similar arguments as those
used to obtain (4.5), we have Eεx [p̂ (B(Rεt )) | τ > t] ≥ 1

2 , and so rearranging (4.14), we
will see that it will follow from

1
2

(
Pεx[τ× < τ | τ > t]− Pεx[τ× < t]

)
≤ 1

2

(
Pεx
[
τ× ≥ t

]
− Pεx

[
τ× ≥ τ | τ > t

])
,

or, equivalently,

Pεx[τ× < τ | τ > t] + Pεx
[
τ× ≥ τ | τ > t

]
≤ Pεx

[
τ× ≥ t

]
+ Pεx[τ× < t],
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which holds trivially. Therefore (4.14) holds, and combining (4.13) with (4.14) we obtain

P̂tx(T0) ≤ Eεx [p̂ (B(Rεt )) | τ > t]Pεx[τ× ≥ t] + 1
2P

ε
x[τ× < t]. (4.15)

Continuing the proof of the base case, consider the leaf in X(t). Conditional on
{T (X(t)) = T0}, abuse notation and denote the position of the single individual in
T (X(t)) at time t by B(Rt) for (Bs)s≥0 a standard Brownian motion and (Rs)s≥0 an
α
2 -stable subordinator. Define

τ := inf
{
t ≥ 0 : |Rt −Rt−| > 2−α

α I(ε)2
}

which describes the first time that Rt makes a jump of size greater than 2−α
α I(ε)2. Of

course, τ
D
= τ×, but τ is defined in terms of the subordinator of the ancestral particle in

X(t). Noting that τ is independent of τ , we have

Ptx(T0) = Eεx[p (B(Rt)) | τ ≥ t, τ > t]Pεx[τ ≥ t] + Eεx[p(B(Rt)) | τ < t < τ ]Pεx[τ < t]

≥ Eεx[p(B(Rεt )) | τ > t]Pεx[τ ≥ t] + 1
2P

ε
x[τ < t] (4.16)

using that, conditional on {τ > t}, B(Rt)
D
= B(Rεt ), and Eεx[p(B(Rt)) | τ < t < τ ] ≥ 1

2

since x ≥ 0, which follows in a similar way to (4.5). Finally, since u+ = 1 − u− and
Pεx[B(Rt) > 0] ≥ 1

2 for x ≥ 0, Eεx[p(B(Rt)) | τ > t] ≥ Eεx[p̂(B(Rt)) | τ > t], which, together
with (4.15) and (4.16) gives us

Ptx(T0) ≥ P̂tx(T0)

for x ≥ 0, proving the base case.
Now suppose that, for all trees with at most n− 1 > 1 branching events, (4.12) holds.

Let T n be a tree with n branching events. Define the first three trees of descent, denoted
T1, T2, and T3, to be the three subtrees of T n generated at time τ . Note that T1, T2, and
T3 have strictly less than n branching events. Write

g
(
Pt−τXτ

(T ?)
)

:= g
(
Pt−τXτ

(T1),Pt−τXτ
(T2),Pt−τXτ

(T3)
)

and define g
(
P̂t−τXτ

(T ?)
)

similarly. By (4.4)

g
(
Pt−τXτ

(T ?)
)

= 1− g
(
Pt−τ−Xτ (T ?)

)
and g

(
P̂t−τXτ

(T ?)
)

= 1− g
(
P̂t−τ−Xτ (T ?)

)
. (4.17)

Let Tn := {T (BRε(t)) = T (X(t)) = T n}. By almost identical arguments to those used to
obtain (4.16), but now conditioning on the event {τ > τ}, we have

Ptx(T n)

= Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
+ Eεx

[
g
(
Pt−τB(Rτ )(T ?)

)
| τ ≤ τ, Tn

]
Pεx[τ ≤ τ | Tn]

≥ Eεx
[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
+ 1

2P
ε
x[τ ≤ τ | Tn], (4.18)

using that, for all x ≥ 0, Eεx

[
g
(
Pt−τB(Rτ )(T ?)

)
| τ ≤ τ, Tn

]
≥ 1

2 by a similar symmetry

relation to (4.11). By definition of the exponentially marked voting system, for τ× as
above, we also have

P̂tx(T n) = Eεx

[
g
(
P̂t−τB(Rετ )(T ?)

)
1τ×>τ | Tn

]
+ 1

2P
ε
x[τ× ≤ τ | Tn]. (4.19)

Therefore, since τ
D
= τ×, by (4.18) and (4.19), it suffices to show that

Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
≥ Eεx

[
g
(
P̂t−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
. (4.20)
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Now, for all x ≥ 0,

Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
= Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | B(Rετ ) > 0, Tn

]
Pεx [B(Rετ ) > 0 | Tn]

+ Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | B(Rετ ) ≤ 0, Tn

]
Pεx[B(Rετ ) ≤ 0 | Tn]

= Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | B(Rετ ) > 0, Tn

]
Pεx[B(Rετ ) > 0 | Tn]

+ Pεx[τ > τ | Tn]Pεx[B(Rετ ) ≤ 0 | Tn]

− Eεx
[
g
(
Pt−τ−B(Rετ )(T ?)

)
1τ>τ | B(Rετ ) ≤ 0, Tn

]
Pεx[B(Rετ ) ≤ 0 | Tn]

= Eεx

[
g
(
Pt−τB(Rετ )(T ?)

)
1τ>τ | B(Rετ ) > 0, Tn

] (
Pεx[B(Rετ ) > 0 | Tn]

− Pεx[B(Rετ ) ≤ 0 | Tn]
)

+ Pεx[τ > τ | Tn]Pεx[B(Rετ ) ≤ 0 | Tn]

≥ Eεx
[
g
(
P̂t−τB(Rετ )(T ?)

)
1τ>τ | B(Rετ ) > 0, Tn

] (
Pεx[B(Rετ ) > 0 | Tn]

−Pεx[B(Rετ ) ≤ 0 | Tn]
)

+ Pεx[τ > τ | Tn]Pεx[B(Rετ ) ≤ 0 | Tn]

= Eεx

[
g
(
P̂t−τB(Rετ )(T ?)

)
1τ>τ | Tn

]
where, in the second equality, we have applied the symmetry (4.17), and in the second
to last line, we used monotonicity of g together with our inductive hypothesis, and that,
given x ≥ 0, the difference Pεx[B(Rετ ) > 0 | Tn]− Pεx[B(Rετ ) ≤ 0 | Tn] is non-negative. The
final equality follows by reversing the arguments used above but for P̂t−τB(Rετ )(T ?). We
conclude that (4.20) holds, proving our inductive step.

4.1.2 Marked majority voting

In this section, we describe what will be the final voting system in one dimension,
denoted V×, defined on T (BRε(t)). This voting system will be carried throughout
the one-dimensional proof. In spirit, V× is very similar to V̂, but no longer relies on
knowing the lifetime of particles in order to mark them. Instead, particles are marked
(independently) when they are born. In Theorem 4.6, it will be shown that our new
voting system V× can be coupled to the exponentially marked voting system V̂, so by
Theorem 4.4, it can also be coupled to the original majority voting system V.

Under the marked majority voting system, particles will be marked (independently)
with probability bε, defined as follows. Recall that, for i ∈M(t), τ×i ∼ Exp(I(ε)−2) is the
first time the subordinator (Ri(s))s≥0 makes a jump of size larger than 2−α

α I(ε)2. Further

recall that τi ∼ Exp(ε−2), where τi ∧ t is the lifetime of the particle Xi
D
= Bi(Ri) in X(t).

Define

bε := P[τ×i < τi] =
I(ε)−2

I(ε)−2 + ε−2
∼ ε2

I(ε)2
(4.21)

where x ∼ y for some x, y depending on ε means that there exists constants c, d > 0

independent of ε such that cy < x < dy. The quantity bε is the probability that the
subordinator associated to individual i makes a large jump in its lifetime (if individual i
is a leaf, bε gives an upper bound on this probability). By Assumption 2.2 (B), bε → 0 as
ε→ 0.

Definition 4.5 (V×p ). Let ε > 0. For p : R → [0, 1], we define a marked majority voting
procedure on T (BRε(t)) as follows.
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(1) At each branch point in T (BRε(t)), the parent particle j marks each of her three
offspring (j, 1), (j, 2) and (j, 3) independently with probability bε. Each marked
particle (independently) votes 1 with probability 1

2 and otherwise votes 0.

(2) Each unmarked leaf i of T (BRε(t)), independently, votes 1 with probability

p(Bi(R
ε
i ))) and otherwise votes 0.

(3) At each branch point in T (BRε(t)), if the parent particle k is unmarked, she votes
according to the majority vote of her three offspring (k, 1), (k, 2) and (k, 3).

Observe that the initial ancestor of T (BRε(t)) is never marked under this procedure.
With the marked majority voting procedure described above, define V×p to be the vote
associated to the root ∅ of T (BRε(t)).

The marked majority voting procedure makes it more difficult for the root of T (BRε(t))

(rooted at x > 0) to vote 1 compared to majority voting. Indeed, even if all three offspring
vote 1 at a branch point, under marked majority voting the parent particle can still
vote 0 with positive probability. This can be viewed as the penalty one must pay for
truncating the underlying spatial motion (where this truncation really takes place on the
subordinator). In other words, to couple V×(BRε(t)) to V(X(t)), the voting procedure
V× should make it more difficult for individuals to vote 1, to compensate for the new
underlying spatial motion, which makes it easier for individuals to vote 1 (since, for a
tree rooted at x > 0, BRε(t) is more likely to remain on the right-half line than X(t)).

Here, we will use the same initial condition p̂0 (4.9) as we did for exponentially
marked voting, and write V× := V×p̂0 . With this choice of initial condition, the marked
majority voting system, V×, retains many of the symmetry relations exploited in [30],
that we have already used here for V and V̂. Namely, for all x1, x2 ∈ R with x1 ≤ x2,

Pεx1

[
V×(BRε(t)) = 1

]
≤ Pεx2

[
V×(BRε(t)) = 1

]
, (4.22)

and, for any time-labelled tree T , if we set

×

P
t
x (T ) = Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) = T

]
,

then by symmetry of the historical stable process and exchangeability of 0 and 1 in the
marked voting procedure,

×

P
t
x (T ) = 1−

×

P
t
−x(T ) (4.23)

for all T , x ∈ R, and t ≥ 0. Setting x = 0 in (4.23) gives
×

P
t
0 (T ) = 1

2 , so by monotonicity
(4.22), for any time-labelled ternary tree T ,

×

P
t
x (T ) ≥ 1

2 for x > 0, and
×

P
t
x (T ) ≤ 1

2 for x < 0. (4.24)

We next introduce notation for our marked majority voting procedure. Recall that g from
(4.6) is the majority voting function associated to V. Define the marked majority voting
function g× : [0, 1]3 → [0, 1] by

g×(p1, p2, p3) := g
(
(1− bε)p1 + bε

2 , (1− bε)p2 + bε
2 , (1− bε)p3 + bε

2

)
.

This is the probability that an unmarked parent particle votes 1 under V×, in the special
case when the three offspring are independent and have probabilities p1, p2 and p3 of
voting 1 if they are unmarked. We abuse notation and write g×(q) := g×(q, q, q). It is easy
to check using symmetry of the majority voting function (4.7) that, for all q ∈ [0, 1],

g×(q) = 1− g×(1− q). (4.25)
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Let {u−, 1
2 , u+} be the three solutions to g×(q) = q, satisfying 0 < u− <

1
2 < u+ < 1.

The exact derivation of these fixed points can be found in the Proposition A.1. It will be
useful later to note that these fixed points can be approximated by Taylor expansion as

u− =
1

2
−
√

(1− bε)3(1− 3bε)

2(1− bε)3
=

3

4
b2ε +O(b3ε) (4.26)

u+ =
1

2
+

√
(1− bε)3(1− 3bε)

2(1− bε)3
= 1− 3

4
b2ε +O(b3ε). (4.27)

Henceforth, these fixed points u+ and u− will be used to define the initial condition

p̂0(x) = u+1{x≥0} + u−1{x≥0}.

We now return to the coupling of V× and the original voting system V via the intermedi-
ate system V̂.

Theorem 4.6. Let V̂ be the exponentially marked majority voting system (Definition 4.3)
and V× be the marked majority voting system (Definition 4.5), both with initial condition
p̂0(x) = u+1{x≥0} + u−1{x≤0}. Then, for all x ∈ R and t ≥ 0,

Pεx

[
V̂(BRε(t)) = 1

]
= Pεx

[
V×(BRε(t)) = 1

]
(1− bε) +

bε
2
.

Proof. Recall that, under the voting system V̂, each particle i is marked if τ×i < τi. By
definition of bε, all particles in T (BRε(t)) are marked with probability bε under both V̂
and V×, except for ancestral particle, which remains unmarked under V× by definition.
Conditioning on the marking of the ancestral particle in V̂, we obtain

Pεx

[
V̂(BRε(t)) = 1

]
= Pεx

[
V̂(BRε(t)) = 1 | τ× > τ0

]
Pεx[τ× > τ0]

+ Pεx

[
V̂(BRε(t)) = 1 | τ× ≤ τ0

]
Pεx[τ× ≤ τ0]

= Pεx
[
V×(BRε(t)) = 1

]
(1− bε) +

bε
2
,

where the last line follows by definition of bε.

Finally, by Theorem 4.4 and Theorem 4.6, to prove our main one-dimensional result,
Theorem 4.1, it suffices to show the following.

Theorem 4.7. Suppose I satisfies Assumptions 2.2 (A)-(B). Fix k ∈ N and T ∗ ∈ (0,∞).
Let u+, u− be as in (4.26) and (4.27). Then there exist c1(α, k), ε1(α, k) > 0 such that, for
all t ∈ [0, T ∗] and all ε ∈ (0, ε1(k)),

(1) for x ≥ c1(k)I(ε)| log ε|, we have Pεx [V×(BRε(t)) = 1] ≥ u+ − εk,

(2) for x ≤ −c1(k)I(ε)| log ε|, we have Pεx [V×(BRε(t)) = 1] ≤ u− + εk.

Observe that the sharpness of the interface in Theorem 4.7 is of the same order as the
sharpness from the Brownian result, Theorem 2.8. This is a result of the truncated
subordinated Brownian motion behaving similarly to a Brownian motion (as discussed in
Section 3.2).

Remark 4.8. By a similar proof to that of Theorem 3.3, we see that

uε(t, x) = Pεx
[
V×(BRε(t)) = 1

]
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is a solution to the equation

∂tu
ε = Lεuε + ε−2(g×(uε)− uε)

= Lεuε +O
(
ε2I(ε)−4

) (
1
2 − u

ε
)3

+O
(
ε−2
)
uε(2uε − 1)(1− uε) (4.28)

with initial condition uε(0, x) = p̂0(x), where Lε denotes the infinitesimal generator
of (B(Rεt ))t≥0. Rather remarkably, the work from this section tells us that solutions
to (4.28) and (2.2) are related. More precisely, the couplings from Theorem 4.4 and
Theorem 4.6 tell us that solutions to equation (4.28) (after transformation by the function
v 7→ (1 − bε)v + bε

2 ) are lower and upper bounds to solutions of the scaled fractional
Allen–Cahn equation (2.2) restricted to x ≥ 0 and x ≤ 0, respectively. It would be
interesting to see if this relationship provides any insights into a PDE-theoretic proof of
our main result.

4.2 Proof of Theorem 4.7

We now prove Theorem 4.7. To do so, we will adapt ideas from both [30, 38]. In [30],
the majority voting function g was used throughout, while [38] builds upon this work and
considers more general voting functions. This makes [38] useful when proving results
about the marked majority voting function g×.

Throughout this section, we take the initial condition

p̂0(x) = u+1{x≥0} + u−1{x≤0}.

Our next result verifies that the marked majority voting procedure cannot reduce the
positive voting bias on the leaves when the root, x, is non-negative. Here, we say a leaf
has a ‘positive voting bias’ if it has a preference for voting one instead of zero, which
is the case when the tree is rooted at a non-negative point x. Once we have shown
Lemma 4.9, we will follow the strategy of [30] to show that, after enough time has
passed, with high probability enough rounds of voting have occurred to ensure that the
positive voting bias at a leaf is amplified to a large voting bias at the root.

