Bayesian Analysis (2024) TBA, Number TBA, pp. 1-29

Cutting Feedback and Modularized Analyses in
Generalized Bayesian Inference

David T. Frazier* and David J Nott!

Abstract. This work considers Bayesian inference under misspecification for com-
plex statistical models comprised of simpler submodels, referred to as modules,
that are coupled together. Such “multi-modular” models often arise when combin-
ing information from different data sources where there is a module for each data
source. When some of the modules are misspecified, the challenges of Bayesian
inference under misspecification can sometimes be addressed by using “cutting
feedback” methods, which modify conventional Bayesian inference by limiting the
influence of unreliable modules. Here we investigate cutting feedback methods in
the context of generalized posterior distributions built from loss functions. We
make three main contributions. First, we describe how cutting feedback methods
can be defined in the generalized Bayes setting, and discuss the appropriate scaling
of the loss functions in this context. Second, we derive a novel type of conditional
Laplace approximation that accurately describes the behavior of the posterior for
a given module’s parameters when we condition on parameters in other modules.
Third, we leverage this novel result to provide several convenient diagnostics for
Bayesian modular inference, which we then apply to examples in the literature on
cut model inference.

Keywords: cutting feedback, model misspecification, modularization,
semi-modular inference, generalized Bayesian inference.

1 Introduction

Complex statistical models are sometimes composed of smaller sub-models, which we
call modules, that are interconnected. This modular structure is common when integrat-
ing information from multiple data sources, where each data source is associated with
a separate sub-model. When a model with a modular structure is correctly specified,
Bayesian inference has desirable properties, regardless of the number or complexity of
the modules. However, when there is misspecification, conventional Bayesian inference
may need to be modified. This paper explores new forms of a method called “cutting
feedback” for modified Bayesian inference under misspecification.

It is well-known that misspecification of an assumed model compromises the use and
interpretation of Bayesian inference; see, e.g., Griinwald (2012) for examples. Nonethe-
less, when dealing with a multi-modular model, a researcher may suspect that only some
modules are grossly misspecified. In such cases, modified Bayesian analysis methods
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2 Generalized Cut Posteriors

like cutting feedback, which is the focus of this paper, can limit the influence of unre-
liable modules, thereby preserving the validity of inferences on parameters in correctly
specified modules. This can make model criticism easier and ensure that estimates of
parameters in the misspecified modules retain a useful interpretation (Liu et al., 2009).
For discussion on the wide-ranging applications of cutting feedback and modularized
Bayesian inference methods, see Jacob et al. (2017) and Liu et al. (2009), with the latter
paper focusing on applications in the analysis of computer models.

The current literature on cutting feedback mainly focuses on fully specified paramet-
ric models. However, if a parametric model is misspecified, researchers can still produce
useful Bayesian inferences by using a posterior based on a loss function that captures
the features of the data that are most important. Such generalized Bayesian inference
methods (see, for example, Bissiri et al., 2016), have become increasingly popular in sta-
tistical inference. They recover conventional Bayesian inference as a special case when
the loss function used in their construction is the negative log likelihood. This paper
combines the use of cutting feedback methods with generalized Bayesian inference, re-
sulting in an attractive approach to modular Bayesian inference. Our framework allows
a targeted loss function to be used for modules which are misspecified, instead of relying
on the negative log likelihood function. Meanwhile, we can continue to use the negative
log likelihood function as the loss for modules that are well specified. The generalized
Bayes perspective on modular inference is useful in model improvement. Starting with a
flawed parametric model specification, we can replace the negative log likelihood for sus-
pect modules with other loss functions to see whether this resolves any incompatibility
between the “cut posterior” produced by cutting feedback methods and full posterior
inferences.

Our work makes three main contributions to the literature on generalized Bayesian
inference and cutting feedback. Firstly, we describe how to define cutting feedback in the
generalized Bayesian setting, and discuss how to appropriately scale loss functions for
different modules to each other and to the prior. Secondly, we derive a novel large sam-
ple result that allows us to express the posterior for the parameters of a given module
conditional on the parameters of the remaining modules. In contrast, the only existing
result on the large sample behaviour of cut posteriors of which we are aware (Pompe and
Jacob, 2021) presents a joint analysis of the cut posterior. As we argue in Section 2.3,
the conventional normal approximation to the joint cut posterior provides only limited
insight into propagation of uncertainty in cutting feedback, because conditioning on a
subset of variables in a multivariate normal distribution results in a conditional covari-
ance matrix that doesn’t depend on the conditioning variables. In contrast, our results
provide convenient normal approximations for conditional posterior distributions where
covariance matrices change with the values for the conditioning variables, giving useful
insights into uncertainty propagation in cut posteriors.

Finally, we use this large sample approximation to develop easily computable diag-
nostics for understanding the coupling of the modules, and to conduct different forms
of semi-modular inference (SMI) as in Carmona and Nicholls (2020). While estima-
tion of the SMI (and cut) posterior generally requires a computationally burdensome
nested Markov chain Monte Carlo (MCMC) method, we show how our large sample
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results can be used as fast approximations to the SMI and cut posteriors that ease this
computational burden: these approximations can be used directly in computationally
onerous settings, or as proposals in MCMC or importance sampling. We illustrate our
methodology in two benchmark examples found in the literature on cutting feedback.

Notation. Here we define notation used in the remainder of the paper. The term || - ||
denotes the Euclidean norm, while |-| denotes the absolute value function. C' denotes an
arbitrary positive constant that can change from line-to-line. For z = (2] ,zJ )T € R4
and a function f : R? s R, we let V,f(x) denote the gradient of f(z) wrt x, and
V2, f(x) the Hessian. Let N{u,¥} denote the normal distribution with mean u and
covariance matrix 3, with N{z;u, X} the corresponding normal density at the point
x. For D some known distribution, and z = (z{,2J )" € R% a d-dimensional random

variable, the notation = ~ D signifies that the law of z is D, while x|z ~ D signifies
that the conditional law of 1 given x5 is D. The measure Po(n) denotes the true unknown
probability measure generating the data, and = denotes weak convergence (under PO(")).

2 Motivation and Framework

Figure 1 is a graphical representation of the model we will use throughout this paper.
The data come from two data sources, denoted z and w, and we denote the complete
data by y = (27,w")T. The data source for each observation is known; we do not
consider problems such as mixture modelling for which there is some unobserved allo-
cation of observations to mixture components representing the different data sources.
We write 2 = (21,...,2n,) ", 2 € Z, w = (w1, ..., Wy,) , w; €W, and n = ny + ny for
the number of observations in y.

Figure 1: Graphical structure of the two-module system. The red dashed line indicates
the cut.

There are parameters 6 = (¢ ',n")", where § € © CR% o€ ® CR¥ nec & C
R and we write dy = d, +d, for the dimension of §. We consider Bayesian inference,
with a prior density 7(0) = 7(¢)mw(n|e). In Figure 1, the parameter ¢ is shared in the
models for z and w, but 7 is specific to the model for w. There is a likelihood for z,
p(z|e), that we believe is well specified and which we trust. There is a likelihood for w,
p(w|p,n) which we suspect is misspecified and which we do not trust. This means that
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Bayesian inference for ¢ using m(p|z) is trusted, but Bayesian inference using 7(¢|y) is
not.

Because of our lack of trust in w(p|y), we may wish to use the “cut” joint posterior
density

Teut (0, 7]2, w) := w(p|2)7(1]p, Y), (2.1)

instead of the conventional posterior density. In (2.1) marginal inferences for ¢ are
performed using 7(p|z), but conditional inference for n given ¢ is the same as for
the conventional joint posterior density, based on w(n|p,y). Using (2.1) rather than
the conventional posterior is referred to as “cutting feedback”, and this approach was
initially developed in specific fields of application as a way of dealing with potential
model misspecification of the suspect likelihood p(w|p,n).

Another motivation for cut posteriors is given in Lemma 1 of Yu et al. (2023), which
proved that the cut posterior density is the closest approximation of the conventional
Bayesian posterior density, in Kullback-Leibler divergence, subject to the constraint
that the ¢-marginal is the “trusted” p(¢|z). Further, there is also a foundational justifi-
cation for cutting feedback in terms of a generalization of Bayesian conditioning referred
to as Jeffrey conditionalization (Jeffrey, 1965) originating in the philosophy of science
literature. A recent discussion of the connections with cutting feedback accessible to a
statistical audience is given in Hahn and Herren (2023, Section 1.3).

Cutting feedback is a widely used Bayesian modular inference method. Modular
inference splits a complex model into smaller submodels called modules that are coupled
together. If we are concerned about model misspecification affecting only some modules,
it may be sensible to limit the interaction between the modules when making inference.
Modules are defined here to be subsets of the terms used in specifying a joint Bayesian
model. For the model of Figure 1, we consider two modules. The first is {7 (¢), p(z|p)}
(hereafter module 1) represented by nodes to the left of the red line in Figure 1. The
second is {m(n|¢),p(w|p,n)} (hereafter module 2) and these terms are represented by
the nodes to the right of the red line. Inference from the cut posterior is modular, in
the sense that marginal inference for ¢ is based on module 1 only, 7(6]2) x 7(¢)p(z|p),
and conditional inferences about 7 given ¢ are only based on module 2, 7(n|¢,y) <
w(n|e)p(w|e,n). For an explicit definition of modules and cutting feedback for a general
model taking the form of a directed acyclic graph (DAG), we refer the reader to Liu and
Goudie (2022a). We describe in the supplementary material (Frazier and Nott, 2024)
how the model of Figure 1 and our definitions of the modules relate to the definitions
in Liu and Goudie (2022a).

