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A partial rough path space for rough volatility
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Abstract

We develop a variant of rough path theory tailor-made for analyzing a class of financial
asset price models known as rough volatility models. As an application, we prove a
pathwise large deviation principle (LDP) for a certain class of rough volatility models,
which in turn describes the limiting behavior of implied volatility for short maturity
under those models. First, we introduce a partial rough path space and an integration
map on it and then investigate several fundamental properties including local Lipschitz
continuity of the integration map from the partial rough path space to a rough path
space. Second, we construct a rough path lift of a rough volatility model. Finally, we
prove an LDP on the partial rough path space, and the LDP for rough volatility then
follows by the continuity of the solution map of rough differential equations.
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1 Introduction

A rough volatility model is a stochastic volatility model for an asset price process
with volatility being rough, meaning that the Hölder regularity of the volatility path is
less than half. Recently, such models have been attracting attention in mathematical
finance because of their unique consistency to market data. Indeed, rough volatility
models are the only class of continuous price models that are consistent to a power
law of implied volatility term structure typically observed in equity option markets, as
shown by [19]. One way to derive the power law under rough volatility models is to
prove a large deviation principle (LDP) as done by many authors [11, 4, 3, 13, 14, 31,
33, 34, 38, 35, 39, 32] using various methods. An introduction to LDP and some of its
applications to finance and insurance problems can be found in [44, 15]. In the context
of the implied volatility, a short-time LDP under local volatility models provides a validity
proof for a precise approximation known as the BBF formula [6, 1]. The SABR formula,
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which is of daily use in financial practice, is also proved as a valid approximation under
the SABR model by means of LDP [43]. From these successes in classical (non-rough)
volatility models, we expect LDP for rough volatility models to provide in particular
a useful implied volatility approximation formula for financial practice such as model
calibration.

For the classical models that are described by standard stochastic differential equa-
tions (SDEs), an elegant way to prove an LDP is to apply the contraction principle in the
framework of rough path analysis [17, 18]. Under rough volatility models, the volatility of
an asset price has a lower Hölder regularity than the asset price process. The stochastic
integrands are therefore not controlled by the stochastic integrators in the sense of
[28]. Hence, a rough volatility model is beyond the scope of rough path theory, which
motivated [3] to develop a regularity structure for rough volatility. For classical SDEs,
the Freidlin–Wentzell LDP can be obtained as a consequence of the continuity of the
solution map (the Lyons–Itô map) that is the core of rough path theory. In [3], the LDP
for rough volatility models is obtained using the continuity of Hairer’s reconstruction
map. Herein, we take an approach that is similar to that of [3] in spirit but differs
somewhat. Instead of embedding a rough volatility model into the abstract framework of
regularity structure, we develop a minimal extension of rough path theory to incorporate
rough volatility models. Besides the relatively elementary construction, an advantage of
our theory is that it ensures the continuity of the integration map between rough path
spaces, which enables us to treat a more general model than [3].

We focus on a model of the following form:

dSt = σ(St)f(X̂t, t)dXt, S0 ∈ R, (1.1)

where X is a d-dimensional Brownian motion, X̂ is an e-dimensional stochastic process of
which components include

∫ t
0
κ(t−s)dXs with a deterministic L2 kernel κ. The stochastic

integration is in the Itô sense. An example is the rough Bergomi model (κ = κH is the
Riemann–Liouville kernel (3.1), f is exponential, and σ(s) = s in (1.1)) introduced by
[2]. When κ = κH or more generally κ has a similar singularity to κH with H < 1/4,
beyond the case of σ(s) = 1 or σ(s) = s, no LDP is available in the literature so far,
including [3]. As mentioned above, the difference between classical SDEs and (1.1) is
that the volatility process X̂ is not controlled by X because of its lower regularity. From
empirical evidence, we are particularly interested in the case where X̂ is correlated
with X and H < 1/4 [26, 5, 24, 7]. Unfortunately, the application of existing rough path
theory involves iterated integrals of X̂ while, as is well-known, the standard rough path
lift of (X, X̂) that is amenable to LDP does not work when H < 1/4; see e.g., [18].

Our idea, inspired by [3], is to consider a partial rough path space in which we lack
the iterated integrals of X̂ but are still able to treat (1.1). More precisely, we define
the space of a triplet of iterated integrals driven by X (we do not consider iterated
integrals driven by X̂) and rederive analytical results obtained in existing rough path
theory. The notion of a partial rough path was introduced in [30] to prove the existence
of global solutions for differential equations driven by a rough path with vector fields
of linear growth. Our motivation is different and requires a space of higher-level paths.
In contrast to [3], our method does not rely on the theory of regularity structure and
enables us to treat not only the rough Bergomi model but also the following rough
volatility models:

- the rough SABR model [22, 41, 23, 20];

- the mixed rough Bergomi model [8];

- rough local stochastic volatility [37];

- the two-factor fractional volatility model [25].
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To the best of our knowledge, no LDP for these models is established so far in the
literature.

To explain the idea of the partial rough path, here, we argue for how such a partial
rough path space should be. Suppose that d, e = 1, x : [0, T ]→ Rd, x̂ : [0, T ]→ Re, and
f : Re → R are good enough. By the Taylor expansion, for s < t (which are close enough),
we have ∫ t

s

f(x̂r)dxr ≈ f(x̂s)(xt − xs) +
∑
|i|5n

1

i!
∂if(x̂s)

[∫ t

s

(x̂r − x̂s)idxr
]

and ∫ t

s

(∫ r

s

dyu

)
⊗ dyr

≈
∑
|j+k|5n

1

j!k!
∂jf(x̂s)∂

kf(x̂s)

[∫ t

s

(x̂r − x̂s)k
(∫ r

s

(x̂u − x̂s)jdxu
)
⊗ dxr

]
,

where yt :=
∫ t

0
f(x̂r)dxr, i, j, k are multi-indices, and we use the following notation:

|i| :=
e∑
l=1

il, i! :=

e∏
l=1

il!, xi :=

e∏
l=1

(xl)
il , ∂i :=

e∏
l=1

(
∂

∂xl

)il
for i = (i1, ..., ie), x = (x1, ..., xe). Therefore, following the idea of rough path theory, we
would be able to define a rough path integral

∫
f(x̂r)dxr if we could define

X
(i)
st :=

1

i!

∫ t

s

(X̂sr)
idxr, X

(jk)
st :=

1

k!

∫ t

s

(X̂sr)
kX(j)

sr ⊗ dxr

for X̂sr := x̂r − x̂s. By the linearity of the integration and the binomial theorem (see
Section 8.1 in [10]), X(i) and X(jk) should satisfy the following formulas respectively:
for any i, j, k ∈ Ze+ and s 5 u 5 t,

X
(i)
st = X(i)

su +
∑
p5i

1

(i− p)!
(X̂su)i−pX

(p)
ut (1.2)

and

X
(jk)
st = X(jk)

su +
∑
q5k

1

(k − q)!
(X̂su)k−qX(j)

su ⊗X
(q)
ut

+
∑
p5j

∑
q5k

1

(j − p)!(k − q)!
(X̂su)j+k−p−qX

(pq)
ut ,

(1.3)

where, for i, j ∈ Ze+, i 5 j means for all l ∈ {1, ..., e}, il 5 jl, and Z+ is the set of the

nonnegative integers. Our partial rough space is a space for X̂, X(i) and X(jk), where
the formulas (1.2) and (1.3) should play the role of Chen’s identity.

In Section 2, we formulate such a partial rough path space and state some fundamen-
tal properties including the continuity of the integration map. In Section 3, we construct
a rough path lift of our rough volatility model and state an LDP. Proofs are relegated to
Section 4.
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2 A partial rough path space

2.1 Definition

Throughout this article, we fix α ∈ ( 1
3 ,

1
2 ], β ∈ (0, 1

2 ), T > 0 and denote

∆T := {(s, t)|0 5 s 5 t 5 T}, I := {i ∈ Ze+| |i|β + α 5 1},

and
J := {(j, k) ∈ Ze+ ×Ze+| |j + k|β + 2α 5 1}.

Extending the notion of an α-Hölder rough path in rough path theory, here we define an
(α, β) rough path.

Definition 2.1. An (α, β) rough path X =
(
X̂,X(i),X(jk)

)
i∈I,(j,k)∈J

is a triplet of func-

tions on ∆T satisfying the following conditions for any i ∈ I, (j, k) ∈ J , and s 5 u 5 t.

(i) X̂ is Re-valued, X(i) is Rd-valued, and X(jk) is Rd ⊗Rd-valued.

(ii) Modified Chen’s relation: X̂st = X̂su + X̂ut, and X(i) and X(jk) satisfy (1.2) and
(1.3), respectively.

(iii) Hölder regularity:

|X̂st| . |t− s|β , |X(i)
st | . |t− s||i|β+α, |X(jk)

st | . |t− s||j+k|β+2α.

Let Ω(α,β)-Hld denote the set of (α, β) rough paths. We define a metric function d(α,β) on
Ω(α,β)-Hld and a homogeneous norm |||X|||(α,β) respectively by

d(α,β)(X,Y) := ||X̂ − Ŷ ||β-Hld +
∑

i∈I,(j,k)∈J

||X(i) − Y (i)|||i|β+α-Hld

+ ||X(jk) −Y(jk)|||j+k|β+2α-Hld

and

|||X|||(α,β) := ||X̂||β-Hld +
∑

i∈I,(j,k)∈J

(
||X(i)|||i|β+α-Hld

)1/(|i|+1)

+
(
||X(jk)|||j+k|β+2α-Hld

)1/(|j+k|+2)

,

where ‖ · ‖γ-Hld is the γ-Hölder norm for two-parameter functions for γ ∈ (0, 1]:

||X||γ-Hld := sup
05s<t5T

|Xst|
|t− s|γ

.

