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The likelihood functions for discretely observed nonlinear continuous
time models based on stochastic differential equations are not available ex-
cept for a few cases. Various parameter estimation techniques have been pro-
posed, each with advantages, disadvantages and limitations depending on
the application. Most applications still use the Euler–Maruyama discretiza-
tion, despite many proofs of its bias. More sophisticated methods, such as
Kessler’s Gaussian approximation, Ozaki’s local linearization, Aït–Sahalia’s
Hermite expansions or MCMC methods, might be complex to implement,
do not scale well with increasing model dimension or can be numerically
unstable. We propose two efficient and easy-to-implement likelihood-based
estimators based on the Lie–Trotter (LT) and the Strang (S) splitting schemes.
We prove that S has Lp convergence rate of order 1, a property already known
for LT. We show that the estimators are consistent and asymptotically efficient
under the less restrictive one-sided Lipschitz assumption. A numerical study
on the 3-dimensional stochastic Lorenz system complements our theoretical
findings. The simulation shows that the S estimator performs the best when
measured on precision and computational speed compared to the state-of-the-
art.

1. Introduction. Stochastic differential equations (SDEs) are popular models for physi-
cal, biological and socioeconomic processes. Some recent applications include tipping points
in the climate (Ditlevsen and Ditlevsen (2023)), the spread of COVID-19 (Arnst et al. (2022),
Kareem and Al-Azzawi (2021)), animal movements (Michelot et al. (2019, 2021)) and cryp-
tocurrency rates (Dipple et al. (2020)). The advantage of SDEs is their ability to capture and
quantify the randomness of the underlying dynamics. They are especially applicable when the
dynamics are not entirely understood, and the unknown parts act as random. The following
parametric form is common for an SDE model with additive noise:

dXt = F(Xt ;β) dt + � dWt , X0 = x0.(1)

We want to estimate the underlying drift parameter β and diffusion parameter � based on dis-
crete observations of Xt . The transition density is necessary for likelihood-based estimators,
and thus a closed-form solution to (1). However, the transition density is only available for
a few SDEs, including the Ornstein–Uhlenbeck (OU) process, which has a linear drift func-
tion F. Extensive literature exists on MCMC methods for the nonlinear case (Chopin and
Papaspiliopoulos (2020), Fuchs (2013)) however, these are often computationally intensive
and do not always converge to the correct values for complex models. Thus, we need a valid
approximation of the transition density to perform likelihood-based statistical inference.

Received January 2023; revised February 2024.
MSC2020 subject classifications. Primary 62F12, 62H12, 62M99; secondary 37M15, 60G65.
Key words and phrases. Asymptotic normality, consistency, Lp convergence, splitting schemes, stochastic dif-

ferential equations, stochastic Lorenz system.

842

https://imstat.org/journals-and-publications/annals-of-statistics/
https://doi.org/10.1214/24-AOS2371
http://www.imstat.org
https://orcid.org/0000-0002-8890-421X
https://orcid.org/0000-0002-1998-2783
mailto:predrag@math.ku.dk
mailto:adeline.leclercq-samson@univ-grenoble-alpes.fr
mailto:susanne@math.ku.dk
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


SDE PARAMETER ESTIMATION USING SPLITTING SCHEMES 843

The most straightforward discretization scheme is the Euler–Maruyama (EM) (Kloeden
and Platen (1992)). Its main advantage is the easy-to-implement and intuitive Gaussian tran-
sition density. Both frequentist and Bayesian approaches extensively employ EM across theo-
retical and applied studies. However, the EM-based estimator has many disadvantages. First,
it exhibits pronounced bias as the discretization step increases (see Florens-Zmirou (1989)
for a theoretical study, or Gloaguen, Etienne and Le Corff (2018), Gu, Wu and Xue (2020)
for applied studies). Second, Hutzenthaler, Jentzen and Kloeden (2011) showed that it is not
mean-square convergent when the drift function F of (1) grows super-linearly. Consequently,
we should avoid EM for models with polynomial drift. Third, it often fails to preserve im-
portant structural properties, such as hypoellipticity, geometric ergodicity, and amplitudes,
frequencies and phases of oscillatory processes (Buckwar et al. (2022)).