As further motivation for the use of cutting feedback, we introduce a simple example
discussed in more detail later in Section 4.1. This example was given in Plummer (2015),
and is based on a real epidemiological study (Maucort-Boulch et al., 2008). The model
here consists of two modules. Module 1 incorporates survey data from 13 countries on
high-risk human papillomavirus (HPV) prevalence for women in a certain age group.
Denote by z; the number of women with high-risk HPV in country i in a survey of N;
individuals, ¢ = 1,...,13, and assume that z; ~ Binomial(N;, ¢;), where ¢; € [0,1] is a
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country-specific prevalence probability. The parameters ; are assumed independent in
their prior, with o; ~ U[0, 1]. Write ¢ = (¢1,...,13) -

Module 2 incorporates cervical cancer incidence data w, with w; the number of
cervical cancer cases in T; woman years of follow-up in country i, i = 1,...,13. The
relationship between cervical cancer incidence and HPV prevalence is described by a
Poisson regression model, w; ~ Poisson(T;p;), where log p; = 11 + 12¢;. For these data
the Poisson regression model can be criticized on the grounds of an incorrect specifi-
cation of the mean model or link function, and a failure to account for overdispersion.
Because ¢; is appearing as a covariate in the Poisson regression, inference about ¢;
is influenced by the misspecification in the second module. Estimation of ¢ adapts to
the misspecification, distorting inference about these parameters, which also results in
uninterpretable inference about the regression parameters 7 used to summarize the re-
lationship between HPV prevalence and the rate of cancer incidence. The main interest
of the analysis lies in understanding this relationship. The top left graph in Figure 2 in
Section 4.1 shows posterior samples for 7 from the conventional posterior (blue) and the
cut posterior (green). As we can see, the interpretation of the main parameter of interest
changes markedly when cut inferences are used to account for the misspecification in
the second module.

2.1 Related Literature and Motivation

The “two module” system of Figure 1 was introduced by Plummer (2015), with the
motivation of clarifying previous implicit definitions of cutting feedback methods based
on modifying MCMC algorithms. One implementation of cutting feedback implicitly is
through the cut function of the WinBUGS and OpenBUGS software packages (Lunn
et al., 2009). If a Bayesian model is defined through a DAG, and a Gibbs sampler is
considered for sampling the posterior distribution using the DAG parameter nodes as
blocks, then “cuts” can be defined for some links of the graph. Each cut corresponds to
leaving out a certain term in the joint model when forming the full conditional posterior
density for one of the parameter nodes. Once modified full conditional distributions have
been constructed, a modified Gibbs sampler iteratively samples from these, and the cut
posterior distribution is defined as the stationary distribution of the resulting Markov
chain. See Lunn et al. (2009) or Plummer (2015) for a more detailed description. The
implicit definition corresponds with the explicit definition (2.1) for the model of Figure 1,
if the cut involves leaving out p(w|p,n) when forming the full conditional density for .

Lunn et al. (2009) note that the modified full conditional distributions are not the
full conditional distributions of any well-defined joint distribution but argue that the use
of such inconsistent conditional distributions can be sensible. If modified Gibbs steps
are replaced by Metropolis-within-Gibbs updates in the sampling process, Plummer
(2015) observed that the stationary distribution of the Markov chain can depend on
the proposal used, and went on to define the “two-module” system of Figure 1 where
an explicit definition of the cut posterior distribution can be given, clarifying some
aspects of the implicit cut approach. This two module system is general enough for
many applications of Bayesian modular inference in which there might be one suspect
model component of particular concern. This two module system is also fundamental
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to the recent work of Liu and Goudie (2022a) where multi-modular systems and cut
posteriors are defined generally. Liu and Goudie (2022a) define two module systems first,
based on a partitioning of the observables into two parts, and then consider recursively
splitting existing modules into two in order to define more complex multi-modular
representations. In what follows, we will focus our discussion on cutting feedback in
two-module systems, given their usefulness in applications and their role in defining
multi-modular models with more than two modules. We define modules and cutting
feedback precisely in the context of this two module system, and refer the interested
reader to Liu and Goudie (2022a) and the supplementary material for a more general
discussion.

The rest of the paper is concerned with the two-module system described in Figure 1,
and generalized Bayesian extensions where the likelihood terms are replaced by loss-
likelihoods. While the two-module system may seem quite specific, it has found many
uses in empirical settings and in Section 2.1 of the supplementary appendix, we briefly
discuss several applications of the two-modular system in the recent literature.

2.2 Generalized Posteriors

In the system of Figure 1, we will discuss two methods that can guard against compro-
mised inferences on ¢ due to potential misspecification of the second module. The first
method involves using a loss function rather than a parametric model to capture the
important features of the data for the second module; a generalized posterior is con-
structed based on the loss function for the parameters of interest. The second approach
is to employ cutting feedback methods. Generalized Bayesian methods and cutting
feedback are not used here as approximations to conventional Bayesian inference; they
are alternative inferential approaches intended to address the issue of misspecification
and having a sound statistical justification in their own right. Approximate methods
for computation may be of interest, but this is discussed later in Section 3, based on
the asymptotic results we develop there. In this article, we combine cutting feedback
and generalized Bayesian updating to produce robust Bayesian inferences on 6, and we
explain generalized Bayesian inferences first.

When a Bayesian model is misspecified, standard Bayesian approaches can deliver
inferences that are poor or unreliable (see, e.g., Grinwald and Van Ommen, 2017 for
specific examples, as well as Kleijn and van der Vaart, 2012 for general results in para-
metric models). Specifying full probabilistic models for complex data can be difficult,
and it would be attractive if Bayesian inference could be done only for parameters of
interest appearing in a loss function. Under some mild conditions on the loss, Bissiri
et al. (2016) justify a Bayesian analysis in this setting in which the likelihood in the
usual Bayesian update is replaced with a “loss likelihood” with a highly constrained
form. The target parameter of interest is then the population minimizer of the loss.

In a standard generalized posterior analysis without modular structure, there is a
parameter § and data y = (y1,...,%»n) . Since we are not in the modular setting, y
does not decompose into two data sources y = (z',w')T. The prior 7(f) is to be
updated into a generalized posterior 7(|y), where the belief update depends on y only



D. T. Frazier and D. J. Nott 7

through a loss function ¢,(0) = Y., q(vi;0), where q(y;;0) is the loss for the ith
observation. A remarkable argument in Bissiri et al. (2016) specifies the form that the
belief update must take, under some mild conditions. They consider the requirement
of order coherence, where if the data y are split into two parts and an update is done
sequentially, then the result should be the same as if a single update were done using all
the data. Order coherence is enough to determine the form of the generalized posterior
density, which is

m(0)y) x w(0) exp {—vq,(0)},

where v > 0 is called the learning rate, and scales the information in the loss function
appropriately relative to the information in the prior. While the generalized Bayesian
update of Bissiri et al. (2016) is motivated by Bayesian notions of coherence, the choice
of learning rate gives the opportunity to bring in other considerations such as infor-
mation matching in the update (Holmes and Walker, 2017; Lyddon et al., 2019) or
achieving good frequentist performance for estimating functionals of interest (Syring
and Martin, 2018). A generalization of the arguments in Bissiri et al. (2016) relevant
to the justification of parametric cutting feedback methods is discussed in Nicholls
et al. (2022). Generalized Bayesian updating is also related to PAC-Bayes methods; see
Alquier (2021) for an introduction.

For modular Bayesian inference, the decomposition of the statistical model into two
distinct modules, containing data z and w respectively, implies that we are free to
choose separate loss functions for each module. Let £ : Z x & — R denote the loss
function for module one, involving a parameter ¢, and m : W x € x & — R denote the
loss function for module two, involving parameters n and ¢. In the following we write

ni

Qn(e) = Ln, (90) + M, (777 90)7 Ly, (4,0) = ZZ(Z“ 90)7 M,, (777 90) = Zm(wia m, 90)’
i=1 i=1

(2.2)
so that —L,,(¢) and —M,,(n,¢) are the empirical loss functions for the first and
second modules respectively. When the two sample sizes are equal, i.e., ny = ny, we
abuse notation and simply denote the criteria as L, (¢) and M, (n, ¢).

Consider first a belief update of the prior density 7(¢) using z and the first module
loss function ¢(-). The order coherence argument of Bissiri et al. (2016) implies that
the generalized posterior density 7(p|z) takes the form w(p|z) x 7(p)exp {vLn, (¢)},
where v > 0 is a learning rate for the first module that needs to be chosen. If the
loss function is the negative log-likelihood, and we take v = 1, this is the conventional
Bayesian update.

Once 7(p|z) is obtained, suppose we now take 7(0|z) = m(p|z)m(n|p) as the “prior”
for a Bayesian update using the information in the second module. Again following the
order coherence argument of Bissiri et al. (2016), and its extensions in Nicholls et al.
(2022), the generalized posterior density 7 (0|z,w) given z and w takes the form

(0], w) o< w(0]z) exp{v' M, (1, )}
o< ()7 (n]p) exp{vLin, (¢) + ' My, (n,0)}, (2.3)
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where v/ > 0 is an additional learning rate. If ' = 1 and the loss function m(-) is
the log-likelihood for w, this is a conventional Bayesian update using the data for the
second module. The full belief update (2.3), takes the form of Bayesian updating where
the likelihood has been replaced by the loss likelihood exp{v Ly, (¢) + v M,,(n, ©)}.

Loss likelihoods are often used to target a parameter of interest directly when the
attempt to specify a full probabilistic model might result in severe misspecification. Our
use of generalized Bayesian methods within the modular inference framework is slightly
different, since here any model misspecification is structured. By this we mean that
misspecification occurs in only some modules. From this perspective, it is attractive to
use a loss likelihood for some of the modules, while retaining a probabilistic model for
the data in other modules. If the parameter of interest occurs in a correctly specified
module for which we use a probabilistic model for the data, then this parameter is mean-
ingful, regardless of whether misspecification occurs in other modules. In this situation,
the motivation to use a loss likelihood in a misspecified module is to ensure that the
parameter of interest retains its intended meaning in the analysis. So the loss likelihood
might be used not to target the primary parameter of interest, but to achieve sensible
inference about a nuisance parameter, without which the primary inference of interest
could be compromised. The comparison of the full and cut versions of the generalized
Bayesian posterior may tell us whether the interpretation of the inference changes when
we cut, and whether the use of a certain loss likelihood was successful in achieving a
consistent inferential interpretation in the cases of only one or both data sources being
used. In conventional generalized Bayesian inference, it may sometimes be difficult to
define the parameter of interest as the minimizer of a loss, or to formulate priors for
such a parameter, although similar difficulties occur with misspecified generative models
too. The modular setting makes the specification of a loss easier in structured problems,
since the loss is only required in certain modules.