By the symmetry (4.23), a similar result to Lemma 4.9 will hold for the negative
voting bias on the leaves when x < 0. In view of this symmetry, we often state results
only for positive x when convenient to do so. Recall that

×

P
t
x (T ) := Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) = T

]
.

Lemma 4.9. For any time-labelled ternary tree T , time t > 0, and any x ≥ 0,

×

P
t
x (T ) ≥ u+Px[B(Rεt ) ≥ 0] + u−Px[B(Rεt ) ≤ 0].

Proof. This proof follows exactly [38, Lemma 3.1], by an inductive argument on the
number of branching events in T (BRε(t)) together with symmetry of the voting function
g× and symmetry of the transition density for (B(Rεt ))t≥0.

Lemma 4.9 partly motivated our definitions of V̂ and V×. Recall that marked individ-
uals in V× and V̂ vote 1 or 0 with equal probability. However, the proof of Theorem 4.4
would have simplified greatly if we had asked marked individuals under V̂ to vote 0 with
probability 1. Technically, this version of V̂ would only satisfy part (1) of Theorem 4.4. To
obtain part (2) of Theorem 4.4, one would need to define V̂ so that marked individuals
vote 1 with probability 1. In fact, we will explore these voting systems more in Section 5.
Unlike g×, which satisfies (4.25), the voting function corresponding to this other system
would not be symmetric. As a result, the proof of [38, Lemma 3.1] would no longer apply,
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and we are unsure if Lemma 4.9 would hold at all. The symmetry of g× will be used in
several other proofs throughout this section as well.

We now show that the iterative voting procedure amplifies a small positive bias at the
leaves to a large positive voting bias at the root. To do this, we define g(n)

× (q) inductively
by

g
(1)
× (q) = g×(q), g

(n+1)
× (q) = g

(n)
× (g×(q)).

Noting that the ancestral particle is never marked under V×, we see that g(n)
× (q) is the

probability of voting 1 at the root of an n-level regular ternary tree under V× if the
votes of the unmarked leaves are i.i.d. Bernoulli(q). In the following result, we consider
the rate of convergence of g× to its fixed points. Let I be a scaling function satisfying
Assumptions 2.2 (A)-(B) throughout.

Lemma 4.10. Fix k ∈ N. There exists A(k) <∞ and ε1(k) > 0 such that, for all ε ∈ (0, ε1)

and n ≥ A(k)| log ε|,

g
(n)
×
(

1
2 + ε

)
≥ u+ − εk and g

(n)
×
(

1
2 − ε

)
≤ u− + εk.

Proof. We follow the proof of [38, Lemma 3.2], with some important changes to reflect
that our voting function, g×, depends on the parameter ε. Recall that

g×(p) = g((1− bε)p+ bε
2 )

where bε = O
(

ε2

I(ε)2

)
. We prove only the first inequality since the second follows by

completely symmetric arguments. First, we show that there exists Ck > 0 and some
fixed q0 > 0 such that, after n ≥ Ck| log ε| iterations,

g
(n)
× (u+ − q) ≥ u+ − εk (4.29)

for all q ≤ q0. We then show that there exists D > 0 such that, after n ≥ D| log ε|
iterations,

g
(n)
×
(

1
2 + ε

)
≥ u+ − q0. (4.30)

Combining (4.29) and (4.30) then gives the result, since, if n1 ≥ D| log ε| and n2 ≥
Ck| log ε|,

g
(n1+n2)
× ( 1

2 + ε) = g
(n2)
× ◦ g(n1)

× ( 1
2 + ε) ≥ g(n2)

× (u+ − q0) ≥ u+ − εk.

To prove (4.29), choose ε1 sufficiently small so that bε ≤ 1
6 for all ε ∈ (0, ε1). Then

g′×
(

1
2

)
= (1− bε)g′

(
1
2

)
= 3

2 (1− bε) ≥ 5
4 > 1. (4.31)

Next, using that g′(0) = 0 and g′ is continuous, together with the estimate (4.26), for ε1

sufficiently small we have
g′
(
u−(1− bε) + bε

2

)
< 1

4

for all ε ∈ (0, ε1). It follows that, for this choice of ε1,

g′×(u−) = (1− bε)g′
(
u−(1− bε) + bε

2

)
< 1

4 .

Since g′×
(

1
2

)
> 1 and g′× is continuous,

q0 := inf
{
q ≥ 0 : g′×(u− + q) ≥ 1

2

}
> 0.

Now, explicitly,

g′×(x) = −6(1− bε)3x2 + 6(1− bε)3x+ 3
2bε(1− bε)(2− bε),
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from which it is straightforward to verify that g′× is increasing on (−∞, 1
2 ] and achieves

a maximum value of 3
2 (1− bε) at x = 1

2 . In particular, by continuity of g′× and definition
of q0, we have u− + q0 <

1
2 . Therefore, for any c < q0, g′×(u− + c) ≤ g′×(u− + q0). It then

follows from the Mean Value Theorem, together with the symmetry of the marked voting
function (4.25), that for all q < q0

u+ − g×(u+ − q) = g×(u− + q)− u− ≤ q g′×(u− + q0) = q
2 .

Iterating this yields

u+ − g(n)
× (u+ − q) ≤ 1

2n (u+ − q) ≤ 1
2n .

It follows that there exists Ck > 0 such that if n ≥ Ck| log ε| and q ≤ q0 then

g
(n)
× (u+ − q) ≥ u+ − εk,

thereby proving (4.29). We now prove (4.30). By equation (4.31), ε1 is sufficiently small
so that, for all ε ∈ (0, ε1), g′×( 1

2 ) > 1. Since g× is increasing and u−,
1
2 , u+ are the only

fixed points of g×, we have

g×(q) > q for all q ∈
(

1
2 , u+

)
.

By definition of q0 and since g′× is increasing on (0, 1
2 ), u+ − q0 − 1

2 = 1
2 − q0 − u− > 0.

Therefore

q1 := inf
ε≤q≤u+−q0− 1

2

g×
(

1
2 + q

)
−
(

1
2 + q

)
q

≥ 0,

and so for q ∈
[
ε, u+ − q0 − 1

2

]
, by definition of q1 we have

g×
(

1
2 + q

)
− 1

2 > (1 + q1)q. (4.32)

Now, if g×
(

1
2 + ε

)
≥ u+ − q0, we are done. If not, we can apply (4.32) twice to obtain

g
(2)
×
(

1
2 + ε

)
= g×

(
1
2 +

(
g×( 1

2 + ε)− 1
2

))
≥ (1 + q1)

[
g×( 1

2 + ε)− 1
2

]
+ 1

2

≥ (1 + q1)2ε+ 1
2 .

Repeating this argument n− 1 times, we obtain

g
(n)
×
(

1
2 + ε

)
≥ (1 + q1)nε+ 1

2 .

It follows that, for D := 1
log(1+q1) , after n > D| log ε| iterations,

g
(n)
×
(

1
2 + ε

)
≥ u+ − q0.

Setting A = Ck +D proves the result.

The following useful inequality for g× will be used in the proof of Theorem 4.7.

Lemma 4.11. If p1, p2, p3 ≥ 1
2 then,

g×(p1, p2, p3) ≥ min(p1, p2, p3, u+).

If p1, p2, p3 ≤ 1
2 then,

g×(p1, p2, p3) ≤ max(p1, p2, p3, u−).
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Proof. We prove only the first inequality, since the second one follows by a symmetric
argument. Denote

pmin = min{p1, p2, p3, u+}.

If p1, p2, p3 ≥ 1
2 , it follows that 1

2 ≤ pmin ≤ u+. Since g× is increasing in each variable,

g×(p1, p2, p3) ≥ g×(pmin).

Therefore it suffices to show that g×(pmin) ≥ pmin. For this recall that {u−, 1
2 , u+} are the

only fixed points of g×. Factorising g×(pmin)− pmin yields

g×(pmin)− pmin = (pmin − u−)(2pmin − 1)(u+ − pmin).

Since 1
2 ≤ pmin ≤ u+, g×(pmin)− pmin ≥ 0, as required.

The following lemma states that, with high probability, by time t ≥ aε2| log ε|, each
ancestral line of descent in T (BRε(t)) contains at least O(| log ε|) branching events. Let

T regn = ∪k≤n{1, 2, 3}k ⊂ U

denote the n-level regular ternary tree, and for l ∈ R, let T regl = T regdle . For T a time-

labelled ternary tree, we use T regl ⊆ T to mean that, as subtrees of U , T regl is contained
inside T (ignoring time labels).

Lemma 4.12. Let k ∈ N and A(k) be as in Lemma 4.10. There exists a1(α, k) > 0 and
ε1(α, k) > 0 such that, for all ε ∈ (0, ε1) and t ≥ a1(k)ε2| log ε|,

Pε
[
T (BRε(t)) ⊇ T reg

A(k)| log ε|

]
≥ 1− εk.

Proof. This proof proceeds exactly as that of [30, Lemma 2.10], where the authors
estimate the probability that a single leaf of T reg

A(k)| log ε| is not in T (BRε(t)) and combine
this with a union bound summing over all leaves.

Next, we control the displacement of leaves from the root of BRε(t).

Lemma 4.13. Fix k ∈ N and let a1(k) be as in Lemma 4.12. There exists ε1(α, k) > 0

and l1(α, k) > 0 such that, for all ε ∈ (0, ε1) and s ≤ a1(k)ε2| log ε|,

Pεx [∃i ∈ N(s) : |Bi(Rεi (s))− x| ≥ l1(k)I(ε)| log ε|] ≤ εk.

Lemma 4.13 highlights the importance of working with a truncated subordinated
Brownian motion instead of the original stable process. In the proof of Lemma 4.13, we
control the position of the leaves in T (BRε(t)) using a many-to-one lemma. If we were to
use the same approach for the stable tree (without any truncation), we could not obtain
the polynomial error εk in Lemma 4.13, which is crucial to our later proofs.

Proof of Lemma 4.13. First note that for any m > 0

Pεx [∃i ∈ N(s) : |Bi(Rεi (s))− x| ≥ mI(ε)| log ε|]
≤ Eεx[N(s)]P0 [|B(Rεs)| ≥ mI(ε)| log ε|]

= e2s/ε2P0 [|B(Rεs)| ≥ mI(ε)| log ε|]
≤ ε−2a1P0 [|B(Rεs)| ≥ mI(ε)| log ε|] .
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Denote the density of Rεs by fε. Then for any h ≥ 0, partitioning over the event {Rεs ≤
hI(ε)2| log ε|} and its complement, we obtain

P0 [|B(Rεs)| ≥ mI(ε)| log ε|]

≤
∫ hI(ε)2| log ε|

0

P0 [|Bt| ≥ mI(ε)| log ε| ] fε(t)dt+ P0[Rεs ≥ hI(ε)2| log ε|]

≤ sup
0≤t≤hI(ε)2| log ε|

P0[|Bt| ≥ mI(ε)| log ε|] + P0[Rεs ≥ hI(ε)2| log ε|].

We bound each term separately. First, by a Chernoff bound, for all t ≤ hI(ε)2| log ε|,

P0 [|Bt| ≥ mI(ε)| log ε|] = P0

[√
2t|Z| ≥ mI(ε)| log ε|

]
≤ P0

[√
2h|Z| ≥ m| log ε| 12

]
≤ exp

(
− 1

4
m2

h | log ε|
)

= ε
m2

4h .

Fix h := k + 2a1(k) + 1. By Proposition A.4, there exists ε1(k) > 0 such that, for all
ε ∈ (0, ε1)

P0

[
Rεs ≥ hI(ε)2| log ε|

]
≤ εk+2a1(k).

Putting this together, we obtain

Pεx [∃i ∈ N(s) : |Bi(Rεi (s))− x| ≥ mI(ε)| log ε|] ≤ εk + ε
m2

4h −2a1(k)

so the result holds by choosing m = l1(k) sufficiently large.

In the following proof of Theorem 4.7, we suppose x ≥ 2l1(k)I(ε)| log ε|, s∗ := a1(k)ε2| log ε|
and consider the cases t ≤ s∗ and t ≥ s∗ separately. First, if t ≤ s∗, by Lemma 4.13, with
high probability none of the particles in T (X(t)) have moved a distance further than
l1(k)I(ε)| log ε|, and the result follows easily. When t ≥ s∗, we use Lemma 4.9 to show
that the leaves of BRε(t) have a positive voting bias, which, by Lemma 4.12 is magnified
by O(| log ε|) rounds of voting, so Lemma 4.10 applies and gives the result.

Proof of Theorem 4.7. Our approach of truncating the stable subordinator now allows
us to follow the strategy of proof of [30, Theorem 2.6]. We suppress the superscript ε
on Pεx throughout. Fix k ∈ N and T ∗ ∈ (0,∞). Let ε < 1

2 and define zε implicitly by the
relation

Pzε [B(RεT∗) ≥ 0] = 1
2 + (u+ − u−)−1ε. (4.33)

By Lemma A.6 we may choose ε1 sufficiently small so that, for all ε ∈ (0, ε1), zε ≤
8
√

2π(T ∗ + 2) ε. Further suppose ε1(k) < 1
2 is sufficiently small so that Lemmas 4.12

and 4.13 hold for all ε ∈ (0, ε1). Let c1(k) = 2l1(k), for l1(k) as in Lemma 4.13. By
Assumption 2.2 (B), εI(ε)−1 → 0 as ε→ 0, so we can choose ε1 sufficiently small so that

l1(k)I(ε)| log ε|+ zε ≤ c1(k)I(ε)| log ε|

for all ε ∈ (0, ε1) with arbitrarily high probability. Let a1 be as in Lemma 4.12 and define

s∗(ε) = a1(k)ε2| log ε|.
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Let t ∈ (0, s∗) and z ≥ c1(k)I(ε)| log ε|. Note that g×(u+) = u+, so if the initial condition
is constant with p(x) ≡ u+, then

Pz

[
V×u+

(BRε(t)) = 1
]

= u+ for all t > 0, z ∈ R. (4.34)

Recall that the initial condition for marked majority voting is chosen to be p̂0 = u+1{x≥0}+

u−1{x≤0}, so

Pz
[
V×(BRε(t)) = 0

]
≤ Pz

[
∃ i ∈ N(t) : |Bi(Rεi (t))− z| ≥ c1I(ε)| log ε|

]
+ Pz

[
{V×(BRε(t)) = 0} ∩ {@ i ∈ N(t) : |Bi(Rεi (t))− z| ≥ c1I(ε)| log ε|}

]
≤ εk + 1− u+

= εk + u−

where we have used (4.34) in the second inequality. This proves the result when t < s∗.
Now suppose t ∈ [s∗, T ∗] and z ≥ c1(k)I(ε)| log ε|. Let Ts∗ = T (BRε(s

∗)) be the time-
labelled tree of the branching stable process at time s∗. Define

qt−s∗(z) = Pz[V
×(BRε(t− s∗)) = 1]

for all z ∈ R. Write {BRε(s
∗) > zε} for the event Bi(Rεi (s

∗)) > zε for all i ∈ N(s∗). Then

Pz[V
×(BRε(t)) = 1] = Pz

[
V×qt−s∗ (·)(BRε(s

∗)) = 1
]

≥ Pz
[{
V×qt−s∗ (zε)

(BRε(s
∗)) = 1

}
∩ {BRε(s

∗) > zε}
]

≥ Pz
[
V×qt−s∗ (zε)

(BRε(s
∗)) = 1

]
− εk, (4.35)

where the first line follows by the Markov property of BRε at time s∗, the second line
follows by monotonicity (4.22), and the third line follows by the Lemma 4.13 and our
assumption z ≥ c1I(ε)| log ε|. Now, by Lemma 4.9 and the definition of zε (4.33) (noting
that t− s∗ ≤ T ∗), we have

qt−s∗(zε) ≥ Pzε [B(Rεt−s∗) ≥ 0]u+ + Pzε [B(Rεt−s∗) ≤ 0]u−

≥ u+

(
1
2 + (u+ − u−)−1ε

)
+ u−

(
1
2 − (u+ − u−)−1ε

)
= 1

2 + ε. (4.36)

Substituting (4.36) into (4.35), we obtain

Pz
[
V×(BRε(t)) = 1

]
≥ Pz

[
V×1

2 +ε
(BRε(s

∗)) = 1
]
− εk. (4.37)

Note that, if pi ≥ 1
2 + ε for i = 1, 2, 3, then g×(p1, p2, p3) ≥ min(p1, p2, p3, u+) from

Lemma 4.11. Therefore, if each leaf of T (BRε(s
∗)) votes 1 independently with probability

greater than 1
2 + ε, and T (BRε(s

∗)) ⊇ T regA| log ε|, then each leaf in T regA| log ε| also votes 1 with

probability greater than 1
2 + ε. By Lemma 4.12, T (BRε(s

∗)) ⊇ T regA| log ε| with probability

at least 1− εk, so by Lemma 4.10

Pz

[
V×1

2 +ε
(BRε(s

∗)) = 1
]
≥ (1− εk)g

(dA| log ε|e)
×

(
1
2 + ε

)
≥ (1− εk)(u+ − εk)

≥ u+ − 2εk.

