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Abstract

Stein’s method for Gaussian process approximation can be used to bound the differ-
ences between the expectations of smooth functionals h of a càdlàg random process X

of interest and the expectations of the same functionals of a well understood target
random process Z with continuous paths. Unfortunately, the class of smooth func-
tionals for which this is easily possible is very restricted. Here, we provide an infinite
dimensional Gaussian smoothing inequality, which enables the class of functionals
to be greatly expanded — examples are Lipschitz functionals with respect to the
uniform metric, and indicators of arbitrary events — in exchange for a loss of precision
in the bounds. Our inequalities are expressed in terms of the smooth test function
bound, an expectation of a functional of X that is closely related to classical tightness
criteria, a similar expectation for Z, and, for the indicator of a set K, the probability
P(Z ∈ Kθ \K−θ) that the target process is close to the boundary of K.
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1 Introduction

Stein’s method [32, 33] is a powerful method of obtaining explicit bounds on the
distance between a probability distribution L(X) of interest and a well-understood
approximating distribution L(Z) on some metric space (S,dist). Here, L(X) denotes the
distribution of the random variable X, and “distance” is represented by a bound on the
differences |Eh(X)− Eh(Z)|, for all functions in some class H of test functions:

dH(L(X),L(Z)) := sup
h∈H

∣∣E[h(X)]− E[h(Z)]
∣∣.
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Stein’s method, smoothing and functional approximation

For example, if H is the class of Lipschitz functions h from S to R with

sup
x 6=y
x,y∈S

|h(x)− h(y)|
dist(x, y)

6 1,

the distance is the Wasserstein metric. The general method was treated in monograph
form in [33], its application to approximation by the Poisson and normal distributions
is described in the books [6] and [13], respectively, and its many uses in combination
with the Malliavin calculus are presented in the monograph [26]. Stein’s method is not
restricted to approximating the distributions of real-valued random variables, but can be
used for multivariate distributions, as introduced in [4] for the Poisson and [19] for the
normal, as well as for entire processes, as developed by [4] and [1] for Poisson processes
and [5] for Brownian motion.

A feature of Stein’s method is that, in applications, there is often a class of functionsH
that is particularly well adapted for use with the method, resulting in a distance that is
easily bounded. For normal approximation in one dimension, the family of (bounded)
Lipschitz functions is typically amenable, leading to approximation with respect to a
(bounded) Wasserstein distance. This distance is very natural in the context of weak
convergence, but is not well suited for approximating tail probabilities, where the
appropriate test functions are indicators of half lines, and hence are not Lipschitz.
Nonetheless, by approximating the indicator functions above and below by Lipschitz
functions with steep gradient, a (bounded) Wasserstein distance of ε easily implies an
approximation bound of order O(ε1/2) for the probability of a half line. Thus smoothing
the indicator function, and then using the error bound for smooth functions, immediately
results in bounds for the probabilities of half lines, albeit at the cost of an inferior rate of
approximation. If better rates of approximation are required for tail probabilities, then
(much) more work usually has to be done.

For process approximation by Brownian motion, the classes of ‘smooth’ test func-
tions M0

c , c > 0, used in [5] and [22, 21], and given in (1.2) and (1.5) below, are
particularly well adapted for use with Stein’s method. However, the classes are not
rich enough to directly imply bounds for the distributions of functionals, such as the
supremum, that have immediate practical application. This limits the usefulness of the
results obtained. As an example, it would be advantageous to know that, if X belonged to
the space D of càdlàg processes indexed by [0, T ] equipped with the Skorokhod topology,
and if

κZc (X) := sup
h∈M0

c : ‖h‖M061

|Eh(X)− Eh(Z)|

were small (see (1.2), and (1.5)), then differences of the form

∆Z(X,K) :=
∣∣P(X ∈ K)− P(Z ∈ K)

∣∣, (1.1)

for K with P(Z ∈ ∂K) = 0, would also be small. Then, at least, if (Xn)n>1 were a
sequence of processes in D for which κZc (Xn) converged to zero, this would imply
that Xn converged weakly to Z, something that is shown only under some additional,
mild assumptions in [5] and [22, 21].

The aim of this article is to show how to use smoothing to obtain error bounds for the
distribution of rather general functionals of X, provided that a bound for functions in
the class M0

c is available. In addition to the value of κZc (X), the bounds involve some
quantities that can be deduced from the properties of the limiting process Z, which,
for ∆Z(X,K), also involve the set K. In addition, they require an estimate of the uniform
difference between X and a smoothed version Xε of X (see (1.8)), which, in asymptotic
settings, can be thought of as a quantitative version of tightness. The method is rather
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broadly useful, being designed to give error bounds in situations that are not amenable
to other more direct approaches. In the context of the general version of Stein’s method
for Gaussian (not necessarily Brownian) process approximation, introduced in [7], it
has already proved successful in deriving bounds for the error in approximations to the
distributions of useful functionals, based on those that can be established for functions
in the class M0

c . The ideas are also fundamental to the Gaussian smoothing techniques
recently derived in [2], and applied to the analysis of wide random neural networks.

1.1 Related approaches for process approximation

There is an enormous literature on process approximation in classical settings, such
as random walks and martingales, with the best results using strong embeddings. As is
typical for Stein’s method, our focus is on non-classical settings where strong embeddings
are not available, and so this literature is not relevant here. There are other general
approaches to Gaussian process approximation in the Stein’s method literature. These
approaches either suffer from lack of applicability, or are developed in function spaces,
such as L2[0, 1], equipped with metrics that are too weak to see natural statistics of the
process, such as the maximum, or the finite dimensional distributions. Even convergence
for such statistics cannot be established by using such metrics. Regarding applicability,
the approach of [5] is the most flexible, because it is a natural extension of the methods
previously used for approximating the distributions of random variables using Stein’s
method, and many of the techniques that have found great success there can be adapted
to it; see, for example, [18], [21, 22]. The results of this paper show that rates of
convergence from the approach of [5] can be relatively easily adapted to imply rates of
convergence for many natural statistics that are continuous with respect to Skorokhod
topology.

In more detail, [31] develops an approach to Stein’s method for Gaussian measures
on separable Banach spaces. When approximating continuous processes, this setting
is rich enough to include most natural statistics, because C[0, 1] equipped with the sup
norm is such a space. However, the bounds developed there are complicated, being
expressed in terms of associated Hilbert norms and embeddings, and their evaluation
in concrete settings seems to be too difficult to have been widely used. The next step
was taken in [15]. Here, Stein’s method is developed for Brownian motion, now viewed
as an abstract Wiener measure on Hilbert space. The corresponding inner products
are of integral type, and do not see finite dimensional distributions. Since the inner
product determines the metric on the underlying space, the rates of convergence are
not transferable to many natural statistics. Their approach has been further applied and
refined in [8] and [11], to make it somewhat more applicable, but without removing the
drawback inherent in the weak metric.

Finally, in a recent paper [16], a rate of convergence is derived that is expressed
in terms of the bounded Wasserstein distance with respect to the fractional Sobolev
norm,1 but only in the special setting of Donsker’s theorem. This metric is much stronger.
However, their technique involves applying Stein’s method to a finite-dimensional dis-
cretization of the process, and then using bounds on maximal fluctuations to handle
the error in the discretization. In the setting of Donsker’s theorem, the growth of the
error in dimension when applying Stein’s method is well controlled, and sharp maximal
inequalities are classically available. Both of these are crucial, if good bounds are to
be obtained using their method. Its applicability in more general settings has not yet
been established. Their bounds, in the limited context of Donsker’s theorem, are better
than ours, as discussed below in Example 1.8; both are rather worse than those obtained

1Due to the Sobolev embeddings (page 3 in [16]), one can derive the same rate of convergence, up to a
multiplicative constant, in the bounded Wasserstein distance (1.18) with respect to the usual sup norm.
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using strong approximation [23, 24]; see the discussion in Remark 1.9. As the highlight
of this article, the bounds that we derive are applicable to functionals that need not be
Lipschitz, the limiting process can be quite general, and the process to be approximated
may have an arbitrary dependence structure. All of these features were needed for the
queueing application in our companion paper [7, Theorem 1.2].

1.2 Test functions

In order to state the main result, we need some further definitions. Let D :=

D
(
[0, T ];Rd

)
be the set of functions from [0, T ] to Rd that are right continuous with left

limits. We assume, with little loss of functionality, that T > 1 to simplify forthcoming
bounds. The space D endowed with the sup norm ‖ · ‖ is a Banach space (though not
separable), and we denote the Fréchet derivatives of functions h : D→ R by Dh,D2h, . . ..

As in [5] and [22], let M0 be the set of functions h : D→ R such that

‖h‖M0 := sup
w∈D
|h(w)|+ sup

w∈D
‖Dh(w)‖+ sup

w∈D
‖D2h(w)‖

+ sup
w,v∈D
v 6=0

‖D2h(w + v)−D2h(w)‖
‖v‖

(1.2)

is finite, where we write ‖A‖ := supw:‖w‖=1|A[w, . . . , w]| for any k-linear form A. Letting
It ∈ D([0, T ];R) be defined by

It(u) := I[u > t], (1.3)

we are interested in functions h ∈M0 such that for all r, s, t ∈ [0, T ] and x1, x2 ∈ Rd,

sup
w∈D

∣∣D2h(w)[x1Ir, x2(Is − It)]
∣∣ 6 c |x1| |x2| |s− t|1/2. (1.4)

For c > 0, we define

M0
c =

{
h ∈M0 : (1.4) holds

}
. (1.5)

For θ > 0 and a Skorokhod–measurable set K ⊂ D, we define the θ-enlargement and
θ-shrinkage as follows:

Kθ :=
{
w : dist(w,K) < θ

}
⊇ K and K−θ :=

(
(Kc)θ

)c ⊆ K,

where dist(w,K) := inf{‖w − v‖ : v ∈ K}.
For w ∈ D with ‖w‖ < ∞, we can define the ε-regularized versions of w as follows:

For ε > 0,

wε(s) := E[w(s+ εU)], (1.6)

where U is uniformly distributed over the interval (−1, 1), and we define w(t) = w(T )

for t > T and w(t) = w(0) for t < 0. In other words, we follow the convention that for a
function s ∈ [0, T ] 7→ w(s) and for any x ∈ R, the function w(•+ x) is understood as

s ∈ [0, T ] 7→ w
(
[s+ x]T0

)
, (1.7)

where [u]T0 = min{max{0, u}, T}. It is easy to see that the path wε, defined in (1.6), is
absolutely continuous, so that by Rademacher’s theorem, ∇wε is well defined almost
everywhere.

