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Abstract

Let Z1, Z2, . . . be independent and identically distributed complex random variables
with common distribution µ and set

Pn(z) := (z − Z1) · · · (z − Zn) .

Recently, Angst, Malicet and Poly proved that the critical points of Pn converge in
an almost-sure sense to the measure µ as n tends to infinity, thereby confirming a
conjecture of Cheung-Ng-Yam and Kabluchko. In this short note, we prove for any
fixed k ∈ N, the empirical measure of zeros of the kth derivative of Pn converges to µ
in the almost sure sense, as conjectured by Angst-Malicet-Poly.
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1 Introduction

Let µ be a probability measure on C and let (Zj)j>1 be independent and identically
distributed (i.i.d.) complex random variables with distribution µ. Define the sequence of
random polynomials (Pn)n>1 via

Pn(z) := (z − Z1) · · · (z − Zn) . (1.1)

Pemantle and Rivin [19] introduced this model and conjectured that the critical points of
Pn are close to the roots of Pn. More rigorously, for each fixed k ∈ N let ν(k)n to be the
empirical measure of P (k)

n , i.e.

ν(k)n :=
1

n− k
∑

z∈C:P (k)
n (z)=0

δz , (1.2)

and let µn denote the empirical measure of Pn, i.e.

µn :=
1

n

∑
z∈C:Pn(z)=0

δz , (1.3)

where δy denotes the point mass at y.
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Almost sure behavior of the zeros of iterated derivatives of random polynomials

Pemantle and Rivin conjectured that in the case of k = 1, we have ν(1)n converges
weakly to µ; Pemantle and Rivin proved this under the assumption that µ has finite
1-energy. Kabluchko [10] proved Pemantle and Rivin’s conjecture, showing that ν(1)n → µ

in probability as n → ∞. Kabluchko’s result was extended by Byun, Lee and Reddy
[3] who proved that for each fixed k ∈ N one has that ν(k)n converges weakly to µ in
probability. Recently, the authors showed the same holds if k grows slightly slower than
logarithmically in n [16]. The works [3] and [16] on convergence of higher derivatives
follow the same general strategy as Kabluchko’s original proof [10], which much of the
new ingredients coming in to handle an anti-concentration estimate. For more references
on this model and adjacent models, see the works [1, 4, 5, 8, 9, 11, 12, 18, 20, 21] and
the references therein.

Cheung-Ng-Yam [4] and independently Kabluchko (see [16]) conjectured that in fact
ν
(1)
n should weakly converge to µ almost surely and not just in probability. This was

recently proven by Angst, Malicet and Poly [2] for all probability measures µ. Angst,
Malicet and Poly also conjectured [2] that the almost-sure convergence of ν(k)n should
hold for each fixed k ∈ N. In this short note, we confirm their conjecture.

Theorem 1.1. Almost surely with respect to P, for each fixed k ∈ N the sequence of
empirical measure ν(k)n converges to µ as n tends to infinity.

Our proof of Theorem 1.1 takes inspiration from Angst, Malicet and Poly’s proof
of the k = 1 case [2]; the new ingredient is to handle a non-linear, high-dimensional,
multivariate anti-concentration problem via a decoupling approach. We first outline the
general shape of the Angst-Malicet-Poly approach as well as where our contribution
comes into play in Section 1.1. We then prove our anti-concentration estimate in Section 2
and complete the proof of Theorem 1.1 in Section 3.

1.1 Outline of the Angst-Malicet-Poly strategy and our contribution

The main engine behind Angst-Malicet-Poly is a simple-yet-powerful fact about proba-
bility measures on the Riemann sphere. To set up their Lemma, set Ĉ to be the Riemann
sphere, let M := {ψ(z) = az+b

cz+d} be the set of Möbius transformations, and let λM be
the measure onM inherited by setting taking the complex Lebesgue measure on the
tuple (a, b, c, d). Define log− z = | log z|1z∈[0,1]. Their main engine is the following lemma
[2, Lemma 2.7]:

Lemma 1.2. Let m̂1 and m̂2 be two probability measures on Ĉ so that∫
Ĉ

log− |ψ(z)| dm̂1(z) 6
∫
Ĉ

log− |ψ(z)| dm̂2(z) (1.4)

for almost-every Möbius transformation ψ ∈M. Then m̂1 = m̂2.

An appealing aspect of this Lemma is that it requires only a one-sided bound; further,
the space of probability measures on Ĉ is compact, and so it will suffice to verify (1.4)
where m̂1 will be an arbitrary cluster point ν̂∞ of the sequence (ν

(k)
n )n>1 and m̂2 will be

the measure µ.