Substituting this into (4.37) yields

Pz
[
V×(BRε(t)) = 1

]
≥ u+ − 3εk, (4.38)

thereby proving part (1) of Theorem 4.7. Part (2) of Theorem 4.7 follows by completely
symmetric arguments.
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Remark 4.14. Observe that (4.38) contains a coefficient in front of the polynomial error
term, εk, that is not mentioned in the statement of Theorem 4.7. Our convention here
and in the following sections is that coefficients of polynomial error terms will not be
stated in theorems and propositions (this convention was also used in [30]).

4.3 Slope of the interface

Just as in [30], to prove the multidimensional result, Theorem 3.4, we make use of
a lower bound on the ‘slope’ of the interface in dimension d = 1. For a time-labelled
ternary tree T , recall that

×

P
t
x (T ) := Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) = T

]
.

Proposition 4.15. Suppose x ≥ 0 and η > 0. Then for any time-labelled ternary tree T
and any time t,

×

P
t
x (T )−

×

P
t
x−η(T ) ≥

×

P
t
x+η(T )−

×

P
t
x (T ). (4.39)

Proof. We follow the strategy of [30], adapted to take account of our different choice of
voting function g×. We proceed by induction on the number of branching events. Let
T0 denote a time-labelled tree with a root and a single leaf. Recall that, under V×, the
initial ancestor is never marked. Denote the transition density of B(Rεt ) started at z ∈ R
by pz,t(·). Then for x ≥ 0 and η > 0,

×

P
t
x (T0)−

×

P
t
x−η(T0) = (u+ − u−)

∫ x

x−η
p0,t(z)dz

≥ (u+ − u−)

∫ x+η

x

p0,t(z)dz

=
×

P
t
x+η(T0)−

×

P
t
x (T0). (4.40)

To see this, recall that
×

P
t
x (T0) is equal to the probability that a single individual, started

at x and travelling according to (B(Rεs))s≥0, votes one under marked majority voting at
time t. Since the root individual is never marked under marked majority voting, and
leaves vote according to p̂0 = u+1{x≥0} + u−1{x<0}, we have

×

P
t
x (T0) = u+

∫ ∞
0

px,t(z)dz + u−

∫ 0

−∞
px,t(z)dz

= u+

∫ ∞
0

p0,t(z − x)dz + u−

∫ 0

−∞
p0,t(z − x)dz

= u+

∫ ∞
−x

p0,t(z)dz + u−

∫ −x
−∞

p0,t(z)dz

= 1
2 + (u+ − u−)

∫ x

0

p0,t(z)dz

where in the final line we have used that (u+ + u−)/2 = 1/2. Similarly,
×

P
t
x−η(T0) =

1
2 + (u+ − u−)

∫ x−η
0

p0,t(z)dz, so the first equality of (4.40) holds, and the final equality
can be argued similarly. For the inequality in (4.40), note that the p0,t(z) is the transition
density of a unimodal distribution centred about zero.

Now assume the inequality holds for all time-labelled ternary trees with at most n
branch points. Let T be a time-labelled ternary tree with n + 1 internal vertices, and
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denote the time of the first branching event in T by τ . Let T1, T2 and T3 denote the three
trees of descent from the first branching event in T . Write

g×

(×
P
t−τ
x (T ?)

)
:= g×

(×
P
t−τ
x (T1),

×

P
t−τ
x (T2),

×

P
t−τ
x (T3)

)
.

Then

×

P
t
x (T )−

×

P
t
x−η(T ) = Eεx

[
g×

(×
P
t−τ
B(Rετ )(T ?)

)]
− Eεx−η

[
g×

(×
P
t−τ
B(Rετ )(T ?)

)]
=

∫ ∞
−∞

[
g×

(×
P
t−τ
y (T ?)

)
− g×

(×
P
t−τ
y−η (T ?)

)]
px,τ (y)dy

=

∫ ∞
0

[
g×

(×
P
t−τ
y (T ?)

)
− g×

(×
P
t−τ
y−η (T ?)

)]
px,τ (y)dy

+

∫ ∞
0

[
g×

(×
P
t−τ
−y (T ?)

)
− g×

(×
P
t−τ
−y−η(T ?)

)]
px,τ (−y)dy

=

∫ ∞
0

[
g×

(×
P
t−τ
y (T ?)

)
− g×

(×
P
t−τ
y−η (T ?)

)]
px,τ (y)dy

+

∫ ∞
0

[
1− g×

(×
P
t−τ
y (T ?)

)
−
(

1− g×
(×
P
t−τ
y+η (T ?)

))]
px,τ (−y)dy

=

∫ ∞
0

g×

(×
P
t−τ
y (T ?)

)
(px,τ (y)− px,τ (−y))

− g×
(×
P
t−τ
y−η (T ?)

)
px,τ (y) + g×

(×
P
t−τ
y+η (T ?)

)
px,τ (−y)dy, (4.41)

where the final line follows from the symmetry relations (4.23) and (4.25) which together

imply that g×
(×
P
t−τ
y (T ?)

)
= 1− g×

(×
P
t−τ
−y (T ?)

)
. By almost identical arguments, we find

that

×

P
t
x+η(T )−

×

P
t
x (T ) =

∫ ∞
0

−g×
(×
P
t−τ
y (T ?)

)
(px,τ (y)− px,τ (−y))

+ g×

(×
P
t−τ
y+η (T ?)

)
px,τ (y)− g×

(×
P
t−τ
y−η (T ?)

)
px,τ (−y)dy. (4.42)

Together (4.41) and (4.42) imply(×
P
t
x (T )−

×

P
t
x−η(T )

)
−
(×
P
t
x+η(T )−

×

P
t
x (T )

)
=

∫ ∞
0

(
g×

(×
P
t−τ
y (T ?)

)
− g×

(×
P
t−τ
y−η (T ?)

))
(px,τ (y)− px,τ (−y))dy

−
∫ ∞

0

(
g×

(×
P
t−τ
y+η (T ?)

)
− g×

(×
P
t−τ
y (T ?)

))
(px,τ (y)− px,τ (−y))dy.

Since x ≥ 0, px,τ (y)− px,τ (−y) ≥ 0 for y ≥ 0, and it suffices to show that, for y ≥ 0,(
g×

(×
P
t−τ
y (T ?)

)
− g×

(×
P
t−τ
y−η (T ?)

))
−
(
g×

(×
P
t−τ
y+η (T ?)

)
− g×

(×
P
t−τ
y (T ?)

))
≥ 0. (4.43)

By the inductive hypothesis, for each i = 1, 2, 3(×
P
t−τ
y (Ti)−

×

P
t−τ
y−η (Ti)

)
−
(×
P
t−τ
y+η (Ti)−

×

P
t−τ
y (Ti)

)
≥ 0 (4.44)

for y ≥ 0. By monotonicity of g× and (4.44)

g×

(×
P
t−τ
y−η (T ?)

)
≤ g×

(
2
×

P
t−τ
y (T ?)−

×

P
t−τ
y+η (T ?)

)
. (4.45)
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Substituting (4.45) into (4.43), it suffices to show

g×

(×
P
t−τ
y+η (T ?)

)
− 2g×

(×
P
t−τ
y (T ?)

)
+ g×

(
2
×

P
t−τ
y (T ?)−

×

P
t−τ
y+η (T ?)

)
≤ 0. (4.46)

By definition of g×, (4.46) is equivalent to

g
(

(1− bε)
×

P
t−τ
y+η (T ?) + bε

2

)
− 2g

(
(1− bε)

×

P
t−τ
y (T ?) + bε

2

)
+g
(

(1− bε)(2
×

P
t−τ
y (T ?)−

×

P
t−τ
y+η (T ?)) + bε

2

)
≤ 0. (4.47)

To see that (4.47) holds, note that

g(p1 + q1, p2 + q2, p3 + q3)− 2g(p1, p2, p3) + g(p1 − q1, p2 − q2, p3 − q3)

= 2q1q2(1− 2p3) + 2q2q3(1− 2p1) + 2q3q1(1− 2p2).

Setting pi = (1− bε)
×

P
t−τ
y (Ti) + bε

2 and qi = (1− bε)
(×
P
t−τ
y+η (Ti)−

×

P
t−τ
y (Ti)

)
, we see that

(4.47) will hold if pi ≥ 1
2 , or equivalently,

×

P
t−τ
y (Ti) ≥ 1

2 , which holds by (4.24) since
y ≥ 0.

With this, we can prove the slope of the interface result.

Corollary 4.16. Let ε1(α) and c1(α) be as in Theorem 4.7. Let ε < min(ε1,
1
24 ). Suppose

that for some t ∈ [0, T ∗] and z ∈ R,∣∣Pεz[V×(BRε(t)) = 1]− 1
2

∣∣ ≤ 5
12 ,

and let w ∈ R with |z − w| ≤ c1(α)I(ε)| log ε|. Then

∣∣Pεz[V×(BRε(t)) = 1]− Pεw[V×(BRε(t)) = 1]
∣∣ ≥ |z − w|

48c1(α)I(ε)| log ε|
.

Proof. This follows exactly that of [30, Corollary 2.12], replacing the interface width
ε| log ε| with I(ε)| log ε|.

4.4 Coupling one-dimensional and d-dimensional processes

In this section, we will construct a coupling of the the one-dimensional and multi-
dimensional voting systems, so that the results of Section 4 can be used to prove our
multidimensional result in the next section. To accomplish this, we require the following
regularity properties also used in [30], which follow from Assumptions 2.4 by [22]. Recall
that the sets (Γt)0≤t<T denote the mean curvature flow of Γ0 defined in (2.5).

(1) There exists c0 > 0 such that for all t ∈ [0, T ∗] and x ∈ {y : |d(y, t)| ≤ c0}

|∇d(x, t)| = 1. (4.48)

Moreover, d is a Ca,
a
2 function in {(x, t) : |d(x, t)| ≤ c0, t ≤ T ∗} for a as in Assump-

tion 2.4 (A).

(2) Viewing n := ∇d as the positive normal direction, for x ∈ Γt, the normal velocity
of Γt at x is −d(x, t), and the curvature of Γt at x is −∆d(x, t). Thus, the equation
defining mean curvature flow, equation (2.1), becomes

ḋ(x, t) = ∆d(x, t)

for all x such that d(x, t) = 0.
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(3) There exists C0 > 0 such that for all t ∈ [0, T ∗] and x such that |d(x, t)| ≤ c0 for c0
as in the first assumption, ∣∣∣∇(ḋ(x, t)−∆d(x, t)

)∣∣∣ ≤ C0. (4.49)

(4) There exists v0, V0 > 0 such that for all t ∈ [0, T ∗ − v0] and all s ∈ [t, t+ v0],

|d(x, t)− d(x, s)| ≤ V0(s− t). (4.50)

The condition (4.48) ensures that, for all t ≥ 0, the region {x : d(x, t) ≤ c0} is not self
intersecting. That is, for any x with d(x, t) ≤ c0, the closed ball centred at x of radius
d(x, t) intersects Γt at precisely one point.

Before explaining our result, let us briefly recall the coupling in [30] that compares
d(Ws, t − s), the distance from a d-dimensional Brownian motion to Γt−s, to a one-
dimensional Brownian motion.

Proposition 4.17 ([30]). Let (Ws)s≥0 denote a d-dimensional Brownian motion started
at x ∈ Rd. Suppose that t ≤ T ∗, β ≤ c0 and let

Tβ = inf({s ∈ [0, t) : |d(Ws, t− s)| ≥ β} ∪ {t}).

Then we can couple (Ws)s≥0 with a one-dimensional Brownian motion (Bs)s≥0 started
from z = d(x, t) in such a way that for s ≤ Tβ ,

Bs − C0βs ≤ d(Ws, t− s) ≤ Bs + C0βs. (4.51)

This result was a key ingredient in the proofs of [30, Proposition 2.17, Lemma 2.18]
that gave a comparison between the multidimensional and one-dimensional results. It
turns out that [30, Proposition 2.17, Lemma 2.18] are extremely sensitive to any change
in the coupling (4.51). Indeed, if there is any additional drift term in the left and right
bounds of (4.51) (that is not of the form f(ε)s for some f satisfying limε→0 f(ε) = 0),
then this error propagates, and the strategy of proof in [30] no longer works. This
provides us with a major hurdle, since, if we mimic the proof of the Brownian coupling
but with subordinated Brownian motions, the drift term in (4.51) changes drastically. To
overcome this, we employ not one but two coupling results. The first, Theorem 4.18,
is a straightforward adaptation of Proposition 4.17 to our setting. Our second (and
final) coupling will then follow by replacing the multidimensional subordinated Brownian
motion in the previous coupling result by one that is shifted along an appropriately
chosen outward facing normal vector to Γt−s (this is the content of Theorem 4.20).

Theorem 4.18. Let k ∈ N. Let (Wt)t≥0 be a d-dimensional standard Brownian motion
started at x ∈ Rd, and (Rεt )t≥0 be an I(ε)2-truncated α

2 -stable subordinator satisfying
Assumption 3.1. Fix t ≤ T ∗ and β < c0 for c0 as in (4.49). Define the stopping time

Tβ = inf({s ∈ [0, (k + 1)ε2| log ε|) : |d(Ws, t− s)| > β} ∪ {t}).

Fix s ≥ 0. If Rεs < Tβ ∧ t, then there exists a one-dimensional standard Brownian
motion (Bt)t≥0 started at d(x, t), constants C0, D0 > 0 and ε1(k) > 0 such that, for all
ε ∈ (0, ε1(k)), with probability at least 1− εk+1,

|d(W (Rεs), t− s)−B(Rεs)| ≤ C0βs+D0(k + 2)I(ε)2| log ε|. (4.52)

Proof. We first rewrite d(W (Rεs), t− s) as

d(W (Rεs), t−Rεs) + [d(W (Rεs), t− s)− d(W (Rεs), t−Rεs)] . (4.53)
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By Proposition 4.17, since Rεs ≤ Tβ ∧ t by assumption, there exists a one-dimensional
Brownian motion (Bt)t≥0 started from d(x, t) and C0 > 0 such that

B(Rεs)− C0βR
ε
s ≤ d(W (Rεs), t−Rεs) ≤ B(Rεs) + C0βR

ε
s. (4.54)

By (4.50), the second term in (4.53) is bounded as

|d(W (Rεs), t− s)− d(W (Rεs), t−Rεs)| ≤ V0|Rεs − s|. (4.55)

Combining (4.53), (4.54) and (4.55),

|d(W (Rεs), t− s)−B(Rεs)| ≤ C0βR
ε
s + V0|Rεs − s|

≤ C0βs+D0|Rεs − s|

where D0 := V0 + C0c0 for c0 as in (4.48). By Proposition A.4, there exists ε1(k) > 0 such
that, for all ε ∈ (0, ε1(k)),

P(|Rεs − s| > (k + 2)I(ε)2| log ε|) ≤ εk+1

and the result follows.

We now define the shifted subordinated Brownian motions that will ultimately move
the unwanted drift term in (4.52) into the multidimensional spatial motion.

Definition 4.19 (Z+
s , Z

−
s ). Let (W (Rεt ))t≥0 be a d-dimensional subordinated Brownian

motion. Fix 0 < t, T < T , l > 0 and β < c0 for c0 as in (4.48). Let xs ∈ Γt−s be the unique
point on Γt−s that is the shortest distance from W (Rεs), and vs be the outward facing
unit vector perpendicular to the tangent hypersurface of Γt−s at xs. Then we define the
processes (Z+

s )0≤s≤T and (Z−s )0≤s≤T by

Z+
s =

{
W (Rεs) + lI(ε)2| log ε|vs if |d(W (Rεs), t− s)| ≤ β
W (Rεs) otherwise.

