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Efficient and Scalable Bipartite Matching with
Fast Beta Linkage (fabl)

Brian Kundinger∗, Jerome P. Reiter†, and Rebecca C. Steorts‡

Abstract. Within the field of record linkage, Bayesian methods have the crucial
advantage of quantifying uncertainty from imperfect linkages. However, current
implementations of Bayesian Fellegi-Sunter models are computationally intensive,
making them challenging to use on larger-scale record linkage tasks. To address
these computational difficulties, we propose fast beta linkage (fabl), an extension
to the Beta Record Linkage (BRL) method of Sadinle (2017). Specifically, we use in-
dependent prior distributions over the matching space, allowing us to use hashing
techniques that reduce computational overhead. This also allows us to complete
pairwise record comparisons over large data files through parallel computing and
to reduce memory costs through a new technique called storage efficient indexing.
Through simulations and two case studies, we show that fabl can have markedly
increased speed with minimal loss of accuracy when compared to BRL.
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1 Introduction
Before conducting data analysis, it is often necessary to identify duplicate records across
two data files. This is an increasingly important task in “data cleaning” and is used for
inferential and predictive analyses in fields such as statistics, computer science, machine
learning, political science, economics, precision medicine, official statistics, and others
(e.g., Christen, 2012; Gutman et al., 2013; Dalzell and Reiter, 2018; Tang et al., 2020).
In this article, we consider bipartite record linkage, which merges two data files that
contain duplications across, but not within, the respective data files.

Many probabilistic record linkage methods rely on the seminal work of Fellegi and
Sunter (1969) and Newcombe et al. (1959). In their approach, the data analyst first
creates comparison vectors for each pair of records in the data files. These vectors
indicate how similar the records are on a set of variables measured in both files, known
as the linkage variables. Using these comparison vectors, the analyst classifies each pair
as a match or nonmatch using a likelihood ratio test. Crucially, these decisions are made
independently for each pair. The Fellegi and Sunter (1969) approach has been extended
for a wide variety of applications (e.g., Winkler and Thibaudeau, 1990; Fair, 2004;
Wagner et al., 2014; Gill and Goldacre, 2003; Enamorado et al., 2019; Aleshin-Guendel
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and Sadinle, 2023). An alternative paradigm is to model the linkage variables directly
(e.g., Tancredi et al., 2011; Steorts et al., 2016; Marchant et al., 2021; Betancourt et al.,
2022). In this article, we build on the contributions to the comparison vector approach.

The independent pairwise matching assumption from Fellegi and Sunter (1969) is
popular for its mathematical simplicity. However, in many situations, there are no du-
plications within a data file, meaning that each record in one file should be linked with
at most one other record in the other file. Thus, when the procedure results in many-
to-one matches, some of these links must be false. Analysts typically use an additional
post-processing step to turn the list of linked records into a bipartite matching (Jaro,
1989), but this model misspecification can still lead to poor results (Sadinle, 2017).

Alternatively, analysts can embed one-to-one matching requirements into the model
specification, at an additional computational cost. Larsen (2005) employed a Metropolis-
Hastings algorithm to only allow sampling matches that respect one-to-one assumptions,
but such algorithms exhibit slow mixing due to the combinatorial nature of the con-
strained matching space. Fortunato (2010) used simulated annealing to target the space
of matches permitted under the one-to-one constraint, but the method is computation-
ally intensive and, to our knowledge, has not been applied on data files with more than
100 records. Sadinle (2017) proposed the Beta Record Linkage model (BRL), using a
prior distribution over the space of bipartite matchings to strictly enforce one-to-one
requirements throughout a Gibbs sampler. BRL has been shown to work on larger tasks
than previous one-to-one methods, but in our experience, it becomes slow when applied
to files with more than a few thousand records.

In this article, we propose fast beta linkage (fabl), which extends the BRL model
for increased efficiency and scalability. We use independent prior distributions for the
matching statuses of each record, and modify the decision theoretic technique of Sadinle
(2017) to ensure our linkage estimates are bipartite. This approach allows us to (1)
employ hashing techniques that speed up calculations and reduce computational costs,
(2) compute the pairwise record comparisons over large data files via parallel computing,
and (3) reduce memory costs through what we call storage efficient indexing. These
contributions can allow fabl to perform record linkage on much larger data files than
previous Bayesian Fellegi-Sunter models at significantly increased speed with similar
levels of accuracy. In particular, computation time under BRL grows quadratically, with
the size of each data file, while computation time under fabl grows linearly, only with
the size of the smaller data file.

In what follows, Section 2 reviews the work of Fellegi and Sunter (1969) and Sadinle
(2017). Section 3 proposes the fabl model, provides the Gibbs sampler for posterior
inference, and describes the loss function used to calculate the Bayes estimate for the
bipartite matching. Section 4 introduces the hashing technique and storage efficient in-
dexing used to increase the speed of calculations and the scale of linkage tasks amenable
to fabl. Sections 5 and 6 demonstrate the speed and accuracy of fabl through simu-
lation studies and case studies of homicides from the El Salvadoran Civil War and the
National Long Term Care Study. Finally, Section 7 summarizes our contributions and
highlights areas for further research.
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2 Review of Fellegi-Sunter Approaches for Record
Linkage

Consider two data files A and B comprising nA and nB records, respectively, and includ-
ing F linkage variables measured in both files. For i = 1, . . . , nA, let record i be given by
Ai = (Ai1, . . . , AiF ), so that A = (Ai : i = 1, . . . , nA). Similarly, for j = 1, . . . , nB , let
record j be given by Bj = (Bj1, . . . , BjF ), so that B = (Bj : j = 1, . . . , nB). Without
loss of generality, denote files such that nA ≥ nB .

Intuitively, matching records (those that refer to the same entity) should have similar
values of the linking variables; records that are nonmatching should have dissimilar
values. Fellegi and Sunter (1969) proposed encoding this using a comparison vector γij
computed for each record pair (i, j) in A×B. Specifically, they define γij = (γ1

ij , . . . , γ
F
ij),

where each γf
ij is a value indicating the similarity of field f for records Ai and Bj . We

define the comparison matrix γ ∈ R
nAnB×F as the collection of all record pairs γij .

