
Bayesian Analysis (2024) TBA, Number TBA, pp. 1–28

Domain Latent Class Models

Jesse Bowers∗ and Steve Culpepper†

Abstract. Latent Class Models (LCMs) are used to cluster multivariate categor-
ical data (e.g. group participants based on survey responses). Traditional LCMs
assume a property called conditional independence. This assumption can be re-
strictive, leading to model misspecification and overparameterization. To combat
this problem, we developed a novel Bayesian model called a Domain Latent Class
Model (DLCM), which permits conditional dependence. We verify identifiability
of DLCMs. We also demonstrate the effectiveness of DLCMs in both simulations
and real-world applications. Compared to traditional LCMs, DLCMs are effective
in applications with time series, overlapping items, and structural zeroes.

Keywords: LCM, latent variable, clustering, categorical data analysis.

1 Introduction
1.1 Problem Statement

Latent Class Modeling (LCM) is a clustering technique for multivariate categorical data.
LCMs are of interest in many areas including social, behavioral, health sciences, and
record linkage. A common use is to group respondents based on their responses to a
multiple choice survey and to interpret each of those groups.

Traditional LCMs break the respondents into C ∈ N groups called latent classes,
and assume that respondents answer each question independently, conditional on class
membership. Suppose a survey contains J multiple choice questions (items). Let the i’th
person’s response to item j be denoted Xij ∈ ZQj := {0, 1, . . . , Qj − 1} where Qj ∈ N

gives the total number of categorical values item j can take. Let ρcjxj = P (Xij =
xj |ci = c) be the probability that members of class c report Xj = xj for item j.
LCMs assume that, given class membership, elements of the multivariate response vector
Xi = (Xi0, . . . , Xi,J−1) are conditionally independent. Consequently, if person i belongs
to class ci = c then the probability of observing Xi = xi is given by:

P (Xi = x|ci = c, ρ) =
J−1∏
j=0

Qj−1∏
q=0

ρ
I(q=xj)
cjq , (1)

where I(·) is the indicator function. Nominally the prior probability of the i’th subject
belonging to class c is P (ci = c|π) = πc. Therefore, the responses to our survey follow
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the distribution:

P (Xi = x|ρ,π) =
C−1∑
c=0

πc

J−1∏
j=0

Qj−1∏
q=0

ρ
I(q=xj)
cjq . (2)

One challenge in traditional LCMs is the assumption of conditional independence. In
practice, it is sometimes inappropriate to assume that, for a member of a class, each
question is answered independently. For instance, two items might overlap, asking sim-
ilar questions in different ways. Locally dependent questions also appear in time series
data. Questions within the same time point may exhibit local dependence. Conversely,
if the same question is asked across time points, then there may be local dependence
between responses to the same question. This temporal dependence is notably present
in pre-post testing with paired items.

1.2 Contribution to Past Work

A classical approach to address local dependence is via diagnostics and manual ad-
justments. One might fit a traditional LCM, check for local dependence, and tweak the
model until the dependence disappears. There are a number of methods for detecting lo-
cal dependence. Some classical methods include chi-squared tests and Fisher exact tests
(Agresti, 2018). When dependence is found there are at least two techniques available
to eliminate it.

The first approach is to increase the number of classes C (Bartholomew et al.,
2011). With more and more groups composed of smaller and smaller populations, the
groups become increasingly homogeneous and local dependence decreases. In principle,
with enough latent classes local dependence disappears entirely. In a later illustrative
example, we show how doubling the amount of classes accounts for the local dependence
caused by two dependent questions (Appendix A, Bowers and Culpepper, 2024a). In
general, local dependence disappears no later than C =

∏J−1
j=0 Qj classes, where there is

one class for every possible response pattern. The weakness of removing local dependence
by increasing the number of classes is that it tends to overfit. Furthermore, a large
number of classes can be hard to interpret. Considering that a main objective of LCMs
is to provide a parsimonious interpretation of data, increasing the number of classes
to deal with local dependence is not always attractive. Given that the correct number
of classes is not known, it is also easy to choose too few classes resulting in model
misspecification.

The second approach is the ‘Joint Variable’ approach. The idea here is to transform
the data itself to remove dependence. Suppose a pair of items are conditionally depen-
dent. Those items correspond with a common domain and could be merged into a ‘joint’
variable (Goodman, 1974) as demonstrated next in Example 1.
Example 1. Consider a case with two binary items for n = 6 respondents. If the two
binary items are put into the same domain they might be recoded as follows: (0, 0) = 0,
(0, 1) = 1, (1, 0) = 2, and (1, 1) = 3.
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When this technique is applied, paired items are removed and replaced with the
joint variable in the dataset. This effectively removes the dependence by generating
a new variable with one value for each possible response to the grouped items. The
obstacle with either aforementioned correction is that they are manual, iterative, and
rely on personal judgement. The manual nature requires time and effort. The iterative
process means that early decisions will be made based on a biased model and personal
judgement can be difficult to reproduce.

We propose a model called a Domain Latent Class Model (DLCM). DLCM is a
Bayesian model which extends the joint variable approach. It is an exploratory algo-
rithm which identifies locally dependent items and groups dependent items together into
joint variables. The DLCM has several advantages. First, the model flexibly searches
for local dependence, which is captured in a nonparametric way. We require no prior
knowledge of which items are related nor information on the exact nature of that rela-
tionship. Second, we provide tools to readily interpret the local dependence recovered
by the model. Third, we optionally permit different classes to have different depen-
dence structures, a freedom we have not seen in competing models. Fourth, we provide
rigorous identifiability conditions for DLCMs.

Recent research in the area of local dependence relies more on algorithms and less on
human judgement. For instance there have been advances in the area of record linkage
to handle local dependence (Daggy et al., 2014). Record linkage attempts to match
records between two different data sources which lack a common key. The goal is to
look at every pair of records and identify each pair as either a ‘match’ or ‘mismatch’
based on common items. In general, there are at least four broad approaches for solving
local dependence:

1. Hierarchical models. Hierarchical models are typically described as a tree with
the latent class up top, intermediary latent variables in the middle, and the observed
responses at the end. Latent Tree Models (Chen et al., 2012) and Bayesian Pyramids
(Gu and Dunson, 2023) are two examples of this. Hierarchical models are very flexible,
but can be difficult to interpret. For instance latent tree models in particular suffer from
the fact that any intermediary node can be interpreted as the head of tree. This leads
to many competing interpretations for the same model.

2. Mixture Probit models. Asparouhov and Muthen (2011) build a mixture model as-
suming that binary responses Xi are formed from latent [X̃i|ci = c] ∼ Normal(μ

c
,Σc)

under a cumulative link. Cagnone and Viroli (2012) developed a mixture of factor mod-
els to describe heterogeneity in multivariate binary response data. In record linkage,
Daggy et al. (2014) fit a Gaussian mixture model with random effects to handle local
dependence. When compared to DLCMs, dependence in mixture probit models is cap-
tured in a parametric way, typically with a linear relationship between items. This can
be limiting.

3. Log-linear models. For every possible vector of item responses, a log-linear model
will predict the number of matching observations. These models can either be used
directly (Uebersax, 2009) or in a mixture (Daggy et al., 2014). Daggy et al. (2014)’s
work is applied to record linkage with cross terms accounting for dependence between
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known pairs of items. Log-linear models are parametric and require the investigator to
hypothesize which relationships influence responses. In comparison, the DLCM requires
no such prior knowledge.

4. Conditional Modes Model (CMM). Marbac et al. (2014) proposes a CMM using
joint variables to solve local dependence. They use a Metropolis algorithm to search
for conditionally dependent blocks of items and convert them to joint variables. Our
Dependent Latent Class Models (DLCMs) also uses a Metropolis algorithm to search
for dependent items, but differs from Marbac’s CMMs in several ways. I. Our model
includes regularization which prefers simpler models with less assumed conditional de-
pendence. In comparison, CMM uses a uniform prior over the space of joint variables. In
Monte Carlo simulations we provide evidence that our regularization more accurately
uncovers the joint variable dependence structure than a uniform prior. II. We optionally
permit different classes to use different joint variables where CMM assumes common
joint variables across classes. III. We provide more complete identifiability conditions
than Marbac. IV. Our approach is fully Bayesian whereas Marbac uses a mixture of fre-
quentist and Bayesian techniques. A full Bayesian approach permits the use of standard
inference techniques.

