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Bayesian Community Detection for Networks
with Covariates

Luyi Shen∗, Arash Amini†, Nathaniel Josephs‡, and Lizhen Lin∗

Abstract. The increasing prevalence of network data in a vast variety of fields and
the need to extract useful information out of them have spurred fast developments
in related models and algorithms. Among the various learning tasks with network
data, community detection, the discovery of node clusters or “communities,” has
arguably received the most attention in the scientific community. In many real-
world applications, the network data often come with additional information in
the form of node or edge covariates that should ideally be leveraged for inference.
In this paper, we add to a limited literature on community detection for networks
with covariates by proposing a Bayesian stochastic block model with a covariate-
dependent random partition prior. Under our prior, the covariates are explicitly
expressed in specifying the prior distribution on the cluster membership. Our
model has the flexibility of modeling uncertainties of all the parameter estimates
including the community membership. Importantly, and unlike the majority of
existing methods, our model has the ability to learn the number of the communities
via posterior inference without having to assume it to be known. Our model
can be applied to community detection in both dense and sparse networks, with
both categorical and continuous covariates, and our MCMC algorithm is very
efficient with good mixing properties. We demonstrate the superior performance
of our model over existing models in a comprehensive simulation study and an
application to two real datasets.

Keywords: community detection, networks with covariates, covariate-dependent
random partition prior, Gibbs sampler.

1 Introduction
The ubiquity of network data in modern science and engineering and the need to extract
meaningful information out of them has spurred rapid developments in the models, the-
ory, and algorithms for the inference of networks (Erdős and Rényi, 1959; Bickel and
Chen, 2009; Wolfe and Olhede, 2013; Kolaczyk, 2009; Lovász, 2012; Kolaczyk et al.,
2020). Among the specific learning tasks with network data, community detection,
which aims to detect communities or clusters among nodes, has arguably received the
most attention in the scientific community. Various models and algorithms have been
developed for community detection in networks including modularity-based methods
(Newman, 2006), spectral clustering algorithms (Luxburg, 2007; Rohe et al., 2011),
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Figure 1: Log body mass for different species colored by their feeding type.

stochastic block models (Holland et al., 1983; Karrer and Newman, 2011; Ball et al.,
2011), optimization-based approaches via semidefinite programming (Amini and Lev-
ina, 2018), and various Bayesian models (Mørup and Schmidt, 2012; Amini et al., 2019),
among others.

Besides the edge information of an observed network, there are often additional co-
variates or nodal information available in many real-world networks. These additional
covariates should be ideally utilized when performing community detection. For ex-
ample, in a Facebook network, one can obtain from an individual’s profile covariates
including current city, workplace, hometown, education, and hobbies. Another example
is the Weddell Sea trophic network, which describes the marine ecosystem of the Weddell
Sea (Jacob et al., 2011). It is a predator-prey network that includes the average adult
body mass for each of the species. If one were to only utilize the network information,
it is hard to differentiate all the different feeding types. However, the body mass of each
species shows a partial clustering by the group, as seen in Figure 1. Therefore, a better
clustering should be achievable when both the network and covariates are incorporated.

Such network data have motivated an emerging line of work that aims to deal with
community detection problems that leverage both the network and the exogenous co-
variates. A node-coupled SBM is proposed in Weng and Feng (2022) in which cluster
information or the block matrix is uniquely encoded by the covariates. Another model
from Zhang et al. (2019) specifies that the link probability between a pair of nodes is
contributed additively by the block probability in an SBM and a similarity measure
between the covariates of a pair of nodes. A similar class of block models is proposed in
Sweet (2015) that also accommodates covariates in an additive way such that the link
probability is influenced by both block membership and covariates. A covariate-assisted
spectral clustering algorithm is proposed in Binkiewicz et al. (2017) and later modified
for degree-corrected block models in Hu and Wang (2022). Categorical covariates on
the actor level are included in the model in Tallberg (2004), and the block affiliation
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probabilities are modeled conditional on the covariates via a multinomial probit model.
Another prominent method in the frequentist literature is due to Zhang et al. (2016)
in which a joint community detection criterion is proposed using both the adjacency
matrix of the network and the node features, and their algorithm weights the edges
according to feature similarities. Recently, the interplay between network information
and covariates is investigated in an optimization framework for community detection
in sparse networks in Yan and Sarkar (2021). From a Bayesian perspective, there are a
few papers that are closely related to our work. We introduce them in Section 2.1 and
provide a detailed discussion of their connections to our work (and to each other).

We add to this literature by proposing a Bayesian community detection procedure
in which the effects of the covariates are incorporated via a covariate-dependent random
partition prior on the node labels of an SBM. The covariates are explicitly expressed
and incorporated in the prior probability of generating clusters. One of the distinctive
features of our models compared with the ones already proposed in the literature is
that ours has the ability to learn the number of communities via posterior inference
without having to assume it to be known. The proposed model has the flexibility of
assessing uncertainties for all the model parameters through an efficient MCMC algo-
rithm for posterior inference. Note that there are several works in the literature that
have employed the idea of a random partition prior or Bayesian nonparametric models
for modeling network or relational data. We discuss these comparisons in Section 2.1
after introducing our model.

Our model can be applied in both dense and sparse regimes. In a sparse regime,
as one of our simulation studies shows, our model outperforms other state-of-the-art
methods such as that of Yan and Sarkar (2021), whose primary goal was to deal with
sparse network condition with covariates. We also apply our methods to networks that
have covariates with relatively high-dimensions. Our extensive simulations demonstrate
our overall superior performance over existing methods in networks with continuous or
categorical features, even when those methods are given the true number of communities.

The remainder of our paper is organized as follows. Section 2 is devoted to our model
description and MCMC algorithms. In Section 3, we carry out several simulation studies
in various settings to demonstrate the utility of our proposed model and algorithms.
We also apply our model to two data examples in Section 4. We conclude in Section 5
with possibilities for future work.