The route towards establishing (1.4) begins at Jensen’s formula. Letting C(0, 1)

denote the unit circle, one may apply Jensen’s formula to the ratio Sn :=
P (k)
n

k!Pn
to obtain∑

ρ

log− |ψ(ρ)| −
∑
ζ

log− |ψ(ζ)| 6 max
z∈ψ−1(C(0,1))

log |Sn(z)| − log |Sn(ψ−1(0))| (1.5)

where {ρ} enumerates the roots of P (k) and {ζ} enumerates the roots of P (see Fact 3.1).
Our task then is to control the right-hand side. The term with the maximum is fairly
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Almost sure behavior of the zeros of iterated derivatives of random polynomials

straightforward to control almost-surely (Lemma 3.2), and it is the term log |Sn(ψ−1(0)|
that is more challenging. In particular, if we set a = ψ−1(0) then

Sn(a) =
∑

16i1<...<ik6n

1

a− Zi1
· · · 1

a− Zik
. (1.6)

The case of k = 1, this is precisely a sum of i.i.d. random variables and so we depend-
ing on the distribution of Z and the choice of a we may have that P(Sn = 0) = Θ(n−1/2).
Since we seek almost sure statements, this is too large to apply Borel-Cantelli. To get
around this issue, Angst-Malicet-Poly look instead at triples of Möbius transformations.
For most such triples (ψ1, ψ2, ψ3) one has that the vector (ψ−11 (0), ψ−12 (0), ψ−13 (0)) con-
sists of three distinct complex numbers, say (a, b, c). The vector (Sn(a), Sn(b), Sn(c)) now
behaves like a sum of three-dimensional random variables. In particular, a sufficiently
general version of Erdős’s solution to the Littlewood-Offord problem shows that the
probability all coordinates of (Sn(a), Sn(b), Sn(c)) are small simultaneously decays like
O(n−3/2), which is now summable. An application of Borel-Cantelli will allow one to
deduce that almost-surely for generic triples of Möbius transformations and all large
enough n we have at least one of (Sn(ψ−11 (0)), Sn(ψ−12 (0)), Sn(ψ−13 (0))) is at least, say,

1 in modulus. Working with a given cluster point ν̂∞ of (ν
(k)
n )n>1 and applying (1.5)

together with an application of the law of large numbers to handle the sum over {ζ} will
prove (1.4).

The main challenge in adapting this approach to fixed k ∈ N is to handle the anti-
concentration estimate. In particular, for fixed k > 2, handling the quantity P(Sn(a) = 0)

is a non-linear anti-concentration problem, and major open problems remain in this
arena. As an example, one expects that for each k > 2 one has P(Sn(a) = 0) = O(n−1/2),
but this is only known up to subpolynomial factors [15] for k > 3; the case of k = 2

was recently solved by a work of Kwan-Sauermann. Furthermore, we need to consider
vectors of such quantities. Roughly, for each fixed k, we need to take L large enough so
that for distinct complex numbers (z1, . . . , zL) we have∑

n>1

P(|Sn(z1)| 6 1, . . . , |Sn(zL)| 6 1) <∞ .

To handle this quantity, we use a decoupling approach for anti-concentration. This
was introduced by Costello-Tao-Vu [7] in their study of random symmetric matrices and
anti-concentration of quadratic forms (see also the survey [17]). The intuition here
is to tackle multilinear anti-concentration problems by comparing them to linear anti-
concentration problems, at the cost of decreasing the rate of decay of the resulting
bounds. For us, we need to apply a decoupling lemma to the vector (Sn(z1), . . . , Sn(zL))

and handle all coordinates simultaneously in order to obtain a high-dimensional but
linear anti-concentration problem. Our main new contribution is the following Lemma:

Lemma 1.3. Suppose µ does not have finite support and let k ∈ N. Then for L = 2k+2k

and all pairwise distinct complex numbers (z1, . . . , zL) we have

P(|Sn(zj)| 6 1 for all j ∈ [L]) 6
C

n2

where C > 0 depends on k and µ.

We note that increasing L yields an increase in the exponent on n on the right-hand
side; we only need the right-hand side to be summable in n. Further, it is plausible
that the right-hand side of Lemma 1.3 should be of the order n−L/2; however, even in
the case of k = 2 and L = 1 this is a non-trivial instance of a significant open problem
known as the quadratic Littlewood-Offord problem (see [6, 7, 13, 15]). Since we only
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need summability, the sub-optimal bounds attained by decoupling will be strong enough
provided we take L large as in Lemma 1.3.