Remark 2.2. The modified Chen’s relation and the Hölder regularity of X(i) and X(jk)

are from the following correspondence:

X
(i)
st ↔

1

i!

∫ t

s

(
X̂sr

)i
dX(0)

r , X
(jk)
st ↔ 1

k!

∫ t

s

(
X̂sr

)k
X(j)
sr ⊗ dX(0)

r

whenX(0) and X̂ have Hölder regularity α and β, respectively. Note also that
(
X(0),X(00)

)
is an α-Hölder rough path with the first level X(0) and the second level X(00) in the usual
rough path terminology. An (α, β) rough path has two first-level paths: X(0) and X̂.

Remark 2.3. Our modified Chen’s relation is a particular form of the algebraic structure
of branched rough paths studied in [29]. However, because X̂ is not a controlled path of
X, the novel framework of (α, β) rough paths is essential for establishing the rough path
integral stated in the Introduction.
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Remark 2.4 (A comparison with [3]). The iterated integral X(i)
st = 1

i!

∫ t
s

(
X̂sr

)i
dX

(0)
r

plays a key role also in [3] (see section 3.1 in [3], where X(i)
st = Wi

st in their notation). In
[3], its derivative d

dtW
i
st appears in the structure space of regularity structure. Our (α, β)

rough path consists of not only X(i)
st but also X

(jk)
st . The latter is required to construct a

rough path integral as an element of a rough path space, while in [3] the corresponding
integral is constructed as merely a distribution and such terms as X

(jk)
st are not necessary

for that purpose. As mentioned in Introduction, the key to treat (1.1) with a general
function σ is to construct

∫
f(X̂t, t)dXt as an element of a rough path space.

2.2 (α, β) rough path integration

Extending the rough path integration, here we introduce an integration with respect
to an (α, β) rough path.

Definition 2.5. Fix X ∈ Ω(α,β)-Hld. We define Y (1) and Y (2) as follows if they exist:

Y
(1)
st := lim

|P|↘0

N∑
p=1

∑
i∈I

∂if(x̂tp−1
)X

(i)
tp−1tp ,

Y
(2)
st := lim

|P|↘0

N∑
p=1

Y (1)
t0tp−1

⊗ Y (1)
tp−1tp +

∑
(j,k)∈J

∂jf(x̂tp−1)∂kf(x̂tp−1)X
(jk)
tp−1tp

 ,

where x̂s := X̂0s, and P = {s = t0 < t1 < ... < tN = t} is a partition of the interval [s, t].
The mesh size |P| is defined by |P| = maxp |tp − tp−1|. If they exist on ∆T , we denote
(Y (1), Y (2)) by

∫
f(X̂)dX, and we call this the (α, β) rough path integral of f .

Denote by Ωα-Hld the α-Hölder rough path space, and denote by dα the metric function
on Ωα-Hld; see [16], for example. Here, we state our first main result, the proof of which
is given in Section 4.1.

Theorem 2.6. Let n := max{|i| : i ∈ I} and assume that f : R→ R is Cn+2.

(i) For any X ∈ Ω(α,β)-Hld, the (α, β) rough path integral
∫
f(X̂)dX is well-defined, and∫

f(X̂)dX ∈ Ωα-Hld.

(ii) The integration map
∫

: Ω(α,β)-Hld → Ωα-Hld is locally Lipschitz continuous. More
precisely, for any M > 0, the map

∫
|EM , restricted on the set

EM :=
{
X ∈ Ω(α,β)-Hld| |||X|||(α,β) 5M

}
,

is Lipschitz continuous; that is, there exists a positive constant C > 0 such that

dα

(∫
f(V̂)dV,

∫
f(Ŵ)dW

)
5 Cd(α,β) (V,W) , V,W ∈ EM .

3 Large deviation

3.1 A lift to the partial rough path space

We now construct an (α, β) rough path, which plays an important role in this paper.
For notational simplicity we focus on a low dimensional case (both κ and W below are
one-dimensional) but extensions to higher dimensional cases are straightforward. The
proof is deferred to Section 4.2. Let κ : (0, T ]→ [0,∞) as

κ(t) := g(t)tζ−γ , t ∈ (0, T ],
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where γ, ζ ∈ (0, 1) and g is a Lipschitz function. For example, the Riemann–Liouville
kernel

κH(t) :=
tH−1/2

Γ(H + 1/2)
, t ∈ (0, T ], H ∈ (0, 1/2) (3.1)

has the above form (ζ = H − δ, γ = 1/2− δ, g(t) = 1/Γ(H + 1/2), where δ ∈ (0, 1/2)). For
α ∈ (0, 1], let Cα-Hld denote the space of α-Hölder continuous functions on [0, T ]. Let
K : Cγ-Hld → Cζ-Hld as

Kf(t) := lim
ε→0

{
[κ(t− ·)(f(·)− f(t))]

t−ε
0 +

∫ t−ε

0

(f(s)− f(t))κ′(t− s)ds
}

= κ(t)(f(t)− f(0)) +

∫ t

0

(f(s)− f(t))κ′(t− s)ds.

Proposition 3.1. Let (Ω,F ,P, {Ft}t=0) be a filtered probability space, and fix α ∈
(1/3, 1/2], β ∈ (0, 1/2), and γ, ζ ∈ (0, 1) with γ < 1/2, β < ζ. Suppose that X = (X1, ..., Xd)

is a d-dimensional (possibly correlated) Brownian motion, and W is a one-dimensional
Brownian motion possibly correlated to X. Using the Itô integration, define X̂, X(i), and
X(jk) as follows: for (s, t) ∈ ∆T , i ∈ I and (j, k) ∈ J ,

X̂
(1)
st := KW (t)−KW (s),

X̂
(2)
st := tζ − sζ ,

X
(i)
st :=

1

i!

∫ t

s

(
X̂sr

)i
dXr, X

(jk)
st :=

1

k!

∫ t

s

(
X̂sr

)k
X(j)
sr ⊗ dXr.

Let κst(r) :=
(
κ(t− r)− κ(s− r)1(0,s)(r)

)
1(0,t)(r) and assume that

||κst||2L2(R+) . C|t− s|2(ζ−γ)+1.

Then we have the following.

(i) For a.s. ω ∈ Ω, X(ω) :=
(
X̂(ω), X(i)(ω),X(jk)(ω)

)
i∈I,(j,k)∈J

is an (α, β) rough path.

(ii) It holds that (∫
f(X̂)dX

)(1)

0t

=

∫ t

0

f(X̂0r)dXr a.s.,

where the left-hand side is the first level of the (α, β) rough path integral and the
right-hand side is the Itô integral.

3.2 The large deviation principle on Ω(α,β)-Hld

We now discuss the LDP on Ω(α,β)-Hld. Following [38, 35], we use Garcia’s theorem
[27]. Let (W,W⊥) be a two-dimensional standard Brownian motion and X := ρW +√

1− ρ2W⊥, ρ ∈ [−1, 1]. Define X̂,X(i),X(jk) as in Proposition 3.1 with d = 1, e = 2. We
state our second main result, the proof of which is given in Section 4.3.

Theorem 3.2. Let X = (X̂,X(i),X(jk)) be the random variable taking values on
(Ω(α,β)-Hld, d(α,β)) defined as above. Then, the sequence of triplets

Xε :=
(
ε1/2X̂, ε(|i|+1)/2X(i), ε(|j+k|+2)/2X(jk)

)
EJP 29 (2024), paper 18.
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satisfies the LDP on (Ω(α,β)-Hld, d(α,β)) with speed ε−1 with good rate function

Ĩ##(x̂, x(i),x(jk)) := inf
{
Ĩ#(ṽ)

∣∣∣ṽ ∈ H, (x̂, x(i),x(jk)) = L ◦K(ṽ)
}
,

where H is the Cameron–Martin space from [0, T ] to R2,

K(ṽ) :=

((∫ ·
0

κ(· − r)dṽ(1)
r , 0

)
, ρṽ(1) +

√
1− ρ2ṽ(2)

)
and

L(u, v) := (δu, u · v, u ∗ v), u, v ∈ C[0,T ], v ∈ H,

δust := ut − us, u · v = (u ·i v), u ∗ v = (u ∗jk v), and

(u ·i v)st :=

∫ t

s

(ur − us)idvr, (u ∗jk v)st :=

∫ t

s

(u ·j v)sr(ur − us)kdvr.

Here, Ĩ# : C → [0,∞) is the rate function of two-dimensional Brownian motion:

Ĩ#(ṽ) :=

{
1
2 ||ṽ||

2
H, ṽ ∈ H,

∞, otherwise.

Theorem 3.3. The sequence of the processes
{
Y ε :=

∫
f(X̂ε)dXε

}
ε=0

satisfies the LDP

on (Ωα-Hld, dα) with speed ε−1 with good rate function

Ĩ###(y) := inf

{
Ĩ##(X)

∣∣∣∣ X ∈ Ω(α,β)-Hld, y =

∫
f(X̂)dX

}
= inf

{
Ĩ#(ṽ)

∣∣∣∣ṽ ∈ H, (u, v) = K(ṽ), y =

∫
f(L̂(u, v))dL(u, v)

}
,

where Ĩ## is defined in Theorem 3.2.

Proof. By Theorems 2.6 and 3.2 together with the contraction principle, we have the
claim.

3.3 Rough differential equation driven by an (α, β) rough path integral and the
Freidlin–Wentzell LDP

We now discuss the following type of rough differential equation (RDE) (in Lyons’
sense; see Section 8.8 of [16], for example):

S̄t =

∫ t

0

σ̄(S̄u)dYu, (3.2)

where S̄t = St − S0, σ̄(s) = σ(S0 + s) and

Y =

∫
f(X̂)dX ∈ Ωα-Hld([0, T ],Rd), X ∈ Ω(α,β)-Hld. (3.3)

Theorem 3.4. Let σ ∈ C3
b .

