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Abstract

We consider a stochastic version of the point vortex system, in which the fluid velocity
advects single vortices intermittently for small random times. Such system converges
to the deterministic point vortex dynamics as the rate at which single components
of the vector field are randomly switched diverges, and therefore it provides an
alternative discretization of 2D Euler equations. The random vortex system we
introduce preserves microcanonical statistical ensembles of the point vortex system,
hence constituting a simpler alternative to the latter in the statistical mechanics
approach to 2D turbulence.
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1 Introduction

The Point Vortex (PV) system is a finite-dimensional system of singular ODEs describ-
ing the evolution of an incompressible, 2-dimensional fluid in the idealized case where
the vorticity, i.e. the curl of the velocity field, is concentrated in a finite set of points.

Introduced by Helmholtz in 1858 [12], the PV system is known to be well-posed for
almost every initial configuration [6]. It has been shown to be the limit of solutions of
2D Euler equations [17, 16, 18] in the well-posedness class L∞ of the latter, and the
PV system itself converges to solutions of 2D Euler equations in a Mean Field scaling
regime for initial data in L∞ [22, 13, 23, 24].

The properties of PV dynamics as a Hamiltonian system with singular interactions
have also been the object of extensive research, because of the coexistence of stable
and unstable configurations and the presence of singular solutions possibly related to
dissipation properties of 2D Euler equations [9] (see, e.g., [19, 3] for an overview on PV
as Hamiltonian dynamics).
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Random splitting of point vortex flows

Just as in the case of the closely related 2D Euler PDE dynamics, one of the main
problems concerning PV systems is the long-time asymptotic behavior of the solutions.
Equilibrium states of PV systems play a prominent role in the statistical mechanics
approach to 2D turbulence rooted in the works of Onsager [20], with the convergence
towards states exhibiting the formation of coherent structures being the crucial mathe-
matical open problem [25].

The present note is devoted to a stochastic modification of the PV system inspired
by the random splitting technique recently developed in [1, 2]. We will prove that the
stochastic vortex flow we exhibit is in fact a regularized version of the deterministic
PV dynamics converging to the latter in the limit of small regularization parameter.
This in turn implies convergence towards solutions of 2D Euler equations in sight of
the aforementioned results. Unlike the original PV system, the stochastic dynamics we
propose is well-defined for all initial configurations, the convergence to the deterministic
system holding up to the time of eventual singularities, as in other versions of PV
dynamics regularized by the introduction of noise [8, 11].

The most important feature of the stochastic dynamics we propose is that it preserves
the same kinetic energy functional (i.e. the PV Hamiltonian) as the original deterministic
flow. To the best of our knowledge, this is the first desingularization method for PV
dynamics that preserves such a crucial first integral of motion, possibly opening the way
for a new approach to the study of microcanonical ensembles of PVs and their relation
with 2D turbulence. We defer a proper discussion to Section 3, after having established
a rigorous construction and our main results in Section 2.

2 Splitting vortex flows

We consider the dynamics on the periodic space domain T ' [0, 1)2 and establish
our results on the finite time interval t ∈ [0, 1]. All the forthcoming arguments can be
easily adapted to the general case of PV dynamics on smooth compact surfaces with
or without boundaries. Throughout, we define k⊥ := (−k2, k1) for k = (k1, k2) ∈ R2,
extending this notation naturally to the differential operator ∇ := (∂1, ∂2), and denote by
| · |, respectively ‖ · ‖ the Euclidean and induced operator norm.

2.1 Deterministic vortex dynamics

A system ofN point vortices with intensities ξ1, . . . , ξN ∈ Rr{0} and distinct positions

x = (x1, . . . , xN ) ∈ X :=
{
x ∈ TN : xi 6= xj ∀i 6= j

}
,

evolves according to the dynamics

ẋi = vi(x), vi(x) =
∑
j 6=i

ξjK(xi − xj) , (2.1)

where

K : Tr (0, 0)→ R2, K(x) = ∇⊥G(x) =
1

2π

∑
k∈Z2r(0,0)

k⊥

|k|2
e2πk·x ,

is the 2D Biot-Savart kernel, whose action on a vorticity distribution returns the corre-
sponding velocity field of the fluid, which in turn advects vortex positions. Here and
throughout, we denote by G = (−∆)−1 the (zero-average) Green function of the Laplace
operator on T.