Some pioneering papers on likelihood-based SDE estimators are Dacunha-Castelle and
Florens-Zmirou (1986), Dohnal (1987), Florens-Zmirou (1989), Genon-Catalot and Jacod
(1993), Kessler (1997). The first two only estimate the diffusion parameter. Florens-Zmirou
(1989) used EM to estimate both parameters and derived asymptotic properties. Genon-
Catalot and Jacod (1993) generalized to higher dimensions, nonequidistant discretization
step, and a generic form of the objective function, however, only estimating the diffusion
parameter. Kessler (1997) proposed an estimator (denoted K) approximating the unknown
transition density with a Gaussian density using the true conditional mean and covariance, or
approximations thereof using the infinitesimal generator. He proved consistency and asymp-
totic normality under the commonly used, but too restrictive, global Lipschitz assumption on
the drift function F.

A competitive likelihood-based approach relies on local linearization (LL), initially pro-
posed by Ozaki (1985) and later extended by Ozaki (1992), Shoji and Ozaki (1998). They
approximated the drift between two consecutive observations using a linear function. In the
case of additive noise, this corresponds to an OU process with a known Gaussian transition
density. Thus, the likelihood approximation is a product of Gaussian densities. Shoji (1998)
proved that LL discretization is one-step consistent and Lp convergent with order 1.5. Shoji
(2011), Jimenez, Mora and Selva (2017) extended the theory of LL for SDEs with multi-
plicative noise. Simulation studies show the superiority of the LL estimator compared to
other estimators (Gloaguen, Etienne and Le Corff (2018), Gu, Wu and Xue (2020), Hurn,
Jeisman and Lindsay (2007), Shoji and Ozaki (1998)). Until recently, the implementation of
the LL estimator was numerically ill-conditioned due to the possible singularity of the Jaco-
bian matrix of the drift function F. However, Gu, Wu and Xue (2020) proposed an efficient
implementation that overcomes this. The main disadvantage of the LL method is its slow
computational speed.

Aït-Sahalia (2002) proposed Hermite expansions (HE) to approximate the transition den-
sity, focusing on univariate time-homogeneous diffusions. This method, widely utilized in
finance, was later extended to both reducible and irreducible multivariate diffusions (Aït-
Sahalia (2008)). Chang and Chen (2011) found conditions under which the HE estimator has
the same asymptotic distribution as the exact maximum likelihood estimator (MLE). Choi
(2013, 2015) further broadened the technique to time-inhomogeneous settings. Picchini and
Ditlevsen (2011) used the method for multidimensional diffusions with random effects. When
an SDE is irreducible, Aït-Sahalia (2008) applied Kolmogorov’s backward and forward equa-
tions to develop a small-time expansion of the diffusion probability densities. Yang, Chen and
Wan (2019) introduced a delta expansion method, using Itô–Taylor expansions to derive an-
alytical approximations of the transition densities of multivariate diffusions inspired by Aït-
Sahalia (2002). While Aït-Sahalia’s approach allows for a broad class of drift and diffusion
functions, the implementation can be complex. To our knowledge, there have not been any
applications to models with more than four dimensions. Furthermore, computing coefficients
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even up to order two can be challenging, while higher-order approximations are often nec-
essary for nonlinear models. Hurn, Jeisman and Lindsay (2007) implemented HE up to third
order in univariate cases, emphasizing the importance of symbolic computation tools like
Mathematica or Maple. Their survey concluded that while LL is the best among discrete
maximum likelihood estimators, HE is the preferred overall choice. They highlighted that the
HE proposed by Aït-Sahalia (2002) has the best trade-off between speed and accuracy, prov-
ing more feasible than LL in most financial applications. Similar results are found in Jensen
and Poulsen (2002), López-Pérez, Febrero-Bande and González-Manteigav (2021). However,
LL’s broad applicability contrasts with the limitations of Hermite expansions, particularly for
high-dimensional multivariate models exceeding three dimensions.

Apart from the above-mentioned general methods, there are some specific setups. Sørensen
and Uchida (2003) investigated a small-diffusion estimator, Ditlevsen and Sørensen (2004),
Gloter (2006) worked with integrated diffusion, and Uchida and Yoshida (2012) used adap-
tive maximum likelihood estimation. Bibby and Sørensen (1995) and Forman and Sørensen
(2008) explored martingale estimation functions (EF) in one-dimensional diffusions, but they
are difficult to extend to multidimensional SDEs. Ditlevsen and Samson (2019) used the 1.5
scheme to solve the problem of hypoellipticity when the diffusion matrix is not of full rank.