When linking variable f is categorical, a common way to define γf
ij is an indicator

for exact agreement. For example, if zip code is linking variable f , we can set γf
ij = 1

when the zip codes for records Ai and Bj agree exactly, and set γf
ij = 2 when they

do not. For numerical linking variables, we can use the absolute difference of the two
values. For example, if age is linking variable f , we can set γf

ij = 1 when the ages for
records Ai and Bj match exactly, γf

ij = 2 when the ages are within one year but not
equal, and γf

ij = 3 when the ages are two or more years apart. For text variables like
names, we can use string distance metrics such as Levenstein or Jaro-Winkler distance
(Cohen et al., 2003). We then set thresholds that allow us to represent comparisons
through discrete levels of disagreement (Bilenko and Mooney, 2006; Elmagarmid et al.,
2007).

More generally, let Sf (i, j) denote a similarity measure for linking variable f of
records Ai and Bj . The range of Sf can be divided into Lf intervals denoted by
If1, . . . , IfLf

. Here, If1 represents the highest level of agreement (including complete
agreement) and IfLf

represents the highest level of disagreement (including complete
disagreement). Thus, we can construct comparison vectors such that γf

ij = l if Sf (i, j) ∈
Ifl. The choices of Ifl are application specific, as we discuss in the simulation and case
studies.

In the construction of comparison vectors, it is common to encounter missing in-
formation in record Ai or Bj . As a result, the comparison vector γij will have missing
values. We assume that this missingness occurs completely at random (MCAR, per
Little and Rubin (2002)). To notate a missing value in any γf

ij , we use Iobs(γf
ij) = 1

when γf
ij is observed and Iobs(γf

ij) = 0 otherwise. With the MCAR assumption, we can
marginalize over the missing data and do all computation simply using the observed
data.

Having defined comparison vectors, we now turn to the Fellegi and Sunter (1969)
model for record linkage. We begin with notation for defining linkages. Under bipartite
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matching, the set of matches across A and B can be represented in two equivalent ways.
First, we may use a matrix Δ ∈ {0, 1}nA×nB , where

Δij =
{

1, if records Ai and Bj refer to the same entity;
0, otherwise.

(1)

This sparse matrix representation can become cumbersome for large linkage tasks. More
compactly, bipartite matching can also be viewed as a labeling Z = (Z1, . . . , ZnB

) for
the records in B such that

Zj =
{
i, if records Ai and Bj refer to the same entity;
nA + j, if record Bj does not have a match in A.

(2)

We can go back and forth between the two using Δij = I(Zj = i), where I(·) = 1 when
the expression inside the parentheses is true, and I(·) = 0 otherwise. When presenting
the models, we use both representations for convenience.

Let Γij represent a random variable for the comparison vector for arbitrary Ai

and Bj . Thus, γij is a realization of Γij . For modeling the collection of nAnB random
variables Γij , Fellegi and Sunter (1969) employ two independence assumptions: first,
that comparison vectors are independent given the matching status of the record pair,
and second, that the matching status of each record pair is independent of the matching
status of other pairs. Using these independence assumptions, one specifies a mixture
model for each Γij (e.g., as in Winkler, 1999; Jaro, 1989; Larsen and Rubin, 2001;
Enamorado et al., 2019). We have

Γij | Δij = 1 iid∼ M(m), (3a)

Γij | Δij = 0 iid∼ U(u), (3b)

Δij
iid∼ Bernoulli(λ). (3c)

Here, M and U are the distributions for matching and nonmatching record pairs, m
and u are their respective sets of parameters, and λ is the marginal probability that a
record pair is a match. When using comparison vectors with discrete agreement levels,
M and U are collections of independent multinomial distributions for each linkage
feature. Accordingly, m = (m1, . . . ,mF ), where mf = (mf1, . . . ,mfLf

) and mfl =
p(Γf

ij = l|Δij = 1) for all fields f and agreement levels l. The u parameters are defined
similarly, with ufl = p(Γf

ij = l|Δij = 0).

Sadinle (2017) presents a Bayesian version of the model in (3a) through (3c). He
uses uniform Dirichlet prior distributions for each mf and uf , and replaces (3c) with
a prior distribution for Z that he calls the “beta distribution for bipartite matching.”
This assigns a Bernoulli distribution for the indicator that a record in B has a match
in A, that is, I(Zj ≤ nA) ∼ Bernoulli(π). Additionally, π ∼ Beta(απ, βπ), where απ

and βπ are known hyperparameters. It follows that the number of records in B that
have matches, denoted nAB(Z) =

∑nB

j=1 I(Zj ≤ nA), is distributed according to a
Beta-Binomial(nB , απ, βπ). Conditioning on the set of records in B that have matches,
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formally denoted {I(Zj ≤ nA)}nB
j=1, all nA!/(nA − nAB(Z))! bipartite matchings are

taken to be equally likely. Thus, the prior distribution used by Sadinle (2017) is given
by

p(Z|απ, βπ) = (nA − nAB(Z))!
nA!

B(nAB(Z) + απ, nB − nAB(Z) + βπ)
B(απ, βπ) , (4)

where B(·, ·) represents the Beta function. This prior strictly enforces one-to-one match-
ing, inducing a Gibbs sampler that removes previously matched records from the set of
candidate records when sampling each Zj . This makes the sampler inherently sequen-
tial, which can be slow when working on linkage tasks with more than a few thousand
records.

3 Fast Beta Linkage
Instead of the prior over Z from Sadinle (2017), we follow Wortman (2019) and use
independent priors for each component Zj . However, unlike Wortman (2019) who pro-
poses a flat prior for Zj , we use the fast beta linkage (fabl) prior below. For each Zj ,
we have

p(Zj = q|π) =
{

1
nA

π, q ≤ nA;
1 − π, q = nA + j;

(5)

π ∼ Beta(απ, βπ).