2 Prior, model, and MCMC algorithm
Consider an observed network on n nodes represented by an n × n adjacency matrix
A = (Aij) with Aij = 1 indicating the presence of a link between nodes i and j, and
Aij = 0 otherwise. Assume in addition that we have some covariate information xi ∈ Rp

for each node i = 1, . . . , n. The covariate information associated with the node are often
referred to as nodal information or node features of the network, and are frequently
encountered in modern network data. We let x = (x1, . . . , xn)T ∈ Rn×p denote all
of the node covariates of a given network. Our goal is to perform network community
detection by incorporating both the network structure and the nodal information. The
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key challenge is how to jointly model these two sources of information. Below we propose
a Bayesian model that incorporates the nodal information in the prior probability of
cluster membership within an SBM.

Let z = (z1, . . . , zn) ∈ Nn be a node membership vector and L(z) = max{zi : i ∈ [n]}
indicate the total number of clusters implied by z. We do not assume L(z) to be known
a priori. Let S�(z) = {i ∈ [n] : zi = �} be the set of indices of nodes belonging to the
�th cluster according to z. For any subset S ⊆ [n] and x = (x1, · · · , xn)T ∈ Rn×p,
let g(S |x) be a nonnegative function that measures the homogeneity of the covariates
{xi, i ∈ S}. That is, g(S |x) takes larger values when all of the xi with i ∈ S are more
similar. One can think of S as a potential cluster of nodes and g(S |x) as a measure of
the quality of such cluster, with regards the nodal information

Inspired by Müller and Quintana (2010); Park and Dunson (2010); Müller et al.
(2011), we consider the following covariate-dependent random partition model:

p(z |x) ∝
L(z)∏
�=1

g
(
S�(z) |x

)
· c
(
S�(z)

)
. (1)

The non-negative function S �→ c(S) is known as the cohesion function of the prod-
uct partition probability model. In a random partition model based on the Dirichlet
process, with baseline probability measure G0 and concentration parameter α, one has
c(S) = α(|S| − 1)! (Ferguson, 1973; Sethuraman, 1994).

Borrowing from Müller et al. (2011), we define g(S |x) based on an auxiliary prob-
ability model q(· | ·), where

g(S |x) =
∫ ∏

i∈S

q(xi | ξ) ν(ξ) dξ . (2)

Note that the covariates x are not random. The term
∏

i∈S q(xi | ξ) measures the effect
or contribution of the covariates on the prior probability of cluster S. One can choose
q(xi | ξ) and ν(ξ) as a conjugate pair to facilitate the analytic evaluation of g(S |x). For
the cohesion function, we adopt c(S) = α(|S| − 1)!.

Combining equations (1) and (2), we have

p(z |x) ∝
L(z)∏
�=1

[ ∫ ∏
i∈S�(z)

q(xi | ξ�) dν(ξ�)
]
c
(
S�(z)

)
. (3)

In this model, ξ� can be considered the center of the nodal covariates in cluster �, and
q(xi | ξ�) a measure of how far the covariates in cluster S� are from its center ξ�. The
model then averages over all possible centers ξ� ∼ ν.

The distribution in (3) can be written as the marginal of

p(z, ξ |x) ∝
L(z)∏
�=1

[
c
(
S�(z)

) ∏
i∈S�(z)

q(xi | ξ�) ν(ξ�)
]
·

∞∏
�=L(z)+1

ν(ξ�) , (4)



L. Shen, A. Amini, N. Josephs, and L. Lin 5

where ξ = (ξ1, ξ2, . . . ). One can use (4) to derive a Gibbs sampler for sampling the
prior. To simplify the notation, we let

L = L(z−i) and S� = S�(z−i) (5)

for � ∈ [L] denote the number of clusters of z−i = (zj , j �= i) and the clusters themselves.
Let

ψk :=
{
|Sk| k ∈ [L]
α k = L + 1

. (6)

One can show that for k ∈ [L + 1],

p(zi = k, ξL+1 |z−i, ξ1:L,x) ∝ ν(ξL+1) · ψk q(xi | ξk) , (7)

where ξ1:L = (ξ1, . . . , ξL). This is equivalent to first drawing ξL+1 ∼ ν(·), and then
drawing zi as follows:

p(zi = k |z−i, ξ1:L+1,x) ∝ ψk q(xi | ξk) . (8)

Example. For continuous features, we can take

q(x | ξ) = N(x; ξ, s2I) and ν = N(0, τ2I) , (9)

where N(x; ξ, s2I) denotes the density of a normal distribution with mean ξ and co-
variance matrix s2I, evaluated at x. Then, k �→ q(xi | ξk) in (8) will be proportional to
exp(−‖xi − ξk‖2/2s2), which shows that if ξ� is the closest to xi among {ξk}, then the
inclusion of the covariate information increases the chance of assigning zi to cluster �.

Example. For categorical covariates, one can choose q(xi | ξk) to be a multinomial
distribution and ν(·) to be a Dirichlet distribution. Suppose there are R categorical fea-
tures and the rth feature has ar categories for r = 1, . . . , R. Then xi = (xi1, . . . , xiR),
where xir is the r-th feature of node i, and xir ∈ {1, . . . , ar}. Each ξk collects param-
eters of R multinomial vectors, that is, ξk = (ξrk)Rr=1, where the coordinates ξrk =
(ξ1

rk, ξ
2
rk, · · · , ξar

rk) are independent draws from Dir(γ1ar). We have

q(xi | ξk) =
R∏

r=1

ar∏
c=1

(ξcrk)1{xir=c} and ν =
R∏
i=1

Dir(γ1ar ) . (10)

We usually take γ = 1.

An alternative approach to sample from the prior is to perform Gibbs sampling
on the marginalized distribution (3). This leads to the following updates. For each
k ∈ [L + 1],

p(zi = k |z−i, x) ∝ ψk
g(Sk ∪ {i} |x)

g(Sk |x) , (11)
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where SL+1 = ∅ and g(∅ |x) = 1. This approach is, in particular, useful when q(· | ·)
and ν(·) are conjugate so that g(S |x) is easy to compute.

With the priors thus defined, the network is assumed to follow a SBM, that is,

p(A |η,z) =
∏

1≤i<j≤n

ηAij
zi,zj (1 − ηzi,zj )1−Aij , (12)

where η = (ηk,�) is the connectivity matrix of SBM, with ηk,� representing the link
probability between nodes in clusters k and �.

