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Abstract

Consider an arbitrary large population at the present time, originated at an unspeci-
fied arbitrary large time in the past, where individuals within the same generation
independently reproduce forward in time, sharing a common offspring distribution
that may vary across generations. In other words, the reproduction is driven by
a Galton-Watson process in a varying environment. The genealogy of the current
generation, traced backward in time, is uniquely determined by the coalescent point
process (Ai, i ≥ 1), where Ai denotes the coalescent time between individuals i and
i+ 1. In general, this process lacks the Markov property. In constant environment,
Lambert and Popovic (2013) proposed a Markov process of point measures to recon-
struct the coalescent point process. We provide a counterexample showing that their
process lacks the Markov property. The main contribution of this work is to propose a
vector valued Markov process (Bi, i ≥ 1), that can reconstruct the genealogy, with
finite information for every i. Additionally, in the case of linear fractional offspring
distributions, we establish that the variables of the coalescent point process (Ai, i ≥ 1)

are independent and identically distributed.
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1 Introduction

Lambert and Popovic [6] studied the backward genealogy of a random population
where the forward dynamics are produced by a branching process, in either discrete
or continuous-state space. In their model, the population at the present time could
be arbitrarily large, originating from an unspecified distant past. In the discrete state
case, they employed a monotone planar embedding tree where lines of descent do not
intersect. The i-th individual in the past n-th generation, is represented by (n, i) for any
n ∈ Z− := {0,−1,−2, . . . } and i ∈ N := {1, 2, . . . }. Individuals at the present generation
are simply denoted by i instead of (0, i).

They demonstrated that the genealogy of the current generation, traced backward
in time, is uniquely determined by the so-called coalescent point process, denoted as
(Ai, i ≥ 1), where Ai represents the coalescent time between individuals i and i + 1.
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Coalescent point process of branching trees in a varying environment

Generally, this process is not Markov, and characterizing its law poses challenges. To
address this issue, they constructed a sequence-valued process (Di, i ≥ 1) such that
for every i, Ai is the first non-zero entry of Di. Their construction proceeds as follows:
we follow its ancestral line (the so called spine). For every n ∈ N, we consider the
subtree attached to the spine with root at generation −n. We denote by Di(n) the
number of children of the root at the right hand side of the spine, whose descendants
remain alive at the present generation. Although this process is Markov, Di and Di+1

consist of the same infinite sequence for every i, except for a finite number of entries.
Consequently, (Di, i ≥ 1) contains considerable repetitive information. Thus, they
constructed a process (B̃i, i ≥ 1) by removing some information from (Di, i ≥ 1). They
claimed that (B̃i, i ≥ 1) contains the minimal amount of information needed to construct
(Ai, i ≥ 1) while remaining Markov. However, there was a mistake in their proof, and as
exhibited in Example 3.2, (B̃i, i ≥ 1) is not always Markov.

In this paper, our objective is to define a coalescent point process for a population
driven by a Galton-Watson process in a varying environment. Here, individuals within
the same generation share the same offspring distribution, but these distributions vary
across generations. Our main contribution is to propose a new Markov process (Bi, i ≥ 0)

capable of reconstructing the genealogy of a population in a varying environment, using
finite information for every i. This property plays an important role, particularly in
real-life applications, where evolutionary biologists seek to reconstruct the genealogy
of a population based on a finite sample of individuals. For such purposes, employing
the Markov process (Di, i ≥ 1) as a model is impractical, as it necessitates an infinite
sequence of values. Notice that in the case of a constant environment, (Bi, i ≥ 0) is a
Markov process with a finite amount of information, as intended.

We employ the same planar embedding together with the process (Di, i ≥ 0) defined in
[6]. Additionally, we introduce a vector-valued process (Bi, i ≥ 0), which is derived from
restricting Di to some of its initial entries. Specifically, Bi has length li corresponding to
the coalescent time between individuals 1, 2, . . . , i+ 1; with entries defined as Bi(n) =

Di(n) for 1 ≤ n ≤ li. By construction, Ai is the first non-zero entry of Bi, and li = li−1∨Ai.
See Figure 1.

If the environment remains constant, Lambert and Popovic [6] demonstrated that

Figure 1: A Galton-Watson tree in a varying environment and the processes (Ai, i ≥ 1)

and (Bi, i ≥ 1). We utilize colors to represent different subtrees rooted in the spine of
individual 1, whose descendants remain alive at the present generation. The length of
vector Bi corresponds to the height of the subtree attached to the first spine containing
individual i+ 1.
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Coalescent point process of branching trees in a varying environment

the process (Ai, i ≥ 1) is Markov only under the condition that the offspring distribution
is linear fractional, and they derived its distribution. In the case where the varying
environment is linear fractional, Proposition 3.4 demonstrates that (Ai, i ≥ 1) remains
Markov. Furthermore, it is a sequence of independent and identically distributed random
variables, and we obtain its distribution.

The remainder of the paper is structured as follows: In Section 2, we present
Galton-Watson processes in a varying environment and discuss some related properties.
Specifically, for the associated tree, we have developed the concept of stopping lines,
analogous to stopping times, to establish a general branching property. The definitions of
(Ai, i ≥ 1) and (Bi, i ≥ 1) are provided in Section 3. Within this section, we introduce our
main theorem: (Bi, i ≥ 1) is a Markov process that contains finite information for every i
and allows one to reconstruct (Ai, i ≥ 1). Additionally, if the offspring distributions are
linear fractional, we demonstrate that the process (Ai, i ≥ 1) is Markov and explicitly
provide its distribution. Finally, Section 4 is dedicated to the proofs.

2 Galton-Watson processes in a varying environment

Galton-Watson processes in a varying environment model the development of the size
of a population, where individuals reproduce independently, sharing a common offspring
distribution that may vary across generations.

