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Abstract

We observe that non-doubling metric spaces can be characterized as those that contain
arbitrarily large sets of approximately equidistant points and use this to show that, for
γ ∈ (0, 2], the γ-Liouville quantum gravity metric is almost surely not doubling and
thus cannot be quasisymmetrically embedded into any finite-dimensional Euclidean
space. This generalizes the corresponding result of Troscheit [34] for the Brownian
map (which is equivalent to the case γ =

√
8/3).
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1 Introduction

For γ ∈ (0, 2], a γ-Liouville quantum gravity (LQG) surface is a kind of random surface
parametrized by a planar domain D and formally described by the random metric tensor

eγh(z) (dx2 + dy2) (1.1)

where h is some form of the Gaussian free field (GFF) on the domain D and dx2 + dy2

is the Euclidean metric. Such surfaces are known to describe scaling limits of certain
random planar map models (see [15] and the references therein).

Since h is not sufficiently regular to be defined as a random function on D, but is
instead a random distribution (in the sense of Schwartz), the formula (1.1) does not make
literal sense, and thus LQG surfaces are constructed as limits of regularized versions
of eγh(z)dz. For the subcritical case γ ∈ (0, 2), such a construction given in [12] yields
the γ-LQG measure µh, a random measure on D, and the γ-LQG boundary length νh,
a random measure on ∂D, both of which are encompassed by Kahane’s [22] general
theory of Gaussian multiplicative chaos. (The regularization used for γ ∈ (0, 2) does not
work for the critical case γ = 2, for which the LQG measure was constructed in [11].)

LQG surfaces can also be defined as random metric spaces. It was proven in [28,
29, 30] for γ =

√
8/3, and subsequently in [6, 10, 18] for γ ∈ (0, 2), that there exists a

unique random metric dh associated to the GFF h that satisfies a certain list of axioms
associated with LQG (i.e., dh is a geodesic metric that transforms appropriately under
affine coordinate changes and adding a continuous function to h, and is determined by h
in a local way). The metric dh arises as a subsequential limit of Liouville first passage
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LQG metrics are not doubling

percolation, a family of random metrics obtained from a mollified version of the GFF.
Later, in [8] the LQG metric corresponding to the critical value γ = 2 was constructed
and shown to be unique, as were supercritical LQG metrics which correspond to complex
values of γ with |γ| = 2.

Liouville quantum gravity surfaces are conformally covariant as metric measure
spaces in the following sense: given a conformal map ψ : D̃ → D, if we set

Q =
2

γ
+
γ

2
, h̃ = h ◦ ψ +Q log |ψ′|, (1.2)

then by [12, Prop. 2.1], we almost surely have µh̃ = µh ◦ ψ and (as long as ψ extends

by continuity to a homeomorphism between the closures of D̃ and D in the Riemann
sphere) νh̃ = νh ◦ ψ, and by [17, Thm 1.3], we almost surely have dh̃ = dh ◦ ψ.

We can then consider random metric measure spaces parametrized by (D,h) with D a
domain in C and h some form of the GFF on D, with random quantum area and boundary
length measures given by µh and νh and a random metric given by dh, up to conformal
reparametrization – that is, we define a quantum surface as an equivalence class of such
pairs (D,h) under the equivalence relation that identifies pairs related by conformal
coordinate changes as described by (1.2).

In [29] it is shown that, in the particular case γ =
√

8/3, a certain kind of LQG surface
called a quantum sphere is almost surely isometric to another sphere-homeomorphic
random object, the Brownian map introduced by Le Gall [23], and further that this
isometry almost surely pushes forward the LQG measure µh to the natural measure on
the Brownian map, so that the quantum sphere and Brownian map are isomorphic as
metric measure spaces. The law of the Brownian map is, intuitively, that of a “uniform
random element” from the set of metric spaces that are homeomorphic to the sphere S2,
and it was proven independently by Le Gall [23] and Miermont [25] that the Brownian
map is the scaling limit of uniform random planar quadrangulations.

The Brownian map can be constructed using a continuous process (the Brownian
snake) parametrized by the continuum random tree (CRT), a random metric space
constructed from the graph of a Brownian excursion by identifying points connected by
horizontal line segments that stay underneath the graph. The CRT arises as the scaling
limit of uniform discrete plane trees.

LQG is known to describe the scaling limit of certain discrete conformal embeddings
of certain kinds of random planar map (e.g., the Cardy embedding of a uniform random
triangulation [21] and the Tutte embedding of the mated-CRT map [19]). Given a
quantum surface S and an embedding S → D into the plane (i.e., a particular choice of
parametrization (D,h)) obtained via such a scaling limit, one might therefore expect the
embedding S → D to retain some vestige of the conformality of the discrete embeddings.
It is meaningless to ask directly whether the embedding S → D is conformal, as
the complex structure on S comes from the embedding in the first place. However,
since S is a metric space, one could ask whether the embedding is quasisymmetric.
Quasisymmetric maps are embeddings of metric spaces in which the distortion of the
metric is uniformly controlled; when both domain and target space are open subsets
of Rn, locally quasisymmetric maps are equivalent to locally quasiconformal mappings.