More recently, contributions from Gloter and Yoshida (2021a, 2021b) have extended the
research of Uchida and Yoshida (2012). Gloter and Yoshida (2021a) introduced a nonadap-
tive approach and offered similar analytic asymptotic results as Ditlevsen and Samson (2019)
without imposing strict limitations on the model class. Iguchi, Beskos and Graham (2022)
proposed sampling schemes for elliptic and hypoelliptic models that often result in condition-
ally non-Gaussian integrals, distinguishing their approach from prior works. As the transition
density of their new scheme is typically complex, Iguchi, Beskos and Graham (2022) created
a closed-form density expansion using Malliavin calculus. They recommended a transition
density scheme that retained second-order precision through prudent truncation of the ex-
pansion. This closed-form expansion aligns with the works of Aït-Sahalia (2002, 2008) and
Li (2013) on elliptic SDEs, although with a different approach. Iguchi, Beskos and Graham
(2022) deliver asymptotic results with analytically available rates, beneficial for both elliptic
and hypoelliptic models.

Table 1 provides a comprehensive overview of estimator properties, finite sample per-
formance and required model assumptions for the most prominent state-of-the-art methods.
While asymptotic properties might be similar in most cases, the finite sample properties are
often different. The table also includes the Lie–Trotter (LT) and the Strang (S) splitting esti-
mators, which we propose in this paper. The comparison encompasses four key characteris-
tics: (1) Diffusion coefficient allowed in the model class, distinguishing between additive and
general noise; (2) Asymptotic regime, the conditions needed to prove the asymptotic proper-
ties; (3) Implementation, assessing the complexity of implementation, dependence on model
dimension and parameter optimization time and (4) Finite sample properties, evaluating per-
formance for fixed sample size N and discretization step size h.

An essential aspect of any estimator is the practical execution in real-world applications.
Although the previously mentioned research contributes significantly to the theoretical devel-
opment and broadens our understanding of inference for SDEs, its practical implementations
tend not to be user friendly. Except for precomputed models, applications by nonspecialists
can be challenging. Our main contribution is proposing estimators that are intuitive, easy to
implement, computationally efficient and scalable with increasing dimensions. These char-
acteristics make the estimators accessible to researchers in various applied sciences while
maintaining desirable statistical properties. Moreover, these estimators remain competitive
with the best state-of-the-art methods, particularly concerning estimation bias and variance.

We propose to use the LT or the S splitting schemes for statistical inference. These nu-
merical approximations were first suggested for ordinary differential equations (ODEs) (see,
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TABLE 1
Comparison of the proposed Lie–Trotter (LT) and Strang (S) splittings (in bold) with five state-of-the-art estimators: Euler–Maruyama (EM), Kessler (K), Estimating functions (EF),
Local linearization (LL) and Hermite expansion (HE). The comparison focuses on four key characteristics: (1) Noise type—additive or general, (2) Asymptotic regime—investigating
conditions where asymptotic properties align with the exact MLE, (3) Computational time and implementation—evaluating implementation and parameter optimization costs and

(4) Finite sample properties—assessing performance under fixed N and h. The finite sample properties of the estimators are likely influenced by specific experiment designs

Estimator Noise type Asymptotic regime Computational time and implementation Finite sample properties

EM General h → 0, Nh → ∞,
Nh2 → 0
(Florens-Zmirou (1989))

Fastest optimization and implementation.
Straightforward for any dimension.

Earliest bias exhibition with increasing h.

K up to
order J

General J fixed: h → 0, Nh → ∞,
Nhp → 0, for any p ∈N

a

 

(Kessler (1997))

Fast optimization.
Straightforward for J ≤ 3.

Unbiased if the exact mean is known.
For larger h, a higher order of J is needed.
Performance between EM and LL.

EF General h fixed: N → ∞ (Bibby
and Sørensen (1995))

Fast optimization.
Requires moments of the transition density.
Mainly suitable for univariate models.

Unbiased also for large h, but not efficient.
Good performance.

LL Additive (possible
generalization)
(Jimenez, Mora and
Selva (2017))

h → 0, Nh → ∞,
Nh2 → 0 (Ozaki (1992))

Slowest discrete ML approximations.
(Hurn, Jeisman and Lindsay (2007))
Straightforward for any dimension.