In this context, a varying environment is defined as a sequence E = (en, n ≥ 1)

of probability measures on N0 := {0, 1, . . . }. Let Zn represent the population size at
generation n. The process (Zn, n ≥ 0) is a Markov chain recursively defined as

Z0 = 1 and Zn+1 =

Zn∑
i=1

ξ
(n)
i , n ≥ 0,

where ξ(n)i denotes the number of children of the i-th individual living at generation n,

with a distribution given by en+1. We assume that the variables (ξ
(n)
i , i ≥ 1, n ≥ 1) are all

independent. The process {(Zn, n ≥ 0);P} is called a Galton Watson process in a varying
environment E , abbreviated as GWVE.

Let fn be the generating function of en. For each 0 ≤ m < n and s ∈ [0, 1], we define

fm,n(s) := fm+1 ◦ · · · ◦ fn(s), and fn,n(s) := s, (2.1)

where ◦ denotes the composition. Note that for every s ∈ [0, 1] and 0 ≤ m < n,

f ′m,n(s) =

n∏
`=m+1

f ′`(f`,n(s)), and f ′n,n(s) = 1. (2.2)

Let k ≥ 0. According to Kersting and Vatutin [3], we have

E(sZk+n | Zk = 1) = fk,k+n(s), 0 ≤ s ≤ 1, n ≥ 0.

In particular, (Zk+n, n ≥ 0) conditionally on {Zk = 1}, has the same law as a Galton
Watson process in a varying environment E(k) := (ek+n, n ≥ 1). To simplified the notation,
we denote the law of the process with the shifted environment E(k) by {(Zn, n ≥ 0);P(k)}.

A Galton Watson tree in a varying environment E , abbreviated as GWVE tree, is
the genealogical tree associated with {(Zn, n ≥ 0);P}, starting with one individual. It
can be viewed as a planar rooted tree T , with edges connecting parents to children,
and the root representing the initial individual. Any individual that appears in the
tree may be labeled through its ancestry using the Ulam-Harris notation. For example,
consider an individual x = (x1, . . . , xn−1, xn) ∈ T . This individual is the xn-th child of the
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Coalescent point process of branching trees in a varying environment

xn−1-th child, and so forth, up to the x1-th child of the root, denoted by ∅. This notation
allows us to determine that the length or generation in which x resides is |x| = n. For
two individuals x = (x1, . . . , xn) and y = (y1, . . . , ym), we denote their concatenation by
xy = (x1, . . . , xn, y1, . . . , ym). We establish the convention that x∅ = ∅x = x. To define
ancestry relationships within the tree, let x, y ∈ T . We say that y is an ancestor of x
(or x is a descendant of y) if there exists w ∈ {∅}

⋃⋃
n≥1N

n such that x = yw. This
relationship is typically denoted by y � x (or x � y). Observe that x � x, for any x ∈ T .

For x ∈ T , let T (x) denote the subtree with root in x. Note that T (x) represents
the genealogical tree associated with the process {(Zn, n ≥ 0);P(|x|)} starting with
one individual. By the branching property, it is well-known that, conditioned on the
number of individuals in a given generation, the subtrees rooted at those individuals are
independent. In Proposition 2.1, we establish a stronger property. To achieve this, we
introduce some concepts previously discussed in [1] and later employed by [4] and [5].

A line L is defined as a family of vertices in T , such that each branch started at the
root contains at most one vertex from L. Consequently, for any two distinct vertices in
the line, neither one is a descendant of the other. Associated with a line L is its σ-algebra
denoted by FL := σ(Ωx : x /∈ DL), where DL := {y ∈ T : ∃x ∈ L with x � y}; and for
each vertex x ∈ T , Ωx represents the information concerning the number of children of
x along with the edges connecting x to its children. We also define Gx = σ(Ωy : y � x)

for any vertex x ∈ T . A stopping line L is defined as a random line such that the event
{x ∈ L} ∈ Gx, for every x ∈ T . A simple example of a stopping line is given by L = {x},
where x belongs to the set T . The stopping line L(n) := {x ∈ T : |x| = n}, with n ∈ N, is
commonly employed to establish the branching property. Consider an element x ∈ T and
its ancestors, denoted by ax := {y ∈ T : y � x}. In the upcoming sections, we will employ
a specific stopping line defined as the set containing the children of ancestors that are not
ancestors themselves. This can be expressed as Lx := {z ∈ T \ ax : ∃ y ∈ ax with y � z}.
Refer to the right-hand side of Figure 2 for an illustration, where the red dots represent
the ancestors of i, and the stopping line is formed by the green and purple dots.

Proposition 2.1. Let L be a stopping line for a GWVE tree associated with the process
{(Zn, n ≥ 0);P}. Conditioned on FL, the subtrees {T (x) : x ∈ L} are independent.
Moreover, for each x ∈ L, the tree T (x) conditioned on FL has the same law as the
genealogical tree associated with {(Zn, n ≥ 0);P(|x|)}. In other words, we have

E

(∏
x∈L

ϕx(T (x))
∣∣∣FL) =

∏
x∈L

E(|x|) (ϕx(T )) ,

where (ϕx, x ∈ L) are non-negative measurable functions on the space of planar rooted
trees.

Proof. By the Monotone Class Theorem for functions, it is enough to work with indicator
functions ϕx = 1Ax for some measurable subsets Ax. Let L = {x1, . . . , xn} be a stopping
line. Then, xi is neither an ancestor nor a descendant of x1, for i ≥ 2. Therefore,
T (xi) ∈ Fx1

for i ≥ 2. Since FL ⊂ Fx1
, by the tower property

E

(
n∏
i=1

1Ai
(T (xi))

∣∣∣FL) = E

(
E

(
n∏
i=1

1Ai
(T (xi))

∣∣∣Fx1

)∣∣∣FL)

= E

(
n∏
i=2

1Ai
(T (xi))E

(
1A1

(T (x1))
∣∣∣Fx1

) ∣∣∣FL)

= E(|x1|)
(
1A1(T (x1))

)
E

(
n∏
i=2

1Ai(T
(xi))

∣∣∣FL) .
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In the last equality, we used the fact that T (x1) is the genealogical tree associated with
{(Zn, n ≥ 0);P(|x1|)} and the branching property. Repeating the argument, we conclude
the finite case. The general result follows from considerations of a sequence of finite
stopping lines Ln ↑ L, where Ln is monotonically increasing towards L, and utilizing the
monotone convergence and backwards martingale convergence theorems applied to the
conditional expectations given FLn

as FLn
↓ FL.