It is possible to obtain closed forms for the full conditional distributions of the
unknown model parameters η,z, and ξ with appropriate choices of q(·) and ν(·), as
demonstrated in Section 2.2. We note that since the prior random partition model (1)
puts mass on all potential partitions of the n nodes, the posterior distribution p(z |A,x)
also puts mass on all such partitions; however, the posterior will be concentrated around
certain partition(s), hence a posteriori, there is a most likely value of L(z), the number
of communities in z. That is how the model learns the number of communities.

2.1 Comparison with literature
There are several works in the literature similar to our model that also use a Bayesian
nonparametric approach for tasks related to node clustering.

A pioneering work in the area is that of Kemp et al. (2006). Motivated by the
complex system of relations underlying semantic knowledge, Kemp et al. (2006) propose
the infinite relational model (IRM) for discovering and clustering underlying structure
in relational data sets. In this framework, the observed data are assumed from n types
(people, demographic features, answers to a personality test, etc.) and m relationships
(person i likes person j, feature x causes answer y, etc). The motivating example given
in Kemp et al. (2006) is that of clustering people, represented by set T 1, based on social
predicates, represented by set T 2. The observed data is the tensor T 1×T 1×T 2 �→ {0, 1}
whose (i, j, p) entry determines whether persons i and j have social predicate type p.
The idea is to simultaneously cluster T 1 and T 2 so that the tensor is roughly constant
within the resulting clusters. In modern language, the model proposed by Kemp et al.
(2006) is the so-called tensor SBM (Kim et al., 2017; Wang and Zeng, 2019; Lei et al.,
2020) but with a CRP prior on the labels of each dimension to allow for infinite clusters
a priori. IRM was later explicitly adopted in Mørup and Schmidt (2012) for community
detection in network data, as opposed to relational data. IRM is quite flexible and
can, for example, be used to incorporate an attribute or feature taking finite values,
by taking T 2 above to be the levels of that attribute. However, this attribute should
be interpreted as an edge feature, and moreover, IRM needs to have observations on
the connectivity of persons (i, j) for all possible levels of this attribute. Adding each
feature then requires increasing the dimension of the tensor by one, and demanding lots
of observations which are not available in practice in network problems.

More recently, nonparametric Bayesian network models that accommodate nodal co-
variates have been considered, but mostly with the mixed membership SBM (MMSBM)
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framework of Airoldi et al. (2008). For example, Kim et al. (2012) introduced the non-
parametric metadata dependent relational (NMDR) model, that essentially couples the
MMSBM likelihood with node-covariate-dependent prior on cluster labels. More specif-
ically, they assume latent community vectors ηk that interact with node features φi

to produce a score vki that determines how likely node i belongs to community k, a
priori. They assume that vki are normal with mean 〈ηk, φi〉 and then translate these
real-valued affinities to probabilities πki via a logistic-stick breaking process (Ren et al.,
2011). The πi = (πki) then determine the edge probabilities via E[Aij |πi, πj ] = πT

i Wπj

where W is the connectivity matrix.

Along the same lines, Zhao et al. (2017) extends the edge partition model (EPM)
of Zhou (2015) to incorporate binary node features. The EPM has similarities to MMSBM
with novel uses of a Bernoulli-Poisson likelihood coupled with a nonparametric parti-
tion model. More specifically, the latent Poisson component X = (Xij) still follows a
MMSBM decomposition with E[Xij |φi, φj ] = φT

i Λφj where φi are the soft community
assignments and Λ the connectivity matrix. Similar to Kim et al. (2012), the nodal
covariate information is incorporated in constructing a prior on φi = (φik). The prior
assumes φi to be drawn from a Gamma distribution with mean E[φik] = cibk

∏L
�=1 h

fi�
�k

where fi� is the �th binary feature of node i. Note that by introducing ηk := (log h�k)
and fi = (fi�), one can write E[φik] = cibk exp(〈ηk, fi〉), showing that essentially the
same inner product interaction of feature and latent community vectors as in Kim et al.
(2012) is used by Zhao et al. (2017).

As in Kim et al. (2012) and Zhao et al. (2017), our model also incorporates node
features into the partition prior; however, we are modeling hard community assignments
rather than soft assignment vectors, making the problem somewhat more challenging.
More importantly, our approach allows for a more general dependence of the partition
on the features via a kernel q(xi | ξ), compared to the simple inner product approach
used in both Kim et al. (2012) and Zhao et al. (2017). Our approach is not limited to
binary features and by incorporating more complexity into q(xi | ξ), we can potentially
model more complex feature/community interactions in the prior.

The last closely related work that we discuss is that of Newman and Clauset (2016).
They consider node features (metadata) that take values in a finite discrete set (say X).
Similar to our work, the node metadata is used to influence the prior on the community
assignments. In our notation, they assume p(zi |xi)=γzi,xi where γ = (γk,x) ∈ [0, 1]K×|X|

is a parameter matrix to be estimated form the data. Compared to the inner product
model of Kim et al. (2012) and Zhao et al. (2017), this approach gives a more flexible
model for the interaction of the communities and features. The drawback is that it is
limited to discrete features and if |X| is large, there is potential for over-fitting without
further regularization of the γ matrix. Newman and Clauset (2016) use an EM algo-
rithm to estimate the parameters, and they assume the number of communities to be
known.
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2.2 Gibbs sampler
We now derive a Gibbs sampler to sample from the complete posterior distribution of
(z, ξ,η) given A and x. The main challenge is deriving the updates for z.

We sample from z, ξ, and η through their full conditional distributions, which are
given bellow, until reaching convergence, and then obtain a sample of adequate size of
the posterior distribution for inference.

Initialization

We initialize the labels by drawing from a Chinese Restaurant Process (CRP),

z ∼ CRP(α) .

A CRP can be seen as a special case of our prior without any covariates. This follows
from (11) by setting g(S |x) = 1. Once z is initialized, all the other parameters can be
initialized by the Gibbs updates derived below.

Note that initializing the chain by sampling z from a CRP provides a random start
without having to specify the number of the communities K. In many algorithms,
spectral clustering is often used to initialize z. For a Bayesian model, this is not a
natural choice. Moreover, it requires the knowledge or an estimate of K.