(i) RDE (3.2) driven by (3.3) has a unique solution Φ(Y ) = (Y, S̄), where

Φ : Ωα-Hld([0, T ],Rd)×R→ Ωα-Hld([0, T ],Rd+1)

is the solution map of (3.2) that is locally Lipschitz continuous with respect to dα.
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(ii) The first level of the last component S̄ of the solution to RDE (3.2) for (3.3) with
X = X(ω) defined in Proposition 3.1 gives the solution S(ω) = S0 + S̄ to the Itô
SDE ( 1.1).

Proof. (i) is a standard result from rough path theory; see e.g., Theorem 1 in [40] or
Chapter 8 in [16]. (ii) follows from Proposition 3.1; see Chapter 9 in [16].

Theorem 3.5. Let σ ∈ C3
b and S̄ε := Φ(Y ε), where Φ is the solution map of Theorem 3.4.

Then the sequence of the processes {S̄ε}ε=0 satisfies the LDP on Ωα-Hld with speed ε−1

with good rate function

Ĩ(s̄) := inf
{
Ĩ###(Y )

∣∣∣ Y ∈ Ωα-Hld, s̄ = Φ(Y )
}

= inf

{
Ĩ#(ṽ)

∣∣∣∣ṽ ∈ H, (u, v) = K(ṽ), s̄ =

∫
σ̄(s̄)f(L̂(u, v))dL(u, v)

}
.

Proof. Because the solution map Φ is continuous, Theorem 3.4 and the contraction
theorem imply the claim.

3.4 Short-time asymptotics

We consider the case κ = κH (see (3.1)). By the scaling property of the Riemann–
Liouville fractional Brownian motion X̂ and the standard Brownian motion X, we have

X̂εt ∼ εHX̂t, Xεt ∼ ε1/2Xt.

This implies

Ỹ εt := εH−1/2

∫ εt

0

f(X̂u)dXu ∼
∫ t

0

f(X̂ε
u)dXε

u,

where (X̂ε, Xε) = εH(X̂,X), of which the rough path lift is Xε of Theorem 3.2. Letting

S̃εt =
Sεt − S0

ε1/2−H
, σ̃ε(s) = σ(S0 + ε1/2−Hs),

we have

S̃εt =

∫ t

0

σ̃ε(S̃εu)dỸ εu ,

and we can derive an LDP for S̃ε by an extended contraction principle [45].

Theorem 3.6. Let σ ∈ C3
b . Then {S̃ε}0<ε51 satisfies the LDP on Ωα-Hld as ε → 0 with

speed ε−2H with good rate function

J̃(s̃) := inf

{
Ĩ#(ṽ)

∣∣∣∣ṽ ∈ H, (u, v) = K(ṽ), s̃ = σ(S0)

∫
f(L̂(u, v))dL(u, v)

}
.

Proof. Denote by Φε the solution map of the RDE (3.2) with σ̄ = σ̃ε. We are going to
show that Φε is locally equicontinuous. Because for all i ∈ Z+,

||∇iσ̃ε||∞ 5 (1 + ε)i||∇iσ||∞ 5 2i||∇iσ||∞,

the local Lipschitz constants of Φε can be taken uniformly in ε by Theorem 4 in [40].
Therefore Φε is equicontinuous on bounded sets, and we conclude Φε(Yε)→ Φ0(Y ) for any
converging sequence Yε → Y for any Y with Ĩ###(Y ) <∞. Then by Theorem 3.3 and
an extended contraction principle [45][Theorem 2.1], we have the desired results.
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Remark 3.7. By the usual argument, adding a drift term to the above RDE is straight-
forward. The result then generalizes the existing LDP for the rough Bergomi model:

d logSt = −1

2
f2(X̂t)dt+ f(X̂t)dXt

in [11, 3, 31, 38, 35]. To deal with the mixed rough Bergomi model [8] or the two-factor
fractional volatility model [25], we need an extension with higher dimensional κ and W
that is also straightforward.

An LDP for the marginal distribution S̃ε1 follows from the contraction principle, and
the corresponding one-dimensional rate function extends the one obtained by [11] as
follows.

Theorem 3.8. Assume σ ∈ C3
b and |ρ| < 1. Then tH−1/2S̄t satisfies the LDP as t→ 0 with

speed t−2H with good rate function

J̃#(z) := inf
g∈L2([0,1])

1

2

∫ 1

0

|gr|2dr +

{
z − ρσ(S0)

∫ 1

0
f (KHg(r), 0) grdr

}2

2(1− ρ2)σ(S0)2
∫ 1

0
f (KHg(r), 0)

2
dr

 ,
where KHg(t) =

∫ t
0
κH(t− r)grdr.

Proof. See Appendix B.

A short-time asymptotic formula of the implied volatility (regarding S as a price or a
log-price process) then follows from Theorem 3.8 as in [11]. From the rate function of
Theorem 3.8, we observe that the effect of the function σ to the short-time asymptotics
is only through the constant σ(S0). In particular, the local volatility function σ does not
add any flexibility to the asymptotic shape of the implied volatility surface.

4 Proofs of main theorems

4.1 Proof of Theorem 2.6

Proof. By a localizing argument, we can assume without loss of generality that the
derivatives of f are bounded. For brevity, let K := ||f ||Cn+2

b
and M := |||X|||(α,β). Let

J
(1)
st = J (1)(X)st :=

∑
i∈I

∂if(x̂s)X
(i)
st , J

(2)
st = J (2)(X)st :=

∑
(j,k)∈J

∂jf(x̂s)∂
kf(x̂s)X

(jk)
st ,

where x̂s := X̂0s. Below, we follow the standard argument of rough path theory with
Chen’s identity replaced by our modified version (1.2), (1.3).

(Claim 1) The first level of the (α, β) rough path integral Y (1)
st is well-defined and has

the following inequality:

|Y (1)
st | 5 KC1|t− s|α, (4.1)

where

C1 := (n+ 1)2e(1 +M)n+2(1 + T )(n+1)β
{

1 + 2(n+1)β+αζ((n+ 1)β + α)
}
,

and ζ(r) :=
∑∞
p=1

1
pr .
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Proof. By Taylor expansion, we have

∑
i∈I

∂if(x̂u)X
(i)
ut =

∑
i∈I

 ∑
|p|5n−|i|

1

p!
∂i+pf(x̂s)

(
X̂su

)p
X

(i)
ut +RiX

(i)
ut


=
∑
i∈I

∂if(x̂s)

∑
p5i

1

(i− p)!

(
X̂su

)i−p
X

(p)
ut

+
∑
i∈I

RiX
(i)
ut , (4.2)

where

Ri = R(X)i :=
∑

|p|=n+1−|i|

(∫ 1

0

(1− θ)n+1−|i|(n+ 1− |i|)
p!

∂pf(x̂s + θX̂su)dθ

)
(X̂su)p.

(4.3)
By the modified Chen’s relation (1.2) and (4.2), for any s 5 u 5 t,

J (1)
su + J

(1)
ut − J

(1)
st =

∑
i∈I

∂if(x̂s)
(
X(i)
su −X

(i)
st

)
+
∑
i∈I

∂if(x̂u)X
(i)
ut

= −
∑
i∈I

∂if(x̂s)

∑
p5i

1

(i− p)!

(
X̂su

)i−p
X

(p)
ut

+
∑
i∈I

∂if(x̂u)X
(i)
ut

=
∑
i∈I

RiX
(i)
ut . (4.4)

Because for all i ∈ I,∣∣∣RiX(i)
ut

∣∣∣ 5 K
∑

|p|=n+1−|i|

∣∣∣(X̂su)pX
(i)
ut

∣∣∣ 5 K(n+ 1)e(1 +M)n+2|t− s|(n+1)β+α,

we have ∣∣∣J (1)
su + J

(1)
ut − J

(1)
st

∣∣∣ 5 K(n+ 1)2e(1 +M)n+2|t− s|(n+1)β+α.

For any partition P = {s = t0 < t1 < ... < tN = t}, let J (1)
st (P) :=

∑N
p=1 J

(1)
tp−1tp . By

Lemma A.1, there exists p ∈ {1, ..., N} such that

|tp+1 − tp+1| 5
2

N − 1
|t− s|. (4.5)

Then we have∣∣∣J (1)
st (P)− J (1)

st (P\{tp})
∣∣∣ =

∣∣∣J (1)
tp−1tp + J

(1)
tptp+1

− J (1)
tp−1tp+1

∣∣∣
5 K(n+ 1)2e(1 +M)n+2|tp+1 − tp−1|(n+1)β+α

5 K(n+ 1)2e(1 +M)n+2

(
2

N − 1

)(n+1)β+α

|t− s|(n+1)β+α,

and this implies (note that (n+ 1)β + α > 1)∣∣∣J (1)
st (P)− J (1)

st

∣∣∣ 5 K(n+ 1)2e(1 +M)n+22(n+1)β+αζ ((n+ 1)β + α) |t− s|(n+1)β+α.

(4.6)

(Claim 1a) {J (1)
st (P)}P is a Cauchy sequence with |P| ↘ 0.
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Let Q be any subdivision of P: Q = {s = τ0 < τ1 < ... < τL = t, }, L > N . Consider
the subsequence {τl0 < τl1 < ... < τlN } with τlp = tp, and let Qp := Q ∩ [tp−1, tp].
Then Qp is a partition of [tp−1, tp]. By using (4.6), we have that∣∣∣J (1)

st (Q)− J (1)
st (P)

∣∣∣
5

N∑
p=1

∣∣∣J (1)
st (Qp)− J (1)

tp−1tp

∣∣∣
5 K(n+ 1)2e(1 +M)n+22(n+1)β+αζ ((n+ 1)β + α)

N∑
p=1

|tp − tp−1|(n+1)β+α

5 K(n+ 1)2e(1 +M)n+22(n+1)β+αζ ((n+ 1)β + α)T

(
sup

t−s5|P|
|t− s|(n+1)β+α−1

)
.

