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Posterior Sampling From Truncated
Ferguson-Klass Representation of Normalised

Completely Random Measure Mixtures

Junyi Zhang∗ and Angelos Dassios†

Abstract. In this paper, we study the finite approximation of the completely
random measure (CRM) by truncating its Ferguson-Klass representation. The
approximation is obtained by keeping the N largest atom weights of the CRM
unchanged and combining the smaller atom weights into a single term. We develop
the simulation algorithms for the approximation and characterise its posterior dis-
tribution, for which a blocked Gibbs sampler is devised. We demonstrate the usage
of the approximation in two models. The first assumes such an approximation as
the mixing distribution of a Bayesian nonparametric mixture model and leads to
a finite approximation to the model posterior. The second concerns the finite ap-
proximation to the Caron-Fox model. Examples and numerical implementations
are given based on the gamma, stable and generalised gamma processes.
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1 Introduction
Completely random measures (CRMs) (Kingman 1967) and their normalisations (known
as the normalised random measures with independent increments, or NRMIs) (Regazzini
et al. 2003) are a rich and flexible class of Bayesian nonparametric priors. The most
fundamental nonparametric prior, namely the Dirichlet process (Ferguson 1973), is an
NRMI derived by normalising the increments of a gamma process. Other celebrated
examples include the normalised stable process (Kingman 1975), the normalised inverse-
Gaussian (NIG) process (Lijoi et al. 2005), the normalised generalised gamma (NGG)
process (Brix 1999, Lijoi et al. 2007, Barrios et al. 2013) and the beta process (Hjort
1990, Kim 1999, Thibaux and Jordan 2007, Broderick et al. 2012). As explained by
James et al. (2009), the variety of nonparametric priors mainly arises from their high
flexibility in density estimation and clustering problems, with the aim of overcoming
some of the drawbacks of the Dirichlet process. In fact, the Dirichlet process allocates
the observations into clusters with probabilities depending only on the current cluster
sizes and the concentration parameter. The NIG and NGG processes generalise the
Dirichlet process by adding extra parameters to the cluster allocation probabilities,
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2 Finite Approximation To CRM

thus having further degrees of freedom compared to the Dirichlet process, and their
posterior analysis relies on the properties of the underlying CRMs. We refer to Phadia
(2016) and Ghosal and van der Vaart (2017) for a comprehensive review of the different
CRMs and their properties. In addition, we remark that the CRMs are also related to
the Gibbs-type priors, a generalisation of the Dirichlet process. A systematic and unified
treatment of the Gibbs–type priors can be found in De Blasi et al. (2015).

Since the distribution of the nonparametric prior involves an infinite number of vari-
ables, an explicit representation of the prior is not available in practice, as we cannot
simulate or store infinitely many random variables. To facilitate the posterior infer-
ence, the existing literature has introduced two major approaches: the marginal and
conditional schemes. The marginal scheme integrates out the infinite number of latent
variables and leads to a Pólya urn scheme for the predictive distribution. See Ishwaran
and James (2001) and Favaro and Teh (2013) for further discussion. For the Dirichlet
process mixture model, we refer the reader to Algorithm 8 of Neal (2000), which is the
standard marginal posterior inference scheme. The conditional scheme, on the other
hand, focuses on the finite representation of the nonparametric prior. Ishwaran and
James (2001) and Ishwaran and James (2002) truncated the stick-breaking represen-
tation of the Dirichlet and Pitman-Yor processes at a deterministic level and analysed
the truncation error. Walker (2007) and Kalli et al. (2011) proposed a slice sampler
that avoids the user-specified truncation level and leads to an exact sampling scheme.
Muliere and Tardella (1998) proposed a random stopping rule for the Dirichlet process,
which allows a priori control of the truncation error. Arbel et al. (2019) extended this
method to the Pitman-Yor process. Lee et al. (2016) used the finite-dimensional BFRY
process (Bertoin et al. 2006) to approximate the generalised gamma process. Argiento
et al. (2016b) developed the ε-approximation for the general CRMs by discarding the
atom weights smaller than a threshold, and an implementation of this method for the
NGG process can be found in Argiento et al. (2016a). Lee et al. (2023) proposed a gen-
eral and unified framework to derive both series representation and finite-dimensional
approximation of the CRMs. Their method includes several well-known representations
and approximations of the CRMs, including the Ferguson-Klass representation and the
BFRY process approximation, as special cases.

In this work, we introduce a novel finite approximation to the general CRMs and
their normalisations. Our approximation is obtained by (i) sorting the atom weights of
the CRM in descending order and including the N atoms with the largest weights in
the approximation; (ii) combining the infinite number of atoms with smaller weights
into a single term and retaining it in the approximation. Thus, our method produces
an (N +1) dimensional approximation for the CRM. Although the idea of ranked atom
weights has been considered in Ferguson and Klass (1972), Walker and Damien (2000),
Griffin (2016), Arbel and Prünster (2017) and Lee et al. (2023), our method differs
from the existing works in the way that the smaller atom weights, which are usually
ignored, are retained in the finite approximation. As a result, our approximation has the
same total mass as the CRM. On the other hand, Muliere and Tardella (1998) and Arbel
et al. (2019) truncated the stick-breaking representation of the Dirichlet and Pitman-Yor
processes and assigned the residual mass to a single term. However, this approach relies
on the availability of the stick-breaking representation, which is still an open problem
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for general NRMIs. Also, in the stick-breaking representation, the atom weights are only
decreasing in the mean. Hence, our approximation has the key advantages of preserving
the total mass of the CRM and producing almost surely decreasing atom weights. Such
an approximation method was initially introduced by Zhang and Dassios (2023), where
the focus was solely given to the Dirichlet process. In the current work, we extend this
method to the general CRMs. To this end, we will make a comprehensive study about the
simulation algorithms of the finite approximation of CRMs. Also, the posterior inference
scheme developed by Zhang and Dassios (2023) involves the derivative of the density
of a truncated gamma process, which is overcomplicated and unnecessary. The current
work will provide a simplified inference scheme that is easier to derive and implement.

We will illustrate the usage of our approximation in the Bayesian nonparametric
mixture model and the Caron-Fox model. The analysis of the mixture model is the
most fundamental problem in Bayesian nonparametric statistics. In this work, we de-
velop a new posterior inference scheme based on the truncated Ferguson-Klass repre-
sentation of the NRMI prior. We will illustrate the effectiveness of this method in the
normal-normal/inverse gamma model based on the NGG process mixing distribution
and compare it with the BNPdensity package developed by Arbel et al. (2021).

The Caron-Fox model is a celebrated innovation that introduces Bayesian nonpara-
metric methods to statistical network modelling. It assumes that the sociabilities of the
nodes in the network are generated by the atom weights of a CRM. Due to the CRM
prior, the model’s posterior involves infinite variables. Caron and Fox (2017) suggested
dividing the nodes into two types, namely the nodes with at least one edge (the active
nodes) and the nodes without any edge (the silent nodes). Since the number of edges
is finite in the observation, the number of active nodes must also be finite. Then, they
developed an MCMC algorithm that estimates the sociabilities of the active node and
the total sociability of the silent nodes. Alternatively, Li and Campbell (2021) truncated
the sequential representation of the CRM at a fixed level and derived the upper and
lower bounds of the probability that all the active nodes are in the truncation region.
They also developed an adaptive Metropolis-Hastings sampler for posterior inference.
In addition, for the network model based on the generalised gamma process prior, Naik
et al. (2022) approximated the prior with the approximations proposed by Lee et al.
(2023) and designed an MCMC sampler for posterior inference.

In this paper, we propose a new posterior approximation method for the Caron-Fox
model. The proposed approach is motivated by the fact that there could be a significant
difference between the number of edges possessed by the active nodes, and we are more
interested in the nodes with more edges. In a social network, for example, a few popular
users usually enjoy a large number of followers, while the majority of users have very few
followers. In this case, we are more interested in the most popular users, and the users
with very few followers are usually less relevant to practical applications such as the
social network recommendation system. When the data set contains a huge number of
nodes, we want to focus on the N nodes with the highest sociabilities and combine the
other nodes, either with fewer edges or without any edge, into a single term. This can be
achieved by replacing the CRM prior with the truncated Ferguson-Klass representation
developed in this work.
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The contribution of this paper includes the following three aspects: (i) a new finite
approximation for the CRMs which preserves the total mass of the CRM and produces
almost surely decreasing atom weights, (ii) a new posterior inference scheme which sig-
nificantly simplifies the algorithm in Zhang and Dassios (2023), and (iii) a new truncated
simulation and approximate inference scheme for the Caron-Fox model.