We note that this approach differs fundamentally from the anti-concentration ap-
proach of our previous work [16]. In [16] we deduced our anti-concentration estimate
from a powerful theorem of Meka-Nguyen-Vu [15] which in turn is proven by a sophisti-
cated Gaussian comparison argument.

The decoupling approach and proof of Lemma 1.3 is handled in Section 2. We then
prove Theorem 1.1 in Section 3, and import the necessary tools and adapt ideas from [2].

1.2 Notation

Throughout, the random variables (Zj)j>1 are defined on the common probability
space (P,F ,Ω) . The random polynomials we consider are defined by Pn(z) = (z −
Z1) · · · (z − Zn). The measure µn is the empirical measure of Pn and the measure ν(k)n is

the empirical measure of P (k)
n . We will make use of the ratio Sn =

P (k)
n

k!Pn
.

We set λR to be the Lebesgue measure on R and λC to be the Lebesgue measure on
C; we write Ĉ for the Riemann sphere. We denote M = {ψ(z) = az+b

cz+d} for the set of
Möbius transformations and endowM with the measure λM induced by the taking the
Lebesgue measure λ⊗4C on the tuples (a, b, c, d) defining the Möbius transformations. We
denote log z = log+ z − log− z where

log− z =

{
| log z|, 0 6 z 6 1,

0, z > 1,
and log+ z =

{
0, 0 6 z 6 1,

log z, z > 1,

where log− 0 = +∞. We write C(a, r) for the circle centered at a ∈ C of radius r. For
m ∈ N we write [m] = {1, 2, . . . ,m}.

2 Anticoncentration via decoupling

The goal of this section is to prove Lemma 1.3; we begin with the abstract decoupling
lemma of Costello, Tao and Vu [7].

Lemma 2.1. Let (Y1, . . . , Yr) be a collection of random variables taking values in an
arbitrary measurable space and let E = E(Y1, . . . , Yr) be an event depending on these
variables. Set (Y ′1 , . . . , Y

′
r ) to be an independent copy of the collection of random variables

(Y1, . . . , Yr) with the same joint distribution. Then

P(E(Y1, . . . , Yr)) 6 P

 ∧
α⊂[r]

E(Y α1 , . . . , Y
α
r )

1/2r

where Y αj = Yj if j ∈ α and Y αj = Y ′j if j /∈ α.

The strategy will be to apply this lemma and subsequently take linear combinations of
various versions of Sn(zj) in order to obtain a linear inequality rather than a multi-linear
inequality. We then will need a high-dimensional (linear) anti-concentration statement
which is stated in [2]. A random vector (X1, . . . , Xd) ∈ Cd is non-degenerate if there do
not exist complex numbers αj , β so that

d∑
j=1

αjXj − β = 0

almost surely. This non-degeneracy assumption asserts that (X1, . . . , Xd) is genuinely
d-dimensional.
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Proposition 2.2 (Proposition 2.1 from [2]). Let (Xn)n>1 = (Xn
1 , . . . , X

n
d )n>1 be a se-

quence of i.i.d. non-degenerate random vectors taking values in Cd and set Sn =∑n
k=1X

k. Then there is a constant C depending on d, r and the law of X so that for all n
we have

sup
x∈Cd

P (‖Sn − x‖ 6 r) 6
C

nd/2
.

We are now ready to set up the decoupling approach. Recall that (Zj)j>1 are the
i.i.d. samples from µ giving the roots of the polynomials (Pn)n>1. For fixed n and k,
partition [n] into k disjoint sets R1, . . . , Rk with bn/kc 6 |Rj | 6 dn/ke. For j ∈ [k] define
Yj = (Zi)i∈Rj . We now think of the rational function Sn(z) as a function not only of z but
also of the quantities (Yj)j∈[k] and so we write Sn(z;Y1, . . . , Yk) when we want to make
this dependence explicit.

Applying Lemma 2.1 shows

P(|Sn(zj)| 6 1 for all j ∈ [L]) 6 P (|Sn(zj ;Y
α
1 , . . . , Y

α
k )| 6 1 for all j ∈ [L], α ⊂ [k])

1/2k
.

(2.1)
The main use of the decoupling is in the following combinatorial lemma.