Hence for any partition P,P ′ with |P| ∨ |P ′| 5 δ, we have that∣∣∣J (1)
st (P)− J (1)

st (P ′)
∣∣∣

5
∣∣∣J (1)
st (P)− J (1)

st (P ∪ P ′)
∣∣∣+
∣∣∣J (1)
st (P ∪ P ′)− J (1)

st (P ′)
∣∣∣

5 K(n+ 1)2e(1 +M)n+22(n+1)β+α+1ζ ((n+ 1)β + α)T

(
sup
t−s5δ

|t− s|(n+1)β+α−1

)
,

and because (n+ 1)β + α > 1, we conclude that {J (1)
st (P)}P is a Cauchy sequence.

Therefore, Y (1)
st is well-defined. Furthermore, by (4.6), we have

|Y (1)
st | 5 |J

(1)
st |+ |Y

(1)
st − J

(1)
st | 5 KC1|t− s|α.

Thus we have proved the statement of Claim 1.

(Claim 2) Let m := max(j,k)∈J |j + k|. Then the second level of the (α, β) rough path

integral Y (2)
st is well-defined and has the following inequality:

|Y (2)
st | 5 K2C2|t− s|2α,

where

C2 := (1 +m)2eM(1 + T )mβ +
(
C̃2 + 2C2

1T
(n−m)β

)
2(m+1)β+2αζ ((m+ 1)β + 2α) ,

and

C̃2 := 2(1 + n+m)4e(1 +M)m+3(1 + T )(2n−m−1)β .

In particular, we have
∫
f(X̂)dX ∈ Ωα-Hld.

Proof. By the modified Chen’s relation (1.3), for all s 5 u 5 t,

J (2)
su + J

(2)
ut + J (1)

su ⊗ J
(1)
ut − J

(2)
st

= J (1)
su ⊗ J

(1)
ut +

∑
(j,k)∈J

[
∂jf(x̂s)∂

kf(x̂s)
(
X(jk)
su −X

(jk)
st

)
+ ∂jf(x̂u)∂kf(x̂u)X

(jk)
ut

]
=: S1 + S2,
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where

S1 =S1(X) :=J (1)
su ⊗J

(1)
ut −

∑
(j,k)∈J

∂jf(x̂s)∂
kf(x̂s)

∑
q5k

1

(k − q)!

(
X̂su

)k−q
X(j)
su ⊗X

(q)
ut


and

S2 = S2(X) :=
∑

(j,k)∈J

∂jf(x̂u)∂kf(x̂u)X
(jk)
ut

−
∑

(j,k)∈J

∂jf(x̂s)∂
kf(x̂s)

∑
p5j

∑
q5k

1

(j − p)!(k − q)!

(
X̂su

)j+k−p−q
X

(pq)
ut

 .

Note that

J (1)
su ⊗ J

(1)
ut =

∑
j∈I

∂jf(x̂s)X
(j)
su

⊗(∑
k∈I

∂kf(x̂u)X
(k)
ut

)

=
∑
j∈I

∑
k∈I

∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut

=
∑

(j,k)∈J

∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut

+
∑

(j,k)∈I×I\J

∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut .

By Taylor expansion, we have∑
(j,k)∈J

∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut

=
∑

(j,k)∈J

{ ∑
|q|5m−|j+k|

1

q!
∂jf(x̂s)∂

k+qf(x̂s)(X̂su)qX(j)
su ⊗X

(k)
ut

+ ∂jf(x̂s)R
(1)
jk X

(j)
su ⊗X

(k)
ut

}

=
∑

(j,k)∈J

{
∂jf(x̂s)∂

kf(x̂s)

∑
q5k

1

(k − q)!

(
X̂su

)k−q
X(j)
su ⊗X

(q)
ut


+ ∂jf(x̂s)R

(1)
jk X

(j)
su ⊗X

(k)
ut

}
,

where

R
(1)
jk = R

(1)
jk (X)

:=
∑

|q|=m+1−|j+k|

(∫ 1

0

(1− θ)m+1−|j+k|(m+ 1− |j + k|)
q!

∂k+qf(x̂s + θX̂su)dθ

)
(X̂su)q,

and so we obtain that

S1 = J (1)
su ⊗ J

(1)
ut −

∑
(j,k)∈J

∂jf(x̂s)∂
kf(x̂s)

∑
q5k

1

(k − q)!

(
X̂su

)k−q
X(j)
su ⊗X

(q)
ut


=

∑
(j,k)∈J

∂jf(x̂s)R
(1)
jk X

(j)
su ⊗X

(k)
ut +

∑
(j,k)∈I×I\J

∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut (4.7)
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and

|S1| 5
∑

(j,k)∈J

∣∣∣∂jf(x̂s)R
(1)
jk X

(j)
su ⊗X

(k)
ut

∣∣∣+
∑

(j,k)∈I×I\J

∣∣∣∂jf(x̂s)∂
kf(x̂u)X(j)

su ⊗X
(k)
ut

∣∣∣
5

∑
(j,k)∈J

∑
|q|=m+1−|j+k|

K2|(X̂su)qX(j)
su ⊗X

(k)
ut |+

∑
(j,k)∈I×I\J

K2|X(j)
su ⊗X

(k)
ut |

5 K2(1 +m)3e(1 +M)m+3|t− s|(m+1)β+2α

+K2(1 + n)2e(1 +M)2(1 + T )(2n−m−1)β |t− s|(m+1)β+2α

5 2K2(1 + n+m)3e(1 +M)m+3(1 + T )(2n−m−1)β |t− s|(m+1)β+2α. (4.8)

Here we use m 5 n (because (n+ 1)β + α > 1, we have (n+ 1)β + 2α > 1, and the
definition of m implies m 5 n).

On the other hand, one can show that

S2 =
∑

(j,k)∈J

 ∑
|p|5m−|j+k|

1

p!
∂j+pf(x̂s)R

(3)
jkp(X̂su)pX

(jk)
ut + ∂kf(x̂u)R

(2)
jk X

(jk)
ut

 (4.9)

by using the Taylor expansion∑
(j,k)∈J

∂jf(x̂u)∂kf(x̂u)X
(jk)
ut

=
∑

(j,k)∈J

 ∑
|p|5m−|j+k|

1

p!
∂j+pf(x̂s)(X̂su)p +R

(2)
jk

 ∂kf(x̂u)X
(jk)
ut

=
∑

(j,k)∈J

∑
|p|5m−|j+k|

∑
|q|5m−|j+k+p|

1

p!q!
∂j+pf(x̂s)∂

k+qf(x̂s)(X̂su)p+qX
(jk)
ut

+
∑

(j,k)∈J

∑
|p|5m−|j+k|

1

p!
∂j+pf(x̂s)R

(3)
jkp(X̂su)pX

(jk)
ut

+
∑

(j,k)∈J

R
(2)
jk ∂

kf(x̂u)X
(jk)
ut ,

where

R
(2)
jk = R

(2)
jk (X)

:=
∑

|p|=m+1−|j+k|

(∫ 1

0

(1− θ)m+1−|j+k|(m+ 1− |j + k|)
p!

∂j+pf(x̂s + θX̂su)dθ

)
(X̂su)p,

R
(3)
jkp = R

(3)
jkp(X)

:=
∑

|q|=m+1−|j+k+p|

(∫ 1

0

(1− θ)m+1−|j+k+p|(m+ 1− |j + k + p|)
q!

∂k+qf(x̂s+θX̂su)dθ

)
× (X̂su)q.

Because for all (j, k) ∈ J and 0 5 |p| 5 m− |j + k|,∣∣∣∂j+pf(x̂s)R
(3)
jkp(X̂su)pX

(jk)
ut

∣∣∣ 5 K2
∑

|q|=m+1−|j+k+p|

|(X̂su)p+qX
(jk)
ut |

5 K2(1 +m)e(1 +M)m+2|t− s|(m+1)β+2α,
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and ∣∣∣R(2)
jk ∂

kf(x̂u)X
(jk)
ut

∣∣∣ 5 K2
∑

|p|=m+1−|j+k|

|(X̂su)pX
(jk)
ut |

5 K2(1 +m)e(1 +M)m+2|t− s|(m+1)β+2α,

we have

|S2| 5
∑

(j,k)∈J

∑
|p|5m−|j+k|

|∂j+pf(x̂s)R
(3)
jkp(X̂su)pX

(jk)
ut |+

∑
(j,k)∈J

|∂kf(x̂u)R
(2)
jk X

(jk)
ut |

5 K2(1 +m)4e(1 +M)m+2|t− s|(m+1)β+2α

+K2(1 +m)3e(1 +M)m+1|t− s|(m+1)β+2α

5 2K2(1 +m)4e(1 +M)m+2|t− s|(m+1)β+2α. (4.10)

By (4.8) and (4.10), we have∣∣∣J (2)
su + J

(2)
ut + J (1)

su ⊗ J
(1)
ut − J

(2)
st

∣∣∣ 5 |S1|+ |S2| 5 K2C̃2|t− s|(m+1)β+2α,

where C̃2 = 2(1 + n + m)4e(1 + M)m+3(1 + T )(2n−m−1)β. Moreover, by (4.1) and
(4.6), we have∣∣∣Y (1)

su ⊗ Y
(1)
ut − J (1)

su ⊗ J
(1)
ut

∣∣∣ 5 ∣∣∣Y (1)
su

∣∣∣ ∣∣∣Y (1)
ut − J

(1)
ut

∣∣∣+
∣∣∣Y (1)
su − J (1)

su

∣∣∣ ∣∣∣J (1)
ut

∣∣∣
5 2K2C2

1 |t− s|(n+1)β+2α.

