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Abstract

We compute the limiting measure for the Feynman loop representation of the Bose
gas for a non mean-field energy. As predicted in previous works, for high densities
the limiting measure gives positive weight to random interlacements, indicating the
quantum Bose–Einstein condensation. We prove that in many cases there is a shift in
the critical density compared to the free/mean-field case, and that in these cases the
density of the random interlacements has a jump-discontinuity at the critical point.
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1 Introduction

Ever since Feynman introduced his representation of the Bose gas as a soup of
interacting loops in [Fey48], there has been a continued interest in its properties.
Amongst the wide variety of interesting questions, our investigation focuses on the
macroscopic behaviour of the Bose gas as the particle density varies. Bose and Einstein
(in [Bos24] and [Ein25]) predicted that above a certain density, a macroscopic fraction
of the bosons aggregate into a single quantum state, commonly referred to as the
Bose–Einstein condensate. Feynman in [Fey53] gave arguments linking the formation
of the condensate to that of macroscopic loops. Much research has been undertaken
in that direction, especially focusing on the induced measure on permutations. See,
for example, [Süt93, Süt02, Uel06, BU09, ACK11, AD21b] amongst many others. Ever
since Feynman introduced his representation of the Bose gas as a soup of interacting
loops in [Fey48], there has been a continued interest in its properties. Amongst the
wide variety of interesting questions, our investigation focuses on the macroscopic
behaviour of the Bose gas as the particle density varies. Bose and Einstein (in [Bos24]
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and [Ein25]) predicted that above a certain density, a macroscopic fraction of the
bosons aggregate into a single quantum state, commonly referred to as the Bose–
Einstein condensate. Feynman in [Fey53] gave arguments linking the formation of the
condensate to that of macroscopic loops. Much research has been undertaken in that
direction, especially focusing on the induced measure on permutations. See, for example,
[Süt93, Süt02, Uel06, BU09, ACK11, AD21b] amongst many others.

The specific question we are interested in can be informally stated as:

What is the limiting1 measure governing the Feynman loop representation of the Bose
gas?

There has been some progress in this direction (especially in the aforementioned papers),
however the stochastic process of random interlacements used to describe the limiting
state has only been introduced a few years ago, see [Szn10]. The work [AFY21] was
the first to draw a rigorous connection between random interlacements and the Bose
gas. In that publication the authors showed that the superposition of the bosonic loop
process on the whole space and the random interlacements gives the same distribution
as the random permutations described in [Mac75]. Note that in [AFY21] the interactions
between the different loops were neglected. In [Vog23], the author proved that by taking
the thermodynamic limit along boxes of diverging volume, the limiting process is indeed
given by the superposition of the random interlacements and the bosonic loop soup. That
paper considered the case of the free Bose gas as well as the mean-field case, where the
interaction energy between loops is given by the square of the total particle number.

In this work, we consider the (partial) HYL energy (named after Huang, Yang and
Luttinger), a non mean-field interaction between loops, inspired by the publications
[HYL57, Lew86, AD21a], mimicking the repulsion between particles. Such Bose soups
behave qualitatively differently to the free and mean-field cases. While in the latter,
there is a continuous transition in the density of random interlacements as we cross
the critical density ρc > 0 of the Bose gas, the former has a jump discontinuity in low
dimensions, see Figure 1. We comment in greater length on this important result in
Section 3.3. Furthermore, the value of the critical density changes, compared to the
free and mean-field cases. Our proof is based on the approach of combining large
deviation theory in the heavy-tail regime, based on recent estimates such as [Ber19],
with order-one large deviation results from [BR60, ML82] for the contribution from
the exponential part. Both the heavy-tail and the exponential parts contribute to the
condensate. Following [BR03], the first part can be interpreted as being due to the
quantum statistics of the bosons, while the second contribution is due to the repulsive
force between particles at high densities.

The truncation and asymptotic expansion of the free large deviation rate function
near the critical point is crucial in the analysis of the HYL-energy. Once we have shown
that macroscopic loops exist with the correct density, we can refer back to [Vog23] where
the convergence of the macroscopic loops to the random interlacements is proven. As a
by-product of our proofs, we get the order-one asymptotics of the partition functions.

Whilst [Vog23] proved the emergence of macroscopic loops for a model on Zd, the
arguments and proofs are sufficiently robust to easily apply to a model in Rd. Working in
the continuum has the additional advantage of aligning with previous work on random
interlacements in [AFY21] and on the interaction energy in [AD21a].

1In the thermodynamic sense.
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(b) Mean-field and Free model, d ≥ 3.

Figure 1: The density of the random interlacements/condensate (red, ) and the
finite loops/bulk (blue, ) for various models in certain dimensions.

The models

We first describe the (free) grand canonical ensemble with inverse temperature β > 0

and chemical potential µ ≤ 0. The configuration space of each individual finite loop is

ΓF =

∞⋃
j=1

{
ω : [0, βj]→ Rd, ω is continuous, and ω (0) = ω (βj)

}
. (1.1)

Given ω ∈ ΓF, we write ` (ω) = j if ω : [0, βj] → Rd. Such a loop can be thought to
represent ` (ω) ∈ N particles at inverse temperature β. A loop with length ` (ω) = j is
distributed according to a Brownian bridge with time horizon βj and co-incident start
and end points.

The grand canonical ensemble on Borel measurable Λ ⊂ Rd is then given as a
Poisson point process on ΓF (with a given intensity measure). We let Ptx,y denote the
un-normalised Brownian bridge measure with time horizon t > 0 and start and end points
x, y ∈ Rd. Then the intensity measure is the bosonic loop measure, given by

MB
Λ,β,µ (A) =

∫
Λ

∑
j≥1

1

j
eβµjPβjx,x (A) dx (1.2)

for each measurable A ⊂ ΓF. We denote the law of this (free) grand canonical ensemble
on Λ as PΛ,β,µ.

Recall ` (ω) denotes the number of particles associated with the loop ω. Let ηΛ be a
locally finite counting measure on ΓF restricted to loops with ω(0) ∈ Λ. Then we define
NΛ to be the total particle number on Λ, that is

NΛ(η) =
∑
ω∈ηΛ

` (ω) . (1.3)

For density ρ > 0, we define the (free) canonical measure P(Can)
Λ,β,ρ as the grand canonical

measure PΛ,β,0 conditioned on NΛ = bρ|Λ|c.
To define the Hamiltonian with which we are primarily concerned, we introduce two

interaction strengths a > b > 0 and a loop length scale qΛ ∈ N such that qΛ = o (|Λ|) as
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|Λ| → ∞. Then

HΛ (ηΛ) = HΛ,a,b (ηΛ) =
a

2|Λ|
N2

Λ −
b

2|Λ|
∑
k≥qΛ

k2# {ω ∈ ηΛ : ` (ω) = k}2 . (1.4)

We call this the partial HYL Hamiltonian (‘partial’ because the counter-term only sees
cycles longer than the scale qΛ). A similar looking “sum-of-the-squares” counter-term
was introduced by [HYL57] in the process of approximating the hard-sphere interaction
for a gas of bosons. Their counter-term picked out all the momentum eigenstates of a
quantum Bose gas rather than the cycle lengths greater than some diverging cut-off
in a loop soup as ours does. Therefore there is no a priori reason to suppose that the
two models are related. Nevertheless it has been proven in [AD21a] that this partial
HYL Hamiltonian on loops produces precisely the same thermodynamic pressure as the
original momentum eigenstate based model (whose pressure was derived in [BDLP90]).
We also prove in Proposition 2.4 that if there is no cut-off, then this equality no longer
holds. More details and discussion about the interaction can be found in Section 3.1.

The Hamiltonian influences the loop soup’s behaviour via a tilting of the non-
interacting measure. For finite volume Λ, we define the grand-canonical measure
with HYL interaction, PHYL

Λ,β,µ, by its Radon–Nikodym derivative with respect to the
non-interacting measure. Specifically, given a chemical potential µ ∈ R we have

dPHYL
Λ,β,µ

dPΛ,β,0
(η) =

1

ZHYL
Λ,β,µ

exp (−βHΛ (η) + µNΛ (η)) , (1.5)

where ZHYL
Λ,β,µ is the partition function that normalises PHYL

Λ,β,µ. Under the measure PΛ,β,0

the particle number NΛ is almost surely finite, and to avoid ambiguity when µ > 0 we set
dPHYL

Λ,β,µ

dPΛ,β,0
= 0 when NΛ = +∞. It is worth noting that whilst the counter-term in HΛ is itself

attractive, the condition a > b ensures that the Hamiltonian as a whole is bounded from
below by some quadratic function of the particle number NΛ and is repulsive. It is also
this quadratic feature which means that it is possible to include µ > 0 in the parameter
space for this model whilst it was not possible for the free grand canonical ensemble.

Our main result is concerned with a canonical version of this interacting measure.
Given PHYL

Λ,β,µ, we define the canonical measure with HYL interaction, P(Can,HYL)
Λ,β,ρ

dP
(Can,HYL)
Λ,β,ρ

dP
(Can)
Λ,β,ρ

(η) =
1

Z
(Can,HYL)
Λ,β,ρ

e−βHΛ(η) =
e−βHΛ(η)

E
(Can)
Λ,β,ρ [e−βHΛ ]

. (1.6)

Note that for this canonical model the chemical potential term and the first term in
the Hamiltonian (1.4) are both constant, and therefore do not affect the model. In the
context of the canonical ensemble we can therefore treat the partial HYL Hamiltonian as
if it were just the last counter-term with parameter b > 0.

The case of this Hamiltonian with b = 0 is known as the Particle Mean-field Hamilto-
nian and is well understood. The previous work [Vog23] contains a proof that random
interlacements emerge in the thermodynamic limit, for example. In addition to the
inclusion of the counter-term to get the HYL Hamiltonian above, we also consider a
generalisation of the Particle Mean-field Hamiltonian to show that the precise choice
of a quadratic function of the particle number is not important and our techniques are
sufficiently resilient to be applied to other functions of the particle number.

We are going to be interested in the large-volume behaviour of these models. We
will set Λ = [−n/2, n/2)

d and aim to describe their n → ∞ limits. The fundamental
claim of this paper is that in this limit Brownian random interlacements emerge from
our systems of interacting finite loops. Loosely speaking these interlacements are
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doubly infinite continuous paths where we quotient out reparametrizations. We let Pιu
denote the Poisson point process on this space with an intensity that ensures they have
two main properties. Firstly that the interlacements have Brownian finite dimensional
distributions, and secondly that the expected local time is given by the parameter u > 0.
For background on Brownian interlacements we refer the reader to [Szn13], and to
[DRS14] for a general introduction. The novelty in this paper is that we are able to show
that Brownian interlacements emerge from our interacting models, and at different
intensities to those emerging from the models considered in [Vog23].

Organisation of the paper

In Section 2, we give the main results and state a corollary regarding the free energy.
In Section 3 we discuss the choice of models and assumptions, relate our work to other
results and state open questions. Section 4 gives the proofs of the results from Section 2.
Given the multitude of parameters used throughout Section 4, we give a table containing
frequently used notation in the Appendix, Table 1.

2 Results

We will now be more precise on the thermodynamic limit we will be taking. By
Gnedenko’s Local Limit Theorem (see [BGT89, Theorem 8.4.1]), the particle number
NΛ under the non-interacting grand-canonical measure PΛ,β,0 satisfies a central limit
theorem with scale aΛ, where

aΛ =


|Λ|2/3 if d = 3,

|Λ|1/2 (log|Λ|)1/2 if d = 4,

|Λ|1/2 if d ≥ 5.

(2.1)

This scale will affect our result in two ways. First we will require that the scale qΛ

appearing in the HYL Hamiltonian (1.4) not only satisfies qΛ = o (|Λ|), but also aΛ = o (qΛ)

as Λ→ Rd. We explain the reasoning for these conditions on qΛ in Section 3.1.
The second way in which the scale aΛ appears in our result is in the sense in which

the limit is taken. First let n ∈ N and set Λ = [−n/2, n/2)
d. It is then natural to interpret

aΛ and qΛ as sequences (an)n and (qn)n. We then use Λ to tessellate a larger box in Rd.
Let (rn)n be some positive increasing sequence of real numbers that diverges to infinity
at most logarithmically in n. Then set Cn = [−rnnd/2−1/2, rnn

d/2−1/2)d ∩Zd and

Λn =
⋃
x∈Cn

(xn+ Λ) =
[
−rnnd/2/2, rnnd/2/2

)d
(2.2)

so that Λn is a finite (hyper-)cubic tessellation of boxes Λ. We then define PHYL
n,β,µ :=⊗

x∈Cn P
HYL
xn+Λ,β,µ to get a measure that describes an independent superposition of loop

soups distributed according to PHYL
xn+Λ,β,µ for each x ∈ Cn. The same is done for the

canonical version to produce P(Can,HYL)
n,β,ρ from the P(Can,HYL)

xn+Λ,β,ρ .

Our main result is then a convergence result for the measure P(Can,HYL)
n,β,ρ . Like in

[Vog23], this convergence is with respect to the topology of local convergence, denoted
loc−→. The definition of this topology is given precisely in Definition 4.1, but can be thought
of as the topology describing local, parametrization-invariant events.

We introduce some notation here. For d ≥ 3 define the function ρ : (−∞, 0] →
(0, ρc] with ρ(µ) = (2πβ)

−d/2 Lid/2(eβµ) and ρc = (2πβ)
−d/2 Lid/2(1). Here Lis(z) is the

polylogarithm of order s with argument z, and Lid/2(1) = ζ (d/2) where ζ is the Riemann
zeta function. The value ρ(µ) can be thought of as the mean density of the non-interacting
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grand canonical ensemble with chemical potential µ (see for example, [AV20]). This is a
strictly increasing convex function, and we let µ be the inverse of ρ defined on the range
of ρ. Thus µ(ρ) can be thought of as the chemical potential that produces a given mean
density ρ in the non-interacting grand canonical ensemble. In the following theorem,
the notation ⊗ means that the resulting combined measure describes an independent
superposition of the two processes described by the two separate measures.