Lemma 2.3. Suppose that for all α ⊂ [k] we have |Sn(z;Y α1 , . . . , Y
α
k )| 6 1. Then

∏
i∈[k]

∣∣∣∣∣∣
∑
j∈Ri

(
1

z − Zj
− 1

z − Z ′j

)∣∣∣∣∣∣ 6 2k .

Proof. Define

h(Y1, . . . , Yk, Y
′
1 , . . . , Y

′
k) :=

∑
α⊂[k]

(−1)|α|Sn(z;Y α1 , . . . , Y
α
k ) .

The triangle inequality shows that |h(Y1, . . . , Yk, Y
′
1 , . . . , Y

′
k)| 6 2k . Note that

h(Y1, . . . , Yk, Y
′
1 , . . . , Y

′
k) =

∑
α⊂[k]

(−1)|α|
∑

16i1<i2<...<ik6n

1

z − Zαi1
· · · 1

z − Zαik
.

Swapping the sums, we claim that

∑
α⊂[k]

(−1)|α|
k∏
r=1

1

z − Zαir
=

0 if {i1, . . . , ik} ∩Rj = ∅ for some j;∏k
`=1

(
1

z−Zi`
− 1

z−Z′i`

)
otherwise .

To see this, assume first that {i1, . . . , ik} ∩Rj = ∅ for some Rj; then when we sum over
αj , the sign changes but the quantity 1

z−Zαi1
· · · 1

z−Zαik
does not, thus giving 0. Otherwise,

we must have that each Rj contains exactly one value from {i1, . . . , ik}, and thus the sum
factors as stated. This shows

h(Y1, . . . , Yk, Y
′
1 , . . . , Y

′
k) =

∏
i∈[k]

∑
j∈Ri

(
1

z − Zj
− 1

z − Z ′j

)
as desired.

We now use Lemma 2.3 to identify a high-dimensional but linear anti-concentration
event lurking in the right-hand side of (2.1).

Corollary 2.4. Suppose z1, . . . , zL satisfy |Sn(zi, Y
α
1 , . . . , Y

α
k )| 6 1 for all i ∈ [L] and

α ⊂ [k]. Then there is some ` ∈ [k] and a set I with |I| > L/k so that for all i ∈ I we have∣∣∣∣∣∣
∑
j∈R`

(
1

zi − Zj
− 1

zi − Z ′j

)∣∣∣∣∣∣ 6 2 .
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Proof. Apply Lemma 2.3 to note that for each i ∈ [L] we can associate some `i ∈ [k]

(implicitly depend on Zj and Z ′j) for which we have∣∣∣∣∣∣
∑
j∈R`i

(
1

zi − Zj
− 1

zi − Z ′j

)∣∣∣∣∣∣ 6 2 .

Since there are only k choices for each `i, the pigeonhole principle shows that at least
L/k values of i must have the same value of `i.

With an eye towards applying Proposition 2.2, we confirm non-degeneracy of the
summands appearing in Corollary 2.4:

Fact 2.5. Suppose µ does not have finite support. Let L ∈ N and set z1, z2, . . . , zL to be
pairwise distinct complex numbers. Let Z and Z ′ be independent samples from µ. Then
the vector (

1

z1 − Z
− 1

z1 − Z ′
, . . . ,

1

zL − Z
− 1

zL − Z ′

)
is non-degenerate.

Proof. The proof is similar to the case appearing in [2]. Seeking a contradiction, suppose
that this random vector is degenerate, and so suppose there are (possibly complex)
numbers αj and β so that

L∑
j=1

αj

(
1

zj − Z
− 1

zj − Z ′

)
= β .

Reveal Z ′, and set

β′ = β −
L∑
j=1

αj
zj − Z ′

,

which implies that almost-surely in Z we have

L∑
j=1

αj
zj − Z

= β′ .

Clearing denominators, this implies that Z is the zero of a polynomial of degree at most
L, which contradicts our assumption that µ does not have finite support.

We are now ready to prove Lemma 1.3.

Proof of Lemma 1.3. By (2.1) and Corollary 2.4 there is a set R` with |R`| > bn/kc and a
set I with |I| > L/k so that

P (|Sn(zj)| 6 1 for all j ∈ [L])

6 P

∃ ` ∈ [k], |I| > L/k :

∣∣∣∣∣∣
∑
j∈R`

(
1

zi − Zj
− 1

zi − Z ′j

)∣∣∣∣∣∣ 6 2 for all i ∈ I

1/2k

. (2.2)

We now apply Proposition 2.2—noting that the non-degeneracy condition is guaranteed
by Fact 2.5—to note that for each possible I and ` we have.