Best among all discrete ML approximations.
(Hurn, Jeisman and Lindsay (2007))

HE up to
order J

General h fixed: N → ∞, J → ∞,
Nh2J+2 → 0,
J ≥ 2 fixed: N → ∞,
h → 0, Nh3 → ∞,
Nh2J+1 → 0 (Chang and
Chen (2011))

Slower than LL in the univariate case.
Implementation becomes significantly more complex in higher
dimensions or for J ≥ 2. (Hurn, Jeisman and Lindsay (2007))

For larger h, a higher order of J is needed.
Better than LL in the univariate case.
(Hurn, Jeisman and Lindsay (2007))

LT
(proposed)

Additive (possible
generalization)

h → 0, Nh → ∞,
Nh2 → 0

Slower than K, but notably faster than LL.
Straightforward implementation for given nonlinear ODE solution.
Scales well with the increasing dimension.

Performance relative to EM varies based on
splitting strategy and model.

S
(proposed)

Additive (possible
generalization)

h → 0, Nh → ∞,
Nh2 → 0

Slower than LT, but notably faster than LL.
Straightforward implementation for given nonlinear ODE solution.
Scales well with the increasing dimension.

As good as LL.

aWhile Kessler (1997) did not explicitly explore the scenario of a fixed h, it is a reasonable assumption that the asymptotic results will hold as N → ∞ and J → ∞.
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e.g., Blanes, Casas and Murua (2008), McLachlan and Quispel (2002)), but their extension to
SDEs is straightforward. A few studies have investigated numerical properties (Ableidinger
and Buckwar (2016), Ableidinger, Buckwar and Hinterleitner (2017), Bensoussan, Glowinski
and Răşcanu (1992), Buckwar et al. (2022)). Barbu (1988) applied LT splitting on nonlinear
optimal control problems, while Hopkins and Wong (1986) used it for nonlinear filtering.
Abdulle, Vilmart and Zygalakis (2015), Bou-Rabee and Owhadi (2010) used LT splitting
to investigate conditions for preserving the measure of the ergodic nonlinear Langevin equa-
tions. Recently, Bréhier and Goudenǵe (2019) showed that LT splitting successfully preserved
positivity for a class of nonlinear stochastic heat equations with multiplicative space-time
white noise. Additional studies on the application of splitting schemes to SDEs include those
by Alamo and Sanz-Serna (2016), Leimkuhler and Matthews (2015), Milstein and Tretyakov
(2003), Misawa (2001), Bréhier and Goudenǵe (2019). Regarding statistical applications,
to the best of our knowledge, only Buckwar, Tamborrino and Tubikanec (2020), Ditlevsen,
Tamborrino and Tubikanec (2023) used splitting schemes for parametric inference in combi-
nation with Approximate Bayesian Computation, and Ditlevsen and Ditlevsen (2023) used it
for prediction of a forthcoming collapse in the climate.

This paper presents five main contributions:

1. We introduce two new efficient, easy-to-implement, and computationally fast estima-
tors for multidimensional nonlinear SDEs.

2. We establish Lp convergence of the S splitting scheme.
3. We prove consistency and asymptotic normality of the new estimators under the less

restrictive assumption of one-sided Lipschitz. This proof requires innovative approaches.
4. We demonstrate the estimators’ performance in a stochastic version of the chaotic

Lorenz system, in contrast to prior studies that primarily addressed the deterministic Lorenz
system.

5. We compare the new estimators to four discrete maximum likelihood estimators from
the literature in a simulation study, comparing the accuracy and computational speed.

The rest of this paper is structured as follows. In Section 2, we introduce the SDE model
class and define the splitting schemes and the estimators. In Section 3, we show that the S
splitting has better one-step predictions than the LT, and we prove that the S splitting is Lp

consistent with order 1.5 and Lp convergent with order 1. To the best of our knowledge, this
is a new result. Sections 4 and 5 establish the estimator asymptotics under the less restrictive
one-sided global Lipschitz assumption. We illustrate in Section 6 the theoretical results in
a simulation study on a model that is not globally Lipschitz, the 3-dimensional stochastic
Lorenz systems. Since the objective functions based on pseudo-likelihoods are multivariate
in both data and parameters, we use automatic differentiation (AD) to get faster and more
reliable estimators. We compare the precision and speed of the EM, K, LL, HE, LT and S
estimators. We show that the EM and LT estimators become biased before the others with in-
creasing discretization step h, HE (of order 2) works only for the smallest h in the simulation
study, and the LL and S perform the best. However, S is much faster than LL because LL
calculates a new covariance matrix for each combination of data points and parameter values.