Let J (2)
st (P) :=

∑n
p=1 Y

(1)
t0tp−1

⊗ Y (1)
tp−1tp + J

(2)
tp−1tp . By Lemma A.1, there exists p ∈

{1, ..., N} such that (4.5) holds. Note that m 5 n. Then, the above inequalities
imply that∣∣∣J (2)

st (P)− J (2)
st (P\{tp})

∣∣∣
5
∣∣∣J (2)
tp−1tp + J

(2)
tptp+1

+ Y
(1)
tp−1tp ⊗ Y

(1)
tptp+1

− J (2)
tp−1tp+1

∣∣∣
5
∣∣∣J (2)
tp−1tp + J

(2)
tptp+1

+ J
(1)
tp−1tp ⊗ J

(1)
tptp+1

− J (2)
tp−1tp+1

∣∣∣
+
∣∣∣Y (1)
tp−1tp ⊗ Y

(1)
tptp+1

− J (1)
tp−1tp ⊗ J

(1)
tptp+1

∣∣∣
5 K2C̃2|tp+1 − tp−1|(m+1)β+2α + 2K2C2

1 |tp+1 − tp−1|(n+1)β+2α

5 K2
(
C̃2 + 2C2

1T
(n−m)β

)( 2

N − 1

)(m+1)β+2α

|t− s|(m+1)β+2α.

This implies that (note that (m+ 1)β + 2α > 1)

|J (2)
st (P)− J (2)

st | 5 K2C2|t− s|(m+1)β+2α. (4.11)

This shows that {J (2)
st (P)}P is a Cauchy sequence when |P| ↘ 0 (one can adapt

the argument of Claim 1a in the proof of Claim 1 by using (4.11) instead of (4.6)).
Hence, Y (2)

st is well-defined. We also obtain that

|Y (2)
st | 5 |J

(2)
st |+ |Y

(2)
st − J

(2)
st | 5 K2C2|t− s|2α.

Next, we prove that
∫
f(X̂)dX satisfies Chen’s relation. Fix ε > 0 and s < u < t. By

taking a partition P = {s = t0 < t1 < ... < tN = t} of [s, t] small enough (which has
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the point tÑ = u), we have

∣∣∣Y (1)
st − Y (1)

su − Y
(1)
ut

∣∣∣ 5 ∣∣∣∣∣Y (1)
st −

N∑
p=1

J
(1)
tp−1tp

∣∣∣∣∣+

∣∣∣∣∣∣Y (1)
su −

Ñ∑
p=1

J
(1)
tp−1tp

∣∣∣∣∣∣
+

∣∣∣∣∣∣Y (1)
ut −

N∑
p=Ñ+1

J
(1)
tp−1tp

∣∣∣∣∣∣
5 3ε

and so the first level of
∫
f(X̂)dX satisfies Chen’s relation. Note that this result

implies that
N∑
q=1

Y
(1)
t0tq−1

⊗ Y (1)
tq−1tq =

∑
0<p<q5N

Y
(1)
tp−1tp ⊗ Y

(1)
tq−1tq .

Note also that

Y (1)
su ⊗ Y

(1)
ut =

 Ñ∑
p=1

Y
(1)
tp−1tp

⊗
 N∑
q=Ñ+1

Y
(1)
tq−1tq


=

∑
0<p<q5N

Y
(1)
tp−1tp ⊗ Y

(1)
tq−1tq −

∑
0<p<q5Ñ

Y
(1)
tp−1tp ⊗ Y

(1)
tq−1tq

−
∑

Ñ<p<q5N

Y
(1)
tp−1tp ⊗ Y

(1)
tq−1tq

=

N∑
p=1

Y
(1)
t0tp−1

⊗ Y (1)
tp−1tp −

Ñ∑
p=1

Y
(1)
t0tp−1

⊗ Y (1)
tp−1tp −

N∑
p=Ñ+1

Y
(1)
tÑ tp−1

⊗ Y (1)
tp−1tp ,

and so we have∣∣∣Y (2)
st − Y (2)

su − Y
(2)
ut − Y (1)

su ⊗ Y
(1)
ut

∣∣∣ 5 ∣∣∣Y (2)
st − Sst

∣∣∣+
∣∣∣Y (2)
su − Ssu

∣∣∣+
∣∣∣Y (2)
ut − Sut

∣∣∣ 5 3ε,

where

Sst :=

N∑
p=1

Y (1)
t0tp−1

⊗ Y (1)
tp−1tp +

∑
(j,k)∈J

∂jf(x̂tp−1
)∂kf(x̂tp−1

)X
(jk)
tp−1tp

 ,

Ssu :=

Ñ∑
p=1

Y (1)
t0tp−1

⊗ Y (1)
tp−1tp +

∑
(j,k)∈J

∂jf(x̂tp−1
)∂kf(x̂tp−1

)X
(jk)
tp−1tp

 ,

Sut :=

N∑
p=Ñ+1

Y (1)
tM tp−1

⊗ Y (1)
tp−1tp +

∑
(j,k)∈J

∂jf(x̂tp−1
)∂kf(x̂tp−1

)X
(jk)
tp−1tp

 .

Therefore, the second level of
∫
f(X̂)dX also satisfies Chen’s relation. The above

argument proves statement (i) of Theorem 2.6.

(Claim 3) Suppose that there exist M > 0 and ε > 0 such that

|V̂st| ∨ |Ŵst| 5M |t− s|β , |V (i)
st | ∨ |W

(i)
st | 5M |t− s||i|β+α,

|V(jk)
st | ∨ |W

(jk)
st | 5M |t− s||j+k|β+2α,
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|V̂st−Ŵst| 5 ε|t−s|β , |V (i)
st −W

(i)
st | 5 ε|t−s||i|β+α, |V(jk)

st −W
(jk)
st | 5 ε|t−s||j+k|β+2α.

Then, there exists C3 > 0 such that∣∣∣∣∣
(∫

f(V̂)dV

)(1)

st

−
(∫

f(Ŵ)dW

)(1)

st

∣∣∣∣∣ 5 KεC3|t− s|α, (4.12)

where

C3 := (1 + n)2e+1(1 + T )(n+1)β{1 + (3e+ 2)(1 +M)n+22(n+1)β+αζ((n+ 1)β + α)}.

Proof. By the assumption and the mean value theorem, we have

∣∣∣J (1)(V)st − J (1)(W)st

∣∣∣ =

∣∣∣∣∣∑
i∈I

∂if(v̂s)V
(i)
st −

∑
i∈I

∂if(ŵs)W
(i)
st

∣∣∣∣∣
5
∑
i∈I

{
|∂if(v̂s)− ∂if(ŵs)||V (i)

st |+ |∂if(ŵs)||V (i)
st −W

(i)
st |
}

5 Kε(1 + eM)(1 + n)e(1 + T )(n+1)β |t− s|α. (4.13)

By (4.3), (4.4), and the mean value theorem, for all s 5 u 5 t,∣∣∣J (1)(V)su + J (1)(V)ut − J (1)(V)st −
{
J (1)(W)su + J (1)(W)ut − J (1)(W)st

}∣∣∣
5
∑
i∈I

∣∣∣Ri(V)V
(i)
ut −Ri(W)W

(i)
ut

∣∣∣
5
∑
i∈I

∣∣∣Ri(V)−Ri(W)||V (i)
ut |+ |Ri(W)||V (i)

ut −W
(i)
ut

∣∣∣
5 (2e+ 1)Kε(1 + n)2e+1(1 + T )β(1 +M)n+2|t− s|(n+1)β+α

+Kε(1 + n)2e(1 +M)n+1|t− s|(n+1)β+α

5 (2e+ 2)Kε(1 + n)2e+1(1 + T )β(1 +M)n+2|t− s|(n+1)β+α.

By Lemma A.1, there exists p ∈ {1, ..., N} such that (4.5) holds. By the above
inequality, we have that∣∣∣J (1)(V)st(P)− J (1)(V)st(P\{tp})−

{
J (1)(W)st(P)− J (1)(W)st (P\{tp})

}∣∣∣
=

∣∣∣∣J (1)(V)tp−1tp + J (1)(V)tptp+1
− J (1)(V)tp−1tp+1

−
{
J (1)(W)tp−1tp + J (1)(W)tptp+1

− J (1)(W)tp−1tp+1

} ∣∣∣∣
5 (2e+ 2)Kε(1 + n)2e+1(1 + T )β(1 +M)n+2|tp+1 − tp−1|(n+1)β+α

5 (2e+ 2)Kε(1 + n)2e+1(1 + T )β(1 +M)n+2

(
2

N − 1

)(n+1)β+α

|t− s|(n+1)β+α.

This implies that (note that (n+ 1)β + α > 1)∣∣∣J (1)(V)st(P)− J (1)(V)st − {J (1)(W)st(P)− J (1)(W)st}
∣∣∣

5 (2e+ 2)Kε(1 + n)2e+1(1 + T )β(1 +M)n+22(n+1)β+αζ((n+ 1)β + α)|t− s|(n+1)β+α.

(4.14)
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Therefore, by (4.13) and (4.14), we conclude that∣∣J (1)(V)st(P)− J (1)(W)st(P)
∣∣

5
∣∣J (1)(V)st − J (1)(W)st

∣∣+
∣∣J (1)(V)st(P)− J (1)(V)st

−
{
J (1)(W)st(P)− J (1)(W)st

}∣∣
5 Kε(1 + eM)(1 + n)e(1 + T )(n+1)β |t− s|α

+ (2e+ 2)Kε(1 + n)2e+1(1 + T )β(1 +M)n+2

× 2(n+1)β+αζ((n+ 1)β + α)|t− s|(n+1)β+α

5 KεC3|t− s|α.

Taking |P| ↘ 0, we prove (4.12).

(Claim 4) Suppose that there exist M > 0 and ε > 0 such that

|V̂st| ∨ |Ŵst| 5M |t− s|β , |V (i)
st | ∨ |W

(i)
st | 5M |t− s||i|β+α,

|V(jk)
st | ∨ |W

(jk)
st | 5M |t− s||j+k|β+2α,

|V̂st − Ŵst| 5 ε|t− s|β , |V (i)
st −W

(i)
st | 5 ε|t− s||i|β+α,

|V(jk)
st −W

(jk)
st | 5 ε|t− s||j+k|β+2α.