Finally, for u > 0, we denote Pιu the measure of random interlacements at density
u > 0, see [DRS14] or [Vog23].

Theorem 2.1. Fix b > 0 and d ≥ 3. Then there exists a constant ρHYL
c ≤ ρc and a function

ρ̄ : ρ 7→ ρ̄(ρ), such that

P
(Can,HYL)
n,β,ρ

loc−→

{
PRd,β,µ(ρ) for ρ < ρHYL

c ,

PRd,β,µ(ρ−ρ̄) ⊗ Pιρ̄ for ρ > ρHYL
c .

(2.3)

The function ρ 7→ ρ̄(ρ) gives the part of density in the condensate, given an overall
density of ρ, see Section 3. Furthermore

1. For d = 3, 4, we have ρHYL
c < ρc for any value of b > 0.

2. For d ≥ 5, we have ρHYL
c < ρc if b ∈ (bc,∞) for bc = 1

ρ′(0) . Otherwise, ρHYL
c = ρc.

3. The function ρ̄ : (0,∞) → (0,∞) is continuous unless ρHYL
c < ρc, in which case it

has a jump discontinuity at ρHYL
c .

Note that the red line in Figure 1 gives the plot of ρ 7→ ρ̄. Its discontinuity is
qualitatively different to the continuous transition established in [Vog23]. Also, the case
ρ = ρHYL

c is not treated in this work, we comment on that in Section 3.5.
We also give a similar result for the grand-canonical case, relating it to the canonical

model.

Theorem 2.2. Fix a > b > 0 and d ≥ 3. Then there exists a function µ 7→ ρGC(µ),
mapping chemical potential to density, such that

lim
n→∞

PHYL
n,β,µ = lim

n→∞
P

(Can,HYL)
n,β,ρGC(µ)

, (2.4)

in the topology of local convergence. Furthermore, ρGC(µ) is monotone and satisfies
limµ→∞ ρGC =∞ and limµ→−∞ ρGC = 0.

Remark 2.3. The result in Theorem 2.2 can be interpreted as an equivalence of ensem-
bles. For more discussion, we refer the reader to Section 3.2.

The functions ρGC and ρ̄ involve polynomials, polylogarithms (or Riemann zeta func-
tions), their inverses, and their derivatives. Their precise form is rather lengthy, so we
defer their definition to Section 4.

The following proposition helps to illustrate why having the scale qΛ →∞ is an impor-
tant feature of the model. Let H̃Λ be the HYL Hamiltonian appearing in (1.4) modified so
that the counter-term’s sum runs over k ≥ 1 rather than k ≥ qΛ. If we let EΛ,β,0 denote
the expectation with respect to PΛ,β,0, then we can define the thermodynamic pressures

for HΛ and H̃Λ as

PHYL (β, µ) = lim
Λ→Rd

1

β|Λ|
EΛ,β,0

[
eβµNΛ−βHΛ

]
, (2.5)

and

P̃HYL (β, µ) = lim
Λ→Rd

1

β|Λ|
EΛ,β,0

[
eβµNΛ−βH̃Λ

]
. (2.6)

To be clear, by limΛ→Rd we mean setting Λ = [−n/2, n/2)
d and taking n→∞. The recent

results of [AD21a, AD21b] prove that both these limits exist and describe them using
variational expressions.
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Proposition 2.4. For all β > 0 and µ ∈ R,

PHYL (β, µ) < P̃HYL (β, µ) . (2.7)

A heuristic explanation of why the short cycles make a difference can be found in
Section 3.1, and the detailed proof of Proposition 2.4 in Section 4.7. The fact that the
Hamiltonian HΛ produces the same thermodynamic pressure as the model described by
[HYL57] and derived by [BDLP90], whilst the Hamiltonian H̃Λ does not, suggests that
the model we consider here is in a sense the ‘right’ model and is more closely related to
physical behaviour.

Next, we give a corollary to our results, which may be of independent interest.

Definition 2.5. We define the free energy

fHYL(β, ρ) := − lim
Λ→Rd

1

β|Λ|
logZ

(Can,HYL)
Λ,β,ρ = − lim

Λ→Rd
1

β|Λ|
logE

(Can)
Λ,β,ρ

[
e−βHΛ

]
, (2.8)

where Z(Can,HYL)
Λ,β,ρ = E

(Can)
Λ,β,ρ

[
e−βHΛ

]
is the partition function appearing in (1.6).

Corollary 2.6. Given the conditions of Theorem 2.1, we have

fHYL(β, ρ) = (ρ− ρ̄)µ(ρ− ρ̄)−
∫ µ(ρ−ρ̄)

0

ρ(s)ds− bρ̄2

2
. (2.9)

Furthermore

PHYL(β, µ) = sup
ρ>0

{
µρ− aρ2/2− β−1I(ρ)− fHYL(β, ρ)

}
= µρGC − a

(
ρGC

)2
/2− β−1I

(
ρGC

)
− fHYL

(
β, ρGC

)
,

(2.10)

where the function I is defined in Equation (4.13).

The final result is a generalisation of [Vog23, Theorem 2.3]. Let G : [0,∞) → R ∪
{+∞} be measurable and bounded below. Then we define the Generalised Mean-field
Hamiltonian as

HGMF
Λ (η) = |Λ|G

(
NΛ (η)

|Λ|

)
. (2.11)

In turn we can define the grand-canonical measure with GMF interaction, PGMF
Λ,β , by its

Radon–Nikodym derivative with respect to the non-interacting measure. Specifically,

dPGMF
Λ,β

dPΛ,β,0
(η) =

1

ZGMF
Λ,β

e−βH
GMF
Λ (η), (2.12)

where ZGMF
Λ,β is the partition function that normalises PGMF

Λ,β . Note that we are omitting
the supplementary chemical potential from the GMF model. This is because we are free
to replace the function x 7→ G (x) with the function x 7→ G (x)− βµx as long as the latter
is bounded below. Note that the usual Particle Mean-field measure is a special case of
the Generalised Mean-field measure where G is set to be a quadratic function. As we
did for the HYL models, we define PGMF

n :=
⊗

x∈Cn P
GMF
xn+Λ to get random loop soups that

are independent superpositions of loop soups distributed according to PGMF
xn+Λ. We first

state the theorem before giving the conditions required of G. Let I be the rate function
for the particle number with no interaction, given in Equation (4.13). Note that this can
be also written as the sum of the free energy and the pressure of the system (from a
simpler application of the techniques in [AD21a]).

Theorem 2.7. Let d ≥ 3 and suppose that G satisfies Assumption 2.8. If I +G attains
its unique minimum at ρ > 0, then as n→∞

PGMF
n

loc−−→

{
PRd,β,µ(ρ) for ρ < ρc ,

PRd,β,0 ⊗ Pιρ−ρc
for ρ > ρc .

(2.13)
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For a discussion on the case of multiple minimizers, see Remark 4.20.
We now give the (not very strict) conditions on G.

Assumption 2.8. We assume that I +G has a unique minimizer xmin with xmin > 0. Set
G(xmin) = K. Furthermore, we require that one of the following holds:

1. xmin < ρc, and G is twice differentiable at xmin and continuous in a neighbourhood
of xmin. We furthermore require that for any ε > 0, there exists a δ > 0 such that
G−1 [[K,K + δ)] ⊂ (xmin − ε, xmin + ε).

2. xmin > ρc, and for any ε > 0, there exists a δ > 0 such that G−1 [[K,K + δ)] ⊂
(xmin − ε, xmin + ε). We also require that

(a) either G is twice differentiable at xmin at has a local minimum there,
(b) or G has a jump-discontinuity from the left (or the right), is differentiable in a

right (resp. left) neighbourhood of xmin and the first derivative2 is bounded
uniformly from below.

Example 2.9. There are various models that satisfy the conditions of Assumption 2.8.
For example:

1. G (x) = a
2x

2 +∞1{x > ρ} for a > 0 and ρ > ρc was considered in [Vog23, Theo-
rem 2.3]. Therefore Theorem 2.7 is indeed a generalisation of [Vog23].

2. G is strictly convex, G(x)→ +∞ as x→∞, and twice differentiable at xmin.

3. G′′(x) ≥ 0 for all x ≥ 0, and G′(ρc) > 0.

In general, as we have a rather explicit representation (see Equation (4.13)) of I in
terms of polylogarithms, checking Assumption 2.8 for a specific G is usually rather
straight-forward.

3 Discussion

3.1 Momentum HYL and full HYL

In [HYL57], Huang, Yang, and Luttinger considered a gas of bosons experiencing a
hard-sphere interaction. To study the virial coefficients, they expanded the thermody-
namic pressure of the interacting gas to second order in the dimensionless parameter
a/λ. Here a is the diameter of the hard-sphere interaction and λ is the so-called ‘ther-
mal wavelength’ — a length scale corresponding to the de Broglie wavelength of a
massive particle with energy 1/β. Of particular interest in this was the first order
perturbation, which they described using the single-particle momentum eigenstates of
the non-interacting model. In fact, they were able to express the first order perturbation
solely in terms of the expectation of these eigenstates’ occupation numbers. Inspired
by this, Huang, Yang, and Luttinger ‘invented’ a fictitious Bose gas whose energy levels
were given by taking the first order perturbation and replacing the expectations with the
raw variables. If we let α label the countably many single-particle momentum eigenstates
and nα denote their occupation numbers, this ‘momentum HYL’ interaction energy can
be written as

H
(mHYL)
Λ (n) =

a

2|Λ|


∑
α≥1

nα

2

− 1

2

∑
α≥1

n2
α

 . (3.1)

As described in [HY57], the first ‘square of the sum’ term can be expected classically
— on the basis of an “index of refraction approximation” — whereas the second ‘sum
of squares’ term is purely quantum mechanical. The Heisenberg uncertainty principle

2At xmin, we take the right (resp. left) derivative.
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Formation of infinite loops for an interacting bosonic loop soup

applied to the relative distance of two particles and their relative momentum indicates
that particles prefer to be in the same momentum state in order to minimise the spatial
repulsion from the hard spheres.

In fact, when discussing their fictitious model in [HYL57], Huang, Yang, and Luttinger
replaced

∑
α n

2
α with n2

0, omitting all terms other than that arising from the single-
particle ground state. At the time, they justified this simplification by noting that near
condensation the average occupation number n0 would be much higher than that of
the other ‘excited’ states. However, it was not until 1990 that van den Berg, Dorlas,
Lewis, and Pulé proved in [BDLP90] that the thermodynamic pressures given by the full
momentum HYL energy and the ground-state-only version truly are equal. They did this
by using large deviation techniques — applying Varadhan’s Lemma with two different
topologies allowed them to tightly bound the pressure from above and below. However,
the use of different topologies meant that this did not prove a large deviation principle
for the model.

At first glance, one may mistakenly expect the loop Hamiltonian we consider in
this paper to have only superficial similarity to the original momentum HYL model.
Not only does it replace momentum eigenstate occupation numbers with loop type
occupation numbers, but the second term omits more and more types of ‘short’ loop as
the thermodynamic limit is taken. However the similarity in fact runs much deeper:

It has been proven in [AD21a, Theorem 2.2] that the thermodynamic pressure of this
loop model is precisely equal to the thermodynamic pressure of the HYL Bose model

derived in [BDLP90].

In Proposition 2.4 below we show that omitting the short loops is crucial: including the
short loops in the Hamiltonian destroys this equality.

It is a conjecture of Feynman that the emergence of “long loops” in bosonic loop
soup models should correspond to Bose–Einstein condensation, and that the fraction
of ‘particles’ on such loops will equal the fraction in the condensate (see for example
[Fey53, Fey72]). The Heisenberg uncertainly principle also suggests that low momenta
states should relate to long cycles. This relation motivates why we want the Hamiltonian
to keep influencing long loops: [BDLP90] showed that it was only the effect on the
‘condensate state’ that mattered, and for the loop model this corresponds to our ‘long
loops.’

It is important that the loop model Hamiltonian does not have the ‘sum of squares’
term include all types of cycle. That is, we do not have the parameter qΛ in (1.4) remain
bounded as Λ→ Rd. For the momentum model there are countably many discrete states
and in the thermodynamic limit these get closer and closer and approach a continuum of
states. The occupation density of each of the individual discrete excited states vanishes
in the thermodynamic limit and so the energy contribution to the ‘sum of squares’ term
from these is not significant. For the loop model, the states stay separated and each
maintains a positive density in the thermodynamic limit. Hence the thermodynamic
pressure of the full cycle HYL model differs from that of the partial cycle HYL model.
This reasoning is made rigorous in the proof of Proposition 2.4 contained in Section 4.7.

3.2 Equivalence of ensembles

The question of equivalence of ensembles can be viewed from different standpoints.
On one level, we can ask if there is a relation between various thermodynamic functions
of the ensembles. For example, [Rue69] proves that the pressure (associated with the
grand-canonical ensemble), the free energy (associated with the canonical ensemble),
and the entropy (associated with the microcanonical ensemble) in the thermodynamic

EJP 29 (2024), paper 24.
Page 9/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1085
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Formation of infinite loops for an interacting bosonic loop soup

Total density ρ

Limiting

density

ρHYL
c

ρc

(a) Partial HYL model for d = 3, 4, and d ≥ 5

with certain parameters.

Total density ρ

Limiting

density

ρc

(b) Partial HYL model for d ≥ 5 with certain
parameters.

Figure 2: The density of the random interlacements/condensate ( ) and the finite
loops/bulk ( ) for the partial HYL model in different dimensions and different
parameters.

limit for various interacting particle models can be related to each other by Legendre–
Fenchel transforms over appropriate parameter spaces. An alternative approach is to
study the measures more directly. Under an appropriate topology, is it possible to relate
the accumulation points of the finite-volume measures in the various ensembles? In
[Geo95] it is proven that such an equivalence at the level of measures for microcanonical
and grand-canonical ensembles of particle models (not bosons) with suitable pair-wise
interactions is indeed possible.