The system introduced above admits singular solutions in which distinct vortices
collapse to the same position at finite time [9]. However, as proved in [6], for almost all
initial configurations x = x(0) ∈ X with respect to the product Lebesgue measure on
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Random splitting of point vortex flows

TN ⊃ X the ODE system Eq. (2.1) admits a unique solution which is smooth and global
in time, that is, there is no collision at finite time. With a slight abuse of notation we
will denote by Φt : TN → TN the (almost-everywhere defined) solution flow of Eq. (2.1),
i.e. the flow of v = (v1, . . . , vN ) on X . Incidentally, we recall that in the particular case
where all intensities ξi have the same sign collapse is not possible.

We will denote by Φ
(i)
t : TN → TN the flow of a single component of the velocity

field, (0, . . . , vi, . . . , 0). For i > N , abusing again notation, we will write Φ(i) implying
that the superscript is to be considered modulo N . Note that, unlike Φ, each flow Φ(i)

is well-defined for all times at any point x ∈ X . Indeed, the vector field vi is a smooth
vector field on the punctured torus Tr {x1, . . . , xi−1, xi+1, . . . , xN} and it preserves the
quantity ∑

j 6=i

ξjG(x− xj),

which diverges whenever x approaches any fixed vortex xj . This prevents collapse of the

i-th vortex’s position under the flow Φ
(i)
t with any fixed vortex xj for j 6= i.

2.2 Stochastic splitting

Denoting throughout byc := max{k ∈ N : k ≤ y}, we define the (stochastically) split
PV flow(s) as follows:

Definition 2.1. Let m ∈ N and consider a vector of i.i.d. non-negative random variables
τ = (τi)

∞
i=1 with common distribution ρ having at most exponential tails and satisfying

E(τi) = 1. For t > 0, define the jumping stochastic flow

Φmt (x) = Φ
(N)
τ`N/m

◦ Φ
(N−1)
τ`N−1/m

◦ · · · ◦ Φ
(1)
τ1/m

(x), ` = bmtc ,

with Φmt (x) = x when bmtc = 0, and the interpolated stochastic flow as the solution of

d

dt
Ψm
t (x) = Nτivj (Ψm

t (x)) , i = bNmtc , j = i (modN) .

In particular, when mt is an integer,

Ψm
t (x) = Φmt (x) . (2.2)

Concretely, we let the single components Φ(i) of the PV flow act one by one, over small
(random) time intervals. This procedure is inspired by the operator splitting method for
the numerical integration of ODEs [15].

The difference between Φm and Ψm consists in the former being piecewise constant
in time and the latter having continuous trajectories. While our results are established
for the interpolating flow Ψm

t , leveraging its continuity properties, we introduce the
jumping flow Φmt to connect to results in [2].

Notice that the stochastic flows are well-defined for all initial configurations, even
the ones leading to collapse at finite time of the dynamics Eq. (2.1), since this is the case
for every single Φ(i).

2.3 Convergence for regularized interaction kernels

Consider the following smooth approximation of the PV interaction kernel:

Kδ(x) = (1− χδ(x))K(x), δ > 0 ,

with χδ ∈ C∞(T) supported by a δ-neighborhood of 0 ∈ T and with χδ(0) = 1. In
the present paragraph, we assume that Kδ replaces K in the definitions of flows
Φ,Φ(i),Φm,Ψm, omitting dependence on δ for a lighter notation. Notice that if a so-
lution of the PV dynamics is such that vortices are δ-separated at all times, that is also a
solution of Eq. (2.1) with Kδ replacing K. Theorem 2.2
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Random splitting of point vortex flows

Proposition 2.2. Let Kδ replace K in Eq. (2.1) and the subsequent definitions, and let
x ∈ X be fixed. Then P-almost surely, for all t ∈ [0, 1],

Ψm
t (x)→ Φt(x) as m→∞ .