Sampling z

Let b(x; a, b) = xa−1(1 − x)b−1 and for simplicity, define

c̃�(S) := c(S)
∏
j∈S

q(xj | ξ�) ν(ξ�) . (13)

Note that c̃�(S) implicitly depends on ξ�. We have

p(A,z, ξ,η | x) = p(A | η,z) · p(z, ξ | x) · p(η)

∝
∏

1≤i<j≤n

ηAij
zizj (1 − ηzizj )1−Aij

∞∏
�=1

c̃�(S′
�)

∏
1≤m≤�≤∞

b(η�m;β, β) .

Here, S′
� = {i ∈ [n] : zi = �} is the �th community of z. We assume that z has

L′ communities S′
1, S

′
2, . . . , S

′
L′ and let S′

L′+1 = S′
L′+2 = · · · = ∅. The convention is

that c(∅) = 1 while c(S) = αΓ(|S|) when S is nonempty. Similarly,
∏

j∈∅( · · · ) = 1.
In the above, we assume that ξ = (ξ1, ξ2, . . . ) collects all possible ξ� and similarly for
η = (η�m : �,m ∈ N).

Fix i and let S� = {j ∈ [n]\ i : zj = �} be the �th community of z−i. We assume that
z−i has L communities S1, S2, . . . , SL and by convention, let SL+1 = SL+2 = · · · = ∅.
To get the communities of z from z−i, we either update Sk to S′

k = Sk ∪ {i} for some
k ∈ [L], or update SL+1 to S′

L+1 = SL+1 ∪ {i} = {i}, generating a new community.
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With the convention we use, we can compactly write both cases as S′
k = Sk ∪{i} for all

k ∈ [L + 1].

For any k ∈ [L + 1], we obtain

p
(
zi = k, ξL+1, ηL+1,[L] |z−i, A, ξ[L], η[L],[L], x

)
∝∏

j:j �=i

η
Aij

k,zj
(1 − ηk,zj )1−Aij · c̃k(Sk ∪ {i})

c̃k(Sk)

L+1∏
�=1

c̃�(S�)
∏

1≤m≤�≤L+1
b(η�m;β, β) .

(14)

Letting

Oi� =
∑
j:j �=i

Aij1{zj = �}, n� =
∑
j:j �=i

1{zj = �} , (15)

we have
∏

j:j �=i η
Aij

k,zj
(1 − ηk,zj )1−Aij =

∏L
�=1 η

Oi�

k� (1 − ηk�)n�−Oi� .

Noting that
∏L

�=1 c̃�(S�) is a constant in (14), and similarly for any term in∏
1≤m≤�≤L+1

b(π�m;β, β)

that does not have an index equal to L + 1, we obtain

p
(
zi = k, ξL+1, ηL+1,[L] |z−i, A, ξ[L], η[L],[L], x

)
∝

L∏
�=1

ηOi�

k� (1 − ηk�)n�−Oi� · c̃k(Sk ∪ {i})
c̃k(Sk)

c̃L+1(SL+1)
L∏

m=1
b(ηL+1,m;β, β) .

(16)

The product over m runs up to L since only ηL+1,[L] is a variable while ηL+1,L+1 is a
constant. This is because zi can take the new value L+1 but zj with j �= i takes values
in [L], hence we do not need to sample ηL+1,L+1 at this stage.

Since SL+1 = ∅, we have

c̃L+1(SL+1) = ν(ξL+1) ,

c̃L+1(SL+1 ∪ {i}) = αΓ(1) q(xi | ξL+1) ν(ξL+1) .

Hence for k ∈ [L + 1],

c̃k(Sk ∪ {i})
c̃k(Sk)

c̃L+1(SL+1) = ν(ξL+1)ψk q(xi | ξk) ,

where ψk is defined in (6). Thus, we can compactly write

p
(
zi = k, ξL+1, ηL+1,[L] |z−i, A, ξ[L], η[L],[L], x

)
∝

ν(ξL+1)
L∏

m=1
b(ηL+1,m;β, β) · ψkq(xi | ξk)

L∏
�=1

ηOi�

k� (1 − ηk�)n�−Oi� .
(17)
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This is equivalent to the following. First draw ξL+1 ∼ ν and ηL+1,m ∼ Beta(β, β) for
m ∈ [L], all independently. Then draw zi from

p
(
zi = k |z−i, A, ξ[L+1],η[L+1],[L],x

)
∝

ψk q(xi | ξk)
L∏

�=1

ηOi�

k� (1 − ηk�)n�−Oi� , k ∈ [L + 1] .
(18)

For continuous features, we use (9) for q(· | ·) and ν, and for categorical variables we
use (10) in the above updates.

Remark. Note that update (18) is where a potentially new community (labeled L+1) is
created. This happens if the following conditions are met: (a) when sampling zi according
to (18), we happen to pick zi = L + 1, (b) L′ = L, that is, the current number of
communities is L, and (c) currently zi is not assigned to a singlton community. In such
a case, the number of communities will increase from L′ = L to L + 1. On the other
hand, update (18) can also annihilate a community if the following holds: (a) When
sampling zi, we pick zi ∈ [L] and (b) L′ = L + 1 which means that zi is currently
assigned to a singleton community. In this case, the new number of communities will
go from L′ to L′ − 1 = L.

Sampling ξ

We have

p(ξ |A,z,x,η) = p(ξ | z,x) ∝
L′∏
�=1

HS′
�
(ξ�) ,

where HS is the distribution with density

HS(ξ) ∝
∏
i∈S

q(xi | ξ) ν(ξ) . (19)

That is, ξ� are independent draws from HS′
�
. We recall that S′

� = {i ∈ [n] : zi = �}.
The details of sampling ξ are slightly different given different choices of q(·) and ν(·)

depending on whether continuous or categorical features are available. For continuous
features with the Gaussian choice (9), HS(ξ) ∝

∏
i∈S N(xi; ξ, s2I) · N(ξ; 0, τ2I) which

gives

HS = N

(
τ2 ∑

i∈S xi

|S|τ2 + s2 ,
s2τ2

|S|τ2 + s2 I

)
.

For the categorical features with the choice (10), we have

HS(ξ) ∝
∏
i∈S

R∏
r=1

ar∏
c=1

(ξcr)1{xir=c} ·
R∏

r=1

ar∏
c=1

(ξcr)γ−1 =
R∏

r=1

ar∏
c=1

(ξcr)α
c
r(S)−1 ,
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where αc
r(S) := γ +

∑
i∈S 1{xir = c}. That is, HS is the product of Dirichlet distribu-

tions,

HS =
R∏

r=1
Dir(α1

r(S), . . . , αar
r (S)) .