Theorem 2.2 implies an equivalence of ensembles on the level of measures. It
furthermore shows that the limiting measures are universal, in a limited sense: not only
do the HYL models converge to the superposition of the free Bose gas and the random
interlacements, but also the mean-field and the free Bose gas do as well (with different
parameters, of course). This can be seen as a confirmation of Feynman’s prediction that

“...the strong interactions between particles do not prevent these particles from
behaving very much as though they move freely among each other.”,

see [Fey53]. We predict that similar results will hold for more involved interactions
between particles.

3.3 Condensate discontinuity

The study of the grand-canonical ensemble for the partial loop HYL model in [AD21a]
derived a large deviation principle — a lower resolution result than that derived here.
Nevertheless, it was sufficient to derive the ‘condensate’ density of that loop soup model.
Much like [HYL57, Lew86] did for the momentum HYL Bose gas, it was shown that for
certain parameters a discontinuity in the condensate density can occur as the chemical
potential µ crosses the transition point. Here we show that a similar discontinuity in the
density of the random interlacement occurs for the canonical ensemble as the density
crosses the new critical density. Figure 2 shows how this can occur.
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3.4 On the choice of the intermediate scale

In the statement of our results, we gave two requirements the sequence (qn)n has to
satisfy, in order for our results to remain valid. We justify our choice as follows:

The requirement that qn = o (|Λ|) is due to the “unphysical” results larger qn’s would
give. Indeed, no changes to the proof are necessary to treat this case. However, a
choice of qn ≥ ε|Λ| results in a built-in prevention of the existence of interlacements
with densities lower than ε > 0. Therefore, our requirements on (qn)n ensure that
macroscopic (and mesoscopic) loops are not being artificially excluded. A study of the
large deviations of a system that does exclude such loops and the consequences for the
condensate in such a system can be found in [AD21a].

Requiring an = o(qn) can be seen as the bigger restriction of our model. The condition
can be motivated by the fact that qn’s which grow slower lead to interaction between the
small loops, encouraging a clumping. By clumping, we mean that loops share the same
lengths more often than we would expect in the free case. Applying the Heisenberg
uncertainty principle to the conjugate pair of position and momentum suggests that
particles residing on short loops (and therefore having a smaller length scale) would
somehow be related to particles having a higher momentum. Since these higher mo-
mentum states are more sparsely occupied, one may guess that the contribution from
this clumping of short loops would be small — perhaps negligible. It may be that at the
large deviation scale it indeed doesn’t matter, but that it does for our higher-resolution
study here. Certainly, as it can be seen from Proposition 2.4, the model for fixing qn ≡ 0

is different to both the models studied here and in [AD21a]. We plan to address the
physicality of the full HYL (loop) model in a future publication.

3.5 The critical case

We do not prove anything about the case ρ = ρc (resp. ρ = ρHYL
c ). It is standard to

require for the canonical ensemble that NΛ/|Λ| converges to ρ. However, depending
on the sequence we choose, different global phenomena emerge: if we choose NΛ =

ρ|Λ|+|Λ|α with α ∈ (0, 1) greater than the CLT coefficient, macroscopic loops form (as the
estimates from [Ber19] are valid in that regime). The density of these macroscopic loops
is vanishing, so that they cannot be detected from a local perspective. For NΛ = ρ|Λ|+ bΛ
with bΛ = O (aΛ), we do not expect any formation of infinite loops. Instead, there is tilting
in the distribution of NΛ. We believe that these phenomena warrant an independent
investigation.

3.6 Interlacements in low dimensions

In studying their versions of an HYL interaction, both [Lew86] and [AD21a] found
that their versions of condensate behaviour occurred in every dimension d ≥ 1. Contrast
this with the non-interacting models, in which no condensation occurs for d = 1, 2.
Naturally then, [AFY21, Vog23] studied the emergence of interlacements for d ≥ 3 only.
Whilst interlacements in d = 2 can make sense, their construction is quite different (see
[CPV16]), and for d = 1 there is currently no framework for them. For these reasons
we have restricted our attention in this paper to d ≥ 3. Nevertheless the question of
whether the emergence of ‘long loops’ for the partial loop HYL model can be understood
via random interlacements is an interesting avenue of future study.

4 Proofs

As there are multiple phenomena contributing the formation of infinite loops, we split
the proof in different sections. Overall, the structure is as follows:
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1. In Section 4.1, we introduce further notation.

2. In Section 4.2 we perform a careful analysis of the large deviation rate function for
the free Bose gas. The most important result is the analysis of its behaviour near
the critical point ρc.

3. In Section 4.3, the partition function is calculated up to order (1 + o(1)). We
identify the two sources making up the density of the random interlacements: the
contribution from the free loops and the one induced by the Hamiltonian. This
presents a substantial difference to the mean-field model considered in [Vog23].

4. The computation of the limiting measure is performed in Section 4.4. Given the
previous section, this follows after some approximation arguments, using a quicker
strategy compared to [Vog23].

5. Section 4.5 does the analysis for the case ρ < ρc, which was previously excluded.
We also prove the discontinuity of the density of infinite loops as ρ varies.

6. The grand-canonical case is solved in Section 4.6. We use the results from the
canonical case together with a large-deviation principle for distribution of particle
number under mean-field interaction.

7. The generalisation of the mean-field results in [Vog23] is given in Section 4.8.

Recall that a table containing frequently used notation is given in the Appendix, Table 1.

4.1 Further notation

Let ΓF be the space of finite loops, i.e.,

ΓF =
⋃
j≥1

{
ω : [0, βj]→ Rd, ω(0) = ω(βj) and ω continuous

}
. (4.1)

We also set the space of random interlacements

ΓI =
{
ω : (−∞,∞)→ Rd : lim

|t|→∞
|ω(t)| = +∞ and ω continuous

}
. (4.2)

Denote Γ = ΓF ∪ ΓI. Given t ∈ R, we define the shift θt as follows:

1. ω ◦ θt(s) = ω(t+ s), if ω ∈ ΓI.

2. ω ◦ θt(s) = ω(t+ s mod βj), if ΓF 3 ω : [0, βj]→ Rd.

We define an equivalence on Γ as follows: ω1 is equivalent to ω2 if there exists a t ∈ R
such that ω1 = ω2 ◦ θt. Let Γ∗ (and Γ∗F,Γ

∗
I ) be the space of equivalence classes on Γ (resp.

ΓF,ΓI). Let Π denote the projection from Γ to Γ∗ and let Π−1 be the preimage of Π, i.e.,
Π−1[A] = {B : Π(B) ∈ A} for any set A ∈ Γ∗. For u > 0, let νu be the intensity measure
of the Brownian random interlacements at density u > 0 on Γ∗, as defined in [Szn13].

Let pt(x, y) = pt(x− y) be the transition kernel of a standard Brownian motion in Rd,
for x and y two points in Rd and t > 0. For x ∈ Rd, we set Btx,x the measure of a standard
Brownian bridge, conditioned to return to x at time t > 0. We set

Ptx,x = pt(x, x)Btx,x . (4.3)

For Λ ⊂ Rd, we write MΛ for the loop measure:

MΛ = MΛ,β,µ =

∫
Λ

dx
∑
j≥1

eβµj

j
Pβjx,x . (4.4)

Let PΛ = PΛ,β,µ be the Poisson point process (PPP) with intensity measure MΛ,β,µ. A
sample of PΛ will be denoted by η and can be written as

η =
∑
k

δωk , (4.5)
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with ωk ∈ ΓF. We write ω ∈ η whenever ω ∈ supp(η). For ω ∈ ΓF, we set `(ω) = j, if
ω : [0, jβ]→ Rd. For ∆ ⊂ Rd, we set

η∆ =
∑
ω∈η

δω1{ω(0) ∈ ∆} , (4.6)

and
N∆(η) =

∑
ω∈η∆

`(ω) . (4.7)

We also set N∆(η) = |∆|−1
N∆(η). Finally, set No = N[0,1]d .

Definition 4.1. The topology of local convergence is generated by functions F of the
type F (η) = e−η[f ] for f : Γ→ [0,∞) which satisfy the following properties

1. f(ω) = f(ω ◦ θt), for any t ∈ R,

2. f depends only on the values of ω on some compact set.

3. f is continuous in the Skorokhod topology ([Bil68]) on Γ.

It is known (see [Kle13, Theorem 24.7]) that such F generate the topology of contin-
uous bounded functions η 7→ F (η) which are invariant under reparametrization of the
loops, local and invariant under permutation of the loops. For more details (for example
of the Skorokhod topology), see also [Vog23, Section 3].

We introduce some functions, relating the macroscopic behaviour of the gas: for
µ ≤ 0, set the pressure

P (µ) =
∑
j≥1

eβµj

j
pβj(0) , (4.8)

and the density

ρ(µ) =
∑
j≥1

eβµjpβj(0) =
1

β

d

dµ
P (µ) . (4.9)

Since for d ≥ 1,

pβj(0) =
cd

(βj)d/2
, where cd =

1

(2π)d/2
, (4.10)

the n-th left derivative of ρ at the origin exists only for d > 2n+ 2.
For x ∈ (0,ρ(0)], we let µ(x) be the unique number such that ρ(µ(x)) = x. For larger

x, we extend µ by setting it to zero. As ρ and µ are also parameters of the model, we
have chosen to use the boldsymbol, to stress the difference. See Figure 3 for a sketch
of the functions.

For two sequences (an)n, (bn)n, we write an ∼ bn whenever as an = bn(1 + o(1)), as
n→∞. We also set Bε(x) as the open ball of radius ε > 0 around x ∈ Rd.

4.2 Analysis of the free rate function

Let φ(t) be the logarithm of the moment generating function of No with respect to
PΛ,β,µ. We then have that,

φ(t) =

{
P (µ+ t/β)− P (µ) if t ≤ −µβ ,
+∞ otherwise .

(4.11)

Indeed, by the Campbell formula, for t ≤ −βµ

EΛ,β,µ

[
etNo

]
= exp

(
MΛ,β,µ[etNo − 1]

)
= exp

∑
j≥1

eβµj

j
E
βj
0,0[etj − 1]


= exp (P (µ+ t/β)− P (µ)) , (4.12)
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ρ(µ)

µ

ρc

µ(ρ)

ρρc

(a) Sketches of ρ and µ, for d ≥ 3.

ρ′(µ)

µ

ρ′(0)

µ′(ρ)

ρρc

µ′(0) = β
ρ′(0)

(b) Sketches of ρ′ and µ′, for d ≥ 3.

Figure 3: Sketch of the behaviour the thermodynamic functions relation density and
chemical potential. The behaviour for d ≥ 5 is drawn as a solid line. For the first
derivatives, the behaviour is qualitatively different for d = 3, 4 and is drawn as a blue
dotted line.

where Eβj0,0 is the expectation with respect to the unnormalised Brownian bridge measure

P
βj
0,0 defined in Equation (4.3). We use this in the next result.

Lemma 4.2. The large deviation rate function Iµ(x) associated to NΛ is given by

Iµ(x) = Iβ,µ(x) =


+∞ if x < 0 ,

P (µ) if x = 0 ,

βx (µ(x)− µ)− P (µ(x)) + P (µ) if 0 < x ≤ ρc ,

−xβµ− P (0) + P (µ) otherwise .

(4.13)

We write I(x) instead of I0(x).

For µ = 0, we note in passing that the rate function is not good, i.e., its level sets
{x : I(x) ≤ c} are not necessarily compact.

Proof of Lemma 4.2. The claim for x < 0 is immediate. For x ≥ 0, the result follows
from Cramér’s theorem. For x = 0, note that

I(0) = sup
t∈R
{−φ(t)} . (4.14)
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x

Iµ(x)

P (0)

P (µ)

ρcρ(µ)

Figure 4: Two sketches of I, once for µ < 0 (black, solid line) and once for µ = 0 (blue,
dotted).

As P (µ + t/β) is monotonous, positive and converges to zero as t → −∞, the claim
follows for x = 0. For x ∈ (0, ρc), notice that the equation

x = φ′(t) ⇐⇒ x = ρ(µ+ t/β) , (4.15)

has the unique solution t̃ = [µ(x) − µ]β. We then use that I(x) = xt̃ − φ(t̃). For x ≥ ρc,
notice that due to Equation (4.11),

R 3 t 7→ xt− φ(t) , (4.16)

is maximised at t = −βµ. This proves the claim for x ≥ ρc. For µ = 0, I0(x) is constant
for x ≥ ρc and hence does not have compact level-sets (and is therefore not good).

Lemma 4.3. For every µ < 0, ρ(µ) is smooth at µ, same for µ(ρ) for ρ < ρc. Furthermore
as µ ↑ 0

ρ(µ) =


ρc + µρ′(0) +O

(
µ3/2

)
if d ≥ 5 ,

ρc + c4µβ
−1 log(−µ−1) (1 + o(1)) if d = 4 ,

ρc − (−µ/2)1/2(πβ)−1 (1 + o(1)) if d = 3 ,

(4.17)

which for d = 4 means ρ(µ) = ρc − (−µ)
1−ε

o(1) for every ε > 0.

As ρ ↑ ρc

µ(ρ) =


−(ρc − ρ)ρ′(0)−1 +O

(
(ρc − ρ)

3/2
)

if d ≥ 5 ,

(ρc−ρ)βc−1
4

log((ρc−ρ)βc−1
4 )

(1 + o(1)) if d = 4 ,

−2(ρc − ρ)2β2π2(1 + o(1)) if d = 3 ,

(4.18)

which for d = 4 means µ(ρ) = O
(

(ρ− ρc)
1+ε
)

for every ε > 0.

Proof of Lemma 4.3. For µ < 0, ρ(µ) is smooth due to the exponential factor in the
sum.

We expand in general

ρ(µ)− ρ(0) = β−1(−µ)d/2−1cd
∑
j≥1

(−µβ)
(
eβµj − 1

)
(−βµj)−d/2 . (4.19)

EJP 29 (2024), paper 24.
Page 15/39

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1085
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Formation of infinite loops for an interacting bosonic loop soup

For d = 3, this implies that (recall that c3 = (2π)−3/2)

ρ(µ)− ρ(0) ∼ c3β
−1(−µ)1/2

∫ ∞
0

(e−x − 1)x−3/2dx = −(βπ)−1(−µ/2)1/2 . (4.20)

Indeed, by the convergence of the Riemann integral:∑
j≥1

(−µβ)
(
eβµj − 1

)
(−βµj)−d/2 ∼

∫ ∞
0

(e−x − 1)x−3/2dx = −2
√
π , as (−µ)→ 0 .