(4.56)

Z−s =

{
W (Rεs)− lI(ε)2| log ε|vs if |d(W (Rεs), t− s)| ≤ β
W (Rεs) otherwise.

(4.57)

Observe that we may choose ε sufficiently small so that any point x on the line segment
between W (Rεs) and Z+

s (or Z−s ) satisfies d(x, t− s) ≤ c0. Then by (4.48) |∇d(x, t− s)| = 1

and {z : d(z, t) ≤ c0} is not self intersecting. This implies that Γt−s is sufficiently ‘flat’
near x to ensure that there is a unique point y ∈ Γt−s that is the closest point on Γt−s
to both Z+

s and W (Rεs) (and similarly for Z−s and W (Rεs)). Therefore, provided ε is
sufficiently small, we have

d(Z+
s , t− s) = d(W (Rεs), t− s) + lI(ε)2| log ε| (4.58)

d(Z−s , t− s) = d(W (Rεs), t− s)− lI(ε)2| log ε|. (4.59)

Consequently, we obtain the following important restatement of Theorem 4.18.

Theorem 4.20. Let k ∈ N. For α ∈ (1, 2) and D0 as in Theorem 4.18, let Z+
t and Z−t

be as in Definition 4.19 for l := D0(k + 2), started at x ∈ Rd. Let (Rεt )t≥0 be an I(ε)2-
truncated α

2 -stable subordinator satisfying Assumption 3.1. Fix t ≤ T ∗, β < c0 for c0 as
in (4.49). Define the stopping time

Tβ = inf({s ∈ [0, (k + 1)ε2| log ε|) : |d(Ws, t− s)| > β} ∪ {t}).

Fix s ≥ 0. If Rεs < Tβ ∧ t, then there exists a one-dimensional standard Brownian motion
(Bt)t≥0 started at d(x, t) and C0 > 0 such that, with probability at least 1− εk+1,

d(Z+
s , t− s) ≥ B(Rεs)− C0βs (4.60)

d(Z−s , t− s) ≤ B(Rεs) + C0βs. (4.61)
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Proof. This follows from Theorem 4.18 and equations (4.58), (4.59).

Notation 4.21. As we have seen in Theorem 4.20, Z+ and Z− satisfy (4.60) and (4.61)
when l := D0(k + 2) in (4.56) and (4.57). For the remainder of this work, we shall take
l := D0(k + 2) in the definition of Z+ and Z−, where the choice of k will be clear in the
given context.

Equipped with Theorem 4.20, we will be able to use our one-dimensional result, but
for the processes Z+, Z− instead of a d-dimensional stable process. To translate this
back to a result in terms of stable processes, we use the following comparison between
root votes.

Let Z+ be the ternary branching process (with branching rate ε−2) in which indi-
viduals independently travel according to (Z+

s )0≤s≤T . Define Z− similarly. Denote the
historical ternary branching process associated to the Rεt -subordinated d-dimensional
Brownian motion by WRε .

Proposition 4.22. Let 0 < t < T , 0 ≤ β < c0, k ∈ N, p : Rd → [0, 1] and F be as in (2.6).
Let Z+(t) and Z−(t) be the historical path of branching processes defined above. Then,
for any x ∈ Rd, there exists m1,m2 > 0 such that∣∣Pεx[V×p (Z−(t)) = 1]− Pεx[V×p (WRε(t)) = 1]

∣∣ ≤ m1e
−t/ε2 +m2F (ε) (4.62)∣∣Pεx[V×p (Z+(t)) = 1]− Pεx[V×p (WRε(t)) = 1]

∣∣ ≤ m1e
−t/ε2 +m2F (ε). (4.63)

Proposition 4.22 is integral to the proof of the main multidimensional result. While
intuitively the root votes in (4.62) and (4.63) should be close (since the spatial motions
are) to obtain the precise bound above requires lengthy calculations which are not
illuminating. So as to not disrupt our flow, we defer the proof of Proposition 4.22 to
Section A.2 of the appendix.

Remark 4.23. Observe that Proposition 4.22 marks the first appearance of the term
F (ε) that will later contribute to the sharpness of the interface in Theorem 2.5. It is also
the first time we require that α ∈ (1, 2) and that Assumption 2.2 (C) holds, to ensure that
F (ε)→ 0.

5 Majority voting in dimension d ≥ 2

In this section, we will use the one-dimensional result to prove the main multidimen-
sional result, Theorem 3.4. To begin, in Section 5.1, we will prove a series of couplings.
This will allow us to restate Theorem 3.4 in terms of the processes Z+(t) and Z−(t) in
Theorem 5.6. We go on to prove Theorem 5.6 in Section 5.2 and Section 5.3 following
similar arguments to those in [30]. The proof of a technical lemma will make up the
content of Section 5.4.

Let us briefly recall the notation introduced in Section 3. We write Xt for the one-
dimensional α-stable process (with associated historical ternary branching process
X(t)), and Yt for the d-dimensional α-stable process (with associated historical ternary
branching process Y (t)). The one-dimensional Rεt -subordinated Brownian motion is
denoted B(Rεt ) (with associated historical ternary branching process BRε(t)), and the
d-dimensional Rεt -subordinated Brownian motion is denoted W (Rεt ) (with associated
historical ternary branching process WRε(t)). As ever, all stable processes and subordi-
nators are assumed to satisfy Assumption 3.1.

5.1 A coupling of voting systems in higher dimensions

Recall that Z+(t) and Z−(t) satisfy the coupling result Theorem 4.20. This is almost
identical to the coupling result from the Brownian setting, Proposition 4.17. Using this
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and our one-dimensional result (Theorem 4.7) it will be straightforward to prove an
analogue of Theorem 3.4 for the processes Z+(t) and Z−(t) by adapting the techniques
of [30]. In this section, we will show that this analogue of Theorem 3.4 for the processes
Z+(t) and Z−(t) (stated in Theorem 5.6) will imply Theorem 2.5. To do this, we construct
the following couplings:

Pεx [Vp(Y (t)) = 1]
Prop 5.2
≈ Pεx

[
V+
p (WRε(t)) = 1

]
Prop 5.4
≈ Pεx

[
V×p (WRε(t)) = 1

]
Prop 4.22
≈ Pεx

[
V×p (Z−(t)) = 1

]
where the voting system V+

p will be defined in Definition 5.1. As we will see, a similar
series of couplings also relate Pεx [Vp(Y (t)) = 1] to Pεx

[
V×p (Z+(t)) = 1

]
. Note that the

final coupling of V×p (Z−(t)) to V×p (WRε(t)) has already been developed in Section 3.
We now proceed to construct a coupling of Vp(Y (t)) to V×p (WRε(t)). To begin, we

introduce the positively and negatively biased asymmetric marked voting procedures.

Definition 5.1 (V+
p ,V

−
p ). Let ε > 0 and t ≥ 0. Let bε be as in (4.21). For a fixed function

p : Rd → [0, 1], we define the positively biased (resp. negatively biased) asymmetric
marked voting procedures on T (WRε(t)) as follows.

(1) At each branch point in T (WRε(t)), the parent particle j marks each of their
three offspring (j, 1), (j, 2) and (j, 3) independently with probability bε. All marked
particles vote 1 with probability 1 (resp. 0 for the negatively biased procedure).

(2) Each unmarked leaf i of T (WRε(t)), independently, votes 1 with probability

p(Wi(R
ε
i (t)) and otherwise votes 0.

(3) At each branch point in T (WRε(t)), if the parent particle k is unmarked, she votes
according to the majority vote of her three offspring (k, 1), (k, 2) and (k, 3).

Define V+
p (resp. V−p ) to be the vote associated to the root ∅ of the ternary branching

truncated stable tree under the positively biased (negatively biased) asymmetric marked
voting procedure described above.

Note that the initial ancestor is never marked under V+
p or V−p . We can now prove the

first coupling result.

Proposition 5.2. For all ε > 0, x ∈ Rd, t ≥ 0 and p : Rd → [0, 1] we have

(1− bε)Pεx[V−p (WRε(t)) = 1] ≤ Pεx[Vp(Y (t)) = 1] ≤ (1− bε)Pεx[V+
p (WRε(t)) = 1] + bε.

Proof. This proof proceeds almost identically to the proof of the one-dimensional coupling
of voting systems, Theorems 4.4 and 4.6, using an intermediate asymmetric exponentially
marked voting system. More specifically, define the negatively biased exponential marked
voting procedure V̂−p like the exponential marked voting procedure from Definition 4.3,
except that marked individuals vote 1 with probability 0. Similarly define the positively
biased exponential marked voting procedure V̂+

p where marked individuals vote 1 with
probability 1. Then, mimicking the proof of Theorem 4.4, we can show that, for all
x ∈ Rd,

Pεx

[
V̂−p (WRε(t)) = 1

]
≤ Pεx[Vp(Y (t)) = 1] ≤ Pεx

[
V̂+
p (WRε(t)) = 1

]
. (5.1)

Recall that, under both the voting systems V̂+ and V̂−, each particle i is marked if
τ×i < τi. By definition of bε, all particles in T (WRε(t)) are marked with probability bε
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under each of V̂+, V̂−, V+, and V−, except for the ancestral particle, which remains
unmarked under V+ and V− by definition. Conditioning on the marking of the ancestral
particle (just as we did in the proof of Theorem 4.6), we obtain

Pεx

[
V̂−p (WRε(t)) = 1

]
= Pεx

[
V̂−p (WRε(t)) = 1 | τ×∅ > τ∅

]
Pεx[τ×∅ > τ∅]

+ Pεx

[
V̂−p (WRε(t)) = 1 | τ×∅ ≤ τ∅

]
Pεx[τ×∅ ≤ τ∅]

= (1− bε)Pεx
[
V−p (WRε(t)) = 1

]
,

where the last line follows by definition of bε. Similarly,

Pεx

[
V̂+
p (WRε(t)) = 1

]
= Pεx

[
V̂+
p (WRε(t)) = 1 | τ×∅ > τ∅

]
Pεx[τ×∅ > τ∅]

+ Pεx

[
V̂+
p (WRε(t)) = 1 | τ×∅ ≤ τ∅

]
Pεx[τ×∅ ≤ τ∅]

= (1− bε)Pεx
[
V−p (WRε(t)) = 1

]
+ bε,

proving the result.

In the one-dimensional analogue of Proposition 5.2 (Theorems 4.4, 4.6), we were able
to couple V(X(t)) and V×(BRε(t)) using the (symmetric) exponentially marked voting
procedure V̂. However, we could not adapt this proof to couple Vp(Y (t)) to V×p (WRε(t))

(having instead to use the auxiliary voting procedures V+
p and V−p ). This is because the

initial condition p is no longer assumed to be symmetric.
To better understand this, let us revisit the proof of Theorem 4.4, where we showed

that, for x ≥ 0,

Pεx[V(X(t)) = 1] ≥ Pεx
[
V̂(BRε(t)) = 1

]
(5.2)

with the reverse inequality holding when x < 0. We then obtained a coupling of V(X(t))

to V×(BRε(t)) by showing in Theorem 4.6 that

Pεx

[
V̂(BRε(t)) = 1

]
= (1− bε)Pεx[V×(BRε(t)) = 1] +

bε
2
.

To prove Theorem 4.4, we used an inductive argument on the number of branching
events in T (BRε(t)) and T (X(t)). In the base case, when T (X(t)) = T (BRε(t)) = T0,

the tree with a single leaf, we considered the single individual in T (X(t)), X(t)
D
= B(Rt)

for B(t) a standard one-dimensional Brownian motion and R(t) an α
2 -stable subordinator.

We saw in equation (4.16) that, if τ was the first time that Rt made a large jump, and τ
was the time of the first branching event in T (X(t)), then if x ≥ 0 and p0(x) = 1{x≥0}

Eεx[p0(B(Rt)) | τ < t < τ ] ≥ 1
2 , (5.3)

from which it followed that

Ptx(T0) = Eεx[p0 (B(Rt)) | τ ≥ t, τ > t]Pεx[τ ≥ t] + Eεx[p0(B(Rt)) | τ < t < τ ]Pεx[τ < t]

≥ Eεx[p0(B(Rεt )) | τ > t]Pεx[τ ≥ t] + 1
2P

ε
x[τ < t]. (5.4)

The quantity in (5.4) is an upper bound for P̂tx(T0), so by induction we obtained (5.2).
In the multidimensional setting, for a general initial condition p, this argument

does not hold. More specifically, (5.3) need not hold since p may not be symmetric;
instead, we only have the trivial inequality Eεx[p(W (Rt)) | τ < t < τ ] ≥ 0. Using this, the
multidimensional analogue of (5.4) becomes

Ptx(T0) ≥ Eεx[p(W (Rεt )) | τ > t]Pεx[τ ≥ t],
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where the right hand side is an upper bound for the probability that, conditional on
T (WRε(t)) = T0, the single individual votes 1 under the negatively biased exponentially
marked voting procedure V̂−p defined in the proof of Proposition 5.2. Similarly, we can
use the trivial bound Eεx[p(W (Rt)) | τ < t < τ ] ≤ 1 to obtain

Ptx(T0) ≤ Eεx[p(W (Rεt )) | τ > t]Pεx[τ ≥ t] + Pεx[τ ≤ t]

where the right hand side is equal to the probability that, conditional on T (WRε(t)) = T0,
the single individual in votes 1 under the positively biased exponentially marked voting
procedure, V̂+

p . These bounds, together with an inductive argument, can be used to
prove equation (5.1) from the proof of Proposition 5.2.

Remark 5.3. Just as in Remark 4.8, we can write down the partial differential equation
solved by Pεx[V+

p (WRε(t)) = 1] and Pεx[V−p (WRε(t)) = 1]. Denote the infinitesimal genera-
tor of (W (Rεt ))t≥0 by Lε. Then it is straightforward to verify, using similar arguments to
those in the proof of Theorem 3.3, that vε+(t, x) := Pεx[V+

p (WRε(t)) = 1] solves

∂tv
ε
+ = Lεvε+ + ε−2f+(vε+), vε+(0, x) = p(x)

and vε−(t, x) := Pεx[V−p (WRε(t)) = 1] solves

∂tv
ε
− = Lεvε+ + ε−2f−(vε−), vε−(0, x) = p(x)

where f+(x) := g+(x) − x and f−(x) := g−(x) − x for g+ and g− the voting functions
associated to the positively and negatively marked voting systems, respectively (to
see that this is the correct choice of nonlinearity, we refer the reader to the proof of
Theorem 3.3 for majority voting). By definition of V+

p and V−p , g+(x) := g((1− bε)x+ bε)

and g−(x) := g((1 − bε)x), for g the majority voting function (4.6). Expanding this, we
find that

f+(x) := x(1− x)(2x− 1)− 2b3ε(1− x)3 − 3b2ε(1− x)2(2x− 1) + 6bεx(1− x)2

and
f−(x) := x(1− x)(2x− 1) + 2b3εx

3 − 3b2εx
2(2x− 1)− 6bεx

2(1− x).

Proposition 5.2 relates solutions to these equations to the original (scaled) fractional
Allen–Cahn equation, equation (2.2).

The positively and negatively biased voting systems can be compared to our (symmetric)
marked system as follows. Combining Propositions 5.2 and 5.4 will give us the desired
comparison between Pεx[Vp(Y (t)) = 1] and Pεx[V×p (WRε(t)) = 1].

Proposition 5.4. There exists C > 0 such that, for all ε > 0, x ∈ Rd, t ≥ 0 and
p : Rd → [0, 1],

sup
x∈Rd

(
Pεx[V+

p (WRε(t)) = 1]− Pεx[V×p (WRε(t)) = 1]
)
≤ Cbε (5.5)

sup
x∈Rd

(
Pεx[V×p (WRε(t)) = 1]− Pεx[V−p (WRε(t)) = 1]

)
≤ Cbε. (5.6)

Proof. We prove only (5.5), noting that (5.6) follows by symmetric arguments. Define
g+ : [0, 1] → [0, 1] by g+(q) = g((1 − bε)q + bε) where g is the ordinary majority voting
function. This is the probability that an unmarked parent particle votes 1 under V+

p , in
the special case when the three offspring are independent and each have probability
q of voting 1 if they are unmarked. Write τ for the time of the first branching event in
WRε(·). To ease notation, set

uε×(t, x) = Pεx[V×p (WRε(t)) = 1] and uε+(t, x) = Pεx[V+
p (WRε(t)) = 1].
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Then, by the Markov property at time t ∧ τ and definition of V×p and V+
p we have

uε×(t, x) = Eεx
[
g×(uε×(t− τ,W (Rετ )))1τ≤t

]
+ Eεx [p(W (Rεt ))1τ>t]

uε+(t, x) = Eεx
[
g+

(
uε+ (t− τ,W (Rετ ))

)
1τ≤t] + Eεx[p(W (Rεt ))1τ>t

]
.