The remainder of the paper is organized as follows. In Section 2 we introduce the
notation necessary to formalize DLCMs. Throughout the paper we customarily use
examples to illustrate definitions. In Section 3, we establish sufficient conditions for
generic identifiability of DLCMs. In Sections 4 and 5, we discuss the full conditional
distribution of the DLCM parameters and the prior for domains. Section 6 describes
the MCMC algorithm for approximating the posterior of our parameters. In Section 7
we validate the accuracy of DLCMs in simulation studies on artificial data. Section 8
showcases the power of DLCMs in real world applications. In Section 9 we provide
closing thoughts. We provide an R package for running the DLCM. This is available
on Github: https://github.com/jessebowers/dependentLCM. The package runs with
respectable speed. In Section 7, we conduct some simulations, and 98% of simulations
ran in two minutes1 or less on a sample size of n = 1,000, J = 24 items, C = 5
classes, and T = 6,000 MCMC iterations. Runtime increases roughly in proportion to
n× J × C × T .

2 Domain Notation
Within a class, we segment items into conditionally independent groups called domains.
A domain is a set of items which will be combined to form one joint variable. Condi-
tional on being in class ci = c, items within the same domain are dependent. However,
items of one domain are conditionally independent, given class, of the items of all other
domains. Given that items in the same domain are transformed into a joint variable,
every possible response pattern to the grouped items is given an individual probabil-
ity. With a Metropolis within Gibbs Markov chain Monte Carlo (MCMC) process, our
DLCM actively searches for a promising way to recode our data to capture conditional
independence.

1Simulations were conducted on a 2.1GHz processor: Intel Xeon (Sapphire Rapids) 8468 CPU.

https://github.com/jessebowers/dependentLCM
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Within any class c, the items are partitioned into D disjoint sets: J(c, 1), . . . ,
J(c,D) ⊆ ZJ := {0, 1, . . . , J − 1}. We allow for empty J(c, d) with D typically, but
not necessarily, much larger than our number of items J . In Section 5, D is used as a
regularizing hyperparameter, with larger values of D promoting more finely partitioned
items. Let J(k)(c, d) refer to the item with the k’th smallest label in domain (c, d), and
in general let S(k) be the k’th smallest element of set S.

The DLCM domains are subject to certain restrictions. In the most restricted case,
all classes are required to group items the same way and have the same domains:
J(c, d) = J(c′, d) for all c, c′, d. This is called a homogeneous DLCM. Conditional on a
fixed domain structure, a homogeneous DLCM can be thought of as transforming our
dataset X by merging dependent items, and then applying traditional LCM onto the
transformed dataset. In the least restrictive case, each class is allowed to have different
domains and group items differently. This is called a heterogeneous DLCM. In this case
the recoding of responses varies from class to class.

The responses for items in the same domain and class need to be modeled jointly. We
call the series of responses in a domain a ‘pattern’: Xi,J(c,d). It is convenient to express
these patterns as integer values. Let ricd be the integer referring to the i’ths person’s
responses to the questions in domain (c, d). The multivariate responses to a domain are
transformed to an integer using a mapping vector V (S) = [V1(S), . . . , VJ(S)]� which
takes set S ⊆ ZJ and produces a vector in (N ∪ {0})J . Specifically, ricd is defined as

ricd := V (J(c, d))�Xi ∈ ZRcd
, (3)

where element j of V (S) is defined as

Vj(S) :=

⎧⎨
⎩

0 j /∈ S,
1 j = S(1),∏m−1

w=1 QS(w) j = S(m),m > 1,
(4)

and
Rcd :=

∏
j∈J(c,d)

Qj (5)

is the total number of patterns for domain (c, d). For a given class, patterns can also
be expressed as a vector ric with values [ric]d := ricd. Variable δjc allows one to look
up what domain the j’th item belongs to in class c. By definition j ∈ J(c, δjc) and
J(c, d) = {j : δjc = d}. For a given class, the δjc can be expressed as a vector: δc :=
[δ0,c, . . . , δJ−1,c]�. It can also be expressed as a J ×C matrix, Δ, with elements Δjc =
δjc. Matrix Δ completely specifies how the items are grouped into domains across all
classes. We call Δ the domain structure. We particularly care about nonempty domains
and the patterns corresponding to these domains. Let set Dc := {d : |J(c, d)| > 0} ⊆
ZD identify the nonempty domains in class c. To illustrate this notation consider the
following example:
Example 2. Suppose we have a dataset with J = 6 items, C = 2 classes, and D = 35
domains. The first three items are binary (Qj = 2), items four and five have five options
(Qj = 5), and the last item is binary (Qj = 2). We show a possible domain structure



6 Domain Latent Class Models

Figure 1: Domains in Example 2. (a) Identifier δjc indicates which domain item j belongs
to under class c. Each identifier is in the range δjc ∈ {0, . . . , D−1}, with D = 35 in this
example. (b) Set J(c, d) lists all of the items belonging to domain d under class c. For
all items j and classes c it follows that j ∈ J(c, δjc). (c) Items in the same region are in
the same domain. Remark: Some domains are empty: e.g. J(0, 1) = J(1, 15) = ∅. This
is an intentional feature designed to promote regularization, described in Section 5.

Δ in Figure 1a. The resulting domain items J(c, d) are shown in Figure 1b and a
visualization of the domains is shown in Figure 1c.

In general, for domain (c, d) = (1, 2) with J(1, 2) = {0, 3, 5}, there are R12 =
(2)(5)(2) = 20 possible patterns with ri12 ∈ {0, 1, . . . , 19}. For example, for an indi-
vidual who responded Xi = [0, 0, 0, 2, 1, 1]� the corresponding pattern ri12 is given
by:

ri,c=1,d=2 = V (J(c=1, d=2))�Xi = [0, 0, 0, 2, 1, 1] · [1, 0, 0, 2, 0, 2 · 5] = 14.

2.1 Pattern Probabilities
Patterns ricd and ricd′ are assumed to be conditionally independent for d �= d′. For
subject i in class c, a domain pattern has probability:

P (ricd = r|ci = c, θcdr, δc) = θcdr, (6)

P (ric|ci = c, θc, δc) =
∏

d∈Dc

Rcd−1∏
r=0

θ
I(r=ricd)
cdr . (7)

An empty domain d has ricd = 0 and θcd0 = 1 everywhere, and is generally omitted. All
probabilities for a given class can be represented as θc, and probabilities for a domain
(c, d) can also be expressed as vector θcd = [θcd0, . . . , θc,d,Rcd−1 ]�. For a given class c with
domains δc there is a one to one relationship between responses Xi and patterns ric.
It follows that: P (Xi|ci = c, θc, δc) = P (ric|ci = c, θc, δc). When marginalized across
class, the response probabilities are P (Xi|θ,Δ,π) =

∑C
c=0 πcP (ric|ci = c, θc, δc) with

πc representing the prior probability that subject i is in class c. The following example
demonstrates the pattern probabilities of a class in practice:
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Example 2 (continued). Continuing the previous example, suppose class 1 had the fol-
lowing probabilities:

θ12 = 1
100[4, 3, 5, 5, 6, 4, 4, 5, 3, 7, 5, 7, 6, 6, 9, 5, 5, 4, 3, 4]�,

θ16 = [0.20, 0.28, 0.18, 0.25, 0.09]�,
θ17 = [0.26, 0.20, 0.25, 0.29]�.

The probability that subject i in class 1 responds Xi = [0, 0, 0, 2, 1, 1]� is given by:

P (Xi = [0, 0, 0, 2, 1, 1]�|ci = 1, θ1, δ1)
= P ([ri12, ri16, ri17] = [14, 1, 0]|ci = 1, θ1, δ1)
= θ1,2,14θ1,6,1θ1,7,0

= (0.09)(0.28)(0.26) ≈ 0.0066.

When looking at the joint distribution of ricd and ricd′ it is useful to use Kronecker
products. This allows us to consider a vector of probabilities rather than considering
one pattern value at a time.