Sampling η

Let us define the index sets

Γk� =
{
{(i, j) : 1 ≤ i < j ≤ n} k = �

{(i, j) : 1 ≤ i �= j ≤ n} k �= �
, (20)

and block counts

Mk� =
∑

(i,j)∈Γk�

Aij1{zi = k, zj = �}, Nk� =
∑

(i,j)∈Γk�

1{zi = k, zj = �} . (21)

Then, we have

p(η | A,z,x, ξ) = p(η | A,z) ∝
∏
k≤�

ηMk�+β−1
k� (1 − ηk�)Nk�−Mk�+β−1 .

Thus, ηk� are independent draws from Beta(Mk� + β,Nk� −Mk� + β).

Remark (Directed networks). Although our current MCMC algorithm is only for undi-
rected networks, our prior can be used for Bayesian community detection in directed
networks with covariates. One can simply replace the undirected SBM likelihood in (12)
with a directed SBM, by replacing i < j with i �= j and removing the symmetry constraint
on η. The resulting sampler will be almost identical, except for minor modifications to
the counts (15) and (21) to account for the extra edge information.

3 Simulation study
In this section, we carry out multiple simulation studies in which we compare our
methods, which we refer to as BCDC (Bayesian community detection for networks
with covariates), with i) the covariate-assisted spectral clustering (CASC) algorithm
(Binkiewicz et al., 2017), which uses both the network and the covariates information
in a spectral clustering algorithm, ii) the covariated-assisted clustering on ratios of
singular vectors (CASCORE) algorithm (Hu and Wang, 2022), which modifies CASC for
degree heterogeneity, iii) k-means algorithms (k-means) applied only to the covariates,
iv) spectral-clustering (SC) of the adjacency matrix, and v) a Bayesian SBM (BSBM),
which is essentially a special case of our model with g(S | x) = 1, therefore utilizing only
the network information. For CASC, the core idea is to first construct a new Laplacian
matrix Lx = L+τXXT , where L is the Laplacian matrix for the network and X denotes
the n by p feature matrix, and then apply the standard spectral clustering algorithm
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on Lx. Throughout, we select τ based on the automated procedure given in (Binkiewicz
et al., 2017, Section 2.3).

We consider simulation designs with (a) continuous features, (b) discrete or cate-
gorical features, (c) a mix of continuous and discrete covariates, (d) high-dimensional
features, and (e) homophily effects with networks simulated from stochastic block mod-
els with varying connectivity patterns and sparsity levels. The performance of the esti-
mated communities is measured by normalized mutual information (NMI), a measure
ranging from 0 (random guessing) to 1 (perfect agreement). NMI is a measure of sim-
ilarity of two partitions, and is widely used in the community detection literature. It
allows comparisons of two partitions with different number of clusters while accounting
for the issue of label invariance.

To define NMI, consider two partitions (labelings) on a set of objects and let (X,Y )
be the two labels of a randomly drawn object. The joint probability distribution of
(X,Y ) is the normalized confusion matrix between the two partitions. We can define
the mutual information I(X,Y ) and joint and marginal entropies—H(X,Y ), H(X) and
H(Y )—based on the aforementioned joint distribution, using standard definitions. It is
common to define NMI as I(X,Y )/H(X,Y ). However, there are other variants and to
be consistent with prior work, in particular Yan and Sarkar (2021), we will use the
variant implemented in the R package NMI, namely, 2I(X,Y )/(H(X)+H(Y )), which is
also referred to as symmetric uncertainty (Teukolsky et al. (1992, p. 634); Hall (1998)).

Overall, the simulation studies show that our method consistently outperforms the
competitors and demonstrates the gain of our model by utilizing both the network
and nodal information for detecting the community structures. The simulations were
performed on a high-computing cluster. An R package for our samplers, as well as the
code for these experiments, is available at the GitHub repository aaamini/bcdc (Shen
et al., 2022). We ran our code on a high-performance cluster with an Intel(R) Xeon(R)
CPU E5-2680 v4 @ 2.40GHz with 28 cores and 256 GB RAM.

3.1 Continuous covariates

We first consider simulated networks with continuous covariates, and in particular, the
Gaussian setting (9). We generate networks from an SBM having connectivity matrix
η = (ηk�) ∈ [0, 1]K×K with

ηk� =
{
p k = �

rp k �= �
. (22)

The parameter r ∈ [0, 1] controls the magnitude of disparity between the within and
between connectivites and is a measure of network information for the community struc-
ture. In our simulations, we set p = 0.1 and vary r. We consider n = 150 nodes with
K = 2 communities of 100 and 50 nodes, respectively.

For each node, we generate d = 2 features, with one signal feature related to the
community structure and one noise feature whose distribution is the same for all nodes.

https://github.com/aaamini/bcdc
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Figure 2: NMI results for five different methods on a 2-block SBM with continuous data.
In all cases, p = 0.1, and we vary the network and covariate signal-to-noise ratios, r and
μ, respectively.

Letting xi ∈ R2 be the feature vector for node i and e1 = (1, 0), we take

xi | zi ∼ N
(
μσzie1, I2

)
,

where σ1 = +1, σ2 = −1 and zi ∈ {1, 2} is the community label of node i. Here
μ ∈ [0,∞) is proportional to the signal-to-noise ratio of the covariate information.

Figure 2 shows the mean NMI with a 50% quantile band from BCDC and competing
methods, averaged over 500 replications, under different settings of r and μ. For BCDC,
we have used parameters α = 10, β = 1 and τ = s = 1, and ran the sampler for 1000
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iterations. Note that in our comparison, all of the competing methods were given an
additional advantage by assuming the knowledge of the true number of communities.
However, our method (red) consistently outperforms these other methods. An interest-
ing notable case is that of high network information (r = 0.3) and pure noise covariate
information (μ = 0). In this case, BCDC performs as well as BSBM which only operates
on network information, while CASC performs much worse being misled by pure noise
covariates.

3.2 Categorical covariates
We next consider a simulation study for networks with categorical covariates. For each
node i, we again generate d = 2 features with one signal feature related to the commu-
nity structure and one noise feature whose distribution is the same for all nodes. We
consider two designs:

(1) We consider networks with n = 150 nodes and K = 3 equally-sized communities.
The signal features are taken to be the true community labels and the noise features
are uniformly distributed on {1, 2, 3}.