We are also interested in the law of the children of the root conditioned to have alive
descendants at a fixed generation. We note that the survival probability up to generation
n is given by

P(Zn > 0) = 1− f0,n(0). (2.3)

For Z0 = 1, we define ζn as the number of individuals at generation one having alive
descendants at generation n. In particular, ζn follows the distribution

ξ(0)∑
i=1

ε
(n)
i , (2.4)

where ξ(0) has distribution e1 and (ε
(n)
i , i ≥ 1) is a sequence of independent Bernoulli

random variables with parameter 1− f1,n(0), independent of ξ(0). Additionally, we define
ηn as ζn − 1 conditioned on {ζn ≥ 1}. Note that the events {Zn > 0} and {ζn ≥ 1} are
equivalent. Moreover, conditioned on {Zn > 0}, there exists an individual at generation
1 with alive descendants at generation n. Therefore, the random variable ηn can be
interpreted as the number of individuals at generation one, having alive descendants at
generation n which are different from that individual. Note that for every k ≥ 0,

P(ηn = k) = P(ζn = k + 1 | ζn ≥ 1) =
(1− f1,n(0))k+1f

(k+1)
1 (f1,n(0))

(k + 1)!(1− f0,n(0))
, (2.5)

where f (k+1)
1 denotes the (k + 1)-th derivative of f1. Indeed, we use

E
(
ξ(0)(ξ(0) − 1) · · · (ξ(0) − k)sξ

(0)−k+1
)

= f
(k)
1 (s)

to obtain

P(ζn = k + 1) =

∞∑
i=1

P(ζn = k + 1 | ξ(0) = i)P(ξ(0) = i)

=

∞∑
i=1

(
i

k + 1

)
(1− f1,n(0))k+1(f1,n(0))i−k−1P(ξ(0) = i)

=
(1− f1,n(0))k+1

(k + 1)!
f
(k+1)
1 (f1,n(0)).

Similarly,

P(ζn = 0) =

∞∑
i=0

(f1,n(0))iq1(i) = f1(f1,n(0)) = f0,n(0).

We complete the section with an example in which we compute the aforementioned
distribution when the offspring distributions are linear fractional.

Example 2.2. An offspring distribution ξ that satisfies

P(ξ = 0) = 1− r and P(ξ = k) = rpqk−1, k 6= 0,
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where 0 < q < 1, p = 1− q and 0 ≤ r ≤ 1, is called a linear fractional distribution with
parameters (r, p). Special cases include r = 1, yielding a geometric distribution G, and
r = 0, yielding a Dirac measure δ0. If 0 < r < 1, the distribution is a mixture of both, i.e.
ξ = rG+ (1− r)δ0. In this case, its generating function is given by

f(s) = 1− r 1− s
1− qs

, s ∈ [0, 1].

Thanks to the identity

1

1− f(s)
=

1

1− f ′(1)(1− s)
+

f ′′(1)

2f ′(1)2
, s ∈ [0, 1],

we can see that a linear fractional distribution is characterized by its mean f ′(1) = r/p

and its normalized second factorial moment f ′′(1)/f ′(1)2 = 2q/r.

We say that a varying environment E = (en, n ≥ 1) is linear fractional if and only
if every fn is linear fractional with parameters {(rn, pn) : n ≥ 1}. According with [3,
Chapter 1], the generating function fm,n is again linear fractional with mean

f ′n,n(1) = 1, f ′m,n(1) = f ′m+1(1) · · · f ′n(1) =
rm+1 · · · rn
pm+1 · · · pn

, m < n,

and normalized second factorial moment f ′′n,n(1)/f ′n,n(1)2 = 0; and for m < n,

f ′′m,n(1)

f ′m,n(1)2
=

f ′′m+1(1)

f ′m+1(1)2
+

n∑
k=m+2

1

f ′m+1(1) · · · f ′k−1(1)

f ′′k (1)

f ′k(1)2
=

2qm+1

rm+1
+

n∑
k=m+2

2pm+1 · · · pk−1qk
rm+1 · · · rk−1rk

.

Consider a Galton-Watson process (Zn : n ≥ 0) with the aforementioned environment.
Then, Zn is linear fractional with generating function f0,n. Furthermore, by using (2.5)
and

f
(k+1)
1 (s) =

(k + 1)!r1(1− q1)qk1
(1− q1s)k+2

,

we can prove that ηn follows a geometric distribution. More precisely,

P(ηn = k) =

(
1− q1

1− q1f1,n(0)

)(
q1(1− f1,n(0))

1− q1f1,n(0)

)k
, k ≥ 0.

In other words, P(η1 = k) = (1− q1)qk1 , for k ≥ 0; and for n ≥ 2

P(ηn = k) =

1 +
n∑
i=2

si,n

1 +
n∑
i=1

si,n


 s1,n

1 +
n∑
i=1

si,n


k

, k ≥ 0,

where sn,n = 1−pn
pn

and si,n = (1−pi)
pi

ri+1···rn
pi+1···pn for i < n.

In the next section, we will analyze the backward genealogy of a random population
when the forward in time dynamics are produced by a Galton-Watson process in a varying
environment. The offspring distributions will be denoted by E = (em,m ∈ Z−). The
generating functions fm,n in (2.1) can be extended to include m ≤ n ≤ 0.
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3 Main results

Consider an arbitrarily large population at the present time, originating from an
unspecified time in the distant past, where individuals within the same generation
reproduce independently forward in time, sharing the same offspring distribution that
may vary across generations. We denote by em+1 the offspring distribution of individuals
at generation m. It is essential to note that for each individual in the past, the forward-
in-time process starting from that individual generates a branching tree in a varying
environment.