In [34], Troscheit proved that the continuum random tree and the Brownian map
almost surely cannot be embedded quasisymmetrically into Rn for any n. The method
was to show that those spaces have the property that for every N one can find sets
of N points all roughly equidistant from each other. This makes it impossible for such
a space to be doubling, i.e. for there to be a constant M such that every open metric
ball can be covered by at most M open balls of half its radius. Moreover, whether a
space is doubling (equivalently, whether its Assouad dimension is finite) is preserved
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under quasisymmetric maps, so that no non-doubling space embeds quasisymmetrically,
for instance, into Rn. Since the equivalence with Brownian surfaces only holds for
γ =

√
8/3, we will instead use GFF techniques to find approximately equidistant sets of

points, generalizing the result of [34] to all γ ∈ (0, 2]:

Theorem 1.1. Let D ⊆ C be a domain and h some variant of the Gaussian free field on D.
Let γ ∈ (0, 2] and let dh be the γ-LQG metric on D associated to h. Then the metric space
(D, dh) almost surely cannot be embedded quasisymmetrically into any doubling metric
space (in particular, into Rn, the sphere Sn, or any complete n-dimensional Riemannian
manifold with non-negative Ricci curvature, for any n ∈ N).

The proof is similar in spirit to Troscheit’s: we show that a set of N roughly equidis-
tant points exists at a given scale with fixed positive probability, then use the scaling
properties of LQG to establish that there is almost surely some scale at which such a
set exists. The key ingredients are: a Girsanov-type result for the GFF that implies
that the metric behaves in a prescribed manner with positive probability; the locality
of the metric w.r.t. the GFF, which implies that one can detect such behaviour just by
exploring the field locally; and the near-independence of the GFF across scales, which
along with locality allows us to upgrade the positive probability result to an almost sure
one. We thus expect that the roadmap established in [34] and here should allow one to
obtain analogous results for other metric spaces constructed in a local manner from a
sufficiently random object (Brownian motion in the cases of the CRT and Brownian map;
the GFF here) satisfying some notion of near-independence in disjoint domains.

2 Preliminaries

2.1 Quasisymmetric embeddings and Assouad dimension

We first recall the definitions of quasisymmetric embedding and Assouad dimension.

Definition 2.1 (Quasisymmetric embeddings). Let (X, dX) and (Y, dY ) be metric spaces
and f : X → Y an injective function. Let Ψ: (0,∞)→ (0,∞) be an increasing homeomor-
phism. Then f is Ψ-quasisymmetric (equivalently, a Ψ-quasisymmetric embedding)
if, for any three distinct points x, y, z ∈ X, we have

dY (f(x), f(y))

dY (f(x), f(z))
≤ Ψ

(
dX(x, y)

dX(x, z)

)
. (2.1)

We say f is quasisymmetric (equivalently, a quasisymmetric embedding) if there
exists some Ψ for which f is Ψ-quasisymmetric.

Recall that quasiconformal maps between planar domains are intuitively those that
send infinitesimal circles to infinitesimal ellipses of bounded eccentricity. We also define
quasiconformality for embeddings between general metric spaces: with X,Y, f as above,
and K ≥ 1, f is K-quasiconformal if, for all x ∈ X,

lim sup
r↓0

sup{dY (f(x), f(y)) : dX(x, y) ≤ r}
inf{dY (f(x), f(y)) : dX(x, y) ≥ r}

≤ K.

For open subsets of Rn with n ≥ 2, locally quasisymmetric embeddings are equivalent
to locally quasiconformal embeddings [35, Cor. 2.6]. Indeed, the following holds for
n ≥ 2 and D any domain in Rn. Firstly [35, Thm 2.3], for each Ψ, if f : D → Rn is a
locally Ψ-quasisymmetric embedding, then f is in fact K-quasiconformal for some K ≥ 1

depending only on Ψ and n. Conversely [35, Thm 2.4], for each K ≥ 1, if f : D → Rn

is K-quasiconformal, and x ∈ D, α > 1, r > 0 such that B(x, αr) ⊆ D, then f |B(x,r) is
Ψ-quasisymmetric for some Ψ depending only on K, n and α. Similar results hold for
smooth connected Riemannian manifolds [1, Thm 2.6].
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We next introduce the Assouad dimension of a metric space. This is defined somewhat
similarly to the upper box-counting dimension, but can be strictly greater – intuitively,
this happens when, in each covering by boxes of a given scale, disproportionately many
boxes are required to cover certain particularly thick parts of the space.