(2) We consider networks with n = 150 nodes and K = 2 communities of 100 and
50 nodes. We create two 4-category features. Let xi = (xi1, xi2) ∈ {1, 2, 3, 4}2 be the
feature vector for node i. We use the following generative model

θ1, θ2 ∼ Dir(14) ,

xi1 | zi ∼ θzi , xi2 | zi ∼ 14/4 ,

where, for example, xi1 ∼ θzi means that xi1 is a categorical variable with probability
vector θzi .

In both cases, we use an SBM with connectivity (22), setting p = 0.1 and varying r
from 0.1 to 0.8. For the parameters of our model, we again set α = 10, and ran the
chain for 1,500 iterations. As above, the results are given over 500 replicates.

Figure 3 shows NMI as a function of r (the network information measure) under the
two covariate designs. Once again, all methods except BCDC were given the true number
of communities. The NMI values obtained under the proposed model are generally higher
than those of the other models with a slightly larger variance, which is likely due to the
additional uncertainty in estimating the number of the communities.

3.3 Mix of continuous and discrete covariates
Here, we perform a simulation for larger networks with more communities and a mix
of continuous and categorical variables. We let the number of nodes n vary from 300 to
1000 and set K = n/50 communities. The features are chosen so that neither perfectly
separates the clusters, but both are informative. In particular, we take

x1i | zi ∼ N
(
2(zi mod 2) − 1, 1

)
,
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Figure 3: NMI results for five different methods on a 3-block (left) and 2-block (right)
SBM with categorical data.

Figure 4: NMI (left) and run time (right) for five different methods when the network
has a mix of continuous and discrete covariates.

i.e. x1i ∼ N(1, 1) for zi ∈ {2, 4, . . .} and x1i ∼ N(−1, 1) for zi ∈ {1, 3, . . .}. We also take
x2i = 1 for zi ∈ {1, 2, . . .K/2} and x2i = 2 for zi ∈ {K/2+1, . . . ,K}. As before, we use
an SBM with connectivity (22), setting p = 0.3 and r = 0.35.

The results are shown in Figure 4. We find that BCDC is competitive with the other
methods when n ≤ 600, but is superior for larger networks with n > 600. We also show
in Figure 4 the run time for each method. We see that BCDC scales linearly with n and
is faster than CASC for all of the networks.
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3.4 Sparse networks and high-dimensional features
We next consider a setting from Yan and Sarkar (2021), who proposed a covariate-
regularized procedure for community detection in sparse graphs. This allows us to ex-
plore whether our model works for sparse networks, as well as networks with high-
dimensional features. We consider the exact simulation setting as in Yan and Sarkar
(2021), in which the networks are generated from a 3-block SBM on 800 nodes with
block-size ratios 3 : 4 : 5. The true connectivity matrix is

B = 0.01

⎡⎣ 1.6 1.2 0.16
1.2 1.6 0.02
0.16 0.02 1.2

⎤⎦ ,

leading to a very sparse network, with expected average degree ≈ 5.8. The covariates
are generated from 100-dimensional Gaussian distributions N(μzi , I100), with centers
that are only non-zero on the first two dimensions:

μ1 = (0, 2,098), μ2 = (−1,−0.8,098), μ3 = (1,−0.8,098) .

In this setting, it is difficult to distinguish clusters 1 and 2 using the network information
alone, and clusters 2 and 3 based on nodal covariates alone.

This experiment was repeated 100 times for independently generated samples. In
each replicate, we ran the chain for 1,000 iterations. The results are shown in Figure 5.
Note that our method consistently achieves a better NMI than all of the other methods.
Although we did not carry out a direct comparison with the method from Yan and
Sarkar (2021) since their work focuses on regularizing high-dimensional features, our
NMI results are stable and seem to be higher than those reported in Yan and Sarkar

Figure 5: Boxplots of NMI (left) and run time (right) for five different methods when
the network is sparse and the covariates are high-dimensional.
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(2021). Importantly, we also see in Figure 5 that BCDC is only slightly slower than all
of the methods that use only the network or only the covariates, but is considerably
faster than CASC and CASCORE, which also use both the network and the nodal
information. This illustrates the disadvantage of CASC for larger sparse networks and
highlights the efficiency of our MCMC algorithm. That CASC slows down for larger
networks can be attributed to the addition of the dense τXXT to the sparse Laplacian
L, resulting in an overall dense similarity matrix Lx.

3.5 Homophily

Finally, we consider a network model with homophily, which is the tendency for nodes
to be connected when they share a nodal feature. For this, we sample a categorical
covariate xi with two levels, and let

P(gij = 1 | zi, zj , xi, xj) = Pzizj + β1{xi = xj} ,

where Pzizj is an SBM with connectivity (22), setting p = 0.3 and r = 0.7. This creates
2K communities, and separates the effect of community structure from the effect of
node-level covariates. We take K = 3 and vary β in [−0.2, 0.2]. Note that when β > 0,
we say the nodes exhibit positive homophily. We run this for n = 600 and n = 1200.

The results are shown in Figure 6. We find that BCDC has superior performance
to the other methods even when they are provided the true number (2K) of communi-
ties. The performance increases as the homophily effect increases in magnitude, which
we should expect because the homophily effect is an informative covariate that is not
included with BSBM.

Figure 6: NMI results on a 3-block SBM with a homophily effect for n = 600 (left) and
n = 1200 (right).
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4 Real data analysis
In this section, we apply our model to the same two datasets from Yan and Sarkar
(2021), a network representing Mexican political elites and a network representing the
Weddell Sea ecosystem. We compare our the results from our models against several
methods that use only the network, only the covariates, and both the network and
covariates.

4.1 Performance measures

In addition to computing the NMI with the (alleged) ground truth labels, it is also
helpful to compare the performance using some information criterion based on an SBM
likelihood conditional on the labels. This is especially important because, unlike in the
simulations, the “true” clusters are exogenously specified.

