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Easily Computed Marginal Likelihoods from
Posterior Simulation Using the THAMES

Estimator

Martin Metodiev∗,†, Marie Perrot-Dockès†, Sarah Ouadah‡, Nicholas J. Irons§ ,
Pierre Latouche∗,†,¶, and Adrian E. Raftery§,¶,‖

Abstract. We propose an easily computed estimator of the marginal likelihood
from posterior simulation output, via reciprocal importance sampling, combining
earlier proposals of DiCiccio et al (1997) and Robert and Wraith (2009). This
involves only the unnormalized posterior densities from the sampled parameter
values, and does not involve additional simulations beyond the main posterior
simulation, or additional complicated calculations, provided that the parameter
space is unconstrained. Even if this is not the case, the estimator is easily adjusted
by a simple Monte Carlo approximation. It is unbiased for the reciprocal of the
marginal likelihood, consistent, has finite variance, and is asymptotically normal.
It involves one user-specified control parameter, and we derive an optimal way of
specifying this. We illustrate it with several numerical examples.

MSC2020 subject classifications: Primary 62F15, 62-04; secondary 62F12.
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1 Introduction
A key quantity in Bayesian model selection is the marginal likelihood, also known as the
evidence, the normalizing constant of the posterior density, or the integrated likelihood.
Consider a statistical model with parameter vector θ and data D. Let L(θ) = p(D|θ)
be the usual likelihood, and π(θ) be the prior distribution of θ. Then Z = p(D) =∫
L(θ)π(θ)dθ is the marginal likelihood.

The marginal likelihood plays a key role in defining Bayes factors. Consider two
models M1 and M2 with marginal likelihoods Z1 and Z2. Then the Bayes factor (or
ratio of posterior to prior odds) for model M1 against M2 is B1,2 = Z1/Z2.

The marginal likelihood is also a critical quantity for Bayesian model averaging
(BMA). Consider K models, M1, . . . ,MK , with prior model probabilities Πk (which
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add up to 1), and marginal likelihoods Zk. Suppose Q is a quantity of interest, such as a
parameter or a future observation to be predicted. Then the BMA posterior distribution
of Q is

p(Q|D) =
K∑

k=1

p(Q|D,Mk)p(Mk|D), (1)

where p(Mk|D) is the posterior model probability of Mk, which satisfies p(Mk|D) ∝
ΠkZk and

∑K
k=1 p(Mk|D) = 1. So p(Q|D) =

∑K
k=1 p(Q|D,Mk)ΠkZk/

∑K
k=1 ΠkZk.

Finally, the most likely model a posteriori is the one that maximizes ΠkZk. Choosing
it minimizes the model selection error rate on average over the prior (Jeffreys, 1961).
Often the prior over the model space is chosen to be uniform, in which case Πk =
1/K, ∀k. In this case, Bayesian model selection by choosing the most likely model a
posteriori boils down to choosing the model with the largest Zk, and hence involves
only the marginal likelihoods.

Bayesian models are often estimated using Monte Carlo methods in which a sample of
values of θ is simulated from the posterior distribution. The most common class of such
methods is Markov chain Monte Carlo (MCMC). Perhaps surprisingly, estimating the
marginal likelihood from the output of MCMC and other posterior simulation methods
has turned out not to be straightforward. Many different methods have been proposed,
and none of them is widely considered to be generally the best. Llorente et al. (2023)
provide a comprehensive review of such methods, describing 16 different methods and,
remarkably, cite over 20 other review articles!

We seek a method that is precise, generic and simple for estimating the marginal
likelihood from posterior simulation output. We take this to mean that it gives low
variance estimates of the marginal likelihood, uses posterior simulation output for just
the one model being analyzed, uses only likelihoods and prior densities of the sampled
values of θ, and does not need additional simulations or complicated calculations.

Some well-known methods do not satisfy our desiderata. These include Chib’s method
(Chib, 1995), which requires complicated additional calculations, bridge sampling (Meng
and Wong, 1996), which requires simulations from two models, importance sampling,
which requires additional simulations, nested sampling (Skilling, 2006), which involves
other simulations, and more advanced methods such as adaptive annealed importance
sampling (Liu, 2014). They also include the harmonic mean of the likelihoods (Newton
and Raftery, 1994), which is unbiased and consistent, but has infinite variance and is
unstable, as pointed out by the original authors.

Arguably, the only methods that are precise, generic and simple for estimating the
marginal likelihood from MCMC by our definition are versions of reciprocal importance
sampling (RIS) (Gelfand and Dey, 1994). These are based on the identity:

Z−1 = Eθ

[
h(θ)

L(θ)π(θ)

∣∣∣∣D
]
, (2)

where h(θ) is a (normalized) probability density function (pdf) over the posterior sup-
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port. Remarkably, (2) holds for any pdf h(θ). This leads to the estimator

Ẑ−1 = 1
T

T∑
t=1

h(θ(t))
L(θ(t))π(θ(t))

, (3)

where θ(1), . . . , θ(T ) are simulated from the posterior using MCMC or another method.
This estimator has good properties in general, provided that the tails of the distribution
h(θ) are thin enough in all directions. It can be hard to choose h(θ) so that it both
overlaps substantially with the posterior distribution (needed for efficiency) and has thin
enough tails (needed for finite variance), especially in higher dimensions. We propose a
choice of h(θ) that leads to easily computed estimates and is optimal or near optimal
in a certain sense.

The paper is organized as follows. In Section 2 we discuss reciprocal importance
sampling and its properties. In Section 3 we describe our proposed choice of h(θ) and
derive some of its properties. In Section 4 we give several numerical examples, including
a multivariate Gaussian example, a Bayesian regression example, a non-Gaussian case,
and a Bayesian hierarchical model. We conclude in Section 5 with a discussion. The code
for this paper is made available via Github for scientific dissemination at the following
link. The THAMES has been implemented in an R package (Irons et al., 2023).

2 Reciprocal importance sampling
In general, the RIS estimator of the marginal likelihood is defined by Equation (3).
This has several good properties. It is unbiased, in the sense that E[Ẑ−1] = Z−1, where
the expectation is over the posterior distribution of θ. It is also strongly simulation-
consistent, in the sense that Ẑ−1 −→ Z−1 almost surely as T −→ ∞.

In addition, the RIS estimator of the reciprocal marginal likelihood, Ẑ−1, has finite
variance and is asymptotically normally distributed as T −→ ∞ if the tails of h(θ) are
thin enough. Specifically, this requires that

∫
h(θ)2

L(θ)π(θ)dθ < ∞. (4)

It is hard to choose h(θ) so that it both overlaps substantially with the area of the
parameter space with high posterior density, which is needed for efficiency, and so that
it also has thin enough tails, which is needed for finite variance. The difficulty grows as
the dimension increases.