We can interpret (5) as follows: record Bj has some match in A with probability π,
and each record Ai is equally likely to be that match. The hyperparameters απ and βπ

encode prior beliefs about the proportion of records in B that have matches in A.

In the Wortman (2019) flat prior, each value {1, . . . , nA, nA + j} is a priori equally
likely for Zj . This amounts to a prior probability of nA/(nA + 1) that record Bj has a
match in A. In our preliminary studies, we have found that this highly informative prior
weighting on matching can result in overly high match rates. Hence, we prefer (5). We
also note that the flat prior is equivalent to a special case of the fast beta prior with π
fixed at the mean of a Beta (1, 1/nA) random variable.

Linkage with fabl is conducted at the record level, rather than at the record pair
level, as in the Fellegi and Sunter (1969) model. That is, π in (5) under fabl estimates
the proportion of records in B that have matches, whereas λ in (3c) in the Fellegi and
Sunter (1969) model estimates the proportion of record pairs that are matches. In the
bipartite case, we conjecture that some analysts will find π to be a more interpretable
parameter than λ. In this setting, there are at most nB matching pairs out of nAnB total
pairs, meaning that λ is bounded above by 1/nA and tends towards 0 as the size of the
linkage task grows. Additionally, while the Fellegi and Sunter (1969) model makes nAnB

independent matching decisions and BRL makes nB dependent matching decisions, fabl
strikes a middle ground between the two, making nB independent matching decisions.
As shown in Sections 5 and 6, this allows fabl to fit a Bayesian record linkage model like
BRL while making computational efficiency gains possible by exploiting independence.
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For clarity, we present the full model for fabl below:

L(Z,m,u | γ) =
nA∏
i=1

nB∏
j=1

F∏
f=1

Lf∏
l=1

[
m

I(Zj=i)
fl u

I(Zj �=i)
fl

]I(γf
ij=l)Iobs(γf

ij)
, (6a)

mf ∼ Dirichlet(αf1, . . . , αfLf
),∀f = 1, . . . , F, (6b)

uf ∼ Dirichlet(βf1, . . . , βfLf
),∀f = 1, . . . , F, (6c)

p(Zj = q|π) =
{

1
nA

π, q ≤ nA;
1 − π, q = nA + j;

(6d)

π ∼ Beta(απ, βπ). (6e)

We estimate the posterior distribution of the parameters in (6a - 6e) using a Gibbs
sampler. Supplement A (Kundinger et al., 2024) presents derivations for the full con-
ditional distributions. We initialize m, u and π from random draws from their prior
distributions, and initialize Z to reflect no matches across data files; that is, Z =
(nA + 1, . . . , nA + nB). Denote the current draw of the sampler by (s) and the updated
draw by (s + 1). To update mf and uf for all f = 1, . . . , F , we sample

m
(s+1)
f |γ,Z(s),u(s), π(s) ∼ Dirichlet(αf1(Z(s)), . . . , αfLf

(Z(s))), (7a)

u
(s+1)
f |γ,Z(s),m(s), π(s) ∼ Dirichlet(βf1(Z(s)), . . . , βfLf

(Z(s))), (7b)

where αfl(Z(s)) = αfl +
nA∑
i=1

nB∑
j=1

Iobs(γf
ij)I(γ

f
ij = l)I(Z(s)

j = i), (7c)

and βfl(Z(s)) = βfl +
nA∑
i=1

nB∑
j=1

Iobs(γf
ij)I(γ

f
ij = l)I(Z(s)

j �= i). (7d)

Next, we sample π from its full conditional, given by

π(s+1)|γ,Z(s),m(s+1),u(s+1) ∼ Beta(nAB(Z(s)) + απ, nB − nAB(Z(s)) + βπ), (8)

where nAB(Z(s)) =
∑nB

j=1 I(Z
(s)
j ≤ nA).

Lastly, we sample Z componentwise from the full conditional for each Zj :

p
(
Z

(s+1)
j = q|γ,m(s+1),u(s+1), π(s+1)

)
∝

{
π(s+1)

nA
w

(s+1)
qj , q ≤ nA;

1 − π(s+1), q = nA + j,
(9)

where, for all i ∈ {1, . . . , nA} and j ∈ {1, . . . , nB},

w
(s)
ij =

F∏
f=1

Lf∏
l=1

(
m

(s)
fl

u
(s)
fl

)I(γf
ij=l)Iobs(γf

ij)

. (10)
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Finally, to obtain an estimate Ẑ of the linkage structure, we use the loss functions
and Bayes estimate from Sadinle (2017). Since (5) does not strictly enforce one-to-
one matching, it is possible for this Bayes estimate to link multiple records in B to
one record in A. To obtain a Bayes estimate that fulfills the bipartite requirement, we
minimize the expected loss subject to the constraint that Ẑj �= Ẑj′ for all j �= j′. See
Supplement B (Kundinger et al., 2024) for details regarding the initial Bayes estimate
and this post-processing procedure.

4 Efficient and Scalable Implementation
The scale of linkage tasks possible through BRL is limited by the memory costs of storing
nAnB comparison vectors for every pair of records across the two data files, and the
speed of the linkage algorithm over those comparison vectors. One approach to reduce
the number of comparisons is blocking, which places similar records into partitions, or
“blocks” (Christen, 2019). In deterministic blocking, the modeler chooses fields thought
to be highly reliable and only compares records that agree on those fields. The record
linkage method is applied independently across all blocks, which can be done in parallel
for additional speed gains. Of note, blocking on an unreliable field can lead to missed
matches, making this form of blocking often undesirable (Steorts et al., 2014).

After computing all comparison vectors within a block, the modeler can further re-
duce the number of comparison vectors used in the linkage algorithm through indexing.
For example, one might only consider pairs with a certain similarity score on a field
deemed to be important, like last name, or pairs that exactly match on a specified
number of fields. However, the impact of indexing on model parameters is not well un-
derstood; Murray (2016) reviewed this issue in the context of the classical Fellegi and
Sunter (1969) model, leaving the effect of indexing on Bayesian record linkage models
to future work.