Then ∣∣∣∣∣
(∫

f(V̂)dV

)(2)

st

−
(∫

f(Ŵ)dW

)(2)

st

∣∣∣∣∣ 5 K2εC4|t− s|2α, (4.15)

where

C4 := (1 +m)2e(1 + 2eM)(1 + T )(m+1)β

+ (1 + T (n−m)β)(C̃4 + 4C1C3)2(m+1)β+2αζ((m+ 1)β + 2α),

C̃4 := (15e+ 7)(1 + n+m)3e(1 +M)m+3(1 + T )(2n−m)β .

In particular, the integration map is Lipschitz continuous.

Proof. The assumption and the mean value theorem imply that∣∣∣J (2)(V)st − J (2)(W)st

∣∣∣ 5 ∑
(j,k)∈J

∣∣∣∂jf(v̂s)∂
kf(v̂s)V

(jk)
st − ∂jf(ŵs)∂

kf(ŵs)W
(jk)
st

∣∣∣
5 K2ε(1 +m)2e(2eM + 1)(1 + T )(m+1)β |t− s|2α. (4.16)

On the other hand, by (4.7) and (4.9), we can calculate

|S1(V)− S1(W)|

5
∑

(j,k)∈J

|∂jf(v̂s)R
(1)
jk (V)V (j)

su ⊗ V
(k)
ut − ∂jf(ŵs)R

(1)
jk (W)W (j)

su ⊗W
(k)
ut |

+
∑

(j,k)∈I×I\J

|∂jf(v̂s)∂
kf(v̂u)V (j)

su ⊗ V
(k)
ut − ∂jf(ŵs)∂

kf(ŵu)W (j)
su ⊗W

(k)
ut |

5 K2ε(1 +m)3e(1 +M)m+3(1 + T )β(5e+ 2)|t− s|(m+1)β+2α

+K2ε(1 + n)2e(1 +M)2(1 + T )(2n−m)β(2e+ 2)|t− s|(m+1)β+2α

5 K2ε(1 + n+m)3e(1 +M)m+3(1 + T )(2n−m)β(7e+ 4)|t− s|(m+1)β+2α,
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and∣∣S2(V)− S2(W)
∣∣

5
∑

(j,k)∈J

∑
|p|5m−|j+k|

∣∣∂j+pf(v̂s)R
(3)
jkp(V)(V̂su)pV

(jk)
ut − ∂j+pf(ŵs)R

(3)
jkp(W)(Ŵsu)pW

(jk)
ut

∣∣
+

∑
(j,k)∈J

∑
|p|5m−|j+k|

∣∣∂kf(v̂u)R
(2)
jk (V)V

(jk)
ut − ∂kf(ŵu)R

(2)
jk (W)W

(jk)
ut

∣∣
5 K2ε(5e+ 2)(1 +m)3e+1(1 + T )β(1 +M)m+2|t− s|(m+1)β+2α

+K2ε(3e+ 1)(1 +m)3e+1(1 +M)m+2|t− s|(m+1)β+2α

5 K2ε(8e+ 3)(1 +m)3e+1(1 + T )β(1 +M)m+2|t− s|(m+1)β+2α.

Therefore, we have

|Σ(V)sut − Σ(W)sut|5 |S1(V)− S1(W)|+ |S2(V)− S2(W)| 5K2εC̃4|t− s|(m+1)β+2α,

where

Σsut(V) := J (2)(V)su + J (2)(V)ut + J (1)(V)su ⊗ J (1)(V)ut − J (2)(V)st, s 5 u 5 t

and

C̃4 = (15e+ 7)(1 + n+m)3e(1 +M)m+3(1 + T )(2n−m)β .

Let

Γ(V)sut := Y (1)(V)su ⊗ Y (1)(V)ut − J (1)(V)su ⊗ J (1)(V)ut, s 5 u 5 t.

Then by (4.1), (4.6), (4.12), and (4.14), we have

|Γ(V)sut − Γ(W)sut|

5
∣∣Y (1)(V)su ⊗ (Y (1)(V)ut − J (1)(V)ut)− Y (1)(W)su ⊗ (Y (1)(W)ut − J (1)(W)ut)

∣∣
+
∣∣(Y (1)(V)su − J (1)(V)su)⊗ J (1)(V)ut − (Y (1)(W)su − J (1)(W)su)⊗ J (1)(W)ut

∣∣
5
∣∣∣Y (1)(V)su

∣∣∣ ∣∣∣Y (1)(V)ut − J (1)(V)ut − Y (1)(W)ut + J (1)(W)ut

∣∣∣
+
∣∣∣Y (1)(V)su − Y (1)(W)su

∣∣∣ ∣∣∣Y (1)(W)ut − J (1)(W)ut

∣∣∣
+
∣∣∣Y (1)(V)ut − J (1)(V)ut − Y (1)(W)ut + J (1)(W)ut

∣∣∣ ∣∣∣J (1)(V)ut

∣∣∣
+
∣∣∣Y (1)(W)ut − J (1)(W)ut

∣∣∣ ∣∣∣J (1)(V)ut − J (1)(W)ut

∣∣∣
5 K2ε4C1C3|t− s|(n+1)β+2α.

By Lemma A.1, there exists p ∈ {1, ..., N} such that (4.5) holds. Then we have∣∣∣J (2)(V)st(P)− J (2)(V)st(P\{tp})−
{
J (2)(W)st(P)− J (2)(W)st(P\{tp})

}∣∣∣
5
∣∣Σ(V)tp−1tptp+1

− Σ(W)tp−1tptp+1

∣∣+
∣∣Γ(V)tp−1tptp+1

− Γ(V)tp−1tptp+1

∣∣
5 K2εC̃4|ti+1 − ti−1|(m+1)β+2α +K2ε4C1C3|ti+1 − ti−1|(n+1)β+2α

5 K2ε(1 + T (n−m)β)(C̃4 + 4C1C3)

(
2

N − 1

)(m+1)β+2α

|t− s|(m+1)β+2α.
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This implies that (note that (m+ 1)β + 2α > 1)∣∣∣J (2)(V)st(P)− J (2)(V)st −
{
J (2)(W)st(P)− J (2)(W)st

}∣∣∣
5 K2ε(1 + T (n−m)β)(C̃4 + 4C1C3)2(m+1)β+2αζ((m+ 1)β + 2α)|t− s|(m+1)β+2α.

(4.17)

Therefore, by (4.16) and (4.17) we conclude that∣∣J (2)(V)st(P)− J (2)(W)st(P)
∣∣

5
∣∣J (2)(V)st − J (2)(W)st

∣∣
+
∣∣J (2)(V)st(P)− J (2)(V)st − {J (2)(W)st(P)− J (2)(W)st}

∣∣
5 K2εC4|t− s|2α.

Taking |P| ↘ 0, we have (4.15).

For any V,W ∈ EM , take ε := d(α,β)(V,W). Then we have

|V̂st| ∨ |Ŵst| 5M |t− s|β , |V (i)
st | ∨ |W

(i)
st | 5M |t− s||i|β+α,

|V(jk)
st | ∨ |W

(jk)
st | 5M |t− s||j+k|β+2α,

and

|V̂st−Ŵst| 5 ε|t−s|β , |V (i)
st −W

(i)
st | 5 ε|t−s||i|β+α, |V(jk)

st −W
(jk)
st | 5 ε|t−s||j+k|β+2α.

Therefore, by (4.12) and (4.15) we conclude that for all V,W ∈ EM ,

dα

(∫
f(V̂)dV,

∫
f(Ŵ)dW

)
5 KC3ε+K2C4ε 5 K(C3 +KC4)d(α,β)(V,W),

and this is the claim.

Claims 1–4 complete the proof of Theorem 2.6.

4.2 Proof of Proposition 3.1

We use the following lemmas.

Lemma 4.1 ([42] Proposition 1.1.2).

I1(g)Ip(g
⊗p) = Ip+1(g⊗(p+1)) + p||g||2L2Ip−1(g⊗(p−1)), g ∈ L2(R+), p = 1.

Lemma 4.2 ([36] Corollary 9.7). Let Y belong to the m-th Wiener chaos and p = 2. Then
we have

||Y ||p 5
√
m+ 1(p− 1)m/2||Y ||2.

Proof of Proposition 3.1. (i) Because γ < 1/2, X̂ is well-defined and one can prove that
KW (t) =

∫ t
0
κ(t−r)dWr. The modified Chen’s relation follows from the binomial theorem

as illustrated in the Introduction. For the Hölder property, by Kolmogorov’s continuity
theorem (see Theorem 3.1 in [16]), it is sufficient to prove the following inequalities:

||X(i)
st ||p5C|t−s||i|ζ+1/2, ||X(jk)

st ||p5C|t−s||j+k|ζ+1, p = 2, i ∈ I, (j, k) ∈ J, (s, t) ∈ ∆T .

Fix s < r < t. Note that X̂(1)
sr =

∫ r
0
κsr(u)dWu. Then by using Lemma 4.1 repeatedly, we

have that for all m ∈ Z+,(
X̂(1)
sr

)2m
=

m∑
l=0

c̃l,mI2l(κ
⊗2l
sr )||κsr||2m−2l

L2 ,

(
X̂(1)
sr

)2m+1
=

m∑
l=0

cl,mI2l+1(κ⊗(2l+1)
sr )||κsr||2m−2l

L2 ,
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where c0,0 = 1,

c̃l,m =


c0,m−1 l = 0,

cl−1,m−1 + (2l + 1)cl,m−1 l = 1, ...,m− 1,

1 otherwise,

and

cl,m =

{
c̃l,m + 2(l + 1)c̃l+1,m l = 0, ...,m− 1,

1 otherwise.