Definition 2.1 (Kronecker product). Let vectors Y l and Y ′
l be of size m and m′

respectively. Their Kronecker product is given by:

Y ⊗ Y ′ = [Y1Y
′
1 , . . . , Y1Y

′
m′ , Y2Y

′
1 , . . . , Y2Y

′
m′ , . . . , . . . , YmY ′

m′ ]⊥ ∈ R
mm′

. (8)

We also define the column-wise Kronecker product, sometimes called the Khatri–Rao
product:

[Y 1, . . . ,Y k] ⊗∗ [Y ′
1, . . . ,Y

′
k

]
=

[
(Y 1 ⊗ Y ′

1), . . . , (Y k ⊗ Y ′
k)
]
. (9)

An immediate use of the Kronecker products is to describe the joint distribution of
ri,c,d∈S for S ⊆ ZD. There exists some permutation matrix Π where:

P (ri,c,d∈S |ci = c, θ, δc) = P

(
V

(⋃
d∈S

J(c, d)
)�

Xi|ci = c, θ, δc

)
⎡
⎢⎢⎣

P (V (
⋃

d∈S J(c, d))�Xi = 0 |ci = c, θ, δc)
P (V (

⋃
d∈S J(c, d))�Xi = 1 |ci = c, θ, δc)

· · ·
P (V (

⋃
d∈S J(c, d))�Xi =

∏
d∈S Rcd − 1 |ci = c, θ, δc)

⎤
⎥⎥⎦ = Π

⊗
d∈S

θcd.

That is, up to reordering, the Kronecker product
⊗

d∈S θcd describes the distribution
of ri,c,d∈S . We now introduce a property called Kronecker Separability.

Definition 2.2. Domain (c, d) with probabilities θc,d is Kronecker separable if these
probabilities could be formed from two groups of independent items.

Loosely speaking, θcd is Kronecker separable if it can be expressed as a Kronecker
product of two probability vectors. If there exist a bipartition of items J0

⊔
J1 = J(c, d)
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with probabilities θ(0), θ(1) where θ(0)⊗θ(1) equals θcd then θcd is Kronecker separable.
When establishing equality, we force the terms of θ(0) ⊗ θ(1) to be reordered to match
the patterns of ricd.

Example 3. Suppose J(c, d) := {0, 1} with Q1 = Q2 := 2. If θcd = [0.25, 0.25, 0.25, 0.25]�
= [0.5, 0.5]⊗ [0.5, 0.5] then θcd is Kronecker separable. If θcd = [0.5, 0, 0.5, 0]� then both
items are dependent and this is not Kronecker separable.

Kronecker separability is important because if a domain is Kronecker separable then
it can be split into two domains without changing the distribution of X. Conversely
if a domain is not Kronecker separable then splitting the domain would change the
distribution.

3 Identifiability
An important issue for mixture models is identifiability. Without identifiability there
may be many choices of parameters ω := (π, θ,Δ) ∈ Θ which fit our responses equally
well, making inference problematic. We define identifiability as follows:

Definition 3.1. Unique distribution. A specific choice of parameters ω := (π, θ,Δ) ∈ Θ
has a unique distribution if no other choice of ω ∈ Θ produces the same distribution of
X|ω. That is, ω has a unique distribution if for all ω′ we have X|ω′ d= X|ω only when
ω′ = ω. We consider ω and ω′ to be the same when they have the same values up to
relabeling of class and domain identifiers δjc. Strict identifiability. A model is strictly
identifiable if every choice of ω ∈ Θ has a unique distribution. Generic Identifiability.
A model is generically identifiable if only a measure zero subset of ω does not have a
unique distribution. This is with respect to the standard Lebesgue measure.

Identifiability, especially strict identifiability, can fail for categorical mixture models
(Carreira-Perpiñán and Renals, 2000). Allman et al. (2009) provides some useful results
for determining generic identifiability for traditional LCM. These are based on algebraic
results from Kruskal (1977). Our proofs are inspired by Allman, but generally work
directly with Kruskal’s theorem. For details see online Appendix B.

Theorem 3.2 (Identifiability). A DLCM is generically identifiable if the following
conditions are met:

1. Domain structure Δ is restricted. For each allowed Δ there must be a tripartition
of items J0, J1, J2 which fulfill the following. First the partitioned items must be
conditionally independent for all classes: X ·,J0 ⊥⊥ X ·,J1 ⊥⊥ X ·,J2 . Second the
following inequality must hold:

min(κ0, C) + min(κ1, C) + min(κ2, C) ≥ 2C + 2, (10)

κk :=
∏
j∈Jk

Qj . (11)
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2. Probabilities θ are restricted such that every θcd is Kronecker inseparable.

3. πc > 0 for all c

Corollary 3.3. If and only if inequality (10) holds when all items are conditionally
independent then the DLCM is generically identifiable across some nonzero space of
domain structures.

Proof. We can tripartition items most flexibly when all items are conditionally indepen-
dent. As domain structures increasingly group items, there are additional restrictions on
how items can be partitioned making (10) increasingly harder to fulfill. Therefore (10)
holds for at least one domain structure if and only if it holds when every item is in its
own separate domain. Conditions two and three in Theorem 3.2 are always possible to
fulfill by removing a measure zero subset of our parameter space.

Remark 1. Generally if you can identify one valid tripartition of items, this implies
many possible valid domain structures. At a minimum, any domain structure which is
formed by grouping items from the same partition is allowed: J(c, d) ∈ PowerSet(J0) ∪
PowerSet(J1) ∪ PowerSet(J2).
Remark 2. To verify whether a particular domain structure permits generic identifiabil-
ity, the following procedure can be used. Take each item and break them into as many
conditionally independent blocks as possible. For homogeneous DLCMs every domain
is conditionally independent. For heterogeneous DLCMs, ‘pooled domains’ can be used;
see description in Appendix B. These blocks can then be tripartitioned. The goal is
for the first two tripartitions to have at least κk ≥ C response patterns, and the third
tripartition has at least κk ≥ 2 response patterns. For convenience in our R package we
have a deterministic greedy function which attempts to find an appropriate tripartition
and verify identifiability.

4 DLCM Distributions
In this section we introduce the DLCM Bayes priors and the full conditional distribu-
tions. By design these distributions have a lot in common with the traditional LCM.

Our DLCM Bayes parameters use the following priors:

ci|π ∼ Cat(π), (12)
π ∼ Dirichlet(α(c)), (13)

θcd|Δ ∼ Dirichlet(α(θ)1Rcd
) = Dirichlet([α(θ), . . . , α(θ)]�). (14)

To ensure identifiability (14) is restricted so θcd is not Kronecker separable, removing
a measure zero space. These priors produce the following posteriors:

Theorem 4.1. The DLCM full conditional distributions for ci, π, and θcd are:

P (ci = c|Xi,π,θ,Δ) =
πcp(rc,i|ci = c, θc, δc)∑C−1

c′=0 πc′p(rc,i|ci = c′, θc′ , δc′)
, (15)
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(π|X, θ,Δ, c) = (π|c) ∼ Dirichlet(α(c) + n(c)), (16)

(θcd|X,π,Δ, c) = (θcd|rc,·,d, c, δc) ∼ Dirichlet(α(θ)1Rcd
+ n

(θ)
cd ), (17)

where 1k := [1, . . . , 1]� is a k-vector of ones and n
(c)
c :=

∑n−1
i=0 I(ci = c) and n

(θ)
cdr :=∑n−1

i=0 I(ricd = r, ci = c) are elements of n(c) and n
(θ)
cd , respectively.

Proof. The proof of this theorem is standard, following similar lines to traditional LCM.
Details can be found in online Appendix C.

These posteriors are similar to traditional LCMs. For comparison see traditional
LCM full conditional distributions given in online Appendix C. This has an important
consequence for homogeneous DLCMs. For a homogeneous domain structure let r be a
n×D matrix with rows ri,c=0. Conditional on this domain structure Δ, the homogeneous
posteriors are equivalent to traditional LCM posteriors on r in place of X. In other
words, for fixed Δ we transform X into r by coding locally dependent items into new
single-item domain patterns. Then we apply a traditional LCM to this transformed
dataset. Homogeneous DLCMs stochastically ‘search’ for a promising transformation of
X which supports good fit. Heterogeneous DLCMs further extend this idea allowing
different classes to code responses differently.