(4.21)
Therefore, ρ(µ)−ρ(0) ∼ −(βπ)−1(−µ/2)1/2. By relabelling the variables, we can see that

ρ− ρc ∼ −[−µ(ρ)/2]1/2(βπ)−1 ⇐⇒ µ(ρ) ∼ −2β2π2(ρ− ρc)2 . (4.22)

For d = 4, we use a similar argument but with an additional truncation. Fix ε ∈ (0, 1/2)

and observe that

µ2

(−µ)ε−1∑
j=1

(
eβµj − 1

)
(βµj)−2 ∼ µ2

(−µ)ε−1∑
j=1

(βµj)−1 ∼ (1− ε)µβ−1 log(−µ−1) . (4.23)

We also have that for some C > 0, independent of µ and ε > 0∣∣∣∣∣∣µ2

(−µ)−1∑
j=(−µ)ε−1

(
eβµj − 1

)
(βµj)−2

∣∣∣∣∣∣ ≤ Cε (−µ) log(−µ−1) , (4.24)

and ∣∣∣∣∣∣µ2
∞∑

j=(−µ)−1

(
eβµj − 1

)
(βµj)−2

∣∣∣∣∣∣ ≤ C (−µ) . (4.25)

Combining the last three formulae with the expansion from Equation (4.19) and letting
ε ↓ 0, we can conclude that

ρ(µ)− ρ(0) ∼ c4µβ
−1 log(−µ−1) . (4.26)

Recall that yey = x for e−1 ≤ x < 0 if and only if y = W−1(x). From this, it follows that
µ(ρ) ∼ −eW−1((ρ−ρc)β/c4). Using that W−1(x) − log(−x) ∼ log(− log(−x)) (see [CGH+96,
Eq. (4.19)]) as x ↑ 0, we get that

µ(ρ) ∼ − (ρ− ρc)βc−1
4

log
(
−(ρ− ρc)βc−1

4

) . (4.27)

For d ≥ 5, the result follows from the implicit function theorem and the fact that the
density ρ is differentiable. This concludes the proof.

Lemma 4.4. As h ↓ 0

I0(ρc − h) = I(ρc − h) ∼


h2β

2ρ′(0) if d ≥ 5 ,

− 3h2β2c−1
4

2 log(h) if d = 4 ,

2h3β3π2/3 if d = 3 .

(4.28)

Note the faster-than-quadratic decay for d = 3, 4. This can be expected as NΛ does
not have a second moment in these dimensions under PΛ,β,0. Indeed, this is because
ρ′(0) does not exist for these dimensions.
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Proof of Lemma 4.4. The slightly awkward proof is warranted by the fact that we
cannot simply apply the chain rule twice to observe the cancellations. Indeed, this is
only possible for d ≥ 7. Therefore, we expand our function into leading-order term plus
remainder.

We begin with the case d ≥ 5: we write µ(ρc − x) = −xρ′(0)−1 + ε(x), where
ε(x) = µ(ρc − x) + xρ′(0)−1. We then expand

P (h) = P (0) + hβρc + h2βρ′(0)/2 + o(h2) . (4.29)

This implies that

P (µ(ρc−x))−P (0) = −xρ′(0)−1βρc+βρcε(x)+x2ρ′(0)−1β/2−β2xε(x)+o(ε(x)x) . (4.30)

We furthermore expand

β(ρc − x)µ(ρc − x) = −βρcxρ
′(0)−1 + βρcε(x) + x2βρ′(0)−1 +O(xε(x)) . (4.31)

Recall that for x ∈ (0, ρc) we have

I(ρc − x) = β(ρc − x)µ(ρc − x)− P (µ(ρc − x)) + P (0) . (4.32)

Note that substituting Equation (4.30) and Equation (4.31) into the above leads to the
term βρcε(x) appearing with opposite sign. This implies that Equation (4.28) is equal to

β(ρc − x)µ(ρx − x)− P (µ(ρc − x)) + P (0) =
x2β

2ρ′(0)
+O

(
x5/2

)
. (4.33)

This gives the result for d ≥ 5. For d = 3, we can expand

P (0)− P (h) =

∫ 0

h

βρ(t)dt , (4.34)

and thus, writing β(ρc − x)µ(ρc − x)− P (µ(ρc − x)) + P (0) = β
∫ 0

µ(ρc−x)
(ρ(t)− ρc + x) dt

and recalling the approximations from Lemma 4.3 gives

I(ρc − x) ∼ β
∫ 0

−2x2π2β2

(ρ(t)− ρc + x) dt ∼ −π−1

∫ 0

−2x2π2β2

(−t/2)1/2dt+ 2β3x3π2

= 2β3x3π2/3 . (4.35)

For d = 4,

I(ρc−x) = β

∫ 0

µ(ρc−x)

(ρ(t)− ρc) dt−βxµ(ρc−x) ∼ −c4
∫ −µ(ρc−x)

0

t log(t)dt−βxµ(ρc−x) .

(4.36)
Using that

∫ a
0
t log(t)dt = a2(2 log(a)− 1)/4 and the approximations from Lemma 4.3, we

get that

I(ρc − x) ∼ − x2β2c−1
4

4 log
(
xβc−1

4

)2 (2 log
(
xβc−1

4

)
− 1
)
− βxµ(ρc − x) . (4.37)

Observing some cancellations, we get that

I(ρc − x) ∼ −3x2β2c−1
4

2 log (x)
(4.38)

Observing the same cancellations as before concludes the proof.
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Formation of infinite loops for an interacting bosonic loop soup

We are now introducing the truncated large deviation rate function: we define Pq
∆

the PPP with intensity measure Mq
∆ where

Mq
∆ =

∫
∆

qn∑
j=1

eβµj

j
Pβjx,x . (4.39)

Here, qn is the same scale mentioned in Theorem 2.1.
The logarithm of the moment generating function of No under Pq

Λ is given by

φq(t) = P q(µ+ t/β)− P q(µ) (4.40)

where

P q(µ) =

qn∑
j=1

eβµj

j
pβj(0) . (4.41)

We also define

ρq(µ) =

qn∑
j=1

eβµjpβj(0) . (4.42)

Set µq(x) the unique µ, such that ρq(µ) = x. The Legendre transform of φq is given by
Iq, with

Iq(x) = βx (µq(x)− µ)− P q (µq(x)) + P q(µ) . (4.43)

Lemma 4.5. We have that

∀ε > 0 ∃C > 0 ∀ρ ∈ [0, ρc − ε] : |Iq(ρ)− I(ρ)| ≤ O
(
e−βCqn

)
(4.44)

as n→∞.

Proof of Lemma 4.5. For µ < 0,

ρq(µ) = ρ(µ) +O
(
eβµqn

)
. (4.45)

Note that for ρ > 0 bounded away from ρc, µ is differentiable at ρ with uniformly bounded
derivative. Furthermore, taking n sufficiently large, we may assume without loss of
generality that y < 0, where y is the value such that µq(ρ) = y. Note that

µq(ρ)− µ(ρ) = y − µ(ρq(y)) = O
(
eβyqn

)
. (4.46)

From there on, the result follows in the manner of Lemma 4.3.

4.3 Calculation of the partition function, supercritical

The goal in this subsection will be to calculate the value of the partition function

Z
(Can,HYL)
Λ,β,ρ = EΛ,β,0

[
e−βH, NΛ = ρ|Λ|

]
for ρ > ρc . (4.47)

Here, and henceforth, we use the notation E [F,A] to abbreviate E [F1A], for F a function
and A a set. We introduce the parameter ρe = ρ− ρc > 0. We assume for ease of reading
that ρ|Λ| ∈ N.

To calculate the partition function, we introduce the quadratic

Q(t) = Qρe
(t) = βb

[
(t+ ρe)2 − βρ2

e

]
/2 . (4.48)

This polynomial gives the gain of the function bβx2/2 at x = t+ ρe with respect to bβρ2
e/2.

This quantity is crucial: it represents the maximal potential energy gain if we increase
the density of the interlacements from ρe to t+ ρe.
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Formation of infinite loops for an interacting bosonic loop soup

Later we see that the term Q(t)− I(ρc− t) is the total “cost” of adding t density to the
interlacements, as the large deviation cost is given by I. Motivated by that, we define

So = sup
t∈[0,ρc]

{Q(t)− I(ρc − t)} . (4.49)

Crucial is the following parameter: set

ρS = ρS(b, ρe, d) such that : Q(ρS)− I(ρc − ρS) = So . (4.50)

It will turn out that ρS + ρe is the density of the random interlacements and ρS represents
the extra density of interlacement arising from the non-mean-field part of the interaction.

Lemma 4.6. The parameter ρS ∈ (0, ρc) is well defined. Furthermore, ρS(b, ρe, d) = o(1)

as ρe → 0, given b ≤ 1
ρ′(0) and d ≥ 5. Otherwise,

lim
ρe↓0

ρS(b, ρe, d) > 0 . (4.51)

Proof of Lemma 4.6. We supply Figure 5 to illustrate the proof. Also recall that the
sketches of µ,ρ and their derivatives are given in Figure 3. We first show that ρS is well

Q(x)− I(ρc − x)

x

ρc

ρS

ρe → 0

Q(x)− I(ρc − x)

x

ρc

ρS

(a) d = 3, 4, or d ≥ 5 and b > 1
ρ′(0) .

Q(x)− I(ρc − x)

x

ρc

ρS

ρe → 0

Q(x)− I(ρc − x)

x

ρc

ρS → 0

(b) d ≥ 5 and b ≤ 1
ρ′(0) .

Figure 5: Sketch of the behaviour of ρS as ρe → 0. The diagonal dashed lines follow
x 7→ bρex. In the first case the function Q(x) − I(ρc − x) initially goes above this line
and as ρe → 0 the maximising argument ρS stays away from 0. In the second case the
function stays below the line and ρS → 0.
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defined, i.e., that there is exactly one ρ ∈ (0, ρc) such that Q(ρS)− I(ρc − ρS) = S0. For
this, fix ρe > 0 and note that for x ∈ (0, ρc)

I ′(x) = βµ(x) and I ′′(x) = βµ′(x) . (4.52)

This implies that

d

dx
[Q(x)− I(ρc − x)] = βb(x+ ρe) + βµ(ρc − x) , (4.53)

and
d2

dx2
[Q(x)− I(ρc − x)] = βb− βµ′(ρc − x) . (4.54)

Note Q(x)− I(ρc − x) is increasing for x ∈ [0, ε) (for some ε > 0 small enough). Indeed,
from Lemma 4.4 we know that for small x, the function x 7→ I(ρc − x) grows at most
quadratically in x but Q(x) is of linear growth. On the other hand, we have that
µ(ρc−x)→ −∞, as x→ ρc. This means that Q(x)− I(ρc−x) decreases for large enough
x. Note that x 7→ βb − βµ′(ρc − x) is decreasing monotonically. By the continuity of
the involved functions, it follows that Q(x)− I(ρc − x) must attain its supremum inside
the interval (0, ρc). As the second derivative is decreasing, this supremum is indeed a
maximum.

Next, we examine the situation as ρe → 0. We expand Q(x)− I(ρc − x) for small x as
βbx2

2 + βbρex− x2β
2ρ′(0) (1 + o(1)) if d ≥ 5 ,

βbx2

2 + βbρex−− 3x2β2c−1
4

2 log(x) (1 + o(1)) if d = 4 ,
βbx2

2 + βbρex− 2x3β3π2/3(1 + o(1)) if d = 3 .

(4.55)

Therefore, as long as d = 3, 4 or b > ρ′(0)−1, Q(x) − I(ρc − x) increases in a small
neighbourhood around zero, disregarding of the value of ρe.

On the other hand, for d ≥ 5, by the inverse function theorem

1

β

d2

dx2
[Q(x)− I(ρc − x)] = b− µ′(ρc − x) = b− 1

ρ′(µ(ρc − x))
. (4.56)

Thus, if b < ρ′(0)−1, the second derivative is negative. Following from that, with
m = (b− 1/ρ′(0))/2 < 0, we have the expansion

Q(x)− I(ρc − x) = βmx2 + βbρex+ o(x2) , (4.57)

where the small-o term is independent of ρe. This is (asymptotically) a parabola with

zeros at the origin and at x ∼ −ρem. Thus, ρS = O
(

ρe

−2m

)
= o(1) and the result follows.

For b = ρ′(0)−1, the argument is similar, βb(x + ρe) + βµ(ρc − x) = bβρe +O(x3/2) and
one can show that the zero of that function is of order O(ρe).

Abbreviate

ρ̄ = ρS + ρe , (4.58)

which will turn out to be the total density of the condensate. Indeed, ρe will be the
contribution from the free gas, while ρS comes from the Hamiltonian.

Our goal is to calculate the partition function by expanding around ρ̄. For this, we
split our loop soup into long and short loops:

N short = N short
Λ =

∑
ω∈ηΛ

`(ω)1{`(ω) < qn} and N long = N long
Λ = NΛ −N short

Λ . (4.59)
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Formation of infinite loops for an interacting bosonic loop soup

Using the independence of N short and N long from the Poisson property, we expand

EΛ,β,0

[
e−H, NΛ = ρ|Λ|

]
=

∫ ρ|Λ|

0

EΛ,β,0

[
e−H, N long = ρ|Λ| − x

]
dPΛ,β,0

(
N short = x

)
.

(4.60)
Indeed, H is measurable with respect to N long.

Let us analyse the behaviour of PΛ,β,0

(
N long = x

)
:

Lemma 4.7. For c > 0 fixed,

PΛ,β,0

(
N long = x

)
∼ β|Λ|cd

(βx)d/2+1
, (4.61)

uniformly in c|Λ| > x > c−1|Λ|.