Two choices of h(θ) in the literature deserve attention. DiCiccio et al. (1997) pro-
posed h(θ) = MVN(θ; θ̂, Σ̂), where θ̂ is the posterior mean or mode, and Σ̂ is an
estimate of the posterior covariance matrix. This overlaps nicely with L(θ)π(θ), but
its tails may not be thin enough when the posterior is asymmetric or the parameter is
high-dimensional.

https://github.com/njirons/thames/tree/main
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To remedy the problem of the tails possibly being too thick, DiCiccio et al. (1997)
proposed truncating it, using instead h(θ) = TMV NA(θ̂, Σ̂), a multivariate normal
distribution truncated to the set A, where

A = {θ : (θ − θ̂)T Σ̂−1(θ − θ̂) < c2}. (5)

Thus A is an ellipsoid with radius c and volume

V (A) = cdπd/2|Σ̂|1/2/Γ
(
d

2 + 1
)
. (6)

Truncating the distribution ensures that the estimator Ẑ−1 has finite variance. The
authors found that the truncation improved the performance of the RIS estimator.
However, with high-dimensional parameters, the result might be sensitive to the speci-
fication of c.

Robert and Wraith (2009) proposed setting h(θ) to be a uniform distribution on the
convex hull of simulated MCMC parameters values in the α-HPD region, namely the
highest posterior density region containing a proportion α of the sampled parameter val-
ues. They considered the values α = 0.1 and 0.25. They applied it to a two-dimensional
toy example where it performed well.

However, as far as we know, that method has not yet been fully developed for realis-
tic, higher-dimensional situations. For example, we know of no simple way to compute
the volume of the convex hull of a set of points in higher dimensions, which is required
for the method in general. It is also not clear how best to choose α nor how sensitive the
method would be to α in higher dimensions. It has been used in a higher-dimensional
application by Durmus et al. (2018), but this involved comparing competing models
defined on the same parameter space, thus avoiding the need to calculate the volume
of A, which canceled out in Bayesian model comparisons. Calculating the volume of A
may be the most difficult part of this method in general.

3 Estimating the marginal likelihood
3.1 Estimating the marginal likelihood with THAMES

We propose combining the proposals of DiCiccio et al. (1997) and Robert and Wraith
(2009) to obtain a method that we believe satisfies all our desiderata. We propose
specifying h(θ) to be a uniform distribution, but to be uniform over the set A defined
in Equation (5), rather than over a convex hull of points. This resolves the problem of
computing the volume of A, since this is given analytically by Equation (6). If A is not
a subset of the posterior support, for example if the posterior support is constrained,
we adjust the volume of A by a simple Monte Carlo approximation. This yields the
estimator

Ẑ−1 = 1
V (A)T

T∑
t=1

θ(t)∈A

1
L(θ(t))π(θ(t))

. (7)
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Thus Ẑ is a truncated harmonic mean of the unnormalized posterior densities,
L(θ(t))π(θ(t)).1 We call it the Truncated HArmonic Mean EStimator, or THAMES.

The THAMES, Ẑ−1, has several desirable properties. It is simple to compute, in-
volving only the prior and likelihood values of the sampled parameter values. In fact
it involves only the product of the prior and likelihood values, namely the unnormal-
ized posterior densities of the sampled parameter values. It is unbiased as an estimator
of Z−1, as long as A is specified independently of the sample. It is also simulation-
consistent, in the sense that Ẑ−1 −→ Z−1 almost surely as T −→ ∞, by the strong law
of large numbers. Its variance (over simulation from the posterior given the data D) is
finite provided that ∫

A

(L(θ)π(θ))−1
dθ < ∞, (8)

which will usually hold since A is a bounded set in Rd. In fact, it suffices that the
likelihood and the prior are continuous with respect to θ and strictly positive on the
closure of A. If Equation (8) holds, Ẑ−1 is asymptotically normal (again as the number
of parameter values simulated increases), by the Lindeberg central limit theorem. Note
that asymptotic normality holds on the scale of Ẑ−1, and not exactly on other scales
such as Ẑ or log(Ẑ).

If the posterior simulation method yields independent draws, then Var(Ẑ−1) can be
estimated directly as the empirical variance of the values of

(
L(θ(t))π(θ(t))1(θ(t) ∈ A)

)−1,
divided by T · V (A)2. If MCMC is used, successive simulations from the posterior will
in general not be independent. A central limit theorem will still hold, but the variance
needs to take account of the serial dependence. This can be done approximately by
computing the variance based on serial independence and multiplying it by an estimate
of the spectral density of the sequence at zero. For example, if the sequence of values of
1/ (L(θ)π(θ)) can be approximated by a first-order autoregressive model with param-
eter φ, then this would be approximately 1/(1 − φ)2. An alternative would be to thin
the sequence enough that the resulting subsequence is approximately uncorrelated and
then use the variance based on assuming independence. A different approach was taken
by Frühwirth-Schnatter (2004).

Note that an approximate normal confidence interval can be obtained for Ẑ−1, be-
cause that is the scale on which a central limit theorem holds. This could be turned into
a confidence interval for Ẑ by taking the reciprocals of the ends of the normal confidence
intervals for Ẑ−1; the resulting confidence interval would not be symmetric. The same
could be done for log(Ẑ) in a similar manner.

3.2 Optimal choice of control parameter, c
We now address the question of how to choose the radius c of the ellipse that specifies the
THAMES in Equation (5). Ignoring serial correlation between simulated values of the

1Recall that the unstable harmonic mean estimator described by (Newton and Raftery, 1994) was
quite different, not being truncated, and being a harmonic mean of the likelihoods rather than the
unnormalized posterior density values.
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parameters, we suggest choosing c to minimize the estimated variance of Ẑ−1. This could
be done empirically by computing Ẑ−1 for a range of values of c, estimating Var(Ẑ−1)
for each value of c, and optimizing it over c by a grid search or a one-dimensional
numerical optimization method.

It is possible to obtain analytic results in the case where the posterior distribution
is normal. This is of considerable interest as the posterior distribution is asymptotically
normal in many common situations, including some where standard regularity condi-
tions do not hold (Heyde and Johnstone, 1979; Ghosal, 2000; Shen, 2002; Miller, 2021).
In this case the THAMES has finite variance since the posterior density, and thus the
product of the likelihood and the prior, is continuous with respect to θ and strictly
positive everywhere.

We want to minimize the variance of the THAMES. Due to our assumption of
independence of all of the successive MCMC simulations, this variance can be simplified
to

V ar(Ẑ−1|D) = 1
T

· 1
Z2 · SCV (d, c). (9)

Here SCV (d, c) denotes

SCV (d, c) :=
V arθ(1)

(
1A(θ(1))/V (A)
L(θ(1))π(θ(1))

∣∣∣D)

Eθ(1)

(
1A(θ(1))/V (A)
L(θ(1))π(θ(1))

∣∣∣D)2 , (10)

the squared coefficient of variation of the first term of the THAMES. Since the variance is
a product of 1

T ,
1
Z2 and SCV (d, c), minimizing SCV (d, c) with respect to c is equivalent

to minimizing the variance of the THAMES.