Missing data can be handled one of two ways. If missing at random, missing values
can be imputed. In an MCMC iteration, missing values would be generated based on
the current class of that observation using the current response probabilities θc. If some
but not all of the responses to a domain are unknown, the values will be imputed
conditionally. This is done by sampling from probability vector θ̃cd where θ̃cdr ∝ θcdr
when the response r is consistent with the observed values and θ̃cdr = 0 when the
response r is inconsistent. If the missing values are not at random, create a new category
value for each item indicating that the response is ‘missing’.

If there are covariates zi influencing class membership, these can be incorporated
by modifying π. In the revised model P (ci = c|zi,βc

,κ) := π(β�
c
zi, c,κ) where β

c
and

κ are new Bayes parameters. Conditional on parameters β
c

and κ, class membership
(ci|zi,βc

,κ,θ,Δ) can be updated with a multinomial Gibbs step analogous to (15)
above. Conversely β

c
and κ can be updated conditional on c. This amounts to a re-

gression problem on multinomial responses c. Imai and van Dyk (2005) and Held and
Holmes (2006) both provide methods for this step.

5 Domain Prior
In this section we examine the prior distribution of the domain structure Δ. We pro-
pose a prior we call the ‘bucket prior’ for domains. The support of Δ is subject to
certain restrictions. Namely Δ is restricted by the identifiability conditions given by
the Kruskal inequality (10) in Theorem 3.2. The other restrictions are discussed in the
two subsections below. For simplicity, we start with the simplest case: homogeneous
DLCMs with bucket priors.
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5.1 Homogeneous Domain with Bucket Prior

In homogeneous DLCMs every class has the same domains: δc = δc′ for all c, c′ ∈ ZC .
Therefore, we choose some representative class c and fully explain the domain structure
Δ from δc. In this subsection, we introduce our homogeneous domain bucket prior and
show that it encourages parsimony by means of less complex domain structures.

Within the support, every choice of δc ∈ Z
J
D is has equal prior probability. If we

neglect restrictions for a moment, this prior has a certain interpretation. An individual
item would be equally likely to be in any of the D domains in class c. In this way, class
c’s domains are analogous to J numbered balls (items) distributed randomly among
D buckets (domains). We also have a restriction MaxItems ∈ {1, . . . , J} which limits
the greatest number of items which can be in any individual domain. Neither of these
restrictions depend on the specific labeling of Δ, even in the heterogeneous case (see
online Appendix E).

Although every allowable choice of δc is equally likely, not every partition of items
{J(c, d) : d ∈ ZD} is equally likely. Consider the following example:
Example 4. Consider a homogeneous DLCM on J = 2 items. Neglect identifiability
restrictions for simplicity. If D = 1, then the two items will always be in the same
domain. If D = 2 then the items are equally likely to be put together in the same
domain versus put into separate domains. Suppose we have more domains: D = 20.
Then every choice of (δ0,0, δ0,1) ∈ Z

2
20 is equally likely, but only 20/200 cases put both

items in the same domain. Generally, the more domains D there are, the less likely a
pair of items will appear in the same domain.

When we apply restrictions we reduce the support, and then scale up all probabilities
by a common normalizing constant. In general we have the following prior probabilities:

Theorem 5.1. For a homogeneous DLCM, suppose P (Δ) > 0. Up to proportionality,
the bucket prior probability of class c’s domains is given by P (δc) ∝ 1 with:

P ({J(c, d) : d ∈ ZD}) ∝ D!
(D − |Dc|)!DJ

, (18)

P ({|J(c, d)| : d ∈ ZD}) ∝ J !∏D−1
k=0 |J(c, d)|!

∏J
k=1 |{d : |J(c, d)| = k}|!

D!
(D − |Dc|)! DJ

,

(19)

where Dc := {d : |J(c, d)| > 0} identifies the nonempty domains in class c.

Proof. Follows a standard combinatorial argument found in online Appendix E.

From a practical standpoint, we want the simplest domain structures to have the
highest prior probability. In the spirit of Occam’s Razor, this would bias our DLCM
towards the best-fitting parsimonious models. Generally speaking, the larger D the less
likely a priori any two items will end up in the same domain. We formalize this idea
with the following corollary.
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Most common bucket domain structures in Example 5
S1 := {|J(c, d)| : d ∈ Dc} P (S1) # of S2 := {J(c, d) : d ∈ ZD} lnP (S2)
1x20 61.6% 1 −0.48
2,1x18 30.8% 190 −6.42
3,1x17 0.5% 1,140 −12.37
2,2,1x16 6.2% 14,535 −12.37
3,2,1x15 0.2% 155,040 −18.31
2,2,2,1x14 0.6% 581,400 −18.31
4,1x16 <0.1% 4,845 −18.31
· · · <0.1% · · · ≤ −24.26

Table 1: The most common domain structures with J = 20 binary items, D = J2−1, and
a bucket domain prior. Let S1 represent the size of each domain in a domain structure:
S1 := {|J(c, d)| : d ∈ Dc}. Additionally let S2 represent how items are partitioned:
S2 := {J(c, d) : d ∈ ZD}.

Corollary 5.2. For any q and J , if D is such that:

D ≥ J + q

2J(J − 1) − 1. (20)

Then we have the following inequality under a bucket prior:

P ({|J(c, d)| : d ∈ Dc} = {1, 1, . . . , 1}) ≥ qP ({|J(c, d)| : d ∈ Dc} = {2, 1, 1, . . . , 1}).
(21)

If the terms of (21) are nonzero, then exact equality in (20) provides exact equality (21).

If D is large enough to satisfy (20) with q = 1, then the most likely value of {|J(δ, c)| :
δ ∈ Dc} puts each item in its own separate domain. When every item is in its own
domain, we have conditional independence and DLCM is equivalent to traditional LCM
– the simplest form.

By default in our distributable package we use q = 2 and D = J2 − 1. This makes
our simplest form twice as likely as the next simplest. We use these defaults in both our
simulations and real world applications described in Sections 7 and 9. We next employ
a toy example to demonstrate how the aforementioned choice of defaults translates to
the most common domain structures a priori.
Example 5. Suppose we have J = 20 binary items and set D = J2 − 1. We fit with a
homogeneous DLCM with a bucket prior. The most common domain structures a priori
are given in Table 1.

If we use C = 2 classes in this example, only domain structures with fewer than
three non-empty domains do not satisfy sufficient conditions for generic identifiability.
These domain structures fail the Kruskal condition given in (10). If we chose δc at
random without restriction there would only be a 8 × 10−48 prior chance of choosing
a non-identifiable domain structure. Finally, note that lnP (S2) in Table 1 represents a
penalty term towards simpler domain structures.
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We have discussed that the domain prior prioritizes simpler domains for large D.
Another key question is when we prefer one domain structure over another. Suppose
we have two sets of parameters ω = (π, θ,Δ) and ω′ = (π′, θ′,Δ′). Suppose domain
structure Δ′ dominates Δ. We say Δ′ dominates Δ if every domain J(c, d) in Δ is the
subset of some domain J ′(c, d′) in Δ′. As a consequence Δ is a special case of Δ′. For
any θ, there exists a Kronecker separable θ′ where Xi|ω′ d= Xi|ω.

The prior also gives greater weight to simpler domain structures. We disallow Kro-
necker separability, but if θ′ was almost Kronecker separable that would be allowed.
There exists a Kronecker non-separable sequence θ′t where Xi|ω′

t
d→ Xi|ω on t. So

we can choose ω′
t where Xi|ω′

t is asymptotically close to Xi|ω. Since Δ′ is formed by
merging domains in Δ, we know that Δ′ has smaller prior probability:

P ({J(c, d) : d ∈ ZD})
P ({J ′(c, d) : d ∈ ZD}) = D!