Defining

dT(x, y)2 :=

N∑
j=1

2∑
i=1

min
(
|(xj)i − (yj)i| , 1− |(xj)i − (yj)i|

)2
, (2.3)

where (xj)i denotes the i-th coordinates of xj , we first prove convergence of fixed-time
marginals of the interpolated stochastic flow:

Lemma 2.3. Let the assumptions of Proposition 2.2 hold and fix t ∈ [0, 1], then for all
ε > 0

P

(
lim sup
m→∞

sup
x∈X

dT (Ψm
t (x),Φt(x)) > ε

)
= 0.

Proof of Lemma 2.3. For ` ∈ N, introduce the `-step jumping flow with timestep h > 0:

Φ̃`h(x) := Φ̃
(`N,1)
h (x) ,

where for any 1 ≤ j ≤ i,

Φ̃
(i,j)
h (x) := Φ

(i)
hτi
◦ Φ

(i−1)
hτi−1

◦ · · · ◦ Φ
(j)
hτj

(x) .

We couple Φ̃`h(x) with Φmt (x) and Ψm
t (x) by setting h = 1/m and identifying the underlying

τ = (τi)
∞
i=1, so that whenever mt ∈ N, we have Φ̃mt1/m(x) = Φmt (x) = Ψm

t (x).
We proceed to prove that for any t ∈ [0, 1] and for any ε > 0 sufficiently small, we

have

P

(
lim sup
m→∞

sup
x∈X

dT (Ψm
t (x),Φmt (x)) >

ε

3

)
= 0 , (2.4)

P

(
lim sup
m→∞

sup
x∈X

dT

(
Φmt (x), Φ̃

bmtc
t/bmtc(x)

)
>
ε

3

)
= 0 , (2.5)

P

(
lim sup
m→∞

sup
x∈X

dT

(
Φ̃
bmtc
t/bmtc(x),Φt(x)

)
>
ε

3

)
= 0 , (2.6)

which, combined, yield the desired result.
Starting from Eq. (2.6), we recall from [2] the definition of the flow maps

Stf(x) := f(Φt(x)) , S̃`hτf(x) := f(Φ̃`h(x)) ,

and their operator norm

‖S‖2→0 := sup
‖f‖2=1

(
sup
x∈X
|Sf(x)|

)
,

where ‖f‖2 := supx∈X ,k=0,1,2

(
sup|η|=1 |Dk

xf(x)η|
)

is a norm on C2(X ). Under the smooth-

ness hypothesis of this lemma, by [2, Thm. 4.5] – which uses the same notation we just
recalled – for every ε′ > 0 we have

P

(
lim sup
`→∞

‖St − S̃`tτ/`‖2→0 > ε′
)

= 0 . (2.7)

Eq. (2.6) now follows by choosing

fx,t,ε(·) := 1− χ̄ε,Φt(x)( · ), x ∈ X , t > 0, ε > 0 ,
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with χ̄ε,y ∈ C2(X ) having support in the dT-ball Bε/3(y) of radius ε/3 around y ∈ X ,
equalling 1 in y and such that

sup
x∈X
‖D2

xχ̄ε,y(x)‖ ≤ 64ε−2 and sup
x∈X
|Dxχ̄ε,y(x)| ≤ 16ε−1 .

Indeed, setting ε′ = ε2/128 we have

P

(
lim sup
m→∞

sup
x∈X

dT

(
Φ̃
bmtc
t/bmtc(x),Φt(x)

)
>
ε

3

)
≤ P

(
lim sup
`→∞

sup
x∈X
|fx,t,ε(Φ̃`t/`(x))| > 1

2

)
= P

(
lim sup
`→∞

sup
x∈X
|(St−S̃`tτ/`)2ε

′fx,t,ε(x)|>ε′
)

≤ P
(

lim sup
`→∞

‖St − S̃`tτ/`‖2→0 > ε′
)

= 0 ,

the last step following from Eq. (2.7).