In generalized Bayesian inference the choice of the learning rate is very important,
and this is true in the case of modular inference considered here also. See Wu and
Martin (2020) for a review and comparison of different methods. If the learning rate is
not carefully chosen, uncertainty quantification by the generalized posterior distribution
can be very poor. Generalizing similar ideas to Holmes and Walker (2017) and Lyddon
et al. (2019), later we suggest choosing v and v’ based on an information matching
argument. Although we have introduced two learning rates, there are several special
cases of interest in our later discussion. In our examples we use generative models for the
first module that are well-specified, and use the negative log-likelihood as the loss. Here
it makes sense to choose v = 1. Conventional generalized Bayesian analyses without
modular structure would correspond to v = v/. In our later theory, for consistency
with the rest of the generalized Bayesian literature, we assume this. There is no loss of
generality in doing so, or even in omitting learning rates altogether, since any chosen
learning rates can always be absorbed into the definition of the loss function. Our
discussion of the choice of learning rates in Section 3.2 is general, however, describing
the setting where separate learning rates for the two modules must be chosen.
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2.3 Cutting Feedback with Generalized Posteriors

Our confidence in the accuracy of the first module means that the criterion L, (¢) can
be chosen as the negative log-likelihood. However, since we are working with generalized
posteriors, we only maintain that L, (¢) produces “reliable inferences” for ¢. Our lack
of confidence in the specification of the second module means we are concerned that
incorporating this module may contaminate our inferences for (. In such situations,
extending cutting feedback methods to a generalized Bayesian framework can be helpful,
and can yield more reliable inferences than conducting standard Bayesian inference using
the joint likelihood.

In the two module system of Figure 1 for a probabilistic model, the first mod-
ule is {7(¢),p(z|¢)}, and the second module is {w(n|¢), p(z|n, ¢)}. In our generalized
Bayesian analysis the modules are {7 (), exp{vLn,(¢)} and {m(n|p), exp{vM,,(n,¢)},
if there is a single learning rate for both modules.

Generalized Bayesian analyses have been used in the context of two module system
previously, but only as a justification for parametric cutting feedback methods when a
probabilistic model is specified. Carmona and Nicholls (2020) considered order coherence
for cut and semi-modular inference methods, and Nicholls et al. (2022) observed that
the implicit loss function used in these approaches is not additive as required in the
theory of Bissiri et al. (2016). Nicholls et al. (2022) generalize the existing theory to
“prequentially additive” loss functions, which is enough to justify standard parametric
cut inference as valid and order coherent generalized Bayesian updating. In contrast to
this work, our aim is not to justify cutting feedback methods for probabilistic multi-
modular models as coherent in some sense, but to consider situations where there may
be no probabilistic model for the data, but only loss functions to connect module data
to parameters.

To present cutting feedback for generalized posteriors, decompose 7(6|y) in (2.3) as
the product of a marginal posterior for ¢|z, a conditional posterior for n|w, ¢, and a
“feedback term”:

T(0y) = Teus (wl2)m(n|w, p)p(wle), (2.4)

whgre Teut (¢[2) o T(p) exp{vLn, (v)}, T(N|w, @) := 7(nlp) exp{v My, (1, @) }/my(w]p),

Bawlg) o ma(wle), my(wlp) = /g r(nl¢) exp{v Moy (0. 0) Y. (2.5)

The feedback term p(w|p) derives its name from representing the influence of module
two on the marginal posterior for . To understand this better, consider integrating
out 1 in (2.4), to obtain 7(p|ly) = meut(@|2)D(w|p). Since meut(p|z) represents the
posterior density for ¢ based only on the first module data z, we see that p(w|p)
modifies this posterior based on the second module data to give the ¢ marginal of w(6|y).
Dropping the feedback term p(w|p) in (2.4) produces a “generalized cut posterior”,
extending (2.1):
Teut (0] 2, w) = meus (¢]2)m (n|w, @).

In this joint cut posterior, marginal posterior inferences for ¢ are obtained based on
module one only, and the conditional posterior density of n given ¢ is the same as
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for m(fly) and based on module two only. Our discussion of cut inference is in the
generalized Bayesian framework, but if we use the negative log likelihood as the loss for
an assumed probabilistic model, our definition of the cut posterior reduces to (2.1).

Obtaining samples from the cut posterior me,; (6|2, w) is challenging. Since

m(n|p) exp{vMn,(n, »)}
mn(w‘ﬁo)

Teut (0] 2, w) o< 7(p) exp{vLn, (»)} )
if MCMC is used to sample from 7yt (0] 2, w), we must evaluate the term m,, (w|p). This
term is similar to a“marginal likelihood” for 1 conditional on a fixed ¢, and is generally
not available in closed form outside of toy examples. In principle, even though we are
in the case of generalized posteriors, the computationally intensive methods proposed
by Plummer (2015), and Jacob et al. (2017) to deal with the intractable term m,(w|y)
could be used to sample from the cut posterior.

While sampling from meu (0|2, w) is difficult, draws from 7 (n|w, ) for any fixed
¢ can be made without the need to compute m,(w|y). This suggests the following se-
quential algorithm to obtain draws from 7, (|w, 2): first, sample ¢ ~ .yt (]2); then,
sample 1’ ~ w(n|w, ¢’). At the first stage, draws from 7.y (¢|2) could be obtained by
running an MCMC chain targeting the posterior density mcut(®|2). The conditional
draws of 7 given ¢ are then performed by running a separate MCMC chain for each
sample, which is computationally burdensome. The approach is reminiscent of multiple
imputation algorithms, and was originally suggested by Plummer (2015), who also dis-
cussed a related tempering method of similar computational complexity. The sequential
sampling approach above can also be thought of as implementing a modified Gibbs
sampling algorithm with blocks ¢ and 7, but where the likelihood term from the second
module is dropped when forming the full conditional distribution for ¢. As mentioned
earlier, the resulting modified conditional distributions are not the full conditional dis-
tributions of any joint distribution in general, and if we attempt to replace the usually
intractable direct sampling of the modified conditional distributions with Metropolis-
within-Gibbs steps, then the stationary distribution of the MCMC sampler depends on
the proposal used. A number of other authors have investigated computation for cut-
ting feedback (Jacob et al., 2020; Liu and Goudie, 2022b; Yu et al., 2023; Carmona and
Nicholls, 2022) and this remains an active area of research.

The sequential definition of the cut posterior distribution in the two-module system
suggests that analysis of cut procedures should study 7eut(@|z) to understand the be-
havior of cut inference for ¢, and the conditional posterior of m(n|w, ) to understand
how uncertainty about ¢ propagates to marginal cut inferences about 7. This is the
strategy we follow in the next section. Such an analysis is complicated by the fact that
meut (02, w) does not arise as a posterior for a generative model, and therefore we must
use techniques employed in the study of generalized posteriors to analyze meus(0]z, w).

3 The Behavior of 7. (0|2, w)

In this section, we explore the behavior of .yt (0|2, w) by separately analysing meut (¢|2),
and then analysing 7 (n|w, ¢) when we condition on an observed value of ¢ within the
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high probability region of 7eus(¢]2). This yields useful insights into the behavior of cut
posteriors and allows us to develop new diagnostic tools for examining these posteriors.
The approximations implied by our asymptotic results are also valuable for cut posterior
computation, which can be time-consuming and difficult to implement in practice. As
discussed in Section 2.3, a common way to sample the cut joint posterior distribution
involves a nested MCMC scheme where a separate MCMC chain is run to draw a sample
of n from its posterior conditional density for each marginal cut posterior sample ¢. If
this MCMC step can be replaced by a draw from a normal approximation, or the normal
approximation is used to obtain a good proposal density for MCMC or importance
sampling, then this can reduce the computational burden of commonly used methods
for cut posterior computation.

3.1 Maintained Assumptions and Main Results

To deduce the behavior of 7eu (0|2, w), we must extend the assumptions often used to
analyze generalized posteriors (see, e.g., Miller, 2021) so as to account for the two-step
posterior updating, the different roles the loss functions play in the posterior, and the
different sample sizes for the modules. The first assumption we maintain requires that
the sample sizes in the two modules grow in rough proportion.

Assumption 1. ¢ :=lim,, »,_c0 71/n2 exists and is such that 0 < ¢ < oo.

The following conditions are sufficient to demonstrate that the cut posterior eyt (¢|2)
is asymptotically well-behaved.

Assumption 2. (i) There exist L(p) such that sup,cq In7 Lo, () — L(p)| = 0,(1).
(ii) There is a unique ¢* € Int(®) such that for every 0 > 0 there exists €(d) > 0 so that
SUP|j— v =5 1L(9) —L(p*)} < —€(0). (iii) m(¢) is continuous on @, with 7(¢*) > 0, and
Jo llellm(@)de < co. (iv) For an arbitrary 6 > 0, and [|¢ — ¢*|| < 6, L(¢) and Ly, (¢)
are twice continuously differentiable, with supj,_,+|<s IV2 L, (0)/n1 — V2 L(@)|| =
0p(1), and —=V?2 _L(¢*) positive-definite. (v) Vy,Ln, (¢*)//n1 = Op(1).

Assumption 2 resembles standard conditions employed to deduce asymptotic poste-
rior normality, see, e.g., Lehmann and Casella (2006), but where L, (¢) is an arbitrary
loss function. These assumptions enforce smoothness on L,, (¢) and identification to
ensure that 7m..(p|z) concentrates onto ¢* — the value that minimizes the limit loss
function L(p), and the parameter value of interest in generalized Bayesian inference.
Due to space restrictions, we forgo a detailed discussion of these assumptions until
Section 2 in the supplementary material.

Define Y11 := —V,L(¢*), Zn, (¢*) := —=X17 VuLn, (¢*)/1/1, the local parameter

¢ == /n1(p—¢,) and its posterior 7(¢|z) = 7(p*+¢/\/M1|2)//n1"¢, which has support
D, :={¢: /ni(p—¢*) € ¢}. Lemma 1 states that the cut posterior m.yt(¢p|z) behaves

like a Gaussian density with mean Z,,, (¢*), and covariance [1/211]71.
Lemma 1. Under Assumptions 1-2, f(bn || Teut (0]2)—N{¢; Zn, (¢*), [vE11] ' }|do =
op(1).
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A possible interpretation of the conditional cut posterior m(n|p, w) suggested by an
Associate Editor is that by first computing eyt (¢|2), the cut posterior 7(n|¢, w) can
be viewed as a generalized posterior based on a “penalised loss function”: values of n
that do not agree with the value of ¢ — obtained under the cut posterior 7w, (p|2),
and as measured by M,, (1, ¢) — produce a larger loss and thus are “penalised” in the
posterior update. This interpretation further clarifies that the behavior of m(n|¢,w)
critically depends on the behavior of M, (n,¢) only when ¢ € &5, with @5 a region of
high-posterior probability under 7eu;(¢|2). For example, uncertain quantification of n
via m(n|w, ¢) critically depends on the value of ¢ and thus the behavior of 7yt (¢|2).