To analyze the backward genealogy of the present population, we adopt a specific
embedding of a branching tree, which is infinite in the number of generations and
individuals at any generation. This embedding serves as the basis for defining the
coalescent point process, initially proposed by Lambert and Popovic [6] for a Galton
Watson process, and later extended by Popovic and Rivas [7] to multitype Galton Watson
processes. In this planar embedding, individuals are situated at points (m, i) on a discrete
lattice Z×N, where the first coordinate m represents the generation, and the second
coordinate i represents the individual’s position in the planar embedding layout from left
to right. Given our focus on backward genealogies, our analysis is confined to Z−, where
the present generation is denoted by m = 0. Each vertex in the lattice is connected to
its offspring, represented by vertices in the level above, in a manner that avoids empty
spaces and intersections between lineages. Specifically, let ξ(m)

i denote the number of
offspring of individual (m, i). We define the population’s genealogy such that individual
(m, i) has mother (m− 1, j) if and only if

j−1∑
k=1

ξ
(m−1)
k < i ≤

j∑
k=1

ξ
(m−1)
k .

We suppose that the variables {ξ(m)
i , i ≥ 1,m ∈ Z−} are independent, and the sequence

{ξ(m)
i , i ≥ 1} has common distribution em+1 for every m ∈ Z−. In the remainder of the

paper, the varying environment is denoted by E = (em,m ∈ Z−).
We now proceed, following the approach and notation outlined in [6], by introducing

the elements necessary for recovering the genealogy. For each n ∈ N, let ai(n) denote
the index of the ancestor of individual i in generation −n. The coalescent time Ci,j of
individuals i and j is denoted by

Ci,j := min{n ≥ 1 : ai(n) = aj(n)}, i, j ∈ N,

with the understanding that min ∅ =∞. We define

Ai := Ci,i+1, i ∈ N.

By construction, Ci,j = max{Ai, Ai+1, . . . , Aj−1}, for any i < j. Therefore, (Ai, i ≥ 1)

contains all the genealogical information of the current population. The sequence
A := (Ai, i ≥ 1) is called the coalescent point process in varying environment. This
process was first defined in [6], when the forward-time dynamics were produced by a
branching process in a constant environment.

The distribution of A is not easy to determine, and in general, it is not a Markov
process, except for some special cases. Following the approach of [6], let us define an
auxiliary Markov process that characterizes the genealogy. For any fixed individual i,
we follow its ancestral line (referred to as the i-th spine) and consider the subtrees with
roots in this spine. Note that these roots are labeled by {(−n, ai(n)), n ∈ N}. At every
subtree, we count the number of daughters of the root at the right-hand side of the spine,
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whose descendants are alive at the present generation. To be precise, let

Di(n) := {daughters of (−n, ai(n)) with descendants in {(0, j) : j ≥ i}}, n ≥ 1, i ≥ 1.

Define

Di(n) = #Di(n)− 1, i, n ≥ 1.

For every i ≥ 1, we define the sequence Di := (Di(n), n ≥ 1). We set D0 as the null
sequence and A0 :=∞. It follows from the monotone planar embedding that

Ai = min{n ≥ 1 : Di(n) 6= 0}, i ≥ 0. (3.1)

We will establish in Proposition 3.1 that the sequence-valued process D := (Di, i ≥ 0)

possesses the Markov property. To provide the transitions probabilities, we begin
by recalling that for each (m, i) ∈ Z− × N, the forward-in-time dynamics starting
at individual (m, i) are produced by a branching process in a varying environment.
To be precise, let Z(m,i)(k) denote the number of descendants of individual (m, i) at
generation m+ k. Then, (Z(m,i)(k), k ≥ 0) constitutes a GWVE process with environment
S(m) := (em+1, em+2, . . . , e0, 0, 0, . . . ), starting with one individual. Consequently, for
every m ∈ Z−, the probability that an individual at generation m has alive descendants
at the present generation is pm = 1− fm,0(0), see (2.3). Moreover, if we denote by ζ(m)

the number of its daughters with alive descendants at generation zero, as a consequence
of (2.4), we have

ζ(m) L=

Y∑
i=1

εi,

where Y ∼ em+1 and the variables εi are Bernoulli with parameter 1 − fm+1,0(0), all
independent. We also define η(m) as

η(m) = ζ(m) − 1, conditioned on {ζ(m) > 0}. (3.2)

In particular, by (2.5)

P(η(m) = 0) =
(1− fm+1,0(0))f ′m+1(fm+1,0(0))

1− fm,0(0)
. (3.3)

Now, we are ready to establish the transition probabilities of the process (Di, i ≥ 0).
This is an extension of [6, Theorem 2.1] to varying environment, and we will use similar
techniques to prove it.

Proposition 3.1. The sequence-valued process (Di, i ≥ 0) is a Markov chain starting at
the null sequence with transition probabilities given by

(
Di+1(m) | Di = (d(n))n≥1

)
=


η(−m) if 1 ≤ m < Ai
d(m)− 1 if m = Ai
d(m) if Ai < m,

where (η(−m),m ≥ 1) is a sequence of independent random variables such that η(−m) is
distributed as (3.2), for each m. Moreover, the law of A1 is given by

P(A1 > n) =

n∏
i=1

P(η(i) = 0) =
f ′−n,0(0)

1− f−n,0(0)
= P(Zn = 1 | Zn = 0),

where (Zk, k ≥ 0) is a GWVE with environment S(−n) for every n ≥ 1.
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Considerable repetitive information exists within (Di, i ≥ 0), as for every i, Di and
Di+1 are essentially identical infinite sequences, differing only in a finite number of
entries. To address this, a point measure-valued process (B̃i, i ≥ 0) was recursively
defined in [6] for a constant environment. In essence, when B̃i has positive measure
at n, its multiplicity records the number of children of (−n, ai(n)) located at the right-
hand side of the i-th spine, with descendants among individuals {(0, j) : j ≥ i+ 1}. The
construction proceeds as follows: B̃0 is the null measure. B̃1 has positive mass at position
A1, where its multiplicity records the number of children of individual (−A1, a1(A1))

with descendants in individuals {(0, j) : j ≥ 2}. Recursively, B̃i+1 is updated from B̃i by
reducing by one the mass at position Ai (as the (i+ 1)-th spine is part of the children at
the right hand side of the i-th spine) and possibly by adding a new mass at position Ai+1

with the respective multiplicity. Formally, for any finite point measure b =
∑
n≥1 b(n)δn,

we define the minimum of its support as

s(b) := min{n ≥ 1 : b(n) 6= 0}.