BIC The (conditional) Bayesian information criterion (BIC) is defined as the log-
marginal likelihood multiplied by −2. That is,

BIC(z) = −2 log
∫

p(A | η,π,z)p(η)p(π) dη dπ (23)

≈ −2 log p(A | η̂, π̂,z) + c(K) log
(
n

2

)
, (24)

where K is the number of communities in z, c(K) = 1
2K(K+1)+(K−1) is the degrees

of freedom in the parameters (η,π), π is the label prior, and (η̂, π̂) is the maximum
likelihood estimator of those parameters, i.e., the maximizer of (η,π) �→ p(A |η,π,z).
We assume a uniform prior over η and π. Note that (24) is the well-known approximation
to the BIC (Schwarz, 1978; Konishi and Kitagawa, 2008) and it shows the usefulness
of BIC(z) as a measure of performance for real networks: Due to the presence of the
complexity term ≈ c(K) log(n2), we get a good balance of the model fit and the number
of communities. Label vectors z with smaller BIC(z) are thus more desirable from a
block modeling standpoint, regardless of their relation to the ground truth.

We have, assuming uniform priors on η and π,

p(A | η,π,z)p(η)p(π) =
∏
k≤�

ηMk�

k� (1 − ηk�)Nk�−Mk�

∏
k

π
nk(z)
k , (25)

where nk(z) =
∑

i 1{zi = k}, and Mk� and Nk� are as in (21). Hence, the exact BIC in
our setting is

BIC(z) = −2
[∑
k≤�

logB(Mk� + 1, Nk� −Mk� + 1) + logB(n(z) + 1K)
]
,

where n(z) = (nk(z)) and B(·) is the multivariate Beta function.
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WAIC In addition to BIC, we also consider WAIC (Watanabe, 2013, Section 7.1) for
evaluating the methods. We mainly follow the notation and interpretation of Vehtari
et al. (2017). To simplify the discussion, let us write θ = (η,π). Throughout, we con-
dition on z, so we drop the explicit mention of this conditioning. Conditioned on z,
the likelihood factorizes as independent (although not identically distributed) terms:
p(A |θ) =

∏
i<j p(Aij |θ). Let A be the data that we have observed and Ã be some

future data from the same unknown true distribution Q. That is, A and Ã are a pair of
i.i.d. copies from Q. One assumes that Q also factorizes over coordinates. WAIC is an
approximation to the so-called ELPD, which we multiply by −1 compared to Vehtari
et al. (2017),

−
∑
i<j

EÃ∼Q[log p∗(Ãij |A)] (26)

were p∗(Ãij |A) is the posterior predictive density of Ãij given A under the model.
Letting Epost denote the expectation under the posterior distribution of θ given A,

p∗(Ãij |A) = Epost[p(Ãij |θ)].

WAIC is an approximation to (26) and is given by

WAIC = −
∑
i<j

log p∗(Aij |A) +
∑
i<j

varpost(log p(Aij |θ))

where the second term can be thought of as a measure of model complexity.

Remark. Our WAIC is −1 times the WAIC of Vehtari et al. (2017) and n times that
of Watanabe (2013).

Note that,

WAIC = −
∑
i<j

{
logEpost[p(Aij |θ)] + varpost(log p(Aij |θ))

}
where both Epost and varpost are usually obtained by Monte Carlo approximation using
a sample drawn from the posterior of θ.

Under the model we are considering here, however, WAIC can be derived in closed-
from. The posterior of θ = (η,π) given A is proportional to (25), hence the posterior
is ηk� ∼ Beta(Mk� + 1, Nk� − Mk� + 1) and πk ∼ Dir(nk(z) + 1). Since p(Aij |θ) =
η
Aij
zizj (1 − ηzizj )1−Aij only depends on η, only the posterior of η is relevant. We have

Epost[p(Aij |θ)] =
{
Epost[ηzizj ] Aij = 1
Epost[1 − ηzizj ] Aij = 0

=
(Mzizj + 1
Nzizj + 2

)Aij
(Nzizj −Mzizj + 1

Nzizj + 2

)1−Aij

.



20 BCDC

Next, we recall that if X ∼ Beta(α, β), then, var[logX] = ψ1(α) − ψ1(α + β) and
var[log(1−X)] = ψ1(β)−ψ1(α+β) where ψ1(·) is the trigamma function. By considering
the two possible values of Aij as above, we have

varpost(log p(Aij |θ)) =
{
ψ1(Mzizj + 1) − ψ1(Nzizj + 2), Aij = 1
ψ1(Nzizj −Mzizj + 1) − ψ1(Nzizj + 2), Aij = 0

.

Put together, we obtain our closed form for WAIC.

4.2 Mexican political elites

The first dataset we consider involves Mexican political elites (Gil-Mendieta and Schmidt,
1996). In this network, the n = 35 vertices represent Mexican presidents and their close
collaborators, and the 117 edges represent significant political, kinship, friendship, or
business ties among them. The ground truth is a classification of the politicians accord-
ing to their professional background: military and civilians. The covariate we include is
the number of years since 1990 that the actor first got a significant governmental posi-
tion. Figure 7 reveals that this covariate has some discriminatory power in the cluster
labels. This is due to the fact that after the Mexican revolution at the beginning of
the twentieth century, the political elite was dominated by the military, and later the
civilians gradually succeeded the power.

Table 1 contains the NMI results of our method compared with the same comparison
methods in the simulation section. We see that our method achieves the best results,
and we visualize our estimated clusters in the network compared with the true labels in
Figure 8. Again, for the other methods, we assume the knowledge of the true number
of clusters while ours learns the number of the clusters via posterior inference for NMI
comparisons.

Figure 7: Node feature for the Mexican political network, which is the number of years
since 1990 that the actor first got a significant governmental position.
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Dataset bcdc casc cascore k-means sc bsbm

Mexican politicians 0.43 0.37 0.28 0.26 0.37 0.30
Weddell Sea 0.44 0.25 0.15 0.35 0.33 0.23

Table 1: NMI results on the two real datasets.

Figure 8: Mexican political network, colored by true (left) and estimated (right) clusters.

As already pointed out in Yan and Sarkar (2021), node 35 has exactly one connection
to each of the military and civilian groups, but obtained a governmental position in the
90s, which greatly hinted at a civilian background. By using the covariate, our method
accurately captures this label. On the other hand, node 9 seized power in 1940 when the
government was almost equally represented by civilian and military politicians, which
makes detecting his group difficult, but has more edges to the military group than the
civilian group. In this case, our method correctly assigns the military label to it by
considering the graph structure.