To formally demonstrate this behavior, we view M, (1, ¢) as being indexed by a fixed
@ € &5, and to reinforce this perspective we use the notation My, (n|y) := My, (1, ¥).
Let &5 := {p € & : ||op — ¢*|| < §} denote an arbitrary d-neighborhood of ¢*, and
consider the following regularity conditions on M, (n|p).

Assumption 3. (i) There exists M(1|¢) with sup,ca; yee [27 Mn, (n]e) —M(n|p)| =
op(1) for some § > 0. (ii) Given d; > 0, for each p € ®s, there is an 7} € Int(£) such
that for any 5 > 0 there exist €(d1,d2) > 0, so that sup,eq, SUP|j,_y: |25, {M(nl0) —

M(nzle)} < —€(01,02).

Assumption 3 imposes conditions on M, (n|¢) that ensure the conditional cut poste-
rior 7(n|w, ) concentrates onto 7, — the limit minimizer of M(n|y) for a fixed ¢ € ®;.
These conditions imply that if we study m(n|¢,w) when ¢ is restricted to a neigh-
bourhood of ¢*, then the conditional posterior should concentrate mass near 7. By
“conditioning on” ¢ € 5 we can view M, (n|¢) as being indexed by a fixed parameter
value, ¢, and verify the regularity conditions in Assumption 3 using tools from empirical
processes theory at the point ¢ € ®j; we refer to Portier (2016) for a discussion and
several examples. In Section 2 of the supplementary material, we give a more detailed
discussion of Assumption 3 and how it can be verified in certain examples.

Assumption 4. (i) For some ¢ > 0, and each ¢ € @5, w(n|p) is continuous in 7. (ii)
SWpyea,, Jg lInllm(nle)dn < oco.

Assumption 4(i) is a standard regularity condition, while Assumption 4(ii) implies
that the conditional prior has sufficient moments. A sufficient condition for the latter
condition is prior independence m(n|p) = 7(n) and [ ||n||w(n)dn < co.

Assumption 5. For some 41,02 > 0, the following are satisfied. There exist a vector
function A, (n]|¢), and matrix function J(n|e) such that

n2

5 (1=5) " T (@)= n) + By (0, 0)-

Mo, (nlg) = My, (n3l0) = (n—n3) T Any (0 l0) —

(i) for all € ®5,, An, (13]0)/v/M2 = Op(1);
(ii) the map n — J(n|p) is continuous for all [[n — n%|| < d2, for each p € @5, and
J(n3lp) is positive-definite for each ¢ € @, ;

(iii) for any 05 > 0, Supgep,, SUP|jy—ys <5, Lna (1, 0)/[1 + 120 — 5112 = o0p(1).
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Assumption 5 is required to ensure that w(n | w,y) concentrates in a Gaussian
manner as the sample size diverges, and ensures that M, (n]¢) admits a valid quadratic
expansion around 7y for each ¢ € @5, with a remainder term that can be suitably
controlled in a probabilistic sense. The expansion underlying Assumption 5 is akin
to the local asymptotic normality conditions often assumed when proving asymptotic
posterior normality in exact Bayesian inference (see, e.g., Chapter 7 of van der Vaart,
2000 for a textbook example and discussion). Due to space restrictions, we must forgo
a more detailed discussion of this assumption until Section 2 in the supplementary
material.

The above assumptions allow us to study the large sample behavior of the cut pos-
terior 7(n|w, ). To present this behavior as succinctly as possible, define Z,,, (1} |¢) :=

J(ile) " A, (05]@)/ /N2, as well as the local parameter t := \/na(n — 1) and its
posterior 7(t|lw, p) = (0} +t/\/n2|w, ©)//n2"", which has support where &,, := {t =
Vie(n—ng) :n €&, ¢ € Os}.

Theorem 1. If for some § > 0, Assumptions 1-5 are satisfied for ¢ € @5, then
Jeo, Il [ (tlw, @) — N{t; Zng (05| 0), [T (5 |0)] '} dt = 0, (1).

Theorem 1 demonstrates that in large samples 7(n|w, ¢) behaves like a Gaussian
density with a mean and variance that both depend on . This result is useful for at least
two reasons. First, the only other result on the behavior of cut posteriors of which we are
aware, Pompe and Jacob (2021), demonstrates that in large samples the cut posterior for
0= (p",n")7 is jointly Gaussian with a variance that depends on a fired ©* and n* =
N5+, and is similar to other results for generalized posteriors, see, e.g., Chernozhukov
and Hong (2003), Zhang (2006), and Miller (2021), where a conventional multivariate
normal (Laplace) approximation is produced. However, this joint approximation has
the immediate drawback that the induced conditional posterior (approximation) has a
covariance matrix that does not depend on the conditioning value . Since in small-to-
medium sample sizes the conditional posterior m(n|w, ¢) will have a mean and variance
that changes with the value of p, a global approximation of this kind is unlikely to be
accurate.

Second, the conditional approximation in Theorem 1 can be directly used in cases
where accessing 7(n|w, ¢) may be difficult but where Z,,(n3|p) and J(n}|p) can be
easily estimated. The latter occurs, for example, in cases where the MCMC sampler
has a difficult time sampling 7(n|w, ¢) at the particular value of ¢ on which we are
conditioning. In such cases, the normal approximation in Theorem 1 can be useful as a
proposal distribution for MCMC or for importance sampling.

3.2 Calibration of Learning Rates

The uncertainty quantification of the generalized cut posterior density eyt (6|2, w) de-
pends crucially on the choice of learning rates, which we now discuss. Consider the
loss likelihood term in (2.3), where v and v’ need to be chosen. Lyddon et al. (2019),
inspired by an earlier method of Holmes and Walker (2017), suggest to choose learning
rates by matching the Fisher information number for the generalized Bayes update to
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the Fisher information number from an update based on a loss likelihood bootstrap
approach, asymptotically. We do not describe here in detail the reasoning behind the
method of Lyddon et al. (2019), but the key to its application here for estimation of
multiple learning rates is to exploit the modular structure of the model. We set the first
learning rate v based on the prior to posterior update for ¢ in the first module, and
set the second learning rate v’ based on the conditional prior to conditional posterior
update for 7 in the second module, fixing ¢ to an estimate based on module one.

To state the idealized learning rates we require some additional notation. Let
1= —Vo,L(¢"), o= -V, Mn*e*), Ti2=V,M(n*e*),

Wy = lim Cov(Lp, (¢)/v/i), o= lim Cov(An, (1°|¢")/i1a).

With this notation, if we apply the method of Lyddon et al. (2019) for choosing v based
on the update for the parameter ¢ using the first module only, we obtain the ideal
choice

V= tr(Eu\Ilu*lZu)/tr(En).

We can estimate Y11 by —n1_1ViwLn1(@), where ¢ = argmax,, Ly, (¢). To estimate

Wy, we could use ny 1 > Vo l(zi; 8) Vil (25 @)T, although ¥y can also be estimated
in other ways.

After calibrating v based on the first module, we can calibrate v’ by considering a
conditional update of our beliefs for 7 in the second module, conditional on an esti-
mate of ¢ from the first module, ¢ = ¢ say. Matching the Fisher information number
suggests choosing v/ as v/ = tr(222W2271222)/tr(222). To estimate Y99 we can use
—ny " 'V2, My, (75|9), where 75 = argmax, M, (1|@), and Wy can be estimated by

L2

no =t Y02 Vaym(wi N, @) Vym(w;; N5, ?)", or using some other method.

In a conventional generalized Bayesian analysis, there is only one learning rate to
choose, but here there are two. This makes choosing learning rates more difficult, but also
makes the modular generalized Bayesian approach more flexible. The way that marginal
inferences about ¢ and conditional inferences for 7 given ¢ can be done separately in
a modular approach for two different loss functions makes the choice of two learning
rates feasible. We thank two anonymous referees for their insight in encouraging us to
explore further the choice of separate learning rates for different modules.

3.3 Diagnostics for n|w, ¢: Understanding Uncertainty Propagation

Theorem 1 demonstrates that even in large samples the behavior of 7(n|w, ¢) depends
on the value of ¢ on which we are conditioning. Moreover, for different values of ¢,
the resulting mean and variance can vary substantially. Both the cut and full marginal
posterior density for i are obtained by integrating out ¢ in the conditional posterior
density 7(n|e,y), but using different distributions for ¢: 7w(p|2z) for the cut posterior,
and 7(p|y) for the full posterior. Hence it is the different uncertainty quantification
for ¢, and the way this propagates when we integrate out ¢ in n]p,y, that determines
the different inferences for n in the cut and full posterior densities. We now discuss
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a number of diagnostics to understand uncertainty propagation in this sense, using
the result of Theorem 1 about the behaviour of the conditional posterior density for
convenient computation.

Most simply, if 7 is low-dimensional, we can visualise the impact of ¢ on the posterior
for n|w, ¢ by viewing the kernel

[ T(nl0)|M? exp {—na - ve(n — ) T T(n3le) (n —n3)/2}

across a given range of values for . The resulting plot will demonstrate how the cut
posterior for n changes as the conditioning value of ¢ changes.

The above approximation cannot be directly accessed, since 7y, and J(n}[p) are
unknown in practice. However, in cases where M,,,(n|¢) is twice continuously differ-
entiable in 7, it is simple to estimate n7 and J (77;\90) by their empirical counterparts
N, = argmax , My, (n]e), and Jn, (0p|@) == na 'V, My, (,|@) respectively.