Then, for h : D→ R that is bounded and measurable with respect to the Skorokhod
topology, and for any ε, δ > 0, we define an (ε, δ)-smoothed version of h by

hε,δ(w) := E[h(wε + δB + δΘ)], (1.8)
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where B is a standard d-dimensional Brownian motion on [0, T ], Θ is a standard Gaussian
vector on Rd that is independent of B, and wε is defined as in (1.6). As is shown in
Lemma 1.11 and Remark 1.12, if supy∈D|h(y)| 6 1, then

hε,δ ∈M0
c1 , with c1 := c1(ε, δ) := ε−2δ−2

√
(1 + ε

2 )(T + ε2) (1.9)

for any positive ε and δ, and if h is differentiable with ‖Dh‖ 6 1, then

hε,δ ∈M0
c2 , with c2 := c2(ε, δ) := ε−1δ−1

√
2 + ε

2π
. (1.10)

Our main result is as follows. For its statement, we define

c0(v) := 1 + v +
√

2 v2 +

√
50

π
v3,

observing that c0(v) 6 7.5v3 if v > 1, and set

C0 := C0(ε, δ) := c0
(√

T + ε2/εδ
)
. (1.11)

Note, in particular, that if T > 1, 0 < ε 6 1
2

√
T and δ 6 2, entailing

√
T + ε2/εδ > 1, then

C0(ε, δ) 6 10.5
(√
T/εδ

)3
and c1(ε, δ) 6

5

4

(√
T/εδ

)2
. (1.12)

We also define H to be the set of all h : D→ R that are bounded, Skorokhod-measurable,
and Lipschitz with respect to the sup-norm, satisfying sup{|h(w)| : w ∈ D} 6 1 and
‖Dh‖ 6 1.

Theorem 1.1. Let X,Z be random elements of D such that Z has almost surely con-
tinuous sample paths. Let c1, c2, and C0 be as defined in (1.9), (1.10), and (1.11). Let
Xε, Zε be defined according to (1.6). Suppose that there are κ1, κ2 > 0 such that, for any
h ∈M0

c , we have

|Eh(X)− Eh(Z)| 6 κ1‖h‖M0 + c κ2. (1.13)

Then, for any K ⊆ D that is measurable with respect to Skorokhod topology, and for any
positive δ, ε, θ, γ, we have∣∣P(X ∈ K)− P(Z ∈ K)

∣∣
6 C0(ε, δ)κ1 + c1(ε, δ)κ2 + P

(
‖Xε −X‖ > θ

)
+ P

(
‖Zε − Z‖ > θ

)
+ 6de−

γ2

8dTδ2 + P(Z ∈ K2(θ+γ) \K−2(θ+γ)).

(1.14)

Furthermore, for any h ∈ H and for any ε, δ ∈ (0, 1),∣∣E[h(X)− h(Z)
]∣∣ 6 E‖Xε −X‖+ E‖Zε − Z‖+ 2T 1/2δE‖B[0,1]‖

+ 2δ
√
d+ 4(T + 2)ε−2δ−2κ1 + c2(ε, δ)κ2,

(1.15)

where B[0,1] denotes the standard d-dimensional Brownian motion on [0, 1].

Remark 1.2. (i) The quantity |Eh(X)−Eh(Z)| with h ∈M0
c can frequently be bounded

effectively in the form (1.13), using Stein’s method. See e.g. [5], [7], [18], [22, 21].

(ii) The bound (1.14) fits in well with weak convergence. Suppose that (Xn)n>1 ⊂ D,

for fixed T , is a sequence of processes for which (1.13) holds with κi = κ
(n)
i → 0 as
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n → ∞, i = 1, 2, and define Xn,ε = (Xn)ε according to (1.6). Then, letting n → ∞
in (1.14), it follows that, for all ε, δ, γ, θ > 0 and for all Skorokhod-measurable K ⊂ D,

lim sup
n→∞

∣∣P(Xn ∈ K)− P(Z ∈ K)
∣∣

6 lim sup
n→∞

P
(
‖Xn,ε −Xn‖ > θ

)
+ P(‖Zε − Z‖ > θ)

+ 6de−
γ2

8dTδ2 + P(Z ∈ K2(θ+γ) \K−2(θ+γ)).

Now, since Z has almost surely continuous sample paths, ‖Zε − Z‖ → 0 almost surely, as
ε→ 0. Hence, letting ε and δ tend to zero for fixed θ, γ, and then letting θ and γ tend to
zero, it follows that

lim sup
n→∞

∣∣P(Xn ∈ K)− P(Z ∈ K)
∣∣

6 lim sup
θ→0

lim sup
ε→0

lim sup
n→∞

P
(
‖Xn,ε −Xn‖ > θ

)
+ P(Z ∈ ∂K).

Thus lim supn→∞
∣∣P(Xn ∈ K)− P(Z ∈ K)

∣∣ = 0 for all K with P(Z ∈ ∂K) = 0, and hence
Xn converges weakly to Z, provided that

lim sup
ε→0

lim sup
n→∞

P
(
‖Xn,ε −Xn‖ > θ

)
= 0 for each θ > 0. (1.16)

Thus, with this condition in addition to κ(n)
i → 0, i = 1, 2, it follows that Xn converges

weakly to Z. Now, by the definition of Xn,ε, we have ‖Xn,ε −Xn‖ 6 ωXn(ε)[0, T ], where

ωx(η)[0, T ] := sup
06s<t6T : t−s<η

|x(t)− x(s)| (1.17)

denotes the uniform modulus of continuity of x on [0, T ]. It is well known that any
sequence (Xn, n ∈ N) ⊂ D that converges weakly to a limit with continuous sample
paths satisfies the tightness condition

lim sup
ε→0

lim sup
n

P
(
ωXn(ε)[0, T ] > θ

)
= 0 for all θ > 0.

Hence, given κ
(n)
i → 0, i = 1, 2, the condition (1.16) is a necessary and sufficient

condition for weak convergence to Z.

The Lévy–Prokhorov distance between X and Z can be defined as

dLP

(
L(X),L(Z)

)
:= inf

{
ε > 0: P[X ∈ K] 6 P[Z ∈ Kε] + ε,

for all Skorokhod measurable subsets K
}
,

and the bounded Wasserstein distance by

dBW

(
L(X),L(Z)

)
:= sup

h∈H

∣∣Eh(X)− Eh(Z)
∣∣, (1.18)

for H as defined before Theorem 1.1. Formula (2.41) in the proof of Theorem 1.1 and
the bound (1.15) thus immediately imply the following corollary.

Corollary 1.3. Under the assumptions of Theorem 1.1, it follows that the Lévy–Prokhorov
distance between the distributions of X and Z is bounded by

max
{

2(θ + γ), C0(ε, δ)κ1 + c1(ε, δ)κ2 + P
(
‖Xε −X‖ > θ

)
+ P

(
‖Zε − Z‖ > θ

)
+ 6de−

γ2

8dTδ2

}
,

(1.19)
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and the bounded Wasserstein distance by

E‖Xε −X‖+ E‖Zε − Z‖+ 2T 1/2δE‖B[0,1]‖

+ 2δ
√
d+ 4(T + 2)ε−2δ−2κ1 + c2(ε, δ)κ2,

(1.20)

for any positive δ, ε, θ and γ, where B[0,1] denotes the standard d-dimensional Brownian
motion on [0, 1].

The main use for the bound given in Theorem 1.1 is to obtain explicit bounds on
the error in approximating probabilities and expectations of functionals involving the
process X by the corresponding values for the process Z. These follow from (1.14)
and (1.15) by optimizing the choice of ε, δ, γ, θ. In the case of a sequence of processes
indexed by n, rates of convergence can be deduced, as illustrated in Examples 1.8
and 1.10 below. The following lemma provides a useful bound for probabilities of the
form P(‖Yε − Y ‖ > θ). It is a quantitative version of the classical condition of [14].

Lemma 1.4. Suppose that Y := (Y (1), . . . , Y (d)) ∈ D is a random process, and that, for
some β > 1 and γ > 0,

P
[
min{|Y (i)(s)− Y (i)(u)|, |Y (i)(u)− Y (i)(t)|} > a

]
6 K|s− t|β/aγ , 1 6 i 6 d, (1.21)

for all s < u < t such that 1
2n
−1 6 t− s 6 1. Then, for ϕn(·) defined by

ϕn(η) := max
16i6d

max
16k6dnTe

nP
[

sup
(k−1)/n6s6k/n

|Y (i)(s)− Y (i)((k − 1)/n)| > η
]
, (1.22)

it holds that, for any ε ∈ (n−1, 1), we have

P[‖Yε − Y ‖ >
√
dλ] 6 dT

{
2ϕn

(λ(1− 2−(β−1)/(2γ))

26

)
+ C ′(K,β, γ, d)

εβ−1

λγ

}
, (1.23)

where C ′(K,β, γ, d) > 0 is a finite constant that does not depend on ε or λ.

Remark 1.5. (i) The condition (1.21) can be replaced by

P
[
|Y (i)(t)− Y (i)(s)| > a

]
6 K|s− t|β/aγ , 1 6 i 6 d, (1.24)

for all s < t such that 1
2n
−1 6 t− s 6 1.

(ii) If (1.21) is true for all t > s, then the function ϕn(η) in (1.22) can be replaced by

ϕ(η) = max
16i6d

1

T
P[JY (i)(T ) > η], (1.25)

where JX(T ) := sup06t6T |X(t)−X(t−)|.
(iii) If (1.24) is true for all t > s, then the term ϕn in the bound (1.23) can be dropped.