Definition 2.2 (Assouad dimension). Let X be a metric space. For E ⊆ X, let Nr(E) be
the smallest possible cardinality of a set of open balls of radius r that cover E. Then the
Assouad dimension dimAX of X is defined by

dimAX := inf{α ≥ 0 : ∃C ∈ (0,∞)s.t.∀0 < r < R,∀x ∈ X,Nr(B(x,R)) ≤ C(R/r)α}.

In [34] an alternative definition of dimA is used that only quantifies over R < 1. The
Assouad dimension thus defined can be strictly smaller than the one defined in Def. 2.2,
though they are equal when X is compact, and both give dimension n for Rn. Our
results and proofs apply regardless of which definition is used, but we use Def. 2.2 since
under this definition we have the equivalence ([13, Thm 13.1.1]) that dimAX < ∞ if
and only if X is a doubling space, i.e. there exists a finite constant M such that any
open ball in X can be covered by at most M open balls of half its radius. (Under the
other definition this equivalence fails; for example, it assigns dimension zero, rather
than infinity, to the set of integer sequences in `2, which is not doubling.)

As observed by Coifman and Weiss [5, Ch. III, Lemma 1.1], a sufficient condition for
a metric space X to be doubling is the existence of a doubling measure, that is a Borel
measure µ on X for which there is a constant D > 0 such that, for all x ∈ X and r > 0,

0 < µ(B(x, 2r)) ≤ Dµ(B(x, r)) <∞.

A partial converse holds: whilst noting that Q is a doubling space for which there is
no doubling measure, Assouad [2] conjectured that every complete doubling space has
a doubling measure, which was proven by Luukkainen and Saksman [24] building on
Vol’berg and Konyagin’s [36] proof for compact spaces. The Bishop–Gromov inequal-
ity ([4, §11.10, Corollary 3]; see also [14, §2.1]) straightforwardly implies that, for any
complete Riemannian manifold with non-negative Ricci curvature, the measure given by
the volume form is doubling, and thus such manifolds are doubling spaces.

2.2 Gaussian free field

The Gaussian free field (GFF) is a two-time-dimensional analogue of Brownian
motion. We first recall the definition of the zero-boundary GFF from [33, Def. 2.10] on a
domain D ⊂ C with harmonically non-trivial boundary (meaning that a Brownian motion
started from z ∈ D will almost surely hit ∂D). Let Hs(D) be the set of smooth functions
with compact support contained in D, equipped with the Dirichlet inner product

(f, g)∇ =
1

2π

∫
D

∇f(x) · ∇g(x) dx,

and complete this inner product space to a Hilbert space H(D). Taking an orthonormal
basis (ϕn) of H(D) and letting (αn) be i.i.d. N(0, 1) variables, we then define the zero-
boundary GFF in D as a random linear combination of elements of H(D) given by

h =
∑
n

αnϕn. (2.2)

Though this sum does not converge pointwise or in the norm on H(D), it can be shown
(see [33, Prop. 2.7]) that it does converge almost surely in the space of distributions
(so that the L2 pairing f 7→ (h, f) is a continuous linear functional on Hs(D)) and in the
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fractional Sobolev space H−ε(D) for each ε > 0, and moreover that the law of the limit h
does not depend on the choice of basis (ϕn).

We can instead set D to be all of C; as in [27, §2.2.1], we define the whole-plane
Gaussian free field h in the same way as above except that we consider h modulo
additive constant. This means that we quotient out by an equivalence relation ∼ on
the space of distributions defined such that h1 ∼ h2 if and only if h1 − h2 is a constant
distribution, meaning that there exists a ∈ R such that (h1, f) − (h2, f) = a

∫
C
f(z) dz

for all f ∈ Hs(C). An equivalent approach is to consider (h, f) to be defined not for
all f ∈ Hs(C) but only if f ∈ Hs,0, the subspace of Hs(C) consisting of those functions

whose integral over C is zero. We say a random distribution h̃ on C is a whole-plane
GFF plus a continuous function if h̃ can be coupled with a whole-plane GFF h such
that h̃− h is almost surely a continuous function on C. From the expression (2.2), it is
straightforward to prove the Girsanov-type result that, if f is a deterministic smooth
compactly supported function, then the laws of h and h + f are mutually absolutely
continuous (see [26, Prop. 3.4]); we will make repeated use of this fact. Moreover, the
laws of the restrictions of the whole-plane GFF and the zero-boundary GFF on a proper
domain D to a bounded subdomain W ⊂ D with dist (W,∂D) > 0 are mutually absolutely
continuous [27, Prop. 2.11]. Another useful property is that, since the Dirichlet inner
product is conformally invariant, so is the GFF; in particular the GFF is invariant under
translations and scalings (though only modulo additive constant in the whole-plane case).