Proof of Lemma 4.7. Define the auxiliary sequence rN as

rn = MΛ,β,0[`(ω) ≥ qn] = O
(
|Λ|q−d/2n

)
= o (1) . (4.62)

Note here that an = o(qn) is needed for some d ≥ 3. By the fundamental properties of
Poisson point processes,

PΛ,β,0 (∃ω1, . . . , ωk : `(ωi) ≥ qn for all i = 1, . . . , k) = O
(
rkn
)
. (4.63)

Let ηq denote the number of loops which are longer than qn. We then split

PΛ,β,0

(
N long = x

)
= PΛ,β,0

(
N long = x, ηq ≤ d

)
+ PΛ,β,0

(
N long = x, ηq > d

)
. (4.64)

By Equation (4.63), the second term is negligible. Furthermore, note that

PΛ,β,0

(
N long = x, ηq = 1

)
∼MΛ,β,0[`(ω) = x] =

β|Λ|cd
(βx)d/2+1

. (4.65)

Now for k ∈ {2, . . . , d} fixed

PΛ,β,0

(
N long = x, ηq = k

)
≤ PΛ,β,0 (∃ω : `(ω) ≥ x/k, and ∃ω1, . . . , ωk−1 : ωi ≥ qn, ∀i = 1, . . . , k − 1) , (4.66)

which implies that

PΛ,β,0

(
N long = x, ηq = k

)
≤ C(k)PΛ,β,0

(
N long = x, ηq = 1

)
rk−1
n , (4.67)

where C(k) is some k-dependent constant. Hence, the event {ηq = 1} is the only relevant
one in the limit. This concludes the proof.

Given that N long = x, the Hamiltonian becomes predictable:

Corollary 4.8. For any c > 0

EΛ,β,0

[
e−βH(η)|N long = x

]
∼ EΛ,β,0

[
e−βH(η)|∃ω : `(ω) = x

]
= eβbx

2/(2|Λ|) , (4.68)

for any x with c|Λ| > x > c−1|Λ|, uniformly.

Proof of Corollary 4.8. Let the decreasing sequence (si)
MN
i=1 be the different values

−H can attain, restricted to the set N long = x. One has that

s1 = bx2/(2|Λ|) and s2 = s1 −
bqnx

2|Λ|
(1 + o(1)) . (4.69)
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Indeed, a simple calculation using Lagrange multipliers shows that the maximal value
of H is achieved by placing all the particles in the same cycle, thereby proving the first
equality above. Given the requirement x > c−1|Λ| and the growth of (qn)n, it follows that
s2 is negligible compared to s1.

For the second equality, we observe that this argument can be used inductively,
i.e., the next best strategy is to place the particles in two cycles. As the cycle-lengths
are bounded from below by qn, the second equality follows. Lemma 4.7 asserts that
the events {N long = x} and {∃ω : `(ω) = x} have asymptotically the same mass. This
concludes the proof.

Next, we give an asymptotic relation for the distribution of the short loops.

Lemma 4.9. For any ε > 0 and for y ∈ [0, (ρc − ε)|Λ|], it holds

PΛ,β,0

(
N short = y

)
∼ PΛ,β,0 (NΛ = y) . (4.70)

Proof of Lemma 4.9. Note that we can find co > 0 such that

c−1
o e−|Λ|I

q(y) ≥ PΛ,β,0

(
N short = y

)
≥ coe−|Λ|I

q(y) . (4.71)

Indeed, this expansion can be found in [BR60].
Set pn = qn/|Λ| and expand

PΛ,β,0 (NΛ = y,∃ω : `(ω) > qn) ≤
∫ ρ|Λ|

qn

PΛ,β,0

(
N short = y − s

)
ds = O

(
e−|Λ|I

q(y−pn/2)
)
.

(4.72)
By Lemma 4.5, we may replace |Λ|Iq(y− pn/2) by |Λ|I(y− pn/2)(1 + o(1)), where the o(1)

term is bounded from above by O
(
e−Cqn

)
. This gives

PΛ,β,0 (NΛ = y,∃ω : `(ω) > qn) ≤ O
(

e−|Λ|I(y−pn/2)(1+o(1))
)

≤ O
(

e−|Λ|I(y)
)
O
(

e−|Λ|[I(y−pn/2)−I(y)](1+o(1))
)

(4.73)

However, invoking the same lemma again, we see that

I(y−pn/2)−I(y) = O (pn) ⇒ PΛ,β,0 (NΛ = y,∃ω : `(ω) > qn) = O
(

e−|Λ|I(y)
)
O
(
e−cqn

)
,

(4.74)
for some c > 0. Here, we use the assumptions on (qn)n. On the other hand by [BR60],
for some do > 0

PΛ,β,0 (NΛ = y) ∼ do√
y

e−|Λ|I(y) . (4.75)

Therefore, by combining the two previous equations with the independence from the
Poisson point process, we get

PΛ,β,0 (NΛ = y) ∼ PΛ,β,0 (NΛ = y,∀ω : `(ω) < qn) = PΛ,β,0

(
N short = y

)
. (4.76)

This concludes the proof.
We now split the partition function

EΛ,β,0

[
e−βH, NΛ = ρ

]
= EΛ,β,0

[
e−βH, NΛ = ρ,N long ∈ B+

T (ρ̄)
]

+ EΛ,β,0

[
e−βH, NΛ = ρ,N long /∈ B+

T (ρ̄)
]
, (4.77)

where B+
T (ρ̄) = |Λ|ρ̄+ |Λ|1/2[−T, T ], for T > 0 which we will let diverge to +∞ later.
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Lemma 4.10. Set S1 = S0 + bβρ2
e/2. There exists a positive, increasing function T 7→ γT

diverging to +∞ as T diverges to +∞, such that

EΛ

[
e−βH, NΛ = ρ,N long /∈ B+

T (ρ̄)
]

= O

(
e|Λ|S1−γT

|Λ|d/2+1

)
. (4.78)

Proof of Lemma 4.10. Recall that Q(x) = βb[(x + ρe)2 − ρ2
e ]/2. On the event that

N long = x, we bound
− H ≤ |Λ|

[
Q(x/|Λ| − ρe) + ρ2

e/2
]
. (4.79)

Thus

EΛ

[
e−βH, NΛ = ρ,N long /∈ B+

T (ρ̄)
]

≤ e|Λ|
bβρ2e

2

∫ ρ|Λ|

0

e|Λ|Q(x/|Λ|−ρe)1{x /∈ B+
T (ρ̄)}PΛ(N long = bxc)dPΛ

(
N short = ρ|Λ| − x

)
.

(4.80)

Now, choose ε, δ > 0 such that Q(ε) + bβρ2
e/2 ≤ S1 − δ. This is possible as ρ̄ is strictly

between 0 and ρc. For such choice, we get that

e|Λ|
bβρ2e

2

∫ (ρc+ε)|Λ|

0

e|Λ|Q(x/|Λ|−ρe)1{x /∈ B+
T (ρ̄)}dPΛ

(
N short = ρ|Λ| − x

)
≤ e|Λ|(S1−δ) .

(4.81)
Thus, it remains to estimate (after a change of variables)

e|Λ|
bβρ2e

2

|Λ|d/2+1

∫ ρc|Λ|

ε|Λ|
e|Λ|Q(x/|Λ|)1{x /∈ B+

T (ρS)}dPΛ

(
N short = ρc|Λ| − x

)
. (4.82)

We recall that the |Λ|d/2+1 factor comes from contribution of N long. Applying Lemma 4.9,
we can bound the above integral by

C

∫ ρc|Λ|

ε|Λ|
e|Λ|Q(x/|Λ|)1{x /∈ B+

T (ρS)}dPΛ (N = ρc|Λ| − x) , (4.83)

for some C > 0. Using [BR60], the above is bounded by

C

∫ ρc|Λ|

ε|Λ|
e|Λ|Q(x/|Λ|)1{x /∈ B+

T (ρS)}e−|Λ|I(ρc−x/|Λ|)
√
x

dx . (4.84)

Note that x 7→ Q(x)− I(ρc − x) is differentiable at its minimum ρS, and thus as x→ ρ̄

Q(x/|Λ|)− I(ρc − x/|Λ|) = S0 − Cq
(
x

|Λ|
− ρ̄
)2

(1 + o(1)) , (4.85)

where Cq = bβ − βµ(ρc − ρ̄) > 0.
This implies that

e|Λ|
bβρ2e

2

∫ ρc|Λ|

ε|Λ|
e|Λ|Q(x/|Λ|)1{x /∈ B+

T (ρS)}dPΛ

(
N short = ρc|Λ| − x

)
≤ O

(
e|Λ|S1−γT

|Λ|d/2+1

)
.

(4.86)
This completes the proof.

Recall Varadhan’s theorem (see [DZ09]): for (Pn)n satisfying a large deviation princi-
ple with rate function i

En

[
enF (x)

]
= exp

(
n sup

x
{F (x)− i(x)}

(
1 + o(1)

))
, (4.87)
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for F continuous and bounded above.

In the spirit of the standard Laplace approximation, this result was refined in [ML82]:
assume the supremum in the above equation attained at 0. Then:

En

[
enF (x)

]
=

√
1 +

F ′′(0)

i′′(0)
en[F (0)−i(0)]

(
1 + o(1)

)
. (4.88)

We are now ready to compute the partition function to the required accuracy.

Lemma 4.11. For ρ > ρc

EΛ,β,0

[
e−βH, NΛ = ρ

]
∼

√
1 +

b

µ′(ρc − ρS)
exp (S1|Λ|)

β|Λ|cd
(βρ̄|Λ|)d/2+1

. (4.89)

Proof of Lemma 4.11. By Lemma 4.10, we can reduce the question to calculating

EΛ,β,0

[
e−βH, NΛ = ρ, N long ∈ B+

T (ρ̄)
]
. (4.90)

By Lemma 4.9, we can expand

EΛ,β,0

[
e−βH, NΛ = ρ, N long ∈ B+

T (ρ̄)
]

∼
∫
B+
T (ρ̄)

EΛ,β,0

[
e−βH, N long = x

]
dPΛ,β,0 (NΛ = ρ|Λ| − x) . (4.91)

By Corollary 4.8, we may replace EΛ,β,0

[
e−βH|N long = x

]
by ebβx

2/(2|Λ|). We are now in
position to apply [ML82, Theorem 3], to conclude that

∫
B+
T (ρ̄)

ebβx
2/(2|Λ|) β|Λ|cd

(βx)d/2+1
dPΛ,β,0 (NΛ = ρ|Λ| − x) ∼

β|Λ|cd
√

1 + b
µ′(ρc−ρS)eS1|Λ|

(βρ̄|Λ|)d/2+1
.

(4.92)
Indeed, the polynomial term (βx)d/2+1 varies sufficiently slowly. This concludes the
proof.

Proof of Corollary 2.6, free energy. By Lemma 4.11,

fHYL(β, ρ) = − lim
N→∞

1

β|Λ|
logZ

(Can,HYL)
Λ,β,ρ = −S1

β
= −b (ρS + ρe)

2
/2 + β−1I (ρc − ρS) .

(4.93)
Using the definition of ρ̄, we recognise the above as −bρ̄2/2 + β−1I (ρ− ρ̄). The result
now follows from the explicit form of I given in Equation (4.13).

4.4 Computation of the limiting measure, supercritical

As usual, the computation of the partition function already reveals the limiting
structure of the ensemble. Hence, using the results from the previous section together
with the approximation techniques from [Vog23], the result emerges quickly.

There are two steps to the proof:

1. The measure governing the long loops is converging to the intensity measure of
the random interlacements.

2. The remaining loops are governed by the loop soup with density µ(ρ − ρ̄). We
employ a change of measure trick here.
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Step 1: let f ≥ 0, F (η) = e−η[f ] be a test function, as in Definition 4.1. Similar to the
previous section, we can approximate

EΛ,β,0

[
F (η)e−βH, NΛ = ρ

]
= EΛ,β,0

[
F (η)e−βH, NΛ = ρ, ∃ω : `(ω) = N long ∈ B+

T (ρ̄)
]

+ o
(
Z

(Can,HYL)
Λ,β,ρ

)
. (4.94)

Here, recall that B+
T (ρ̄) = |Λ|ρ̄+ |Λ|1/2[−T, T ], for T > 0. On the event {NΛ = ρ}, we can

rewrite

H(η) = − bβ

2|Λ|
(
ρ|Λ| −N short

)2
. (4.95)

Using the Mecke equation (see [LP17]) we expand leading order term in Equation (4.94)
as ∫

dPΛ,β,0(η)e
bβ

2|Λ| (ρ|Λ|−N
short
Λ )

2
∫

dMΛ,β,0(ω)F (η + δω)1A(η,ω) , (4.96)

where

A(η, ω) = {`(ω) +NΛ(η) = ρ|Λ| and NΛ(η) = N short(η) and `(ω) ∈ B+
T (ρ̄)} . (4.97)

Write a = ρ − ρ̄ and set a− = a|Λ| − T |Λ|1/2 and a+ = a|Λ| + T |Λ|1/2. We rewrite
Equation (4.96) as∫

dPΛ,β,0(η)1{NΛ(η)=Nshort(η)∈[a−,a+]}e
bβ

2|Λ| (ρ|Λ|−NΛ)2−η[f ]

×
∫

dMΛ,β,0(ω)1{`(ω)=ρ|Λ|−NΛ(η)}e
−f(ω) . (4.98)

Now by [Vog23], uniformly on the event {NΛ(η) ∈ [a−, a+]},

MΛn,β,0

[
1{`(ω)=ρ|Λ|−NΛ(η)}e

−f ](
β|Λ|cd

(βρ̄|Λ|)1+d/2

) ∼ νρ̄[e−f ] . (4.99)

Here, νρ̄ is the intensity measure of the (Brownian) random interlacements with density
ρ̄ > 0. While [Vog23] was written for the case of the random walk and not the Brownian
motion, this does not change the proof for the convergence to the interlacements as it
only depends on the Poisson property and heat-kernel estimates.