Then the assumption γ < 1/2 and Lemma 4.2 imply that for all m ∈ Z+,∣∣∣∣∣∣∣∣∫ t

s

(
X̂(1)
sr

)2m (
X̂(2)
sr

)i2
dXr

∣∣∣∣∣∣∣∣
p

5
m∑
l=0

c̃l,m

∣∣∣∣∣∣∣∣∫ t

s

I2l(κ
⊗2l
sr )||κsr||2m−2l

L2 |r − s|ζi2dXr

∣∣∣∣∣∣∣∣
p

5
m∑
l=0

c̃l,mp
(2l+1)/2

∣∣∣∣∣∣∣∣∫ t

s

I2l(κ
⊗2l
sr )||κsr||2m−2l

L2 |r − s|ζi2dXr

∣∣∣∣∣∣∣∣
2

5 p(i1+1)/2

(
m∑
l=0

c̃l,mp
l−m

)
|t− s||i|ζ+1/2−i1/2(2γ−1)

5 Cp(i1+1)/2

(
m∑
l=0

c̃l,mp
l−m

)
|t− s||i|ζ+1/2,

and ∣∣∣∣∣∣∣∣∫ t

s

(
X̂(1)
sr

)2m+1 (
X̂(2)
sr

)i2
dXr

∣∣∣∣∣∣∣∣
p

5
m∑
l=0

cl,m

∣∣∣∣∣∣∣∣∫ t

s

I2l+1(κ⊗(2l+1)
sr )||κsr||2m−2l

L2 |r − s|ζi2dXr

∣∣∣∣∣∣∣∣
p

5
m∑
l=0

cl,mp
(2l+2)/2

∣∣∣∣∣∣∣∣∫ t

s

I2l+1(κ⊗(2l+1)
sr )||κsr||2m−2l

L2 |r − s|ζi2dXr

∣∣∣∣∣∣∣∣
2

5 p(i1+1)/2

(
m∑
l=0

cl,mp
l−m

)
|t− s||i|ζ+1/2−i1/2(2γ−1)

5 Cp(i1+1)/2

(
m∑
l=0

cl,mp
l−m

)
|t− s||i|ζ+1/2.

Therefore, we conclude that for all i = (i1, i2) ∈ Z2
+,

||X(i)
st ||p =

∣∣∣∣∣∣∣∣∫ t

s

(
X̂(1)
sr

)i1 (
X̂(2)
sr

)i2
dXr

∣∣∣∣∣∣∣∣
p

5 Cp(i1+1)/2|t− s||i|ζ+1/2, (4.18)

and this implies the claim. By the same argument, we have

||X(jk)
st ||p 5 Cp(j1+k1+2)/2|t− s||j+k|ζ+1, (j, k) = ((j1, j2), (k1, k2)) ∈ Z2

+ ×Z2
+. (4.19)

(ii) By (i) and Theorem 2.6, for a.s. ω, the limit(∫
f(X̂)dX

)(1)

st

= lim
N→∞

N∑
q=1

∑
i∈I

∂if(X̂tq−1)X
(i)
tq−1tq

exists. Because ∫ t

s

f(X̂r)dXr = lim
N→∞

N∑
q=1

f(X̂tq−1
)X

(0)
tq−1tq
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in the sense of the convergence in probability, it is sufficient to prove that for all i ∈ I\{0},

lim
N→∞

N∑
q=1

∂if(X̂tq−1
)X

(i)
tq−1tq = 0

in probability. Fix i ∈ I\{0}. We can assume f ∈ Cn+2
b without loss of generality. By the

result (i), we have

E

[(
X

(i)
st

)2
]

= C|t− s|2|i|ζ+1 <∞,

and so taking K := ||f ||Cn+2
b

, we conclude that

E

( N∑
q=1

∂if(x̂tq−1
)X

(i)
tq−1,tq

)2
 =

N∑
q=1

E

[(
∂if(x̂tq−1

)X
(i)
tq−1tq

)2
]

5 K2
N∑
q=1

|tq − tq−1|2|i|ζ+1

= K2

(
sup

|t−s|5|P|
|t− s|

)2|i|ζ

T

→ 0 (as |P| ↘ 0),

and this indicates the L2 convergence.

4.3 Proof of Theorem 3.2

Denote by C[0,T ] the set of the R-valued continuous functions on [0, T ] equipped with
the uniform topology. Let C∆T

be the set of continuous functions on ∆T , taking values in
RD, equipped with the uniform topology for the metric

d(X,Y ) := sup
(s,t)∈∆T

|Xst − Yst| , X, Y ∈ C∆T
.

We use the same notation C∆T
for different dimensions D, more specifically any one

of D = 1, D = max{|i|| i ∈ I}, or D = max{|j + k|| (j, k) ∈ J}. Let S0 be the set of the
R-valued {Ft}-adapted simple processes on [0, T ]× Ω and

S :=

{
Z ∈ S0

∣∣∣∣∣ sup
t∈[0,T ]

|Zt| 5 1

}
.

Definition 4.3 ([27]). Let {V n} be a sequence of R-valued semimartingales on [0, T ]×Ω.
We say that the sequence is uniformly exponentially tight (UET) if for every T > 0 and
every a > 0 there is KT,a such that

lim sup
n→∞

1

n
log sup

Z∈S
P

[
sup
t∈[0,T ]

|(Z− · V n)t| = KT,a

]
5 −a, (4.20)

where Z− · V is the Itô integral of Z with respect to V :

(Z− · V )t :=

∫ t

0

Zr−dVr,

For a one-dimensional Brownian motion W , V n = n−1/2W is an example of a UET
sequence; see Lemma 2.4 of [27].
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Theorem 4.4. Let {Un} be a UET sequence of R-valued semimartingales and {V n}
a sequence of R-valued continuous adapted processes. Assume that the sequence
{(Un, V n)} satisfies the LDP on C[0,T ] × C[0,T ] with speed n−1 and good rate function J̃∗.
Then the sequence {(Un, V n, (Un ·i V n)i∈I)} satisfies the LDP on C[0,T ] × C[0,T ] × C∆T

with speed n−1 and good rate function

J̃∗∗(u, v, x) :=

{
J̃∗(u, v), v ∈ BV, ∀i ∈ I, x(i) = u ·i v,
∞, otherwise,

= inf
{
J̃∗(u, v)

∣∣∣ u, v ∈ C[0,T ], v ∈ BV, ∀i ∈ I, x(i) = u ·i v
}
,

(4.21)

where BV is the set of the functions of bounded variation on [0, T ], x = (x(i))i∈I ∈ C∆T

and

(u ·i v)st :=

∫ t

s

(ur − us)idvr.

Proof. By the assumption and the contraction principle, {(Un, V n, ((Un)i)i∈I)} satisfies
the LDP with good rate function

Λ1(u, v, ϕ) = inf
{
J̃∗(u, v)

∣∣∣ ∀i ∈ I, ϕ(i) = ui
}
.

Therefore, by [27][Theorem 1.2], we have that {(Un, V n, ((Un)i, Un �i V n)i∈I)} satisfies
the LDP with good rate function

Λ2(u, v, ϕ, x) = inf
{
J̃∗(u, v)

∣∣∣u, v ∈ C[0,T ], v ∈ BV, (ϕ(i), x(i)) = (ui, u�i v)
}
,

where (u�i v)t := (u ·i v)0t. Note that by the modified Chen’s relation (1.2), we have

(u ·i v)st = (u�i v)t − (u�i v)s −
∑
p<i

1

(i− p)!
(us − u0)i−p(u ·p v)st.

Hence, by the contraction principle again with the aid of induction, we see that
{(Un, V n, (Un ·i V n)i∈I)} satisfies the LDP with good rate function (4.21).

Theorem 4.5. Under the same conditions as in Theorem 4.4, the sequence

{(δUn, (Un ·i V n)i∈I , (U
n ∗jk V n)(j,k)∈J)}

satisfies the LDP on C∆T
× C∆T

× C∆T
with speed n−1 with good rate function

J̃∗∗∗(x̂, x,x) = inf

{
J̃∗(u, v)

∣∣∣∣∣ u, v ∈ C[0,T ], v ∈ BV,

∀i ∈ I, ∀(j, k) ∈ J, (x̂, x(i),x(jk)) = (δu, u ·i v, u ∗jk v)

}
,

(4.22)

where (δu)st := ut − us and

(u ∗jk v)st :=

∫ t

s

(u ·j v)sr(ur − us)kdvr.

Proof. By Theorem 4.4 and the contraction principle, the sequence{(
Un, V n, (Un ·i V n)i∈I , ((U

n �j V n)(Un)k)(j,k)∈J
)}

satisfies the LDP with good rate function

Λ3(u, v, x, ϕ) = inf
{
J̃∗(u, v)

∣∣∣u, v ∈ C[0,T ], v ∈ BV, (x(i), ϕ(jk)) = (u ·i v, (u�j v)uk)
}
.
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Therefore, by [27][Theorem 1.2], we have that{(
Un, (Un ·i V n)i∈I , (U

n ~jk V
n)(j,k)∈J

)}
satisfies the LDP with good rate function

Λ4(u, x, ϕ) = inf
{
J̃∗(u, v)

∣∣∣u, v ∈ C[0,T ], v ∈ BV, (x(i), ϕ(jk)) = (u ·i v, u~jk v)
}
,

where (U ~jk V )t = (U ∗jk V )0t. Note that by the modified Chen’s relation (1.3), we have

(Un ∗jk V n)st = (Un ~jk V
n)t − (Un ~jk V

n)0s

−
∑
q5k

1

(k − q)!
(Un0s)

k−q(Un ·j V n)0s ⊗ (Un ·q V n)st

−
∑

p+q<j+k

1

(j − p)!(k − q)!
(Un0s)

j+k−p−q(Un ∗pq V n)st.