As well as on Hs(D), the pairing (h, ·) can be defined for certain measures; in
particular, for D 6= C, the average hr(z) on the circle ∂B(z, r) can be defined, whilst for
D = C such circle averages are defined modulo additive constant, and indeed we can fix
the additive constant by, for instance, requiring h1(0) = 0. Moreover, the process

{hr(z) : z ∈ C, r ∈ (0,∞)}

has an almost surely continuous version [12, Prop. 3.1], such that, for z ∈ C fixed, the
process (he−t(z)− h1(z))t∈R is a standard two-sided Brownian motion [12, Prop. 3.3].

2.3 Liouville quantum gravity metrics

[18, Thm 1.2] states that for γ ∈ (0, 2) there exists a measurable map h 7→ dh, from
the space of distributions on C with its usual topology to the space of metrics on C
that are continuous w.r.t. the Euclidean metric, that is characterized by satisfying the
following axioms whenever h is a whole-plane GFF plus a continuous function:

Length space Almost surely, the dh-distance between any two points of C is given by
the infimum of the dh-lengths of continuous paths between the two points.

Locality For a deterministic open set U ⊆ C, define the internal metric dh(·, ·;U) of dh
on U by setting dh(z, w;U) to be the infimum of the dh-lengths of continuous paths
between z and w that are contained in U , for each pair of points z, w ∈ U . Then
dh(z, w;U) is almost surely determined by h|U .

Weyl scaling Let ξ = γ/dγ where dγ is the fractal dimension defined in [7]. Then for
f : C→ R continuous and z, w ∈ C, define

(eξf · dh)(z, w) = inf
P

∫ length(P ;dh)

0

eξf(P (t)) dt

where the infimum is over continuous paths P from z to w parametrized at unit
dh-speed. Then almost surely eξf · dh = dh+f for all continuous f .
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Affine coordinate change For each fixed deterministic r > 0 and z ∈ C it is almost
surely true that, for all u, v ∈ C,

dh(ru+ z, rv + z) = dh(r·+z)+Q log r(u, v),

where Q = 2/γ + γ/2 is the constant appearing in the coordinate change rule (1.2).

The map h 7→ dh is unique in the sense that for any two such objects d, d̃, there is a
deterministic constant C such that whenever h is a whole-plane GFF plus a continuous
function, almost surely we have dh = Cd̃h. This unique (modulo multiplicative constant)
object is the (whole-plane) γ-LQG metric. Following [18] we fix the constant so that
the median distance between the left and right boundaries of [0, 1]2 is 1 when h is
normalized so that h1(0) = 0.

Note that the scaling of dh is controlled by ξ, rather than γ. Indeed, since adding
a constant C to h scales µh by eγC , it should be true that dh is scaled by eξC , where
ξ := γ/dγ and dγ is the Hausdorff dimension of the γ-LQG metric. Though it would be
circular to define dγ in this way, since it occurs in the Weyl scaling axiom, a definition
of dγ for each γ ∈ (0, 2) was obtained in [7] by considering distances in certain discrete
approximations of γ-LQG. A posteriori, it was shown in [20] that the Hausdorff dimension
of the γ-LQG metric is indeed dγ .

The existence and uniqueness of the γ-LQG metric were shown for the critical case
γ = 2 in [8], as well as the supercritical case corresponding to γ ∈ C with |γ| = 2. We
do not treat the supercritical case here, since such metrics have singular points that
are at distance ∞ from all other points and thus, while lower semicontinuous, fail to
induce the Euclidean topology; however, the critical 2-LQG metric was shown to induce
the Euclidean topology in [9] and satisfies the above axiomatic characterization just as
in the subcritical case, except that ξ needs to be replaced by ξc := limγ↑2 γ/dγ .

2.4 Notation

For z ∈ C and R2 > R1 > 0, letAR1,R2
(z) be the Euclidean annulus B(z,R2)\B(z,R1).

3 Non-doubling metric spaces

We begin by giving an alternate characterization of non-doubling metric spaces
(equivalently, those with infinite Assouad dimension) that we will verify for the LQG
metric in order to rule out embeddability into Rn. Namely, we observe that having
infinite Assouad dimension is equivalent to containing arbitrarily large finite sets of
points that are all approximately equidistant from each other, a characterization that
does not seem to have appeared in previous literature.

Definition 3.1. Let (X, d) be a metric space. Given N ∈ N and K > 1, we say that
distinct points x1, . . . , xN ∈ X form an (N,K)-clique if

max
1≤i<j≤N

d(xi, xj) ≤ K min
1≤i<j≤N

d(xi, xj).

For K > 1 we say (X, d) is K-cliquey if it contains an (N,K)-clique for each N ∈ N.