We now turn to proving Eq. (2.5). To do so we note that, defining

M := sup
x∈TN ,i∈{1,...,N}

(|vi(x)|, ‖Dxvi(x)‖) , (2.8)

we have that for all t > 0

sup
r∈(0,t)

dT(Φ
(i)
t (x),Φ

(i)
t (y)) ≤ eMtdT(x, y) , (2.9)

so that we can write, uniformly in x ∈ X ,

dT

(
Φmt (x), Φ̃

bmtc
t/bmtc(x)

)
= dT

(
Φ̃
bmtc
1/m (x), Φ̃

bmtc
t/bmtc(x)

)
≤
Nbmtc∑
j=1

dT

(
Φ̃

(Nbmtc,j)
1/m (Φ̃

(j−1,1)
t/bmtc (x)), Φ̃

(Nbmtc,j+1)
1/m (Φ̃

(j,1)
t/bmtc(x))

)

≤ exp

M
m

Nbmtc∑
j=1

τj

Nbmtc∑
j=1

sup
y
dT

(
Φ̃

(j)
1/m(y), Φ̃

(j)
t/bmtc(y)

)

≤ exp

M

mt

Nbmtc∑
j=1

τj

M

Nbmtc∑
j=1

|1/m− t/ bmtc |τj

≤
∣∣∣∣1− tm

btmc

∣∣∣∣ t exp

 NM

N bmtc

Nbmtc∑
j=1

τj

 NM

N bmtc

Nbmtc∑
j=1

τj .

Combining the strong law of large numbers for 1
`

∑`
k=1 τk in ` = N bmtc → ∞ with

tm/ btmc → 1 as m→∞ we have that the right hand side converges almost surely to 0,
proving the desired result.

Finally, to prove Eq. (2.4), we define btcm := max
{
j
m : j

m ≤ t , j ∈ N
}
, so that

m btcm ∈ N and by Eq. (2.2) we have Φmt (x) = Φmbtcm
(x) = Ψm

btcm
(x). Then, recall-

ing Eq. (2.8) we write

sup
x∈X

dT (Φmt (x),Ψm
t (x)) = sup

x∈X
dT

(
Ψm
btcm

(x),Ψm
t (x)

)
≤
τmbtcmNM

m

which converges almost surely to 0 as m→∞, establishing the claim.
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Proof of Proposition 2.2. Defining for every x ∈ X

Am(ε) :=

{
sup
t∈[0,1]

dT(Ψm
t (x),Φt(x)) ≤ ε

}
,

we aim to show that for all ε > 0, P (lim supm→∞Am(ε)c) = 0 .
For a stepsize s = ε2 and a tolerance ∆(ε) := e−NMε3/20 for M in Eq. (2.8), we

introduce the sets

Bj,m(ε) :=

{
sup
t∈(0,s)

dT(Ψm
t (Ψm

js(x)),Ψm
js(x)) ≤ ε

3

}
,

B′j,m(ε) :=
{
dT(Φs(Ψ

m
js(x)),Ψm

s (Ψm
js(x))) ≤ ∆(ε)

}
.

It is readily checked that, for sufficiently small ε > 0, one has

b1/sc⋂
j=0

Bj,m(ε) ∩B′j,m(ε) ⊂ Am(ε) for all m ∈ N . (2.10)

Indeed, adapting the estimate Eq. (2.9) to trajectories of Φ, and since by triangle
inequality for all k ∈ {1, . . . , b1/sc}

dT(Φks(x),Ψm
ks(x)) ≤

k∑
j=1

dT(Φ(k−j)s(Ψ
m
js(x)),Φ(k−(j−1))s(Ψ

m
(j−1)s(x))) ,

on
⋂k
j=1B

′
j,m(ε) for all k ∈ {1, . . . , b1/sc} we can write

dT(Φks(x),Ψm
ks(x)) ≤ eNM

k∑
j=1

dT(Φs(Ψ
m
js(x)),Ψm

s (Ψm
js(x))) ≤ ε

10
.

Combining the above with the definition of Bj,m(ε) and the fact that for ε small enough
supx∈X ,t∈(0,s) dT(x,Φt(x)) ≤ NMs < ε/3 yields Eq. (2.10).

To conclude, it remains to estimate the probabilities of Bj,m(ε), B′j,m(ε): for every
ε > 0, we have by Eq. (2.10) that

P

(
lim sup
m→∞

Am(ε)c
)
≤ P

lim sup
m→∞

b1/sc⋃
j=0

Bj,m(ε)c ∪B′j,m(ε)c

 (2.11)

≤
b1/sc∑
j=0

P

(
lim sup
m→∞

Bj,m(ε)c
)