Notation. We use capital bold letters for random vectors, vector-valued functions and ma-
trices, while lowercase bold letters denote deterministic vectors. ‖ · ‖ denotes both the L2

vector norm in R
d and the matrix norm induced by the L2 norm, defined as the square root

of the largest eigenvalue. Superscript (i) on a vector denotes the ith component, while on a
matrix it denotes the ith row. Double subscript ij on a matrix denotes the component in the
i-th row and j th column. If a matrix is a product of more matrices, square brackets with sub-
scripts denote a component inside the matrix. The transpose is denoted by �. Operator Tr(·)
returns the trace of a matrix and det(·) the determinant. Sometimes, we denote by [ai]di=1 a
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vector with coordinates ai , and by [bij ]di,j=1 a matrix with coordinates bij , for i, j = 1, . . . , d .

We denote with ∂ig(x) the partial derivative of a generic function g : Rd → R with respect
to x(i) and ∂2

ij g(x) the second partial derivative. The nabla operator ∇ denotes the gradient

vector of a function g, ∇g(x) = [∂ig(x)]di=1. The differential operator D denotes the Jaco-
bian matrix DF(x) = [∂iF

(j)(x)]di,j=1, for a vector-valued function F : Rd → R
d . H denotes

the Hessian matrix of a real-valued function g, Hg(x) = [∂ijg(x)]di,j=1. Let R represent a

vector (or a matrix) valued function defined on (0,1) × R
d , such that for some constant C,

‖R(a,x)‖ < aC(1 + ‖x‖)C for all a, x. When denoted R, it is a scalar.
The Kronecker delta function is denoted by δ

j
i . For an open set A, the bar A indicates

closure. We use θ= to indicate equality up to an additive constant that does not depend on θ .

We write
P−→,

d−→ and
P−a.s.−−−−→ for convergence in probability, distribution, and almost surely,

respectively. Id denotes the d-dimensional identity matrix, while 0d×d is a d-dimensional
zero square matrix. For an event E ∈F , we denote by 1E the indicator function.

2. Problem setup. Let X in (1) be defined on a complete probability space (�,F,Pθ )

with a complete right-continuous filtration (Ft )t≥0, and let the d-dimensional Wiener pro-
cess W = (Wt )t≥0 be adapted to Ft . The probability measure Pθ is parameterized by the
parameter θ = (β,�). Rewrite equation (1) as follows:

dXt = A(β)
(
Xt − b(β)

)
dt + N(Xt ;β) dt + � dWt , X0 = x0,(2)

such that F(x;β) = A(β)(x − b(β)) + N(x;β). Let � = �β × �� be the parameter space
with �β and �� being two open convex bounded subsets of Rr and R

d×d , respectively.
Functions F,N :Rd ×�β →R

d are locally Lipschitz, and A, b are defined on �β and take
values in R

d×d and R
d , respectively. Parameter matrix � takes values in R

d×d . The matrix
��� is assumed to be positive definite and determines the variance of the process. Since any
square root of ��� induces the same distribution, � is only identifiable up to equivalence
classes. Thus, instead of estimating �, we estimate ���. The drift function F in (1) is split
up into a linear part given by matrix A and vector b and a nonlinear part given by N. This
decomposition is essential for defining the splitting schemes and the objective functions used
for estimating θ .

We denote the true parameter value by θ0 = (β0,�0) and assume that θ0 ∈ �. Sometimes
we write A0, b0, N0(x) and ���

0 instead of A(β0), b(β0), N(x;β0) and �0�
�
0 , when refer-

ring to the true parameters. We write A, b, N(x) and ��� for any parameter θ . Sometimes
we suppress the parameter to simplify notation, for example, E implicitly refers to Eθ .

REMARK 1. The drift function F(x) can always be rewritten as A(x − b) + N(x) for any
A, b by setting N(x) = F(x)−A(x−b), including choosing A and b to be zero. The splitting
proposed below will then result in a Brownian motion (3) and a nonlinear ODE (4).