With fabl, we introduce two techniques to further expand the scalability of prob-
abilistic record linkage. First, we propose hashing methods that allow us to compute
summary statistics that reduce the computational complexity of the Gibbs sampler and
the memory requirements of storing the comparison vectors. Second, we introduce stor-
age efficient indexing, which reduces the memory costs associated with unlikely matches.

4.1 Data Representation, Hashing, and Storage

Since each component γf
ij is discrete, there are only finitely many possible realizations of

the comparison vector γij . Let P be the number of patterns realized in γ. It is bounded
above by P ∗ =

∏F
f=1(Lf + 1), where the addition of 1 to Lf for each field accounts for

the possibility of missing values. This quantity is determined by F and Lf , and does
not scale with nA or nB .

To obtain a memory efficient representation, we map the agreement pattern of each
record pair to a unique integer. Enamorado et al. (2019) accomplished this through a



8 Efficient and Scalable Bipartite Matching

hashing function, which we modify to explicitly handle missing values:

h∗(γij) =
F∑

f=1
Iobs(γf

ij)2
γf
ij+I(f>1)

∑f−1
d=1 (Ld). (11)

We then map the integers in (11) to sequential integers {1, . . . , P}. Denote each
unique agreement pattern as hp = (h1

p, . . . , h
F
p ), and the set of unique agreement pat-

terns as P = {h1, . . . , hP }. When the (i, j) record pair exhibits agreement pattern p, we
say γij = hp. In calculations, we will at times use the one-hot encoding of agreement
pattern hp, denoted e(hp). This is a vector of length

∑F
f=1 Lf in which the l+

∑f−1
k=1 Lk

component is 1 when γf
ij = l, and 0 otherwise.

For example, consider five fields with binary agreements and possible missingness,
denoted NA. The number of possible patterns is bounded above by P ∗ = 35 = 243. Sup-
pose that records A5 and B7 exhibit agreement pattern γ5,7 = (1, 1, 1, NA, 2), indicating
exact agreement on the first three fields, missing information in the fourth field, and dis-
agreement in the fifth field. The expression in (11) gives h∗(γ5,7) = 21+23+25+0+210 =
1066. All records with a hashed value of 1066 map to the integer 42. Thus, γ5,7 = h42,
and this agreement pattern has the one hot encoding e(h42) = (1, 0, 1, 0, 1, 0, 0, 0, 0, 1).

We then identify the records in A with comparison vectors corresponding to each
pattern p for each record Bj . We denote this set rpj = {i ∈ 1, . . . , nA|γij = hp}, and
collect all such sets in the nested list R = {rpj |p ∈ {1, . . . , P}, j ∈ {1, . . . , nB}}. We
compute the number of records in A that share agreement pattern p with record Bj ,
given by

Npj = |rpj | =
nA∑
i=1

I(γij = hp). (12)

We collect these counts in N = {Npj |p ∈ 1, . . . , P, j ∈ 1, . . . , nB}.
The set γ̃ = {P,R,N} fully characterizes the comparison matrix γ for writing the

likelihood function for fabl. To see this, we employ the condensed notation

mp = p(Γij = hp|Zj = i) =
F∏

f=1

Lf∏
l=1

m
I(hf

p=l)Iobs(hf
p)

fl , (13a)

up = p(Γij = hp|Zj �= i) =
F∏

f=1

Lf∏
l=1

u
I(hf

p=l)Iobs(hf
p)

fl (13b)

to express the probability that records Ai and Bj form agreement pattern p given that
they are a match in (13a), and not a match in (13b). Viewed through the perspective
of agreement patterns, the likelihood in (6a) is equivalent to

L(Z,m,u | γ̃) =
nB∏
j=1

P∏
p=1

∏
i∈rpj

mI(Zj=i)
p u1−I(Zj=i)

p . (14)
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The likelihood in (14) allows for more efficient posterior inference for m, u, and Z, as
we now describe.

4.2 Efficient Posterior Inference

The posterior updates for m and u depend on the data only through quantities that can
be calculated through N and P. Let np(Z) =

∑
j:Zj≤nA

I
(
γZj ,j = hp

)
be the number

of matching record pairs with agreement pattern p, and Np =
∑nB

j=1 Npj be the total
occurrence of pattern p in the data across all record pairs. Then, conditional on Z, we
can express the contribution to the likelihood in the full conditional for m and u as

L(m,u | γ̃,Z, π) =
P∏

p=1
mnp(Z)

p uNp−np(Z)
p . (15)

Additionally, let α0 = (α11, . . . , αFLF
) and β0 = (β11, . . . , βFLF

) be concatenated
vectors of prior parameters for the m and u distributions respectively. The terms needed
for the posterior updates for the m and u parameters are given by the appropriate
components of the vectors

α(Z(s)) = α0 +
P∑

p=1
np

(
Z(s)

)
× e(hp), (16a)

β(Z(s)) = β0 +
P∑

p=1

(
Np − np

(
Z(s)

))
× e(hp). (16b)

Specifically, the l +
∑f−1

k=1 Lk components of (16a) and (16b) provide the posterior up-
dates for level l and field f in (7c) and (7d). However, the vectorized summations can
be computed more efficiently than summing over nAnB record pairs for each field and
agreement level.