The rest of the paper is organised as follows. Section 2 reviews the basic properties of
the CRMs and NRMIs. We also briefly introduce the Bayesian nonparametric mixture
model and the Caron-Fox model in this section. Section 3 constructs the truncated
Ferguson-Klass representation of the CRMs and develops the simulation algorithms for
the approximation. Section 4 devises a blocked Gibbs sampler for the posterior of the
approximation process. Section 5 presents examples of the proposed approximation for
several well-known CRMs. Section 6 contains the numerical implementations. Section 7
discusses the perspective of the work.

2 Preliminaries
In this section, we briefly review the characterisation of a homogeneous pure-atomic
completely random measure via the increments of a subordinator. Consider a Lévy
process τ on R+ := [0,∞) with the Lévy-Khintchine representation

E(e−βτ ) = exp
(
−
∫ ∞

0
(1 − e−βw)ρ(dw)

)
,

where ρ(dw) is a Lévy measure satisfying∫ ∞

0
ρ(dw) = ∞ and

∫ ∞

0
min(1, w)ρ(dw) < ∞.

The Lévy process will generate a countable infinity of jumps {J̃i}i≥1, for J̃i ∈ R+,
having an almost surely finite sum τ =

∑∞
i=1 J̃i < ∞. Thus, τ is known as a pure-jump

infinite-activity Lévy process, or a subordinator. Throughout this paper, we will use the
tilde notation to emphasise that the sequence of jumps {J̃i}i≥1 is presented according
to the time of the jumps without any reordering.

In a Bayesian nonparametric model, each jump J̃i represents the possibility or fre-
quency of the i-th parameter, denoted by Ki. We assume that the sequence of random
variables {Ki}i≥1 are i.i.d. with some base distribution G0 on the support S, which is
independent of the jumps. Then, we can construct a CRM which assigns the frequency
J̃i to the parameter Ki, for i = 1, 2, . . . . The CRM has the format

Θ̃∞(.) :=
∞∑
i=1

J̃iδKi(.) ∼ CRM(ρ),

where δKi(.) denotes a point mass at Ki. We refer to Θ̃∞ as a CRM derived from the
Lévy measure ρ(dw), abbreviated by Θ̃∞ ∼ CRM(ρ). The base distribution G0 is left
implicit in the definition as it has no effect on our analysis. The CRM itself could serve
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as the prior of a Bayesian nonparametric model, and a likelihood process can be defined
based on it. In the current research, however, we are more interested in the normalised
CRM. Since the total mass of the CRM is given by Θ̃∞(S) =

∑∞
i=1 J̃i = τ , a random

probability measure can be defined through the normalisation of a CRM:

P̃∞(.) := Θ̃∞(.)
Θ̃∞(S)

=
∞∑
i=1

p̃iδKi(.) =
∞∑
i=1

J̃i
τ
δKi(.) ∼ NRMI(ρ).

We refer to P̃∞ as a NRMI (Regazzini et al. 2003, James et al. 2009) derived from the
Lévy measure ρ(dw), abbreviated by P̃∞ ∼ NRMI(ρ). The tilde notation has the same
meaning as before, i.e., the sequence of probability masses {p̃i}i≥1 is presented without
any reordering. Well-known nonparametric priors derived from the NRMI include the
Dirichlet, NIG and NGG processes.

Using the NRMI as the mixing distribution, we consider the following Bayesian
nonparametric mixture model:

Xi | Yi ∼ K(Xi | Yi), Yi | P̃∞
iid∼ P̃∞, P̃∞ ∼ NRMI(ρ), i = 1, . . . , n, (2.1)

where X1, . . . , Xn represent the observations, they are assumed to be independent condi-
tionally on the latent variables Yi. The mixture kernel K(Xi | Yi) denotes the conditional
distribution of Xi given Yi. The latent variables Yi are i.i.d. according to P̃∞, and the
mixing distribution P̃∞ is a sample of NRMI(ρ). In the successive sections, we will
propose a finite approximation to the NRMI(ρ) prior and develop a posterior inference
scheme for the mixture model based on it.

Apart from serving as the mixing distribution, the application of CRMs has also
been found in statistical network modelling. Consider a Caron-Fox model Z in terms of

Z =
n∑

j=1
δ{sj ,rj}, sj , rj

iid∼ Θ̃∞(.)
Θ̃∞(S)

=
∞∑
i=1

J̃i
τ
δKi(.), n ∼ Pois(τ2), Θ̃∞ ∼ CRM(ρ),

(2.2)

where each pair of sj and rj stands for the indices of the origin and destination nodes
of the j-th edge, for j = 1, . . . , n. They are chosen independently according to the
normalised random measure Θ̃∞(.)/Θ̃∞(S). The latent variables {J̃i}i≥1 denote the
sociabilities of the nodes. A node with a higher sociability is more likely to send or receive
an edge. The total number of edges in the network is assumed to be a Poisson random
number with mean τ2 = (Θ̃∞(S))2, meaning that more edges are expected if the nodes
have higher sociabilities. Assume that the observation of model (2.2) contains Na active
nodes, we will use the notation ñij for the number of edges from the i-th active node to
the j-th active node, for 1 ≤ i, j ≤ Na. We also denote by m̃i :=

∑Na

j=1(ñij + ñji) > 0
the total number of edges sent or received by the i-th active node, for i = 1, . . . , Na.

If we remove the Poisson assumption on the total number of edges and use a fixed n
instead, the actual sociabilities {J̃i}i≥1 have no effect on the distribution of the edges,
and only their proportions are relevant. Then we can replace the CRM(ρ) prior by its
normalisation NRMI(ρ). To this end, Williamson (2016) introduced a network model
based on the Dirichlet process prior and used it to study the link prediction problem.
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3 Finite approximation of CRMs
The goal of this section is the development of the truncated Ferguson-Klass represen-
tation of the CRMs and their normalisations. Since the random variables {Ki}i≥1 are
i.i.d., the CRM Θ̃∞(.) =

∑∞
i=1 J̃iδKi(.) is identical in distribution to a reordering of its

components. In particular, let J1 > J2 > . . . be the ranked values of {J̃i}i≥1, then the
Ferguson-Klass representation of a CRM is given by

Θ∞(.) :=
∞∑
i=1

JiδKi(.).

The ranked jumps can be derived from the inverse Lévy measure Ji := ρ←(Γi), where
ρ←(w) := inf{x | ρ(x,∞) ≤ w}, ρ(x,∞) :=

∫∞
x

ρ(dw) denotes the tail distribution
of the Lévy measure, Γi :=

∑i
j=1 Ej , and Ej ∼ Exp(1) are i.i.d. exponential random

variables with mean 1. Although Θ̃∞ and Θ∞ are identical in distribution, they lead to
different truncation methods. We consider the following finite approximation to Θ∞:

ΘN (.) :=
N∑
i=1

JiδKi(.) + (N)τδK0(.) ∼ N-CRM(ρ),

where K0 is an independent sample of G0, and (N)τ :=
∑∞

i=N+1 Ji stands for the N -
trimmed subordinator (Ipsen and Maller 2017) derived from τ , i.e., the process obtained
by removing the N largest jumps from τ . We refer to ΘN as the truncated Ferguson-
Klass representation of Θ̃∞, abbreviated by N-CRM(ρ). It follows immediately that
ΘN → Θ̃∞ in distribution almost surely as N → ∞. Based on a decreasing sequence
of atom weights, the truncated Ferguson-Klass representation has the lowest approxi-
mating error compared to other truncated sequential representations of the CRMs. See
Campbell et al. (2019) for more details.

Since Θ̃∞(S) = ΘN (S) = τ , our approximation has the same total mass as the CRM.
Therefore, we can easily construct a finite approximation to NRMI(ρ). Let p1 > p2 > . . .
be the ranked values of the probability masses {p̃i}i≥1. The truncated Ferguson-Klass
representation of P̃∞ is given by

PN (.) := ΘN (.)
ΘN (S) =

N∑
i=1

piδKi(.) + eNδK0(.) ∼ N-NRMI(ρ), (3.1)

where the N largest probability masses have the representation pi = Ji/τ , for i =
1, . . . , N , and the sum of smaller probability masses has the representation eN :=∑∞

i=N+1 pi =
∑∞

i=N+1 Ji/τ . We refer to PN as the truncated Ferguson-Klass repre-
sentation of P̃∞, abbreviated by N-NRMI(ρ). By definition, PN → P̃∞ in distribution
almost surely as N → ∞. Thus, PN provides a finite approximation to the distribution
of P̃∞, and the approximation error is revealed by the tail probability eN .