We derive a statement about the optimal choice of c by assuming that the posterior
covariance matrix Σ and the posterior mean m can be provided by a stochastic oracle.
The THAMES can then be defined using

Aor := {θ : (θ −m)TΣ−1(θ −m) < c2}. (11)

We will show that the radius c that minimizes the variance of the THAMES depends
on the dimension d, and is equal to cd =

√
d + Ld with Ld being close to one for

large d. Interestingly, in this case the SCV depends neither on the data, D, nor on the
number of samples from the posterior, T . Of course, this is rarely exactly the case in
practice. However, plugging in consistent estimators of (m,Σ) gives approximately the
same results if the number of samples from the posterior is large enough, provided that
a sample splitting procedure is used. This will be a consequence of Theorem 3.3. The
sample splitting procedure that we suggest is described in Section 3.3. The proofs of
these results are given in Supplement A (Metodiev et al., 2024a). Additional numerical
results about the behaviour of the optimal radius are given in Supplement B (Metodiev
et al., 2024b).
Assumption 1. For the following theorems it is assumed that we can ignore serial cor-
relation (i.e. we assume independence of the successive MCMC iterations) and that the
posterior distribution is normal with mean m ∈ Rd and positive definite covariance
matrix Σ ∈ Md×d(R). We further assume that the THAMES is defined on Aor.
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Theorem 3.1. There exists a unique radius cd ∈ (0,∞) such that the ellipsoid Aor with
radius cd minimizes the variance of the THAMES. This value cd does not depend on
the posterior mean or covariance matrix. It satisfies cd =

√
d + Ld, where the optimal

shifting parameter Ld ≥ 0 is a sequence for which Ld

d

d→∞→ 0.

Remark 1. Theorem 3.1 ensures that the optimal radius cd is asymptotically equivalent
to

√
d. In fact, our calculations suggest that cd =

√
d + Ld can be approximated by√

d + 1 (See Supplement B (Metodiev et al., 2024b)).

Theorem 3.2. The following statements hold for the SCV :

1. For any choice of the shifting parameter L,L ∈ R and for all ε > 0

1 − ε ≤ SCV (d,
√
d + Ld)√

(d + 2)π/4
≤ SCV (d,

√
d + L)√

(d + 2)π/4
≤ 2 + ε, (12)

for all but finitely many d. Thus choosing the radius
√
d + L results in an SCV

that is both asymptotically at most twice as large as the optimal SCV and is of
order

√
d.

2. The following inequality for the SCV can be given for choosing the radius
c =

√
d + 1:

0.63
√

(d + 2)π/4 − 1 ≤ SCV (d,
√

d + Ld) (13)

≤ SCV (d,
√
d + 1) ≤ 2.1

√
(d + 2)π/4 − 1 (14)

This inequality holds for all d ≥ 1.

Remark 2. Statement 1 of Theorem 3.2 shows that SCV (d, c) is increasing with order√
d as d → ∞, both in our choice c =

√
d + 1 and the optimal choice cd. Further, any

choice of the shifting parameter L used to define the radius
√
d + L is asymptotically

at most twice as bad as any optimal solution in terms of the SCV . This suggests some
robustness of our estimator with respect to the choice of L. For numerical results about
the behaviour of the SCV for different values of L, we refer the reader to Supplement
B (Metodiev et al., 2024b).

One can also calculate the bias of the THAMES on the scale of the marginal likeli-
hood by considering a second-order Taylor approximation and using Equation (9):

E[Ẑ] = Z + V ar[Ẑ−1]/(Z−1)3 = Z(1 + SCV (d, c)/T ). (15)

Considering Equation (15), the bias can be estimated by using the plug-in estimates
ŜCV and Ẑ−1. We also observe that the bias vanishes as T increases.
Remark 3. Statement 2 of Theorem 3.2 gives a very rough theoretical guarantee: For any
dimension d ≥ 1, the SCV obtained by choosing our recommendation for the radius,√
d + 1, and the SCV obtained by choosing the optimal radius, cd, can be bounded

by an affine transform of
√
d + 2. However, our calculations suggest that the SCV at

the point c =
√
d + 1 has an asymptotically optimal performance (See Supplement B

(Metodiev et al., 2024b)).
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So far, we have given results for the idealized situation where the posterior distribu-
tion is exactly normal. We now give a result for the more common and realistic situation
where the posterior distribution is only asymptotically normal.
Theorem 3.3. Let pn(θ|Dn) be a sequence of posterior densities with data Dn, posterior
covariance matrix Σn, posterior mean mn and an SCV denoted by SCVn. Then, if

|Σn|
1
2 pn

(
Σ

1
2
n · θ + mn

∣∣∣Dn

)
n→∞→ |Σ| 12 p

(
Σ 1

2 · θ + m
∣∣∣D)

(16)

uniformly in θ on all compact subsets of Rd, it follows that

SCVn(d, c) n→∞→ SCV (d, c) (17)

uniformly in c on all compact subsets of (0,∞). In particular, for any b ≥ cd ≥ a > 0,

(cd)n ∈ argminc∈[a,b]SCVn(d, c) ∀n ⇒ lim
n→∞

(cd)n = cd. (18)

Remark 4. We have already stated that the normal case is important because the
posterior distribution is often asymptotically normal when the size of the data, n, is
large. Theorem 3.3 assures us that our results still hold in this limiting case, under some
assumptions.

If the convergence of the normalized posterior pdf is uniform in θ (Equation (16)),
our statements about the limit behaviour of the SCV (Theorem 3.2 and Remarks 2-3)
still hold approximately when n is large (Equation (17)). If additionally any optimal
radius (cd)n does not converge to zero or infinity, any result about cd (Theorem 3.1 and
Remark 1) also holds approximately when n is large (Equation (18)).

Let H0 denote the Fisher information matrix. Reformulating Equation (16) by re-
placing Σn by 1

nH
−1
0 , to which it is asymptotically equivalent, gives a statement that

has been proven under a variety of assumptions, e.g. Miller (2021, Theorem 4), except
that in these results the type of convergence is usually not uniform convergence, but a
weaker type of convergence, such as convergence in distribution or convergence in total
variation.

Additional assumptions can be made about the pdfs of the sequence of distribu-
tions such that convergence in distribution implies uniform convergence of the pdfs.
For example, if the pdfs are asymptotically equicontinuous and we have convergence in
distribution, the convergence of the pdfs is uniform (Sweeting, 1996, Theorem 1).

Note that in this case there is no problem if the parameter space is constrained.
Uniform convergence of the pdfs implies that An is a subset of the posterior support if
n is large enough. There are also no assumptions about (mn,Σn), other than that they
converge to the moments of the posterior limit. In this sense, the estimators (μ̂, Σ̂) take
the place of these constants in practice and Theorem 3.3 holds even when we use these
estimators.
Remark 5. Due to the assumption of normality it is the case that when choosing the
optimal radius cd =

√
d + Ld, the probability of a term of the THAMES in θ(t) not

being set to 0 is equal to

P(θ(t) ∈ Aor) = P((θ(t) −m)TΣ−1(θ(t) −m) < d + Ld) = χ2(d + Ld; d), (19)
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Figure 1: Left: The THAMES calculated by choosing the radii c =
√
d + 1 =

√
3, c =

0.1
√

3, c = 50
√

3 in the two-dimensional case, d = 2, with the true value 1/Z (dotted
line) and the Harmonic Mean Estimator. Right: The posterior sample evaluated at the
inverse of the unnormalized posterior density and the different ellipses used to define the
THAMES. In this particular case the posterior covariance matrix is the scaled identity
matrix, so the ellipses are spheres. The two samples occurring at points 644 and 7216
have a very low likelihood. They cause massive jumps in the Harmonic Mean Estimator
when the radius of A is large and are excluded when the radius is equal to

√
d + 1 =

√
3.