Similarly, the posterior updates for Z depend on the data only through quantities
calculated through N ,P, and R. For each pattern p, let wp = mp/up. The contribution
to the likelihood in the full conditional for Zj can be expressed as

L(Zj | γ̃,m,u, π) =
P∏

p=1
u
Npj
p

∏
i∈rpj

wI(Zj=i)
p . (17)

Using (17), we break this sampling step into two. We first sample among P + 1 options
for the agreement pattern between Bj and its potential link. Define r as an arbitrary
set of records. We have

p
(
Z

(s+1)
j ∈ r | γ̃,m(s+1),u(s+1), π(s+1)

)
∝

{
π(s+1)Npj

nA
w

(s+1)
p , r = rpj ;

1 − π(s+1), r = {nA + j}.
(18)



10 Efficient and Scalable Bipartite Matching

Since all records in A sharing the same agreement pattern with Bj are equally likely,
we then sample among candidate records uniformly using

p
(
Z

(s+1)
j = q | Z(s+1)

j ∈ r,m(s+1),u(s+1), π(s+1)
)

=

⎧⎪⎨
⎪⎩

1
Npj

, r = rpj and q ∈ r;
1, r = {nA + j} and

q = nA + j.

(19)

Note that sampling from (18) has complexity O(P + 1) and sampling (uniformly) from
(19) has complexity O(1), regardless of the size of rpj . In contrast, sampling Zj from
the full conditional provided in (9) has complexity O(nA), because sampling a value
from nA options with unequal weights requires normalizing the weights to probabilities.

These changes can greatly improve the speed of the sampler, and each can be par-
allelized if desired for additional computational speed-ups. We emphasize the computa-
tional gains of this split sampler through Lemma 4.1.
Lemma 4.1. Let nA and nB be the number of records in files A and B, respectively.
Let F be the number of fields used for comparisons across records, and P be the number
of patterns that comparison vectors exhibit in A×B. We assume C cores available for
parallelization and a Gibbs sampler with T iterations. Then, the overall computational
complexity of fabl with hashing is O(FnAnB/C) + O(TnBP/C).

Proof. We consider two steps: constructing the comparison vectors and the Gibbs sam-
pler. The computational complexity of all pairwise comparisons across A and B is
O(FnAnB). The hashing procedure for all pairwise comparisons is also O(FnAnB).
With C processors available, we can split these computations across C equally sized par-
titions and compute these comparisons in parallel, so the complexity becomes O(FnA

nB/C). There are then trivial computational costs associated with synthesizing sum-
mary statistics across these partitions. We note that this contribution to computational
complexity applies for all versions of Fellegi and Sunter (1969) algorithms unless they
use blocking to reduce the comparison space.

Without hashing, the computational complexity of updating the m and u parame-
ters is O(FnAnB). However, by doing calculations over the agreement patterns rather
than the individual records, hashing reduces the overall complexity to O(P ). The com-
plexity of updating Z sequentially at the record level as in Sadinle (2017) is O(nAnB).
With hashing, we first sample the agreement pattern of the match with complexity
O(nBP ), and then we sample the record exhibiting that pattern with complexity O(nB).
Thus, the complexity of sampling Z in a single iteration is O(nBP ). Since P << nA in
most applications, we have reduced the complexity of sampling Z from O(FnAnB) un-
der BRL to O(nBP ) under fabl. With parallelization, this complexity is further reduced
to O(nBP/C), and so the entire Gibbs sampler has complexity O(TnBP/C). In sum-
mary, the total computational complexity for fabl is O(FnAnB/C)+O(TnBP/C).

4.3 Scaling to Large Linkage Tasks
For linkage tasks with large amounts of records, we can partition A and B into tA and
tB smaller disjoint batches for more manageable computations. Let {A1, . . . , AtA} be
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a partition of A such that ∪tA
a=1A

a = A and Aa ∩ Aa′ = ∅ for all a �= a′. Likewise, let
{B1, . . . , Btb} be a partition of B such that ∪tB

b=1B
b = B and Bb∩Bb′ = ∅ for all b �= b′.

For each a and b, we compute comparison vectors for all records in Aa×Bb to construct
the comparison matrix γab.

We then conduct hashing, obtain the compressed γ̃ab, and delete the memory inten-
sive matrix γab before continuing with the next batch of data. In detail, we calculate

rabpj
= {i ∈ 1, . . . , nA|γij = hp, Bj ∈ Bb}, (20a)

Nab
pj

= |rabpj
|. (20b)

These can be computed sequentially or in parallel. Summary statistics from each pair-
wise batch comparison can be synthesized to recover summary statistics for the full
comparison matrix γ through

rpj = {r11
pj
, . . . , rtAtB

pj
} for a = 1, . . . , tA and b = 1, . . . , tB , (21a)

Npj =
tA∑
a=1

tB∑
b=1

Nab
pj
. (21b)

4.4 Storage Efficient Indexing
As discussed in Section 4.1, storing the indices, patterns, and counts in γ̃ uses less
memory than storing the full comparison matrix γ. However, recording the indices for
all record pairs in R can become computationally burdensome for very large linkage
tasks. We next introduce storage efficient indexing (SEI), which, when used with the
methods in Section 4.3, allows us to compute N for all nAnB record pairs while greatly
reducing the memory costs of R associated with unlikely matches. This allows all-to-all
comparisons for substantially larger linkage tasks.

All records Ai that share agreement pattern p with record Bj have the same wp.
These records have the same probability to be identified as the link for record Bj . Thus,
records i ∈ rpj with large Npj are unlikely to be sampled consistently enough to be
deemed a match in the Bayes estimate. Rather than store all of these record labels, we
store only a small number S. For each rabpj

, we sample S indices without replacement
to form SEI (rabpj

). We collect these memory-reduced lists to form SEI (rpj ) as in (21a),
and collect these to form SEI (R).

As shown in the full conditionals in (16a), (16b), and (18), all original record pairs
are still accounted for through N . We must revise (19) to account for the reduced
number of labels, so instead we use

p
(
Z

(s+1)
j = q | Z(s+1)

j ∈ r,m(s+1),u(s+1), π(s+1)
)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
|r| , r = SEI(rpj ) and

q ∈ r;
1, r = {nA + j} and

q = nA + j

(22)
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in the second step of the split sampler. In this way, we can conduct all posterior inference
with the memory reduced SEI (γ̃) = {P,SEI(R),N}. We provide guidance on choice of
S through a simulation in Section 5.3.

5 Simulation Studies
We demonstrate the speed and accuracy of fabl as compared to BRL through several
simulation studies.