Understanding how the value of ¢ impacts uncertainty quantification of = (n|w, ¢) is
of particular interest. For a € (0,1), let C7(¢p) C £ be such that fC&’(s&) m(njw, p)dn =
1— . Since generating samples from the cut posterior 7(6|w, z) directly can be difficult,
construction of C%(y) at many difference values of ¢ is also difficult. However, the
conditional large sample approximation in Theorem 1 can be used to easily construct
an estimate of C(y) across several values of ¢, and allows us to understand how the cut
posterior 7(n|w, ¢) quantifies uncertainty about 7 at various values of ¢; see Appendix
C for an algorithmic implementation of this procedure. We illustrate the construction
of credible sets for n conditional on ¢ in the example of Section 4.1.

The large sample approximation in Theorem 1 can also be used to visualize the
behavior of specific functionals of interest, e.g., moments of n|w, ¢, without running an
MCMC sampling algorithm to obtain draws of n|w, ¢. As an example, suppose that 7
is a scalar for simplicity and that we are interested in understanding how the variance
of its cut posterior depends on ¢. Using the law of total variance, we can write

Var(n) = E(Var(n|e)) + Var(E(n]|e)),

(where expectations in this expression are with respect to the cut posterior) and for
draws ) ~ m(elz), s = 1,...,5, we can plot histograms of Var(n|p®) and
E(n|¢®)) to understand how variability in 7 relates to . The conditional means and
variances can be approximated by the normal approximations obtained from Theorem 1.
In the example in Section 4.1, we discuss diagnostics of this type, as well as methods
for understanding posterior skewness in the parameter in the second module.

Finally, another way of understanding how differing uncertainty quantification for ¢
propagates in inference about 7 is to consider semi-modular inference (SMI) (Carmona
and Nicholls, 2020). Carmona and Nicholls proposed SMI as an extension of cut model
inference. Nicholls et al. (2022) extend this construction to prequentially additive loss
functions and Carmona and Nicholls (2022) investigate the use of normalizing flows for
their computation.
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Consider once again the two module system, and point estimation for the shared
parameter ¢ based on full and cut posterior distributions. The intuition behind SMI is
that if the degree of misspecification is not severe, then the bias of the full posterior
estimator may only be moderate, while its variance might be greatly reduced compared
to the cut posterior estimator. In this case, full posterior estimates may have better
frequentist performance in managing a bias-variance trade-off. If the misspecification is
serious, however, full posterior estimation may have a large bias, and estimation based
on the cut model may be preferred. Instead of making a binary choice between the full
and cut posterior density, it might be better to modulate the influence of the misspec-
ified module in a more continuous way, using an “influence parameter” denoted here
as v € [0,1]. In the proposal of Carmona and Nicholls (2020), the choice v = 0 results
in the cut posterior, whereas v = 1 corresponds to the full posterior, so that the SMI
posterior interpolates between cut and full posterior based on the influence parameter.
Nicholls et al. (2022) also explore some more Bayesian properties of validity and order-
coherence of SMI posteriors for their original approach and some alternatives. In the
supplementary material we describe how the large sample normal approximations of
Theorem 1 can be used to perform efficient computation for the original method of Car-
mona and Nicholls (2020), but also what Nicholls et al. (2022) call the 4-SMI posterior,
although we prefer the name marginal SMI posterior in the rest of the paper. Of the
latter, the authors write: “However it is very awkward computationally and in fact we
have no idea how to implement it in practice.” The conditional Laplace approximations
we have developed provide one practical implementation. Examining either SMI poste-
rior for a grid of values for v that interpolates between the cut and full posterior gives
information about how much information from the suspect second module can be used
before inferences of interest are affected. If a single choice of 7 is needed, this can be
done on predictive grounds, as described in Carmona and Nicholls (2020). The y-SMI
method is demonstrated for the example of Section 4.1 in the supplementary material.

While the diagnostics that we suggest for understanding propagation of uncertainty
in this section are practical to compute, we admit that they are most useful in the
setting where the conditional posterior distribution of 7 given ¢ is close to Gaussian,
although the normal approximations can provided by Theorem 1 can also be used as
proposal distributions in MCMC and importance sampling for situations where the
normal approximation does not suffice on its own.

4 Examples

In this section we consider two examples. The first example illustrates our large sample
approximations for cut posterior computation, and for implementing diagnostics for un-
derstanding uncertainty propagation between modules. We consider both probabilistic
model specifications as well as a generalized Bayesian analysis using a quasi-likelihood.
Our second example also considers a generalized Bayesian analysis, for which the learn-
ing rate for the second module needs to be carefully chosen. We illustrate a situation
where an appropriate choice of the loss function can resolve conflict between cut and
full posterior inferences, giving insight into how an initially flawed parametric model
may need to be improved.
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4.1 HPV Prevalence

We now return to the HPV prevalence example introduced in Section 2.1, and consider
cut posterior computation, diagnostics and a generalized posterior analysis.

Cut Posterior Computation With Large Sample Approximation

In the HPV model specified in Section 2.1, it is straightforward to obtain posterior
samples from 7.y (¢|2z). This is because the likelihood for each z; is binomial, and
the priors for the parameters ¢; are conjugate. In meut(¢|z) the ¢; are independent,
with 7Teue(@i]2) a beta density, Beta(z; + 1,m; — z; + 1). We generate samples (%),
s = 1,...,5 = 1000, from 7eu(p|z) by direct Monte Carlo sampling. To generate
samples n(®) so that (go(s), 77(8)) is a draw from the joint cut posterior density, we do the
following. By Theorem 1, we can approximate the conditional posterior density of 1 given
©®) w and z by a normal density with mean pu(p(*)) = 7y and covariance matrix
() = 07V My (100
for 1) from a multivariate t-distribution with mean u(¢(*)), scale matrix % ((*)), and 5
degrees of freedom, and draw a single sample 7(*) from these proposals using sampling
importance resampling (SIR).

<p(s)). For each ¢(®), we generate 1,000 proposal samples

For comparison, we can also draw an approximate sample 77(*) say from the condi-
tional normal approximation directly. For practical purposes the SIR samples can be
considered near-exact, and Figure 2 (top row) shows the marginal posterior samples for
1 = (m,n2) for the two approaches. A sample based estimate of the 1-Wasserstein dis-
tance between the posterior marginal cut distributions estimated by the exact SIR and
approximate conditional normal methods is 0.004 and 0.062 for 7; and 7, respectively,
showing that our large sample conditional normal approximations result in accurate
cut posterior computation. We can see that the marginal cut posterior density for n
is non-Gaussian, but this is captured very well in the approximate sampling approach
where the conditional posterior density for 7 is close to normal. It is the uncertainty
about ¢ that is propagated in making marginal inferences about 7 that results in the
non-Gaussian structure in the marginal posterior distribution for n. Also shown in Fig-
ure 2 are samples from the usual Bayesian posterior distribution, obtained via MCMC
using the rstan package (Carpenter et al., 2017). The full and cut posterior inferences
differ substantially, demonstrating how much the misspecification of the second mod-
ule changes the inference about 7 here. The bottom row of the figure compares the
univariate marginals for the cut and full posterior densities for n; and 7.

Generalized Posterior Analysis

The middle row of Figure 2 shows samples from the generalized cut posterior distribution
obtained when the Poisson likelihood is replaced by a quasi-likelihood (Wedderburn,
1974), which allows for overdispersion with respect to the Poisson model. When using
the negative log quasi-likelihood as the loss for the second module, it is sensible to
choose a learning rate v’ = 1. For the first module we use the same parametric model
as before. The overdispersion parameter in the quasi-likelihood is denoted by A, and
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Figure 2: Top: marginal posterior samples for # for full posterior density (blue) obtained
by MCMC, and cut posterior samples by SIR (green) and approximation by conditional
normal sampling (orange). Middle: marginal posterior samples for n for full posterior
density (blue) obtained by MCMC, and cut posterior samples from conditional normal
sampling (cyan) for quasi-likelihood loss for the second module with A = 75 (left) and
A = 150 (right). Bottom: histogram density estimates for 71 (left) and n2 (right) for full
posterior (blue) and cut posterior samples by SIR (green).

instead of making the Poisson assumption that the mean and variance are equal, it is
assumed that the variance is A times the mean for each w;. The left plot in the middle
row is for A = 75, and the right plot is for A = 150. We can see that even if we assume
a standard deviation for the w; that is more than 10 times that implied by a Poisson
mean-variance relationship, the full posterior samples do not become plausible under the
cut distribution. Yu et al. (2023) have elaborated on the comparison of the cut and full
posterior distributions as a kind of conflict check, and the lack of consistency of the cut
and full posterior inferences here suggests that altering the parametric Poisson regression
to another parametric model incorporating multiplicative overdispersion will not result
in an adequate generative model for the data unless the degree of overdispersion is very
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large. The samples in the quasi-likelihood analysis were generated using the conditional
normal approximation for the density of n given ¢.

Uncertainty Propagation

Figure 3 shows, for 5 samples from the marginal cut posterior distribution of ¢, a 95%
probability ellipsoid of minimal volume for the conditional normal approximations of
p(n|e,y). The 5 ¢ samples are selected from 1,000 cut posterior samples according to
the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles of the determinant of the estimated conditional
covariance matrix of n given . The variation in the shape of these ellipsoids is sub-
stantial as ¢ changes. The variation of the volumes of the ellipsoids with location shows
a dependence between the conditional mean and variance of 1|y, which helps explain
marginal skewness in 7 through propagation of uncertainty between the two modules.

16
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Figure 3: 95% probability ellipsoids of minimal volume for the normal approximation
to the conditional posterior density of n given ¢ for 5 draws from the marginal cut
posterior distribution of ¢. The 5 ¢ samples are selected from 1,000 cut posterior
samples according to the 0.1, 0.3, 0.5, 0.7 and 0.9 quantiles of the determinant of the
estimated conditional covariance matrix of n given .