One can choose a smaller radius (e.g., c = 0.1
√

3), but then too much of the sample is
excluded and convergence takes longer.

the CDF of the χ2-distribution with d degrees of freedom evaluated at d + Ld. This
approaches 50% due to Theorem 3.1. Thus the algorithm sets about 50% of the highest
terms in Equation (7) to 0. This means that for a large number of samples T and given
the normality assumption, our algorithm is similar to the following method:

Instead of checking whether θ(t) ∈ Aor directly, one can set roughly 50% of the
highest terms of the THAMES, the terms not included in the Highest Posterior Density
(HPD) region of size 50%, to 0.

Remark 6. It is assumed that the covariance matrix of the posterior distribution is
positive definite. This assumption is necessary since otherwise a posterior density with
respect to the Lebesgue-measure on Rd would not exist. On the other hand this as-
sumption is not restrictive, since the same estimation procedure can be applied to a
lower dimensional subspace of Rd on which a density is defined.

We can illustrate the relationship between the THAMES and the harmonic mean
estimator defined by Newton and Raftery (1994) using the toy example from Figure 1.
It was calculated using the same model as the one introduced in Section 4.1 with the
dimensions of the parameter space d = 2, but by setting the data set to D ≡ 0 to ensure
stability of the estimator on the inverse likelihood scale.
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The pdf of the Uniform distribution on the ellipse is essentially used as a rejection
rule: Values with very low posterior density (and therefore high inverse posterior density)
are rejected, while high-density values are accepted. A balance between the volume of
the ellipse and the percentage of the rejected posterior sample needs to be found to
ensure optimal performance. The harmonic mean estimator does not have this rejection
rule, so sample points with low posterior densities can lead to massive jumps.

3.3 THAMES algorithm
Below is an algorithm for the implementation of the THAMES. Procedures for sample
splitting, as well as the truncated ellipsoid correction used in the case that the parameter
space is constrained have been included. These additions are described in page 11.

We recommend these additions, but we have also found that in some cases they
make almost no difference. For example, sample splitting does not appear to have an
impact when the dimension of the parameter space, d, is small (Section 4.1), while the
truncated ellipsoid correction is negligible when the posterior mean is not close to the
edge of the posterior support (Section 4.4 and Section 4.3).

Algorithm 1 Ẑ−1 calculation.
Input: Data D and posterior samples (θ(i))i∈�1,T �.
Sample splitting: Calculate the empirical mean θ̂ and sample covariance matrix Σ̂
based on the first T/2 posterior samples (θ(i))i∈�1,T/2�.
Standardization: θ̃(i) = Σ̂−1/2(θ(i) − θ̂) for i ∈ �T/2 + 1, T �.
Truncation subset: S = {i : ‖θ̃(i)‖2

2 < d + 1}.
Calculate THAMES estimator:

Ẑ−1 = 1
T/2

T∑
i=T/2+1

h(θ(i))
L(θ(i))π(θ(i))

,

where h(θ(i)) = 1/V (A) if i ∈ S and 0 otherwise, with
V (A) =

√
|Σ̂|πd/2(d+ 1)d/2/Γ(d2 + 1) and A = {θ : (θ− θ̂)T Σ̂−1(θ− θ̂) < d+ 1}.

if the posterior support supp(θ|D) is constrained then
Simulate the sample ν(1), . . . , ν(N) from the uniform distribution on A.
Approximate the volume ratio V (A∩ supp(θ|D))/V (A) via the Monte Carlo esti-

mator

R̂ = 1
N

N∑
i=1

1{θ|π(θ)L(θ)>0}(ν(i)).

Assign Ẑ−1 ← R̂−1Ẑ−1.
end if
Output: THAMES estimator Ẑ−1.
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Sample splitting

The theoretical guarantees established in Section 3.2 operate under the assumption of
an oracle ellipsoid Aor. In particular, this means that the ellipsoid determining the
THAMES estimator Ẑ−1 is defined independently of (θ(i))i∈�1,T �. In practice, we find
that estimating A and Z−1 simultaneously using the same posterior sample can induce
bias in Ẑ−1 when the parameter space is high-dimensional. We therefore implement a
sample splitting procedure that involves estimating A and Z−1 using separate poste-
rior draws. Specifically, we first estimate the posterior mean and covariance matrix via
the empirical mean θ̂ and sample covariance Σ̂ using the first T/2 posterior samples
(θ(i))i∈�1,T/2�. Defining A as in Equation (5) based on θ̂ and Σ̂, we then calculate the
THAMES estimator Ẑ−1 using the last T/2 posterior samples (θ(i))i∈�T/2+1,T �. The
same problem was noted by Gronau et al. (2020) in their popular implementation of
bridge sampling. For this reason, the bridge sampling package uses the same sample
splitting procedure just described, in its default setting.

Correcting for the presence of constrained parameters

Whenever the posterior support of the parameters is not Rd, for example when the
parameters are variances or probabilities, it is possible that our choice of h in Equa-
tion (3), the pdf of the uniform distribution on A, is not correctly normalized. This is
due to the fact that A is not necessarily a subset of the posterior support and thus h is
not a pdf over this space.

In this case, the expectation of the THAMES is distorted by a multiplicative con-
stant:

Eθ[Ẑ−1|D] = Eθ

[
h(θ)

L(θ)π(θ)

∣∣∣∣D
]

= Z−1 · V (A ∩ supp(θ|D))
V (A) =: Z−1R, (20)

where V (A ∩ supp(θ|D)) denotes the volume of the intersection between A and the
posterior support. One way to deal with this problem is to transform the parameter
space, e.g., by setting ϑ := log(θ) if θ is a variance parameter. One can then continue
with marginal likelihood estimation on ϑ, using the transformed prior distribution. In
this case, it is of course important to include the Jacobian of the transformation when
computing the prior density. It should be noted that the default proposal used in the
bridge sampling package from Gronau et al. (2020) uses this transformation, because it
suffers from the same problem when the parameter space is constrained. This solution
is also a viable option for the THAMES, since the transformation removes the need for
any adjustments. However, this solution requires deciding on a viable transformation
for each new type of constraint (e.g., simplex constraints, interval constraints, etc.) and
the posterior behaviour of the transformed parameters may be hard to interpret. For
this reason, we suggest a different correction.

Another way is to adjust for the bias by calculating the ratio of these volumes, R,
using a simple Monte Carlo approximation: We simulate ν(1), . . . , ν(N) i.i.d.∼ Unif(A), N ∈
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N and calculate

R̂ := 1
N

N∑
i=1

1supp(θ|D)(ν(i)) = 1
N

N∑
i=1

1{θ|π(θ)L(θ)>0}(ν(i)). (21)

Given A, this is an unbiased and consistent estimator of R by the law of large numbers.
The bias-adjusted THAMES is then Ẑ−1

adj = R̂−1Ẑ−1.