A standard setting in which the modulus of continuity can be bounded is that of
normalized sums of mixing random variables. Suppose that Y (t) := n−1/2

∑bntc
j=1 Xj ,

where X1, X2, . . . , XN is a sequence of centred random variables such that, for some
p > 2, E[|Xj |p]1/p 6 cp uniformly in 1 6 j 6 N . Suppose also that the sequence is
strongly mixing, with mixing coefficients satisfying

sup
{∣∣P[A ∩B]− P[A]P[B]

∣∣ : A ∈ F1,s, B ∈ Fs+j,N , 2 6 s 6 N − j − 1
}

6 kj−b, j > 1,

for some k > 0 and b > p/(p− 2), where, for 1 6 i < j 6 N , Fi,j := σ{Yi, . . . , Yj}.
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Lemma 1.6. Under the above mixing conditions, for ε > 1
2n and for T 6 N/n, with

ωY (ε)[0, T ] as defined in (1.17) and with r := 1 + (p−1)b
p+b > 2,

P[‖Yε − Y ‖ > acp] 6 P[ωY (ε)[0, T ] > acp] 6 C ′Ta−rε
r
2−1 (1.26)

for a suitable constant C ′ := C ′(p, k, b).

For a process Y for which the differences
√
n{Y (j/n)−Y ((j−1)/n)} satisfy the same

conditions as the Xj , but Y (t) may vary on intervals of the form ((j − 1)/n, j/n], the
bound (2.43) in the proof of Lemma 1.6 can be used to show that (1.21) in Lemma 1.4
is satisfied, with β = r/2 and γ = r. A pendant of (1.22) is then needed to control the
variation on intervals of length 1/n.

Remark 1.7. If Z is a centred Gaussian process with

E
[(
Z(v)− Z(u)

)2]
6 k|v − u|τ , (1.27)

for some positive constants k and τ , then, for any γ > 2,

P[|Z(t)− Z(s)| > a] 6 kγ/2E{|G|γ}a−γ |t− s|τγ/2,

where G ∼ N (0, 1) is standard normal. Then Lemma 1.4 and Remark 1.5-(iii) imply that

P
(
‖Zε − Z‖ > λ

)
6 TĈε

τγ
2 −1λ−γ , (1.28)

where Ĉ = Ĉ(k, τ, γ) is a suitable constant.

We are not aware of any general theory for bounding the final term P(Z ∈ Kθ \
K−θ), even for restricted classes of sets and continuous Gaussian processes. For finite
dimensional Gaussian measures and convex sets, such enlargements have order θ as
θ → 0; see, for example, [3] and [20, Section 1.1.4]. For Gaussian processes with values
in a Hilbert space, there are some results when K is an open ball [20]. That being said,
for certain K and Z, it may nonetheless be possible to obtain quantitive results; see the
following two examples.

(i) If (Zt : t ∈ [0, 1]) is a Brownian motion on Rd and g : D([0, 1];Rd) → R is a
measurable function that is Lipschitz on C([0, 1];Rd) such that g(Z) has a bounded
density, for example if d = 1 and g(w) = sup06s61 w(s), then for K = {w ∈ D : g(w) 6 y},
it is easy to see that

P(Z ∈ Kθ \K−θ) 6 c′θ,

where c′ is a constant depending on the density bound and the Lipschitz constant of g.
In such an example, Theorem 1.1 can be used to provide bounds on the Kolmogorov
distance between L(g(X)) and L(g(Z)).

(ii) We can also obtain quantitive results for finite-dimensional distributions as follows.
Setting d = 1, let 0 < t1 < · · · < tk 6 T , K be a convex set in Rk, and

K =
{
w ∈ D : (w(ti))

k
i=1 ∈ K

}
.

Noting Kθ ⊆
{
w ∈ D : (w(ti))

k
i=1 ∈ Kθ

√
k
}

and K−θ ⊇
{
w ∈ D : (w(ti))

k
i=1 ∈ K−θ

√
k
}
,

if Z is a Gaussian process and (Z(ti))
k
i=1 has non-singular covariance, then Gaussian

isoperimetry or anti-concentration (e.g., [3] and [20, Section 1.1.4]) implies

P(Z ∈ Kθ \K−θ) 6 ckθ,

where ck is a constant depending on the dimension k and on the covariance kernel of Z.
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Stein’s method, smoothing and functional approximation

Theorem 1.1 and the discussion following should be compared to [5, Theorem 2] and
[22, Proposition 2.3], which give criteria for weak convergence assuming a bound of the
form ∣∣E[h(Xn)]− E[h(Z)]

∣∣ 6 ‖h‖M0 κ(n)

for all functions h in the larger classM0, which are not assumed to satisfy the smoothness
condition (1.4) (the statement in [5, Theorem 2] is not correct, and the bound must hold
for functions without the smoothness condition). For functions h such that ‖D2h‖ <∞,
it is immediate that, for fixed w, x ∈ D, |D2h(w)[x, yr]| → 0 if ‖yr‖ → 0 as r →∞. Under
the additional smoothness condition (1.4), |D2h(w)[x, yr]| → 0 for some sequences yr
such that ‖yr‖ = 1 for all r, in which the functions yr become ‘small’ in the sense that
|{u ∈ [0, T ], yr(u) 6= 0}| → 0.2 A minor advantage of working with this smaller class of
functions M0

c is that a discretization step can be avoided, which in turn can remove a
log-term from the convergence rate; see [5, Remark 2 and (2.29)]. More importantly,
applying Stein’s method using only the test functions in the smaller class has wider
applicability; for instance, [7, Theorem 1.2] gives a Gaussian process approximation to
the GI/GI/∞ queue, using condition (1.4) in the proof in an essential way.

Example 1.8. As a proof of concept, we explore the quality of result that can be obtained
with Theorem 1.1 in the classical case, where

Xn(s) = n−1/2

bnsc∑
i=1

Wi

with (Wi)i>1 real centred, i.i.d. random variables such that E[W 2
1 ] = 1 and E

[
|W1|p

]
<∞

for some p > 3. Donsker’s theorem implies that the limiting process Z is a standard
Brownian motion. First, [5, Theorem 1 and Remark 2] implies that, for p > 3, the
bound (1.13) holds with

κ
(n)
1 = CTn−1/2E|W1|3 and κ

(n)
2 = 4

3Tn
−1/2, (1.29)

for a universal constant C, and then the first two terms of (1.14) are bounded by

C0κ
(n)
1 + c1κ

(n)
2 , (1.30)

where C0 = C0(ε, δ) and c1 = c1(ε, δ) are as in (1.11), (1.9), and (1.12). Note that, for the
Brownian motion Z, we can deduce from Remark 1.7 that for any l > 2,

P
(
‖Zε − Z‖ > θ

)
6 KZ Tε

l
2−1θ−l (1.31)

for some constant KZ depending on L(Z) and l. Moving to P
(
‖Xn,ε − Xn‖ > θ

)
, it is

possible to use Doob’s Lp-inequality and Rosenthal’s inequality to bound

P

(
sup

s6v6s+ε
|Xn(v)−Xn(s)| > θ

)
6 KW ε

p/2θ−p

for some constant KW depending on L(W1) and p. From here, a standard argument,
based on the inequality

|Xn,ε(s)−Xn(s)| 6 sup
|h|6ε

|Xn(s+ h)−Xn(s)|

6 3 max
06k6bT/2εc

sup
2kε6v62(k+1)ε

|Xn(v)−Xn(2kε)|,

2For example, we take x = x1Iv and yr = x2(Iv−r−1 − Iv) with x1, x2 ∈ Rd and v ∈ [0, T ].
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implies that P
(
‖Xn,ε −Xn‖ > θ

)
is upper bounded of order Tε

p
2−1θ−p. However, we can

get a bound of a similar quality by applying Lemma 1.4 and Remark 1.5(2), which we do
here to illustrate their use. We first verify (1.21) for all 0 < s < t 6 T . If |t − s| < 1/n,
then for s < u < t,

min
{
|Xn(t)−Xn(u)|, |Xn(s)−Xn(u)|

}
= 0,

since at least one term in the minimum must be zero. If |t − s| > 1/n, then for p > 2,
Rosenthal’s inequality [30, Theorem 3] implies that

E
[
|Xn(t)−Xn(u)|p

]
6 CpE{|W1|p}

(
dn(t− s)e

n

)p/2
6 2p/2CpE{|W1|p}(t− s)p/2,

where Cp is a constant depending only on p, and (1.21) thus holds, for β = p
2 − 1 > 0 and

γ = p, by Markov’s inequality. In order to use Remark 1.5-(ii), we also note that

P(JXn(T ) > θ/2) = P
(

max
16i6bnTc

Wi > (θ/2)
√
n
)

6 bnT cP
(
|W1| > (θ/2)

√
n
)

6 bnT c
E
(
|W1|p

)
(θ/2)pnp/2

6 2p+1E
(
|W1|p

)
Tn1− p2 θ−p.

Altogether, we deduce from Lemma 1.4 with β = p
2 − 1 > 0 and γ = p that

P
(
‖Xn,ε −Xn‖ > θ

)
6 K̃WT

(
ε
p
2−1θ−p + n1− p2 θ−p

)
(1.32)

for some constant K̃W depending on L(W1) and p.
Hence, in view of (1.30), (1.31), (1.32), (1.29), (1.12) and (1.14), it follows from

Corollary 1.3 that, for T > 1, 0 < ε 6 1
2

√
T and 0 < δ 6 2, we have

dLP

(
L(Xn),L(Z)

)
6 C

(
T 5/2(εδ)−3n−1/2 + Tε

p
2−1θ−p + Tn1− p2 θ−p + θ + γ

)
+ 6e−

γ2

8Tδ2
,

for some constant C. We first choose γ = 2δ
√

10T log n so that the exponential term is of
order O(n−5), which is negligible compared to the first term T 5/2(εδ)−3n−1/2. Note also
that we shall choose ε to be much bigger than 1/n and also choose θ =

√
Tδ. In this way,

we only need to balance three terms

T 5/2(εδ)−3n−1/2, T εp/2−1θ−p and θ.

Balancing θ and Tεp/2−1θ−p gives θ = T 1/(p+1)ε(p−2)/(2(p+1)) and then balancing the final
two terms in ε and δ gives

ε =
(
{T 4n−1/2}p+1T−4

)1/(5p−1)
and θ =

√
Tδ =

(
{T 4n−1/2}

p
2−1T 3

)1/(5p−1)
.

As a result, we have established a rate of convergence in Lévy–Prokhorov distance:

dLP

(
L(Xn),L(Z)

)
= O

[
(log n)1/2

(
{T 4n−1/2}

p
2−1T 3

)1/(5p−1)
]
.