(D − |Dc|)!DJ

/ D!
(D − |D′

c|)!DJ
=

|Dc|−1∏
k=|D′

c|
(D − k). (22)

This gives a strong bias towards the simpler model. As t increases, ω′
t becomes ap-

proximately Kronecker separable. In the fully Kronecker separable case where Xi|ω′ d=
Xi|ω we have the following ratio:

P (X,θ,π = π0, {J(c, d) :∈ ZD})
P (X,θ′,π′ = π0, {J ′(c, d) :∈ ZD}) = P (θ|Δ)

P (θ′|Δ′)

|Dc|−1∏
k=|D′

c|
(D − k). (23)

5.2 Prior Knowledge of Domains

In some cases, researchers may have some prior knowledge on which items are likely
to be in the same domain, and which items are likely to be in different domains. We
enable this by creating a weighting term w(Δ). Our bucket prior with weighting is
P (Δ) ∝ gb(Δ)w(Δ), where gb(Δ) is the unweighted bucket prior defined in the previous
subsection. Practitioners can specify the weighting by setting a J × J upper triangular
matrix W . For a homogeneous DLCM our prior weights are given by:

w(Δ) :=
∏
j<j′

w
I(δjc=δj′c)
jj′ . (24)

In this way if items j and j′ are in the same domain then the prior probability P (Δ)
is adjusted by Wjj′ . This can be done to either encourage (wjj′ > 1) or discourage
(0 < wjj′ < 1) two items being grouped together.

Note that if wjj′ is too large this pair of items might be placed into the same domain
even if this does not improve fit of P (X|Δ, c). This is usually not preferred because we
would like conditionally independent items to be placed into separate domains. For this
reason we recommend limiting wjj′ < D − J + 1. This deters spurious domains.
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Theorem 5.3. Take a pair of items j1 and j2. Suppose two domain structures Δ and Δ̃
are the same except for the domain of item j1. Under Δ item j1 is in its own domain:
J(c, d1) = {j1}. Under Δ̃ we place j1 into the same domain as item j2. Restricting
wj1j2 < D − J + 1 guarantees P ({J̃(c, d) : d ∈ ZD}) < P ({J(c, d) : d ∈ ZD}) for the
bucket prior.

Proof. Follows from (22). See Appendix E.

Under Theorem 5.3, we see that the simpler domain structure with fewer depen-
dencies will be given greater prior weight. This means we will only prefer the more
complicated domain structure if it improves the fit of P (X|Δ, c).

5.3 Heterogenous Domain Prior

The prior for heterogeneous domain structures are constructed as follows. Consider a
heterogeneous DLCM. Before applying restrictions, each δc and δc′ are independent for
c �= c′. In other words, every Δ ∈ Z

J×C
D in the support has equal prior probability.

When we apply restrictions we reduce the support and then scale up all probabilities
by a normalizing constant. This implies that the probabilities of each δc are propor-
tional to the probabilities given without restriction. Therefore, within the support, the
prior probability of Δ is proportional to the product of independent probabilities. For
unweighted bucket priors these probabilities are given in Theorem 5.1.

In partially heterogeneous domain structures some, but not all, of the classes are re-
stricted to have the same domains. More specifically, there is a hyperparameter E ∈ Z

C
C .

If Ec = Ec′ then classes c, c′ have the same domains: δjc = δjc′ ∀j. For each group of
classes with the same domains, we choose a representative class c. Before applying
restrictions, the domains δc are independent. In this way the partially heterogeneous
domain prior is analogous to the heterogeneous domain prior if you consider just the
representative classes.

6 MCMC
In this section we discuss our algorithm to approximate the posterior distribution of our
parameters ω|X. This is done by way of MCMC sampling with a Metropolis-Hastings
within Gibbs sampler. This sampler generates MaxItr observations ostensibly from ω|X.
We denote the t’th iteration of the MCMC parameters as ω(t) := (π(t), θ(t),Δ(t)). The
MCMC steps are as follows:

1. Use Metropolis-Hastings to sample Δ(t) collapsed on θ. This step is repeated a
specified number of times (nDomainIters times).

2. Sample θ(t) with Gibbs using full conditional distribution as given in Theorem 4.1.

3. Sample π(t) with Gibbs using full conditional distribution as given in Theorem 4.1.
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4. Sample c(t) with Gibbs using full conditional distribution as given in Theorem 4.1.
Alternatively collapsed Gibbs may be used, collapsing on θ and π using Theo-
rem C.2 in the online Appendix.

Increment t and return to step 1 and repeat until MaxItr iterations have been
reached.

The Gibbs steps sample one parameter conditional on the others. For instance, the
next value of θ(t+1) is generated by the distribution of θ(t+1)|Δ(t),π(t), c(t),X given in
Theorem 4.1. For more information on Gibbs sampling see Gelfand (2000).

A Metropolis algorithm works roughly by proposing a new value of Δ. Depending
on how likely the proposed value is, the algorithm will either stay at its current value
or move to the new value with some probability. Chib and Greenberg (1995) provide
some useful details.

The Metropolis-Hastings step for the domain structure requires a dedicated dis-
cussion. The space of all possible domain structures is quite large encompassing every
possible partition of J items. Our Metropolis algorithm is built to efficiently search this
space with this challenge in mind.

The proposal is done by taking two domains at random and mixing items between
them. Every item in J(c, d1)∪J(c, d2) is equally likely to end up in either domain, up to
some small restrictions such as identifiability. Since the mixing procedure allows for any
partition of J(c, d1)∪J(c, d2), it can correct potentially large problems with a candidate
domain structure and escape many local minima. Consider the following examples.
Example 6. Suppose the true domain structure of a dataset includes the domains
Jtruth(c, 0) = A = {a0, a1, a2, a3} and Jtruth(c, 1) = B = {b0, b1, b2, b3}.

• Suppose our MCMC algorithm is at J(c, 0) = {a0, a1} and J(c, 1) = {a2, a3}. If
J(c, 0) and J(c, 1) are mixed, one possible proposal is J(c, 0) = A and J(c, 1) = ∅.
Notice the importance of moving all of the items at once. If only a single item was
moved the goodness of fit might have actually worsened. A proposal of {a0} and
{a1, a2, a3} would be worse if the predictions of a0 were poor enough.

• Suppose our MCMC algorithm is at J(c, 0) = A ∪ B. If J(c, 0) is mixed with
J(c, d) = ∅ then a possible proposal is J(c, 0) = A and J(c, d) = B. This splits
the domain into its independent parts without losing the conditional dependence
within each A and B.

• Suppose our MCMC algorithm is at J(c, 0) = {a0, a1, b0, b1} and J(c, 1) =
{a2, a3, b2, b3}. If J(c, 0) and J(c, 1) are mixed, one possible proposal is J(c, 0) = A
and J(c, 1) = B. Again notice the importance of moving all of the items at once.
If only a single item was moved the goodness of fit might have actually worsened.
A proposal of {a0, b0, b1} and {a1, a2, a3, b2, b3} would be worse if the predictions
of a0 were poor enough.
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In practice a particular proposal might not operate as described above. A different
pair of domains might be chosen to be mixed. Even if the described domains are mixed,
the items might be partitioned differently. However since these proposals can occur,
they indeed will occur over sufficiently many iterations.

Full details on the Metropolis step for updating domains can be found in online
Appendix F.

7 Simulation Studies
We conducted Monte Carlo simulation studies to validate the accuracy of the proposed
DLCM algorithms. Here, we will generate random datasets following a specific distri-
bution. Then we see how well our models recover the true underlying distribution.

We considered three types of datasets. In the first case Traditional Data, we generate
data following the distribution of a traditional LCM. All items are conditionally inde-
pendent given latent classes. The goal of the first simulation is to demonstrate that the
DLCM accurately recovers conditionally independent domain structures. In the second
case Homogeneous Data, we generate data following the distribution of a homogeneous
DLCM. Conditional dependence appears, but it is the same across classes. In the third
case Heterogeneous Data, we generate data following the distribution of a heterogeneous
DLCM. Conditional dependence exists and differs across classes. For simplicity these
simulated datasets use Bernoulli data, C = 2 classes, and J = 24 items. In Section 9.3
we provide a real world example of DLCMs on polytomous data and more classes.

Within each of the three scenarios for a given sample size n, we generate 500 datasets.
For each dataset, we fit a number of different models representing each combination of
the below:

• Model: We fit three types of models: traditional LCMs, homogeneous DLCMs,
and heterogeneous DLCMs.

• Domain Prior: Each DLCM is fit with two different types of domain priors: uni-
form, and bucket. The uniform prior assumes that every domain structure is
equally likely, and serves as a baseline comparison similar to Marbac et al. (2014).
The bucket prior is our proposed regularizing prior discussed in Section 5.