Additionally, we define b∗ = b− δs(b), with the convention that s(b) =∞ and b∗ = b if b is

the null measure. Then, the process B̃i is recursively defined as follows

B̃i+1 :=

{
B̃∗i +Di+1(Ai+1)δAi+1

if Ai+1 6= s(B̃i) and Ai+1 < s(B̃∗i ),

B̃∗i otherwise.

Here, we present a counterexample to illustrate that (B̃i, i ≥ 0) may not constitute a
Markov process, thereby challenging the validity of [6, Theorem 2.2].

Example 3.2. Consider the process (B̃i, i ≥ 1) associated to Figure 1:

B̃1 = δ1, B̃2 = 2δ2, B̃3 = δ1 + δ2, B̃4 = δ2, B̃5 = 2δ1, B̃6 = δ1,

B̃7 = δ4, B̃8 = δ3, B̃9 = δ5, B̃10 = δ1 and B̃11 = δ4.

We show that this process cannot be Markov by exhibiting that the value of B̃11 depends
on both B̃9 and B̃10. Through the recursive construction, we observe that B̃10 = δ1
implies that B̃11 = B̃11(N)δN for some N ≥ 2 with B̃11(N) > 0. Furthermore, from
B̃9 = δ5 we know that individual (−5, a9(5)) has a unique daughter u, at the right hand
side of the 9-th spine, whose descendants are alive at the present generation. Since
A9 = 5 and A10 = 1, we have (−5, a9(5)) = (−5, a10(5)) = (−5, a11(5)) and u is part of
both the 10-th and 11-th spine. Therefore, B̃11(5) = 0 and N cannot be 1 or 5. This
implies that the value of B̃11 depends not only on B̃10 but also on B̃9.

Next, we focus on constructing our process B = (Bi, i ≥ 0). For each i, we restrict
Di to the first C1,i+1 entries, where we recall that C1,i+1 denotes the first generation
in which an individual in the i-th spine is an ancestor of the individuals in the present
generation indexed from 1 to i + 1. Equation (3.1), recursively defines the length the
length C1,i+1 in terms of Di as

C1,i+1 = C1,i ∨Ai = C1,i ∨min{n ≥ 1 : Di(n) 6= 0}. (3.4)

We define the process B = (Bi, i ≥ 0) as B0 = ∅ and Bi := (Di(1), Di(2), . . . , Di(C1,i+1))

for i ≥ 1. Henceforth, we refer to the process (Bi, i ≥ 0) as the coalescent point process
with multiplicities in a varying environment. See Figure 1 for an illustration.

The main result of this work establishes that the process B is Markov with a state
space V, defined as the set of all the vectors with entries in N, i.e.

V =
⋃
m∈N

Nm
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with the convention that N0 = ∅. For any b = (b(1), b(2), . . . , b(m)) ∈ V, its length is
denoted by l(b) = m with the convention l(∅) = 0. The function s(b) indicates the first non-
zero coordinate of b, with the convention s(b) =∞, if b is a null vector or the empty set.
For any b = (b(1), b(2), . . . , b(m)) ∈ V, we define the vector b∗ = (b∗(1), b∗(2), . . . , b∗(m))

by
b∗(j) = b(j)− 1{j=s(b)}, j ≤ m,

with the convention b∗ = b, if b is a null vector or the empty set. It is worth noting that
in our definition of (Bi, i ≥ 0), we use indicator functions instead of Dirac measures.
This choice arises from the fact that our process (Bi, i ≥ 0) is vector-valued, contrasting
with the point-measure-valued nature of the process (B̃i, i ≥ 0) in [6]. Furthermore, it is
important to highlight that in the construction of (B̃i, i ≥ 0), only the mass at position Ai
could be added, whereas in our process, masses above level C1,i could be added.

Theorem 3.3. The vector-valued process B = (Bi, i ≥ 0) is a Markov chain starting at
B0 = ∅. Conditioned on the event {Bi = (b(1), . . . , b(`))}, the law of the vector Bi+1 is
determined by the following transition probabilities

Bi+1(m) :=


η(−m) if 1 ≤ m < Ai or ` < m ≤ l(Bi+1)

b(m)− 1 if m = Ai
b(m) if Ai < m ≤ `,

where (η(−m),m ≥ 1) is a sequence of independent random variables such that for each
m, the variable η(−m) is distributed as (3.2). The length of Bi+1 satisfies

l(Bi+1) = ` ∨
(
1{s(B∗

i )=∞}min{k ∈ {1, 2, . . . , Ai − 1} ∪ {`+ 1, `+ 2, . . . } : η(−k) 6= 0}
)
.

(3.5)
Moreover, Ai is a functional of Bi, i.e. if Bi = (b(1), . . . , b(`)), then

Ai = min{1 ≤ n ≤ ` : b(n) 6= 0}, i ≥ 1. (3.6)

To conclude this section, we establish that if the offspring follows a linear fractional
distribution, the coalescent point process (Ai, i ≥ 0) is Markov, and we derive its
distribution. This observation was previously noted in [6, Proposition 5.1] for a constant
environment, and in [8] with an alternative formulation.