It follows that

|uε×(t, x)− uε+(t, x)| ≤ Eεx
[∣∣g×(uε×(t− τ,W (Rετ )))− g+(uε+(t− τ,W (Rετ )))

∣∣1τ≤t] .
By definition of g× and g+, and since g is Lipschitz with constant 3

2 , we have

|uε×(t, x)− uε+(t, x)|
≤ 3

2E
ε
x

[∣∣(1− bε)(uε×(t− τ,W (Rετ ))− uε+(t− τ,W (Rετ )))− bε
2

∣∣1{τ≤t}]
≤ 3

4bε + 3
2 (1− bε)Eεx

[∣∣uε×(t− τ,W (Rετ ))− uε+(t− τ,W (Rετ ))
∣∣1{τ≤t}]

= 3
4bε + 3

2 (1− bε)
∫ t

0

e−ρε
−2

ε2
Eεx
[
|uε×(t− ρ,W (Rερ))− uε+(t− ρ,W (Rερ))|

]
dρ

≤ 3
4bε + 3

2 (1− bε)
∫ t

0

e−ρε
−2

ε2
‖uε×(t− ρ, ·)− uε+(t− ρ, ·)‖∞dρ,

where ‖·‖∞ denotes the uniform norm, and we have used that τ ∼ Exp(ε−2) is indepen-
dent of the spatial motion. Noting that the above inequality holds for all x ∈ Rd, and
applying the change of variables ρ 7→ t− ρ, we obtain

‖uε×(t, ·)− uε+(t, ·)‖∞ ≤ 3
4bε + 3

2e
−tε−2

∫ t

0

eρε
−2

ε−2‖uε×(ρ, ·)− uε+(ρ, ·)‖∞dρ.

By an adaptation of Grönwall’s inequality, available, for instance, in [29, Theorem 15],

‖uε×(t, ·)− uε+(t, ·)‖∞ ≤ 3
4bε exp

(
3
2

(∫ t

0

exp
(
−sε−2

)
ε−2

)
ds

)
= 3

4bε exp
(

3
2P[τ ≤ t]

)
≤ 3

4bε exp
(

3
2

)
.

Setting C := 3
4 exp

(
3
2

)
gives the result.

Now, using the coupling result Proposition 4.22 from Section 4.4, we obtain our main
coupling result of this section.

Corollary 5.5. Let ε ∈ (0, 1), x ∈ Rd and p : Rd → [0, 1]. Let F be as in (2.6). Then there
exists ad(α) > 0 and m > 0 such that, for all t ≥ adε2| log ε|,

Pεx[Vp(Y (t)) = 1] ≤ Pεx[V×p (Z−(t)) = 1] +mF (ε) +mbε

and
Pεx[Vp(Y (t)) = 1] ≥ (1− bε)Pεx[V×p (Z+(t)) = 1]−mF (ε)−mbε.

Proof. We prove only the first inequality, noting that the second follows by similar
arguments. By Propositions 5.2, 5.4, and 4.22 there exists m1,m2, C > 0 such that

Pεx[Vp(Y (t)) = 1] ≤ (1− bε)Pεx[V×p (WRε(t)) = 1] + (C + 1)bε

≤ (1− bε)
(
Pεx[V×p (Z−(t)) = 1] +m1e

−t/ε2 +m2F (ε)
)

+ (C + 1)bε.

Choose ad sufficiently large so that, for t ≥ adε
2| log ε|, e−t/ε2 ≤ F (ε). Choosing m

sufficiently large then gives the upper bound.
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Next, we will state our main theorem for Z+(t) and Z−(t) and show using Corol-
lary 5.5 that it implies Theorem 2.5. Recall that u− = 3

4b
2
ε+O(b3ε) and u+ = 1− 3

4b
2
ε+O(b3ε).

Theorem 5.6. Fix I satisfying Assumptions 2.2 and k ∈ N. Suppose the initial con-
dition p satisfies Assumptions 2.4. Let T and d(x, t) be as in Section 2, F be as in
(2.6) and fix T ∗ ∈ (0,T ). Let u+, u− be as in (4.26) and (4.27). Then there exists
εd(α, k), ad(α, k), cd(α, k) > 0 such that, for ε ∈ (0, εd) and adε2| log ε| ≤ t ≤ T ∗,

(1) for x with d(x, t) ≥ cdI(ε)| log ε|, Pεx
[
V×p (Z+(t)) = 1

]
≥ u+ − εk,

(2) for x with d(x, t) ≤ −cdI(ε)| log ε|, Pεx
[
V×p (Z−(t)) = 1

]
≤ u− + εk.

To see that this implies Theorem 2.5, let k ∈ N and suppose

Pεx
[
V×p (Z+(t)) = 1

]
≥ u+ − εk.

By Corollary 5.5, this implies

Pεx[Vp(Y (t)) = 1] ≥ (1− bε)(u+ − εk)−mF (ε)−mbε

for some m > 0. Since u+ ≥ 1− bε, it is straightforward to see that, for ε > 0 sufficiently
small, we may increase m as necessary so that

Pεx[Vp(Y (t)) = 1] ≥ 1−mF (ε)−m ε2

I(ε)2
.

Similar arguments using Theorem 5.6 (2) prove the lower bound in Theorem 2.5.

5.2 Generation of the interface

We now show that in a time O(ε2| log ε|), an interface of width O(I(ε)| log ε|) is created.
Here, we refer to the solution interface associated to the partial differential equation
solved by Pεx[V×p (Z−(t)) = 1] with initial condition p. We will make use of the following
one-dimensional result, where we recall that V× = V×p̂0 is the marked majority voting
system with initial condition

p̂0(x) = u+1{x≥0} + u−1{x<0}.

Proposition 5.7. Let a1 be as in Lemma 4.12 and fix k ∈ N. Then there exists εd(k) > 0

such that, for all ε ∈ (0, εd), t ≥ a1(k)ε2| log ε| and x ∈ R,

u− − εk ≤ Pεx[V×(BRε(t)) = 1] ≤ u+ + εk. (5.7)

Proof. We prove the right hand inequality in (5.7) and note that the left hand inequality
follows by very similar arguments. It is easy to verify that δ := g′×(u+) = O(bε), so we
may decrease ε if necessary to ensure δ < 1, and by the Mean Value Theorem, since g′×
is decreasing on [u+, 1], for all q ∈ (0, 1− u+],

g×(u+ + q)− g×(u+) ≤ δq.

Since u+ is a fixed point of g×, for ε sufficiently small, g×(q) < q for q ∈ (u+, 1] so iterating
the above inequality as in the proof of Lemma 4.10 gives us

g
(n)
× (u+ + q)− u+ ≤ δnq

for all q ∈ (0, 1− u+]. In particular,

g
(n)
× (u+ + (1− u+))− u+ ≤ δn(1− u+) ≤ εk
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after n ≥ C(k)| log ε| iterations, for some C(k) > 0. That is, g(n)
× (1) ≤ u+ + εk if n ≥

C(k)| log ε|. We note that, since g× is increasing on [0, 1], the largest value of the iterates
of g×(x) will be when x = 1. Finally, by Lemma 4.12, for t ≥ a1(k)ε2| log ε|,

Pεx

[
T (BRε(t)) ⊃ T regA(k)| log ε|

]
≥ 1− εk.

Therefore when t ≥ a1(k)ε2| log ε|,

Pεx[V×(BRε(t)) = 1]

= Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) ⊃ T regA(k)| log ε|

]
P
[
T (BRε(t)) ⊃ T regA(k)| log ε|

]
+ Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) 6⊃ T regA(k)| log ε|

]
P
[
T (BRε(t)) 6⊃ T regA(k)| log ε|

]
≤ Pεx

[
V×(BRε(t)) = 1 | T (BRε(t)) ⊃ T reg

]
+ P

[
T (BRε(t)) 6⊃ T regA(k)| log ε|

]
≤ g(bA(k)| log ε|c)
× (1) + εk

≤ u+ + 2εk,

proving the result.

Next, note that Lemma 4.12 holds for any ternary branching process with branching
rate ε−2. In particular, Lemma 4.12 holds for T (Z+(t)) and T (Z−(t)). Therefore we can
adapt the proof of Proposition 5.7 to show that, for any k ∈ N and ε sufficiently small, if
t ≥ a1(k)ε2| log ε|,

u− − εk ≤ Pεx[V×p (Z+(t)) = 1] ≤ u+ + εk (5.8)

and

u− − εk ≤ Pεx[V×p (Z−(t)) = 1] ≤ u+ + εk (5.9)

for any initial condition p.

Proposition 5.8. Let k ∈ N and a1(k) be as in Lemma 4.12. Fix I satisfying Assump-
tions 2.2 and let u+, u− be as in (4.26), (4.27). Then there exists εd(α, k), bd(α, k) > 0

such that, for all ε ∈ (0, εd), if

td(k, ε) := a1(k)ε2| log ε|,
t′d(k, ε) := (2a1(k) + k + 1)ε2| log ε|,

then for t ∈ [td, t
′
d],

(1) for d(x, t) ≥ bd(k)I(ε)| log ε|, we have Pεx[V×p (Z−(t)) = 1] ≥ u+ − εk,

(2) for d(x, t) ≤ −bd(k)I(ε)| log ε|, we have Pεx[V×p (Z−(t)) = 1] ≤ u− + εk.

Remark 5.9. By almost identical arguments, Proposition 5.8 holds when Z− is replaced
with Z+. Note that our choice of td and t′d are stricter than needed for this result alone,
but it will be convenient to define them in this way for use in later proofs.

Proof. We follow the proof of [30, Proposition 2.16] closely, and consider the multidi-
mensional analogues of Lemmas 4.12 and 4.13. First, by choice of a1, there exists
εd(α, k) > 0 such that, for all ε ∈ (0, εd), x ∈ Rd and t ≥ a1(k)ε2| log ε|,

Pεx

[
T (Z−(t)) ⊇ T reg

A(k)| log ε|

]
≥ 1− εk (5.10)
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for A(k) as in Lemma 4.10. By standard estimates for the multidimensional standard
normal variable, the proof of Lemma 4.13 can be adapted to show that there exists
hd(k) > 0 and εd(k) > 0 such that, for all ε ∈ (0, εd) and t ∈ [td, t

′
d],

Pεx [∃i ∈ N(s) : |Wi(R
ε
i (s))− x| ≥ hd(k)I(ε)| log ε|] ≤ εk. (5.11)

By definition of Z−s , |Z−s − W (Rεs)| ≤ D0(k + 2)I(ε)2| log ε|, for D0 the constant from
Theorem 4.18. So if |Z−i (s)− x| ≥ ld(k)I(ε)| log ε| for some i and some ld(k) > 0, then

|Wi(R
ε
i (s))− x| ≥

∣∣|Z−i (s)−Wi(R
ε
i (s))| − |Z−i (s)− x|

∣∣
= |Z−i (s)− x| − |Z−i (s)−Wi(R

ε
i (s))|

≥ ld(k)I(ε)| log ε| −D0(k + 2)I(ε)2| log ε|
≥ hd(k)I(ε)| log ε|

by choosing ld(k) sufficiently large, where we use that I(ε) ≥ I(ε)2 for ε sufficiently
small. Therefore by (5.11)

Pεx
[
∃i ∈ N(s) : |Z−i (s)− x| ≥ ld(k)I(ε)| log ε|

]
≤ εk.

Set bd = 2ld. Recall that d(x, t) is the signed distance between x ∈ Rd and Γt. By
the regularity assumption on Γt (4.50), there exist v0, V0 > 0 such that, for t ≤ v0

and x ∈ Rd, |d(x, 0) − d(x, t)| ≤ V0t. Reduce εd if necessary so that t′d ≤ v0 for all
ε ∈ (0, εd). Let ε ∈ (0, εd), t ∈ [td, t

′
d] and x be such that d(x, t) ≥ bdI(ε)| log ε| and

|Z−i (t)− x| ≤ ldI(ε)| log ε|. It follows by the triangle inequality and Lipschitz continuity
of d(·, t) that

d(Z−i (t), 0) ≥ d(x, t)−
∣∣d(x, t)− d(Z−i (t), t)

∣∣− ∣∣d(Z−i (t), t)− d(Z−i (t), 0)
∣∣

≥ bdI(ε)| log ε| − ldI(ε)| log ε| − V0t
′
d

= 1
2bdI(ε)| log ε| − V0(2a1 + k + 1)ε2| log ε|.

By Assumption 2.2 (B) we may reduce εd if necessary so that

d(Z−i (t), 0) ≥ 1
4bdI(ε)| log ε| (5.12)

for all ε ∈ (0, εd). By Assumption 2.4 (B) and (5.12), p(Zi(t)) > 1
2 , so by Assump-

tion 2.4 (C),

p(Z−i (t)) ≥ 1
2 + γ

(
1
4bdI(ε)| log ε| ∧ r

)
≥ 1

2 + ε (5.13)

for all ε ∈ (0, εd), where the last inequality holds by reducing εd if necessary. We then
combine (5.10), (5.11) and (5.13) exactly as the proof of Theorem 4.7, to obtain that, for
ε ∈ (0, εd), t ∈ [td, t

′
d] and x such that d(x, t) ≥ bdI(ε)| log ε|,

Pεx[V×p (Z−(t)) = 1] ≥ u+ − 3εk.

The upper bound is obtained using the same approach.

5.3 Propagation of the interface

In this section, we will compare V×p (Z−(t)) to V×(BRε(t)), and use this to show that
the interface propagates. Throughout this section, define

γ(t) := K1e
K2tI(ε)| log ε| (5.14)

where the choice of K1,K2 and ε will be clear in the given context.
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Proposition 5.10. Let l ∈ N with l ≥ 4 and fix I satisfying Assumptions 2.2. Let td be
as in Proposition 5.8. There exist K1,K2 > 0 such that for γ(·) as in (5.14), ε ∈ (0, εd)

and t ∈ [td(l), T ∗] we have

sup
x∈Rd

(
Pεx[V×p (Z−(t)) = 1]− Pεd(x,t)+γ(t)[V

×(BRε(t)) = 1]
)
≤ εl (5.15)

and

sup
x∈Rd

(
Pεx[V×p (Z+(t)) = 0]− Pεd(x,t)−γ(t)[V

×(BRε(t)) = 0]
)
≤ εl. (5.16)

Throughout this section, we will extend the domain of g× : [0, 1] → [0, 1] to all of R.
Namely, we set

g×(p) =


g×(0) if p < 0

g×(p) if p ∈ [0, 1]

g×(1) if p > 1.

Key to the proof of Proposition 5.10 will be Lemma 5.11, which parallels [30,
Lemma 2.18]. The proof of Theorem 5.6 will then follow easily. We defer the lengthy
proof of Lemma 5.11 to Section 5.4.

