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Abstract

In H-percolation, we start with an Erdős–Rényi graph Gn,p and then iteratively add
edges that complete copies of H. The process percolates if all edges missing from Gn,p

are eventually added. We find the critical threshold pc when H = Gk,1/2 is uniformly
random, solving a problem of Balogh, Bollobás and Morris. In this sense, we find pc
for most graphs H.
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1 Introduction

Following Balogh, Bollobás and Morris [1], we fix a graph H, and begin with an
Erdős–Rényi graph G0 = Gn,p. Then, for t > 1, we obtain Gt from Gt−1 by adding every
edge that creates a new copy of H. We let 〈Gn,p〉H =

⋃
t>0 Gt denote the graph containing

all eventually added edges. When 〈Gn,p〉H = Kn, we say that the process H-percolates,
or equivalently, in the terminology of Bollobás [4], that Gn,p is weakly H-saturated .

H-percolation generalizes bootstrap percolation [7, 5], which is one of the most
well-studied of all cellular automata [8, 9]. Such processes model evolving networks, in
which sites update their status according to the behavior of their neighbors. Although
the dynamics are local, they can lead to global behavior, emulating various real-world
phenomena of interest, such as tipping points, super-spreading, self-organization and
collective decision-making.

The critical H-percolation threshold is defined to be the point

pc(n,H) = inf{p > 0 : P(〈Gn,p〉H = Kn) > 1/2},

at which Gn,p becomes likely to H-percolate. Problem 1 in [1] asks for

`(H) = − lim
n→∞

log pc(n,H)

log n
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for every graph H. Finding ` corresponds to locating pc = n−`+o(1). The authors state
that “Problem 1 is likely to be hard.” For instance, even `(K2,t) remains open for t > 5;
see Bidgoli et al. [3].

In this note, we answer Problem 1 for random graphs H. We find that typically
`(H) = 1/λ(H), where

λ(H) =
eH − 2

vH − 2

is the adjusted edge per vertex ratio in [1] for graphs H with vH vertices and eH edges.
We recall that Theorem 1 in [1] shows that `(Kk) = 1/λ(Kk) for cliques. This corresponds
to the case α = 1 in the following result, which shows that ` = 1/λ is “stable.”

Theorem 1.1. Fix 0 < α 6 1. With high probability, `(Gk,α) = 1/λ(Gk,α) as k →∞.

The case α = 1/2 answers Problem 6 in [1], that asks for “bounds on pc(n,Gk,1/2)
which hold with high probability as k →∞.” We find that pc = n−1/λ+o(1), except with
exponentially small probability. By the Borel–Cantelli lemma, this holds almost surely
for all large k. Note that Gk,1/2 is uniformly random over simple labelled graphs. In this
sense, we find `(H) for “most” graphs H.

In fact, our proof works for α > A(log k)/k, for some sufficiently large constant A.
See Section 3.1 below for more on this.

In closing, we note that it is natural to ask about k growing with n. For instance,
λ ≈ k/4 when α = 1/2, in which case k = o(log n) appears to be the region of interest.

2 Background

As defined1 in [1], a graph H is balanced if

eF − 1

vF − 2
6 λ(H), (2.1)

for all subgraphs F ⊂ H with 3 6 vF < vH . Otherwise, we call H unbalanced . In [1], it
is shown that ` > 1/λ for all balanced H. A sharper upper bound (on pc) is proved in
[2] for strictly balanced graphs H, which satisfy the above condition, with 6 replaced
by <. Specifically, it is shown that pc = O(n−1/λ) for all such H, replacing no(1) with a
constant.

On the other hand, in [2] it is shown that ` 6 1/λ∗ for all H, with vH > 4 and minimum
degree δH > 2, where

λ∗(H) = min
eH − eF − 1

vH − vF
,

minimizing over all subgraphs F ⊂ H with 2 6 vF < vH . The quantity λ∗ is related to
the “cost” of adding an edge, via the H-percolation dynamics, as depicted in Figure 1.

As observed in [2], we have that λ∗ 6 λ in general, and λ∗ = λ if and only if H is
balanced. Moreover, when H is balanced, single edges F (when vF = 2) attain the
minimum λ∗. When H is strictly balanced, these are the only minimizers.

3 Proof

To prove Theorem 1.1, we show that Gk,α is (strictly) balanced, with high probability.
By the results from [1, 2] discussed above, the result follows.

Let us give some intuition for why a random graph Gk,α, with sufficiently large edge
probability α, is likely to be balanced. If (2.1) fails for some F ⊂ Gk,α, then the edge
density of F is larger than that of Gk,α. For instance, if F includes all but j vertices,

1In [1], balanced graphs are assumed to have eH > 2vH − 2. In fact, this assumption is only needed in the
proof of their Lemma 6. In [2, Lemma 16], a stronger result is proved, without this assumption.
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Figure 1: Suppose that edges in a “base” graph B have already been added. Next, we
add an edge {u, v} using a copy of H. The “price” is eH − eF − 1 edges and vH − vF
vertices, where F = H ∩B. Hence the edge per vertex “cost” is at least λ∗.

then the number of edges between these j vertices and F is less than (roughly) j times
half the average degree in F . By the law of large numbers (when k is large) this large
deviation event is most likely to occur when j = 1, and even then, it is quite unlikely.