5.1 Speed

In our first simulation, we generate comparison vectors from pre-specified distributions
so that we can easily increase the size of the linkage problem. We use F = 5 binary
comparisons with probabilities for matching and nonmatching pairs shown in Table 1.
For each record in B, we simulate nA comparison vectors, resulting in a comparison
matrix γ ∈ R

nAnB×F . For nB/2 of these records, there is no match in A, so we simulate
nA comparison vectors from the u probabilities. For the other nB/2 of these records,
there is one match in A, so we simulate one comparison vector from the m probabilities,
and nA − 1 comparison vectors from the u probabilities. We compare the run-time of
fabl (with no SEI) against BRL as we increase nA and nB . Since we have five binary
comparison fields with no missingness, the number of unique patterns P is bounded
above by 25 = 32, a bound which is consistently attained in simulations with more
records.

m u
Agree Disagree Agree Disagree

First Name 19
20

1
20

1
100

99
100

Last Name 19
20

1
20

1
100

99
100

Day 19
20

1
20

1
30

29
30

Month 19
20

1
20

1
12

11
12

Year 19
20

1
20

1
12

11
12

Table 1: Probabilities used for m and u in simulation study in Section 5.1.

In Figure 1a, where we increase both nA and nB , BRL is faster than fabl for low
sample sizes, but fabl is significantly faster at handling larger sample sizes. In partic-
ular, run-time for BRL grows quadratically (or linearly with the size of both A and B)
while run-time for fabl grows linearly (in the size of only B).

In Figure 1b, where we fix nB = 500, we see near linear growth for the run-time under
BRL as nA increases, and much more static run-time under fabl. The slight increases
in the run-time for fabl are due primarily to the hashing step, which again can be
run in parallel for large data. To illustrate that these trends are generalizable to other
specifications of the comparison vectors, we have included the run-time results for an
additional simulation study, under different comparison vector settings, in Supplement E
(Kundinger et al., 2024).
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Figure 1: Run-time for BRL and fabl to run 1000 Gibbs iterations in simulations de-
scribed in Section 5.1. In (1a), both nA and nB are increasing. We see quadratic growth
in BRL and linear growth in fabl. In (1b), only nA only is increasing. We see linear
growth in BRL and approximately constant run-time in fabl.

Importantly, BRL implements a Gibbs sampler that is coded C (Sadinle, 2017), while
fabl currently uses non-optimized code written only in R. While this complicates com-
parisons, and indeed disfavors fabl, the computational speed gains for fabl are still
evident, especially for larger sample sizes. Additionally, although fabl is amenable to
parallelization, this simulation is run on a single core. Implementing fabl in C++ with
parallelization for the hashing step and sampling the matching status of the record pairs
should lead to even more computational gains.

5.2 Accuracy

Computational speed-ups are only worthwhile if not accompanied by a notable loss of
record linkage accuracy. Therefore, we examine the accuracy of fabl relative to BRL by
replicating a simulation study from Sadinle (2017). The simulations employ a collection
of synthetic data files with varying amounts of error and overlap (the number of records
in common across files). Following methods proposed by Christen and Pudjijono (2009)
and Christen and Vatsalan (2013), clean records are first simulated from frequency tables
for first name, last name, age, and occupation in Australia. Fields are then chosen for
distortion uniformly at random. Names are subject to string insertions, deletions and
substitutions, as well as common keyboard, phonetic, and optical recognition errors. Age
and occupation are distorted through keyboard errors and missingness. These synthetic
data files are available in the supplement to Sadinle (2017).

We create comparison vectors according to the default settings of the compareRecords
function from the BRL package, shown in Table 2. Each simulation identifies matched
individuals between two data files, each with 500 records. We conduct linkage when
matching records exhibit 1, 2, and 3 errors across the four fields, and when there are
50, 250, and 450 individuals in common across data files. Under each of these settings,
we use 100 pairs of simulated data files in order to obtain uncertainty quantification
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Level of Disagreement
Fields Similarity 1 2 3 4
First and Last Name Levenstein 0 (0, .25] (.25, .5] (.5, .1]
Age and Occupation Binary Agree Disagree

Table 2: Construction of comparison vectors for accuracy study with simulated data
files of Section 5.2.

on our performance metrics. We use uniform priors for the m, u, and π parameters,
with αfl = βfl = 1 for all f and l. We run the Gibbs sampler for 1000 iterations,
and discard the first 100 as burn-in. We calculate Bayes estimates Ẑ of the linkage
structure using the loss function and post-processing procedure described in Supple-
ment B (Kundinger et al., 2024). Traceplots for parameters of interest for one example
simulation are provided in Supplement C (Kundinger et al., 2024); they show no obvi-
ous concern over MCMC convergence. We also replicate this simulation allowing fabl
to leave some components of the linkage structure undetermined and left for clerical
review; those results are in Supplement D (Kundinger et al., 2024).

We compare fabl to BRL in terms of recall, precision and F-measure, as defined in
Christen (2012). Recall is the proportion of true matches found by the model, that is,∑nB

j=1 I(Ẑj = Zj , Zj ≤ nA)/
∑nB

j=1 I(Zj ≤ nA). Precision is the proportion of links found
by the model that are true matches, that is,

∑nB

j=1 I(Ẑj = Zj , Zj ≤ nA)/
∑nB

j=1 I(Ẑj ≤
nA). The F-measure balances the two metrics to provide an overall measure of accuracy,
and is defined as 2(Recall + Precision)/(Recall × Precision). In Figure 2, we see that
the two methods have comparable performance at all levels of error and overlap.

5.3 SEI Sensitivity

Finally, our last simulation demonstrates the robustness of fabl to different values of
S for the SEI memory reduction procedure. We perform record linkage on one set of
the synthetic data files described in Section 5.2 with 500 records in each data file, 250
entities in common across data files, and 3 errors present across matching records. We
perform SEI without batching the data, that is, tA = tB = 1. In practice, when it is
computationally feasible to create and store γ without batching, there is no need to
reduce the memory of the hashed matrix through SEI. For illustration, however, it is
easier to examine the effects of choices of S in this setting.