Instead of considering (N,K)-cliques, [34] considers “approximate N -stars” in which
the N points of a clique are also roughly equidistant from a central point that is closer to
each outer point than the outer points are to each other. The proofs in both that paper
and this one actually find approximate N -stars, but for our purposes the more simply
defined (N,K)-cliques suffice, since quasisymmetric images of K-cliquey spaces must
have infinite Assouad dimension:
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Proposition 3.2. Let (X, dX) be a K-cliquey space for some K > 1 and f : (X, dX) →
(Y, dY ) a quasisymmetric mapping. Then dimA Y =∞.

Proof. Suppose (X, dX) is K-cliquey and f : (X, dX) → (Y, dY ) is Ψ-quasisymmetric.
Suppose also that dimA Y <∞, so that there exist α,C ∈ (0,∞) for which Nr(B(y,R)) ≤
C(R/r)α whenever 0 < r < R and y ∈ Y .

Choose N > 4αC(Ψ(K)2 + 1)α and let x1, . . . , xN form an (N,K)-clique in X. Now
by (2.1), for 1 ≤ i, j, k ≤ N distinct we have

dY (f(xi), f(xj))

dY (f(xi), f(xk))
≤ Ψ

(
dX(xi, xj)

dX(xi, xk)

)
≤ Ψ(K) ≤ Ψ(K)2 + 1, (3.1)

since x1, . . . , xN form an (N,K)-clique and Ψ is increasing. Applying the above twice,
for 1 ≤ i, j, k, l ≤ N distinct we have

dY (f(xi), f(xj))

dY (f(xk), f(xl))
=
dY (f(xi), f(xj))

dY (f(xi), f(xk))
· dY (f(xi), f(xk))

dY (f(xk), f(xl))
≤ Ψ(K)2 ≤ Ψ(K)2 + 1. (3.2)

(3.1) and (3.2) together imply that f(x1), . . . , f(xN ) form an (N,Ψ(K)2 + 1)-clique. Now
set r = 1

2 min1≤i<j≤N dY (f(xi), f(xj)) and R = 2 max1≤i<j≤N dY (f(xi), f(xj)). Then
B(f(x1), R) contains all the f(xi) but no open ball of radius r can contain more than one
of the f(xi), so Nr(B(f(x1), R)) ≥ N > 4αC(Ψ(K)2 + 1)α. But R/r ≤ 4(Ψ(K)2 + 1) since
the f(xi) form a (Ψ(K)2 + 1)-clique, so this contradicts Nr(B(y1, R)) ≤ C(R/r)α and we
must have dimA Y =∞.

In fact, being K-cliquey is equivalent to not being doubling (cf. [34, Prop. 2.7]):

Proposition 3.3. Let (X, d) be a metric space. The following are equivalent:

(i) dimA(X) =∞;

(ii) X is not a doubling space;

(iii) X is K-cliquey for some K > 1;

(iv) X is K-cliquey for every K > 1.

Proof. (i) ⇒ (ii): Contrapositively, if X is a doubling space, then it is straightforward to
show that dimA(X) <∞ by iterating the operation of covering a ball with a fixed number
of balls of half its radius (see [13, Thm 13.1.1]).

(ii) ⇒ (iii): If X is not doubling, then given any N ∈ N we can find x ∈ X and R > 0

such that B(x,R) cannot be covered by less than N balls of radius R/2. Let x1 = x and
construct x2, . . . , xN inductively so that xk ∈ B(x,R) \

⋃k−1
i=1 B(xi, R/2) for k = 2, . . . , N

(possible by choice of x and R). Now for 1 ≤ i < j ≤ N we have

R/2 ≤ d(xi, xj) ≤ d(xi, x) + d(x, xj) < 2R,

so the xi form an (N, 4)-clique. Thus X is 4-cliquey.
(iii) ⇒ (iv): If K > 1 and X is K-cliquey, then for any N we can find an (R(N),K)-

clique x1, x2, . . . , xR(N) in X, where R(N) is the Nth Ramsey number, and by definition
of R(N) such a clique must contain N points whose pairwise distances are either all
in [mini<j d(xi, xj),K

1/2 mini<j d(xi, xj)] or all in (K1/2 mini<j d(xi, xj),maxi<j d(xi, xj)],
in either case forming an (N,K1/2)-clique. Iterating this argument, we find that X is
K1/4-cliquey, K1/8-cliquey, and so on.

(iv) ⇒ (i): Apply Prop. 3.2 to the identity on X.
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Remark 3.4. From Prop. 3.2 and Prop. 3.3 we deduce the well-known result that qua-
sisymmetric images of non-doubling spaces are not doubling, and conversely (since the
inverse of a Ψ-quasisymmetric bijection is 1/Ψ(1/·)-quasisymmetric) that quasisymmetric
images of doubling spaces are doubling.