Proposition 3.4. Assume that the environment E is linear fractional with parameters
{(rm, pm) : m ∈ Z−}. Then, the variables (Ai, i ≥ 1) are independent with common
distribution given by

P(A1 > n) =

(
1 +

0∑
i=−n+1

si

)−1
, n ≥ 1,

where s0 = 1−p0
p0

and si = 1−pi
pi

ri+1···r0
pi+1···p0 , for i < 0.

4 Proofs

In this section, we present the proofs of Proposition 3.1, Theorem 3.3 and Proposi-
tion 3.4. It is worth noting that Propositions 3.1 and 3.4 extend [6, Theorem 2.1 and
Proposition 5.1] to a varying environment. Throughout the proofs, we will use some of
the techniques employed in their work. Additionally, we will use a connection between
the planar rooted trees introduced in Section 2 and the monotone planar embedding
described in Section 3.

For a fixed (m, i) ∈ Z− ×N, recall that (Z(m,i)(k), k ≥ 0) is a GWVE with environment
S(m) = (em+1, em+2, . . . , e0, 0, 0, . . . ), starting with one individual. Here, Z(m,i)(k) denotes
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the number of descendants of individual (m, i) at generation m + k. According to
Section 2, its genealogical tree can be viewed as a planar rooted tree denoted as T (m,i).
To simplify, we use {(Zk, k ≥ 0);Q(m)} to denote a GWVE with environment S(m).

In accordance with Section 2, for every x ∈ T (m,i), the subtree with root at x, denoted
as T (x), shares the same distribution as the tree associated with {(Zk, k ≥ 0); (Q(m))

(|x|)},
where |x| denotes its length in T (m,i). It is worth noting that 0 ≤ |x| ≤ −m. Consequently,
by shifting the environment, T (x) shares the same law as the tree associated with
{(Zk, k ≥ 0);Q(m+|x|)}.

Let L be a stopping line for T (m,i). We recall that FL = σ(Ωx : x /∈ DL), where
for each x ∈ T (m,i), Ωx is the information about the number of children of x together
with the edges connecting x with its children; and DL is the set of descendants from
individuals in the line. Remember that L ⊂ DL.

Based on Proposition 2.1, conditioned on FL, the subtrees {T (x) : x ∈ L} are
independent. Furthermore,

P

(⋂
x∈L
{T (x) = tx} | FL

)
=
∏
x∈L

Q(m+|x|) (tx) , (4.1)

where tx is a (deterministic) rooted tree, for every x ∈ L.

4.1 Proof of Proposition 3.1

Since Ai is the coalescent time of individual i and i+ 1, the i-th and (i+ 1)-th spines
coincide for every generation −m where m ≥ Ai. This implies,

ai(m) 6= ai+1(m) for all m < Ai and ai(m) = ai+1(m) for all m ≥ Ai. (4.2)

Recall that Di(m) counts the number of children of (−m, ai(m)) at the right hand
side of the i-th spine, whose descendants are alive at the present generation. Observe
that (−Ai + 1, ai+1(Ai − 1)) is a child of (−Ai, ai(Ai)) = (−Ai, ai+1(Ai)). Moreover, it
is part of the (i + 1)-spine and it is at the right hand side of the i-th spine. Then,
Di+1(Ai) = Di(Ai)− 1.

By definition of Ai, for everym > Ai, each daughter of (−m, ai+1(m)) has descendants
in {(0, j) : j ≥ i + 1} if and only if she has descendants in {(0, j) : j ≥ i}. Then,
Di(m) = Di+1(m) for all m > Ai.

Now, let us analyze the case 1 ≤ m < Ai. Define the set

Gi := {Dj(n) = dj(n) : n ≥ 1 and 1 ≤ j ≤ i}.

where {dj(n) : n ≥ 1 and 1 ≤ j ≤ i} are fixed integers. For every k > Ai, consider the
tree T (−k,ai(k)), which is a GWVE tree with environment S(k) starting from individual
(−k, ai(k)). Let Lk be the stopping line defined by

Lk := {daughters of (−n, ai(n)) : Ai ≤ n ≤ k} \ {(−n, ai(n)) : Ai ≤ n ≤ k − 1}. (4.3)

Note that FLk
= σ(Ω(−n,ai(n)) : Ai ≤ n ≤ k). Additionally, define the set of roots

Rk := Lk \ {(−Ai + 1, ai+1(Ai − 1))}. (4.4)

Let Gk denote the σ-algebra generated by the trees with roots in Rk. Refer to the left
tree in Figure 2 for a representation. According to Proposition 2.1, conditioned on
FLk

, the trees T (x) with roots x ∈ Rk and the tree rooted at (−Ai + 1, ai+1(Ai − 1)) are
independent. In other words, conditioned on FLk

, the tree T (−Ai+1,ai+1(Ai−1)) and Gk are
independent. Then, by Proposition III.3.2 in [2]

P
(
T (−Ai+1,ai+1(Ai−1)) = t | Gk ∨ FLk

)
= P

(
T (−Ai+1,ai+1(Ai−1)) = t | FLk

)
, (4.5)
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for every deterministic rooted tree t. We observe that Gk ⊂ Gk+1 and FLk
⊂ FLk+1

for all
k. Let G := limk Gk and F := limk FLk

. Note that Gi is measurable with respect to G ∨ F .
Therefore, by the Monotone Convergence Theorem and the previous equation,

P(T (−Ai+1,ai+1(Ai−1)) = t | Gi) = P(P(T (−Ai+1,ai+1(Ai−1)) = t | G ∨ F) | Gi)

= P(lim
k
P(T (−Ai+1,ai+1(Ai−1)) = t | Gk ∨ FLk

) | Gi)

= P(lim
k
P(T (−Ai+1,ai+1(Ai−1)) = t | FLk

) | Gi).

Now, we use (4.1), with m = −k, x = (−Ai + 1, ai+1(Ai − 1)) and |x| = k − Ai + 1, to
obtain

P(T (−Ai+1,ai+1(Ai−1)) = t | FLk
) = Q(−Ai+1) (t) , for all k > Ai. (4.6)

Hence,
P(T (−Ai+1,ai+1(Ai−1)) = t | Gi) = P(Q(−Ai+1) (t) | Gi).