From the discussion above, it is clear that the construction of N-CRM(ρ) and
N-NRMI(ρ) depends on the N largest jumps and the sum of smaller jumps, namely
(J1, . . . , JN , (N)τ), of the subordinator τ . To derive their joint density, we first prepare
a lemma concerning the distribution of a N -trimmed subordinator.



J. Zhang and A. Dassios 7

Lemma 3.1. Let {Ji}∞i=1 be the ranked jumps of a subordinator τ with Lévy measure
ρ(dw) such that J1 > J2 > . . . and τ =

∑∞
i=1 Ji. Denote by (N)τ :=

∑∞
i=N+1 Ji the N -

trimmed subordinator derived from τ . The conditional density of (N)τ , given J1, . . . , JN ,
is

fρ,JN
(z) =

n−1∑
i=0

(−t)i

i! Li(z),

where Li(z) is defined recursively as follows:

L0(z) = fρ(z) exp
(∫ ∞

JN

ρ(dw)
)
, for z > 0,

Li+1(z) =
∫ z−iJN

JN

Li(z − w)ρ(dw), for z > (i + 1)JN ,

and fρ(z) stands for the density of τ .

From the basic properties of the Poisson random measure (see, for example, Section
2.2 of Kyprianou 2006), we obtain the joint density of (J1, . . . , JN , (N)τ) as follows,

P(J1 ∈ dx1, . . . , JN ∈ dxN , (N)τ ∈ dy)
= e−ρ(xN ,∞)ρ(x1) . . . ρ(xN )fρ,xN

(y)dydxN . . . dx1,
(3.2)

where x1 > x2 > · · · > xN > 0 and y ∈ (0,∞). However, in simulation and posterior
inference problems, it is more convenient to work with the ratio between two consecutive
jumps. To this end, we provide an alternative expression for the joint density in the
following theorem.

Theorem 3.2. Under the settings of Lemma 3.1, denote by Rk := Jk+1/Jk the ratio
between the (k+1)-th and k-th largest jumps of the subordinator τ , then the joint density
of (R1, . . . , RN−1, JN , (N)τ) is

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz, (N)τ ∈ dy)

= e−ρ(z,∞)ρ(z)Π−1

(
N−1∏
i=1

(zΠ−1r1 . . . ri−1)ρ(zΠ−1r1 . . . ri−1)
)

× fρ,z(y)dydzdrN−1 . . . dr1,

(3.3)

where Π := r1 . . . rN−1, ri ∈ (0, 1), for i = 1, . . . , N − 1, z ∈ (0,∞), y ∈ (0,∞), and
fρ,z(y) is given in Lemma 3.1 with JN = z.

Next, we introduce four different simulation algorithms for N-CRM(ρ): the ILM
algorithm, the rejection algorithm, the AR algorithm and the MCMC algorithm. These
algorithms differ from each other in the simulation method of the N largest jumps
J1, . . . , JN , and a suitable choice of the algorithm is critical for the efficient simulation
of the jumps. On the other hand, the simulation algorithm for (N)τ varies for different
Lévy measures. Thus, we use a generic description here and illustrate the details for some
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celebrated nonparametric priors in Section 5. We will also compare the performance of
the different algorithms in Section 6 to demonstrate the importance of the variety of
the simulation algorithms.

To sample from the N largest jumps, it is straightforward to use the inverse Lévy
measure (ILM) algorithm (Wolpert and Ickstadt 1998) given as follows.

Algorithm 3.3 (ILM algorithm). Simulation algorithm for (J1, . . . , JN , (N)τ).

1. Set Γ0 ← 0.

2. For i = 1, . . . , N , set Γi ← Γi−1 + Exp(1), then solve the equation Γi =
∫∞
x

ρ(dw)
and set Ji ← x.

3. Simulate a subordinator (N)τ with the Lévy measure ρ(dw)1(0,JN )(w).

The ILM algorithm is preferable when the tail distribution of the Lévy measure
admits an explicit inversion. However, apart from a few special cases, for example, the
stable process, the tail distribution has no close form, and we must solve the equations in
Step 2 numerically. The integral in the equation might cause a computational problem,
but we can use special functions to improve the performance of the algorithm. For exam-
ple, the Lévy measure of the gamma process has the tail distribution

∫∞
x

w−1e−wdw =
E1(x), where E1(·) denotes the exponential integral. The Lévy measure of the gen-
eralised gamma process has the tail distribution

∫∞
x

w−αe−μwdw = μα−1Γ(1 − α, xμ),
where Γ(·, ·) denotes the upper incomplete gamma function. Efficient computation meth-
ods for these functions have been well studied in the existing literature, and the packages
are available in various programming languages.

Alternatively, we can use the rejection algorithm to sample from J1, . . . , JN . The
algorithm is based on the rejection representation (Rosiński 2001) of the CRMs. To
implement this algorithm, we need to find an envelope Lévy measure ρ0(dw), such that
dρ/dρ0 ≤ 1 uniformly and the ILM algorithm is easy to use for ρ0. The details of the
algorithm are given as follows.

Algorithm 3.4 (Rejection algorithm). Simulation algorithm for (J1, . . . , JN , (N)τ).

1. Set k ← 1, i ← 1, Γ0 ← 0.

2. While k ≤ N

(a) Set Γi ← Γi−1 + Exp(1), then solve the equation Γi =
∫∞
x

ρ0(dw) and set
J0
i ← x.

(b) Set Ui ← U(0, 1). If Ui ≤ ρ(J0
i )/ρ0(J0

i ), set Jk ← J0
i and k ← k + 1.

(c) Set i ← i + 1.

3. Simulate a subordinator (N)τ with the Lévy measure ρ(dw)1(0,JN )(w).
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The expected number of rejections in Step 2 can be found in Campbell et al. (2019).
Note that the rejection algorithm is particularly useful for the Dirichlet process. See
Section 5 for more details.

Another approach is to use the acceptance-rejection (AR) method to sample from
J1, . . . , JN . This method hinges on the availability of the envelopes for the target den-
sities in Step 1 and 2. The details of the algorithm are given as follows.

Algorithm 3.5 (AR algorithm). Simulation algorithm for (J1, . . . , JN , (N)τ).

1. Sample from the target density

exp
(
−
∫ ∞

x1

ρ(dw)
)
ρ(x1), for x1 ∈ (0,∞),

using the acceptance-rejection method, set the outcome as J1.

2. For k = 2, . . . , N , sample from the target density

exp
(
−
∫ Jk−1

xk

ρ(dw)
)
ρ(xk), for xk ∈ (0, Jk−1),

using the acceptance-rejection method, set the outcome as Jk.

3. Simulate a subordinator (N)τ with the Lévy measure ρ(dw)1(0,JN )(w).

In addition, we can use the Markov chain Monte Carlo (MCMC) method to draw
from the joint density (3.3). This algorithm is simply described as running Algorithm 4.2,
which will be explained later, iteratively with n = 0. We refer to this algorithm as the
MCMC algorithm.

We remark that the outcomes of all four algorithms above share the same distribu-
tion. In fact, Rosiński (2001) has shown the validity of the rejection representation of
the CRMs. Using the ILM algorithm as the proposal in Step 2 of Algorithm 3.4, we
are actually sampling from the N largest atom weights of the rejection representation,
and thus that of the CRM. On the other hand, the AR algorithm is simply a version of
the ILM algorithm when the inverse Lévy measure is not available in close form. The
effectiveness of the MCMC algorithm is clear as it draws from the target density (3.3)
directly. We remark that it is straightforward to set τ ← J1 + · · · + JN + (N)τ and
(p1, . . . , pN , eN ) ← (J1/τ, . . . , JN/τ, (N)τ/τ) in the last step of these algorithms, such
that the output becomes a sample of the probability masses of N-NRMI(ρ).