Assuming finite third moments (p = 3) and T = 1, the rate is O
(
n−

1
56

√
log n

)
, and we can

obtain the rate O
(
n−

1
20 +a

)
for arbitrarily small a > 0, if we assume that W1 has all its

moments.
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Remark 1.9. Fix T = 1. For the bounded Wasserstein distance, similar calculations can
be carried through, based on the bound given in Corollary 1.3. From (1.32), it follows by
integration that E‖Xn,ε −Xn‖ = O

(
ε(p−2)/(2p)

)
, so that the bound (1.20) is easily seen to

be of order
O
(
ε
p−2
2p + δ + ε−2δ−2n−1/2

)
.

Balancing the terms by taking

δ = ε−2/3n−1/6 = ε(p−2)/(2p)

gives ε = n−
p

7p−6 , and hence a bound

dBW

(
L(Xn),L(Z)

)
= O

(
n−

1
6 + 2p

3(7p−6)
)
.

Thus, assuming finite third moments (p = 3), the rate is O
(
n−

1
30

)
, and, if W1 has all

its moments, the rate is O
(
n−

1
14 +a

)
, for any a > 0. In this example, the approach of [16],

discussed in Section 1.1, can also be applied. It gives the rates O
(
n−

1
18 +a

)
and O

(
n−

1
6 +a
)

for any a > 0, respectively, for bounded Lipschitz functionals, which are better; however,
no bounds are given by their method for the Lévy–Prokhorov distance. In the strong
approximation theorems of [23, 24], copies of Xn and Z are constructed on the same
probability space, in such a way that the distribution of the random variable ‖Xn − Z‖
is tightly controlled. In particular, with the moment assumptions above, their bounds
on E‖Xn − Z‖ imply corresponding rates for bounded Lipschitz functionals of orders
O
(
n−

1
6

)
and O

(
n−

1
2 +a
)

for any a > 0, respectively (see [17, Theorem 2.6.7]), and, if W1

has a finite moment generating function, a rate of order O
(
n−

1
2 log n

)
[24, Theorem 1];

these are much better still.

Example 1.10. In [18, Section 6], the joint distribution of the processes counting
edges and two-stars in the Bernoulli random graph G(n, p) is shown, after appropriate
centering and normalization, to converge weakly to a Gaussian limit. In this example,
we complement Döbler and Kasprzak’s result with a convergence rate, and we refer
interested readers to their paper for an overview of relevant literature. The two-
dimensional process that they considered was Xn := (X

(1)
n , X

(2)
n ) defined by

X(1)
n (t) :=

bntc − 2

n2

∑
16i<j6bntc

(Eij − p) =:
bntc − 2

n2
Vn(t);

X(2)
n (t) :=

1

n2

∑
16i<j<k6bntc

Ẽijk, 0 6 t 6 1,

(1.33)

where Eij , 1 6 i < j 6 n, are independent indicator random variables with fixed
expectation p ∈ (0, 1), and where

Ẽijk := EijEik + EijEjk + EikEjk − 3p2, i < j < k.

Letting

Y (t) := t
√
p(1− p)B( 1

2 t
2), (1.34)

where B is a standard real Brownian motion, the limiting random process is the degen-
erate two-dimensional process3

Z := (Y, 2pY ). (1.35)

3Here we take a different representation of the limiting process Z from that in [18, Theorem 6.4], and one
can easily verify by checking the covariance structure of these two centred Gaussian processes that they are
identical in law.
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In [18, Theorem 6.4], it is shown that the condition (1.13) of Theorem 1.1 is satisfied.
More precisely, for any h ∈M ⊃M0 ⊃M0

c (for all c > 0), the bound (1.13) holds with

κ1 = 16422

√
log n√
n

+
138√
n

= O
(√log n√

n

)
and κ2 = 0.

In this particular example, we obtain the following rates of functional convergence in
the Lévy–Prokhorov distance and in the bounded Wasserstein distance:

claim: dLP

(
L(Xn),L(Z)

)
= O

(
n−

1
20 +a

)
and dBW

(
L(Xn),L(Z)

)
= O

(
n−

1
14 +a

)
(1.36)

for any a > 0.
To establish the claim by invoking Corollary 1.3, we need to bound probabilities like

P
[
‖Xn,ε −Xn‖ > θ

]
and P

[
‖Zε − Z‖ > θ

]
(1.37)

for any θ, ε > 0 and for any n > 2. For this purpose, we use Lemma 1.4 together with
Remark 1.5 (i) to bound the first term in (1.37), and Remark 1.7 to bound the second
term in (1.37). For the latter, it is immediate from (1.34), (1.35), and independence of
Brownian increments that, for 0 6 v < u 6 1,

E
[
|Y (u)− Y (v)|2

]
= p(1− p)E

[∣∣uB( 1
2u

2)− vB( 1
2v

2)
∣∣2]

= p(1− p)E
[∣∣u{B( 1

2u
2)−B( 1

2v
2)
}

+ (u− v)B( 1
2v

2)
∣∣2]

= p(1− p)
(u2

2
(u2 − v2) + (u− v)2 v

2

2

)
6 1

4 ·
3
2 (u− v) = 3

8 (u− v),

so that the bound (1.28) can be used with T = τ = 1 and with any choice of γ > 2. In
other words, in view of (1.35), we have

P
[
‖Zε − Z‖ > θ

]
6 P

[
‖Yε − Y ‖ > 1

2θ
]

+ P
[
2p‖Yε − Y ‖ > 1

2θ
]

= O
(
ε
γ
2−1θ−γ

)
,

(1.38)

which is of the same order as the bound in (1.31). For P[‖Xn,ε −Xn‖ > θ], considering
the first component, note that, for 0 6 s < t 6 1,

X(1)
n (t)−X(1)

n (s) =
bntc − bnsc

n2
Vn(s) +

bntc − 2

n2
(Vn(t)− Vn(s))

=: An(s, t) +A′n(s, t),

say. Now, for U ∼ Binomial(m,p), it follows that E{(U −mp)2r} 6 Cr(p)m
r, for a suitable

constant Cr(p), for any r ∈ N. Hence it follows, after a little calculation, that, for
0 6 s < t 6 1 such that (t− s) > 1

2n
−1, we have

E{(An(s, t))2r} 6
(3(t− s)

n

)2r

Cr(p)
( (ns)2

2

)r
6 K1(t− s)2r;

E{(A′n(s, t))2r} 6
( t
n

)2r

Cr(p)

((
bntc

2

)
−
(
bnsc

2

))r
6 K2(t− s)r,

where the constants K1,K2, and K in (1.39) below do not depend on (t, s, n). Note that
the lower bound on t− s is used to accommodate the rounding error:

bntc − bnsc 6 nt− ns+ 1 6 3n(t− s) when (t− s) > 1
2n
−1.
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It now follows easily that, in the same range of s and t, and for any r ∈ N,

P
[
|X(1)

n (t)−X(1)
n (s)| > θ

]
6 K(t− s)rθ−2r. (1.39)

For the second component, observe first that for 0 6 s < t 6 1

X(2)
n (t)−X(2)

n (s) =
1

n2

∑
16i<j<k6n

I{bnsc < k 6 bntc}Ẽijk.

Now, in computing E{(X(2)
n (t)−X(2)

n (s))2r}, the expectations E
{∏2r

l=1 Ẽil,jl,kl

}
are zero

unless each index set {il, jl, kl} overlaps with another index set {il′ , jl′ , kl′} in at least

two elements. The dominant contribution to the sum making up E{(X(2)
n (t)−X(2)

n (s))2r}
is seen to come from collections of index sets consisting of r pairs that overlap in two
elements. Each such pair has 4 distinct indices, the largest of which lies between
bnsc and bntc, so that there are O

(
{n4(t − s)}r

)
such collections of index sets (when

t− s > 1
2n
−1) and each gives a contribution of order O

(
{n−2}2r

)
. The contribution from

all other arrangements of index set is of smaller order. Hence

E{(X(2)
n (t)−X(2)

n (s))2r} 6 K3(t− s)r,

for a suitable constant K3, and it follows that, for 0 6 s < t 6 1 such that (t− s) > 1
2n
−1

and for any r ∈ N, we have

P
[
|X(2)

n (t)−X(2)
n (s)| > θ

]
6 K3(t− s)rθ−2r. (1.40)

Since the process X has only one jump in any interval of length 1/n, the bounds (1.39)
and (1.40) can be used with t− s = 1/n to bound ϕn(η) defined at (1.22). That is, we can
find a constant K̃3 such that

ϕn(η) 6 K̃3n
1−rη−2r.

Invoking Lemma 1.4, it now follows that, for any r ∈ N,

P
[
‖Xn,ε −Xn‖ > θ

]
6 K ′rθ

−2r(n1−r + εr−1),

for a suitable constant K ′r. Note that the above bound is of exactly the same orders
as (1.32) in the case of sums of i.i.d. random variables, so that the same choices of ε, δ, θ,
and γ = p = 2r (for any r > 1) can be made as in Example 1.8 and Remark 1.9 so as to
verify our claim (1.36).

The example illustrates the strength of our approach, as is typical in Stein’s method,
that it applies in situations with non-trivial dependencies, where rates of convergence
are not otherwise available; see [7] for another application where Theorem 1.1 is needed.
Being able to explicitly incorporate a time interval of length T that may depend on n

is also very useful. Note that the error estimates given above still converge to zero as
n→∞, if T = Tn grows like a small enough power of n.

The key to proving Theorem 1.1 is the following lemma on Gaussian smoothing,
for which we need the (ε, δ)-smoothing of h, defined in (1.8). The lemma is an infinite-
dimensional analog of finite-dimensional Gaussian smoothing inequalities found, for
example, in [27, Section 4.2]. The result is closely related to [25, Theorem 6.2, Chapter
II].