• Seeding Method: We fit each DLCM under one of two initial conditions: default
and random. The default seeding method chooses the initial domains to be as
simple as possible, putting each item into its own domain. It also clusters similar
observations together. This is done by choosing C random centers and allocating
each observation to the nearest center. The random seeding method chooses initial
conditions unfavorably. We initialize domains at random using the uniform prior.
In this way the initial domains will typically be far from the truth. We also seed
class membership using independent Bernoulli variables. This will cause starting
class membership to start far from the truth. We use the random seeding method
to measure performance when initial conditions are poor.
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Domain Structure Mode Accuracy, Percentage Sample Size
Data Model Domain Prior Seed n = 100 200 300 400 500 1,000
Traditional Homogeneous Uniform Default 0 0 0 0 0 0

Bucket 96 96 99 99 99 99
Heterogeneous Uniform 0 0 0 0 0 0

Bucket 96 96 98 97 98 98
Homogeneous Homogeneous Uniform 0 0 0 0 0 8

Bucket 98 98 96 97 98 97
Heterogeneous Uniform 0 0 0 0 0 0

Bucket 8 54 88 95 97 97
Heterogeneous Heterogeneous Uniform 0 0 0 0 0 0

Bucket 79 99 97 98 98 99
Homogeneous Homogeneous Bucket Random 98 98 97 96 97 97
Heterogeneous Heterogeneous Bucket 79 98 97 98 98 100

Table 2: From simulation studies with C = 2 classes. Across 500 generated datasets, in
what percent did the most common posterior domain structure match the truth? The
uniform domain prior does not regularize and assumes every domain structure is equally
likely. The random seed initializes the domain structures and classes randomly. When
initialized randomly, the starting domain structures and classes are typically far from
the truth.

More information on how the data was generated, how the models are tuned, and more
detailed results can be found in online Appendix G (Bowers and Culpepper, 2024b).

We say that a simulation recovered the true domain structure if the most common
domain structure across iterations matched the truth. This is shown in Table 2. In all
cases, the baseline uniform prior does quite poor. We show good recovery for homoge-
neous DLCMs and heterogeneous DLCMs under the bucket prior. Both the default and
random seeds show good recovery as well, indicating a lack of sensitivity to starting
conditions. Note that heterogeneous models require larger sample sizes owing to their
complexity, and restrictive priors require larger sample sizes owing to the strength of
the prior. In Appendix G, we show that the DLCMs typically reach the true domain
structure early, often in the first 100 MCMC iterations. Our simulations also ran quickly
with > 98% of simulations with sample sizes of n = 1,000 completing in 2 minutes or
less.2 In Appendix G, we provide additional simulations showing a lack of sensitivity to
hyperparameter D, the number of ‘buckets’ in the bucket and domain adjusted domain
priors.

In this subsection we examine DLCM performance when the starting conditions are
not chosen favorably. We initialize domains at random using the uniform prior. In this
way the initial domains will typically be far from truth. We also seed class membership
using independent Bernoulli variables. This will cause starting class membership to start
far from the truth. In Table 2, the seed of ‘random’ indicates these alternate starting
conditions are used. We see that performance using this versus the default seed are very
similar.

2Simulations were conducted on a 2.1GHz processor: Intel Xeon (Sapphire Rapids) 8468 CPU.
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8 Evaluating DLCMs
In this section we provide information on how DLCM models can be tuned and de-
scribed. This is relevant in Section 9 where these techniques are used in applications.

Model Selection When fitting a DLCM, there is a pivotal choice of number of classes
and type of domains (homogeneous versus heterogeneous). To make this choice, we rec-
ommend building competing models and comparing goodness of fit. Traditional LCM
need not be compared, as the DLCM does a good job of recovering this domain struc-
ture. In our work we use WAIC (Watanabe–Akaike Information Criterion) to compare
competing models. WAIC can be viewed as an approximation of leave one out cross val-
idation. It uses log pointwise predictive density (LPPD) to measure fit on the training
data, and then applies a WAIC penalty to adjust for overfitting and model complexity
(Gelman et al., 2013).

Domain Prior Tuning If there is prior knowledge of which items should, or should not, be
in the same domain this can be incorporated into matrix W as described in Section 5.2.
The choice of bucket versus domain adjusted prior can reasonably be prespecified based
on a practitioner’s preferences towards greater data adaptability or regularization re-
spectively. Due to a lack of sensitivity to the number of buckets D, we recommend
leaving this to the default value.

Convergence To measure MCMC convergence we use the Gelman-Rubin statistic. We
jointly measure the convergence of class probabilities π(t), marginalized item probabil-
ities P (Xij |ci = c, ω(t)), and total log-likelihood lnP (X|ω(t)). A Gelman-Rubin value
less than 1.1 is commonly considered representative of satisfactory convergence.

Heterogeneous DLCMs Under heterogeneous DLCMs, different classes may have dif-
ferent domains and operate off of different joint variables. Despite these differences,
classes can be readily compared and contrasted. For any subset of items J , we can
always calculate P (Xi,J |ci = c, θ) for any class c. This means we can compare response
probabilities across classes even when J does not match any domain in a class as follows.
Fix a class c′. Under c′, this probability can be found by breaking J into conditionally
independent sets of items: J ∩ J(c′, d). The probability of items J ∩ J(c′, d) can be
found by marginalizing θcd. These conditionally independent probabilities can then be
multiplied together to form P (Xi,J |ci = c′, θ). Our R package provides a convenient
way to make these calculations and compare probabilities across heterogeneous classes.

Describing Dependence When items are placed into the same domain, we want to be
able to characterize the dependence between related items. We offer two measures to
assess this relationship. These work by calculating the marginal probabilities of each
item under the fitted model. The product of these marginal probabilities is then taken as
a proxy for θcd under conditional independence. These conditional independent proba-
bilities are denoted θ

(I)
cd . By calculating the odds ratios and risk differences between θcd
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and θ
(I)
cd one can identify which individual patterns have higher or lower probabilities

under dependence. These metrics are readily available in our R package.

Measuring Dependence For DLCMs it is possible to build a correlation-style metric
measuring the overall level of dependence found in domain (c, d). We provide three
metrics based on Kullback-Leibler (KL) divergence; the last measured on the scale
[0, 1]. We measure the KL divergence between conditionally dependent probabilities θcd

and conditionally independent probabilities θ(I)
cd . On log scale, KL divergence measures

the expected likelihood ratio of xiJ(c,d) under θcd versus θ
(I)
cd when θcd is the true

model. The higher the KL divergence the stronger the dependence. For domain (c, d),
KL divergence is defined as:

DKL(θcd||θ
(I)
cd ) :=

∑
χ

P (xiJ(c,d) = χ|ci = c,θcd) ln
(

P (xiJ(c,d) = χ|ci = c,θcd)

P (xiJ(c,d) = χ|ci = c,θ
(I)
cd )

)
.

(25)

For homogeneous DLCMs we can examine the KL divergence of domain d across all
classes:

DKL(θd,π||θ(I)
d ,π) :=

∑
c

πcDKL(θcd||θ
(I)
cd ). (26)

As defined in (25), the value of DKL(θcd||θ
(I)
cd ) is always bounded. We have an

explicit expression for the upper bound when either all items in J(c, d) have the same
number of values Qj , there are exactly two items, or when at most one item j ∈ J(c, d)
has Qj > min{Qj : j ∈ J(c, d)} (see Appendix D). Under these conditions, we can scale
KL divergence so that it varies from zero (independence) to one (perfect dependence).
We call this rescaled value the KL ratio. These metrics are readily available in our R
package.

9 Real World Applications
In this section we illustrate the effectiveness of DLCMs in three real world examples.
We consider applications for datasets related to issues in education, pediatric health,
and adolescent sociology. The education application examines pre-post testing and high-
lights how DLCMs can identify local dependence between two time-points. The pediatric
medical application examines a time series and highlights how DLCMs can identify local
dependence within each time-point. Finally the sociological example contains overlap-
ping questions and highlights how DLCMs can identify structural zeros.