To close this section, we discuss the approximation error of N-CRM(ρ). From the
definition, it is clear that the approximation error is revealed by (N)τ . To derive the
distribution of (N)τ , it is theoretically possible to integrate out R1, . . . , RN−1, JN from
the joint density (3.3), that is,

P((N)τ ∈ dy)

=
∫

0<r1,...,rN−1<1,z>0
P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz, (N)τ ∈ dy),
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for y > 0. Similarly, the approximation error of N-NRMI(ρ) is given by eN . We could
express eN in terms of

{eN = y | R1, . . . , RN−1, JN}

=
{

(N)τ = y

1 − y
JN (R−1

1 . . . R−1
N−1 + · · · + R−1

N−1 + 1) | R1, . . . , RN−1, JN

}
,

and use the joint distribution of R1, . . . , RN−1, JN to integrate out the conditionals,

P(eN ∈ dy) =
∫

0<r1,...,rN−1<1,z>0
fρ,z

(
y

1 − y
z(r−1

1 . . . r−1
N−1 + · · · + r−1

N−1 + 1)
)

×P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz),

for y ∈ (0, 1). However, for many heavily used Lévy measures, these integrals would be
too complicated to calculate in close form. For this reason, we suggest using the simula-
tion algorithms introduced in this section to estimate E((N)τ) and E(eN ) numerically.
An numerical implementation of this method will be given in Section 6.

4 Posterior inference
In this section, we study the posterior inference problems of the models based on the
N-CRM(ρ) and N-NRMI(ρ) priors. For the Bayesian nonparametric mixture model
(2.1), we replace the NRMI prior by the finite approximation N-NRMI(ρ) and consider
the following parametric model,

Xi | Yi ∼ K(Xi | Yi), Yi | PN
iid∼ PN , PN ∼ N-NRMI(ρ), i = 1, . . . , n. (4.1)

Recall that Lemma 5.2 of Campbell et al. (2019) (see also Campbell 2016) showed that

0.5||pn,∞ − pn,N ||1 ≤ 1 − P(X1:n ⊆ support(PN )),

where pn,∞ and pn,N are the marginal densities of the observations X1, . . . , Xn from
model (2.1) and (4.1), respectively. Since the supports of P̃∞ and PN overlap only on
the first N terms of PN , i.e., K1, . . .KN , Jensen’s inequality implies that

P(X1:n ⊆ support(PN )) = E

[(
J1 + · · · + JN∑∞

i=1 Ji

)n]
≥ E

(
J1 + · · · + JN∑∞

i=1 Ji

)n

= P(X1 ∈ support(PN ))n = (1 − E(eN ))n.

It follows that the marginal densities pn,∞ and pn,N would become closer if there
are more overlaps between the supports of P̃∞ and PN . When N → ∞, P(X1:n ⊆
support(PN )) → 1, and the two marginal densities become identical. Thus, the posterior
of model (4.1) provides a finite approximation to that of model (2.1). The convergence
rate between the two marginal densities relies on E(eN ), in other words, the expectation
of the approximation error of the prior. See Theorem 5.3 of Campbell et al. (2019) for
a further derivation of the error bound.
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To sample from the posterior of model (4.1), we first consider a special case where
the mixture kernel K(Xi | Yi) is a point mass at Yi. In this case, model (2.1) reduces to
a hierarchical model in terms of

Xi | P̃∞
iid∼ P̃∞, P̃∞ ∼ NRMI(ρ), i = 1, . . . , n. (4.2)

Using the same argument as before, we replace the NRMI prior by the finite approxi-
mation N-NRMI(ρ) and consider the following finite-dimensional hierarchical model,

Xi | PN
iid∼ PN , PN ∼ N-NRMI(ρ), i = 1, . . . , n. (4.3)

Next, we devise a blocked Gibbs sampler for the posterior of model (4.3). The sampler
will be used in the posterior inference of the Bayesian nonparametric mixture model
and the Caron-Fox model.

4.1 Blocked Gibbs sampler

We first characterise the posterior of model (4.3). Denote by Σ := 1 + R1 + · · · +
R1 . . . RN−1 and rewrite the representations of the probability masses in (3.1) as

pi = JNΠ−1R1 . . . Ri−1

JNΠ−1Σ + (N)τ
, for i = 1, . . . , N, eN =

(N)τ

JNΠ−1Σ + (N)τ
. (4.4)

Let X1, . . . , Xn be the observations of model (4.3), and let ni = card{Xj = Ki} be the
number of observations which equal Ki, for i = 0, 1 . . . , N , then n =

∑N
i=0 ni is the total

number of observations. Conditioning on p1, . . . , pN , eN , the likelihood of PN follows
the multinomial distribution Multi(n1, . . . , nN , n0; p1, . . . , pN , eN ). Thus, the posterior
of model (4.3) is proportional to

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz, (N)τ ∈ dy | K)

∝ zn1+···+nN r−n1
1 . . . r

−(n1+···+nN−1)
N−1 yn0(zΠ−1Σ + y)−ne−ρ(z,∞)ρ(z)Π−1

×
(

N−1∏
i=1

(zΠ−1r1 . . . ri−1)ρ(zΠ−1r1 . . . ri−1)
)
fρ,z(y)dydzdrN−1 . . . dr1,

(4.5)

where K := (n0, n1, . . . , nN ). To sample from (4.5), we develop a blocked Gibbs sampler
to draw from P(R1, . . . , RN−1 | JN , (N)τ,K) and P(JN , (N)τ | R1, . . . , RN−1,K) itera-
tively. For the former distribution, we apply the Hamiltonian Monte Carlo algorithm
(HMC, see Neal 2011) to sample from

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1 | JN = z, (N)τ = y,K)

∝ r−n1
1 . . . r

−(n1+···+nN−1)
N−1 (zΠ−1Σ + y)−nΠ−1

×
(

N−1∏
i=1

(Π−1r1 . . . ri−1)ρ(zΠ−1r1 . . . ri−1)
)
drN−1 . . . dr1.
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The HMC algorithm is based on the gradient of the log-posterior which, after making
the change of variables Ri := tan(π(ri − 0.5)), for i = 1, . . . , N − 1, is denoted by
D(R1, . . . ,RN−1) := ∇ log(P(R1, . . . ,RN−1 | z, y,K)). The full steps of the HMC
algorithm are given as follows.

Algorithm 4.1 (HMC algorithm). Let L ≥ 1 be the number of leapfrog steps and ε > 0
be the step size.

1. Load the current values of (r1, . . . , rN−1), set

W old ← (tan(π(r1 − 0.5)), . . . , tan(π(rN−1 − 0.5))).

2. Sample from a normal distribution p ← N (0, IN−1), set p̃(0) ← p+(ε/2)D(W old).

3. For l = 1, . . . , L− 1, set W (l) ← W (l−1) + εp̃(l−1) and p̃(l) ← p̃(l−1) + εD(W (l)).

4. Set W new ← W (L−1) + εp̃(L−1) and p̃ ← −{p̃(L−1) + (ε/2)D(W new)}, then set

(r̃1, . . . , r̃N−1) ← 0.5 + (1/π) arctan(W new).

5. Sample from a uniform distribution U ← U(0, 1), if

U ≤ P(r̃1, . . . , r̃N−1 | z, y,K)
P(r1, . . . , rN−1 | z, y,K) exp

(
−1

2

N−1∑
i=1

(p̃i2 − p2
i )
)
,

accept the candidates and output (r̃1, . . . , r̃N−1); otherwise, output (r1, . . . , rN−1).

Next, we use the Metropolis-Hastings algorithm to sample from the posterior of JN
and (N)τ , that is,

P(JN ∈ dz, (N)τ ∈ dy | R1 = r1, . . . RN−1 = rN−1,K)

∝ zn1+···+nN yn0(zΠ−1Σ + y)−ne−ρ(z,∞)ρ(z)
(

N−1∏
i=1

zρ(zΠ−1r1 . . . ri−1)
)
fρ,z(y)dydz.

The choice of the transition kernel depends on the specifications of the Lévy measure.
If the expression of the posterior contains e−Cz, where C is a number independent of
z and y, then the proposal z̃ ∼ Ga(n1 + · · · + nN + N,C) might be suitable, and we
can draw ỹ ∼ fρ,z̃(y) via the corresponding simulation algorithm. If the posterior is not
in a standard format, we may choose the log-normal transition kernel. In this case, the
adaptive Metropolis-Hastings algorithm could be used to improve the performance of
the algorithm. See Haario et al. (2001) and Griffin and Stephens (2013) for more details.

We can now formulate the blocked Gibbs sampler as follows.

Algorithm 4.2 (Blocked Gibbs sampler). Posterior inference for model (4.3).