Lemma 1.11. Let h : D→ R be bounded and measurable with respect to the Skorokhod
topology, and let ε and δ be positive. Then the function hε,δ, defined in (1.8), is also
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Skorokhod–measurable, and has infinitely many bounded Fréchet derivatives (with
respect to the uniform norm) satisfying

sup
w∈D
‖Dkhε,δ(w)‖ 6 Ck sup

y∈D
|h(y)| (T + ε2)k/2

1

εkδk
, (1.41)

where Ck is a constant4 depending only on k. Moreover, with C0(ε, δ) bounded at (1.12),
we have

‖hε,δ‖M0 6 C0(ε, δ) sup
y∈D
|h(y)|, (1.42)

and for z, x ∈ D,∣∣D2hε,δ(w)[z, x]
∣∣

6
√

2ε−1δ−2
(
T + ε2

) 1
2 ‖z‖

(
sup
y∈D
|h(y)|

)(∫ T

0

|∇xε(s)|2ds+ |xε(0)|2
)1/2

.
(1.43)

If, in addition, h is such that ‖Dnh‖ <∞ for some integer n > 1, then, for any integer
k > 0, we have

‖Dk+nhε,δ‖ 6 ‖Dnh‖Ck(T + ε2)
k
2 (εδ)−k, (1.44)

with the same Ck as in (1.41); and if ‖Dh‖ <∞, then for z, x ∈ D,

∣∣D2hε,δ(w)[z, x]
∣∣ 6

√
2/π‖z‖‖Dh‖1

δ

(∫ T

0

|∇xε(s)|2ds+ |xε(0)|2
)1/2

. (1.45)

Remark 1.12. For x1, x2 ∈ Rd and for functions z = x1Ir and x = x2(Is− It), as per (1.4)
and assuming s < t, the inequality (1.43) implies the inequality∣∣D2hε,δ(w)[x1Ir, x2(Is − It)]

∣∣
6 |x1| |x2| sup

y∈D
|h(y)|

√
1 + ε

2

(
T + ε2

) 1
2

1

ε2δ2
|t− s|1/2.

This is because, with x(u) = x2(Is(u)− It(u)) = x2I[s 6 u < t],∫ T

0

|∇xε(u)|2 du =
|x2|2

4ε2

∫ T

0

[
I[s 6 u+ ε < t]− I[s 6 u− ε < t]

]2
du

6
|x2|2

4ε2

(
4εI[t− s > 2ε] + 2|t− s|I[t− s 6 2ε]

)
6 |x2|2

(t− s)
2ε2

.

and, with U ∼ Uniform(−1, 1),

|xε(0)| =
∣∣E[x(εU)]

∣∣ = |x2| · P
(
s 6 εU < t

)
6 |x2|

min{t− s, ε}
2ε

6 |x2|
√
t− s

2
√
ε
.

4For example, we can choose C1 =
√

2/π < 1 and C2 = 3.
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Similarly, if ‖Dh‖ <∞, then (1.45) implies

∣∣D2hε,δ(w)[x1Ir, x2(Is − It)]
∣∣ 6

|x1| |x2|√
π
‖Dh‖ |t− s|

1/2

εδ

√
1 + ε

2 .

See also (1.9) and (1.10).

An expression for the Fréchet derivatives and bounds can be found at (2.11) and (2.24).
They are not complicated, but require some set-partition notation, stemming from Faà di
Bruno’s formula for the derivatives of an exponential. The proof begins with the easy fact
that wε belongs to the Cameron-Martin space of the sum of a d-dimensional Brownian
motion and an independent Gaussian vector. (We must add the Gaussian vector because
wε may not satisfy wε(0) = 0, and thus we present a variant of the Cameron-Martin
theorem in Theorem 2.1 below.) As a consequence, we can write hε,δ(w + x) − hε,δ(w)

as a single expectation with respect to the Gaussian process (Brownian motion plus an
independent Gaussian vector). Roughly speaking, such a difference is smooth in x due
to the change of measure formula.

2 Proofs

Let us first state a variant of the Cameron–Martin–Girsanov theorem [12], when the
Gaussian process is the sum of a Brownian motion and an independent Gaussian random
variable.

Theorem 2.1. Let
(
B(t) : t ∈ [0, T ]

)
be a standard d-dimensional Brownian motion and

g = (g(1), ..., g(d)) : [0, T ] → Rd be a deterministic, absolutely continuous function such
that ∫ T

0

|∇g(t)|2dt =

∫ T

0

d∑
i=1

(
d

dt
g(i)(t)

)2

dt < ∞. (2.1)

Let Θ be a standard Gaussian random vector on Rd that is independent of B. Then, for
any bounded measurable function Φ : C([0, T ];Rd)→ R, we have

E
[
Φ(B + Θ + g)

]
= E

(
Φ(B + Θ) exp

[
〈g(0),Θ〉 − 1

2
|g(0)|2 +

∫ T

0

∇g(t) dB(t)− 1

2

∫ T

0

|∇g(t)|2 dt
])
,

(2.2)

where 〈 · 〉 denotes the inner product on Rd.

Note that the Wiener integral∫ T

0

∇g(t) dB(t) :=

d∑
i=1

∫ T

0

(
d

dt
g(i)(t)

)
dB(i)(t) (2.3)

is normally distributed with mean zero and variance
∫ T

0
|∇g(t)|2 dt.

The usual Cameron-Martin theorem asserts that the probability measure induced
by B + g on the path space C([0, T ];Rd) is equivalent to that of B, when g satisfies the
condition (2.1) and g(0) = 0; see also pages 333-335 in [28]. For our purpose, we need a
process that is absolutely continuous with its shift by wε from (1.6), which may not begin
at zero, Since the law of a + Θ is equivalent to the law of Θ for any a ∈ R, we use the
additional Gaussian smoothing by Θ in (1.8).

Proof of Theorem 2.1. Given a bounded measurable function Φ : C([0, T ];Rd)→ R, we
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have

Φ̃(v) : = E
[
Φ(v + g(0) + Θ)

]
=

1

(2π)d/2

∫
Rd

Φ(v + g(0) + z)e−
|z|2

2 dz

=
1

(2π)d/2

∫
Rd

Φ(v + y)e−
|y|2

2 e〈y,g(0)〉− 1
2 |g(0)|2dy

= E

[
Φ(v + Θ) exp

(
〈Θ, g(0)〉 − 1

2
|g(0)|2

)]
for v ∈ C([0, T ];Rd),

(2.4)

where the third equality in (2.4) follows from a simple change of variable y = g(0) + z.
It is clear that Φ̃ is also a real bounded measurable function on C([0, T ];Rd). Then,
we deduce from the independence between B and Θ, the Cameron-Martin theorem,
and (2.4) that with g∗ = g − g(0),

E
[
Φ(B + Θ + g)

]
= E

[
Φ̃(B + g∗)

]
= E

(
Φ̃(B) exp

[∫ T

0

∇g(t) dB(t)− 1

2

∫ T

0

|∇g(t)|2 dt

])

= E

(
Φ(B + Θ) exp

[
〈Θ, g(0)〉 − 1

2
|g(0)|2 +

∫ T

0

∇g(t) dB(t)− 1

2

∫ T

0

|∇g(t)|2 dt

])
,

which is exactly the equality (2.2).

With the above change of measure formula, we are ready to prove Lemma 1.11.

Proof of Lemma 1.11. To establish the measurability of hε,δ, note that x 7→ xε is contin-
uous (and hence measurable with respect to the Skorokhod topology) and then that
(x, y) 7→ h(xε + δy) is measurable with respect to the product topology. Therefore, hε,δ is
also measurable.

We first give a formal computation to indicate where the formulas below come from.
Note that for w ∈ D, wε is absolutely continuous from [0, T ] to Rd and

‖∇wε‖ =
1

2ε

∥∥w(•+ ε)− w(• − ε)
∥∥ 6

1

ε
‖w‖, (2.5)

where the function w(•+ ε) is defined according to the convention (1.7). Thus, we can
apply the formula (2.2) to write

hε,δ(w) = E
[
h(δB + δΘ) exp(Ψ(w))

]
, (2.6)

where Ψ(w) =: ΨΘ(w) + ΨB(w) is a random element given by

Ψ(w) :=
1

δ
〈Θ, wε(0)〉 − 1

2δ2
|wε(0)|2

+
1

δ

∫ T

0

∇wε(t) dB(t)− 1

2δ2

∫ T

0

|∇wε(s)|2 ds,
(2.7)

such that the random variable eΨ(w) has mean one and finite moments of all order, for
any w ∈ D. Now, formally, we ought to have

Dkhε,δ(w)[x1, . . . , xk] = E
[
h(δB + δΘ)Dk exp(Ψ(w))[x1, . . . , xk]

]
,
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and then Dk exp(Ψ(w))[x1, . . . , xk] can be understood as exp(Ψ(w)) times a polynomial
of the derivatives of Ψ(w), motivated by the Faà di Bruno’s formula. Looking at the
expression5

Ψ(w + v)−Ψ(w) =
1

δ

∫ T

0

∇vε(t) d
(
B − δ−1wε

)
(t)− 1

2δ2

∫ T

0

|∇vε(t)|2 dt

+
1

δ
〈Θ− δ−1wε(0), vε(0)〉 − 1

2δ2
|vε(0)|2,

(2.8)

with vε defined according to (1.6), we can deduce from (2.5) that

DΨ(w)[v] =
1

δ

∫ T

0

∇vε(s) d
(
B(s)− δ−1wε(s)

)
+

1

δ
〈Θ− δ−1wε(0), vε(0)〉

=: DΨB(w)[v] +DΨΘ(w)[v].

(2.9)

And, it is also easy to see that

D2Ψ(w)[x, y] = − 1

δ2

∫ T

0

〈∇xε(s),∇yε(s)〉 ds−
1

δ2
〈xε(0), yε(0)〉,

DkΨ(w)[x1, . . . , xk] = 0, k > 3,

(2.10)

and these higher derivatives are no longer random. The above discussion, together with
the Faà di Bruno’s formula, leads to the following claim:

Dnhε,δ(w)[x1, ..., xn] = E

h(δB + δΘ)eΨ(w)

 ∑
π∈Pn,2

∏
b∈π

D|b|Ψ(w)[xb]

 , (2.11)

where

• Pn,2 is the set of all partitions of {1, ..., n}, whose blocks have at most 2 elements;

• b ∈ π means that b is a block of π, whose cardinality is denoted by |b|;
• if b = {i1, ..., i|b|}, the expressionD|b|Ψ(w)[xb] meansD|b|Ψ(w)[xi1 , ..., xi|b| ]; see (2.9)

and (2.10).