Lemma 5.11. Let K1 > 0, l ∈ N with l ≥ 4, and fix I satisfying Assumptions 2.2. Let t′d
be as in Proposition 5.8. Then there exists K2 = K2(K1, l) > 0 and εd(K1,K2, l) > 0 such
that, for γ(·) as in (5.14), ε ∈ (0, εd), x ∈ Rd, s ∈ [0, (l + 1)ε2| log ε|] and t ∈ [t′d(l), T ∗],

Ex

[
g×

(
Pε
d(Z−s ,t−s)+γ(t−s)[V

×(BRε(t− s)) = 1] + εl
)]

≤ 3

4
εl + Ed(x,t)

[
g×

(
PεB(Rεs)+γ(t)[V

×(BRε(t− s)) = 1]
)]

+ 1{s≤ε3}ε
l (5.17)

and

Ex

[
g×

(
Pε
d(Z+

s ,t−s)−γ(t−s)[V
×(BRε(t− s)) = 0] + εl

)]
≤ 3

4
εl + Ed(x,t)

[
g×

(
PεB(Rεs)−γ(t)[V

×(BRε(t− s)) = 0]
)]

+ 1{s≤ε3}ε
l. (5.18)

Proof of Proposition 5.10. We only prove (5.15), since (5.16) follows by completely sym-
metric arguments. Set K1 = bd(l) + c1(l) for bd as in Proposition 5.8 and c1 as in
Theorem 4.7. Take εd > 0 sufficiently small so that Theorem 4.7, Proposition 5.8, Propo-
sition 5.7 and Lemma 5.11 hold for all ε ∈ (0, εd). We first observe that, for ε ∈ (0, εd),
t ∈ [td(l), t′d(l)] (for td and t′d as in Proposition 5.8) and x ∈ Rd,

Pεx[V×p (Z−(t)) = 1]− Pεd(x,t)+γ(t)[V
×(BRε(t)) = 1] ≤ εl. (5.19)

To see this, first suppose that d(x, t) ≤ −bd(l)I(ε)| log ε|. Now, reducing εd if necessary,
by Proposition 5.8

Pεx[V×p (Z−(t)) = 1] ≤ u− + εl.

Also, by Proposition 5.7,

Pεd(x,t)+γ(t)[V
×(BRε(t)) = 1] ≥ u− − εl,

hence (5.19) holds. Here, we continue to ignore coefficients in front of polynomial error
terms following Remark 4.14. If we added a coefficient to the error term in (5.19), it
would appear in all polynomial error terms that follow, but would not affect our proof.
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Now suppose d(x, t) ≥ −bd(l)I(ε)| log ε|. Then, reducing ε if necessary,

d(x, t) + γ(t) ≥ c1(l)I(ε)| log ε|,

so by Theorem 4.7, Pεd(x,t)+γ(t)[V
×(BRε(t)) = 1] ≥ u+ − εl. By (5.9),

Pεx[V×p (Z−(t)) = 1] ≤ u+ + εl,

and (5.19) holds.
It remains to verify (5.19) for t ∈ [t′d, T

∗]. Assume for the purpose of a contradiction
that there exists t ∈ [t′d, T

∗] such that, for some x ∈ Rd,

Pεx[V×p (Z−(t)) = 1]− Pεd(x,t)+γ(t)[V
×(BRε(t)) = 1] > εl.

Let T ′ be the infimum of the set of such t, and choose

T ∈ [T ′,min(T ′ + εl+3, T ∗)],

which is in the set of such t. So there exists some x ∈ Rd such that

Pεx[V×p (Z−(T )) = 1]− Pεd(x,T )+γ(T )[V
×(BRε(T )) = 1] > εl.

We will show

Pεx[V×p (Z−(T )) = 1] ≤ 7
8ε
l + Pεd(x,T )+γ(T )[V

×(BRε(T )) = 1]. (5.20)

Let τ be the time of the first branching event in Z−(T ) and Z−τ be the position of the
initial ancestor particle at that time. Then, by the Strong Markov Property at time
τ ∧ (T − td),

Pεx[V×p (Z−(T )) = 1] = Eεx

[
g×(Pε

Z−τ
[V×p (Z−(T − τ)) = 1])1τ≤T−td

]
+Eεx

[
Pε
Z−T−td

[V×p (Z−(td)) = 1]1τ≥T−td

]
. (5.21)

Since T − td ≥ t′d − td > (l + 1)ε2| log ε| and τ ∼ Exp(ε−2), the second term on the right
side of (5.21) is bounded by

Eεx

[
Pε
Z−T−td

[Vp(Z
−(td)) = 1]1τ≥T−td

]
≤ P

[
τ ≥ (l + 1)ε2| log ε|

]
= εl+1. (5.22)

To bound the first term on the right hand side of (5.21), we partition over the event
{τ ≤ ε3+l} (which has probability ≤ εl+1) and its complement to obtain

Eεx

[
g×

(
Pε
Z−τ

[V×p (Z−(T − τ)) = 1]
)
1τ≤T−td

]
≤ Eεx

[
g×

(
Pε
Z−τ

[V×p (Z−(T − τ)) = 1]
)
1εl+1≤τ≤T−td

]
+ εl+1

≤ Eεx
[
g×

(
Pε
d(Z−τ ,T−τ)+γ(T−τ)

[V×(BRε(T − τ)) = 1] + εl
)
1τ≤T−td

]
+ εl+1. (5.23)

To see why the last line holds, first note that, by minimality of T ′, and since εl+3 ≤ τ ≤
T − td, we have T − τ ∈ [td, T

′). By definition of T ′, this implies that

Pεx[V×p (Z−(T − τ)) = 1]− Pεd(x,T−τ)+γ(T−τ)[V
×(BRε(T − τ)) = 1] ≤ εl

EJP 29 (2024), paper 25.
Page 42/59

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1087
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Branching stable processes and motion by mean curvature flow

for all x ∈ Rd, so (5.23) follows by monotonicity of g×. Now, by conditioning on the value
of τ , and noting that the path of the ancestral particle (B(Rε· )) is independent of τ ,

Eεx

[
g×

(
Pε
d(Z−τ ,T−τ)+γ(T−τ)

[V×(BRε(T − τ)) = 1] + εl
)
1τ≤T−td

]
≤
∫ (l+1)ε2| log ε|

0

e−ε
−2s

ε2
Ex

[
g×

(
Pε
d(Z−s ,T−s)+γ(T−s)[V

×(BRε(T − s)) = 1] + εl
)]
ds

+ P[τ ≥ (l + 1)ε2| log ε]]

≤
∫ (l+1)ε2| log ε|

0

e−ε
−2s

ε2
Ed(x,T )

[
g×

(
PεB(Rεs)+γ(T )[V

×(BRε(T − s)) = 1]
)]
ds

+ εl+1 + εl
(

3
4 + P[τ ≤ ε3]

)
≤ Eεd(x,T )

[
g×

(
PεB(Rε

τ′ )+γ(T )[V
×(BRε(T − τ ′)) = 1]

)
1τ ′≤T−td

]
+ 3

4ε
l + 2εl+1, (5.24)

where the second inequality follows by Lemma 5.11. Here τ ′ denotes the time of the first
branching event in BRε , which has the same distribution as τ . The final inequality holds
since T ≥ t′d, so T − td ≥ (l + 1)ε2| log ε|. Putting (5.22), (5.23) and (5.24) into (5.21), we
obtain

Pεx[V×p (Z−(T )) = 1] ≤ Eεd(x,T )

[
g×

(
PεB(Rε

τ′ )+γ(T )[V
×(BRε(T − τ ′)) = 1]

)
1τ ′≤T−td

]
+ 3

4ε
l + 4εl+1

≤ Pεd(x,T )+γ(T )[V
×(BRε(T )) = 1] + 3

4ε
l + 4εl+1,

where the last line follows by the Strong Markov Property for (BRε(·)) at time τ ′∧(T−td).
We can reduce εd if necessary so that 4εl+1 + 3

4ε
l ≤ 7

8ε
l for all ε ∈ (0, εd). This gives

(5.20), thereby proving (5.15). The inequality (5.16) follows by a similar argument, using
(5.18).

With this, we can now prove Theorem 5.6.

Proof of Theorem 5.6. Set cd(l) := c1(l) +K1e
K2T

∗
. Then, for any x ∈ Rd and t ∈ [td, T

∗]

such that d(x, t) ≤ −cd(l)I(ε)| log ε|, we have

d(x, t) +K1e
K2tI(ε)| log ε| ≤ −c1(l)I(ε)| log ε|.

Then, by Theorem 4.7, reducing εd if necessary so that εd < ε1(l),

Pεx[V×p (Z−(t)) = 1] ≤ u− + 2εl.

Similarly, for x and t such that d(x, t) ≥ cd(l)I(ε)| log ε|, by Theorem 4.7 and (5.16),
Pεx[V×p (Z+(t)) = 1] ≥ u+ − 2εl. Theorem 5.6 then holds by setting ad := a1.

Proof of Theorem 2.5. This follows immediately by combining Theorem 5.6, Theorem 3.3
and Corollary 5.5.

5.4 Proof of Lemma 5.11

To prove Lemma 5.11, we follow the proof of [30, Lemma 2.18] and consider sepa-
rately the cases |d(x, t)| ≤ DI(ε)| log ε| and |d(x, t)| ≥ DI(ε)| log ε|, for some large D > 0.
Since neither the one-dimensional process B(Rεs) nor the multidimensional process Z+

(or Z−) travel further than a distance O(I(ε)| log ε|) in time s = O(ε2| log ε|) with high
probability, if D is sufficiently large and |d(x, t)| ≤ DI(ε)| log ε|, we will see that the
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result follows from the main one-dimensional result for V×p (BRε), Theorem 4.7. When
|d(x, t)| ≤ DI(ε)| log ε|, we apply Theorem 4.20 so that, with probability at least 1− εl+1,

d(Z−s , t− s) ≤ B(Rεs) +O(I(ε)| log ε|)s.

Using this and monotonicity of g× we can bound the left hand side of (5.17) by

Ed(x,t)

[
g×

(
PεB(Rεs)+γ(t−s)+O(s)I(ε)| log ε|[V

×(BRε(t)) = 1] + εl
)]

+O(εl+1). (5.25)

We then control (5.25) by considering two cases: when the argument of g× in (5.25)
is bounded away from 1

2 , and when it is close to 1
2 . In the former case, we use that

|g′×(y)| < 2
3 when y is bounded far enough away from 1

2 , together with monotonicty
of g×, to obtain (5.17). In the second case, we apply the slope of the interface result,
Corollary 4.16, to bound the difference between the two expectations appearing in the
inequality (5.17) directly.

Proof of Lemma 5.11. Fix l ≥ 4. For all u ≥ 0 and z ∈ R, let

Qε,uz = Pεz[V
×(BRε(u)) = 1].

Let C0 be as in (4.49) and c1 be defined as in Theorem 4.7. Let

R := 2c1(l) + 4(l + 1)d+ 1 (5.26)

and fix K2 such that

K1(K2 − C0)− C0R− C1 = c1(1). (5.27)

To start we let εd(l) = ε1(l) where ε1(l) is defined in Theorem 4.7.
Following the proof of [30, Lemma 2.18], we begin by estimating the probability that

a d-dimensional subordinated Brownian motion moves further than a distance I(ε)| log ε|
in time s ≤ (l + 1)ε2| log ε|. Define the event

Ax =

{
sup

u∈[0,Rεs]

|Wu − x| ≤ 2(l + 1)I(ε)| log ε|

}
.

Then, bounding |Wu−x| by the sum of the moduli of d one-dimensional Brownian motions,
and by Proposition A.4, which bounds the displacement of the subordinator Rεs for small
times, we obtain

Px[Acx] ≤ 2dP0

[
sup

u∈[0,Rεs]

Bu > 2(l + 1)I(ε)| log ε|

]

≤ 2dP0

[
sup

u∈[0,(l+2)I(ε)2| log ε|]
Bu > 2(l + 1)I(ε)| log ε|

]
+ 2dεl+1

≤ 4dP0

[
B1 > 2((l + 1)| log ε|)1/2

]
+ 2dεl+1

≤ 6dεl+1 (5.28)

where the second inequality follows by the reflection principle and scaling of one-
dimensional Brownian motion, and the final inequality follows by identical arguments to
those in the proof of Lemma 4.13. Now consider the cases

(i) d(x, t) ≤ −(2c1(l) + 2(l + 1)d+K1e
K2(t−s))I(ε)| log ε|
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(ii) d(x, t) ≥ (2c1(l) + 2(l + 1)d+K1e
K2(t−s))I(ε)| log ε|

(iii) |d(x, t)| ≤ (2c1(l) + 2(l + 1)d+K1e
K2(t−s))I(ε)| log ε|.

Case (i): By (4.50), there exist v0, V0 > 0 such that, if s ≤ v0 and x ∈ Rd, then

|d(x, t)− d(x, t− s)| ≤ V0s.

Reduce εd if necessary to ensure that, for all ε ∈ (0, εd), (l + 1)ε2| log ε| ≤ v0. Then if Ax
occurs,

d(W (Rεs), t− s) +K1e
K2(t−s)I(ε)| log ε|

≤ −(2c1(l) + 2(l + 1)d)I(ε)| log ε|+ |d(W (Rεs), t− s)− d(x, t)|
≤ −(2c1(l) + 2(l + 1)d)I(ε)| log ε|+ |d(x, t)− d(x, t− s)|+ |W (Rεs)− x|
≤ −2c1(l)I(ε)| log ε|+ V0(l + 1)ε2| log ε|.

By Assumption 2.2 (B), we may reduce εd if necessary so that

d(W (Rεs), t− s) +K1e
K2(t−s)I(ε)| log ε| ≤ −c1(l)I(ε)| log ε|,

for all ε ∈ (0, εd). Then, since d(Z−s , t− s) ≤ d(W (Rεs), t− s),

d(Z−s , t− s) +K1e
K2(t−s)I(ε)| log ε| ≤ −c1(l)I(ε)| log ε|.

So, by Theorem 4.7 and definition of g×,

Ex

[
g×

(
Q
ε,t−s
d(Z−s ,t−s)+γ(t−s) + εl

)]
≤ Ex[g×(u− + 2εl)1Ax ] + Px [Acx]

≤ u− + 6dεl+1 + 12εlbε

where the last line follows by calculating g×(u− + 2εl) explicitly and reducing εd if
necessary.

Next, recall that g×(y) = g((1− bε)y + bε
2 ) for y ∈ [0, 1]. So

g′×(y) = 6(1− bε)
(
(1− bε)y + bε

2

) (
1−

(
(1− bε)y + bε

2

))
.

Hence, if

(1− bε)(y + δ) + bε
2 ≤

1
9 or (1− bε)y + bε

2 ≥
8
9 (5.29)

then

g×(y + δ) ≤ g×(y) + 2
3δ. (5.30)

From Proposition 5.7, since t − s ≥ a1(l)ε2| log ε|, for any z ∈ R, we may decrease ε if
necessary so that Qε,t−sz ≥ u− − εl. This, together with (5.30), gives us that

Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)]
≥ g×(u−)− 2

3ε
l = u− − 2

3ε
l

where we recall that u− is a fixed point of g×. By choosing ε small enough so that
6dεl+1 + 12εlbε + 2

3ε
l ≤ 3

4ε
l (5.17) holds in this case.

Case (ii): Suppose now that d(x, t) ≥ (2c1(l) + 2(l + 1)d+K1e
K2(t−s))I(ε)| log ε|. Using

this, together with a similar argument to that used to obtain (5.28), we have

Pd(x,t)[|B(Rεs)| ≥ c1(l)I(ε)| log ε|] ≤ εl+1.
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It follows that

Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)]
≥ Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)
1{B(Rεs)≥c1(l)I(ε)| log ε|}

]
≥ g×(u+ − εl)− εl+1

≥ u+ − εl+1 − 12εlbε

where the second inequality follows by Theorem 4.7, and in the third inequality we
expand g×(u+ − εl) and reduced εd if necessary. From Proposition 5.7 we can get that,
for ε small enough,

Ex

[
g×

(
Q
ε,t−s
d(Z−s ,t−s)+γ(t−s) + εl

)]
≤ u+ + 2

3ε
l.

Hence, reducing ε if necessary (5.17) holds in this case.
Case (iii): Finally, suppose |d(x, t)| ≤ (2c1(l) + 2(l + 1)d + K1e

K2(t−s))I(ε)| log ε|. If Ax
occurs and u ∈ [0, (l + 2)I(ε)2| log ε|],

|d(W (Rεu), t− u)|
≤ |W (Rεu)− x|+ |d(x, t)|+ |d(x, t)− d(x, t− u)|

≤ (2c1(l) + 4(l + 1)d+K1e
K2(t−s))I(ε)| log ε|+ V0(l + 2)I(ε)2| log ε|.

Therefore, reducing ε if necessary, with probability at least 1− εl+1,

|d(W (Rεs), t− s)| ≤ (R+K1e
K2(t−s))I(ε)| log ε|

for R as in (5.26). Now set

β = (R+K1e
K2(t−s))I(ε)| log ε|. (5.31)

Reduce εd if necessary so that, for all ε ∈ (0, εd), β ≤ c0/2, for c0 as in (4.48). Recall that

Tβ = inf
(
{s ∈ [0, (l + 1)ε2| log ε|) : |d(Ws, t− s)| > β} ∪ {t}

)
.