We can also use the normal approximation to the conditional posterior density as a
diagnostic to understand the way that the uncertainty in ¢ propagates into the second
module, for both the cut and full posterior density. Noting that

Var(n;) = E(Var(n;|¢)) + Var(E(n;|¢)), (4.1)

we could plot histograms of the values u(¢®));, s = 1,..., S and B(¢p*));;, s =1,..., S
for j = 1,2 to understand how uncertainty in ¢ propagates into 7. In (4.1) the expec-
tations can be defined as with respect to either the full posterior distribution or with
respect to the cut posterior distribution. The mean of the samples in a histogram of
¥ (p(#));; relates to the first term on the right-hand side of (4.1). The variability of the
samples in a histogram of u(p(*)) ;j assesses variability propagated to n; from the second
term on the right-hand side of (4.1).
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Generalizing (4.1) to third central moments using the law of total cumulance
(Brillinger, 1969), we can also write

E((n; — E(m;))?) =E(E((n; — E(n;l¢))*l¢)) + E(E(n;le) — E(n;))*)+
3Cov(E(njle), Var(n;le)). (4.2)

Once again, the expectations in the above expression can be defined as with respect to
either the full posterior distribution or with respect to the cut posterior distribution.
If the conditional posterior for n; given ¢ is approximately symmetric, then the first
term on the right-hand side of (4.2) can be neglected. Then the posterior skewness
of n; depends on the second and third terms. These terms relate to the skewness of
the conditional expectation E(n;|¢) (considered as a function of ¢) and the covariance
between the conditional mean and conditional variance. The skewness of the conditional
expectation can be assessed from looking at the skewness in a histogram of () i
while plotting the samples (,u(cp(s))j, E((p(s))jj), s=1,...,85, is helpful for assessing the
Cov(E(n|e), Var(n|e)) term in (4.2).

Figure 4 shows a scatterplot of (12(®)1,2(¢*)11), s = 1,..., S, with histograms
of each variable on the axes, for 1;. The plot on the left is for the cut posterior density,
and the plot on the right is for the full posterior density. There is a strong negative
relationship between the conditional posterior mean of ¢ and its conditional variance,
as well as negative skewness in the histogram of 1((®));, which by (4.2) explains the
negative skew in the marginal distribution for n; evident in Figure 2. This is so for both
the cut and full posterior densities.
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= 0.00125 1 é 0.0021 4
N’ N’

0.00100 4
W W 0.0018 1

0.00075 4

0.0015 4
-2.00 -1.75 -1.50 -2.8 -2.6 -2.4 -2.2
w(0)s (@)

Figure 4: Scatterplot of (u((,p(s))l,E(cp<S))11), s=1,...,8, for cut posterior (left) and
full posterior (right) samples. Histograms of each variable are shown on the axes.

Figure 5 shows a similar plot to Figure 4 for the parameter 7;. In this case, there
is a strong positive relationship between the conditional posterior mean of ¢ and its
conditional variance, and positive skewness in the histogram of u(go(s))g, which explains
the positive skew in the marginal distribution of 7, in both the cut and full posterior
densities, as shown in Figure 2. The dependence between p1(); and X(y);; in Figures 4
and 5 relates directly to the way the conditional variance of n depends on ¢, which
is exactly what is being captured in the conditional perspective taken in the theory
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Figure 5: Scatterplot of (u(¢(*))2,Z(¢())a2), s =1,...,S, for cut posterior (left) and
full posterior (right) samples. Histograms of each variable are shown on the axes.

of Section 3.1. Understanding this dependence is particularly useful for explaining the
marginal posterior shape for 7 in the full and cut posterior distributions. In the supple-
mentary material we describe the application of SMI for this example, comparing a new
marginal SMI approach we introduce with the SMI of Carmona and Nicholls (2020).
The two methods give similar results in this example for inference about 7, and both
demonstrate that even using a small amount of the information from the misspecified
module changes the information substantially.

4.2 A Random Effects Model

Our second example, discussed in Liu et al. (2009), considers a random effects model.
The data are denoted by Y;;, i =1,...,N, j =1,...,J, where i indexes groups, and j
indexes observations within groups. The data for group ¢ is modelled as

iid .
K]‘/B’HSDZNN(B’H@?)’ .7:17"'7‘])

where f3; is a random effect, and ¢; is a group standard deviation. The prior density for
B is
Bily ¥ N(0,4?),

i=1,..., N, where v is the random effects standard deviation. Liu et al. (2009) consider
this example to demonstrate a problem that can occur for some hierarchical models, in
which there is a model for the random effects with thin tails, such as Gaussian. In the
model above, if there is an outlying value for one of the random effects, this can lead
to poor inference for the corresponding group standard deviation, and overshrinkage in
estimating the random effect. The difficulty is most pronounced when the number of
replicates J is small compared to N. Liu et al. (2009) give an insightful discussion that
exploits the simple form of the model to do analytic calculations. We do not repeat
their analysis here, but demonstrate the problem numerically and illustrate the utility
of our generalized Bayes approaches to modular inference.

First, we will set up the model so that it takes the form of a two module system.
Write 8 = (B1,...,8n8)" and ¢ = (¢1,...,on5) . Let n = (37,9)T. We use similar
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priors to Liu et al. (2009), although we parametrize our model in terms of standard
deviations rather than variances and transform priors appropriately. Components of ¢
are independent in the prior, with marginal densities m(p;) gpjl. For the prior on 1,

we use 7(1|p;) o (¢%/J +1?) "1, where p? = N~1 Zf\il go?.

We will reduce the full data down to sufficient statistics. Let w; = J ! Z‘j]:l Yis,
2 = ijl(Yiv —2z)%,i=1,...,N, and write 2 = (21,...,2,) ", w = (wi,...,wy,)".
It is easily seen that z and w are sufficient for = (¢',7")", with z and w being
independent of each other. The density of z|p, written p(z|y), depends only on ¢, with

| G J—1 1
zilp; ~ Gamma | ——, —5 |,
4 2 27

independently for i = 1,..., N. Similarly, write p(w|p,n) for the density of w, and
2
wz|,3“g01 ~ N (ﬂia ﬁj) )

independently, for ¢ = 1,..., N. The model for the sufficient statistics is a two-module
system. The first module consists of p(z|p) and p(p), and the second module comprises

p(w|p,n) and p(n|e).

We simulate a dataset from the model, with N = 100, J = 10, » = 1 and ¢; = 0.5,
i = 1,...,N. The random effects vector § is simulated from its prior, except for i,
which is fixed at 10. Since (1 is inconsistent with the hierarchical prior, this leads to poor
estimation of 7 when J is small compared to N, and poor estimation of 3;. Figure 6
(left) compares the posterior distributions of ¢ from the conventional parametric and
the cut posterior distributions. The boxplots are for 1,000 posterior samples in each case.
The horizontal line shows the true value. The accuracy of the conventional posterior is
poor, and inconsistent with the cut posterior inferences which are more accurate.
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Figure 6: Left: comparison of posterior samples for ¢; for conventional posterior and
cut posterior for parametric model specification. Right: comparison of posterior samples
for ¢ for generalized Bayes analysis with Tukey’s loss for the second module, k = 5
and v/ = 3.3 with cut posterior. All boxplots summarize 1,000 posterior samples, and
the horizontal line is the true value 1 = 0.5.
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Generalized Posterior Analysis

This example can be thought of as relating to a prior-data conflict (Evans and Moshonov,
2006) due to the simulated data being generated with a random effect for one group
that is unusual with respect to the hierarchical prior. However, if only summary data
were given, it would not be possible to tell if the problem with the model lies with the
prior or the likelihood for a group having an unusual value for the sample mean. If an
unusual sample mean summary was due to a single outlier in the data for one group,
this would suggest the likelihood is at fault, whereas an unusual value for a random
effect would result in all observations in the group being affected. So replicate data is
essential to distinguish between a problem with the likelihood and a problem with the
prior in model checking. Although knowing sufficient statistics is enough for inference if
the model is correct, for model checking we may need non-sufficient information lying
in the replicates directly. Since the situation of summary data only being available is
common in some applications (in meta- analysis for example, where only summary data
might be published) we feel it is interesting to analyze this standard example from the
cut literature from the point of view of a possibly misspecified likelihood when only
summary data is available.

With this motivation, it is interesting to replace the normal model for w; in module
2 with a loss likelihood, to see whether this resolves the inconsistency between the cut
and full generalized posterior inferences. Here we consider a slightly extended version
of Tukey’s loss (Beaton and Tukey, 1974), which was recently used for a generalized
Bayesian analysis by Jewson and Rossell (2022),

m(u) _ {u2/2u4/(41€)u6/(6ﬁ)’ i |u| <x
K2/6 ,

for £ > 0; Tukey’s original loss did not contain the additional term u®/(6x), which
further penalizes large values. As pointed out by Jewson and Rossell (2022), Tukey’s
loss can be useful when an analyst knows the distribution of the data has heavy tails,
but a precise knowledge of the tail behaviour is difficult to formalize. Writing w; =
wi(pi, Bi) = (wi — B:)/(¢i/V/J), in our generalized Bayesian analysis we replace the
Gaussian negative log-likelihood terms

1 2rp? 1
—log p(wi|es, Bi) = 3 log — 510;2,

with the modified version of Tukey’s loss

72 ’ 76
m(wi;n, @) = 1log 2o —|—{ % — o o el <k
2 J
fori=1,..., N, where k is a tuning parameter controlling the degree of robustness to
departures from normality. As k — oo, Tukey’s loss approaches the Gaussian negative
log-likelihood, whereas small values for x result in greater robustness to outliers. There
are a variety of ways to choose k, but here we fix kK = 5. Jewson and Rossell (2022)
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describe a way of choosing x and other loss parameters using a so-called H-posterior
based on the Hyvérinen score, and also consider model choice for loss functions, but these
directions are not pursued here. For Tukey’s loss, the corresponding loss likelihood is
not integrable in w, so it does not correspond to any probabilistic model.

Our generalized Bayesian analysis requires a choice of the learning rates v and v’ as
discussed in Section 3.2. Recall that v calibrates the module 1 loss to the prior, and v/
can be thought of as calibrating the module 2 loss to the conditional prior for n|e. Since
we use the original probabilistic specification for module 1, we choose the learning rate v
to be 1, and the generalized Bayes and conventional cut posterior densities for ¢ are the
same. To choose v/, we use the method discussed in Section 3.2. However, noting that
only the parameters 5 appear in the loss function and not the prior hyperparameter
1, we calibrate ' by considering matching the Fisher information number for updates
for 8 asymptotically with 1 fixed, for loss likelihood bootstrap and generalized Bayes.
Since the matching is done asymptotically, the choice of ¥ makes no difference to the
value of v/ obtained. To estimate the matrix ¥yo in estimating v/ in Section 3.2, we
used a Bayesian bootstrap applied to the original data groups, since it is not possible
otherwise to estimate Wy from the data sufficient statistics. This is because there is no
replication that can be used, with §; appearing only in the model for w;. The learning
rate obtained for the second module for the analysis was v/ = 3.3.