REMARK 2. We assume additive noise, sometimes referred to as constant volatility,
meaning that the diffusion matrix does not depend on the current state. This assumption can
be restrictive and even rejected by the data in some applications. The proposed methodology
can be extended if the diffusion is reducible (Definition 1 in (Aït-Sahalia (2008))) by apply-
ing the Lamperti transform to obtain a unit diffusion coefficient. However, if the transform
depends on the parameter, estimation is not straightforward. In this paper, we only consider
additive noise.
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2.1. Assumptions. The main assumption is that (2) has a unique strong solution
X= (Xt )t∈[0,T ], adapted to (Ft )t∈[0,T ], which follows from the following first two assump-
tions (Theorem 2 in Alyushina (1987), Theorem 1 in Krylov (1990), Theorem 3.5 in Mao
(2007)). We need the last three assumptions to prove the properties of the estimators.

(A1) Function N is twice continuously differentiable with respect to x and θ , that is, N ∈
C2. Additionally, it is one-sided globally Lipschitz continuous with respect to x on R

d ×�β ,
that is, there exists a constant C > 0 such that

(x − y)�
(
N(x;β) − N(y;β)

)≤ C‖x − y‖2 ∀x,y ∈ R
d .

(A2) Function N grows at most polynomially in x, uniformly in θ , that is, there exist
constants C > 0 and χ ≥ 1 such that∥∥N(x;β) − N(y;β)

∥∥2 ≤ C
(
1 + ‖x‖2χ−2 + ‖y‖2χ−2)‖x − y‖2 ∀x,y ∈ R

d .

Additionally, its derivatives are of polynomial growth in x, uniformly in θ .
(A3) The solution X of SDE (1) has invariant probability ν0(dx).
(A4) ��� is invertible on �� .
(A5) Function F is identifiable in β , that is, if F(x,β1) = F(x,β2) for all x ∈ R

d , then
β1 = β2.

Assumption (A3) is required for the ergodic theorem to ensure convergence in distribution.
Assumption (A4) implies that model (1) is elliptic, which is not needed for the S estimator,
whereas the EM estimator breaks down in hypoelliptic models. We will treat the hypoelliptic
case in a separate paper where the proofs are more involved. Assumption (A5) ensures the
identifiability of the parameter.

Assume a sample (Xtk )
N
k=0 ≡ X0:tN from (2) at time steps 0 = t0 < t1 < · · · < tN = T . For

notational simplicity, we assume equidistant step size h = tk − tk−1.

2.2. Moments. Assumption (A1) ensures finiteness of the moments of the solution X
(Tretyakov and Zhang (2013)), that is,

E

[
sup

t∈[0,T ]
‖Xt‖2p

]
< C

(
1 + ‖x0‖2p) ∀p ≥ 1.

The infinitesimal generator L of (1) is defined on sufficiently smooth functions g :Rd ×� →
R given by

Lθ0g(x; θ) = F(x;β0)
�∇g(x; θ) + 1

2
Tr
(
���

0 Hg(x; θ)
)
.

The moments of (1) are expanded using the following lemma (Lemma 1.10 in Sørensen
(2012)).

LEMMA 2.1. Let Assumptions (A1)–(A2) hold. Let X be a solution of (1). Let g ∈
C(2l+2) be of polynomial growth and p ≥ 2. Then

Eθ0

[
g(Xtk ; θ)|Ftk−1

]= l∑
j=0

hj

j ! L
j
θ0

g(Xtk−1; θ) + R
(
hl+1,Xtk−1

)
.

We need terms up to order R(h3,Xtk−1). Applying Lθ on g(x) = x(i), Lemma 2.1 yields

E
[
X

(i)
tk

|Xtk−1 = x
]= x(i) + hF (i)(x) + h2

2

(
F(x)�∇F (i)(x) + 1

2
Tr
(
���HF (i)(x)

))
+ R

(
h3,x

)
.
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2.3. Splitting schemes. Consider the following splitting of (2):

dX[1]
t = A

(
X[1]

t −b
)

dt + � dWt , X[1]
0 = x0,(3)

dX[2]
t = N

(
X[2]

t

)
dt, X[2]

0 = x0.(4)

The solution of equation (3) is an OU process given by the following h-flow:

(5) X[1]
tk

= �
[1]
h

(
X[1]

tk−1

)= eAhX[1]
tk−1

+(I − eAh)b + ξh,k,

where ξh,k

i.i.d.∼ Nd(0,�h) for k = 1, . . . ,N (Vatiwutipong and Phewchean (2019)). The co-
variance matrix �h and the conditional mean of the OU process (5) are provided by

�h =
∫ h

0
eA(h−u)���eA�(h−u) du = h��� + h2

2

(
A��� + ���A�)

(6)
+ R(h,x0),

μh(x;β) := eA(β)hx + (I − eA(β)h)b(β).(7)

Assumptions (A1) and (A2) ensure the existence and uniqueness of the solution of (4)
(Theorem 1.2.17 in Humphries and Stuart (2002)). Thus, there exists a unique function
f h :Rd × �β →R

d , for h ≥ 0, such that

(8) X[2]
tk

= �
[2]
h

(
X[2]

tk−1

)= f h

(
X[2]

tk−1
;β).