We fit the DLCMs to each application dataset with four chains, 2,000 warmup
iterations, 10,000 main iterations, and nHomoItrs = 600. When updating classes c our
Gibbs step collapses on θ and π. Models are fitted with between C = 1 and C = 8
classes, and goodness of fit is compared based on WAIC. Otherwise these examples
were executed with the same hyperparameters as the simulation studies.
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As a point of comparison we also fit a latent tree model built under a package pro-
vided by Obermeyer (2017) and modeled emulating Zhang and Poon (2016). We restrict
model hyperparameters to guarantee ‘regularity’, a necessary condition for identifiabil-
ity, based on the conditions given in Chen et al. (2012). To measure goodness of fit of
this latent tree model we use the total log-likelihood formed from five-fold cross vali-
dation. In the below applications, we highlight the interpretability of DLCMs, one area
which latent tree models can struggle.

9.1 Education Application

In this experiment, participants’ skill with probability theory was assessed. The study
followed a pre-post design. First, participants are given a 12-question pre-test (questions
B101–B112). Then participants were randomly given one of two treatments. Finally,
participants are given a 12-question post-test with matched items (B201–B212). Each
post-test question mirrored a pre-test question with slightly different numbers or labels.
For example, B105 from the pre-test matches with B205 in the post-test. All questions
are listed in online Appendix H (Bowers and Culpepper, 2024c). This data was collected
by Anselmi et al. (2013) and is freely available in the ‘pks’ R package (Heller and
Wickelmaier, 2013). For each question we examined the Bernoulli responses: 1 for correct
and 0 for incorrect.

Subjects were eliminated if they responded too quickly, responded too slowly, or did
not answer every question. This left n = 345 participants considered. Both treatments
were assessed within the same latent class model without differentiation. A potential
goal was to find relationships between our latent classes and the treatments.

In addition to the DLCMs, we also fit a confirmatory model. This model assumes
a priori that paired items are dependent, puts these pairs into the same domain, and
leaves the domains as fixed. When all models were compared, the homogeneous DLCM
with three classes and a bucket prior performed best. In Table 3 we see that the ho-
mogeneous DLCM has both a higher likelihood (LPPD) and smaller model complexity
(WAIC penalty) compared to the traditional model. The homogeneous DLCM outper-
forms the latent tree model with a cross validated total log-likelihood of −2,670 and
−2,684 respectively. This homogeneous DLCM shows good MCMC convergence with a
multivariate Gelman-Rubin statistic of 1.02.

Model Name Prior # of Classes LPPD WAIC Penalty WAIC
Traditional LCM – 7 −2,503 127 5,260
Confirmatory LCM – 5 −2,483 116 5,198
Homogeneous DLCM Bucket 3 −2,502 83 5,170
Heterogenous DLCM Bucket 4 −2,506 95 5,202

Table 3: Education Application. Goodness of fit for top models. Between C = 1 and
C = 8 classes are evaluated.

The homogeneous DLCM fits well with three classes. There are proficient students
(80% of participants), beginners (17%), and students who performed worse in their
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post-test than their pre-test (3%). Each latent class has a roughly even amount of
subjects from each treatment, and a chi-squared test shows no evidence of dependence
between class and treatment (p = 0.6). Information on these classes including response
probabilities can be found in online Appendix H.

Table 4 reports the most frequently visited domain structures. The mode domain
structure contains three pairs of pre/post items: {b105,b205}; {b108,b208}, {b109,b209}.
For these paired items, the participants typically got a pair both right or both wrong.
The homogeneous DLCM also grouped some pre-test items which were especially dif-
ficult: {b104,b110,b111,b112}. In this domain participants have heavy concentrations
on ‘all right’ and ‘all wrong’, possibly owing to the skill level needed to solve these
problems. See online Appendix H for details.

Domains ({Domain1}; {Domain2}; . . . ) % of
Iterations

{b104,b110,b111,b112}; {b105,b205}; {b108,b208}; {b109,b209} 87.3%
{b104,b110,b111}; {b105,b205}; {b108,b208}; {b109,b209} 4.0%
{b104,b110,b111,b112}; {b105,b205}; {b108,b208}; {b109,b209}; {b106,b107} 2.5%

Table 4: Education Application. Most Common Homogeneous Domain Structures. Do-
mains with a single item omitted. This homogeneous DLCM is fitted with C = 3 classes
and a bucket prior.

Compared to a traditional model, the homogeneous DLCM produced both a simpler
and more accurate fit. The homogeneous DLCM was able to identify paired questions
in the pre-post design and incorporate their conditional dependence into its model.

Odds Ratios of Different Response Patterns
Domain KL Divergence KL Ratio Response=(0,0) (1,0) (0,1) (1,1)
{b104,b110,b111,b112} 0.193 0.093
{b105,b205} 0.049 0.071 2.4 1/1.7 1/1.6 1.3
{b108,b208} 0.061 0.088 3.7 1/1.8 1/1.6 1.3
{b109,b209} 0.134 0.193 2.2 1/2.8 1/2.0 1.5

Table 5: Education Application. The higher the KL divergence, the greater the level of
dependence. KL ratio scales KL divergence from zero (conditional independence) to one
(perfect dependence). The odds ratios compare the odds of a particular response un-
der dependence (numerator) to conditional independence (denominator). These metrics
are collapsed on class membership. Class-by-class metrics can also be interesting (see
Appendix H). Calculations above are based on the posterior expected value of θ and π
under a homogeneous DLCM with C = 3 classes and a bucket prior.

9.2 Medical Application
This application is drawn from a Childhood Prevention Study (CAPS) by Mihrshahi
et al. (2001) (available in the R randomLCA package). This is a longitudinal study
which investigated children originally under two years of age. Every six months for two
years these children were tracked for nighttime coughing, wheezing, itchy rashes, and
flexural dermatitis. This creates four time periods where we indicate the absence (0) or
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presence (1) of each symptom. We removed any observations with missing data leaving
n = 533 subjects.

When models were compared, a homogeneous DLCM with bucket prior fit best.
The homogeneous DLCM was effective with four classes. Traditional LCM performed
worst requiring eight or more classes. The homogeneous DLCM has both less model
complexity and improved fit compared to the traditional model (Table 6). The latent tree
model and homogeneous DLCM perform almost identically with −4,381.5 and −4,381.4
cross validated total log-likelihood respectively. We have adequate convergence with a
multivariate Gelman-Rubin statistic of < 1.025 for the homogeneous DLCM.

Model Name Prior # of Classes LPPD WAIC Penalty WAIC
Traditional LCM – 8 −4,383 136 9,037
Homogeneous DLCM Bucket 4 −4,271 78 8,698
Heterogenous DLCM Bucket 4 −4,286 94 8,760

Table 6: Medical Application. Goodness of fit for top models. Between C = 1 and C = 8
classes are evaluated.

Homogeneous DLCM provides four classes: bad lungs (30% of subjects), bad skin
(17%), bad all symptoms (14%), and good all symptoms (39%). Symptoms generally
improve as time goes on. See Table 7 in the supplemental appendix for symptom preva-
lence within each class.

The most common domain structure can be found in Table 7. This domain structure
pairs related symptoms for the same visit. The two lung issues are related: nighttime
coughing and wheezing. Similarly, the two skin issues are related: itchy rashes and
flexural dermatitis. Paired symptoms are typically comorbid. See online Appendix I for
details.

Domains % of Iterations
{IR.1,FD.1}; {IR.2,FD.2}; {IR.3,FD.3}; {IR.4,FD.4}; {NC.1,W.1}; {NC.3,W.3}; {NC.4,W.4}; 95.3%
{IR.1,FD.1}; {IR.2,FD.2}; {IR.3,FD.3}; {IR.4,FD.4}; {NC.1,W.1}; {NC.2,W.2}; {NC.3,W.3}; {NC.4,W.4} 4.7%
All Others < 0.1%

Table 7: Medical Application. Most Common Homogeneous Domains. NC=NightCough,
W=Wheeze, IR=ItchyRash, FD=FlexDerma. Domains with a single item omitted. This
homogeneous DLCM is fitted with C = 4 classes and a bucket prior.

Overall, the homogeneous model was able to produce a simpler and more accu-
rate model compared to the traditional LCM. In the context of longitudinal data, the
homogenous DLCM was able to identify dependence between questions at the same
time-point.