We perform linkage using SEI with S ∈ (1, 2, 5, 10, 20), and without using SEI,
always with 500 iterations of the Gibbs sampler. Any particular SEI implementation
may improve or worsen linkage performance; if the SEI procedure happens to only
remove pairs that are not matches, recall and precision will improve. Therefore, we
perform linkage under each setting 100 times, recording the linkage estimate Ẑ, and
recall and precision.
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Figure 2: Posterior means and credible intervals for accuracy metrics under the repli-
cation of the simulation study from Sadinle (2017). For each level of overlap and each
level of error, we have 100 paired sets of 500 records. Thus this table summarizes results
for 900 data files. We see comparable performance for all levels of error and overlap.

Figure 3: Distinct values of Ẑ in
the simulations of Section 5.3. Figure 4: Means and 95% credible intervals

for recall and precision in the simulations of
Section 5.3.

In Figure 3, the largest number of distinct linkage estimates occurs when S = 1.
In this case, the SEI procedure arbitrarily removes large numbers of record labels from
consideration, resulting in a noisier estimate of the linkage structure. The number of
distinct linkage estimates decreases as S increases, with larger values of S providing
results more similar to the linkage without SEI. In Figure 4, we see similar patterns



16 Efficient and Scalable Bipartite Matching

in precision. Setting S = 1 can arbitrarily remove the index of a true match, leading
the Gibbs sampler to concentrate probability on a false match, while larger values of
S produce results mirroring implementation with no SEI. We note, however, that even
with S = 1, the loss in precision is small in these simulations.

Although the figures suggest that S = 2 is adequate for maintaining linkage per-
formance, we suggest a more conservative value like S = 10. When evaluating the
performance of a record linkage algorithm, researchers often examine posterior prob-
abilities. By concentrating probability mass on arbitrary nonmatches, low values of S
may induce artificially high posterior probability for certain record pairs, providing a
misleading perception of model performance.

6 Case Studies
In our first case study, we revisit data from the El Salvadoran Civil War analyzed by
Sadinle (2017). Though the data files used in this case study are small, it shows how
the computational complexity of fabl depends on the number of unique agreement
patterns found in the data, and how significant computational gains can be achieved
by simplifying the construction of the comparison vectors. In the second case study, we
apply fabl to link records from the National Long Term Care Study, a larger linkage
task that is not feasible in reasonable time under BRL with typical computing setups.

6.1 Civilian Killings from the El Salvadoran Civil War
The country of El Salvador was immersed in civil war from 1980 to 1991. We are
interested in estimating the total number of individuals killed in the war. We utilize
lists of documented deaths from the war, one collected by El Rescate – Tutela Regal
(ERTL) and another from the Salvadoran Human Rights Commission (CDHES, by its
acronym in Spanish).1 The ERTL data set comprises digitized denunciations published
throughout the conflict, and the CDHES data set comprises killings reported directly to
the organization (Howland, 2008; Ball, 2000; Green and Ball, 2019). The ERTL required
additional investigation before recording denunciations as human rights abuses, and
reports to the CDHES were made shortly after the events occurred; thus, both data
files are thought to be fairly reliable. When estimating the total number of individuals
killed, one cannot simply sum the numbers recorded by each organization, as it is likely
that the same individuals are recorded in multiple casualty lists. Instead, record linkage
techniques must be used to merge data files before analyzing the data (Lum et al.,
2013).

There are several challenges with these data. First, the ERTL data file was automat-
ically digitized, which inherently leads to some degree of typographical error. Second,
it is common for villages in El Salvador to consist of only four to five extended families.
This means there are a small number of last names in use, so many individuals have the
same first and last name. Since the only fields recorded are given name, last name, date

1We thank the Human Rights Data Analysis Group (HRDAG) for granting access to these data.
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Level of Disagreement
Fields Similarity 1 2 3 4
First and Last Name Modified Levenstein 0 (0, .25] (.25, .5] (.5, 1]
Year of Death Absolute Difference 0 1 2 3+
Month of Death Absolute Difference 0 1 2-3 4+
Day of Death Absolute Difference 0 1-2 3-7 8+
Municipality Binary Agree Disagree

Table 3: Construction of comparison vectors for El Salvador data resembling original im-
plementation from Sadinle (2017). This setup leads to 1875 possible agreement patterns
in total.

of death, and place of death, this leads to several instances in which distinct individuals
have identical records. These individuals may be distant cousins, or are perhaps entirely
unrelated, but would pose challenges for any record linkage method.

Following Sadinle (2017), we utilize records that have non-missing entries for given
and last name, which results in nA = 4420 records in CDHES and nB = 1323 records in
ERTL. We standardize names to account for common misspellings and use a modified
Levenstein distance when comparing names to account for the fact that second names
are often omitted in Spanish. Place of death is recorded by municipality and department
within that municipality; however, since department is missing in 95% of records in
CDHES and 80% of records in ERTL, we exclude department from our analysis. Thus,
we conduct record linkage using given name, last name, municipality, and day, month,
and year of death. We use uniform priors for the m, u, and π parameters.

We initially followed the comparison vector constructions set by Sadinle (2017),
using four levels of agreement for each field, according to the thresholds provided in
Table 3. This results in 1875 possible agreement patterns, with 1173 patterns realized
in the data. However, we noticed that the posterior distributions of several levels of the
m and u parameters were nearly identical in an initial run of BRL, suggesting that these
levels were unnecessary.

Therefore, we perform our analysis with the agreement levels for each field according
to Table 4. Among the 432 possible agreement patterns, 159 are realized in the data.
With this revised comparison specification, fabl runs in 109 seconds, approximately 3
times faster than the BRL run-time of 313 seconds. The estimates of the m parameters
under each method are similar, as shown in Figure 6. Estimates of the u parameters are
indistinguishable, and thus omitted. Traceplots for parameters of interest are provided
in Supplement F (Kundinger et al., 2024).