We briefly observe another property that contrasts spaces of infinite and finite
Assouad dimension. Given a metric space (X, dX) and β ∈ (0, 1) one can define the
β-snowflaking dβX of dX as the metric on X given by dβX(x, y) = dX(x, y)β . The Assouad
embedding theorem [3, Prop. 2.6] states that for each α ∈ (0,∞) and β ∈ (0, 1) there
exists n = n(α, β) ∈ N such that, if (X, d) is a metric space such that dimA(X) = α, then
there is a bi-Lipschitz embedding of (X, dβ) into Rn. (Naor and Neiman [31] later proved
that one can choose n = n(α) such that Rn admits bi-Lipschitz embeddings of (X, dβ) for
all β ∈ (1/2, 1) and all X with dimA(X) = α.) For spaces of infinite Assouad dimension,
however, snowflaking does not facilitate bi-Lipschitz embeddings into Rn:

Remark 3.5. Note that, for β ∈ (0, 1), if (X, dX) is K-cliquey then (X, dβX) is Kβ-cliquey;
thus, if dimAX =∞ then the β-snowflaking ofX cannot be embedded quasisymmetrically
into any doubling space (cf. [34, Thm 2.6]).

4 Proof of Theorem 1.1

We will begin by proving the result for the whole-plane GFF and deduce it for other
variants via local absolute continuity. The main task is to show that for N , δ fixed, a
fixed closed disc contains an (N, 1 + δ)-clique with positive probability (by scale and
translation invariance, this probability will not depend on the disc). The basic idea for
this is to consider a polygonal star with N arms and add bump functions to the field in
order to force geodesics between the arms to stay within the star, recalling that the law
of the modified field will be mutually absolutely continuous with that of the original field.
The near-independence of the field in disjoint regions then allows us to translate positive
probability for a fixed disc into an almost sure result: a Markovian exploration of the
domain (we will use the annulus exploration from [16, Lemma 3.1]) will almost surely
find a disc containing an (N, 1 + δ)-clique. Since this holds for every N , we have that
γ-LQG metric spaces are (1 + δ)-cliquey, so by Prop. 3.2 their quasisymmetric images
have infinite Assouad dimension, which as mentioned is equivalent to not being doubling.

Fix N ≥ 2, z0 ∈ C, r > 0, δ ∈ (0, 1) and ε ∈ (0, 1/14). Let h be a whole-plane
GFF, normalized so that (say) h has average zero on some fixed circle disjoint from
B(z0, 8r). Now set zk = z0 + 6re2πik/N , z′k = z0 + 7re2πik/N and wk = z0 + reπi(2k+1)/N for
k = 1, . . . , N , and let KN be the compact set consisting of the polygon whose sides are
the line segments joining

(z′1, w1), (w1, z
′
2), (z′2, w2), (w2, z

′
3), . . . , (z′N , wN ), (wN , z

′
1)

together with this polygon’s interior. For β ∈ (0, 1) let Kβ
N = z0 + (1 − β)(KN − z0).

Fix ζ(ε) > 0 such that the Euclidean 2ζ(ε)-neighbourhood of Kε/2
N is contained in Kε/4

N .
Define the event

A1
C(h) =

{
inf
{
dh(z, w)

∣∣∣ z, w ∈ B(z0, 7r) \Kε/2
N , |z − w| ≥ ζ(ε)

}
> 1/C;

dh(∂B(z0, 2r), ∂B(z0, 5r); intKε
N ) ≤ C

}
.

If h̃ is another field, we define A1
C(h̃) to be the event given by replacing h by h̃ throughout

in the definition of A1
C(h). (In the rest of this proof, we will tacitly use further definitions

of this kind.)
We check that P[A1

C(h)]→ 1 as C →∞. It suffices to observe that, almost surely,

0 < dh(∂B(z0, 2r), ∂B(z0, 5r)) < dh(∂B(z0, 2r), ∂B(z0, 5r); intKε
N ) <∞,
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Figure 1: The points z∗i are chosen to be equidistant from ∂B(z0, 2r); we then arrange
that geodesics between them stay within KN ∪B(z0, 2r) and that the diameter of B(z0, 2r)

is small, making the z∗i almost equidistant from each other.

whilst
inf
{
dh(z, w)

∣∣∣ z, w ∈ B(z0, 7r) \Kε/2
N , |z − w| ≥ ζ(ε)

}
> 0,

since if not we could find z(n), w(n) ∈ B(z0, 7r) \Kε/2
N for each n ∈ N, with |z(n) − w(n)| ≥

ζ(ε) and dh(z(n), w(n))→ 0 as n→∞, and by Bolzano–Weierstrass and continuity of dh
w.r.t. the Euclidean metric, extract subsequences converging to z and w (w.r.t. both the
Euclidean metric and dh) with dh(z, w) = 0 but |z − w| ≥ ζ(ε), a contradiction. (We could
also use the local Hölder continuity of the Euclidean metric w.r.t. dh as proven for the
subcritical case in [10, Prop. 3.18] and extended to the critical case in [32, Prop. 1.10].)