Conditional on Gi, observe that Ai only depends on the values of Di. Moreover, the
vector (Di+1(1), Di+1(2), . . . , Di+1(Ai − 1)) is a function of the tree T (−Ai+1,ai+1(Ai−1)).
Therefore, (Di+1(1), Di+1(2), . . . , Di+1(Ai − 1)) given Gi only depends on the values of
Di. This implies the Markov property. Now, let us determine its distribution.

Let I(n, j) be the smallest index among all the descendants of individual (−n, aj(n))

at the present generation,

I(n, j) := min{k ≤ j : ak(n) = aj(n)}, j, n ≥ 1.

Note that given Gi, I(−Ai + 1, ai+1(Ai − 1)) = i+ 1. Then, conditioned on Gi, for every
1 ≤ m < Ai,

Di+1(m) = {daughters of (−m, ai+1(m)) with descendants in {(0, j) : j ≥ i+ 1}}
= {daughters of (−m, ai+1(m)) with descendants in {(0, j) : j ≥ 1}}.

(4.7)

Figure 2: At the left hand-side of both figures, we have the generation label as in the
planar embedding Z−×N. At the right hand-side of both figures, we have the generation
label as in a GWVE tree. The left tree corresponds to T (−k,ai(k)). The roots in the
green and purple subtrees represent the set Lk. The σ-algebra FLk

is generated by the
edges and vertices in red. Rk is the set of green roots. The σ-algebra Gk is generated
by the trees rooted in Rk. In the right tree, we consider k = ` + j. The set L`+j can
be decomposed into the purple root, together with R`+1 colored in dark green, and
L`+j \ L`+1 colored in light green.
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It follows that for every 1 ≤ m < Ai, the variable Di+1(m) conditioned on Gi has the
same distribution as η(−m) given in (3.2). Moreover, Di+1(Ai) = Di(Ai)−1; and for every
Ai < m, we have Di(m) = Di+1(m).

For the law of A1, we use equations (2.2) and (3.3) to obtain

P(A1 > n) =

n∏
i=1

P(η(i) = 0) =

n∏
i=1

1− f−i+1,0(0)

1− f−i,0(0)
f ′−i+1(f−i+1,0(0)) =

f ′−n,0(0)

1− f−n,0(0)
.

The previous techniques can be adapted to establish Theorem 3.3.

4.2 Proof of Theorem 3.3

Thanks to (3.1) and (3.4), we establish (3.6). Equation (4.2) implies that Di+1(Ai) =

Di(Ai) − 1 and Di(m) = Di+1(m) for all Ai < m ≤ `. Now, let us analyze the case
1 ≤ m < Ai. Define

Ei := {Bj = (dj(1), . . . , dj(lj)) : 1 ≤ j ≤ i},

where {lj : 1 ≤ j ≤ i} and {dj(n) : 1 ≤ n ≤ lj and 1 ≤ j ≤ i} are fixed integer numbers
and li = `. Conditional on Ei, Ai only depends on the vector Bi. Furthermore, Ei only
depends on the genealogical information of the descendants of individual (−(`+ 1), ai(`+

1)). Then, we need to consider the tree T (−(`+1),ai(`+1)), the stopping line L`+1 given
by (4.3) with k = `+ 1, and the set of roots R`+1 given by (4.4) with k = `+ 1. Denote
by G`+1 the σ-algebra generated by the subtrees with roots in R`+1. See the left tree on
Figure 2 with k = `+ 1.

Since Ei ∈ G`+1 ∨ FL`+1
, according to equation (4.5) we have

P(T (−(Ai−1),ai+1(Ai−1)) = t | Ei) = P(P(T (−(Ai−1),ai+1(Ai−1)) = t | G`+1 ∨ FL`+1
) | Ei)

= P(P(T (−(Ai−1),ai+1(Ai−1)) = t | FL`+1
) | Ei). (4.8)

Thanks to equation (4.6), we obtain

P(T (−(Ai−1),ai+1(Ai−1)) = t | Ei) = P(Q(−Ai+1) (t) | Ei).

Recall that the vector (Di+1(1), Di+1(2), . . . , Di+1(Ai − 1)) is a functional of the tree
T (−(Ai−1),ai+1(Ai−1)). Therefore, conditional on Ei, (Di+1(1), Di+1(2), . . . , Di+1(Ai − 1))

only depends on the vector Bi, because conditional on Ei, Ai only depends on Bi.
Continuing with the same arguments as in the proof of Theorem 3.3, we get (4.7).

From this equation, it follows that for every 1 ≤ m < Ai, the variableDi+1(m) conditioned
on Ei has the same distribution as η(−m) given in (3.2). Furthermore, Di+1(Ai) =

Di(Ai)− 1; and for every Ai < m ≤ `, we have Di(m) = Di+1(m). Therefore, the vector
(Di+1(1), . . . , Di+1(`)) given Ei only depends on the values of Bi.

If Di+1(m) 6= 0 for some 1 ≤ m ≤ `, by (3.6) we have Ai+1 ≤ `. Recalling equa-
tion (3.4), we conclude that l(Bi+1) = l(Bi) ∨Ai+1 = ` and Bi+1 = (Di+1(m), 1 ≤ m ≤ `).
Therefore, we have determined the distribution of Bi+1 conditioned on Ei. Otherwise,
if Di+1(m) = 0 for every 1 ≤ m ≤ `. By (3.4) and (3.6), we deduce that Ai+1 > ` and
l(Bi+1) > `. Now, by the definition of Bi+1, we need to determine the law of l(Bi+1)

and {Di+1(m), ` < m ≤ l(Bi+1)} conditioned on Ei. To achieve this, we analyze the
tree T (−(`+j),ai(`+j)) for a fixed j ≥ 1. Consider the stopping line L`+j defined by (4.3).
As previously, FL`+j

= σ(Ω(−n,ai(n)) : Ai ≤ n ≤ ` + j). Observe that Ei ∈ G`+1 ∨ FL`+j
,

where G`+1 is the σ-algebra generated by the subtrees with roots in R`+1. According to
Proposition 2.1, given FL`+j

, the subtrees T (x) with roots x ∈ R`+1 and the subtrees T (y)
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with roots y ∈ L`+j \ L`+1 are independent. See the right tree on Figure 2. Therefore,
employing the same argument as in (4.5), for every y ∈ L`+j \ L`+1, we have

P
(
T (y) = t

∣∣∣ Ei) = P(P(T (y) = t | G`+1 ∨ FL`+j
) | Ei) = P

(
P(T (y) = t | FL`+j

)
∣∣∣ Ei) .