+

b1/sc∑
j=0

P

(
lim sup
m→∞

B′j,m(ε)c
)
, (2.12)

where the second inequality is a union bound. We finally obtain the desired claim by
noting that the second term on the right hand side vanishes by application of Lemma 2.3,

and that by the strong law of large numbers, recalling the definition of s and that τk
iid∼ ρ

with E(τk = 1), for the first term we have

P

(
lim sup
m→∞

sup
x∈T,t∈(0,s)

dT(Ψm
t (x)− x) >

ε

3

)
≤ P

(
lim sup
m→∞

1

m

sm∑
k=1

Mτk >
ε

3

)

= P

(
lim sup
m→∞

1

sm

sm∑
k=1

τk >
1

3Mε

)
= 0 ,

upon choosing ε < 1/4M .
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2.4 Convergence to the deterministic vortex flow

In what follows, G : T r (0, 0) denotes the (zero-average) Green function of the
Laplace operator −∆ on T and K(x) = −∇⊥G(x) returns to be the singular interaction
of the PV system. We denote by dxN the Lebesgue (equivalently, Haar) measure on TN .

Theorem 2.4. dxN ⊗ P-almost surely, for all t ∈ [0, 1] we have

Ψm
t (x)→ Φt(x), as m→∞ .

The proof essentially relies on the following bound on vortex distances, which reprises
the classical argument of Dürr-Pulvirenti [6].

Lemma 2.5. There exists a constant C = C(N) > 0 such that for all δ > 0∫
TN

dxNP

(
min
m≥0

inf
t∈[0,1]

min
i 6=j

dT(Ψm
t (x)i,Ψ

m
t (x)j) < δ

)
≤ C(− log δ)−1 . (2.13)

Proof. To lighten notation, in the following C denotes a positive N -dependent constant
possibly varying in each occurrence. Since Ψm

t is the result of subsequent compositions
of the flows Φ(i), the proof reduces to establish the thesis for the latter. The function

L : TN r4→ [0,∞) , L(x) =
∑
i 6=j

G(xi − xj) + c ,

(where c = c(N) > 0 is a constant to be chosen so that L ≥ 0, thanks to the fact that G
is bounded from below, and we define throughout 4 := {x ∈ TN : xi = xj for i 6= j})
allows to control the minimum distance between vortices, since

L(x) ≤ −C log

(
min
i 6=j

dT(xi, xj)

)
, x ∈ TN r4 . (2.14)

Notice that L ∈ L1(TN ) as G ∈ L1(T). It holds:

d

dt
[L ◦ Φ

(1)
t ](x) =

∑
i 6=1

∇G(xi − x1)
∑
j 6=1

∇⊥G(xj − x1) ,

in which the sum on the right-hand side also contains no contribution from the product
with i = j due to orthogonality. Integrating in time we can thus write, for t∗ > 0,∫

TN

sup
t∈[0,t∗]

(L ◦ Φ
(1)
t (x))dxN =

∫
TN

L(x)dxN

+

∫
TN

sup
t∈[0,t∗]

∫ t

0

∑
i 6=j 6=1

∇G(Ψm
s (x)i −Ψm

s (x)1)∇⊥G(Ψm
s (x)j −Ψm

s (x)1)dsdxN .

In the latter expression, since Φ(1) preserves dxN , we can swap the integral over TN

and the supremum over time; we can then use the estimate |∇G(y)| ≤ C|y|−1, y ∈ T, to
control factors of the integrand, finally arriving to∫

TN

sup
t∈[0,t∗]

(L ◦ Φ
(1)
t (x))dxN ≤ Ct∗ .

The same argument clearly holds for all Φ(i), and for compositions of those flows on
subsequent time intervals as the ones in the definition of Ψm

t , leading in particular to∫
TN

sup
t∈[0,1]

(L ◦Ψm
t (x))dxN ≤ C 1

m

mN∑
i=1

τi .

With this estimate at hand, the thesis follows from Eq. (2.14) and Markov’s inequality.
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Proof of Theorem 2.4. If (Ω,P) is the probability space on which the random times τi
are defined, the measurable subset

Aδ :=

{
min
m≥0

inf
t∈[0,1]

min
i 6=j

dT(Ψm
t (x)i,Ψ

m
t (x)j) > δ

}
⊂ Ω×X ,

is such that on Aδ the random flow Ψm(x)i does not change if the interaction kernel K
is replaced by Kδ as in Section 2.3. In particular, conditionally to Aδ, Proposition 2.2
applies yielding: dxN ⊗P-almost surely on Aδ, for all t ∈ [0, 1], Ψm

t (x)→ Φt(x) as m→∞.
The proof is then completed by observing that

⋃
δ>0Aδ = X × Ω, therefore the subset of

TN ⊗ Ω on which the thesis does not hold must be negligible by Eq. (2.13).