1. Update R1, . . . , RN−1: Sample from P(R1, . . . , RN−1 | JN , (N)τ,K) using the HMC
algorithm.
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2. Update JN , (N)τ : Sample from P(JN , (N)τ | R1, . . . , RN−1,K) using the Metropolis-
Hastings algorithm.

3. Update p1, . . . , pN , eN : Apply the representations in (4.4).

4.2 Bayesian nonparametric mixture model

Next, we develop a posterior inference scheme for model (4.1). To achieve an efficient
MCMC sampling scheme, we recast the model completely in terms of random variables:

(Xj | Z,K) ∼ K(Xj | ZKj ), j = 1, . . . , n, Z ∼ π(Z),

(Kj | PN ) iid∼ PN =
N∑
i=1

piδi(.) + eNδ0(.), PN ∼ N-NRMI(ρ),
(4.6)

where Z := (Z0, Z1, . . . , ZN ) are the latent variables induced by the prior π(Z), and
K = (K1, . . . ,Kn) are conditionally independent classifiers that relate Z to the latent
variables Yj , i.e., Yj = ZKj , for j = 1, . . . , n. The posterior of the model has the
format P(p1, . . . , pN , eN ,Z,K | X). To sample from it, we can devise a blocked Gibbs
sampler that draws iteratively from the conditional distributions P(p1, . . . , pN , eN | K),
P(Z | K,X) and P(K | p1, . . . , pN , eN ,Z,X). Algorithm 4.2 can be used for the first
distribution, while the sampling procedures for the other two distributions depend on
the model specifications.

The posterior inference results of model (4.1) can be used to estimate the predictive
density for a new observation. We denote by f(Xn+1 | X) the predictive density of
Xn+1 conditioning on the current observations X = {X1, . . . , Xn} and Yn+1 the latent
variable of this new observation, then

f(Xn+1 | X) =
∫

K(Xn+1 | Yn+1)dP(Yn+1 | X)

=
∫∫

K(Xn+1 | Yn+1)dP(Yn+1 | PN )dP(PN | X).

Based on the parametrisation of (4.6), the inner integral can be expressed as

∫
K(Xn+1 | Yn+1)dP(Yn+1 | PN ) =

N∑
i=1

piK(Xn+1 | Zi) + eNK(Xn+1 | Z0). (4.7)

Thus, the predictive density f(Xn+1 | X) can be estimated by averaging (4.7) over the
posterior values from different iterations.

To illustrate the posterior inference scheme, we give an example using the normal-
normal/inverse gamma model. The model is in the format of (2.1) with K(Xi | Yi) ∼
N (Xi | μi, σi), where μi and σi stand for the mean and variance of the normal mixture
kernel, respectively. Their priors are given by μ | σ ∼ N (θμ, σ/κ0) and σ−1 ∼ Ga(a0, b0),
which explain the name of the model. Note that the normal distribution is parametrised
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in the mean and variance, and the gamma distribution is parametrised in the shape and
rate. Using (4.6), the model is approximated by

(Xj | μ, σ,K) ∼ N (Xj | μKj , σKj ), j = 1, . . . , n,
(μi, σ

−1
i | θμ, κ0, a0, b0) ∼ N (θμ, σi/κ0) ⊗ Ga(a0, b0), i = 0, 1, . . . , N,

(Kj | PN ) iid∼ PN =
N∑
i=1

piδi(.) + eNδ0(.),

PN ∼ N-NRMI(ρ).

(4.8)

Next, we develop a blocked Gibbs sampler for the posterior of model (4.8). Note that
the algorithm differs from the existing methods only in Step 1, and the derivation of
Step 2, 3, and 4 can be found in, for example, Ishwaran and James (2002).

Algorithm 4.3. Posterior inference for the normal-normal/inverse gamma model.

1. Update p1, . . . , pN , eN : Sample from P(p1, . . . , pN , eN | K) using Algorithm 4.2.

2. Update μ: Let {K∗
1 , . . . ,K

∗
m} denote the current m unique values of K. For each

j ∈ {K∗
1 , . . . ,K

∗
m}, draw μj ← N (θ∗j , σ∗

Zj
), where

θ∗j = σ∗
Zj

(
θμ/(σj/κ0) +

∑
{i:Ki=K∗

j }
Xi/σj

)
, σ∗

Zj
= (nj/σj + 1/(σj/κ0))−1,

and nj is the number of times K∗
j occurs in K. Also, for each j ∈ K−{K∗

1 , . . . ,K
∗
m},

draw μj ← N (θμ, σj/κ0).

3. Update σ: Let {K∗
1 , . . . ,K

∗
m} denote the current m unique values of K. For each

j ∈ {K∗
1 , . . . ,K

∗
m}, draw

σ−1
j ∼ Ga

(
a0 + nj/2, b0 +

∑
{i:Ki=K∗

j }
(Xi − μj)2/2

)
.

Also, for each j ∈ K− {K∗
1 , . . . ,K

∗
m}, draw σ−1

j ← Ga(a0, b0).

4. Update K: Draw Ki according to

Ki ←
N∑
j=1

p∗j,iδj(.) + e∗N,iδ0(.), i = 1, . . . , n,

where

(p∗1,i, . . . , p∗N,i, e
∗
N,i) ∝

(
p1√
σ1

e−
(Xi−μ1)2

2σ1 , . . . ,
pN√
σN

e
− (Xi−μN )2

2σN ,
eN√
σ0

e−
(Xi−μ0)2

2σ0

)
.
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4.3 Caron-Fox model
Then, we discuss the finite approximation of the Caron-Fox model (2.2). We replace the
CRM(ρ) prior by N-CRM(ρ) and obtain the truncated model ZN in terms of

ZN =
n∑

j=1
δ{sj ,rj}, sj , rj

iid∼ ΘN (.)
ΘN (S) =

N∑
i=1

Ji
τ
δKi(.) +

(N)τ

τ
δK0(.),

n ∼ Pois(τ2), ΘN ∼ N-CRM(ρ),

(4.9)

where K1, . . . ,KN are the N nodes with the highest sociabilities, and K0 is the collection
of the nodes with lower sociabilities. Denote by nij the number of edges from node Ki

to node Kj , and set mi :=
∑N

j=0(nij + nji) > 0 as the total number of edges sent or
received by node Ki, for i = 0, 1, . . . , N . Then, the posterior of (4.9) is given by

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz, (N)τ ∈ dy | (mi)0≤i≤N )

∝ zm1+···+mN r−m1
1 . . . r

−(m1+···+mN−1)
N−1 ym0 exp(−(zΠ−1Σ + y)2)e−ρ(z,∞)ρ(z)

× Π−1

(
N−1∏
i=1

(zΠ−1r1 . . . ri−1)ρ(zΠ−1r1 . . . ri−1)
)
fρ,z(y)dydzdrN−1 . . . dr1.

(4.10)

Note that the nodes K1, . . . ,KN ,K0 in the model (4.9) are not identical to those in the
model (2.2). For example, the node K1 in (4.9) has higher sociability than K2 almost
surely, but this is not true in (2.2). To approximate the posterior of (2.2) by (4.10), we
need to assign the observed edges {m̃i}Na

i=1 to the nodes K1, . . . ,KN ,K0 artificially. To
this end, we set m1 > · · · > mN as the N largest terms of {m̃i}Na

i=1, for N ≤ Na, and
m0 as the sum of the smaller terms. It follows that a node with more edges has higher
posterior sociability in our estimation. This might be inconsistent with the observation
of (2.2). Therefore, the proposed approach is an approximation, rather than an exact
representation, of the posterior of the original Caron-Fox model.

We remark that our characterisation is different from Li and Campbell (2021). The
latter truncated the CRM prior at a fixed level and investigated the probability that all
the active nodes were in the truncation region. Instead, we concentrate on the N most
popular nodes, and there might be some active nodes outside the truncation region.

5 Examples
In this section, we demonstrate the results in the previous sections with the Lévy mea-
sure ρ(dw) = tw−α−1e−μwdw, for t > 0. We will consider the following parametrisations:
(i) α ∈ (0, 1), μ > 0, (ii) α = 0, μ > 0, and (iii) α ∈ (0, 1), μ = 0. We will discuss the
simulation algorithms and posterior inference schemes in these cases.