To summarise the previous steps, we have now shown that

EΛ,β,0

[
F (η)e−βH, NΛ = ρ

]
ZΛ,β,ρ

∼
EΛ,β,0 ⊗ νρ̄

[
1{NΛ(η) = N short(η) ∈ [a−, a+]}e

bβ
2|Λ| (ρ|Λ|−NΛ)2

F (η + δω)
]

√
1 + b

µ′(ρc−ρS)eS1|Λ|
. (4.100)

This concludes the first step.
Step 2: as done in the proof of Lemma 4.10, we can simplify the above to

EΛ,β,0 ⊗ νρ̄
[
1{NΛ(η) ∈ [a−, a+]}e

bβ
2|Λ| (ρ|Λ|−NΛ)2

F (η + δω)
]

√
1 + b

µ′(ρc−ρS)eS1|Λ|
, (4.101)

using Lemma 4.9. As F (η + δω) = F (η)F (δω), we will omit the νρ̄ part of the limiting
process, to aid legibility. This means, we now examine

EΛ,β,0

[
1{NΛ(η) ∈ [a−, a+]}e

bβ
2|Λ| (ρ|Λ|−NΛ)2

F (η)
]

√
1 + b

µ′(ρc−ρS)eS1|Λ|
. (4.102)
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Let τ = βµ(a). We can change the measure such that for any measurable G

EΛ,β,0[G] = e|Λ|[P (µ(a))−P (0)]EΛ,β,µ(a)[Ge−βµ(a)NΛ ] = e−|Λ|I(a)EΛ,β,µ(a)

[
Ge−(τNΛ−aτ |Λ|)

]
.

(4.103)
Applying this to Equation (4.101) leads to

EΛ,β,µ(a)

[
1{NΛ(η) ∈ [a−, a+]}e

bβ
2|Λ| (ρ|Λ|−NΛ)2−(τNΛ−aτ |Λ|)F (η)

]
e|Λ|I(a)

√
1 + b

µ′(ρc−ρS)eS1|Λ|
. (4.104)

Note that the denominator can be simplified to

e|Λ|I(a)

√
1 +

b

µ′(ρc − ρS)
eS1|Λ| = e

bρ̄2

2 |Λ|

√
1 +

b

µ′(ρc − ρS)
, (4.105)

which we abbreviate by Z̃Λ. We now expand the numerator in Equation (4.104) as

a+∑
j=a−

e
bβ

2|Λ| (ρ|Λ|−j)
2−(τj−aτ |Λ|)

PΛ,β,0 (NΛ = j)EΛ,β,µ(a)

[
F (η)

∣∣NΛ = j
]
. (4.106)

We have the following lemma:

Lemma 4.12. Uniformly for j ∈ [a−, a+],

EΛ,β,µ(a)

[
F (η)

∣∣NΛ = j
]
∼ EΛ,β,µ(a) [F (η)] . (4.107)

We give the proof of this lemma at the end of this subsection.
Using Lemma 4.12, we rewrite Equation (4.106) as

EΛ,β,µ(a) [F (η)]

a+∑
j=a−

e
bβ

2|Λ| (ρ|Λ|−j)
2−(τj−aτ |Λ|)

PΛ,β,0 (NΛ = j)

∼ EΛ,β,µ(a) [F (η)] e
bρ̄2

2 |Λ|

√
1 +

b

µ′(ρc − ρS)
, (4.108)

using [ML82, Theorem 3] again. This shows that

EΛ,β,0

[
1{NΛ(η) ∈ [a−, a+]}e

b
2|Λ| (ρ|Λ|−NΛ)2

F (η)
]

√
1 + b

µ′(ρc−ρS)eS1|Λ|
∼ EΛ,β,µ(a) [F (η)] , (4.109)

and hence, using Equation (4.100)

EΛ,β,0

[
F (η)e−βH, NΛ = ρ

]
ZΛ,β,ρ

∼ EΛ,β,µ(a) ⊗ νρ̄ [F (η + δω)] , (4.110)

in each box. Using the independence of the boxes and the superposition of Poisson
processes, like in [Vog23], we get that

En,β,0
[
F e−βH, NΛ = ρ

]
∼ ERd,β,µ(ρ−ρ̄) ⊗ Eιρ̄[F ] . (4.111)

This concludes the proof of Theorem 2.1 for ρ > ρc.

Proof of Lemma 4.12. Choose M = |Λ|1/10. Set BM = BM (0) the ball of radius
M , centred at the origin. We abbreviate NM = NBM , NΛ\M = NΛ\BM , EM,β,µ(a) =
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EBM ,β,µ(a), and EΛ\M,β,µ(a) = EΛ\BM ,β,µ(a). Set R = M2. Using the superposition of
Poisson point processes, we expand

EΛ,β,µ(a) [F,NΛ = j] = EΛ\M,β,µ(a) ⊗ EM,β,µ(a) [F,NM ≤ R, NΛ = j]

+ EΛ\M,β,µ(a) ⊗ EM,β,µ(a) [F,NM > R, NΛ = j] . (4.112)

As NM has exponential tails under PM,β,µ(a) and j −R is inside the range of Gnedenko’s
Local Limit Theorem (see [BGT89, Theorem 8.4.1]), we have that

EΛ\M,β,µ(a)⊗EM,β,µ(a) [F,NM > R, NΛ = j]

≤ CPΛ\M,β,µ(a) ⊗ PM,β,µ(a) [NM > R, NΛ = j]

= o(1)PΛ\M,β,µ(a)

[
NΛ\M = j

]
= o(1)PΛ,β,µ(a) [NΛ = j] , (4.113)

as M →∞. We then expand

EΛ\M,β,µ(a) ⊗ EM,β,µ(a) [F,NM ≤ R, NΛ = j]

=

R∑
k=0

EΛ\M,β,µ(a) ⊗ EM,β,µ(a)

[
F,NM = k, NΛ\M = j − k

]
=

R∑
k=0

EM,β,µ(a) [F,NM = k]EΛ\M,β,µ(a)

[
F, NΛ\M = j − k

]
,

(4.114)

where we used the multiplication property of the test function F (η) = e−η[f ]. We want to
replace EΛ\M,β,µ(a)

[
F, NΛ\M = j − k

]
by PΛ\M,β,µ(a)

[
NΛ\M = j − k

]
. Note that

{F 6= 1} ⊂ {∃ω : supp(ω) ∩ supp(f) 6= ∅} . (4.115)

As the support of f is compact, we may set supp(f) = [0, 1]d without loss of generality.
We estimate

PΛ\M,β,µ(a)

(
∃ω ∈ η such that [0, 1]d ∩ ω 6= ∅

)
≤
∑
j≥1

eβµ(a)j

j

∫
Λ\BM

dxPβjx,x
(
H[0,1]d < βj

)
,

(4.116)
where H[0,1]d is the first hitting time of the unit cube, centred at the origin. Using that
the distance between x and [0, 1]d is at least R, we bound (see for example [MP10])

Pβjx,x
(
H[0,1]d < βj

)
= O

(
e−cR/j

2
)
. (4.117)

This shows that the weight on the event {F 6= 1} is of stretch-exponential order or less.
However, PΛ\M,β,µ(a)

[
NΛ\M = j − k

]
is of polynomial order (again, by Gnedenko’s Local

Limit Theorem) and thus we can replace F by 1. This leads to

EΛ\M,β,µ(a) ⊗ EM,β,µ(a) [F,NM ≤ R,NΛ = j]

∼
R∑
k=1

EM,β,µ(a) [F,NM = k]PΛ\M,β,µ(a)

[
NΛ\M = j − k

]
, (4.118)

However, as j − k is still in the CLT regime and j −R = j(1 + o(1)), we get that

PΛ\M,β,µ(a)

[
NΛ\M = j − k

]
∼ PΛ\M,β,µ(a)

[
NΛ\M = j

]
∼ PΛ,β,µ(a) [NΛ = j] . (4.119)
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This implies that

EΛ,β,µ(a)

[
F (η)

∣∣NΛ = j
]
∼

R∑
k=1

EM,β,µ(a) [F,NM = k] . (4.120)

However, using the same reasoning as Equation (4.117), we can see that

EΛ,β,µ(a)

[
F (η)

∣∣NΛ = j
]
∼

R∑
k=1

EM,β,µ(a) [F,NM = k]

= EM,β,µ(a) [F,NM ≤ R] ∼ EΛ,β,µ(a) [F (η)] .

(4.121)

This concludes the proof.

4.5 The subcritical case

The case for ρ ≤ ρc is easier. Indeed, as the reference measure PΛ,β,ρ does not
generate random interlacements by default, only the large deviation contribution from ρ̄

will matter. Fix ρo ≤ ρc and define S1 by

S1 = sup
ρ∈(0,ρo)

{
bβρ2

2
− I(ρo − ρ)

}
. (4.122)

Furthermore, set ρ̄ = ρ̄(b, ρo, d) to be the value at which the supremum is achieved.

Lemma 4.13. For every b > 0

1. ρ̄ = ρ̄(ρo) ∈ [0, ρo) is well defined except for at most one ρo.

2. If d ≥ 5 and b ≤ 1/ρ′(0), then ρ̄ = 0 for every ρo ≤ ρc.

3. When d = 3, 4 or b > 1/ρ′(0), ρ̄ > 0 for ρo sufficiently close to ρc.

4. When d = 3, 4 or b > 1/ρ′(0), ρo 7→ ρ̄ has a jump discontinuity.

Proof of Lemma 4.13. Set R(x) = Rρo(x) = bβx2/2 − I(ρo − x). Note, as before
R′(x) = bβx + βµ(ρo − x) and R′′(x) = βb − βµ′(ρo − x). Recall that Figure 3 sketches
the functions ρ, µ as well as their derivatives.

1. Now in contrast to the supercritical case, whilst ρo < ρc we have that R(x) is
decreasing for small x. Indeed, R′(x) is strictly negative in a neighbourhood
around the origin. By looking at the second derivative, which is monotonously
decreasing, we distinguish three cases: x 7→ R′(x) has either none, one or two
zeros. If x 7→ R′(x) has none or one zero, the maximum value of R(x) is attained
at the origin. If x 7→ R′(x) has two zeros, the maximum value of x 7→ R(x) will be
attained at the origin or at the rightmost zero of x 7→ R′(x).

We first show that for ρo > 0 sufficiently small, ρ̄ = 0. Note that for sufficiently
small ρo > 0

sup
x∈(0,ρo)

{R′′(x)} = sup
x∈(0,ρo)

{βb− βµ′(ρo − x)} < 0 as µ′(y)→∞, when y ↓ 0 .

(4.123)
This shows that for ρo small enough, R′(x) is decreasing. As R′(0) < 0, the
supremum of R(x) is attained at the origin. Thus, for small ρo, ρ̄ is well defined.

For larger ρo we have to prove that the supremum is attained at only one point.
For this, note that the change of x 7→ R(x) with respect to ρo is positive, i.e.,

d
dρo

Rρo(x) > 0 for every x in the domain. Thus, ρ̄ is either increasing or jumps to
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zero, as ρo increases. Write xo = xo(ρo) for the location of the second zero, if it
exists. However,

d

dρo
Rρo(0) = −βµ(ρo) < −βµ(ρo − ε) =

d

dρo
Rρo(ε) , (4.124)

for any ε > 0. This implies that R(x) grows faster away from the origin. Hence,
as soon as ρ̄(ρo) > 0, it has to be greater than zero for any larger ρ̃o > ρo. Equa-
tion (4.124) also shows that there can be at most one ρo for which R(xo) = R(0).
At this point, ρ̄ is not well defined.

2. Here, we argue similar as before: if b < 1/ρ′(0) and d ≥ 5, the second derivative is
always negative. Furthermore, the first derivative is negative. Thus, in that case,
R(x) is always decreasing and the minimum is attained at the origin.

3. If b > 1/ρ′(0) or d = 3, 4, note that

∃ε > 0∃δ > 0∃γ > 0∀ρo ∈ (ρc − ε, ρc)∀x ∈ [0, δ ∧ ρo) : R′′ρo(x) > γ . (4.125)

This is because µ′(x) decays either faster than linearly or with a linear coefficient
larger than b. This gives us the bound

R′(x) ≥ γx+ βµ(ρo) . (4.126)

R(x)

x

−I(ρo)

ρo

R′(x)

x
βµ(ρo)

ρo

(a) Three qualitatively different behaviours for ρo < ρc.

R(x)

x

ρc

R′(x)

x

ρc

(b) Two qualitatively different behaviours for ρo = ρc.

Figure 6: The function x 7→ R(x) and its derivative. Different possibilities (depending on
the values of ρo, β, b) are drawn in different styles.
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Hence, the interval around the origin on which R′ is negative shrinks to zero, as ρo
increases to ρc. Thus, by letting ρo tend to ρc, we see that in this limit, ρ̄ has to be
positive for all ρo with ρc − ρo < εc for some εc > 0.

4. Define
ρHYL

c = sup{ρo : ρ̄(ρo) = 0} . (4.127)

Now for b > 1/ρ′(0) or d = 3, 4

0 < ρHYL
c < ρc . (4.128)

Suppose that ρo 7→ ρ̄ was continuous at ρHYL
c . Recall that for ρo > ρHYL

c , the
supremum is attained at the second zero of x 7→ R′(x). However, as ρHYL

c < ρc,
R′(x) is bounded away uniformly (in both x, ρo) from zero. This implies that the
second zero of R′(x) is bounded away from the origin uniformly in ρo. This is a
contradiction, as ρ̄ is either zero or equal to that second zero. This concludes the
proof.

Given the previous lemma, we can follow the same steps as in the supercritical case.
The partition function is asymptotically equal to

Z
(Can,HYL)
Λ,β,ρ ∼

√
1 +

b

µ′(ρo − ρ̄)
exp (S1|Λ|)

β|Λ|cd
(βρ̄|Λ|)d/2+1

(4.129)

Similarly, one can then show the convergence of the conditional measure. This concludes
the proof of Theorem 2.1 for the case ρ < ρc. The case ρ = ρc is only relevant for d = 3, 4

or d ≥ 5 with b > βρ′(0)−1. However, in that case the proof of Lemma 4.13 does not
change as ρHYL

c < ρc.