The problem of the parameter space being constrained is common not only for the
THAMES, but for reciprocal importance sampling estimators in general. It has for
example been addressed by Hajargasht and Wo’zniak (2018) and Sims et al. (2008).
Hajargasht and Wo’zniak (2018) used variational Bayes techniques and showed that
these ensure that the support of the chosen h is a subset of the posterior support, under
mild conditions. Sims et al. (2008) used an ellipsoidal density truncated on a subset of
the joint support, ΘU := {θ|π(θ)L(θ) > U}, where U > 0. Since the support of π(θ)L(θ)
is equal to the posterior support, our truncation set is similar to the one chosen in Sims
et al. (2008), except that we set U = 0.

The adjustment is usually very small. The problem arises only when the posterior
mean is close enough to the edge of the parameter space. The edge of the parameter
space often indicates a priori unlikely values. For this reason it is also rare that the
data indicate posterior parameters being close to the edge. Thus the ratio between the
volumes is close to one and the variance of R̂ is small. In fact, the adjustment did not
have any sizeable impact on any of the examples simulated in Section 4. This may not
be the case, however, if the actual data generating mechanism is very different from
the model being considered. In this case, it can in practice happen that the posterior
mean is indeed very close to the edge. We show one example of this in Supplement B
Metodiev et al. (2024b).

In either case we have found that a small number of simulations, around N = 100,
is usually enough. Confidence intervals obtained from the fact that R̂ is asymptoti-
cally normal can be used to check whether the variance of R̂ is large. In this case N
should be increased to yield a more precise approximation. The computational cost of
implementing this adjustment is typically small.

4 Examples
We now describe several simulated and real data examples to assess the THAMES esti-
mator. In Sections 4.1, 4.2, and 4.3, three statistical models, for which exact expressions
of the marginal likelihood are derived, are considered. This allows us to compare the
THAMES estimated values to the exact ones for evaluation. In Section 4.4, we consider
a real data example with models for which no analytical expressions for the marginal
likelihood are available, to our knowledge, and where there is a need for reliable esti-
mators. We compare our estimator to bridge sampling, which is more complicated than
THAMES but is known to have performed well (Meng and Wong, 1996; Gronau et al.,
2020).
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4.1 Multivariate Gaussian data

We first consider the case where data Yi, i = 1, . . . , n are drawn independently from a
multivariate normal distribution:

Yi|μ iid∼ MVNd(μ, Id), i = 1, . . . , n,

along with a prior distribution on the mean vector μ:

p(μ) = MVNd(μ; 0d, s0Id),

with s0 > 0. As shown in Supplement A (Metodiev et al., 2024a), the posterior distri-
bution of the mean vector μ given the data D = {y1, . . . , yn} is given by:

p(μ|D) = MVNd(μ;mn, snId), (22)

where mn = nȳ/(n + 1/s0), ȳ = (1/n)
∑n

i=1 yi, and sn = 1/(n + 1/s0).

Interestingly, while the observations (Yi)i are independent given the vector μ, they
are not independent marginally, and the marginal likelihood does not take the form
of a product over marginal terms in i. Conversely, thanks to the isotropic Gaussian
prior distribution which is considered for μ, where the (μj)j are all iid, not only are
the vectors (Y.j)j independent given μ, they are also independent marginally. From this
property, we prove in Proposition 2 of Supplement A (Metodiev et al., 2024a) that the
marginal likelihood of the model can be written analytically as

p(D) =
d∏

j=1
MVNn(y.j ; 0n, s01n1ᵀ

n + In), (23)

where y.j ∈ Rn is the vector of all observations for variable j such that [y.j ]i = yij and
1n is the vector of 1 in Rn.

Assessing the precision of the THAMES estimator as a function of T

We first considered the univariate case d = 1. We simulated a unique sample of size
n = 20 with μ = 2 and we set s0 = 1, for illustration; other choices for s0 led to
similar conclusions regarding the quality of the estimation. Figure 2 shows the THAMES
estimated values for the log marginal likelihood, for T = 5, 1005, 2005, . . . , 9005 samples
of the posterior distribution (Equation (22)). Confidence intervals as well as the exact
value of the log marginal likelihood computed using Equation (23) are also reported.
It can be seen that the estimate converges to the correct value and that the confidence
intervals contain the true value in all cases, even for T = 5 only.

Assessing the precision of the THAMES estimator as a function of d

For this second set of experiments, we considered different values of d, and aimed at
testing the robustness of the THAMES approach on multiple data sets, with increasing
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Figure 2: Estimation of the log marginal likelihood using THAMES for a unique univari-
ate Gaussian sample with n = 20 as a function of T , the number of (cumulative) sam-
ples from the posterior distribution. The black dots indicate the values of the THAMES
estimator of the log marginal likelihood. The vertical lines represent 95% confidence
intervals, and the dashed blue line represents the exact value computed using Equation
(23).

dimensionality. Thus, for each d, we generated 50 different data sets of size n = 20
using the multivariate Gaussian model. In practice, we set the true value of μ to 2, for
all its components. Again, the prior parameter s0 was set to 1 and similar conclusions
were drawn for other values. Moreover, the value of T was set to 10, 000 for all the
experiments.

We also used this example to assess the sample splitting procedure for the posterior
samples, as proposed in Section 3.3. The results are given in Figure 3. In the figure on the
left, where no sample splitting of the posterior samples is used to compute THAMES,
we observe that a bias appears as the dimensionality of the model considered increases,
and the log marginal likelihood tends to be slightly underestimated. As illustrated by
the figure on the right hand side, this bias is primarily related to the estimation of
the posterior covariance matrix, and not to the THAMES estimation itself. Indeed,
focusing on this figure on the right, we note that if the exact expression of the posterior
covariance matrix given in Equation (22) is used to compute THAMES, then while the
variance of the estimator increases with d, we do not observe any bias. Crucially, if the
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Figure 3: Difference between the estimated log marginal likelihood using THAMES
and the true log marginal likelihood for a multivariate Gaussian model with n = 20
and T = 10000. The procedure is repeated on 50 different data sets for each d. Left:
the THAMES approach with no sample splitting of the posterior samples. Middle: the
THAMES approach with sample splitting of the posterior samples. Right: the results
provided correspond to the case where the exact expression of the posterior covariance
matrix given in Equation (22) is used to compute the THAMES.

sample splitting of the posterior samples is employed to compute THAMES, then again,
we do not observe any bias.

Overall, we found that the sample splitting procedure of the posterior samples was
not necessary to compute THAMES for low values of d. The estimated values are close to
the exact ones. However, for large values of d, we recommend using the sample splitting
procedure to remove the bias.

4.2 Bayesian regression

We consider a data set (xi, Yi), i = 1, . . . , n to train a linear regression model of the
form

Yi|xi, β, σ
2 ∼ N (xᵀ

i β, σ
2), i = 1, . . . , n.