9.3 Sociology Application

This application was drawn from a CDC Youth Risk Behavior Survey (YRBS) (Centers
for Disease Control and Prevention, 2017). We isolated thirteen questions about sexual
violence and sexual risk (e.g. STDs) answered by high school women. Each response is
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Odds Ratios of Different Response Patterns
Domain KL Divergence KL Ratio Response=(0,0) (1,0) (0,1) (1,1)
{IR.1, FD.1} 0.153 0.220 1.5 1/1.9 1/5.1 1.7
{IR.2, FD.2} 0.138 0.199 1.4 1/1.8 1/4.7 1.7
{IR.3, FD.3} 0.098 0.141 1.3 1/1.7 1/3.7 1.8
{IR.4, FD.4} 0.076 0.110 1.3 1/1.5 1/3.2 1.9
{NC.1, W.1} 0.039 0.057 1.3 1/1.3 1/1.7 1.3
{NC.3, W.3} 0.047 0.068 1.2 1/1.3 1/2.0 1.5
{NC.4, W.4} 0.046 0.067 1.2 1/1.3 1/2.5 1.6

Table 8: Medical Application. The higher the KL divergence, the greater the level of
dependence. KL ratio scales KL divergence from zero (conditional independence) to one
(perfect dependence). The odds ratios compare the odds of a particular response un-
der dependence (numerator) to conditional independence (denominator). These metrics
are collapsed on class membership. Class-by-class metrics can also be interesting (see
Appendix H). Calculations above are based on the posterior expected value of θ and π
under a homogeneous DLCM with C = 4 classes and a bucket prior. NC=NightCough,
W=Wheeze, IR=ItchyRash, FD=FlexDerma.

polytomous with 2–5 possible responses depending on the question. We removed any
observations with missing data leaving n = 1,295 subjects.

When models were compared, heterogeneous DLCM with three classes and a bucket
prior fit best. For details see Table 9. The latent tree model and homogeneous DLCM
perform almost identically with −6,069.4 and −6,069.6 cross validated total-log-likelihood
respectively. The heterogeneous DLCM has good convergence with a multivariate Gelman-
Rubin statistic of < 1.01.

Model Name Prior # of Classes LPPD WAIC Penalty WAIC
Traditional LCM – 7 −5,690 92 11,565
Homogeneous DLCM Bucket 3 −5,687 52 11,479
Heterogenous DLCM Bucket 3 −5,652 57 11,419

Table 9: Sociology Application. Goodness of fit for top models. Between C = 1 and
C = 8 classes are evaluated.

The heterogeneous DLCM identified three classes: class 0 ‘Sexually Active’ (27% of
participants), class 1 ‘Not Sexually Active’ (56%), and class 2 ‘At Risk’ (17%). The
marginal response probabilities can be found in online Appendix J.

The most common domain structures can be found in Table 10. Questions Q20 and
Q21 are two questions about frequency of sexual violence (see Table 11). They form an
almost triangular structure with Q20 ≥ Q21. Questions Q64 and Q65 are overlapping
questions about contraceptive use. For details on all questions see online Appendix J.

Class 0 ‘At Risk’ has the most complex local dependencies with domains {Q19,
Q20,Q21} and {Q64,Q65}. Class 2 ‘Sexually Active’ is almost as complex with domains
{Q20,Q21} and {Q64,Q65}. Dependence on Q19 was not important because 97% of
participants answered this question ‘no’. Class 1 ‘Not Sexually Active’ is the least com-
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Domains ({Domain1}; {Domain2}; . . . ) % of Iterations
Class0:
Class1:
Class2:

{Q20,Q21}; {Q64,Q65};
{Q20,Q21};
{Q19,Q20,Q21}; {Q64,Q65};

76.4%

Class0:
Class1:
Class2:

{Q20,Q21}; {Q64,Q65};
{Q20,Q21};
{Q19,Q20,Q21}; {Q64,Q65}; {Q61,Q62};

19.1%

All others < 5%
Table 10: Sociology Application. Most common heterogeneous domain structures. Do-
mains with a single item are omitted. This heterogeneous DLCM is fitted with C = 3
classes and a bucket prior.

plex with domain {Q20,Q21}. Responses in class 1 were very concentrated with 11/13
questions each having ≥ 95% of their responses associated to a single value indicating
they never had sex (online Appendix J).

Selected Questions from Survey.

Q19: Have you ever been physically forced to have sexual intercourse when you did
not want to?

Q20: During the past 12 months, how many times did anyone force you to do sexual
things that you did not want to do?

Q21: During the past 12 months, how many times did someone you were dating or
going out with force you to do sexual things that you did not want to do?

Q64: The last time you had sexual intercourse, did you or your partner use a condom?
Q65: The last time you had sexual intercourse, what one method did you or your

partner use to prevent pregnancy?

Table 11: Sociology Application. Brackets indicate items that are commonly put into
the same domain. For other questions see online Appendix J.

The heterogeneous DLCM performed well in this example. In domain {Q20,Q21}, we
recover near structural zeros. In domain {Q64,Q65}, we identify overlapping questions.
Different classes have different domains because some classes are heavily concentrated
on certain values, reducing the need to manage dependence in corresponding questions.

10 Future Work
One avenue of future exploration is introducing a more informative prior on θ. Currently
we use a flat Dirichlet prior on θ, and conduct regularization by way of our domain
structure Δ. This regularization could be improved via decreasing the prior density of
θ near the Kronecker separable case. This would ensure dependence in θ when items
are put into the same domain. Future research could consider developing a type of
penalized complexity prior (e.g. see Simpson et al., 2017) to effectively shrink more
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Domain Class0 Class1 Class2
KL Divergence

{Q20,Q21} 0.164 0.146 –
{Q19,Q20,Q21} – – 0.418
{Q64,Q65} 0.417 – 0.334

KL Ratio
{Q20,Q21} 0.149 0.133 –
{Q64,Q65} 0.601 – 0.482

Table 12: Sociology Application. The higher the KL divergence, the greater the level
of dependence. KL ratio scales KL divergence from zero (conditional independence) to
one (perfect dependence). Calculations above are based on the posterior expected value
of θ under a heterogeneous DLCM with C = 3 classes and a bucket prior. Domain
{Q19,Q20,Q21} is not included under KL Ratio because it fails the sufficient conditions
for this ratio given in Section 8.

complex domains structures away from problematic Kronecker separable cases. This
can be achieved by having the prior probability of θ depend on the KL divergence given
in (25). To implement such an approach certain computational hurdles would need to
be cleared. Currently we collapsed on θ when updating domains Δ, and this depends
on conjugacies with the Dirichlet distribution. These conjugacies would not necessarily
hold under this enhancement.

In a future update to the R package, we plan on allowing covariates and missing
data into the code. Enhancing the package in this way will increase the applications in
which it can be readily applied.

11 Conclusion
In the presence of conditional dependence, traditional LCMs tend to overfit with too
many classes. Even with additional classes, traditional LCMs may suffer from model
mis-specification leading to poor goodness of fit.

We proposed a Domain LCM (DLCM) model to account for these dependencies. The
DLCM works by grouping together conditionally dependent items into conditionally in-
dependent domains. We verified the generic identifiability of this model. We also demon-
strated the effectiveness of DLCMs in simulation studies and real world applications. In
applications we demonstrated that DLCMs are particularly effective at analyzing time
series data, pre-post testing, overlapping items, and structural zeros.
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Supplementary Material
Appendices A–F (DOI: 10.1214/24-BA1433SUPPA; .pdf). The Theory Supplemental
File contains Appendices A–F. Appendix A Motivating Example describes how a single
dependent item can double the amount of classes a traditional LCM requires. Appendix
B Identifiability provides identifiability proofs. Appendix C DLCM Posteriors provides
proofs for the full conditional distributions used in the DLCM. Appendix D KL Diver-
gence Maxima provides proofs for the KL ratio calculation. Appendix E Domain Prior
provides proofs related to the distribution of the domain priors. Appendix F MCMC
describes the Monte Carlo Markov Chain steps in detail.

Appendix G (DOI: 10.1214/24-BA1433SUPPB; .pdf). The Simulations Supplemental
File provides Appendix G Simulation Studies. Additional results are the simulation
studies are given here.

Appendices H–J (DOI: 10.1214/24-BA1433SUPPC; .pdf). The Applications Supple-
mental File provides Appendices H–J. These appendices provide additional information
about the education application, the medical application, and the sociology application
respectively.
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