P

∣∣∣∣∣∣
∑
j∈R`

(
1

zi − Zj
− 1

zi − Z ′j

)∣∣∣∣∣∣ 6 2 for all i ∈ I

 6
C

(n/k)L/(2k)
(2.3)
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where C depends on L and µ.
Combining (2.2) and (2.3) along with a union bound over all choices of ` and I shows

P (|Sn(zj)| 6 1 for all j ∈ [L]) 6

(
k2L

C

(n/k)L/(2k)

)1/2k

.

Recalling L = 2k+2k completes the proof.

3 Main lemmas and Proof of Theorem 1.1

Following the Angst-Malicet-Poly strategy outlined in Section 1.1, recall that we have
set Pn(z) = (z − Z1) · · · (z − Zn) to be our random polynomial and

Sn(z) :=
P

(k)
n (z)

k!Pn(z)
=

∑
16i1<i2<...<ik6n

1

z − Zi1
· · · 1

z − Zik
.

We begin with the following basic consequence of Jensen’s formula, proven in [2,
Prop. 2.2] .

Fact 3.1. Let S = Q/P where P and Q are two polynomials neither of which has 0 as a
root. Then for each Möbius transformation ψ ∈M we have∑

ρ

log− |ψ(ρ)| −
∑
ζ

log− |ψ(ζ)| 6 max
z∈ψ−1(C(0,1))

log |S(z)| − log |S(ψ−1(0))|

where {ρ} enumerates the roots of Q up to multiplicity and {ζ} enumerates the roots of
P .

Recalling that Möbius transformations map circles to circles, we aim to handle the
max term in Fact 3.1 first. Set C(a, r) to be the circle of radius r centered at a.

Lemma 3.2. There is a set E ⊂ Ω × C × R with P ⊗ λC ⊗ λR(Ec) = 0 so that for all
(ω, a, r) ∈ E we have

max
z∈C(a,r)

log+ |Sn(z)| = O(log n) .

Proof. First consider the case a = 0. Note that∫
C

∫
R

1

|r − |z||1/2
1|r−|z||61 dλR(r) dµ(z) =

∫
C

4 dµ(z) = 4 <∞

implying that for λR-almost-every r > 0 we have

E

[
1

|r − |Z1||1/2

]
6 1 + E

[
1

|r − |Z1||1/2
1|r−Z|61

]
<∞ . (3.1)

Bound

max
z∈C(0,r)

|Sn(z)| 6

 n∑
j=1

1

|r − |Z1||

k

6 nk

 n∑
j=1

1

|r − |Zj ||1/2

2k

(3.2)

and note that for r satisfying (3.1) the strong law of large numbers implies that P-almost-
surely we have

n∑
j=1

1

|r − |Zj ||1/2
= O(n) (3.3)

where the implicit constant depends on the instance ω ∈ Ω as well as r ∈ R . Com-
bining (3.2) with (3.3) shows that for λR-almost-every r > 0 and P-almost-surely we
have

max
z∈C(0,r)

log+ |Sn(z)| = O(log n) . (3.4)
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To show the same for arbitrary a ∈ C, simply replace Z with the random variable Z − a
to reduce to the case of a = 0. This shows that for every a ∈ C there are sets Ωa, Ua with
P(Ωca) = λR(U ca) = 0 so that for all ω ∈ Ωa, r ∈ Ua we have that the triple (a, ω, r) satisfies
the hypotheses of the Lemma. An application of the Fubini-Tonelli theorem completes
the proof.

An application of Lemma 1.3 will allow us to handle the remaining term on the
right-hand side of Fact 3.1.

Lemma 3.3. For each k ∈ N, set L = 2k+2k. Then there is a set E ⊂ Ω × CL with
P⊗ λ⊗LC (Ec) = 0 so that for all (ω, z1, . . . , zL) ∈ E and all n large enough there is at least
one j ∈ [L] so that |Sn(zj)| > 1 (with the convention |Sn(z)| = +∞ if z is a pole of Sn).

Proof. For each L-tuple (z1, . . . , zL) of pairwise distinct points, Lemma 1.3 and the Borel-
Cantelli lemma show that almost surely for sufficiently large n we have |Sn(zj)| > 1 for at
least one j ∈ [L]. Since the set of pairwise distinct L-tuples has complement of measure
0 under the measure λ⊗LC , an application of the Fubini-Tonelli theorem completes the
proof.