In this section, the goal is to assess the quality of our proposed estimator. As such,
we choose a prior on (β, σ2) for which an exact expression for the marginal likelihood,
Z, exists. We compare our estimator, the THAMES, to the bridge sampling estima-
tor implemented in Gronau et al. (2020) and a simple Monte Carlo (MC) estimator,
calculated by averaging the likelihood for parameter values simulated from the prior.

Denoting Y ∈ Rn, the vector of target variables Yi, and X ∈ Mn×(d−1)(R) the
design matrix where the input vectors xi ∈ Rd−1 are stacked as row vectors, the linear
regression model becomes:

Y |X,β, σ2 ∼ MVNn(Xβ, σ2In).

We rely on a centered isotropic Gaussian prior distribution for the regression vector β
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and the variance σ2:

p(β|σ2) = MVNd−1(β; 0d−1, gσ
2(XTX)−1), p(σ2) = InvGamma

(
σ2; 1

2ν0,
1
2σ

2
0ν0

)
,

with g, σ2
0 , ν0 > 0. Introduced by Zellner (1971, 1986), this framework offers a conju-

gate prior with the attractive property of scale-invariance with respect to the regressor
(Hoff, 2009). Then the posterior distribution of (β, σ2), given the training data set
D = {(x1, y1), . . . , (xn, yn)}, is tractable:

p(β|σ2,D) = MVNd−1

(
β; g

g + 1mn,
g

g + 1σ
2(XTX)−1

)
,

p(σ2|D) = InvGamma
(
σ2; 1

2(ν0 + n), 1
2(ν0σ

2
0 + sn)

)
,

with sn = yTy− g
g+1y

TX(XTX)−1XTy and mn = (XTX)−1XTy, where y ∈ Rn is the
observed vector of target variables associated with Y . Moreover, the marginal likelihood
also has an analytical expression:

p(y|X) = (g + 1)−(d−1)/2

πn/2 ·
Γ(1

2 (ν0 + n))
Γ(1

2ν0)
·
(

ν0σ
2
0

ν0σ2
0 + sn

)ν0/2

.

Proofs for the exact expressions of the posterior and the marginal are given in Hoff
(2009, Chapter 9). The data for this example are described by Hastie et al. (2009) and
come from a study by Stamey et al. (1989). They examined the correlation between
the level of prostate-specific antigen (lpsa) and eight clinical measures in men who were
about to receive a radical prostatectomy. The variables are log cancer volume (lcavol),
log prostate weight (lweight), age, log of the amount of benign prostatic hyperplasia
(lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score
(gleason), and percent of Gleason scores 4 or 5 (pgg45). The target variable is the level
of prostate-specific antigen (lpsa).

The choice of the hyperparameter g is a topic of much discussion (Fernández et al.,
2001; Porwal and Raftery, 2022). In Porwal and Raftery (2022), g =

√
n showed good

performance when compared to a variety of different options, albeit in a slightly different
setting where the prior on σ2 is improper. For this reason, we chose g =

√
n. We chose

(ν0, σ
2
0) = (4, 1) for the other hyperparameters, but other choices for (g, ν0, σ

2
0) led to

similar conclusions regarding the quality of the estimation.

Seven different regression models M2, M3, . . . , M8, each with a different number
of selected variables, ranging from 2 to 8, are considered for illustration. The variables
are added in the order given above. Thus, M2 includes the predictor variables lcavol
and lweight, while Model M3 considers the variables lcavol, lweight, as well as age for
prediction. Finally, model M8 takes all 8 input variables into account. Figure 4 shows
the estimators of the log marginal likelihood for different number of samples from the
posterior distribution in (β, σ2), for the different models, as well as the approximate
confidence intervals.
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Figure 4: Log marginal likelihood (dotted line) and its estimators (dots) for the prostate
data set. The approximate confidence intervals of the estimators are also indicated.
Bridge sampling and THAMES are on point, while the simple Monte Carlo estimator
does not seem to have converged.

Sample splitting was used and there was no noticeable bias in the results, even
though we did not correct the THAMES for the bounded parameter σ2 due to the fact
that the posterior mode of this parameter is far away from 0. We also calculated the
bias correction from Remark 2 which had no impact numerically, even for a posterior
sample size as small as T = 50.

While the simple Monte Carlo estimator did not converge, the bridge sampling
estimator and the THAMES behaved very similarly. Indeed, it can be seen that both
these estimators converged rapidly to the correct value and that the intervals covered
the correct values in most cases, even when the number of samples used was small, for
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Figure 5: Log marginal likelihood (dotted line) and its estimators (dots) for the prostate
data set with the full model (i.e., all eight clinical measures are selected). The approxi-
mate confidence intervals of the estimators are also indicated. The confidence intervals
of the THAMES are more conservative, while the ones obtained from bridge sampling
are more narrow.

all models investigated. Figure 5 shows the estimates produced by these methods when
zoomed in on a finer scale in the full model, meaning that the number of clinical measures
is equal to 8. Notably, the confidence intervals obtained by the THAMES were more
conservative and wider than those obtained for the bridge sampling estimator, while
the estimators themselves converged in a similar speed and manner.

For all models, those two estimators are particularly precise for 1000 samples of the
posterior only. While the main goal of this section is to illustrate the precision of our
estimation strategy for a series of models, we can also report that the model with the
highest marginal likelihood, among those considered for this data set, is Model M2. In
other words, the variables lcavol and lweight are seen as key for the prediction of the
level of prostate-specific antigen.

4.3 Dirichlet-multinomial model

Extensions of the Dirichlet-multinomial model are widely used in the context of topic
modelling, see, e.g., Blei et al. (2003). The expression for the marginal likelihood in this
model is known, as in the previous two sections. This allows us to assess the performance
of our estimator in another simulation study, in a non-Gaussian context.

A simulation study in this setting is useful for two reasons: First, this is a high-
dimensional setting in which the posterior distribution of the parameters is highly non-
Gaussian. In fact, the parameter space is bounded. This allows us to assess how well
the THAMES performs in a very different setting, and also how much of an impact
the correction for a bounded parameter space from Section 3.3 has. We check this
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numerically in Supplement B (Metodiev et al., 2024b).

Second, there do exist similar models to this one for which the marginal likelihood
is not tractable, e.g. Blei and Lafferty (2007). These models are therefore a possible
application of the THAMES. The simulation study might give an idea of how well the
THAMES would perform in these applications.

The Dirichlet-multinomial model is defined as follows: Each data point Yi ∈
{0, . . . , l}K is drawn from a multinomial distribution given a Dirichlet-distributed ran-
dom variable μ:

μ ∼ Dirichlet(μ; (a0, . . . , a0)), Yi|μ i.i.d.∼ M(l, μ), ∀i = 1, . . . , n.

Here, μ is positive and K-dimensional with components summing to 1. The covariance
matrix of μ is thus necessarily singular. As noted in Remark 6, the THAMES needs to
be used on posterior simulations from the subspace of RK on which a density is defined.
In this case, this is RK−1 =: Rd. The prior density is thus

π(μ1, . . . , μd) = Dirichlet

⎛
⎝μ1, . . . , μd, 1 −

d∑
j=1

μj ; (a0, . . . , a0)

⎞
⎠ .