Since P[A1
C(h)]→ 1 as C →∞, we can choose C1 > 0 such that P[A1

C1
(h)] > 0. Let ψ

be a bump function supported in B(z0, 8r) \Kε
N such that ψ ≡ 1 on B(z0, 7r) \Kε/2

N . For
η > 0, let Eη(h) be the event that

inf
{
dh(z, w;A2r,7r(z0) \Kε/2

N )
∣∣∣ z, w ∈ A2r,7r(z0) \Kε/2

N , |z − w| ≥ ζ(ε)
}

≥ 2 (dh(∂B(z0, 2r), ∂B(z0, 5r)) + η) .

If we choose M such that eξM > 2C2
1 , and choose η < eξM/(2C1) − C1, then by Weyl

scaling we have A1
C1

(h) ⊆ Eη(h + Mψ). Thus, since h and h + Mψ have mutually
absolutely continuous laws and P[A1

C1
(h)] > 0, we can fix η1 > 0 so that P[Eη1(h)] > 0.

Since dh(∂B(z0, 2r), ∂B(z0, 5r)) > 0 almost surely, we can fix t = t(η1) > 0 so that

P[dh(∂B(z0, 2r), ∂B(z0, 5r)) > t/(2δ)] > 1− P[Eη1(h)].

Next, note that supz∈A(2−u)r,2r(z0)
dh(z, ∂B(z0, (2−u)r))→ 0 almost surely as u ↓ 0, since if

not we could find v > 0 and sequences z(n), u(n) such that u(n) ↓ 0, z(n) ∈ A(2−u(n))r,2r(z0)
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and dh(z(n), ∂B(z0, (2 − u(n))r)) ≥ v; then any subsequential limit z ∈ ∂B(z0, 2r) must
have dh-distance ≥ v from B(z0, 2r), a contradiction (indeed, given any u ∈ (0, 2), once n
is large enough that u(n) ≤ u we have dh(z(n), B(z0, (2 − u)r)) ≥ v and, taking the
subsequential limit, dh(z,B(z0, (2− u)r)) ≥ v). This convergence holds almost surely and
hence in probability, so we can fix u = u(t, η1) > 0 such that

P

[
sup

z∈A(2−u)r,2r(z0)

dh(z, ∂B(z0, (2− u)r)) < t/3

]
> 1− P

[
{dh(∂B(z0, 2r), ∂B(z0, 5r)) > t/(2δ)} ∩ Eη1(h)

]
(since the right-hand side is strictly less than 1 by choice of t). Since as C →∞ we have
P[diam (B(z0, (2−u)r); dh(·, ·;B(z0, (2−u/2)r))) ≤ C]→ 1, we can fix C2 = C2(u, t, η1) > 0

so that

P[FC2,t,u(h)] := P

[
supz∈A(2−u)r,2r(z0)

dh(z, ∂B(z0, (2− u)r)) < t/3;

diam (B(z0, (2− u)r); dh(·, ·;B(z0, (2− u/2)r))) ≤ C2

]
> 1− P

[
{dh(∂B(z0, 2r), ∂B(z0, 5r)) > t/(2δ)} ∩ Eη1(h)

]
,

i.e., with positive probability bothEη1(h)∩FC2,t,u(h) holds and dh(∂B(z0, 2r), ∂B(z0, 5r)) >

t/(2δ). Now fix a bump function σ such that σ ≡ 1 on B(z0, (2− u/2)r) and σ ≡ 0 outside
B(z0, 2r). For M ′ large enough depending on C2, t, u, on FC2,t,u we have

diam (B(z0, (2− u)r); dh−M ′σ) ≤ t/3, sup
z∈A(2−u)r,2r(z0)

dh−M ′σ(z, ∂B(z0, (2− u)r)) < t/3

(the latter because dh−M ′σ ≤ dh pointwise), which implies diam (B(z0, 2r); dh−M ′σ) < t.
Thus, on the event that both Eη1(h) ∩ FC2,t,u(h) holds and dh(∂B(z0, 2r), ∂B(z0, 5r)) >

t/(2δ), we have diam (B(z0, 2r); dh−M ′σ) < t, whilst dh−M ′σ(∂B(z0, 2r), ∂B(z0, 5r)) >

t/(2δ), and Eη1(h − M ′σ) holds. Indeed, the latter two events only depend on the
field outside B(z0, 2r) so are invariant under replacing h by h−M ′σ. Since h and h−M ′σ
have mutually absolutely continuous laws, we may conclude that with positive probability,
diam (B(z0, 2r); dh) < t, Eη1(h) holds, and dh(∂B(z0, 2r), ∂B(z0, 5r)) > t/(2δ).