Let us first verify the claim (2.11) for n = 1:

Dhε,δ(w)[z] = E
(
h(δB + δΘ)eΨ(w)DΨ(w)[z]

)
. (2.12)

By (1.8), (2.6), and (2.7), we can write for w, z ∈ D,

hε,δ(w + z)− hε,δ(w) = E
[
h(δB + δΘ)

(
eΨ(w+z) − eΨ(w)

)]
. (2.13)

Now, we deduce from (2.8), (2.9), and (2.5) that∣∣Ψ(w + z)−Ψ(w)−DΨ(w)[z]
∣∣ =

1

2δ2

∫ T

0

|∇zε(s)|2 ds+
1

2δ2
|zε(0)|2

6
T‖z‖2

2δ2ε2
+

1

2δ2
‖z‖2,

and ∫ T

0

∇y(s) dB(s) ∼ N
(

0,

∫ T

0

|∇y(s)|2 ds
)
. (2.14)

5For an absolutely continuous path g, d(B + g)(t) = d(B(t) + g(t)) is understood as dB(t) + ġ(t)dt, where
dB(t) is the Brownian integrator and ġ(t)dt is the usual Lebesgue integral with the derivative ġ(t) defined for
almost every t.
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It is thus straightforward to see from Taylor’s expansion and simple Gaussian computa-
tions that

eΨ(w+z) − eΨ(w) = eΨ(w)DΨ(w)[z] + O(‖z‖2), (2.15)

where the linear-in-z term eΨ(w)DΨ(w)[z] = O(‖z‖). Here and in what follows, the big-O
is to be understood in the Lp(Ω)-sense; for example, U(z) = O(‖z‖) means that U(z) is a
random variable that depends on z, and (E|U(z)|p)1/p = O(‖z‖), in the usual sense of O,
for any p ∈ [2,∞). Therefore, the equality in (2.12) follows from (2.13) and (2.15). That
is, the claim (2.11) is verified for n = 1.

For later use, let us first recall from (2.9)-(2.10) that D2Ψ(w)[x, y] does not depend
on w and that

DΨ(w + z)[x] = DΨ(w)[x] +D2Ψ(w)[x, z],

D2Ψ(w)[x, z] = O(‖z‖).
(2.16)

Next, we assume that the formula (2.11) holds for all n 6 k, and we want to show
that (2.11) holds for n = k + 1. For z ∈ D([0, 1];Rd),

Dkhε,δ(w + z)[x1, ..., xk]−Dkhε,δ(w)[x1, ..., xk]

=
∑

π∈Pk,2

E

[
h(δB + δΘ)

(
eΨ(w+z) − eΨ(w)

)∏
b∈π

D|b|Ψ(w + z)[xb]

]
(2.17)

+
∑

π∈Pk,2

E

[
h(δB + δΘ)eΨ(w)

({∏
b∈π

D|b|Ψ(w + z)[xb]

}
−
∏
b∈π

D|b|Ψ(w)[xb]

)]
. (2.18)

Let us deal with the above two sums now.

(i) The sum in (2.17) can be rewritten as∑
π∈Pk,2

E

[
h(δB + δΘ)eΨ(w)DΨ(w)[z]

∏
b∈π

D|b|Ψ(w)[xb]

]
+ O(‖z‖2), (2.19)

which is a consequence of (2.15), (2.16), and the fact that DΨ(w)[z] = O(‖z‖).

(ii) In (2.18), the expectation vanishes if π ∈ Pk,2 is a partition with all blocks having
exactly 2 elements, since D2Ψ(y) does not depend on y. Suppose now that the
partition π ∈ Pk,2 contains ` blocks with exactly one element, for some ` ∈ {1, ..., k}
(say the blocks {1}, ..., {`}). Then, it follows from (2.16) that{∏

b∈π

D|b|Ψ(w + z)[xb]

}
−
∏
b∈π

D|b|Ψ(w)[xb]

=

(∏
b∈π

(
D2Ψ(w)[xb]

)I{|b|=2}

)∑̀
j=1

D2Ψ(w)[z, xj ]
∏

i∈{1,...,`}\{j}

DΨ(w)[xi]


+ O(‖z‖2).

As a consequence, we can write the second sum (2.18) as∑
π∈P′k+1,2

E

[
h(δB + δΘ)eΨ(w)

∏
b∈π

D|b|Ψ(w)[xb]

]
+ O(‖z‖2),

where P ′k+1,2 is the set of all partitions of {1, ..., k, k + 1} (xk+1 = z) whose blocks
have at most 2 elements, and such that k + 1 (that corresponds to z) belongs to a
block of size 2. Since the first term (2.19) accounts for the partitions where k+ 1 is
in a block of size 1, we have just established formula (2.11) for n = k + 1,
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Hence by mathematical induction, the formula (2.11) holds true for all n > 1. In particu-
lar, we prove that the function hε,δ has infinitely many bounded Fréchet derivatives.

It remains to prove the bounds on the derivatives given in (1.41), (1.42), (1.43), (1.44),
and (1.45). Since the random variable eΨ(w) in (2.11) is not uniformly bounded in Lp(Ω)

for p > 1, which makes a direct proof of the bounds more awkward, we undo the change
of measure, and work with an equivalent version of (2.11):

Dnhε,δ(w)[x1, ..., xn] = E

h(wε + δB + δΘ)

 ∑
π∈Pn,2

∏
b∈π

D̂|b|Ψ(w)[xb]

 , (2.20)

where

D̂Ψ(w)[x] =
1

δ

∫ T

0

∇xε(s)dB(s) +
1

δ
〈Θ, xε(0)〉,

D̂2Ψ(w)[x, y] = D2Ψ(w)[x, y] as in (2.10).

(2.21)

The equivalence between (2.20) and (2.11) essentially follows from the Cameron-
Martin formula. However, there is a stochastic integral with respect to B − δ−1wε in
DΨ (which should become an integral with respect to B under the change of mea-
sure, leading to D̂Ψ), and so some additional justification may be desired. We pro-
vide a proof in the Appendix A. Let us now apply the formula (2.20) to establish the
bounds (1.41), (1.42), (1.43), (1.44), and (1.45). Without loss of generality, we assume
that |h(y)| 6 1 for any y ∈ D. Let us first prove the bound (1.41). Using (2.14), (2.5),
and (2.21), we have

E
[
|D̂Ψ(w)[x]|2

]
=

1

δ2

∫ T

0

|∇xε(s)|2ds+
1

δ2
|xε(0)|2

6 (T + ε2)
1

ε2δ2
‖x‖2,

(2.22)

and

|D̂2Ψ(w)[x, y]| 6 (T + ε2)
1

ε2δ2
‖x‖ · ‖y‖. (2.23)

Therefore, we can deduce from (2.22), (2.23), and (2.20) that

sup
w∈D
‖Dkhε,δ(w)‖ 6 (T + ε2)k/2

1

εkδk
E
[
|G|k

]
× card(Pk,2). (2.24)

Thus, the bound (1.41) is proved, where we can choose the constant Ck to be E
[
|G|k

]
×

card(Pk,2) with G ∼ N (0, 1), and hence

C1 =
√

2/π, and C2 = 3. (2.25)

Next, we prove the bound (1.42). Using (2.24) directly yields that

sup
w∈D
‖Dhε,δ(w)‖ 6

1

εδ

√
T + ε2. (2.26)

For k = 2, 3, we can do better than simply applying (2.24). We first deduce from the
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formula (2.20) with n = 2, and (2.21) that

D2hε,δ(w)[x, y] = E
[
h(wε + δB + δΘ)D̂Ψ(w)[x]D̂Ψ(w)[y]

]
+ E

[
h(wε + δB + δΘ)D̂2Ψ(w)[x, y]

]
= δ−2E

[
h(wε + δB + δΘ)

(∫ T

0

∇xε(s) dB(s) + 〈Θ, xε(0)〉

)

×
(∫ T

0

∇yε(s) dB(s) + 〈Θ, yε(0)〉
)]

− δ−2E
[
h(wε + δB + δΘ)

](∫ T

0

〈∇xε(s),∇yε(s)〉ds+ 〈xε(0), yε(0)〉
)

= δ−2 Cov

[
h(wε + δB + δΘ),

(∫ T

0

∇xε(s) dB(s) + 〈Θ, xε(0)〉

)

×
(∫ T

0

∇yε(s) dB(s) + 〈Θ, yε(0)〉
)]
.

(2.27)

From this, and because |h(y)| 6 1 for all y ∈ D, it easily follows from Cauchy–Schwarz
that∣∣D2hε,δ(w)[x, y]

∣∣
6

1

δ2

√
Var

[(∫ T

0

∇xε(s) dB(s) + 〈Θ, xε(0)〉
)(∫ T

0

∇yε(s) dB(s) + 〈Θ, yε(0)〉
)]
.

(2.28)

Now, for (U, V ) bivariate normal with mean zero, variance 1 and correlation ρ, Var(UV ) =

1 + ρ2 6 2. Hence, and since, from (2.14) and (2.5), for any z ∈ D, we have

σ2
z,ε,T := Var

(∫ T

0

∇zε(s) dB(s) + 〈Θ, zε(0)〉

)

=

∫ T

0

∣∣∇zε(s)∣∣2 ds+ |zε(0)|2 6
( T
ε2

+ 1
)
‖z‖2, (2.29)

it follows that

∣∣D2hε,δ(w)[x, y]
∣∣2 6

2

δ4
σ2
x,ε,Tσ

2
y,ε,T 6

2

ε4δ4
(T + ε2)2 ‖x‖2‖y‖2,

and hence that

sup
w∈D
‖D2hε,δ(w)‖ 6

√
2

ε2δ2
(T + ε2). (2.30)

For the Lipschitz constant of the second derivative, we claim that

sup
w∈D

‖D2hε,δ(w + v)−D2hε,δ(w)‖
‖v‖

6
√

50/π
1

ε3δ3
(T + ε2)

3
2 . (2.31)

Using the definition of the derivative, (2.20) (in which D̂Ψ(w) does not depend on
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w), (2.22), and (2.23), we have∣∣D2hε,δ(w + x3)[x1, x2]−D2hε,δ(w)[x1, x2]
∣∣

6
∫ 1

0

∣∣D3hε,δ(w + tx3)[x1, x2, x3]
∣∣dt

6 sup
w∈D

(
E

[ 3∑
i=1

∣∣∣D̂Ψ(w)[xi]D̂
2Ψ(w)

[
(xj)j 6=i

]∣∣∣]+ E

[ 3∏
j=1

∣∣∣D̂Ψ(w)[xj ]
∣∣∣])

6
1

δ3

( T
ε2

+ 1
) 3

2
(
3E[|G|] + E[|G|3]

) 3∏
i=1

‖xi‖ with G ∼ N (0, 1)

=
√

50/π
1

δ3

( T
ε2

+ 1
) 3

2
3∏
i=1

‖xi‖.