The posterior support is {μ ∈ Rd |
∑d

j=1 μj ≤ 1, μ1, . . . , μd > 0}. The posterior distri-
bution given the data D = {y1, . . . , yn} is tractable:

p(μ1, . . . , μd|D) = Dirichlet

⎛
⎝μ1, . . . , μd, 1 −

d∑
j=1

μj ;α1, . . . , αK

⎞
⎠ ,

with αj = a0 +
∑n

i=1 yij . The marginal likelihood is thus also tractable, using Bayes’
theorem.

Results

The marginal likelihood was estimated in the setting (n, l, T, a0) = (400, 150, 10000, 1)
with d varying between 1, 20, 50 and 100. The quantities n and l were intentionally
chosen to be large, since this model has very high-dimensional applications. For example,
Blei et al. (2003) used a data set with 8000 documents, n = 15, 818 words and used up
to K = 200 different topics.

As mentioned, an alternative to the correction proposed in Section 3.3 is to reparame-
trize μ such that the support of the parameter is unconstrained. We did this by setting

(μ(t)
1 , . . . , μ

(t)
d ) =:

(exp(ϑ(t)
1 ), . . . , exp(ϑ(t)

d ))
exp(−

∑d
k=1 ϑ

(t)
k ) +

∑d
k=1 exp(ϑ(t)

k )
= softmax(ϑ(t)), t = 1, . . . , T.

We are using a bijective version of the softmax function (we take the first d elements of
the version of the softmax which maps a sample from the Dirichlet to a parameter that
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d=1 d=20
MAE SD Time MAE SD Time

Bridge 0.0001 0.0002 6.0026 0.0019 0.0024 36.9822
MC 0.093 0.1145 0.0020 6903.4 942.444 0.0008

THAMES 0.0064 0.0087 0.0158 0.0197 0.025 0.2486
d=50 d=100
MAE SD Time MAE SD Time

Bridge 0.0037 0.0046 58.9884 0.0086 0.0108 116.5902
MC 13879.1 1231.7635 0.0004 18418.1 844.7528 0.0046

THAMES 0.0315 0.039 0.3094 0.0473 0.0617 1.0532
Table 1: Average CPU times (in seconds per 10,000 posterior draws) as well as mean
absolute errors and standard deviations for bridge sampling, the THAMES and the naive
Monte Carlo (MC) estimator (errors of the latter were rounded to 1 decimal place).
Estimates using MC are quickest to compute, but also the least precise. The THAMES
is much faster than bridge sampling, although point estimates from the latter are more
accurate.

sums to 0), and the induced prior π2(ϑ) := π(softmax(ϑ))|softmaxJacobian(ϑ)|. We stress
that this procedure is not necessary to calculate the THAMES, since the THAMES can
be calculated on any parameter space. It is however necessary to calculate the bridge
sampling estimator implemented in Gronau et al. (2020).

Table 1 shows the results when calculating the THAMES and the bridge sampling
estimator on (ϑ(1), . . . , ϑ(T )).2 A fixed parameter μ was set to μ = (1/K, . . . , 1/K) and
50 different samples were generated using the parameters l and μ. The MC estimator
was also computed for comparison.

Both bridge sampling and the THAMES outperformed the MC estimator. Addition-
ally, while the bridge sampling estimator performed better in terms of mean absolute
error, it should be noted that the THAMES is not only easier, but quicker to compute,
with their differences in computation time growing as the dimension of the parame-
ter space increases. This is likely due to the fact that the THAMES does not require
additional evaluations of the likelihood, beyond the precomputed likelihood values of
the posterior sample, so its computation time grows much more slowly with increasing
d. Meanwhile bridge sampling does require additional evaluations, which take up an
increasing amount of computation time. The average computation time for the bridge
sampling estimator is about 361 times as high for d = 1, and 118 times as high for
d = 100. However, we would like to emphasize that, in our opinion, the real strength of
our estimator lies in the fact that it is not only quick, but also easy to implement.

2Computations were performed on an Intel(R) Core(TM) i7-7700HQ CPU at 2.80GHz with 16 GB
RAM.
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4.4 Mixed effects model
Netherlands schools data

To demonstrate the performance of THAMES on a random effects model, we consider
the Netherlands (NL) schools dataset of Snijders and Bosker (1999). For our purposes,
the data consist of language test scores of 2,287 eighth-grade pupils from 133 classes (in
131 schools) in the Netherlands. We denote by yij ∈ R the language test score of pupil
i in class j, where j ∈ {1, . . . , J} with J = 133 and i ∈ {1, . . . , nj} with nj the size of
class j. Let n =

∑J
j=1 nj = 2, 287 denote the full sample size.

We aim to determine if there is clustering of language test scores by class, with
some classes performing significantly better than others on average. To do this, we
fit both a simple mean model (which treats test scores of students in the same class
as independent) and a random intercept model (which accounts for correlation of test
scores within each class) to the data. The former (null) model H0 posits that all classes
perform the same, on average, while the latter (alternative) model H1 allows for variation
in performance at the class level. We estimate the log marginal likelihoods for the two
models, Z0 and Z1, respectively, using the THAMES. For comparison, we also compute
estimates using bridge sampling (Gronau et al., 2020) and a simple Monte Carlo (MC)
estimator that averages the likelihood against draws from the prior. With estimates of
log(Z0) and log(Z1), we estimate the Bayes factor B01 to conduct a Bayesian hypothesis
test of H0 versus H1. Note that posterior simulation and marginal likelihood calculation
are not analytically tractable for this model. As such, the use of approximate posterior
sampling (e.g., via MCMC) and marginal likelihood estimation (e.g., via the THAMES)
is required.

Linear model (LM)

We first consider a simple mean model (denoted LM), which posits that

yij = μ + εij , j ∈ {1, . . . , J}, i ∈ {1, . . . , nj},
∑
j

nj = n,

εij
iid∼ N(0, σ2

ε),
μ ∼ N(μ̂, σ̂2

μ),

σ2
ε ∼ InverseGamma(ν̂ε, β̂ε).

The fixed hyperparameters μ̂, σ̂2
μ, ν̂ε, β̂ε are specified so as to ensure that the prior

distribution is dispersed relative to the likelihood, but on the same scale, as

μ̂ = mean(yij) = 40.93, σ̂2
ε =

√
2 · sd(yij) = 12.73,

ν̂ε = 0.5, β̂ε = 0.5 · var(yij) = 40.53.

The hyperparameters (ν̂ε, β̂ε) are chosen so that the prior mean of the precision 1/σ2
ε

equals 1/var(yij). The set of parameters to be estimated in this model (μ, σ2
ε) has

dimension d = 2. As we are not using a conjugate prior for the linear model, the
marginal likelihood does not admit an analytic expression in this case.
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Full linear mixed model (full LMM)

We consider the random intercept model (denoted full LMM):

yij = μ + αj + εij ,

εij
iid∼ N(0, σ2

ε),

αj
iid∼ N(0, σ2

α),
μ ∼ N(μ̂, σ̂2

μ),

σ2
ε ∼ InverseGamma(ν̂ε, β̂ε),

σ2
α ∼ InverseGamma(ν̂α, β̂α).