5.1 Generalised gamma process
The generalised gamma process has become the most popular nonparametric prior in
recent years. It can be derived from the Lévy measure ρ(dw) = tw−α−1e−μwdw, for
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α ∈ (0, 1) and μ > 0. The parametrisation of the Lévy measure is not unique. For
example, Brix (1999) and Lijoi et al. (2007) formulated the Lévy measure as Γ(1 −
α)−1w−α−1e−μwdw. This can be achieved by setting t = Γ(1 − α)−1. It is also worth
mentioning the remarkable Proposition 2 of Lijoi et al. (2007), which showed that the
distribution of the number of distinct clusters induced by a NGG process prior relies on
α and β := μα/α only. A bigger β leads to more distinct clusters, and a large value of
α yields a flatter distribution on the number of distinct clusters.

To obtain the results of Lemma 3.1, we need to derive the density of the gener-
alised gamma process. To this end, we use the Zolotarev integral to invert its Laplace
transform. It follows that

fρ(z) =L−1{E(e−βτ )} = L−1{exp(−tΓ(1 − α)α−1 ((β + μ)α − μα))}

= exp(μαT − μz) 1
π

∫ π

0

α

1 − α
A(u)z−

1
1−αT

1
1−α exp(−A(u)z−

α
1−αT

1
1−α )du,

where T := tΓ(1 − α)α−1 and

A(u) :=
(
sin(αu)α sin((1 − α)u)1−α sin(u)−1)1/(1−α)

. (5.1)

Then, the results of Lemma 3.1 and Theorem 3.2 follow immediately.

To sample from the N largest jumps of the generalise gamma process, all the algo-
rithms introduced in Section 3 could be used. For the rejection algorithm, we choose
the envelope Lévy measure ρ0(dw) := tw−α−1dw. Since

∫∞
x

ρ0(dw) = (t/α)x−α, the tail
distribution of ρ0 can be inverted in close form, and the i-th largest jump Ji is accepted
with the probability exp(−μJi). See Godsill and Kındap (2022) for a further discus-
sion. To simulate the N -trimmed generalised gamma process, we rewrite its conditional
Lévy-Khintchine representation as

E

(
exp(−β (N)τ) | J1, . . . , JN

)
= exp

(
−tJ−α

N

∫ 1

0
(1 − e−βJNw)w−α−1e−μJNwdw

)
.

It follows that (N)τ
d= JN × Zα,μJN ,tJ−α

N
, where Zα,μ,t denotes a truncated tempered

stable process with Lévy measure tw−α−1e−μw1{0<w<1}dw, and the exact simulation
algorithm for such a process can be found in Dassios et al. (2020). We attach the full
steps in the supplementary material (Zhang and Dassios, 2024).

Next, we consider the finite approximation to the NGG process hierarchical model.
From (4.5) we know the model posterior is characterised by

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1, JN ∈ dz, (N)τ ∈ dy | K)

∝ z(n1+···+nN )−Nα−1r−n1+α−1
1 . . . r

−(n1+···+nN−1)+(N−1)α−1
N−1 yn0(zΠ−1Σ + y)−n

× exp
(
−t

∫ ∞

z

w−α−1e−μwdw

)
exp(−zμΠ−1Σ)fρ,z(y)dydzdr1 . . . drN−1.
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To sample from this distribution, we first use the HMC algorithm to draw from

P(R1 ∈ dr1, . . . , RN−1 ∈ drN−1 | JN = z, (N)τ = y,K)

∝ (zΠ−1Σ + y)−n exp(−zμΠ−1Σ)
N−1∏
i=1

r
−(n1+···+ni)+iα−1
i .

The gradient of the log-posterior, after the change of variable Ri := tan(π(ri − 0.5)), is
given by

d

dRi
log(P(R1, . . . ,RN−1 | JN = z, (N)τ = y,K))

= − nz

zΠ−1Σ + y

(
Π−1 d

dRi
Σ − ΣΠ−2 d

dRi
Π
)
− zμ

(
Π−1 d

dRi
Σ − ΣΠ−2 d

dRi
Π
)

+ −(n1 + · · · + ni) + iα− 1
0.5 + (1/π) arctan(Ri)

1
π

1
1 + R2

i

− 2Ri

1 + R2
i

where
d

dRi
Π = Π 1

π

1
1 + R2

i

(
1
2 + 1

π
arctan(Ri)

)−1
,

and

d

dRi
Σ =

N−1∑
j=i

[ i−1∏
k=1

(
1
2 + 1

π
arctan(Rk)

)]
1
π

1
1 + R2

i

[ j∏
k=i+1

(
1
2 + 1

π
arctan(Rk)

)]
.

Then, we use the Metropolis-Hastings algorithm to sample from

P(JN ∈ dz, (N)τ ∈ dy | R1 = r1, . . . RN−1 = rN−1,K)

∝ z(n1+···+nN )−Nα−1yn0

(zΠ−1Σ + y)n exp
(
−t

∫ ∞

z

w−α−1e−μwdw

)
exp(−zμΠ−1Σ)fρ,z(y),

with the transition kernels z̃ ← log-normal(z̃; log(z), σ0) and ỹ ← fρ,z̃(ỹ). By running
these algorithms iteratively, we get the posterior values of (R1, . . . , RN−1, JN , (N)τ).
Then, we can derive the posterior probability masses according to (4.4).

Finally, the posterior distribution of the network model (4.9) is obtained by inputting
the Lévy measure of the generalised gamma process into (4.10). The posterior expression
and blocked Gibbs sampler can be found in the supplementary material.

5.2 Gamma process
The gamma process is the most fundamental Bayesian nonparametric prior. Its Lévy
measure ρ(dw) = tw−1e−μwdw is a special case of that of the generalised gamma process
with α = 0. Without loss of generality, we set μ = 1. To validate Lemma 3.1 and
Theorem 3.2, we derive the density of a gamma process τ as

fρ(z) = L−1{E(e−βτ )} = L−1{(1 + β)−t} = zt−1e−z/Γ(t).



18 Finite Approximation To CRM

To simulate the N largest jumps of the gamma process, we choose the rejection
algorithm with the envelope Lévy measure ρ0(dw) = tw−1(1 + w)−1dw, whose tail
distribution is t ln(w−1 + 1). The acceptance rate is very high in this case. In fact,
Rosiński (2001) (see also Campbell et al. 2019 and Godsill and Kındap 2022) showed
that the average number of rejected samples is αν, where ν is the Euler Mascheroni
constant. Therefore, to sample from the N largest jumps, we only need to generate
(N + αν) jumps from the envelope in average. To simulate the N -trimmed gamma
process, we rewrite its conditional Lévy-Khintchine representation as

E

(
exp(−β (N)τ) | J1, . . . , JN

)
= exp

(
−t

∫ 1

0
(1 − e−βJNw)w−1e−JNwdw

)
.

It follows that (N)τ
d= JN × ZJN ,t, where Zμ,t denotes a truncated gamma process

with Lévy measure tw−1e−w1{0<w<1}dw, and the exact simulation algorithm for such
a process can be found in Dassios et al. (2019).

The posterior distribution and inference scheme are same as before with α = 0 and
μ = 1; we omit the details. We remark that the blocked Gibbs sampler in the current
paper is different from the one in Zhang and Dassios (2023). In the current work, we
use the HMC algorithm to update R1, . . . , RN−1 only, instead of J1, R1, . . . , RN−1 as
in Zhang and Dassios (2023). This modification removes the density of the N -trimmed
gamma process from the HMC algorithm, thus significantly improves the performance
of the blocked Gibbs sampler.

5.3 Stable process
Another important class of CRMs is the stable process induced by the Lévy measure
ρ(dw) = tw−α−1dw. We first derive the density of the stable process via the Zolotarev
integral,

fρ(z) =L−1{E(e−βτ )} = L−1{exp(−tβαΓ(1 − α))}

= 1
π

∫ π

0

α

1 − α
A(u)z−

1
1−αT

1
1−α exp(−A(u)z−

α
1−αT

1
1−α )du,

where T := tΓ(1 − α), and A(u) is defined as (5.1).

Since the tail distribution of ρ(dw) has an explicit expression t
∫∞
x

w−α−1dw =
(t/α)x−α, the ILM algorithm is preferable. To simulate the N -trimmed stable process,
we rewrite its conditional Lévy-Khintchine representation as

E

(
exp(−β (N)τ) | J1, . . . , JN

)
= exp

(
−tJ−α

N

∫ 1

0
(1 − e−βJNw)w−α−1dw

)
.