(2.32)

Then, the claim (2.31) follows immediately. Therefore, the bound (1.42) on ‖hε,δ‖M0

follows from (1.2), (2.26), (2.30), and (2.31). Now to see (1.43), it is enough to apply the
Cauchy–Schwarz inequality and (2.27) in almost the same way as in the calculations
leading to (2.28).

Next, we show the bound (1.44), under the additional assumption that ‖Dnh‖ <∞.
First, we note that the sum inside the expectation in (2.20)

Tn :=
∑

π∈Pn,2

∏
b∈π

D̂|b|Ψ(w)[xb] (2.33)

does not depend on w. We now show by induction that, for 0 6 r 6 n,

Dk+rhε,δ(w)[x1, . . . , xk, z1, . . . , zr] = E
[
Drh(wε + δB + δΘ)[z1,ε, . . . , zr,ε]Tk

]
, (2.34)

where zj,ε = (zj)ε is defined according to (1.6), the case r = 0 being just (2.20). Then,
assuming that (2.34) is true for r,

Dk+r+1hε,δ(w)[x1, . . . , xk, z1, . . . , zr, v]

=
d

dt

∣∣∣
t=0

Dk+rhε,δ(w + tv)[x1, . . . , xk, z1, . . . , zr]

=
d

dt

∣∣∣
t=0
E
[
Drh(wε + tvε + δB + δΘ)[z1,ε, . . . , zr,ε]Tk

]
.

(2.35)

For r < n, since ‖Dnh‖ <∞,

sup
y:‖y‖61

‖Dr+1h(wε + y + δB + δΘ)‖

is bounded by a polynomial of degree n − r − 1 in δ‖B + Θ‖, and hence its product
with |Tk| is integrable6, by Fernique’s theorem (see [10, Theorem 2.8.5]). Hence, we
deduce from the dominated convergence theorem that

d

dt

∣∣∣
t=0
E
[
Drh(wε + tvε + δB + δΘ)[z1,ε, . . . , zr,ε]Tk

]
= E

[
Dr+1h(wε + δB + δΘ)[z1,ε, . . . , zr,ε, vε]Tk

]
,

(2.36)

6Fernique’s theorem applied to the Gaussian process B + Θ yields exponential integrability of ‖B + Θ‖,
while the term Tk lives in the first two Wiener chaoses and thus admits finite moments of any order (see
Section 2.8 of [26]). These two observations imply the integrability of δ‖B + Θ‖ · |Tk|.
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establishing (2.34) for r + 1 also. The bound (1.44) follows from (2.34) with r = n,
using (2.14) and (2.5), as in proving (2.24). Finally, we point out that the inequality (1.45)
follows from (2.34) with k = r = 1, (2.22), and the fact that D̂Ψ(w)[x] is Gaussian:∣∣D2hε,δ(w)[z, x]

∣∣ 6 ‖Dh‖‖z‖E
∣∣D̂Ψ(w)[x]

∣∣
6 E[|G|] 1

δ
‖Dh‖‖z‖

(∫ T

0

|∇xε(s)|2ds+ |xε(0)|2
) 1

2

,

with G ∼ N (0, 1), which concludes our proof.

Now we present the proof of Theorem 1.1.

Proof of Theorem 1.1. First note that, if h : D→ R is the indicator of a measurable set
and ε, δ are positive, then Lemma 1.11 and Remark 1.12 imply that hε,δ ∈M0

c1 , with c1
given in (1.9), and that

‖hε,δ‖M0 6 C0, (2.37)

with C0 = C0(ε, δ) as in (1.11) and (1.12). Next, we upper and lower bound P(X ∈
K)− P (Z ∈ K) for K a measurable subset of D. For any θ, γ > 0, we have

P(X ∈ K) 6 P(Xε + δB + δΘ ∈ Kθ+γ , ‖Xε + δB + δΘ−X‖ < θ + γ)

+ P(‖Xε + δB + δΘ−X‖ > θ + γ)

6 P(Xε + δB + δΘ ∈ Kθ+γ)− P(Zε + δB + δΘ ∈ Kθ+γ) (2.38)

+ P(‖Xε + δB + δΘ−X‖ > θ + γ) + P(Zε + δB + δΘ ∈ Kθ+γ). (2.39)

The first term (2.38) is of the form E[hε,δ(X)] − E[hε,δ(Z)] for h as above, and is thus
upper bounded by Cε,δ,Tκ1 +

√
(1 + ε

2 )(T + ε2)(εδ)−2κ2. The first part of the second
term (2.39) is upper bounded by

P(‖Xε + δB + δΘ−X‖ > θ + γ)

6 P(‖Xε −X‖ > θ) + P(‖δB + δΘ‖ > γ)

6 P(‖Xε −X‖ > θ) + P(‖δB‖ > γ/2) + P(|δΘ| > γ/2)

6 P(‖Xε −X‖ > θ) + 2de−γ
2/(8dTδ2) + de−γ

2/(4dδ2);

in the third inequality we have used the bound

P
(
‖B‖ > z

)
6 P

(
d⋃
i=1

{
‖B(i)‖ > z√

d

})
6 dP

(
‖B(1)‖ > z√

d

)
6 2dP

(
max

06t6T
B(1)(t) > zd−1/2

)
6 4dP

(
B(1)(T ) > zd−1/2

)
6 2d exp

(
− z2

2dT

)
,

for any z > 0, which follows from well known facts about Brownian motion. For the
second term of (2.39), we have

P(Zε + δB + δΘ ∈ Kθ+γ)

6 P(‖Zε + δB + δΘ− Z‖ > θ + γ) + P(Z ∈ K2(θ+γ))

6 P(‖Zε − Z‖ > θ) + P(‖δB + δΘ‖ > γ) + P(Z ∈ K2(θ+γ))

6 P(‖Zε − Z‖ > θ) + P(Z ∈ K2(θ+γ)) + 2de−γ
2/(8dTδ2) + de−γ

2/(4dδ2).

(2.40)
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Combining the last displays and using that T > 1, we find that

P(X ∈ K) 6 C0κ1 + c1κ2 + P(‖Xε −X‖ > θ) + P(‖Zε − Z‖ > θ)

+ P(Z ∈ K2(θ+γ)) + 6de−γ
2/(8dTδ2).

(2.41)

Subtracting P(Z ∈ K) from both sides gives an upper bound on P(X ∈ K)− P(Z ∈ K)

of the form (1.14), with P(Z ∈ K2(θ+γ) \ K) in place of P(Z ∈ K2(θ+γ) \ K−2(θ+γ)). A
lower bound of the same magnitude follows in analogous fashion.

Finally, suppose that h : D→ R is bounded and Lipschitz with sup{|h(w)| : w ∈ D} 6 1

and ‖Dh‖ 6 1. Then for any ε, δ > 0, Lemma 1.11 and Remark 1.12 imply that hε,δ ∈M0
c2

with c2 given as in (1.10), and we also have

E
[
h(X)− h(Z)

]
= E

[
h(X)− h(Xε + δB + δΘ)

]
+ E

[
hε,δ(X)− hε,δ(Z)

]
+ E

[
h(Zε + δB + δΘ)− h(Z)

]
.

The first expectation is bounded by E
(
‖X −Xε‖+ δ‖B + Θ‖

)
, and the third by E

(
‖Z −

Zε‖+ δ‖B+Θ‖
)
; the second is bounded by κ1‖hε,δ‖M0 + c2κ2, by assumption (1.13). Now

we claim that the following bounds hold when sup{|h(w)| : w ∈ D} 6 1 and ‖Dh‖ 6 1:

(i) ‖hε,δ‖ 6 1,

(ii) ‖Dhε,δ‖ 6 1,

(iii) ‖D2hε,δ‖ 6 (T + ε2)
1
2 (εδ)−1.

Claim (i) is trivial, and to verify claim (ii), we begin by writing

Dhε,δ(w)[v] =
d

dt

∣∣∣
t=0

hε,δ(w + tv)

=
d

dt

∣∣∣
t=0
E
[
h(wε + tvε + δB + δΘ)

]
= E

(
Dh(wε + δB + δΘ)[vε]

)
,

which follows from the same reasoning as in (2.35)-(2.36). Then, claim (ii) follows from
‖Dh‖ 6 1 and ‖vε‖ 6 ‖v‖. Note that claim (iii) follows from (1.44).

Note that we can deduce from (2.32) and (1.44) that∣∣D2hε,δ(w + x3)[x1, x2]−D2hε,δ(w)[x1, x2]
∣∣

6 ‖D3hε,δ‖ ·
3∏
j=1

‖xj‖ 6 ‖Dh‖C2(T + ε2)ε−2δ−2 ·
3∏
j=1

‖xj‖

6 3(T + ε2)ε−2δ−2 ·
3∏
j=1

‖xj‖.

See (2.25) for the choice of C2. Thus, if ε, δ ∈ (0, 1), we see that

‖hε,δ‖M0 6 1 + 1 + (T + 1)1/2ε−1δ−1 + 3(T + 1)ε−2δ−2

6 2 + 4(T + 1)(εδ)−2 6 4(T + 2)ε−2δ−2.

Since E‖B[0,T ]‖ 6 T 1/2E‖B[0,1]‖ and E|Θ| 6
√
d, the above bounds lead us to the desired

estimate (1.15). Hence, the proof is completed.

The rest of this section is devoted to the proofs of Lemma 1.4 and Lemma 1.6.
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Proof of Lemma 1.4. The proof uses the standard dyadic techniques from, for example,
[9, Chapter 3]. Letting ωx(ε)[0, T ] be as in (1.17), we can bound

P
(
‖Yε − Y ‖ >

√
dλ
)

6 P

(
d⋃
i=1

{
‖Y (i)

ε − Y (i)‖ > λ
})

6
d∑
i=1

P(ωY (i)(ε)[0, T ] > λ).