Since ε < 1/14, we have zi ∈ intK2ε
N for each i, 0 ≤ i ≤ N , so we can almost

surely find paths γi = γi(h|B(z0,8r)) ⊂ intK2ε
N from z0 to zi for 1 ≤ i ≤ N with finite

dh-length (e.g., by [10, Prop. 3.9]), which we can fix in some manner that is measurable
w.r.t. h|B(z0,8r) considered modulo additive constant. For concreteness, we choose
m ∈ N to be the (random) least number such that, whenever 1 ≤ i ≤ N , 1 ≤ k ≤ m,
dh( 1

m ((m − k)z0 + kzi),
1
m ((m − k + 1)z0 + (k − 1)zi)) < dh( 1

m ((m − k)z0 + kzi), ∂K
2ε
N ),

then choose γi to be the concatenation of the almost surely unique dh-geodesics from
1
m ((m− k + 1)z0 + (k − 1)zi) to 1

m ((m− k)z0 + kzi).
For 1 ≤ i ≤ N , explore γi from z0 towards zi. By continuity of dh(·, ∂B(z0, 2r)), we

can define z∗i as the first point of γi \B(z0, 2r) reached by this exploration such that

dh(z∗i , ∂B(z0, 2r)) = dh(∂B(z0, 2r), ∂B(z0, 5r)).

We argue that, on an event which we have just shown to have positive probability, namely

Gz0,8r(h) := Eη1(h) ∩ {diam (B(z0, 2r); dh) < 2δdh(∂B(z0, 2r), ∂B(z0, 5r))},

the z∗i form an (N, 1 + δ)-clique. On Eη1(h), for 1 ≤ i < j ≤ N we have

dh(z∗i , z
∗
j ) ≥ dh(z∗i , ∂B(z0, 2r)) + dh(z∗j , ∂B(z0, 2r)) = 2dh(∂B(z0, 2r), ∂B(z0, 5r)).

Indeed, this lower bound certainly holds for any path from z∗i to z∗j that intersects

B(z0, 2r). Also, since B(z0, 2r) disconnects the prongs of the star Kε/4
N , any path from z∗i
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to z∗j that does not enter B(z0, 2r) must have a subpath contained in A2r,7r(z0) \Kε/2
N

of Euclidean diameter at least ζ(ε), which on Eη1(h) must have dh-length greater than
2dh(∂B(z0, 2r), ∂B(z0, 5r)).

Finally, on the event that diam (B(z0, 2r); dh) < 2δdh(∂B(z0, 2r), ∂B(z0, 5r)), we have

dh(z∗i , z
∗
j ) ≤ dh(z∗i , ∂B(z0, 2r)) + dh(z∗j , ∂B(z0, 2r)) + diam (B(z0, 2r); dh)

< 2(1 + δ)dh(∂B(z0, 2r), ∂B(z0, 5r)).

Therefore the z∗i form an (N, 1 + δ)-clique. Thus, on Gz0,8r(h), there exist points in
B(z0, 8r) that form an (N, 1 + δ)-clique w.r.t. dh.

Note that, since Gz0,8r(h) only depends on ratios between distances and thus is
determined by the field modulo additive constant, the scale and translation invariance
properties of h imply that the analogous eventGz,r′(h) with z0 and r replaced respectively
by z and r′ (and the necessary changes made in the definitions of γi, z∗i , Eη1(h)) has the
same probability for any z ∈ C and any r′ > 0. Moreover, since Gz,r′(h) is determined by
h|B(z,8r′), it is in fact determined by (h− hR(z′))|B(z,8r′) whenever B(z, 8r′) ⊂ B(z′, R).

We can now consider a sequence of nested concentric annuli within which we have
near-independence of the field, meaning that if we take a closed disc B(z(k), 8r(k)) within
each annulus then at least one of the events Gz(k),r(k)(h) holds. Indeed we are in the
setting of [16, Lemma 3.1], which implies that, say, for the annuli (A2−2k−1,2−2k(0))k∈N
and z(k) = 3·2−2k−2, 8r(k) = 2−2k−3, a positive proportion of the events {Gz(k),8r(k)(h)}Kk=1

hold with probability exponentially high in K. In particular, it is almost surely the case
that at least one of the events Gz(k),8r(k)(h) holds.

Since we have now shown that an (N, 1 + δ)-clique almost surely exists for all N
within a fixed closed disc, the surface (C, dh) is almost surely (1 + δ)-cliquey and thus
cannot be embedded quasisymmetrically into any doubling space. The fact that this
argument finds all the (N, 1 + δ)-cliques within the same disc also means that the local
mutual absolute continuity of GFF variants gives the same result for other LQG surfaces,
and thus we conclude the proof of Theorem 1.1.
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