Finally, the strong law of large numbers will control the sum over {ζ}:
Fact 3.4. There is a set E ⊂ Ω ×M with P ⊗ λM(Ec) = 0 so that for all (ω, ψ) ∈ E we
have

lim
n→∞

∫
C

log− |ψ(z)| dµn(z) =

∫
C

log− |ψ(z)| dµ(z) .

Proof. By definition, we have
∫
C

log− |ψ(z)|dµn(z) = 1
n

n∑
k=1

log− |ψ(Zk(z))| dµ(z). By the

strong law of large numbers, we have that almost surely

lim
n→∞

1

n

n∑
k=1

log− |ψ(Zk(z))| =
∫
C

log− |ψ(z)| dµ(z) .

We are now ready to verify the assumptions of Lemma 1.2 for cluster points of our
sequences of random measures.

Lemma 3.5. Suppose µ does not have finite support. There is a set E ⊂ Ω ×M with
P⊗ λM(Ec) = 0 so that the following holds. For every cluster point ν̂∞ of the sequence

of empirical probability measures (ν
(k)
n )n>1 we have∫

Ĉ

log− |ψ(z)| dν̂∞(z) 6
∫
C

log− |ψ(z)| dµ(z)

for all (ω, ψ) ∈ E .

Proof. By combining Lemma 3.2, Lemma 3.3, and Fact 3.4 we see that there is a set
Ω1 with P(Ω1) = 1 for which the following holds: for λ⊗LM -almost-every tuple of Möbius
transformations (ψ1, . . . , ψL) we have

1. maxz∈ψ−1
j (C(0,1)) log |Sn(z)| = O(log n) for all j ∈ [L].

2. For each n large enough, there is some j ∈ [L] so that log |Sn(ψ−1j (0)| > 0.

3. limn→∞
∫
C

log− |ψj(z)| dµn(z) =
∫
C

log− |ψj(z)| dµ(z) for all j ∈ [L].

We note that for Item 2 we use the fact that for λ⊗LM -almost-every tuple (ψj)
L
j=1, the

values (ψ−1j (0))Lj=1 are pairwise distinct. Fix an instance ω ∈ Ω1 and a tuple (ψ1, . . . , ψL)

for which the above three items hold. Combining Jensen’s formula Fact 3.1 along with
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Item 1 and Item 2, we see that for each n sufficiently large there is some j ∈ L for which
we have(

1− k

n

)∫
C

log− |ψj(z)|dν(k)n (z) 6
∫
C

log− |ψj(z)| dµn(z) +O

(
log n

n

)
. (3.5)

By Item 3 we have that

lim
n→∞

∫
C

log− |ψj(z)| dµn(z) =

∫
C

log− |ψj(z)| dµ(z) . (3.6)

For a cluster point ν̂∞, there exists a subsequence (νni)i>1 converging to ν̂∞. By
truncating the log− and applying the monotone convergence theorem we see that for
each j ∈ [L] we have∫

Ĉ

log− |ψj(z)| dν̂∞(z) 6 lim sup
i→∞

∫
C

log− |ψj(z)| dν(k)ni (z) . (3.7)

Thinning our subsequence further so that Item 2 holds for a single j ∈ [L] for all
(ni)i>1, we combine (3.5), (3.6) and (3.7) to obtain∫

Ĉ

log− |ψj(z)| dν̂∞(z) 6
∫
C

log− |ψj(z)| dµ(z) . (3.8)

Defining the set E ⊂M (depending on the instance ω ∈ Ω1) via

E :=

{
ψ ∈M : ∃ cluster point ν̂∞ with

∫
Ĉ

log− |ψj(z)| dν̂∞(z) >

∫
C

log− |ψj(z)| dµ(z)

}
we see that (3.8) shows that λ⊗LM (EL) = 0 where EL is the L-fold cartesian product of E
with itself; this implies that λM(E) = 0 as desired.

Proof of Theorem 1.1. First note that if µ has finite support, then the theorem follows
immediately by the strong law of large numbers. As such, we will assume throughout
that µ does not have finite support. By Lemma 3.5, there is a set Ω1 with P(Ω1) = 1 so
that for each ω ∈ Ω1, for λM-almost-all ψ ∈M we have∫

Ĉ

log− |ψ(z)| dν̂∞(z) 6
∫
C

log− |ψ(z)| dµ(z) .

By Lemma 1.2, this implies that each such cluster point satisfies ν̂∞ = µ. This shows
that each subsequence of {ν(k)n }n>1 contains a further subsequence that converges to µ,
thus showing that for each ω ∈ Ω1 we have νn converges to µ.
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