4.6 The grand-canonical ensemble

Fix µ ∈ R. We now examine the properties of the Bose gas in terms of the parameters
β > 0 and µ. Recall that HΛ (ηΛ) = a

2|Λ|N
2
Λ − b

2|Λ|
∑
k≥qΛ k

2# {ω ∈ ηΛ : ` (ω) = k}2.. We

introduce HPMF
Λ = a

2|Λ|N
2
Λ, the mean-field part of the Hamiltonian. We expand the

partition function

EΛ,β,µ

[
e−βH

]
= EΛ,β,µ

[
e−βH

PMF
Λ

] ∞∑
j=0

EΛ,β,µ

[
e−βH|NΛ = j

]
PPMF

Λ,β,µ(NΛ = j) . (4.130)

Here, we used that EΛ,β,µ

[
e−βH|NΛ = j

]
= EPMF

Λ,β,µ

[
e−βH|NΛ = j

]
. Note that by Varad-

han’s Lemma, PPMF
Λ,β,µ satisfies a large deviation principle with rate function

Iµ(x) +
βax2

2
− inf

x

{
Iµ(x) +

βax2

2

}
= I(x) +

βax2

2
− βµx− inf

x

{
I(x) +

βax2

2
− βµx

}
.

(4.131)
Define ρGC = ρGC(µ) to be the maximiser of the function J with

J(ρ) =
βbρ̄2

2
− I(ρ− ρ̄)− βaρ2

2
+ βµρ− I(ρ) . (4.132)

Here, ρ̄ = ρ̄(b, ρ, d) maximises the function x 7→ βbx2/2− I(ρ− x) on (0, ρ). For ρ = ρHYL
c ,

this may not be well defined as there could exist two maximizers. However, bρ̄2/2−I(ρ−ρ̄)

is well defined at this point. The next lemma gives the properties of ρGC.

Lemma 4.14. The following statements hold true for any b > 0.

1. For any µ ∈ R, ρGC is well defined and ρGC ∈ (0,∞).
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2. The map µ 7→ ρGC(µ) is strictly increasing.

3. limµ→∞ ρGC =∞ and limµ→−∞ ρGC = 0.

Proof of Lemma 4.14. Recall that the thermodynamic functions are sketched in
Figure 3.

1. It is clear that the maximizer(s) have to be bounded away from zero and +∞: as
ρ̄ < ρ and a > b, J(ρ) diverges to −∞ as ρ gets large. For ρ 6= ρHYL

c

J ′(ρ)

β
= bρ̄ρ̄′ − µ(ρ− ρ̄)(1− ρ̄′)− aρ+ µ− µ(ρ) . (4.133)

Set β = 1, to shorten notation. Recall that for ρ < ρHYL
c , ρ̄ = 0. From there, it

follows

J ′(ρ) =

{
µ− aρ− 2µ(ρ) if ρ < ρHYL

c ,

µ− aρ− µ(ρ− ρ̄)− µ(ρ) if ρ > ρHYL
c .

(4.134)

Indeed, if ρ > ρHYL
c , this means that ρ̄ > 0. As ρ̄ is defined as the maximizer of the

differentiable function x 7→ bx2/2− I(ρ− x), it holds

bρ̄+ µ(ρ− ρ̄) = 0 . (4.135)

From Equation (4.134), we can see that J increases in a small neighbourhood of
the origin. This shows that the maximiser(s) have to be contained in (0,∞). Now
we show that there can only be one maximiser. It holds

J ′′(ρ) =

 −a− 2µ′(ρ)

−a− µ′(ρ− ρ̄)(1− ρ̄′)− µ′(ρ)

if ρ < ρHYL
c ,

if ρ > ρHYL
c ,

=

 −a− 2µ′(ρ)

−(a− b)− µ′(ρ)

if ρ < ρHYL
c ,

if ρ > ρHYL
c .

(4.136)

Indeed, by the implicit function theorem

ρ̄′ =
d

dρ
ρ̄ =

µ′(ρ− ρ̄) + b

µ′(ρ− ρ̄)
> 0 and thus 1− ρ̄′ =

−b
µ′(ρ− ρ̄)

< 0 . (4.137)

Recall that a > b. As J is continuous, with first derivative positive in a neighbour-
hood around the origin and the second derivative strictly negative, it follows that it
attains its maximum at a single point.

2. To prove the monotonicity of ρGC, we calculate its derivative with respect to µ. As
J ′ is increasing in a neighbourhood around the origin, we can assume that ρGC

is bigger than zero. Let us assume that ρGC 6= ρHYL
c . In that case, ρGC satisfies

J ′(ρGC) = 0. If ρGC < ρHYL
c , this implies by the implicit function theorem that

d
dµρ

GC = [2µ′(ρ) + a]
−1

> 0. If ρGC > ρHYL
c ,

d

dµ
ρGC =

1

(a− b) + µ′(ρ)
> 0 . (4.138)

Thus, the positivity of d
dµρ

GC follows. Finally, if ρGC = ρHYL
c , it is straightforward to

show the claim.

3. For this claim, note that if µ → −∞, this implies that any ρ solving the equation
µ = 2βµ(ρ) + aρ goes to zero. Furthermore, we can see that for the case µ→∞, ρ
diverges to +∞. This can be seen by looking at the area where the first derivative
is positive.
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Next, we calculate the partition function.

Corollary 4.15. As Λ ↑ Rd, it holds that

EΛ,β,µ

[
e−βH

PMF
] ∞∑
j=0

EΛ,β,µ

[
e−βH|NΛ = j

]
PPMF

Λ,β,µ(NΛ = j) ∼ Z(Can,HYL)
Λ,β,ρGC . (4.139)

Proof of Corollary 4.15. Note that analogous to Lemma 4.10

∞∑
j=0

EΛ,β,µ

[
e−βH|NΛ = j

]
PPMF

Λ,β,µ(NΛ = j)

∼
ρGC|Λ|+T |Λ|1/2∑
j=ρGC|Λ|−T |Λ|1/2

EΛ,β,µ

[
e−βH|NΛ = j

]
PPMF

Λ,β,µ(NΛ = j) . (4.140)

For j ∈ |Λ|ρGC + |Λ|1/2[−T, T ], we may employ the expansion from Lemma 4.11. This
concludes the proof.

Having calculated the partition function, we can compute the limiting measure with
no difficulties. The steps are the same as in Section 4.4 and we leave the details to the
reader.

Proof of Theorem 2.2. Using the tools from Section 4.4 and Corollary 4.15, we can
show that

1

ZΛ,β,ρGC

∞∑
j=0

EΛ,β,µ

[
F (η)e−βH|NΛ = j

]
PPMF

Λ,β,µ(NΛ = j) ∼ EΛ,β,µ(a) ⊗ νρ̄ [F (η + δω)] ,

(4.141)
where ρ̄ = ρ̄(b, ρGC, d) and a = ρGC − ρ̄. Proceeding analogous to Section 4.4 concludes
the proof.

Proof of Corollary 2.6, pressure. The proof is an immediate consequence of the
above result.

4.7 Proof of Proposition 2.4, pressure comparison

Recall that Proposition 2.4 stated that the thermodynamic pressures produced by the
partial HYL Hamiltonian HΛ and the full HYL Hamiltonian H̃Λ (where we fix qΛ = 1) are
indeed different.

We first introduce some notation. Recall the thermodynamic pressures PHYL (β, µ)

and P̃HYL (β, µ) given in (2.5). We now use PHYL
Λ (β, µ) and P̃HYL

Λ (β, µ) to denote the
respective finite-volume pressures:

PHYL
Λ (β, µ) =

1

β|Λ|
EΛ,β,0

[
eβµNΛ−βHΛ

]
, P̃HYL

Λ (β, µ) =
1

β|Λ|
EΛ,β,0

[
eβµNΛ−βH̃Λ

]
,

(4.142)
so PHYL

Λ (β, µ)→ PHYL (β, µ) and P̃HYL
Λ (β, µ)→ P̃HYL (β, µ). Also recall how the grand-

canonical measure with HYL interaction, PHYL
Λ,β,µ, is defined using the Hamiltonian HΛ

(see (1.5)). We now use EHYL
Λ,β,µ to denote the expectation with respect to this measure,

and respectively define P̃HYL
Λ,β,µ and ẼHYL

Λ,β,µ with H̃Λ replacing HΛ. It will also be convenient
to define

λΛ(η) = {λΛ,j(η)}j≥1 :=

{
1

|Λ|
# {ω ∈ ηΛ : `(ω) = j}

}
j≥1

(4.143)

in `1 (R≥0) for each locally finite counting measure η on E. Each entry λΛ,j(η) then gives
the density of loops of length j rooted in Λ.
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Proof of Proposition 2.4. Let H∗Λ = HΛ−H̃Λ be the difference in the Hamiltonian densities.
So given a locally finite counting measure η on E, we have

H∗Λ (η) =
b

2|Λ|

qΛ−1∑
j=1

j2# {ω ∈ ηΛ : `(ω) = j}2 = |Λ| b
2

qΛ−1∑
j=1

j2λΛ,j(η)2. (4.144)

By using a change of measure from the non-interacting distribution to the full loop HYL

distribution, EΛ,β,0

[
eβµNΛ−βHΛ

]
= EΛ,β,0

[
eβµNΛ−βH̃Λ

]
ẼHYL

Λ,β,0

[
e−βH

∗
Λ

]
. Therefore

PHYL
Λ (β, µ) = P̃HYL

Λ (β, µ) +
1

β|Λ|
log ẼHYL

Λ,β,0

[
e−βH

∗
Λ

]
. (4.145)

Since H∗Λ is non-negative, we are reassured that the logarithm term in non-positive. We
can further bound H∗Λ (η) ≥ |Λ| b2λ

2
Λ,1(η), and so

PHYL
Λ (β, µ) ≤ P̃HYL

Λ (β, µ) +
1

β|Λ|
log ẼHYL

Λ,β,0

[
e−|Λ|β

b
2λ

2
Λ,1

]
. (4.146)

A large deviation principle for λΛ under the full HYL model was derived in [AD21b,
Theorem 1.6]. This principle holds with respect to the `1-topology, has rate |Λ|, and has
rate function given by

I (x) =

∞∑
j=1

xj

(
log

jxj
pβj(0)

− 1

)
− µβD (x) +

aβ

2
D (x)

2 − bβ

2

∞∑
j=1

j2x2
j

− β

2 (a− b)
(µ− aD (x))

2
+ − P (β, 0) + P̃HYL (β, µ) , (4.147)

where D (x) =
∑∞
j=1 jxj ∈ [0,+∞] and P (β, 0) is the thermodynamic pressure of the

non-interacting model with µ = 0. If D (x) = +∞ then we set I (x) = +∞. Since
x 7→ β b2x

2
1 is continuous with respect to the `1-topology and is bounded from below by 0,

Varadhan’s Lemma gives the existence and equality of the following limit:

lim
|Λ|→∞

1

β|Λ|
log ẼHYL

Λ,β,0

[
e−|Λ|β

b
2λ

2
Λ,1

]
= − 1

β
inf

x∈`1(R+)

{
I (x) +

bβ

2
x2

1

}
. (4.148)

Let us first remark on the existence of global minimisers of I. From the expres-
sion (4.147), note that there exist C1 = C1 (µ, β, a, b) < 0 and C2 = C2 (µ, β, a, b) > 0 such
that I (x) ≥ C1 + C2D (x)

2 ≥ C1 + C2‖x‖21. Therefore the level sets of I are `1-bounded.
Along with the lower semicontinuity of I, this implies that there exists at least one global
minimiser of I.

We now show that any such global minimiser is in the set {x1 ≥ ε} for some ε > 0.
Taking the x1-partial derivative of I, we find

∂I
∂x1

(x) = log
x1

pβ(0)
− bβx1 − β (µ− aD (x))

{
1 : aD (x) ≥ µ
− b
a−b : aD (x) ≤ µ

}
. (4.149)

The bound I (x) ≥ C1 + C2D (x)
2 implies that the value of D (x) at any global minimiser

of I cannot be arbitrarily large for given parameters µ, β, a, and b. Since log x1 → −∞
as x1 ↓ 0, this tells us that there exists ε = ε (µ, β, a, b) > 0 such that ∂I

∂x1
(x) < 0 for x

satisfying x1 < ε. Hence no such x can be a global minimiser.
Restricting the optimisation to x1 ≥ ε (for the ε used above) we find

inf
x:x1≥ε

{
I (x) +

bβ

2
x2

1

}
≥ inf
x:x1≥ε

I (x) +
bβ

2
ε2 =

bβ

2
ε2. (4.150)
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Furthermore, since bβ
2 x

2
1 ≥ 0 and any global minimiser of I has x1 ≥ ε,

inf
x:x1<ε

{
I (x) +

bβ

2
x2

1

}
≥ inf
x:x1<ε

I (x) > 0. (4.151)

These two bounds then imply that the limit (4.148) is strictly negative and with the
bound (4.146) the result is therefore proven.

4.8 Proof of GMF results

Fix G : [0,∞) → R ∪ {+∞}. Set L = infy{G(y) + I(y)} and M = {x : I(x) + G(x) =

L} 6= ∅.
To aid readability, we restrict ourselves to the case |M | = 1 and write {xmin} = M .

We comment on how to generalise the result to multiple minima at the end of the proof.
Recall the conditions we require on G in Assumption 2.8.

To ease the reading, we abbreviate βG by G, this multiplicative factor does not affect
our calculations. This doesn’t affect the proof in any way.