Note that P[Rεs > Tβ ] ≤ 2εl+1: by the above calculation, if Ax occurs, then Tβ > Rεs with
probability at least 1− εl+1. Therefore, by Theorem 4.20, and reducing ε if necessary so
that Tβ < t,

d(Z−s , t− s) ≤ B(Rεs) + C0βs (5.32)

with probability at least 1− 2εl+1. Then, by monotonicity of g× and (5.32), partitioning
over {Rεs > Tβ} and Ax, we obtain

Ex

[
g×

(
Q
ε,t−s
d(Z−s ,t−s)+γ(t−s) + εl

)]
(5.33)

≤ Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+C0βs+γ(t−s) + εl

)]
+ (2 + 6d)εl+1.

Let
D :=

{∣∣∣Qε,t−sB(Rεs)+C0βs+γ(t−s) −
1
2

∣∣∣ ≤ 5
12

}
.

We consider D and Dc separately to bound the right hand side of (5.33). First suppose
the event D occurs. Then, by definition of β (5.31),

γ(t)− C0βs− γ(t− s) (5.34)

= K1e
K2tI(ε)| log ε| −

(
C0βs+K1e

K2(t−s)I(ε)| log ε|
)

=
(
K1e

K2(t−s) (eK2s − 1− C0s
)
− C0Rs

)
I(ε)| log ε|

≥ (K1(K2 − C0)− C0R) sI(ε)| log ε|
= c1(1)sI(ε)| log ε| (5.35)
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where the final equality follows by (5.27). Reducing εd if necessary so that εd <

min(ε1(1), 1
24 ), for ε ∈ (0, εd) we may apply Corollary 4.16 with

z = B(Rεs) + C0βs+K1e
K2(t−s)I(ε)| log ε|

and
w = z + c1(1)sI(ε)| log ε| ≤ B(Rεs) + γ(t)

to give

Q
ε,t−s
B(Rεs)+C0βs+γ(t−s)1D ≤

(
Q
ε,t−s
B(Rεs)+γ(t) −

1
48s
)
1D. (5.36)

Now suppose the event Dc occurs. Reduce εd if necessary so that

1
12 <

1
9 − ε

l(1− bε)− bε
2 ,

which implies (5.29) for δ = εl. Thus, for ε ∈ (0, εd), we have

g×

(
Q
ε,t−s
B(Rεs)+C0βs+γ(t−s) + εl

)
1Dc ≤

(
g×

(
Q
ε,t−s
B(Rεs)+C0βs+γ(t−s)

)
+ 2

3ε
l
)
1Dc

≤
(
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)
+ 2

3ε
l
)
1Dc (5.37)

where the first inequality follows by (5.30) and the second inequality by (5.34) and
monotonicity of g×. Putting (5.36) and (5.37) into (5.33), and since 2 + 6d ≤ 8d we obtain

Ex

[
g×

(
Q
ε,t−s
d(Z−s ,t−s)+γ(t−s) + εl

)]
≤ Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+γ(t) −

1
48s+ εl

)
1D

]
+ Ed(x,t)

[(
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)
+ 2

3ε
l
)
1Dc

]
+ 8dεl+1

≤ Ed(x,t)

[
g×

(
Q
ε,t−s
B(Rεs)+γ(t)

)]
+ 2

3ε
l + εl1{ 1

48 s≤εl}
+ 8dεl+1

where in the final inequality, we use that g′×(y) ≤ 3
2 for all y ∈ [0, 1]. Further reducing εd

if necessary so that 8dεl+1 ≤ 1
12ε

l and 48εl ≤ ε3 for all ε ∈ (0, εd) gives the result.

A Appendix

In this appendix, we will calculate the fixed points of g× (Section A.1), prove Proposi-
tion 4.22 (Section A.2) and provide several supplementary calculations for the truncated
subordinator Rεs (Section A.3).

A.1 Fixed points of g×

Proposition A.1. The function g× has fixed points u−,
1
2 , and u+, where

u− = 1
2 −
√

(1−bε)3(1−3bε)

2(1−bε)3 , u+ = 1
2 +

√
(1−bε)3(1−3bε)

2(1−bε)3 .

Proof. We aim to find a such that g×
(

1
2 + a

)
= 1

2 + a. Now,

g×
(

1
2 + a

)
= 3

(
(1− bε)( 1

2 + a) + bε
2

)2 − 2
(
(1− bε)( 1

2 + a) + bε
2

)3
= 2(bε − 1)3a3 + 3

2 (1− bε)a+ 1
2 .

Setting this equal to 1
2 + a we obtain the quadratic equation

2(1− bε)3a2 + 3
2 (1− bε) = 0,

for which u− − 1
2 and u+ − 1

2 are clearly solutions. To see that g×( 1
2 ) = 1

2 , note that

g×
(

1
2

)
= g

(
(1− bε) 1

2 + bε
2

)
= g

(
1
2

)
= 1

2 .
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A.2 Proof of Proposition 4.22

Before proving Proposition 4.22, we will need the following result.

Proposition A.2. Let ht(x, ·) denote the transition density of a d-dimensional Brownian
motion Wt started at x. There exists a constant C > 0 such that, for all r ≥ 0,

|hr(x, y)− hr(x, y + z)| ≤ Cr−
d+1
2 |z|

for all x, y, z ∈ Rd.

Proof. Fix r ≥ 0. Since

hr(x, y) =
1

(4πr)
d
2

exp
(
− |x−y|

2

4r

)
,

by the Mean Value Theorem

|hr(x, y)− hr(x, y + z)| ≤ 1

(4πr)
d
2

|z|
∣∣∣∇ exp

(
− |ξ|

2

4r

)∣∣∣
for some ξ on the line segment between y − x and y + z − x. Now,

∣∣∣∇ exp
(
− |ξ|

2

4r

)∣∣∣ =
|ξ|
2r

exp
(
− |ξ|

2

4r

)
≤ r− 1

2

since xe−x
2 ≤ 1 for all x ∈ R. The result follows by setting C := (4π)−

d
2 .

We now prove Proposition 4.22.

Proof of Proposition 4.22. We prove (4.63) and note that (4.62) follows by identical
arguments. Denote the standard Euclidean distance in Rd as | · | throughout. To begin,
we will construct a coupling of Z+(t) to a historical ternary branching subordinated
Brownian motion, WRε(t). Define

u(t, x) := Px[V×p (Z+(t)) = 1] and v(t, x) := Px[V×p (WRε(t)) = 1].

Abuse notation and let τ denote the time of the first branching event in both Z+(t) and
WRε(t). By the Markov property at time τ , u and v can be written as

u(t, x) = Ex[g×(u(t− τ, Z+
τ ))1τ≤t] + Ex[p(Z+

t )1τ>t] (A.1)

v(t, x) = Ex[g×(v(t− τ,W (Rετ )))1τ≤t] + Ex[p(W (Rεt ))1τ>t]. (A.2)

To bound the difference of u and v, we control the difference of the first terms and
second terms in (A.1) and (A.2) separately. First, since τ ∼ Exp(ε−2),∣∣Ex[p(Z+

t )1τ>t]− Ex[p(W (Rεt ))1τ>t]
∣∣ ≤ P[t ≤ τ ] ≤ e−t/ε

2

. (A.3)

To bound the difference of the first terms in (A.1) and (A.2), set t∗ := kε2| log ε| and
δε := D0(k + 2)I2(ε)| log ε| for D0 as in Theorem 4.18. Denote the transition density of
W (Rεt ) started at x by ft(x, ·). Then, since g× is bounded above by one and, by definition
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of Z+
t ,

Ex
[
g×(u(t− τ, Z+

τ ))1τ≤t
]

≤ Ex
[
g×(u(t− τ, Z+

τ ))1τ≤t∧t∗
]

+ P[τ > t∗]

≤ sup
|w|≤δε

Ex [g×(u(t− τ,W (Rετ ) + w))1τ≤t∧t∗ ] + εk

= sup
|w|≤δε

E

[∫
Rd
g×(u(t− τ, z + w))fτ (x, z)dz1τ≤t∧t∗

]
+ εk

= sup
|w|≤δε

E

[∫
Rd
g×(u(t− τ, z))fτ (x, z − w)dz1τ≤t∧t∗

]
+ εk

≤ E
[∫
Rd
g×(u(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
+ εk

+ sup
|w|≤δε

E

[∫
Rd
g×(u(t− τ, z))[fτ (x, z − w)− fτ (x, z)]1τ≤t∧t∗dz

]
. (A.4)

Consider the d-dimensional ball Bx
(
τ

1
α + δε

)
:=
{
z ∈ Rd : |z − x| ≤ τ 1

α + δε

}
. To ease

notation, let Bx := Bx

(
τ

1
α + δε

)
. Here, Bx has been chosen so that, for z ∈ Bx, the

difference |fτ (x, z−w)− fτ (x, z)| is sufficiently small, and for z ∈ Bc
x (the complement of

Bx in Rd), the probability of the subordinated Brownian motion jumping from x to z by
time τ is sufficiently small. Then, to bound the last term in (A.4) we use that g(u(t− τ, z))
is bounded by 1 to get

sup
|w|≤δε

E

[∫
Rd
g(u(t− τ, z))[fτ (x, z − w)− fτ (x, z)]1τ≤t∧t∗dz

]
≤ sup
|w|≤δε

E

[∫
Rd
|fτ (x, z − w)− fτ (x, z)|1τ≤t∧t∗dz

]
≤ sup
|w|≤δε

E

[∫
Bx

|fτ (x, z − w)− fτ (x, z)|dz1τ≤t∧t∗
]

+ sup
|w|≤δε

E

[∫
Bc
x

|fτ (x, z − w)− fτ (x, z)|dz1τ≤t∧t∗
]
. (A.5)

To bound the first term of (A.5), first note that

P[τ < δαε ] ≤ 1− exp
(
−δαε ε−2

)
≤ I(ε)2αε−2| log ε|α.

Since ft(x, ·) is the transition density of W (Rεt ), if h is the transition density of the d-
dimensional Brownian motion W , then, conditional on Rετ , fτ (x, ·) ≡ hRετ (x, ·). Therefore
by Proposition A.2, using that the first integral is bounded above by two, and allowing
the constant C to change from line to line,

sup
|w|≤δε

E

[∫
Bx

|fτ (x, z − w)− fτ (x, z)|dz1τ≤t∧t∗
]

≤ sup
|w|≤δε

CE

[∫
Bx

|w|(Rετ )−
d+1
2 dz1τ≤t∧t∗1τ≥δαε

]
+ 2I(ε)2αε−2| log ε|α

≤ CδεE
[
V (Bx)(Rετ )−

d+1
2 1τ≥δαε

]
+ 2I(ε)2αε−2| log ε|α

≤ CδεE
[
(2τ)

d
α (Rετ )−

d+1
2 1τ≥δαε

]
+ 2I(ε)2αε−2| log ε|α (A.6)

where V (Bx) denotes the volume of Bx which is proportional to (τ
1
α + δε)

d, and, condi-
tional on τ ≥ δαε , is bounded above by (2τ)

d
α . In Lemma A.5, we will bound the −p-th
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moments of (Rεs)s≥0. Using this, together with independence of (Rεs)s≥0 and τ , and
letting D1, D2 change from line to line, we obtain

E
[
τ
d
α (Rετ )−

d+1
2 1τ≥δαε

]
≤ E

[
τ
d
α (Rετ )−

d+1
2

]
≤ D1E

[
τ
d
α eτ

]
+D2E

[
τ−

1
α eτ

]
≤ D1ε

2d
α +D2ε

− 2
α .

Substituting this back into (A.6), and again letting the constants change from line to line,
we obtain

sup
|w|≤δε

E

[∫
Bx

|fτ (x, z − w)− fτ (x, z)|dz1τ≤t∧t∗
]

≤ Cδε
(
ε

2d
α + ε−

2
α

)
+ 2I(ε)2αε−2| log ε|α

= C1ε
2d
α I(ε)2| log ε|+ C2I(ε)2ε−

2
α | log ε|+ 2I(ε)2αε−2| log ε|α

≤ C2I(ε)2ε−
2
α | log ε|, (A.7)

where the final inequality follows by Assumptions 2.2 (B)-(C) and we allow C2 to change
from line to line. By Assumption 2.2 (C), (A.7) goes to 0 with ε.

To bound the second term in (A.5) we use [23, Theorem 1.1], which provides upper
bounds on the transition density of subordinated Brownian motion, with truncated stable
subordinator that has truncation level independent of ε. To apply this result, we rewrite
W (Rεs) in terms of a 1-truncated subordinated Brownian motion as follows. Let (Uas )s≥0

denote an α
2 -stable subordinator with truncation level a (and no speed change). Let

D
=

denote equality in distribution. Then

Rεs
D
= U

I(ε)2

sI(ε)α−2

D
= I(ε)2U1

sI(ε)−2

where the first equality follows by definition (recalling that the subordinator Rεs implicitly
runs at speed I(ε)α−2s) and the second equality follows by showing that, if Ψ and Ψ′ are

the characteristic exponents of (U
I(ε)2

s )s≥0 and (U1
s )s≥0 respectively, then I(ε)αΨ(θ) =

Ψ′(θI(ε)2), which follows easily from the Lévy-Khintchine formula. Then, by the scaling
property of the Brownian motion,

W (Rεs)
D
= I(ε)W (U1

sI(ε)−2). (A.8)

Denote the transition density of (W (U1
t ))t≥0 by f̂t(x, y). By (A.8), f̂t(x, ·) is related to the

transition density of W (Rεs) by

ft(x, y) = f̂I(ε)−2t(I(ε)−1x, I(ε)−1y).

Therefore the second term in (A.5) can be rewritten as

sup
|w|≤δε

E

[∫
Bc
x

∣∣∣f̂I(ε)−2τ (I(ε)−1x, I(ε)−1(z − w))− f̂I(ε)−2τ (I(ε)−1x, I(ε)−1z)
∣∣∣ dz1τ≤t∧t∗]
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which, by [23, Theorem 1.1], is bounded above by

sup
|w|≤δε

E

[∫
Bc
x

DτI(ε)−2

(|z − w|I(ε)−1)d+α
dz

]
+ E

[∫
Bc
x

DτI(ε)−2

(|z|I(ε)−1)d+α
dz

]

= sup
|w|≤δε

E

[∫
Bc
x

DτI(ε)α−1

|z − w|d+α
dz

]
+ E

[∫
Bc
x

DτI(ε)α−1

|z|d+α
dz

]

≤ DI(ε)α−1E

[
τ

∫ ∞
τ

1
α

1

|z|α+1
dz

]
≤ DI(ε)α−1E[τ(τ−1)]

= DI(ε)α−1, (A.9)

for some D > 0 that we allow to change from line to line. Here we have applied the
change of variables z − w 7→ z in the third line. Note that, since α > 1 the last quantity
goes to 0 with ε. Recall from (2.6) that

F (ε) = I(ε)2ε−
2
α | log ε|+ I(ε)α−1.

Then, choosing m > 0 sufficiently large and ε sufficiently small so that

mF (ε) ≥ εk +DI(ε)α−1 + C2I(ε)2ε−
2
α | log ε|,

by (A.9) and (A.7) we can bound (A.5) to obtain

Ex
[
g×(u(t− τ, Z+

τ ))1τ≤t
]

≤ E
[∫
Rd
g×(u(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
+mF (ε). (A.10)

Finally, we note that

Ex [g×(u(t− τ,W (Rετ ))1τ≤t] ≥ Ex [g×(u(t− τ,W (Rετ ))1τ≤t∧t∗ ]

= E

[∫
Rd
g×(u(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
,

which, together with (A.10) and (A.3) gives

u(t, x)− v(t, x)

≤ E
[∫

g×(u(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
− E

[∫
g×(v(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
+ e−t/ε

2

+mF (ε).