We will use the following, standard Chernoff tail estimates. Recall that ifX is binomial
with mean µ then, for 0 < δ < 1,

P(|X/µ− 1| > δ) 6 2 exp[−δ2µ/3]. (3.1)

On the other hand, for δ > 1,

P(X > (1 + δ)µ) 6 exp[−δµ/3]. (3.2)

Proposition 3.1. Suppose that A(log k)/k 6 α 6 1, for some sufficiently large con-
stant A. Then, almost surely, Gk,α is strictly balanced for all large k. In particular,
`(Gk,α) = 1/λ(Gk,α) for all large k.

Proof. If Gk,α is not strictly balanced, then there is a subset S ⊂ [k] of size 3 6 s < k,
such that

eS − 1

s− 2
>
e(Gk,α)− 2

k − 2
, (3.3)

where eS is the number of edges in Gk,α with both endpoints in S. Let e′S = e(Gk,α)− eS
be the number of all other edges in Gk,α, i.e., those with at most one endpoint in S. For
any given S, the random variables eS and e′S are independent. Since

1

s− 2
− 1

k − 2
=

k − s
(s− 2)(k − 2)

,

(3.3) implies that
eS − 1

s− 2
>
e′S − 1

k − s
. (3.4)

Using the Chernoff bounds (3.1) and (3.2), we will estimate the probability that (3.4)
occurs for some S of size 3 6 s < k. Note that

E(eS) =
s(s− 1)

2
α, E(e′S) =

(k − s)(k + s− 1)

2
α. (3.5)

Therefore, if eS = (1 + δ)E(eS), then in order for (3.4) to hold, we would require
e′S 6 (1− δ′ + o(1))E(e′S), where

δ′ =
k − δs
k + s

. (3.6)
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Let Ps(δ) denote the probability that eS and e′S take such values. (We assume δ >

−1 throughout, since clearly the right hand side of (3.3) will be positive, with high
probability.)

Case 1. First, we consider the case that δ < 1. By (3.1) and (3.5), for any given S, it
follows that eS and e′S take such values with probability at most exp[−εαϑ(δ)], for some
ε > 0, where

ϑ(δ) = δ2s2 + (δ′)2(k2 − s2).

Note that ϑ(δ) is convex and minimized at δ∗ = (k − s)/2s, at which point ϑ(δ∗) =

(k − s)k/2. Therefore, when δ < 1,(
k

k − s

)
Ps(δ) 6 (ke−εαk)k−s, (3.7)

for some ε > 0.
Case 2. Next, we consider δ > 1. We claim that(

k

s

)
Ps(δ) 6 (ke−εαk)s, (3.8)

for some ε > 0. We will consider the cases that k/2s is smaller/larger than δ separately.
In the former case, we consider only the large deviation by eS , and in the latter case,
only the deviation by e′S .

Case 2a. If k/2s 6 δ, then consider the event eS = (1 + δ)E(eS). By (3.2) and (3.5),
this occurs with probability at most exp[−εαs2(k/s)], for some ε > 0. Therefore (3.8)
holds in this case.

Case 2b. If k/2s > δ, then consider the event e′S 6 (1− δ′ + o(1))E(e′S), with δ′ as in
(3.6). Since 1 6 δ < k/2s, we have δ′ > 1/3. By (3.1) and (3.5), for large k this occurs
with probability at most exp[−εα(k2 − s2)], for some ε > 0. Then, since s < k/2, we find
once again that (3.8) holds.

Finally, we take a union bound, summing over all relevant values 3 6 s < k for the
size of S. For each such S, there are O(s2) possible values of eS . Therefore, combining
(3.7) and (3.8) above, we find that (3.4) holds for some such S with probability at most
O(k3e−εαk), for some ε > 0. This is o(1) for α > A(log k)/k, for large A, in which case Gk,α
is strictly balanced with high probability. Furthermore, for large A, this probability is
summable. Therefore, by the Borel–Cantelli lemma, almost surely, we have that ` = 1/λ,
for all large k.

3.1 Smaller A

For ease of exposition (and since, in our view, α = 1/2 is the most interesting case)
we have not pursued the smallest possible constant A in the proof above. However,
we expect that more technical arguments can show that, with high probability, Gk,α is
balanced, and so ` = 1/λ, provided that α = A(log k)/k with A > 2/ log(e/2).

Let us give some brief intuition in this direction. Recall that, in the proof above, the
case s = k−1 is critical. This corresponds (roughly speaking) to the existence of a vertex
v with degree less than half the average degree in the subgraph F ⊂ Gk,α induced by the
other k − 1 vertices. Applying the sharper, relative entropy tail bound for the binomial
(see, e.g., Diaconis and Zabell [6, Theorem 1]) when α = A(log k)/k, we have that

P(Bin(k, α) 6 αk/2) = O

(
k−(A/2) log(e/2)√

log k

)
.

Large deviations of eF are significantly less likely, as the expected number of edges in
F is of a larger order O(αk2) than that O(αk) of the expected degree of v. Therefore,
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when A = 2/ log(e/2), it can be seen that such a vertex v exists with probability at most
O(1/

√
log k) = o(1). Therefore, if (2.1) fails, it is due to some smaller F , with s 6 k − 2

vertices, however, the existence of such an F is increasingly less likely as s decreases.
On the other hand, when A < 2/ log(e/2) it can be shown, by the second moment method,
that with high probability such a vertex v exists, in which case Gk,α is unbalanced.

In closing, we remark that it might be of interest to study the behavior of ` as α
decreases to the point α ∼ (log k)/k of connectivity. Note that 2/ log(e/2) ≈ 6.518. When
the minimum degree of Gk,α is at least 2, the general upper bound ` 6 1/λ∗ from [2]
holds. In the extreme case that Gk,α has a leaf, the value of ` is given by Proposition 26
in [1].
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