Now, if y ∈ L`+j \ L`+1, there exists an 1 ≤ r < j such that |y| = r, where |y| denotes its
length in T (−(`+j),ai(`+j)). We utilize (4.1) to obtain

P(T (y) = t | FL`+j
) = Q(−(`+j)+r) (t) .

Due to the fact that the right-hand side of the previous equation, conditioned on Ei, only
depends on `, we obtain

P
(
T (y) = t

∣∣∣ Ei) = Q(−(`+j)+r) (t) . (4.9)

In other words, given Ei, every subtree with root in y ∈ L`+j \ L`+1 remains a GWVE
tree with environment S(`+j−|y|). Recall that Di+1(m) = |Di+1(m)| − 1, where

Di+1(m) = {daughters of (−m, ai+1(m)) with descendants in {(0, k) : k ≥ i+ 1}.

Moreover, ai(m) = ai+1(m) for m ≥ `, and ` is the coalescent time of individuals
{(0, k) : k ≤ i + 1}. Consequently, for every m ≥ ` + 1, given Ei, {(0, k) : k ≤ i + 1} are
descendant of (−m, ai(m)) and

Di+1(m) = {daughters of (−m, ai(m)) with descendants in {(0, k) : k ≥ 1}}.

Now, let us examine the tree T (−(`+j),ai(`+j)). Note that the daughters of individual
(−m, ai(m)) have length r = ` + j − m + 1. Furthermore, (−(m − 1), ai(m − 1)) is a
daughter of (−m, ai(m)) whose descendants are alive in the present generation. Thus,
in the definition of Di+1(m), the subtraction one can be attributed to individual (−(m−
1), ai(m − 1)), and for every ` + 1 ≤ m < ` + j, the value Di+1(m) can regarded as
a functional of the subtrees T (y) with y ∈ L`+j \ L`+1 such that |y| = ` + j − m + 1.
By (4.9), we know that these subtrees, conditioned on Ei, follow the law given by
Q(−m+1). Consequently, the distribution of Di+1(`+m) conditioned on Ei is determined
by (3.2), for every `+ 1 ≤ m < `+ j. Since j was fixed but arbitrary, we have shown that
for every `+ 1 ≤ m, the distribution of Di+1(`+m) conditioned on Ei only depends on `
and is given by (3.2).

Recall that by the definition ofBi+1, its length l(Bi+1) is the first n such thatDi+1(n) 6=
0. Consequently, l(Bi+1) conditioned on Ei follows the same distribution as (3.5), and we
have established the Markov property with its transitions.

4.3 Proof of Proposition 3.4

Observe that for every n ≥ 1, the variable η(−n)
L
= ηn with environment En =

(e−n+1, e−n+2, . . . , e0) as shown in Example 2.2. In particular, η(−n) follows a geomet-
ric distribution (modeling the number of failures until the first success) with success
probability λ1 := p0 and for n ≥ 2,

λn :=

(
1 +

0∑
k=−n+2

sk

)(
1 +

0∑
k=−n+1

sk

)−1
. (4.10)

where s0 = 1−p0
p0

and sk = (1−pk)
pk

rk+1···r0
pk+1···p0 for k < 0. By induction on i ≥ 1, we are going

to prove the following statement:
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(Hi) The random variables (Di(n), n ≥ 1) are independent, geometrically distributed
with success probability λn given in (4.10). Additionally, they are independent of
(A0, . . . , Ai−1).

The claim holds once we prove that (Hi) is true for every i ≥ 1. Indeed, suppose that
(Hi) is true for every i ≥ 1. Then, by equation (3.1), we can see that Ai is independent of
(A0, . . . , Ai−1) and it is distributed as A1. In particular,

P(Ai > n) =

n∏
`=1

P(η(`) = 0) =

(
1 +

0∑
k=−n+1

sk

)−1
, n ≥ 1.

Observe that (H1) holds by Proposition 3.1. Now, assuming (Hi), we will prove that
(Hi+1) is also true by conditioning on the value of Ai. Suppose that Ai = h. We apply
the transition probabilities from Proposition 3.1. Note that Di(n) = Di+1(n) for all n > h.
Then, by hypothesis (Hi), the variables (Di+1(n), n > h) are independent, geometrically
distributed with parameters λn and also independent of (A0, . . . , Ai−1). For n = h, by
hypothesis, Di+1(h) = Di(h) − 1 is independent of (Di(n), n > h) and independent of
(A0, . . . , Ai−1). Additionally, by (3.1), Di(h) is a geometric variable with parameter λh
conditioned to be strictly positive. Then,

P(Di+1(h) = k) =
P(η(h) = k + 1)

P(η(h) > 0)
= λh(1− λh)k, k ≥ 0,

which is a geometric random variable with parameter λh. Finally, (Di+1(n), n < h) are
new independent geometric random variables with parameters λn. Therefore, they are
independent of (Di+1(n), n ≥ h) and (A0, . . . , Ai−1). In other words, conditionally on
{Ai = h}, the variables (Di+1(n), n ≥ 1) are independent with geometric distributions of
parameters λn and independent of (A0, . . . , Ai−1). Integrating over h yields the result
(Hi+1).
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