Hence, by the contraction principle again with the aid of induction, we see that
{(δUn, (Un ·i V n)i∈I , (U

n ∗jk V n)(j,k)∈J)} satisfies the LDP on C∆T
× C∆T

× C∆T
with

good rate function (4.22).

Lemma 4.6. (i) The (α, β) rough path X of Theorem 3.2 has exponential integrability,
i.e., there exists η > 0 such that

E
[
exp

{
η|||X|||2(α,β)

}]
<∞.

(ii) Assume that the family of random variables

Xε = (ε1/2X̂, ε(|i|+1)/2X(i), ε(|j+k|+2)/2X(jk))

taking values in Ω(α,β)-Hld satisfies the LDP on C∆T
×C∆T

×C∆T
(with the uniform

topology). Then, Xε satisfies the LDP on Ω(α,β)-Hld (in the d(α,β) topology) with the
same good rate function.

Proof. (i) Let Z := |||X|||(α,β). By the inequality (4.18), (4.19), we have that for all
p ∈ [2,∞),

||X(i)
st ||p 5 Cp(i1+1)/2|t− s||i|ζ+1/2, ||X(jk)

st ||p 5 Cp(j1+k1+2)/2|t− s||j+k|ζ+1,

and this inequality and Kolmogorov’s continuity theorem (see Theorem 3.1 in [16]) imply
that for p = ξ, ∣∣∣∣||X̂||β-Hld

∣∣∣∣
p
5 c̃
√
p,

∣∣∣∣||X(i)|||i|β+α-Hld

∣∣∣∣
p
5 c̃p(i1+1)/2,∣∣∣∣|X(jk)|||j+k|β+2α-Hld

∣∣∣∣
p
5 c̃p(j1+k1+2)/2,

where ξ := dξ̂−1e+ maxi∈Idξ−1
i e+ max(j,k)∈Jdξ−1

jk e, ξ̂ := ζ − β, ξi := |i|(ζ − β) + (1/2− α),
ξjk := |j + k|(ζ − β) + (1− 2α), c̃ := ĉ+ maxi∈I ci + max(j,k)∈J cjk, and

ĉ :=
2C

1− (1/2)(ξ̂−ξ−1)
, ci :=

2C

1− (1/2)(ξi−ξ−1)
, cjk :=

2C

1− (1/2)(ξjk−ξ−1)
.

Then Jensen’s inequality implies that∣∣∣∣∣∣∣∣(||X(i)|||i|β+α-Hld

)1/(|i|+1)
∣∣∣∣∣∣∣∣
p

5
∣∣∣∣∣∣||X(i)|||i|β+α-Hld

∣∣∣∣∣∣1/(|i|+1)

p
5 c̃1/(|i|+1)√p,
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and similarly ∣∣∣∣∣∣∣∣(||X(jk)|||j+k|β+2α-Hld

)1/(|j+k|+2)
∣∣∣∣∣∣∣∣
p

5 c̃1/(|j+k|+2)√p.

Therefore, we have that

||Z||p 5 c
√
p, p = ξ,

where c := c̃+
∑
i∈I c̃

1/(|i|+1) +
∑

(j,k)∈J c̃
1/(|j+k|+2). Then we have that

E
[
exp{ηZ2}

]
=

∞∑
n=0

ηn

n!
||Z||2n2n 5

∑
2n5ξ

ηn

n!
||Z||2n2n +

∑
2n>ξ

(2c2η)n

n!
nn,

and so taking η > 0 small enough (2c2ηe < 1), Stirling’s formula implies the claim.

(ii) We adapt the argument of [18][Proposition 13.43]. By the inverse contraction
principle (see Theorem 4.2.4 of [9]), it is sufficient to prove that {Xε} is exponentially
tight on Ω(α,β)-Hld. By (i), there exists c > 0 such that

P
[
|||X|||(α′,β′) > l

]
5 exp (−cl2)

for any α′ ∈ (α, 1/2) and β′ ∈ (β, 1/2), and this implies that for all M > 0, there exists a
precompact set

KM =
{
X ∈ Ω(α,β)-Hld

∣∣∣ |||X|||(α′,β′) 5√M/c
}

on Ω(α,β)-Hld such that

ε logP [Xε ∈ Kc
M ] = ε logP

[
|||Xε|||(α′,β′) >

√
M

c

]
= ε logP

[
|||X|||(α′,β′) >

√
M

cε

]
5 −M,

from which we conclude the claim.

The inverse contraction principle (see Theorem 4.2.4 of [9]) implies that {ε1/2(W,W⊥)}
satisfies the LDP on Cγ-Hld with speed ε−1 with good rate function Ĩ# (note that
γ ∈ (0, 1/2)). By Theorem 1 in [21], the map f 7→ Kf is continuous from Cγ-Hld to Cζ-Hld.
Then the contraction principle implies that {ε1/2(X̂(1), X) = ε1/2(KW,ρW+

√
1− ρ2W⊥)}

satisfies the LDP on C[0,T ] × C[0,T ] with speed ε−1 with good rate function

Ĩ(1)(w, v) = inf

{
Ĩ#(ṽ)

∣∣∣∣ṽ ∈ H, (w, v) =

(∫ ·
0

κ(· − r)dṽ(1)
r , ρṽ(1) +

√
1− ρ2ṽ(2)

)}
.

Let Fε : C[0,T ]×C[0,T ] → C[0,T ]×C[0,T ]×C[0,T ] and F : C[0,T ]×C[0,T ] → C[0,T ]×C[0,T ]×C[0,T ]

as Fε(w, v)t := ((wt, ε
1/2t), vt) and F (w, v)t := ((wt, 0), vt). Then F is continuous and

Fε(w
ε, vε) → F (w, v) for all converging sequences (wε, vε) → (w, v) with Ĩ(1)(w, v) < ∞.

Hence the extended contraction principle [45][Theorem 2.1] implies that {ε1/2(X̂,X)}
satisfies the LDP on C[0,T ] × C[0,T ] × C[0,T ] with speed ε−1 with good rate function

J̃∗(u, v) := inf
{
Ĩ#(ṽ)

∣∣∣ṽ ∈ H, (u, v) = K(ṽ)
}
.

As mentioned earlier, {Xε = ε1/2X} is UET by Lemma 2.4 of [27] with n = ε−1. Therefore,
by Lemma 4.6 (ii) and Theorem 4.5 (regarding n = ε−1, U = X̂ and V = X), we have
proved Theorem 3.2.

EJP 29 (2024), paper 18.
Page 24/28

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1080
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A partial rough path space for rough volatility

A A lemma from rough path theory

Lemma A.1 ([36] Proposition 1.6). Let ω be a control function, i.e.,

ω(s, u) + ω(u, t) 5 ω(s, t), 0 5 s 5 u 5 t 5 T,

and P = {s = t0 < t1 < ... < tN = t} be a partition on [s, t] (N = 2). Then there exists an
integer i (1 5 i 5 N ) such that

ω(ti−1, ti+1) 5
2

N − 1
ω(s, t).

Proof. By the definition of ω, we have

N−1∑
p=1

ω(ti−1, ti+1) =
∑
i:odd

ω(ti−1, ti+1) +
∑
i:even

ω(ti−1, ti+1) 5 2ω(s, t).

Therefore, there exists such i that satisfies the desired inequality.

B Proof of Theorem 3.8

Proof. For brevity, let σ := σ(S0). By Theorem 3.6 and the contraction principle, tH−1/2S̄t
satisfies the LDP with speed t−2H with good rate function

J̃(s̃) := inf

{
Ĩ#(ṽ)

∣∣∣∣∣ṽ ∈ H, s̃ =

(
σ

∫
f(L̂ ◦K(ṽ)dL ◦K(ṽ)

)(1)

01

}
.

Let ṽ = (h1, h2) ∈ H(R)×H(R). Then

s̃ =

(
σ

∫
f(L̂ ◦K(ṽ))L ◦K(ṽ)

)(1)

01

= σ

∫ 1

0

f

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
d
(
ρh1

t +
√

1− ρ2h2
t

)
= ρσ

∫ 1

0

f

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
dh1

t +
√

1− ρ2σ

∫ 1

0

f

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
dh2

t ,

and so

s̃− ρσ
∫ 1

0
f
(∫ t

0
κH(t− r)ḣ1

rdr, 0
)

dh1
t√

1− ρ2
= σ

∫ 1

0

f

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
dh2

t . (B.1)

Fix h1, and minimize 1
2 ||ṽ||

2
H(R2) with respect to h2 ∈ H(R) under the condition ( B.1).

Let h̃ be the minimizer. Take ε > 0 and ĥ ∈ H(R), and consider h̃+ εĥ. Because h̃ satisfies
the condition (B.1), ∫ 1

0

f

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
dĥt = 0. (B.2)

Because h̃ is the minimizer, we have

d

dε

∣∣∣∣
ε=0

1

2

∫ 1

0

(
˙̃
hr + ε

˙̂
hr)

2dr = 0, i.e.,

∫ 1

0

˙̃
hr

˙̂
hrdr = 0,

for any ĥ with (B.2). Therefore, there exists c ∈ R such that

˙̃
h = cf

(∫ ·
0

κH(· − r)ḣ1
rdr, 0

)
.
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Hence

s̃− ρσ
∫ 1

0
f
(∫ t

0
κH(t− r)ḣ1

rdr, 0
)

dh1
t√

1− ρ2
= cσ

∫ 1

0

f2

(∫ t

0

κH(t− r)ḣ1
rdr, 0

)
dt,

and we conclude that

J̃(s̃) = Ĩ#(ṽ) =
1

2

∫ 1

0

|ḣ1
r|2ds+

{
s̃− ρσ

∫ 1

0
f
(∫ t

0
κH(t− r)ḣ1

rdr, 0
)

dh1
t

}2

2(1− ρ2)σ2
∫ 1

0
f2
(∫ t

0
κH(t− r)ḣ1

rdr, 0
)

dt
,

which is the claim.
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