Here (μ̂, σ̂2
μ, ν̂ε, β̂ε) are as above and we specify ν̂α = 0.5, β̂α = 0.5 · var(μ̂j) = 13.77,

where μ̂j = 1
nj

∑nj

i=1 yij is the sample mean for class j ∈ {1, . . . , J}. The hyperparame-
ters (ν̂α, β̂α) are chosen so that the prior mean of the precision 1/σ2

α equals 1/var(μ̂j).
The set of parameters to be estimated in this model (μ, σ2

ε , σ
2
α, α) has dimension d = 136.

Reduced linear mixed model (reduced LMM)

Note that the intercept parameters of the full LMM are not identifiable, as there is
give-and-take between estimating the grand mean μ and the random intercepts αj .
By absorbing αj into the error term structure εij , we can specify an equivalent model
(having the same marginal likelihood) with d = 3 identifiable parameters (μ, σ2

ε , σ
2
α).

This amounts to marginalizing the αj ’s out of the model. The model (which we call
reduced LMM) is given by

yij = μ + εij ,

εij ∼ N(0, σ2
ε + σ2

α),
Cov(εij , εi′j) = σ2

α, i, i′ ∈ {1, . . . , nj}, i �= i′,

Cov(εij , εi′j′) = 0, j �= j′,

μ ∼ N(μ̂, σ̂2
μ),

σ2
ε ∼ InverseGamma(ν̂ε, β̂ε),

σ2
α ∼ InverseGamma(ν̂α, β̂α).

Here (μ̂, σ̂2
μ, ν̂ε, β̂ε, ν̂α, β̂α) are as above.

Results

Figure 6 shows the log marginal likelihood of the NL schools data for each model
computed using the THAMES, bridge sampling, and simple Monte Carlo estimators
with approximate 95% confidence intervals as a function of the number of posterior
MCMC or prior MC draws. Bridge sampling is a popular state-of-the-art method to
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Figure 6: Log marginal likelihood estimates for models fitted to the NL schools data.

estimate log marginal likelihoods from posterior MCMC samples, which is substantially
more complicated computationally than the THAMES. Posterior MCMC sampling is
carried out in R using Stan (R Core Team, 2023; Stan Development Team, 2022). We
use values of the sample size T evenly spaced between 1,000 and 20,000. For each T , we
run 4 chains in parallel for T/2 iterations and remove the first T/4 as burn-in, yielding
T/4 MCMC samples from each of the 4 chains, which are used to compute the THAMES
and bridge sampling estimates.

THAMES provides consistent estimates of the log marginal likelihood with greater
precision as the posterior sample size grows. As we would expect, THAMES converges
much faster for the LM (with d = 2) and the reduced LMM (with d = 3) than for
the full LMM (with d = 136), although the estimates of the reduced and full LMM
converge to the same value. While the posterior support of this model is constrained
due to the variance parameters (σ2

ε , σ
2
α), we found that the truncation correction defined

in Section 3.3 had no impact on the results. For a given posterior sample size, we find
that bridge sampling generally produces more precise estimates than the THAMES.
However, the THAMES has the advantage of being much simpler to implement and
more computationally efficient in practice. On average over the samples in Figure 6,
bridge sampling required 6.4 times as much computation time as the THAMES for the
full LMM, 556.5 times as much for the reduced LMM, and 26.8 times as much for the
LM when estimated from the same number of posterior draws, as reported in Table 2.3
The MC estimator, while fast and theoretically unbiased and consistent, suffers from
substantial variance. In the left panel of Figure 6, the MC estimates are not shown as
they lie outside the range of the plot.

Using the THAMES estimates of the log marginal likelihoods for the LM (log(Z0))
and the (reduced) LMM (log(Z1)) with 20,000 posterior draws, the log Bayes factor
(log(B01)) is estimated as

log(B01) = log(Z0) − log(Z1) = −8278.842 + 8136.561 = −142.281,

3Computations were performed on an Apple M1 chip with 3.20GHz processor and 16 GB RAM.
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Full LMM Reduced LMM LM
Bridge 0.3815 1.6482 0.0723
MC 0.0002 0.0002 0.0002

THAMES 0.0581 0.0030 0.0027
Table 2: Average CPU times (in seconds per 1,000 posterior draws) to produce the
estimates in Figure 6. The THAMES is faster than bridge sampling. Both take more
time for the same number of iterations than the naive Monte Carlo (MC) estimator in
terms of CPU time, even though the latter is far less precise (see Figure 6).

indicating decisive evidence in favor of the random intercept model (Kass and Raftery,
1995).

5 Discussion
We have proposed an estimator of the reciprocal of the marginal likelihood, called the
THAMES, which is simple to compute, unbiased, consistent, has finite variance and is
asymptotically normal, with available confidence intervals. It is a version of reciprocal
importance sampling. The estimator has one user-specified control parameter, and we
have derived an optimal value for this in the situation where the posterior distribution
is normal, which is of great interest because posterior distributions are asymptotically
normal in many situations. We have carried out several numerical experiments in which
the estimator performs well.

A similar proposal was made independently in McEwen et al. (2022) under the
name “Learned harmonic mean estimator”, where a variety of different sample models
were suggested to work in conjunction. One of these models, the “Hypersphere”, cor-
responds to the THAMES, the difference being that no theoretical results were given
for the optimal control parameter, c. Instead, c was optimized numerically as the mini-
mum of the second harmonic moment, via the Brent hybrid root-finding algorithm. In
the only high-dimensional application, which was in fact a Gaussian posterior, c was
not optimized and it was noted that “alternative more effective target models can be
developed that better scale to higher-dimensional settings”. We believe that with the
THAMES, using the suggested optimal controlling parameter, this is the case.

The THAMES relies on estimating the posterior covariance matrix and mean. In
our experience it is important that the estimator chosen for the covariance matrix be
accurate for estimating each matrix entry. Elementwise accuracy appears to be impor-
tant because the covariance matrix is used to precisely define a quadratic inequality.
For example, using a shrinkage estimator for the covariance matrix, which can produce
large errors in a small proportion of its elements, has in our experience degraded the
performance of the THAMES in some situations.

One possible alternative to covariance matrix estimation would be to select a mini-
mum-volume covering ellipse which includes a certain percentage of those points of
the posterior sample which have the largest value with respect to the (unnormalized)
posterior density evaluated at those points. This would ensure that an HPD-region is
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well approximated, independent of the underlying posterior distribution. Determining a
minimum-volume covering ellipse given a set of points can be difficult computationally,
but this problem has been addressed in the literature in different settings and could
possibly be adapted to the THAMES.
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Supplement A: Proofs and Calculations (DOI: 10.1214/24-BA1422SUPPA; .pdf). We
prove the analytic results from Section 3 and derive the exact expression of the posterior
and marginal density used for the multinomial likelihood in Section 4.

Supplement B: Additional Simulations (DOI: 10.1214/24-BA1422SUPPB; .pdf). We
give some additional, numeric results about the approximate behaviour of the THAMES
in the normal case as well as the case where the posterior support is constrained.
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