Figure 6 (right) compares the posterior distributions of ¢; for the generalized Bayes
posterior and the cut posterior distributions. Once again, the boxplots are for 1,000
posterior samples, and the horizontal line shows the true value. The cut posterior is
the same as for the conventional posterior for the parametric model, as we are still
using the negative log-likelihood as the loss for module 1. We see that now the cut
and full posterior inferences are consistent with each other, so that the Tukey’s loss,
which accommodates heavy-tailed data, resolves the conflict between different parts of
the model.

For computations in this example, we used the rstan package (Carpenter et al.,
2017) for both the conventional and generalized posterior densities. We ran four chains
with 1000 iterations burn-in and 4000 sampling iterations, thinning the output so that
1000 samples are retained. The cut posterior density for ¢? is inverse gamma, and was
sampled directly to get 1,000 cut posterior samples for ¢;.

5 Discussion

This paper combines generalized posterior inference with cutting feedback methods for
flexible Bayesian modular inference. Starting from a parametric model, we suggest to
replace the negative log likelihood of unreliable modules with different choices of a loss
function to resolve any incompatibility between cut and full posterior inferences. We
have also studied the large sample behaviour of the generalized cut posterior distri-
bution from a novel conditional perspective. Our main theoretical result describes the
asymptotic behaviour of the conditional (cut) posterior distribution of a module’s pa-
rameters given parameters in other modules, formally justifying a type of conditional
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Laplace approximation. This conditional perspective allows the approximation to de-
pend on the module’s parameters that are being conditioned on, which is in contrast to
the conventional joint (Gaussian) Laplace approximation whose conditional covariance
matrix is fixed. We describe how this large sample approximation is useful for comput-
ing diagnostics, describing uncertainty propagation between modules, as well as for the
efficient implementation of a new approach to semi-modular inference.

In the framework for modular inference that we have developed, the loss function
is a sum of loss functions associated with different modules. We considered calibrating
the different component loss functions in one example, but more research is needed on
the best way to do this for different purposes. With a single loss function, there are
different methods of calibrating the loss to the prior, and the best method to use may
depend on the goals of the analysis. A similar remark applies in generalized Bayesian
modular inference. An anonymous referee has also asked about the connections with
the “restricted likelihood” approach to dealing with misspecification, discussed recently
in Lewis et al. (2021). Restricted likelihood reduces the data to an insufficient summary
statistic, to discard information that cannot be matched under the assumed model. The
method can be implemented computationally using likelihood-free inference algorithms,
and modular inference has been considered in this context by Chakraborty et al. (2023).

Another anonymous referee raises interesting questions about what is lost when a
conventional Bayesian analysis is replaced with a generalized Bayesian one based on
a loss likelihood. Although we are convinced that generalized Bayesian methods are
helpful, we are uncertain about how they will be used in the future as these techniques
become more widely known. Below we discuss three uses for generalized Bayesian infer-
ence in order of increasing controversy from a conventional Bayesian point of view.

For cutting feedback methods based on a fully specified probabilistic model, gener-
alized Bayesian justifications for them exist (Nicholls et al., 2022), and are one form of
support for their use. However, there are other justifications too from a conventional
Bayesian perspective. For example, a comparison of a cut and conventional posterior
might be considered as a kind of model check. Yu et al. (2023) explain why certain
calibrated comparisons between cut and full posterior densities based on the Kullback-
Leibler divergence have the logical features one would require for some model checking
tasks.

A deeper use of generalized Bayesian reasoning involves replacing some log-likelihood
components with general loss functions which are not derived from any probabilistic
model. An analyst might still think of these methods as having diagnostic value in
a conventional Bayesian framework. If a probabilistic specification of some module is
found to be flawed, and if determining an alternative probabilistic model is difficult, then
the use of a loss likelihood could help in deciding how to expand the current model. If a
generalized Bayesian analysis with a certain loss likelihood reduces the tension between
cut and full posterior inferences compared to the original probabilistic model, this may
suggest ways in which the initial model can be extended to a new probabilistic model
that might require significant effort and thought to specify. The simpler loss-likelihood
analysis might tell us whether it is worth the effort. Sometimes the loss function can be
obtained by modifying the negative log likelihood loss for the initial parametric model;
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our random effects example illustrates this, where setting x = oo in the Tukey loss
recovers the negative log likelihood for the initially assumed normal model.

Taking an even more permissive view of Bayesian reasoning as something useful in
predictive problems where no scientific inference is involved, the main appeal of general-
ized Bayes methods might be their attractiveness for dealing with nuisance parameters
by integration, rather than through optimization, and there may also be a strong pref-
erence for using a particular loss function in some applications (see, e.g., Loaiza-Maya
et al. (2021) for a specific example). Here elements of Bayesian thinking are being used
to achieve improved prediction or to target a meaningful parameter based on the cho-
sen loss function. Although there is a precise and limited sense in which the generalized
Bayesian methods are coherent, in other respects their behaviour might deviate from
that of conventional Bayesian inference.
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tional discussion of cutting feedback and modular inference, discussion on the assump-
tions used in the main text to obtain the stated results, proofs of all results stated
in the main text, detailed algorithms for conditional credible interval construction and
MCMC sampling for marginal SMI, and an empirical comparison of marginal SMI with
the SMI method of Carmona and Nicholls (2020) in an example.

References

Alquier, P. (2021). “User-friendly introduction to PAC-Bayes bounds.” arXiv:2110.
11216. 7

Beaton, A. E. and Tukey, J. W. (1974). “The fitting of power series, meaning polyno-
mials, illustrated on band-spectroscopic data.” Technometrics, 16(2): 147-185. 23

Bissiri, P. G., Holmes, C. C., and Walker, S. G. (2016). “A general framework for updat-
ing belief distributions.” Journal of the Royal Statistical Society. Series B, Statistical


https://doi.org/10.1214/24-BA1448SUPP
https://arxiv.org/abs/2110.11216
https://arxiv.org/abs/2110.11216

D. T. Frazier and D. J. Nott 27

methodology, 78(5): 1103. MR3557191. doi: https://doi.org/10.1111/rssb.12158.
2.6,7,9

Brillinger, D. R. (1969). “The calculation of cumulants via conditioning.” Annals of the
Institute of Statistical Mathematics, 21(1): 215-218. 20

Carmona, C. and Nicholls, G. (2020). “Semi-Modular Inference: enhanced learning in
multi-modular models by tempering the influence of components.” In International
Conference on Artificial Intelligence and Statistics, 4226-4235. PMLR. 2,9, 15, 16,
21, 26

Carmona, C. and Nicholls, G. (2022). “Scalable semi-modular inference with variational
meta-posteriors.” arXiv preprint arXiv:2204.00296. 10, 15

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D., Goodrich, B., Betancourt, M.,
Brubaker, M., Guo, J., Li, P., and Riddell, A. (2017). “Stan: A Probabilistic Pro-
gramming Language.” Journal of Statistical Software, 76(1): 1-32. Number: 1. URL
https://www. jstatsoft.org/index.php/jss/article/view/v076i01 17,24

Chakraborty, A., Nott, D. J., Drovandi, C. C., Frazier, D. T.; and Sisson, S. A. (2023).
“Modularized Bayesian analyses and cutting feedback in likelihood-free inference.”
Statistics and Computing, 33(1): 33. MR4537429. doi: https://doi.org/10.1007/
s11222-023-10207-5. 25

Chernozhukov, V. and Hong, H. (2003). “An MCMC approach to classical estimation.”
Journal of Econometrics, 115(2): 293-346. MR1984779. doi: https://doi.org/10.
1016/50304-4076(03)00100-3. 13

Evans, M. and Moshonov, H. (2006). “Checking for prior-data conflict.” Bayesian Anal-
ysis, 1: 893-914. MR2282210. doi: https://doi.org/10.1016/j.spl.2011.02.025.
23

Frazier, D. T. and Nott, D. J. (2024). “Supplementary Material for “Cutting feed-
back and modularized analyses in generalized Bayesian inference”” Bayesian Analysis.
doi: https://doi.org/10.1214/24-BA1448SUPP. 4

Griinwald, P. (2012). “The safe Bayesian: learning the learning rate via the mixability
gap.” In Algorithmic Learning Theory: 23rd International Conference, ALT 2012,
Lyon, France, October 29-31, 2012. Proceedings 23, 169-183. Springer. MR3042889.
doi: https://doi.org/10.1007/978-3-642-34106-9_16. 1

Griinwald, P. and Van Ommen, T. (2017). “Inconsistency of Bayesian inference for
misspecified linear models, and a proposal for repairing it.” Bayesian Analysis, 12(4):
1069-1103. MR3724979. doi: https://doi.org/10.1214/17-BA1085. 6

Hahn, P. R. and Herren, A. (2023). “Comment on “Causal Inference Under Mis-
Specification: Adjustment Based on the Propensity Score (with Discussion),” by
David A. Stephens. Widemberg S. Nobre. Erica E. M. Moodie. Alexandra M.
Schmidt.” Bayesian Analysis, 18(2): 639 — 694. MR4609024. doi: https://doi.org/
10.1214/22-bal1322. 4

Holmes, C. C. and Walker, S. G. (2017). “Assigning a value to a power likelihood in


https://mathscinet.ams.org/mathscinet-getitem?mr=3557191
https://doi.org/10.1111/rssb.12158
https://arxiv.org/abs/2204.00296
https://www.jstatsoft.org/index.php/jss/article/view/v076i01
https://mathscinet.ams.org/mathscinet-getitem?mr=4537429
https://doi.org/10.1007/s11222-023-10207-5
https://doi.org/10.1007/s11222-023-10207-5
https://mathscinet.ams.org/mathscinet-getitem?mr=1984779
https://doi.org/10.1016/S0304-4076(03)00100-3
https://doi.org/10.1016/S0304-4076(03)00100-3
https://mathscinet.ams.org/mathscinet-getitem?mr=2282210
https://doi.org/10.1016/j.spl.2011.02.025
https://doi.org/10.1214/24-BA1448SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3042889
https://doi.org/10.1007/978-3-642-34106-9_16
https://mathscinet.ams.org/mathscinet-getitem?mr=3724979
https://doi.org/10.1214/17-BA1085
https://mathscinet.ams.org/mathscinet-getitem?mr=4609024
https://doi.org/10.1214/22-ba1322
https://doi.org/10.1214/22-ba1322