It follows that (N)τ
d= JN × Zα,tJ−α

N
, where Zα,t denotes a truncated stable process

with Lévy measure tw−α−11{0<w<1}dw, and the exact simulation algorithm for such a
process can be found in Dassios et al. (2020). The posterior distribution and inference
scheme are same as the generalised gamma process with μ = 0; we omit the details.
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Figure 1: Density of the N -trimmed generalised gamma process and the numerical
inverse Laplace transform results.

6 Numerical implementation
In this section, we present some numerical results for the simulation algorithms and
posterior inference schemes. Our implementation will focus on the generalised gamma
process and its normalisation. The analysis was carried out on Matlab 2023a on a 64-bit
Windows desktop with an Intel i9-12900 processor and 64GB RAM.

6.1 Density of the N -trimmed generalised gamma process
To illustrate the results of Lemma 3.1, we plot the density fρ,z(y) with different param-
eters in Figure 1. We also apply the concentrated matrix-exponential functions method
(CME, see Horváth et al. 2020) to invert the Laplace transform of (N)τ numerically at
some fixed points. The results are denoted by stars. From Figure 1 we can see that both
methods produce similar results.

6.2 Simulation algorithms
We use the ILM, rejection, AR and MCMC algorithms introduced in Section 3 to
sample from the five largest jumps and the sum of smaller jumps of the generalised
gamma process. The sample averages of the jumps are recorded in Table 1. From the
table, we can see that all of these algorithms can achieve a reasonable Monte Carlo
accuracy as long as the sample size is large enough. However, when α is large, the
rejection algorithm becomes slow due to a low acceptance rate.

6.3 Truncation error
To illustrate the truncation error of the generalised gamma process, we sample from
(N)τ with different truncation levels and present the sample averages in Figure 2. We
also compare the sample averages to the upper bound of the truncation error given in
Appendix A of Brix (1999). The figures show that for the same μ and t, the truncation
error converges to zero slower when α is large. In addition, we sample from the truncation
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Algorithm J1 J2 J3 J4 J5 (N)τ sum Time
true mean 0.6188 0.2228 0.1028 0.0531 0.0288 0.0413 1.0676 N.A.

α = 0.1 ILM 0.6142 0.2226 0.1026 0.0524 0.0284 0.0418 1.0619 102
μ = 1.0 Rejection 0.6253 0.2248 0.1042 0.0533 0.0288 0.0420 1.0784 8
t = 1.0 AR 0.6197 0.2193 0.1033 0.0530 0.0290 0.0409 1.0652 103

MCMC 0.6238 0.2209 0.1029 0.0527 0.0282 0.0407 1.0691 105
true mean 0.6150 0.2490 0.1334 0.0820 0.0536 0.1659 1.2989 N.A.

α = 0.3 ILM 0.6065 0.2476 0.1310 0.0805 0.0526 0.1639 1.2821 79
μ = 1.0 Rejection 0.6156 0.2467 0.1348 0.0816 0.0530 0.1647 1.2963 5
t = 1.0 AR 0.6150 0.2484 0.1327 0.0812 0.0531 0.1655 1.2959 83

MCMC 0.6188 0.2502 0.1317 0.0795 0.0520 0.1647 1.2969 90
true mean 0.6128 0.2730 0.1642 0.1123 0.0820 0.5311 1.7754 N.A.

α = 0.5 ILM 0.6025 0.2725 0.1636 0.1115 0.0809 0.5273 1.7583 85
μ = 1.0 Rejection 0.6114 0.2768 0.1653 0.1127 0.0813 0.5291 1.7766 6
t = 1.0 AR 0.6053 0.2712 0.1635 0.1107 0.0806 0.5273 1.7585 88

MCMC 0.6068 0.2699 0.1621 0.1111 0.0806 0.5254 1.7558 107
true mean 0.6135 0.3000 0.1936 0.1420 0.1068 1.6579 3.0138 N.A.

α = 0.7 ILM 0.6032 0.2990 0.1938 0.1411 0.1099 1.6366 2.9837 105
μ = 1.0 Rejection 0.6114 0.2966 0.1933 0.1408 0.1093 1.6325 2.9840 19
t = 1.0 AR 0.6094 0.2949 0.1929 0.1410 0.1096 1.6364 2.9842 109

MCMC 0.6094 0.2978 0.1945 0.1417 0.1093 1.6292 2.9819 142
true mean 0.6134 0.3226 0.2212 0.1711 0.1349 7.9117 9.3749 N.A.

α = 0.9 ILM 0.6208 0.3266 0.2239 0.1708 0.1380 8.0475 9.5275 176
μ = 1.0 Rejection N.A. N.A. N.A. N.A. N.A. N.A. N.A. > 104

t = 1.0 AR 0.6146 0.3231 0.2220 0.1707 0.1383 8.0479 9.5166 179
MCMC 0.6192 0.3254 0.2234 0.1706 0.1383 8.0409 9.5178 233

Table 1: Sample averages of the five largest jumps and the sum of smaller jumps of the
generalised gamma process, the sample size is 104. The running times are in seconds
and rounded to the nearest integer. Parallel computing was not used in the simulation.

Figure 2: Sample average of the truncation error (N)τ of the generalised gamma process
and the upper bound, μ = 1, t = 1/Γ(1 − α).

error eN of the NGG process and present the sample averages in Figure 3. From the
figures we can see that the truncation error becomes larger as α and t increase. Also, a
higher truncation level N leads to a smaller truncation error.
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Figure 3: Sample average of the truncation error eN of the NGG process.

Figure 4: Posterior inference results of the hierarchical model (4.3) based on n = 200
observations. The true values of the variables are denoted by green cross. The parameters
are set to α = 0.5, μ = 1, t = 1 and N = 20.

6.4 Blocked Gibbs sampler
To illustrate the performance of the blocked Gibbs sampler, we simulate a sequence of
observations from the hierarchical model (4.3) and use Algorithm 4.2 to sample from the
posterior of the model. The numerical results are presented in Figure 4. From the figures
we can see that the blocked Gibbs sampler estimates the jump sizes (J1, . . . JN , (N)τ)
and the probability masses (p1, . . . , pN , eN ) accurately.

6.5 Posterior inference of mixture model
Consider a bimodal mixture with the underlying density f(xi) = (1/2)N (xi;−1, 0.52)+
(1/2)N (xi; 1, 0.52). We simulate n = 100 observations from the bimodal mixture, then
use Algorithm 4.3 to estimate the underlying distribution. We follow the parametrisation
in Section 3 of Lijoi et al. (2007) and use the pair of parameters (α, β). In the HMC
step, we use the leapfrog steps L = 10 and adjust the step size ε to obtain an acceptance
rate of around 0.6. The posterior mean values are presented in Figure 5(a). From the
figure we can see that the posterior induces two modes for the model at −1 and 1. Then
we randomly select fifty iterations and use their posterior values to plot the predictive
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Figure 5: Posterior inference results of the bimodal mixture with n = 100 observations.
Each observation Xi is sampled from a normal distribution with mean {−1, 1} with
equal probabilities and variance 0.52. The plot is based on 5000 sampled values following
an initial 5000 iteration burn-in using Algorithm 4.3. The parameters are set to α =
0.25, β = 0.5 and N = 50. (a) Posterior mean values. The values of Xi and μi are
denoted by green cross and red plus, respectively. (b) Fifty randomly selected predictive
densities. The observations are presented by the histogram, and the true mixture density
is denoted by the green curve. (c) Proportion of occupied clusters.

density (4.7) in Figure 5(b). We also count the numbers of occupied clusters and record
their proportion in Figure 5(c). In addition, we use Algorithm 4.3 to analyse the galaxy
velocity data and present the mean predictive density in the supplementary material.

Next, we compare the performance of our posterior inference scheme with the cel-
ebrated BNPdensity package developed by Arbel et al. (2021). The package facilitates
the posterior inference method in James et al. (2009) and Barrios et al. (2013). We
draw n = 100 independent samples from the bimodal mixture, then analyse the data
using Algorithm 4.3 and the BNPdensity package. Their performance are monitored by
the convergence of the number of occupied clusters and the deviance of the estimated
density. For the posterior inference results from the r-th iteration, we denote by K(r)

the number of occupied clusters and n
(r)
j the size of each occupied cluster, such that∑K(r)

j=1 n
(r)
j = n. The deviance is a function of all estimated parameters defined as

D(r) := −2
n∑

i=1
log

⎛
⎝K(r)∑

j=1

n
(r)
j

n
K(Xi | Y (r)

j )

⎞
⎠ .