Using the same approach we can obtain the lower bound on u(t, x)− v(t, x). Namely, by
analogy with (A.4),

Ex
[
g×(u(t− τ, Z+

t ))1τ≤t
]

≥ E
[∫
Rd
g(u(t− τ, z))[fτ (x, z − w)− fτ (x, z)]1τ≤t∧t∗dz

]
+ E [g(u(t− τ,W (Rετ )))1τ≤t∧t∗ ]

≥ − sup
|w|≤δε

∣∣∣∣E [∫
Rd
g(u(t− τ, z))[fτ (x, z − w)− fτ (x, z)]1τ≤t∧t∗dz

]∣∣∣∣
+ E [g(u(t− τ,W (Rετ )))1τ≤t∧t∗ ]
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and, using (A.3), the final term can be bounded identically as before to give us that

u(t, x)− v(t, x)

≥ E
[∫

g×(u(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
− E

[∫
g×(v(t− τ, z))fτ (x, z)dz1τ≤t∧t∗

]
−
(
e−t/ε

2

+mF (ε)
)
.

Therefore, using that g× is Lipschitz with constant 3
2 , we obtain

|u(t, x)− v(t, x)|

≤ E
[∣∣∣∣∫ (g(u(t− τ, z))− g(v(t− τ, z)))fτ (x, z)dz

∣∣∣∣1τ≤t]+ e−t/ε
2

+mF (ε)

≤ 3
2E [|u(t− τ,W (Rετ ))− v(t− τ,W (Rετ ))|1τ≤t] + e−t/ε

2

+mF (ε)

≤ 3
2

∫ t

0

‖u(ρ, ·)− v(ρ, ·)‖∞e−(t−ρ)ε−2

ε−2dρ+ e−t/ε
2

+mF (ε).

Finally, using Gronwall’s inequality [51] (see also [29, Theorem 15]) we deduce that

‖u(t, ·)− v(t, ·)‖∞ ≤
(
e−t/ε

2

+mF (ε)
)

exp

(
3
2

∫ t

0

exp(−uε−2)ε−2du

)
,

≤
(
e−t/ε

2

+mF (ε)
)

exp
(

3
2

)
,

which gives the desired bound by choosing an appropriate m1,m2 > 0.

A.3 Truncated subordinator calculations

Throughout this section, let (Rεs)s≥0 be the I(ε)2-truncated α
2 -stable subordinator

with Lévy measure given by

α
2

(
2−α
α

)α
2 I(ε)α−2y−1−α2 1{0≤y≤ 2−α

α I(ε)2}dy.

Denote by P the probability measure under which (Rεs)s≥0, started at Rε0 = 0 has this
distribution, and let E denote the corresponding expectation. For all s, λ ≥ 0 the Laplace
transform φ(λ) := E [exp (−λRεs)] of Rεs is

φ(λ) = exp

(
α
2

(
2−α
α

)α
2 I(ε)α−2s

∫ 2−α
α I(ε)2

0

e−λy − 1

y
α
2 +1

dy

)
. (A.11)

The following lemma will enable us to show, in Proposition A.4, that Rεs is close to s for
small times s, which is a crucial component of our proof of Theorem 4.18.

Lemma A.3. Let (Rεs)s≥0 be as above. For all s ≥ 0, E[Rεs] = s.

Proof. The expected value of Rεs can be calculated explicitly by considering the derivative
of its Laplace transform, namely E[Rεs] = − d

dλφ(λ)|λ=0. Denote I := I(ε) throughout. Fix
λ, s ≥ 0. Using integration by parts,∫ 2−α

α I2

0

e−λy − 1

y
α
2 +1

dy = − 2
α

(
2−α
α

)−α2 I−α(exp
(
− 2−α

α λI2
)
− 1)− 2

αλ
α
2 γ
(
1− α

2 ,
2−α
α λI2

)
where γ(s, x) :=

∫ x
0
ts−1e−tdt is the lower incomplete gamma function. So, using (A.11),

φ(λ) can be written as

φ(λ) = exp
(
−I−2s

(
exp

(
− 2−α

α λI2
)
− 1
)
−
(

2−α
α

)α
2 Iα−2λ

α
2 sγ

(
1− α

2 ,
2−α
α λI2

))
.
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By differentiating this quantity with respect to λ, we obtain

E[Rεs]

= − 2−α
α s+

(
2−α
α

)α
2 Iα−2s

(
α
2 λ

α
2−1γ

(
1− α

2 ,
2−α
α λI2

)
+ λ

α
2
dγ

dλ

(
1− α

2 ,
2−α
α λI2

))∣∣∣∣
λ=0

.

This can be calculated by considering the following identities for γ. First, by the
definition of γ and a change of variables

γ
(
1− α

2 ,
2−α
α λI2

)
= I2−α

∫ 2−α
α λ

0

z−
α
2 e−zI

2

dz.

Therefore

λ
α
2
dγ

dλ

(
1− α

2 ,
2−α
α λI2

)∣∣
λ=0

= I2−α ( 2−α
α

)1−α2 exp
(
− 2−α

α λI2
)∣∣∣
λ=0

= I2−α ( 2−α
α

)1−α2 .
Under a different change of variables, γ also satisfies

λ
α
2−1γ

(
1− α

2 ,
2−α
α λI2

)∣∣
λ=0

=
(

2−α
α

)1−α2 ∫ I2

0

z−
α
2 exp

(
− 2−α

α λz
)
dz
∣∣
λ=0

=
(

2−α
α

)1−α2 ( 2
2−α

)
I2−α.

Putting this all together we obtain

E[Rεs] = − 2−α
α s+

(
2−α
α

)α
2 Iα−2s

(
α
2

(
2−α
α

)1−α2 ( 2
2−α

)
I2−α +

(
2−α
α

)1−α2 I2−α
)

= s.

With this, we can now prove Proposition A.4.

Proposition A.4. Let k ∈ N and (Rεs)s≥0 be as above. There exists εk > 0 such that, for
all ε ∈ (0, εk) and s ≤ ε2| log ε|,

P
[
|Rεs − s| ≥ (k + 1)I(ε)2| log ε|

]
≤ εk.

Proof. Let ε > 0. As before we set I := I(ε). Fix k ∈ N and s ≤ ε2| log ε|. Note that

P
[
|Rεs − s| ≥ (k + 1)I2| log ε|

]
= P

[
Rεs ≥ (k + 1)I2| log ε|+ s

]
+ P

[
Rεs ≤ s− (k + 1)I2| log ε|

]
. (A.12)

By Assumption 2.2 (B), εI−1 → 0 as ε→ 0, and since s ≤ ε2| log ε|, we may decrease ε as
necessary to ensure that s− (k + 1)I2| log ε| ≤ 0, and the second term in (A.12) equals
zero.

To bound the first term in (A.12), we note that, by [55, Theorem 25.17], and since
the Lévy measure of Rεs has compact support, the Laplace transform φ(λ) from (A.11)
can be extended to all of R, and the exponential moments of Rεs exist and satisfy
E [exp (λRεs)] = φ(−λ) for all λ ∈ R. It is straightforward to verify using Lemma A.3 that
E [Rεs] satisfies

E [Rεs] = α
2

(
2−α
α

)α
2 Iα−2s

∫ 2−α
α I2

0

y−
α
2 dy,
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therefore for any s, λ ≥ 0, by Taylor’s theorem

E [exp (λRεs − λE[Rεs])] = exp

(
α
2

(
2−α
α

)α
2 Iα−2s

∫ 2−α
α I2

0

eλv − 1− λv
v1+α

2
dv

)

≤ exp

(
α
4

(
2−α
α

)α
2 Iα−2 exp

(
2−α
α I2λ

)
λ2s

∫ 2−α
α I2

0

v1−α2 dv

)
= exp

(
1
2

(
2−α
α

)2 α
4−α exp

(
2−α
α I2λ

)
I2λ2s

)
. (A.13)

Choose λ = I−2. Then (A.13) becomes

E
[
exp

(
I−2Rεs − I−2E[Rεs]

)]
≤ exp

(
1
2

(
2−α
α

)2 α
4−α exp( 2−α

α )I−2s
)

≤ exp

(
1
2

(
2−α
α

)2 α
4−α exp( 2−α

α )
ε2| log ε|
I2

)
.

This, together with Lemma A.3 and Markov’s inequality gives us

P
[
Rεs ≥ (k + 1)I2| log ε|+ s

]
= P

[
Rεs − E[Rεs] ≥ (k + 1)I2| log ε|

]
= P

[
exp

(
I−2Rεs − I−2E[Rεs]

)
≥ ε−k−1

]
≤ εk+1 exp

(
1
2

(
2−α
α

)2 α
4−α exp

(
2−α
α

) ε2| log ε|
I2

)
.

By Assumption 2.2 (B), ε
2| log ε|
I2 → 0 as ε→ 0, so the previous inequality implies that, for

ε sufficiently small,

P
[
Rεs > (k + 1)I2| log ε|+ s

]
≤ εk,

which, by (A.12) gives us the result.

Lemma A.5. Let (Rεs)s≥0 be as above. Then, for any q, s > 0, there existsD1 = D1(q, α) >

0 and D2 = D2(q, α) > 0 such that

E
[
(Rεs)

−q] ≤ es(D1 +D2s
−2q/α).

Proof. Fix s ≥ 0, ε > 0 and I := I(ε). Let γ be the lower incomplete gamma function.
The Laplace transform (A.11) of Rεs can be written as

φ(λ) = exp
(
−I−2s

(
exp

(
− 2−α

α λI2
)
− 1
)
−
(

2−α
α

)α
2 Iα−2λ

α
2 sγ

(
1− α

2 ,
2−α
α λI2

))
= exp

(
I−2s

∫ 2−α
α λI2

0

e−zdz −
(

2−α
α

)α
2 Iα−2λ

α
2 s

∫ 2−α
α λI2

0

z−
α
2 e−zdz

)

= exp

(
2−α
α s

∫ λ

0

exp
(
− 2−α

α I2z
) (

1− λα2 z−α2
)
dz

)
.

By [56, Theorem 1.1], if X is a non-negative random variable with Laplace transform ρ,

then for any q > 0, E [X−q] = 1
qΓ(q)

∫∞
0
ρ
(
t
1
q

)
dt. Therefore, using the above expression

for the Laplace transform of Rεs, for any q > 0

E
[
(Rεs)

−q] =
1

qΓ(q)

∫ ∞
0

exp

 2−α
α s

∫ λ
1
q

0

exp
(
− 2−α

α I2z
) (

1− λ
α
2q z−

α
2

)
dz

 dλ.
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When λ ∈ [0, 1],

∫ λ
1
q

0

exp
(
− 2−α

α I2z
) (

1− λ
α
2q z−

α
2

)
dz ≤ 1

and if λ > 1, since the integrand is negative

∫ λ
1
q

0

exp
(
− 2−α

α I2z
) (

1− λ
α
2q z−

α
2

)
dz ≤

∫ 1

0

(
1− λ

α
2q z−

α
2

)
dz = 1− 2

2−αλ
α
2q .

Therefore

E
[
(Rεs)

−q] ≤ 1

qΓ(q)
exp

(
2−α
α s

)(
1 +

∫ ∞
1

exp
(
− 2
αsλ

α
2q

)
dλ

)
.

Let Γ(s, x) :=
∫∞
x
ts−1e−tdt be the upper incomplete gamma function. Then it is straight-

forward to show that the above is equivalent to

E
[
(Rεs)

−q] ≤ 1

qΓ(q)
exp

(
2−α
α s

)(
1 +

2q

α

( α
2s

) 2q
α

Γ
(

2q
α ,

2s
α

))
≤ 1

qΓ(q)
exp

(
2−α
α s

)(
1 +

2q

α

( α
2s

) 2q
α

Γ
(

2q
α

))
.

Since 2−α
α ≤ 1, the result follows.

Lemma A.6. Let (Rεs)s≥0 be as above and (Bs)s≥0 be a standard one-dimensional Brow-
nian motion. Let T ∗ ∈ (0,∞), ε > 0 and define zε implicitly by the relation

Pzε [B(RεT∗) ≥ 0] = 1
2 + (u+ − u−)−1ε (A.14)

where u+ and u− are the fixed points of g× from Proposition A.1. Then, for ε sufficiently
small,

zε ≤ 8
√

2π(T ∗ + 2) ε.

Proof. By symmetry of (Bs)s≥0, (A.14) is equivalent to

P0[B(RεT∗) ∈ (0, zε)] = (u+ − u−)−1ε.

It is a standard fact for Brownian motion that, if t > 0 and x > 0,

P0 [Bt ∈ (0, x)] ≥ x√
2πt

e−x
2/2t.

Let fRε
T∗

(·) denote the transition density of RεT∗ . Then

P0[B(RεT∗) ∈ (0, zε)] =

∫ ∞
0

P0[B(r) ∈ (0, zε)]fRε
T∗

(r)dr

≥
∫ ∞

0

zε√
2πr

e−z
2
ε/2rfRε

T∗
(r)dr

≥
∫ 2I(ε)2| log ε|+T∗

1
2T
∗

zε√
2πr

e−z
2
ε/2rfRε

T∗
(r)dr

≥ zεe
−z2ε/T

∗√
2π(2I(ε)2| log ε|+ T ∗)

P
[
RεT∗ ∈

(
1
2T
∗, 2I(ε)2| log ε|+ T ∗

)]
.
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Note that

P
[
RεT∗ ∈

(
1
2T
∗, 2I(ε)2| log ε|+ T ∗

)]
= P

[
RεT∗ < 2I(ε)2| log ε|+ T ∗

]
− P

[
RεT∗ ≤ 1

2T
∗] . (A.15)

We bound each of these terms separately. First, by the proof of Proposition A.4, for ε
sufficiently small,

P
[
RεT∗ < 2I(ε)2| log ε|+ T ∗

]
≥ 1− ε.

Let φ(λ) := E [exp(−λRεT∗)] be the Laplace transform of RεT∗ . Now, by Markov’s inequal-
ity,

P
[
RεT∗ ≤ 1

2T
∗] = P

[
exp

(
− α

2−αI(ε)−2RεT∗
)
≥ exp

(
− α

2−α
1
2I(ε)−2T ∗

)]
≤ exp

(
α

2−α
1
2I(ε)−2T ∗

)
φ
(

α
2−αI(ε)−2

)
.

Now, using the expression for φ(λ) from the proof of Lemma A.3,

φ
(

α
2−αI(ε)−2

)
= exp

((
1− e−1

)
T ∗I(ε)−2 − γ

(
1− α

2 , 1
)
T ∗I(ε)−2

)
,

where γ(·, ·) is the lower incomplete gamma function. Using that 1− e−x ≤ x,

γ
(
1− α

2 , 1
)

=

∫ 1

0

t−
α
2 e−tdt

≥
∫ 1

0

t−
α
2 (1− t)dt

=
1

(1− α
2 )(2− α

2 )
,

therefore

φ
(

α
2−αI(ε)−2

)
≤ exp

((
1− e−1 − 1

(1− α
2 )(2− α

2 )

)
T ∗I(ε)−2

)
and

P
[
RεT∗ ≤ 1

2T
∗] ≤ exp

((
1− e−1 − 1

(1− α
2 )(2− α

2 )
+

α

2(2− α)

)
T ∗I(ε)−2

)
.

It is straightforward to verify algebraically that, since α ∈ (1, 2),

α

2(2− α)
− 1

(1− α
2 )(2− α

2 )
≤ −2

3
,

so
P
[
RεT∗ ≤ 1

2T
∗] ≤ exp

((
1
3 − e

−1
)
T ∗I(ε)−2

)
,

where we note that 1
3 − e

−1 < 0. Returning to (A.15), we obtain

P
[
RεT∗ ∈

(
1
2T
∗, 2I(ε)2| log ε|+ T ∗

)]
≥ 1− ε− exp

((
1
3 − e

−1
)
T ∗I(ε)−2

)
≥ 1

2

where the last inequality holds by choosing ε sufficiently small. Returning to our original
inequality, we have

P0[B(RεT∗) ∈ (0, zε)] ≥
1

2

zεe
−z2ε/T

∗√
2π(2I(ε)2| log ε|+ T ∗)

,

EJP 29 (2024), paper 25.
Page 56/59

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1087
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Branching stable processes and motion by mean curvature flow

so by assumption

(u+ − u−)−1ε ≥ 1

2

zεe
−z2ε/T

∗√
2π(2I(ε)2| log ε|+ T ∗)

.

Since limε→0 zε = 0, assume ε is sufficiently small so that e−z
2
ε/T

∗ ≥ 1
2 . Further decrease

ε if necessary so that (u+ − u−)−1 ≤ 2. Then

8
√

2π(2I(ε)2| log ε|+ T ∗) ε ≥ zε,

so the result follows by decreasing ε if necessary so that I(ε)2| log ε| ≤ 1.
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