28 Generalized Cut Posteriors

a general Bayesian model” Biometrika, 104(2): 497-503. MR3698270. doi: https://
doi.org/10.1093/biomet/asx010. 7,8, 13

Jacob, P. E., Murray, L. M., Holmes, C. C., and Robert, C. P. (2017). “Better together?
Statistical learning in models made of modules.” arXiv preprint arXiv:1708.08719.
2,10

Jacob, P. E., O’Leary, J., and Atchadé, Y. F. (2020). “Unbiased Markov chain Monte
Carlo methods with couplings (with discussion).” Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology), 82(3): 543-600. MR4112777. doi: https://
doi.org/10.1111/rssb.12336. 10

Jeffrey, R. C. (1965). The logic of decision. McGraw-Hill Book Co., New York-Toronto-
London. MR0233448. 4

Jewson, J. and Rossell, D. (2022). “General Bayesian Loss Function Selection and the
use of Improper Models.” Journal of the Royal Statistical Society Series B, 84(5):
1640-1665. MR4515553. 23

Kleijn, B. J. and van der Vaart, A. W. (2012). “The Bernstein-von-Mises theorem
under misspecification.” FElectronic Journal of Statistics, 6: 354-381. MR2988412.
doi: https://doi.org/10.1214/12-EJS675. 6

Lehmann, E. L. and Casella, G. (2006). Theory of point estimation. Springer Science &
Business Media. MR1639875. 11

Lewis, J. R., MacEachern, S. N.; and Lee, Y. (2021). “Bayesian Restricted Likelihood
Methods: Conditioning on Insufficient Statistics in Bayesian Regression.” Bayesian
Analysis, 1(1): 1-38. MR4381137. doi: https://doi.org/10.1214/21-BA1257. 25

Liu, F., Bayarri, M. J., and Berger, J. O. (2009). “Modularization in Bayesian analysis,
with emphasis on analysis of computer models” Bayesian Analysis, 4(1): 119-150.
MR2486241. doi: https://doi.org/10.1214/09-BA404. 2, 21, 22

Liu, Y. and Goudie, R. J. B. (2022a). “A General Framework for Cutting Feedback
within Modularized Bayesian Inference.” arXiv preprint arXiv:2211.03274. 4, 6

Liu, Y. and Goudie, R. J. B. (2022b). “Stochastic Approximation Cut Algorithm for
Inference in Modularized Bayesian Models.” Statistics and Computing, 32(7): 1-15.
MR4350200. doi: https://doi.org/10.1007/s11222-021-10070-2. 10

Loaiza-Maya, R., Martin, G. M., and Frazier, D. T. (2021). “Focused Bayesian predic-
tion.” Journal of Applied Econometrics, 36(5): 517-543. MR4309597. doi: https://
doi.org/10.1002/jae.2810. 26

Lunn, D., Best, N., Spiegelhalter, D., Graham, G., and Neuenschwander, B. (2009).
“Combining MCMC with ‘sequential’ PKPD modelling.” Journal of Pharmacokinetics
and Pharmacodynamics, 36: 19-38. 5

Lyddon, S. P., Holmes, C. C., and Walker, S. G. (2019). “General Bayesian updat-
ing and the loss-likelihood bootstrap.” Biometrika, 106(2): 465-478. MR3949315.
doi: https://doi.org/10.1093/biomet/asz006. 7,8, 13, 14


https://mathscinet.ams.org/mathscinet-getitem?mr=3698270
https://doi.org/10.1093/biomet/asx010
https://doi.org/10.1093/biomet/asx010
https://arxiv.org/abs/1708.08719
https://mathscinet.ams.org/mathscinet-getitem?mr=4112777
https://doi.org/10.1111/rssb.12336
https://doi.org/10.1111/rssb.12336
https://mathscinet.ams.org/mathscinet-getitem?mr=0233448
https://mathscinet.ams.org/mathscinet-getitem?mr=4515553
https://mathscinet.ams.org/mathscinet-getitem?mr=2988412
https://doi.org/10.1214/12-EJS675
https://mathscinet.ams.org/mathscinet-getitem?mr=1639875
https://mathscinet.ams.org/mathscinet-getitem?mr=4381137
https://doi.org/10.1214/21-BA1257
https://mathscinet.ams.org/mathscinet-getitem?mr=2486241
https://doi.org/10.1214/09-BA404
https://arxiv.org/abs/2211.03274
https://mathscinet.ams.org/mathscinet-getitem?mr=4350200
https://doi.org/10.1007/s11222-021-10070-2
https://mathscinet.ams.org/mathscinet-getitem?mr=4309597
https://doi.org/10.1002/jae.2810
https://doi.org/10.1002/jae.2810
https://mathscinet.ams.org/mathscinet-getitem?mr=3949315
https://doi.org/10.1093/biomet/asz006

D. T. Frazier and D. J. Nott 29

Maucort-Boulch, D., Franceschi, S., and Plummer, M. (2008). “International correla-
tion between human papillomavirus prevalence and cervical cancer incidence.” Cancer
Epidemiology and Prevention Biomarkers, 17(3): 717-720. 4

Miller, J. W. (2021). “Asymptotic normality, concentration, and coverage of generalized
posteriors.” Journal of Machine Learning Research, 22(168): 1-53. MR4318524. 11,
13

Nicholls, G. K., Lee, J. E., Wu, C.-H., and Carmona, C. U. (2022). “Valid belief updates
for prequentially additive loss functions arising in Semi-Modular Inference.” arXiv
preprint arXiw:2201.09706. 7,9, 15, 16, 25

Plummer, M. (2015). “Cuts in Bayesian graphical models.” Statistics and Computing,
25(1): 37-43. MR3304902. doi: https://doi.org/10.1007/s11222-014-9503-z. 4,
5, 10

Pompe, E. and Jacob, P. E. (2021). “Asymptotics of cut distributions and robust mod-
ular inference using Posterior Bootstrap.” arXiv preprint arXiw:2110.11149. 2,13

Portier, F. (2016). “On the asymptotics of Z-estimators indexed by the objective func-
tions.” Electronic Journal of Statistics, 10(1): 464 — 494. URL https://doi.org/10.
1214/15-EJS1097 MR3466190. doi: https://doi.org/10.1214/15-EJS51097. 12

Syring, N. and Martin, R. (2018). “Calibrating general posterior credible regions.”
Biometrika, 106(2): 479-486. MR3949316. doi: https://doi.org/10.1093/biomet/
asy054. 7

van der Vaart, A. W. (2000). Asymptotic statistics, volume 3. Cambridge university
press. MR1652247. doi: https://doi.org/10.1017/CB09780511802256. 13

Wedderburn, R. W. M. (1974). “Quasi-likelihood functions, generalized linear mod-
els, and the Gauss—Newton method.” Biometrika, 61(3): 439-447. MRO0375592.
doi: https://doi.org/10.1093/biomet/61.3.439. 17

Wu, P.-S. and Martin, R. (2020). “A comparison of learning rate selection methods
in generalized Bayesian inference.” arXiv preprint arXiv:2012.11349. MR4515727.
doi: https://doi.org/10.1214/21-ba1302. 8

Yu, X., Nott, D. J., and Smith, M. S. (2023). “Variational Inference for Cutting Feedback
in Misspecified Models.” Statistical Science, 38(3): 490 — 509. URL https://doi.
org/10.1214/23-STS886 MR4630957. doi: https://doi.org/10.1214/23-sts886.
4,10, 18, 25

Zhang, T. (2006). “Information-theoretic upper and lower bounds for statistical esti-
mation.” IEEE Transactions on Information Theory, 52(4): 1307-1321. MR2241190.
doi: https://doi.org/10.1109/TIT.2005.864439. 13


https://mathscinet.ams.org/mathscinet-getitem?mr=4318524
https://arxiv.org/abs/2201.09706
https://mathscinet.ams.org/mathscinet-getitem?mr=3304902
https://doi.org/10.1007/s11222-014-9503-z
https://arxiv.org/abs/2110.11149
https://doi.org/10.1214/15-EJS1097
https://doi.org/10.1214/15-EJS1097
https://mathscinet.ams.org/mathscinet-getitem?mr=3466190
https://doi.org/10.1214/15-EJS1097
https://mathscinet.ams.org/mathscinet-getitem?mr=3949316
https://doi.org/10.1093/biomet/asy054
https://doi.org/10.1093/biomet/asy054
https://mathscinet.ams.org/mathscinet-getitem?mr=1652247
https://doi.org/10.1017/CBO9780511802256
https://mathscinet.ams.org/mathscinet-getitem?mr=0375592
https://doi.org/10.1093/biomet/61.3.439
https://arxiv.org/abs/2012.11349
https://mathscinet.ams.org/mathscinet-getitem?mr=4515727
https://doi.org/10.1214/21-ba1302
https://doi.org/10.1214/23-STS886
https://doi.org/10.1214/23-STS886
https://mathscinet.ams.org/mathscinet-getitem?mr=4630957
https://doi.org/10.1214/23-sts886
https://mathscinet.ams.org/mathscinet-getitem?mr=2241190
https://doi.org/10.1109/TIT.2005.864439

	Introduction
	Motivation and Framework
	Related Literature and Motivation
	Generalized Posteriors
	Cutting Feedback with Generalized Posteriors

	The Behavior of cut(|bold0mu mumu zz2005/06/28 ver: 1.3 subfig packagezzzz,bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwww)
	Maintained Assumptions and Main Results
	Calibration of Learning Rates
	Diagnostics for |bold0mu mumu ww2005/06/28 ver: 1.3 subfig packagewwww,: Understanding Uncertainty Propagation

	Examples
	HPV Prevalence
	Cut Posterior Computation With Large Sample Approximation
	Generalized Posterior Analysis
	Uncertainty Propagation

	A Random Effects Model
	Generalized Posterior Analysis


	Discussion
	Supplementary Material
	References