These quantities have been used in the comparison study of the existing literature. See,
for example, Neal (2000), Papaspiliopoulos and Roberts (2008), Kalli et al. (2011) and
Canale et al. (2022). The efficiency of the posterior inference scheme can be evaluated
by calculating the integrated autocorrelation time (IAT) and effective sample size (ESS)
of these quantities. The IAT is defined as τ := 0.5 +

∑∞
l=1 ρl (see Sokal 1997), where ρl

is the autocorrelation at lag l. It illustrates the statistical error of the target function
in Monte Carlo estimation. The difficulty of calculating τ arises from the covariance
between the states, which have been used to evaluate ρl. Sokal (1997) suggested using



J. Zhang and A. Dassios 23

τ̂K τ̂D K̄ D̄ EK ED Size
Algorithm 4.3 (N = 50) 14.0633 1.1112 4.1860 278.7610 504 4348 20134
Algorithm 4.3 (N = 100) 11.4309 0.8962 4.0110 278.0777 263 1561 6894
BNPdensity (ε = 0.01) 9.9922 0.7194 6.3845 280.7044 449 8039 9699
BNPdensity (ε = 0.005) 9.2284 0.5366 7.0553 280.7474 441 7349 9521

Table 2: Posterior inference results of the bimodal mixture with sample size n = 100,
α = 0.25, β = 0.5, t = 1/Γ(1− α), the running time is 200 seconds. K and D stand for
the number of occupied clusters and deviance, respectively. τ̂ represents the estimated
IAT, and E stands for the ESS. The ESS is rounded to the nearest integer.

τ̂K τ̂D K̄ D̄ EK ED Size
Algorithm 4.3 (N = 50) 12.2177 1.3663 8.3615 280.2764 209 2795 18750
Algorithm 4.3 (N = 100) 7.6820 1.4852 8.4865 279.6918 202 590 6344
BNPdensity (ε = 0.01) 7.0525 0.6113 10.7765 280.2148 495 4433 8064
BNPdensity (ε = 0.005) 5.9858 0.7776 10.8190 280.0456 763 3209 8023

Table 3: Posterior inference results of the bimodal mixture with sample size n = 100,
α = 0.75, β = 0.5, t = 1/Γ(1 − α), the running time is 200 seconds.

the estimator τ̂ = 0.5 +
∑C−1

l=1 ρ̂l for τ , where ρ̂l is the estimated autocorrelation at
lag l, and C is the user-specified cut-off point. We use the same cut-off point as Kalli
et al. (2011), i.e., C := min{l : |ρ̂l| < 2/

√
M}, where M is the number of iterations.

This makes the cut-off point C the smallest lag for which we would not reject the
null hypothesis H0 : ρl = 0. On the other hand, the ESS measures the number of
effective samples in the posterior inference results. Due to the autocorrelation, the ESS
would be smaller than the length of the Markov chain, and a higher ESS implies a
better estimation. In practice, the ESS can be computed by the CODA package. See
Plummer et al. (2006) for more details. The numerical results are recorded in Table 2
and Table 3. To achieve a fair comparison, we run both methods for 200 seconds and
record the number of iterations. From the tables we can see that Algorithm 4.3 leads to
fewer occupied clusters but a higher IAT. Also, the efficiency of Algorithm 4.3 is very
sensitive to the truncation level. This is mainly caused by the exact simulation of the
truncated generalised gamma process. We refer to Dassios et al. (2020) for a further
discussion about its performance. In addition, we analyse the galaxy velocity data with
both methods and attach the results in the supplementary material.

6.6 Posterior inference of Caron-Fox model

To demonstrate the approximation of the Caron-Fox model, we first sample from the
model (2.2) using the algorithm in Section 5.5 of Caron and Fox (2017). The simulation
is based on the generalised gamma process prior with hyperparameters α = 0.5, μ =
0.1, t = 5. The simulated total sociability is τ = 21.1928, leading to 80 active nodes and
466 edges. Based on the observations, we estimate the sociabilities of the nodes using
the original posterior sampler of Caron and Fox (2017) and our approximation (4.10).
We present the numerical results in Figure 6. From the figures, we can see that both
methods can recover the sociabilities of the nodes accurately. However, we find that
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Figure 6: Posterior inference results of the Caron-Fox model and the running time. The
true sociabilities are denoted by green cross. The plot is based on 2500 sampled values
following an initial 2500 iteration burn-in. (a) The original posterior sampler in Caron
and Fox (2017). (b)(c)(d) Posterior inference results based on the approximation (4.10).

the original posterior sampler is more efficient than ours. This is mainly caused by the
exact simulation algorithm (Dassios et al., 2020) of the truncated generalised gamma
process, whose efficiency is sensitive to the truncation level and could be low. On the
other hand, Caron and Fox (2017) estimated the total sociability of the silent nodes by
sampling from the exponentially tilted stable distribution, and the simulation algorithm
(Devroye, 2009; Hofert, 2011) is extremely efficient. The details of the posterior inference
scheme and additional numerical results can be found in the supplementary material.

7 Discussion
In this paper, we introduce a finite approximation to the CRM by keeping its N largest
atom weights unchanged and combining the smaller atom weights into a single term. We
call this finite-dimensional approximation the truncated Ferguson-Klass representation.
We develop the simulation algorithms for the approximation and devise a blocked Gibbs
sampler for posterior inference. Then, we adapt the approximation into the Bayesian
nonparametric mixture model and design the posterior inference scheme. We also study
the application of the approximation in the Caron-Fox model. Examples and numerical
implementations are given based on the generalised gamma, gamma and stable pro-
cesses. We remark that the approximation can also be applied to the celebrated beta
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process. In the supplementary material, we provide an example based on the truncated
Dickman process, which is a special case of the beta process.

The current work uses a user-specified truncation level N . It is possible to develop
an adaptive truncation method (Griffin 2016) for our approximation, which allows the
truncation level to be decided by the algorithm itself. In this case, we can assess the con-
vergence of the samples by calculating the ESS and run the algorithm until the absolute
value of the difference between two consecutive ESS values is lower than a threshold.
Alternatively, we can develop a moment-matching version (Arbel and Prünster 2017)
of the approximation. This method assesses the approximation quality by evaluating
the discrepancy between the actual moments of the CRM and the empirical moments.
The truncation level is then selected such that the discrepancy does not exceed a given
threshold.

As explained in Section 4, the proposed approach is an approximation, rather than
an exact representation, of the original Caron-Fox model. The gap between the original
model and our approximation is the artificial assignment of the observed edges. For
the directed Caron-Fox model, this could be improved by introducing a discrete latent
variable, which indicates the assignment of {m̃i}Na

i=1 to K1, . . . ,KN ,K0. Given the so-
ciabilities J1, . . . , JN , (N)τ , the distribution of the latent variable could be specified by
a collection of multinomial probabilities. Then, we can update the sociabilities and the
latent variable iteratively. For the undirected model, we follow the strategy in Caron
and Fox (2017) and update the latent edges in each iteration of the inference algorithm.

From the numerical experiments in Section 6, we can see that apart from having the
flexibility in the number of nodes to be estimated, the proposed approach does not add
too much value to the original posterior sampler in Caron and Fox (2017). However, our
method might be useful to the extensions of the Caron-Fox model. For example, Tode-
schini et al. (2020) considered an extension of the Caron-Fox model with overlapping
community structures. The simulation of the model involves sampling from the jumps
of the generalised gamma process, and truncation is required. The authors considered
the ε-approximation of the Lévy measure in terms of ρε(dw) := ρ(dw)1{w>ε}, such that
the approximation process has finite activity almost surely. It would be interesting to
use the N-CRM(ρ) approximation instead and compare the performance of the two
methods. Similar applications may also be found in other extensions of the Caron-Fox
model, such as Herlau et al. (2016) and Ricci et al. (2022). In the current work, the
Caron-Fox model is used as a numerical illustration, and the emphasis has been given
to the posterior inference scheme of the N-CRM(ρ) prior. For the purpose of network
analysis, we will address the issues discussed above in future work.
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Supplementary Material
Supplementary Material of “Posterior sampling from truncated Ferguson-Klass rep-
resentation of normalised completely random measure mixtures” (DOI: 10.1214/24-
BA1421SUPP; .pdf). (i) Derivation of Lemma 3.1 and Theorem 3.2, (ii) example of the
truncated Dickman process, (iii) exact simulation algorithm for truncated tempered sta-
ble process, (iv) additional numerical experiments of the mixture model, (v) posterior
inference scheme for the Caron-Fox model and additional numerical results.
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