We also notice that node 1 has five connections to the military and only one con-
nection to the civilian, and node 1 seized power in 1911. Similarly for node 7, which
has five connections to the military and three connections to the civilian and seized
power in 1928. For these nodes, both the network and the covariates strongly indicate
a closer relationship to the military, which is what our method assigns despite the true
label showing civilian. Finally, our method assigns node 12 to its own cluster. This is
likely because this is the highest-degree node with 5 military connections and 12 civil-
ian connections. However, in researching node 12, we discovered that Miguel Alemán
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Valdés was the first civilian president after several military presidents, which suggests
that there may have been a labeling error in the original publication of this dataset
from Gil-Mendieta and Schmidt (1996). This could explain why our method has the
best BIC and WAIC, even better than the “true” labels, in Tables 2 and 3.

Dataset “true“ bcdc casc cascore k-means sc bsbm

Mexican
politicians

636 586 587 608 626 587 587

Weddell
Sea

138k 21k 124k 120k 144k 100k 71k

Table 2: BIC results on the two real datasets.

Dataset “true“ bcdc casc cascore k-means sc bsbm

Mexican
politicians

283 248 268 259 279 259 259

Weddell
Sea

68k 8k 61k 59k 71k 49k 35k

Table 3: WAIC results on the two real datasets.

4.3 Weddell sea ecosystem

The second dataset we consider is a predator-prey, directed network representing the
marine food web of the Weddell Sea off of the Antarctic Peninsula, which was collected
by Jacob et al. (2011). Since ecosystems are complex, interconnected environments,
network analyses have emerged as a popular technique for untangling these connections.
The Weddell Sea network has 487 nodes that signify different marine species, and there
is a link between nodes i and j if species i (predator) feeds on species j (prey). Following
Yan and Sarkar (2021), we construct a binary, undirected network from this directed
network in which Aij = 1 if there are at least 5 common prey between species i and j,
and Aij = 0 otherwise. The network is shown in Figure 9.

In Jacob et al. (2011), the authors analyze the relationship between the body size
of each species and its feeding type: primary producer, herbivorous/detrivorous, de-
trivorous, carnivorous, carnivorous/necrovorous, and omnivorous. Figure 1 shows these
body sizes grouped by feeding type, where, again following Yan and Sarkar (2021), we
group detrivorous, carnivorous, carnivorous/necrovorous as “Carnivore” to obtain four
groups. The adjacency matrix in Figure 9 (left) is also sorted by these groups. The
authors of Jacob et al. (2011) found body size to be positively correlated with trophic
level, but noted that “predators on intermediate trophic levels do not necessarily feed
on smaller or prey similar in size but depending on their foraging strategy have a wider
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Figure 9: Visualization of the adjacency matrix for the Weddell Sea network clustered
by the true feeding type (left) and estimated clusters (right). In each case, the rows and
columns of the matrix are permutated so that nodes in the same cluster form contiguous
blocks. Clusters on the right are ordered according to their size.

prey size range available.” Therefore, body size is insufficient on its own to distinguish
the groups, and it would be preferable to consider the interconnectedness of the food
web when tasked with clustering the species.

Table 1 shows that BCDC provides the best clustering results compared to the other
methods. Therefore, using all of the available information provides an improvement in
clustering accuracy over the use of just the network structure or the nodal information.
As before, BCDC is the only method that did not know that there are four “true” groups.
Interestingly, BCDC estimates many more clusters – 21 in total – which may explain its
higher NMI, since we see qualitatively in Figure 9 (right) a more refined block structure.
This is quantified and corroborated through BIC and WAIC in Tables 2 and 3, which
again shows our method outperforms even the “true” clusters. All of this suggests there
may be distinct sub-blocks within the Herbivore, Carnivore, and Omnivore classes.

5 Discussion
In this work, we proposed a Bayesian model for community detection in networks with
covariates in which both the network and node features of the network are jointly
utilized for estimating community structure. In particular, the contribution of nodal
information is explicitly modeled in the prior distribution for the community labels via
a covariate-dependent random partition prior. We proposed efficient MCMC algorithms
for sampling the posterior distributions of all the parameters including the community
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labels and the number of the communities. Numerical studies demonstrated the overall
superior performance of our model over many of the existing methods.

Compared to an almost exclusive literature of frequentist methods, our work is
among the first in proposing a Bayesian approach for tackling the problem, which con-
fers some notable advantages in terms of uncertainty quantification, as well as esti-
mating all the model parameters. Notably, unlike the other methods in the literature,
our model estimates the number of communities via posterior inference without any
knowledge or prior information on the true number. Future work will be devoted to
developing Bayesian models for community detection in degree-corrected SBMs and
dynamic network models.

We can also easily extend our model to a partially-observed SBM in the spirit of
Zhou (2015). Specifically, we can modify (12) to

P (A |η,z) =
∏

1≤i<j≤n

[
ηAij
zi,zj (1 − ηzi,zj )1−Aij

]mij

,

where m = (mij) ∈ {0, 1}n×n is a (symmetric) observation mask, with mij = 1 for the
observed edges. This only effects sampling z and β through the modified counts

Oi� =
∑
j:j �=i

mijAij1{zj = �}, ni� =
∑
j:j �=i

mij1{zj = �} ,

replacing (15), and

Mk� =
∑

(i,j)∈Γk�

mijAij1{zi = k, zj = �}, Nk� =
∑

(i,j)∈Γk�

mij1{zi = k, zj = �} ,

replacing (21). This allows our model to also predict missing edges.

Finally, it may be of interest to test whether there is an association between the
node covariates and inferred community structure. One approach to this is with Bayes
factors comparing models with and without covariates, using, for example, the approach
in Legramanti et al. (2020) for testing partition structures in SBMs. While this is a
principled Bayesian approach, it only tests whether the set of covariates provides a
more parsimonious clustering than without the covariates rather than identifying which
covariates are significant. One idea for testing individual covariate significance is to test
for a difference between the posterior distributions of the cluster centers ξ implied by
z. Note that this corresponds to testing whether the priors ν on auxiliary probability
distributions q have overlapping variances, but we leave a rigorous treatment of this
idea to future work.
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