We split the proof into two parts. Recall that we shorten G(xmin) = K.
Case xmin < ρc: as usual, we start with the partition function. We expand

EΛ,β,0

[
e−|Λ|G(N)

]
= EΛ,β,0

[
e−|Λ|G(N), N ∈ Bε(xmin)

]
+ EΛ,β,0

[
e−|Λ|G(N), N /∈ Bε(xmin)

]
. (4.152)

Using Assumption 2.8, the second term can be bounded by for some ε > 0

EΛ,β,0

[
e−|Λ|G(N), N /∈ Bε(xmin)

]
= e−(L+ε)|Λ|(1+o(1)) , (4.153)

and will prove to be negligible. For the first term, we can apply [ML82, Theorem 3] to
compute

EΛ,β,0

[
e−|Λ|G(N), N ∈ Bε(xmin)

]
∼

√
1 +

G′′(x)

βµ′(xmin)
e−|Λ|(G(xmin)+I(xmin))

=

√
1 +

G′′(xmin)

βµ′(xmin)
e−|Λ|L . (4.154)

Now we can follow the argument made in Section 4.4, to approximate for any test
function F

EΛ,β,0

[
F (η)e−|Λ|G(N)

]
EΛ,β,0

[
e−|Λ|G(N)

] ∼ EΛ,β,µ(xmin) [F (η)] . (4.155)

This concludes the proof for the case xmin < ρc.
Case xmin > ρc: for the case xmin > ρc, we first treat the case that G has a jump-

discontinuity from the left and is twice differentiable from the right. Note that for xmin >

ρc, it holds that I(xmin) = 0 and hence G(xmin) = K = L. Denote ε1 = limy↑xmin
G(y) −

K > 0. Fix δ > 0 such that

G−1 [R \ [xmin + δ,∞)] ⊂ (K + ε1/2,∞) . (4.156)

We then expand

EΛ,β,0

[
e−|Λ|G(N)

]
= EΛ,β,0

[
e−|Λ|G(N), N ∈ xmin + [0, δ)

]
+O

(
e−|Λ|(L+ε1/2)

)
. (4.157)
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The second term will turn out to be negligible. We expand

EΛ,β,0

[
e−|Λ|G(N), N ∈ xmin + [0, δ)

]
=

δ|Λ|∑
j=0

e−|Λ|G(xmin+j/|Λ|)PΛ,β,0(NΛ = xmin|Λ|+ j) .

(4.158)
As xmin > ρc, it holds PΛ,β,0(NΛ = xmin|Λ| + j) = |Λ|βcd[β(xmin|Λ| + j)]−d/2−1(1 + o(1)).
We factor out the dominant terms

e−|Λ|G(xmin)PΛ,β,0(NΛ = xmin|Λ|)
δ|Λ|∑
j=0

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)]PΛ,β,0(NΛ = xmin|Λ|+ j)

PΛ,β,0(NΛ = xmin|Λ|)
.

(4.159)
As the first derivative is uniformly positive, we can bound [G(xmin + j/|Λ|)−G(xmin)] ≥
δ1j/|Λ|, for some δ1 > 0. As the ratio of probabilities in the above equation is uniformly
bounded (see [Ber19] for this again), this means that the for any ε2, we can find a J > 0

such that

δ|Λ|∑
j=J+1

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)]PΛ,β,0(NΛ = xmin|Λ|+ j)

PΛ,β,0(NΛ = xmin|Λ|)
< ε2 . (4.160)

For j ∈ {0, . . . , J},
PΛ,β,0(NΛ = xmin|Λ|+ j)

PΛ,β,0(NΛ = xmin|Λ|)
= 1 + o(1) . (4.161)

Expanding [G(xmin + j/|Λ|)−G(xmin)] = G′(xmin)j/|Λ|+ o(|Λ|−1
), we find that

J∑
j=0

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)]PΛ,β,0(NΛ = xmin|Λ|+ j)

PΛ,β,0(NΛ = xmin|Λ|)
∼
∞∑
j=0

e−G
′(xmin)j

=
1

1− e−G′(xmin)
. (4.162)

By letting ε2 → 0, we find that

EΛ,β,0

[
e−|Λ|G(N)

]
∼ e−|Λ|G(xmin)|Λ|βcd

[β(x|Λ|)]d/2+1
[
1− e−G′(xmin)

]
=

cde
−|Λ|G(xmin)

(|Λ|βd/2)x
d/2+1
min

[
1− e−G′(xmin)

] . (4.163)

From here on, our proof of Theorem 2.7 will be very similar to that of [Vog23, Theo-
rem 2.3]. Therefore we will focus our attention on the steps that are actually novel
for the general mean-field Hamiltonian. Note that we are assuming that |Λ| are such
that certain values are integers. For other |Λ|, the same argument follows with the
introduction of floor or ceiling functions.

We begin with an auxiliary lemma.

Lemma 4.16. If T = [ρ− xmin] |Λ|+O
(
|Λ|5/6

)
, then

EΛ,β,0

[
e−|Λ|G(N)

]
∼ e−|Λ|G(xmin)MΛ

[
e−G

′(`(ω)−T )1{`(ω) ≥ T}
]
. (4.164)

The proof of Lemma 4.16 is analogous to the above computations and is therefore
omitted.

Let Θ(NΛ) = xmin|Λ| −NΛ and define the probability measure for ∆ a translate of Λ

dP∆ =
1

Z∆
exp {−G′ [`(ω)−Θ(NΛ)]} 1{`(ω) ≥ Θ(NΛ)}dP∆ ⊗M∆ . (4.165)

It follows from the previous lemma that
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Corollary 4.17. Under the above conditions,

EΛ,β,0

[
e−|Λ|G(N)

]
∼ e−|Λ|G(xmin)Z∆ . (4.166)

In the next lemma, we remove the influence of the Hamiltonian,

Lemma 4.18. It holds that∑
y∈CN

PyN+Λ

[∣∣∣e−|Λ|G(N)+|Λ|G(x)+G′[`(ω)−Θ(NΛ)] − 1
∣∣∣1{η ∩ {0} 6= ∅}

]
= o(1) . (4.167)

The proof of Lemma 4.18 is almost analogous to the proof of [Vog23, Lemma 5.14].
The only difference is that in that case, we had an explicit remainder of a square, whereas
in our case we can only bound G(xmin + δ) − G(xmin) − δG′(xmin) by a o(δ) term. This
only gives a decay of o(1) (as opposed to o(|Λ|−1)) but this is enough for our purposes.

Lemma 4.19. For Θ ∈ R, we define the probability measure MΘ
∆

dMΘ
∆(ω) =

1

Z(Θ)
e−G

′[`(ω)−Θ]1{`(ω) ≥ Θ}dM∆(ω) . (4.168)

We furthermore set for Θ = (Θy)y∈CN

dMΘ
K =

∑
y∈CN

1{ω ∩K 6= ∅}dMΘy
∆ , (4.169)

for K ⊂ Rd compact.

Define MΘ,∗
K = MΘ

K ◦Π−1, as in [Vog23]. We then have that there for every sequence

Θy ∈ ρc|Λ|+O
(
|Λ|5/6

)
that

MΘ,∗
K [E] = ν[E] (1 + o(1)) , (4.170)

where the o(1) can be chosen uniform in Θ and E is an element of the dense approximat-
ing class defined in [Vog23, Definition 5.7].

These lemmas fill in the sections of the proof of [Vog23, Theorem 2.3] that extend that
result for xmin > ρc to general mean-field interaction with jump-discontinuity from the
left. The case with the jump-discontinuity for the right is analogous to the one treated
above.

Suppose now that G does not have a jump-discontinuity and is twice differentiable
around xmin. We expand

EΛ,β,0

[
e−|Λ|G(N)

]
= EΛ,β,0

[
e−|Λ|G(N), N ∈ Bδ(xmin)

]
+O

(
e−|Λ|(K+ε1/2)

)
. (4.171)

The second term will turn out to be negligible. By the virtue of Assumption 2.8,

[G(xmin + j/|Λ|)−G(xmin)] ≥ δ1
j2

|Λ|2
. (4.172)

Therefore, for any ε2 > 0, we can find and R > 0 such that∣∣∣∣∣∣∣
δ|Λ|∑

j=−δ|Λ|

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)] −
R
√
|Λ|∑

j=−R
√
|Λ|

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)]

∣∣∣∣∣∣∣ < ε2 . (4.173)
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Using the Riemann approximation on the scale
√
|Λ|, we find that

R
√
|Λ|∑

j=−R
√
|Λ|

e−|Λ|[G(xmin+j/|Λ|)−G(xmin)] ∼
R
√
|Λ|∑

j=−R
√
|Λ|

e−
G′′(xmin)j2

2|Λ| ∼
√
|Λ|
∫ R

−R
e−

G′′(xmin)t2

2 dt .

(4.174)
By letting R→∞, we conclude that

EΛ,β,0

[
e−|Λ|G(N)

]
∼

cd
√
π|Λ|e−|Λ|G(xmin)

(|Λ|βd/2)x
d/2+1
min

√
G′′(xmin)

. (4.175)

From here one, the proof works in the same way as the case for the jump-discontinuity.
Having covered all the cases of Theorem 2.7, we conclude the proof.

Remark 4.20. What happens if I +G has more than one minimizer, i.e., |M | > 1? The
condition G−1 [[K,K + δ)] ⊂ Bε(x) has to be replaced by G−1 [[K,K + δ)] ⊂

⋃
x∈M Bε(x).

We then follow the same procedure, expanding the partition function around each
neighbourhood for each point. This requires M to not have accumulation points. The
final result will be a weighted mixture of different loop soups with individual intensities
corresponding to the values induced by x for x ∈M . We leave the details to the reader.

Appendix

Table 1: List of frequently used notation.

Symbol Definition Explanation Class

cd (2π)−d/2 Gaussian normalisation Constant

ρ Density Model parameter

µ Chemical potential Model parameter

β Inverse temperature Model parameter

a, b See Eq. (1.4) Interaction strength Model parameter

ρc cd
∑
j≥1(βj)−d/2 Critical density Parameter

ρHYL
c See Eq. (4.127) HYL-critical density Parameter

ρe max{ρ− ρc, 0} Excess density Parameter

ρS See Eq. (4.50) Density from interaction Parameter

ρ̄ ρe + ρS Total condensate density Parameter

ρGC See Eq. (4.131) Grand-can. cond. dens. Parameter

P P (µ)=β−d/2cd
∑
j≥1

eβµj

j1+d/2 Pressure (non-interacting) Thermodyn. func.

ρ ρ(µ)=β−d/2cd
∑
j≥1

eβµj

jd/2 Density (non-interacting) Thermodyn. func.

µ µ(x)=ρ−1(x) Chemical potential Thermodyn. func.

I See Eq. (4.13) Rate function Thermodyn. func.
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[Süt02] A. Sütő. Percolation transition in the Bose gas: II. Journal of Physics A: Mathematical
and General, 35(33):6995, 2002. MR1945163

[Szn10] A. Sznitman. Vacant set of random interlacements and percolation. Annals of Mathe-
matics, 2010. MR2680403

[Szn13] A. Sznitman. On scaling limits and Brownian interlacements. Bulletin of the Brazilian
Mathematical Society, New Series, 44(4):555–592, 2013. MR3167123

[Uch18] K. Uchiyama. The Brownian hitting distributions in space-time of bounded sets and
the expected volume of the Wiener sausage for a Brownian bridge. Proceedings of the
London Mathematical Society, 116(3):575–628, 2018. MR3772617

[Uel06] D. Ueltschi. Feynman cycles in the Bose gas. Journal of Mathematical Physics,
47(12):123303, 2006. MR2285149

[Vog23] Q. Vogel. Emergence of interlacements from the finite volume Bose soup. Stochastic
Processes and their Applications, 104227, 2023. MR4654047

Acknowledgments. The authors would like to thank the anonymous referees for their
many suggestions. Quirin Vogel would like to thank Julius Damarackas for his help
with improving the presentation of the article. He would further like to thank Roberto
Fernandez, Vedran Sohinger and Daniel Ueltschi for the discussions on this topic.

EJP 29 (2024), paper 24.
Page 39/39

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=0084264
https://mathscinet.ams.org/mathscinet-getitem?mr=3112259
https://mathscinet.ams.org/mathscinet-getitem?mr=0862838
https://mathscinet.ams.org/mathscinet-getitem?mr=3791470
https://mathscinet.ams.org/mathscinet-getitem?mr=0380979
https://mathscinet.ams.org/mathscinet-getitem?mr=0643791
https://mathscinet.ams.org/mathscinet-getitem?mr=2604525
https://mathscinet.ams.org/mathscinet-getitem?mr=0289084
https://mathscinet.ams.org/mathscinet-getitem?mr=1241339
https://mathscinet.ams.org/mathscinet-getitem?mr=1945163
https://mathscinet.ams.org/mathscinet-getitem?mr=2680403
https://mathscinet.ams.org/mathscinet-getitem?mr=3167123
https://mathscinet.ams.org/mathscinet-getitem?mr=3772617
https://mathscinet.ams.org/mathscinet-getitem?mr=2285149
https://mathscinet.ams.org/mathscinet-getitem?mr=4654047
https://doi.org/10.1214/24-EJP1085
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Electronic Journal of Probability
Electronic Communications in Probability

Advantages of publishing in EJP-ECP

•Very high standards

•Free for authors, free for readers

•Quick publication (no backlog)

•Secure publication (LOCKSS1)

•Easy interface (EJMS2)

Economical model of EJP-ECP

•Non profit, sponsored by IMS3, BS4, ProjectEuclid5

•Purely electronic

Help keep the journal free and vigorous

•Donate to the IMS open access fund6 (click here to donate!)

•Submit your best articles to EJP-ECP

•Choose EJP-ECP over for-profit journals

1LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
2EJMS: Electronic Journal Management System: https://vtex.lt/services/ejms-peer-review/
3IMS: Institute of Mathematical Statistics http://www.imstat.org/
4BS: Bernoulli Society http://www.bernoulli-society.org/
5Project Euclid: https://projecteuclid.org/
6IMS Open Access Fund: https://imstat.org/shop/donation/

http://en.wikipedia.org/wiki/LOCKSS
https://vtex.lt/services/ejms-peer-review
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
https://projecteuclid.org/
https://imstat.org/shop/donation/
http://www.lockss.org/
https://vtex.lt/services/ejms-peer-review/
http://www.imstat.org/
http://www.bernoulli-society.org/
https://projecteuclid.org/
https://imstat.org/shop/donation/

	Introduction
	Results
	Discussion
	Momentum HYL and full HYL
	Equivalence of ensembles
	Condensate discontinuity
	On the choice of the intermediate scale
	The critical case
	Interlacements in low dimensions

	Proofs
	Further notation
	Analysis of the free rate function
	Calculation of the partition function, supercritical
	Computation of the limiting measure, supercritical
	The subcritical case
	The grand-canonical ensemble
	Proof of Proposition 2.4, pressure comparison
	Proof of GMF results

	References