For completeness, we note that linkage with the more detailed comparison vectors
requires 945 seconds for BRL, and 1093 seconds for fabl. Apparently, the number of pat-
terns is sufficiently many that the computational savings from fabl does not overcome
the inherent speed differences of C as opposed to R.

Through fabl, we arrive at a Bayes estimate of 178 individuals recorded in both
data files. We calculate posterior samples of the size of the overlap across files by finding
the number of links in each iteration of the Gibbs sampler, and subtracting the number
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Level of Disagreement
Fields Similarity 1 2 3
First and Last Name Modified Levenstein 0 (0, .25] (.25, 1]
Year of Death Binary Agree Disagree
Month of Death Binary Agree Disagree
Day of Death Absolute Difference 0 1 2+
Municipality Binary Agree Disagree

Table 4: Construction of comparison vectors for El Salvador data for increased speed
under fabl. This setup leads to 432 possible agreement patterns in total.

of matches that violate one-to-one matching. The posterior 95% credible interval for
the overlap across files is (205, 236), indicating that the Bayes estimate identifies fewer
matches than the Gibbs sampler identifies on average. This is because a large number
of records in ERTL have multiple plausible matches in CDHES; fabl recognizes that
a match exists among the several options, but is unable to definitely declare a specific
pair as a match in the Bayes estimate. We see similar results under BRL, with a Bayes
estimate of 181 individuals recorded in both data files, and a posterior 95% credible
interval of (211, 244). See Figure 5 for a visual comparison of the Bayes estimates and
posterior credible intervals for the two methods. We note that Bayes estimates falling
outside of posterior credible intervals has been observed previously in the record linkage
literature (Sadinle, 2017; Steorts et al., 2016), and remains a topic for future research.

Figure 5: Posterior distribution and Bayes estimate of overlap across the two files in the
El Salvador case study. We note they are quite similar under both methods.
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Figure 6: Posterior estimates of m parameters with 95% credible intervals for the El
Salvador case study. They are quite similar across the two methods.

6.2 National Long Term Care Study
The National Long Term Care Study (NLTCS) is a longitudinal study tracking the
health outcomes of Medicare recipients (Steorts et al., 2016). The initial survey began in
1982, with follow-up surveys taken approximately every five years. As such, patients are
surveyed at most once in a given year, and many patients are surveyed across multiple
years. In addition, patients can either drop out of the study, pass away, or enter as
new patients. Hence, the assumptions of our model hold for this study. We seek to link
records over the nA = 20485 individuals from 1982 to the nB = 17466 individuals from
1989. The NLTCS data have longitudinal links, so that in reality one does not need
to conduct record linkage. However, following the strategy in Guha et al. (2022), we
break the longitudinal links and treat the data from 1982 and 1989 as stand-alone data
files.

We link records using sex, location, and day, month, and year of birth using the
criteria shown in Table 5. Storing γ constructed through three comparison scores for each
of the approximately 400 million record pairs would require around 8 GB of memory.
Standard settings on a 16 GB personal computer do not allow storage of an object of this
size, and thus BRL is unable to perform this linkage task on such a machine. However,
through the method described in Section 4.3, we perform 30 smaller comparison tasks,
using tA = 1 and tB = 30. We conduct linkage with all record indices recorded and also
with SEI using S = 10, and obtain identical results. The hashed γ̃ without SEI is about
2.2 GB, and with SEI, it is about 760 MB. Constructing the comparisons sequentially



20 Efficient and Scalable Bipartite Matching

Level of Disagreement
Fields Similarity 1 2 3
Sex Binary Agree Disagree
Year of Birth Binary Agree Disagree
Month of Birth Binary Agree Disagree
Day of Birth Binary Agree Disagree
Location Custom Same State and Office Same State Otherwise

Table 5: Construction of comparison vectors for NLTCS data.

Figure 7: Posterior distribution and Bayes estimate of overlap across years 1982 and
1989 of NLTCS data.

took approximately 40 minutes, which could be reduced considerably through parallel
computing.

We run a Gibbs sampler for 1000 iterations, taking about 235 seconds. Traceplots
do not suggest convergence issues, and are similar to those seen in Supplement C and F
(Kundinger et al., 2024). As shown in Figure 7, the Bayes estimate of the linkage
structure has 9634 matches, with a 95% credible interval of (9581, 9740). Since we have
access to the true linkage structure, we can calculate recall to be 0.89 and precision to
be 0.98, resulting in an F-measure of 0.94.
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7 Conclusion
In this paper, we have proposed fabl, a Bayesian record linkage method that extends
the work of Sadinle (2017) to scale to large data sets. We have proven that the proposed
hashing method and model assumptions allow for a linkage procedure whose computa-
tional complexity does not scale with the size of the larger data file. This makes fabl
computationally advantageous in many linkage scenarios, particularly when one data
file is substantially smaller than the other. We have also shown that storage efficient in-
dexing, in tandem with hashing, greatly reduces the memory costs required for all-to-all
comparisons, giving practitioners an option for larger record linkage tasks potentially
even without the use of blocking or indexing. We have demonstrated the speed and
accuracy of fabl by replicating a simulation study and a case study in Sadinle (2017),
and through an additional case study that is computationally impractical under BRL.

Although the fabl method greatly reduces the memory costs for all-to-all compar-
isons, computing the comparisons for all nAnB record pairs still can be prohibitive for
larger linkage tasks. Indeed, constructing the comparison vectors for the NLTCS linkage
task involving around 40,000 records in Section 6.2 took around 40 minutes. Due to the
quadratic nature of the comparison space, this computation time would grow quickly
with the size of the linkage task, and would be extremely slow when dealing with mil-
lions of records. Although it is common to use deterministic blocking to reduce the
comparison space and then apply probabilistic record linkage within each block, issues
arise when sizes of blocks vary across the linkage task. In future work, we seek to ex-
tend fabl to account for such deterministic blocking, making the framework amenable
to even larger linkage tasks.
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