Thus it suffices to bound P(ωY (ε)[0, T ] > λ) for a one-dimensional process Y satisfying
the assumption (1.21) of Lemma 1.4.

Fix y ∈ D([0, T ];R) and (s, ε) ∈ [0, T ]× (0,∞), we set

xj,r := xj,r(s, ε) := s+ j2−rε, for 0 6 j 6 2r and 1 6 r 6 R

and define δ∗jn := δ∗jn(y) and δjr := δjr(y, s, ε) by

δ∗jn := sup
j/n6v6(j+1)/n

|y(v)− y(jn−1)|, 0 6 j < nT ;

δjr := min
{
|y(xj,r)− y(xj,r − 2−rε)|, |y(xj,r)− y(xj,r + 2−rε)|

}
, j odd, 1 6 j < 2r,

with δjr = 0 if j is even (set y(v) := y(T ) for v > T ); note that, for j odd,

xj,r − 2−rε = xbj/2c,r−1 and xj,r + 2−rε = xbj/2c+1,r−1.

Then, defining R := Rn,ε := dlog2(nε)e, we first establish that, for s 6 u 6 s+ ε,

|y(u)− y(s)| 6 3

{(
R∑
r=1

max
16j<2r

δjr

)
+ 2 max

06j<nT
δ∗jn

}
. (2.42)

The argument to show (2.42) is based on the following two observations. First, the
triangle inequality can be used to bound the minimal change in the value of y when
going from an argument of the form xj,r to one of the form xj′,r−1, which is no more than
max16j<2r δjr. Secondly, the change when going from any value in [s, s+ ε] to the next
smaller value s+j2−Rε is bounded by 2 max06j<nT δ

∗
jn.

As a result of these observations, for any s 6 u 6 s+ ε, there is a path from u to xj0,0
of the form (u, xjR,R, xjR−1,R−1, . . . , xj1,1, xj0,0), where xj0,0 ∈ {s, s+ ε}, along which the
value of y changes in total by no more than

K :=

(
R∑
r=1

max
16j<2r

δjr

)
+ 2 max

06j<nT
δ∗jn.

We call such a path (u, xjR,R, . . . , xj1,1, xj0,0) admissible. Then, if J denotes the maximal
value of j such that there is an admissible path from xj,R to s with |y(xj,R)− y(s)| 6 K,
it is immediate that |y(xj,R)− y(s)| 6 2K for all 0 6 j 6 J , because an admissible path
from xj,R to s+ ε has to cross an admissible path from xJ,R to s in this case and can be
modified to follow the admissible path from xJ,R to s thereafter. For each j > J , we can
find an admissible path Γj from xj,R to s+ ε.

• If Γj crosses the admissible path from xJ,R to s, then from the triangle inequality it
follows immediately that ∣∣y(xj,R)− y(s)

∣∣ 6 2K.
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• If Γj does not intersect with the admissible path from xJ,R to s, we deduce from
the triangle inequality that∣∣y(xj,R)− y(s)

∣∣ 6 ∣∣y(xj,R)− y(s+ ε)
∣∣+
∣∣y(xJ+1,R)− y(s+ ε)

∣∣
+
∣∣y(xJ+1,R)− y(xJ,R)

∣∣+
∣∣y(xJ,R)− y(s)

∣∣
6 3

(
R∑
r=1

max
16j<2r

δjr

)
+ 2 max

06j<nT
δ∗jn,

where we also used the bound |y(xJ,R)− y(xJ+1,R)| 6 2 max06j<nT δ
∗
jn.

This verifies (2.42) by noting that |y(u)− y(s)| 6 |y(u)− y(xj,R)|+ |y(xj,R)− y(s)|, where
xj,R is the smaller value next to u such that |y(u)− y(xj,R)| 6 2 max06j<nT δ

∗
jn.

Now, returning to the process Y , note that

{ωY (ε)[0, T ] > λ} :=

{
sup

06s,t6T : |s−t|6ε
|Y (s)− Y (t)| > λ

}
⊂
dT/εe⋃
k=1

Ak(ε, λ),

where

Ak(ε, λ) :=

{
sup

(k−1)ε6u6kε
|Y (u)− Y ((k − 1)ε)| > λ/3

}
.

Then, for 0 < ψ < 1, because of (2.42) with s = (k − 1)ε, we can write

Ak(ε, λ) ⊂ B(n, T, λ) ∪
Rn,ε⋃
r=1

2r⋃
j=1

Ak,r,j,ε,λ,

where
Ak,r,j,ε,λ :=

{
δjr(Y, (k − 1)ε, ε) > λψr(1− ψ)/9

}
and

B(n, T, λ) :=

dnTe⋃
j=1

{
2δ∗jn(Y ) > λ(1− ψ)/9

}
,

for some ψ ∈ (0, 1) to be fixed later such that

λ/9 > λ(1− ψ)/9 +

Rn,ε∑
r=1

λψr(1− ψ)/9.

Computing probabilities using (1.21) gives

P[Ak,r,j,ε,λ] 6
K(2−r+1ε)β

(λψr(1− ψ)/9)γ
= K

( 9

1− ψ

)γ (2ε)β

λγ
(2βψγ)−r,

and
P[B(n, T, λ)] 6 2Tϕn(λ(1− ψ)/18).

Hence

P[ωY (ε)[0, T ] > λ] 6 P[B(n, T, λ)] +

dT/εe∑
k=1

Rn,ε∑
r=1

2r∑
j=1

P[Ak,r,j,ε,λ]

6 2Tϕn(λ(1− ψ)/18) +KC(ψ, β, γ)dT/εe ε
β

λγ
,

where C(ψ, β, γ) <∞ provided that ψ ∈ (0, 1) is chosen so that 2β−1ψγ > 1. The result
follows by choosing ψ = 2−(β−1)/(2γ).
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Proof of Lemma 1.6. Using [29, (1.12b)], for 1 6 m1 < m2 6 N , we have

s2
m1,m2

:=

m2∑
i=m1+1

m2∑
j=m1+1

|Cov(Yi, Yj)| 6 Kc2p(m2 −m1),

where

K := 2
{

1 + 2
∑
j>1

(kj−b)(p−2)/p
}
< ∞.

It now follows from [29, Theorem 6.2], with r = 1 + (p− 1)b/(p+ b), that, for 0 6 s < t 6
N/n,

P
[

sup
s6u6t

|X(u)−X(s)| > 4λcp

]
6 4

{(Kr(t− s)
λ2

)r/2
+
dn(t− s)e
λ
√
n

(rk1/b

λ
√
n

)r−1}
6 C

(t− s)r/2

λr
,

(2.43)

with the last line uniformly in n(t− s) > 1/2, for a suitable constant C := C(p, k, b). This
in turn implies (1.26), by a standard argument.

A Equivalence between (2.20) and (2.11)

In this appendix, we prove the equivalence between (2.20) and (2.11).

Proof. First, recalling the definitions of the derivatives of Ψ in (2.9) and (2.10), we write

RHS of (2.11) =
∑

π∈Pn,2

E

[
h(δB + δΘ)

∏
b∈π

(
D|b|Ψ(w)[xb]

)I[|b|=1]

]

×
∏
b∈π

(
D|b|Ψ(w)[xb]

)I[|b|=2]
,

(A.1)

where we used the fact that D2Ψ(w)[x, y] is deterministic. Suppose b = {i1, i2, ..., i`}.
Note that the Wiener integral is not pathwise defined, so it prevents us from applying
the change of measure for h(δB + δΘ)DΨ(w)[x]. However, we can proceed by an
approximation argument.

(i) For each j ∈ {1, ..., `}, one can find a sequence of uniformly bounded piecewise
constant functions {Fj,n : n > 1} such that ‖Fj,n − δ−1∇(xij )ε‖ → 0 as n tends

to infinity; denote the time instants at which the function Fj,n jumps by tj,nk ,
1 6 k 6 Nj,n.

(ii) By dominated convergence and Ito isometry for Wiener integral, the following
Lp(Ω)-convergence of Gaussians holds:

Nj,n∑
k=1

Fj,n(tj,nk )
[
B
(
tj,nk+1

)
−B

(
tj,nk
)] Lp(Ω)−−−−→

n→∞

1

δ

∫ T

0

∇(xij )ε(s)dB(s)

for any finite p > 1.

Then, defining w∗ε(s) := wε(s) − wε(0) and writing Πtv = v(t) for the canonical
evaluation map of v ∈ C([0, T ];Rd) at time t, and recalling the definitions of ΨB(w)
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and ΨΘ(w) in (2.7), the expectation in (A.1) can be rewritten (noting that ΨB(w) =

ΨB(w∗)) as

E

h(δB + δΘ)eΨB(w)+ΨΘ(w)
∏̀
j=1

DΨ(w)[xij ]


= lim
n→∞

E

{
h(δB + δΘ)eΨB(w∗)+ΨΘ(w)

∏̀
j=1

[(Nj,n∑
k=1

Fj,n(tj,nk )

×
[
Πtj,nk+1

(B − δ−1w∗ε)−Πtj,nk
(B − δ−1w∗ε)

])
− 1

δ

〈
Θ− δ−1wε(0), (xij )ε(0)

〉]}

= lim
n→∞

E

{
h(w∗ε + δB + δΘ)eΨΘ(w)

∏̀
j=1

[(Nj,n∑
k=1

Fj,n(tj,nk )
[
Πtj,nk+1

B −Πtj,nk
B
])

− 1

δ

〈
Θ− δ−1wε(0), (xij )ε(0)

〉]}
= E

{
h(w∗ε + δB + δΘ)eΨΘ(w)

∏̀
j=1

[
1

δ

∫ T

0

∇(xij )ε(s)dB(s)

− 1

δ

〈
Θ− δ−1wε(0), (xij )ε(0)

〉]}
= E

{
h(wε + δB + δΘ)

∏̀
j=1

D̂Ψ(w)[xij ]

}
,

(A.2)

The first and third equalities in (A.2) follow from (ii), and the second follows by applying
the Cameron–Martin change of measure formula for the Brownian motion B with respect
to B + δ−1w∗ε . The final equality in (A.2) follows from the same change of measure as
in (2.4).

Therefore, we have verified the equivalence between (2.20) and (2.11).
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