3 Equilibrium statistical mechanics

We have exhibited a random dynamical system whose flow Ψm converges to that
of PV dynamics in the deterministic limit m → ∞. We conclude the present note with
some remarks on the compatibility of the flow Ψm with the statistical mechanics of
PVs. We refer to [21] for a survey on classical statistical mechanics approach to 2D
turbulent phenomena, to [4] for a more recent account, and to [7] for the relevance to
microcanonical ensembles of PVs.

The interaction energy of the PV system,

H(x1, . . . , xN ) =
∑
i 6=j

ξiξjG(xi − xj),

corresponds to the (renormalized) kinetic energy of the fluid, and it acts as the Hamilto-
nian function of Eq. (2.1) regarded as the Hamilton equations in conjugate coordinates
(xj,1, ξjxj,2). Combined with the fact that the PV flow Φ (out of the negligible set of
singular initial configurations) is the flow of a divergence-less vector field, and as such
preserves dxN by Liouville theorem, this allowed Onsager [20] to consider canonical and
microcanonical ensembles preserved by Φ. Specifically,

νβ(dxN ) =
1

Zβ,N
e−βH(x1,...,xN ), Zβ,N =

∫
TN

e−βH(x1,...,xN )dxN , (3.1)

is well defined (i.e. Zβ,N <∞) for inverse temperature β < 4π
mini |ξi| (see, e.g., [10, Section

2]) and defines an invariant measure of Eq. (2.1). On the other hand, conditioning dxN

to an energy level set {H = E} one can introduce the microcanonical ensemble

µE(dxN ) =
1

ZE,N
δ (H(x1, . . . , xN )− E) dxN ,

ZE,N being the Lebesgue measure of {H(x1, . . . , xN ) = E} ⊂ X . For high enough energy
E � 1, Onsager [20, p. 281] predicted that, under the microcanonical ensemble, typical
configurations of vortices behave similarly to samples from a negative-temperature
canonical ensemble, i.e. β < 0 in Eq. (3.1). Under the latter distribution typical
configurations should exhibit aggregation of same-sign vortices, as proximity of vortices
with different signs is penalized by the density e−βH as |β| becomes large. This should
allow the use of PV statistical ensembles to describe the formation of coherent structures
in 2D turbulent flows. At present, this remains mostly conjectural as far as rigorous
results are concerned, and we shall rather refer to numerical studies such as [5, 14] for
a contemporary viewpoint.

The single component flow Φ(i) is in fact the flow of the vector field ∇⊥i H, thus H is
a first integral of motion for all Φ(i)’s, and consequently for the random flows Φm, Ψm.
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Since Φ(i) is still the flow of a divergence-less vector field, Liouville theorem applies
and the measure invariance arguments just outlined can be repeated for Φm, Ψm. As a
consequence, the latter are completely equivalent to Eq. (2.1) from the point of view of
equilibrium states described above, while being simpler as far as the time evolution is
concerned. Let us also stress again the fact that these random flows are well-defined for
all initial PV configurations, therefore singular dynamics are completely ruled out in this
setting. Incidentally, we observe that this possibly introduces a new tool in the study of
the continuation of PV dynamics after collapse via stochastic regularization (see, e.g.,
[11]).

In [2], unique ergodicity was proved for random splitting of relevant models in fluid
dynamics such as Lorenz-96 or Galerkin approximation of 2D Navier-Stokes equations.
We conjecture that the same is true for PV dynamics, i.e., we expect that the random
flows Ψm

t admit a unique invariant measure (the microcanonical ensemble) which is
ergodic. Further insight on the stability of vortex interactions is necessary in order to
fully replicate the results of [2] for split PV flows, but the splitting approach reduces the
problem to the analysis of the evolution of a single PV in a fixed configuration of vortices,
thus moving a step forward towards a better understanding of PV dynamics.
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