For all β ∈ �β , the time flow f h fulfills the following semigroup properties:

f 0(x;β) = x, f t+s(x;β) = f t

(
f s(x;β);β), t, s ≥ 0.(9)

REMARK 3. Since only one-sided Lipschitz continuity is assumed, the solution to (4)
might not exist for all h < 0 and all x0 ∈ R

d , implying that the inverse f −1
h might not exist.

If it exists, then f −1
h = f −h. For the S estimator, we need a well-defined inverse. This is not

an issue when N is globally Lipschitz.

We, therefore, introduce the following and last assumption.

(A6) Function f −1
h (x;β) is defined asymptotically, for all x ∈ R

d , β ∈ �β , when h → 0.

Before defining the splitting schemes, we present a useful proposition for expanding the
nonlinear solution f h (Section 1.8 in (Hairer, Nørsett and Wanner (1993))).

PROPOSITION 2.2. Let Assumptions (A1)–(A2) hold. When h → 0, the h-flow of (4) is

f h(x) = x + hN(x) + h2

2

(
DN(x)

)
N(x) + R

(
h3,x

)
.

Now, we introduce the two most common splitting approximations, which serve as the
main building blocks for the proposed estimators.

DEFINITION 2.3. Let Assumptions (A1) and (A2) hold. The Lie–Trotter and Strang
splitting approximations of the solution of (2) are given by

X[LT]
tk

:= �
[LT]
h

(
X[LT]

tk−1

)= (
�

[1]
h ◦ �

[2]
h

)(
X[LT]

tk−1

)= μh

(
f h

(
X[LT]

tk−1

))+ ξh,k,(10)

X[S]
tk

:= �
[S]
h

(
X[S]

tk−1

)= (
�

[2]
h/2 ◦ �

[1]
h ◦ �

[2]
h/2

)(
X[S]

tk−1

)
(11)

= f h/2
(
μh

(
f h/2

(
X[S]

tk−1

))+ ξh,k

)
.
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REMARK 4. The order of composition in the splitting schemes is not unique. Changing
the order in the S splitting leads to a sum of 2 independent random variables, one Gaussian
and one non-Gaussian, whose likelihood is not trivial. Thus, we only use the splitting (11).
The reversed order in the LT splitting can be treated the same way as the S splitting.

REMARK 5. Splitting the drift F(x) into a linear and a nonlinear part is not unique.
However, all theorems and properties, particularly consistency and asymptotic normality of
the estimators, hold for any splitting choice. Yet, for fixed step size h and sample size N ,
certain splittings perform better than others. In this paper, we present two general and intu-
itive strategies. The first applies when the system has a fixed point; here, the linear part of
the splitting is the linearization around the fixed point. The linear OU performs accurately
near the fixed point, with the nonlinear part correcting for nonlinear deviations. Simulations
consistently show this approach to perform best. Another strategy is to linearize around the
measured average value for each coordinate. An in-depth analysis of the splitting strategies
for a specific example is provided in Section 2.5.

REMARK 6. Trajectories of S and LT splittings coincide up to the first h/2 and the last
h/2 steps of the flow �

[2]
h/2. Indeed, when applied k times, the S splitting can be written as(
�

[S]
h

)k
(x0) = (

�
[2]
h/2 ◦ (�[LT]

h

)k ◦ �
[2]
−h/2

)
(x0).

Thus, it is natural that LT and S have the same order of Lp convergence. We prove this in
Section 3. However, the LT and S trajectories differ in their output points (10) and (11). Strang
splitting outputs the middle points of the smooth steps of the deterministic flow (8), while LT
splitting outputs the stochastic increments in the rough steps. We conjecture that this is one
of the reasons why the S splitting has superior statistical properties.

2.4. Estimators. In this section, we first introduce two new estimators, LT and S, given
a sample X0:tN . Subsequently, we provide a brief overview of the estimators EM, K, LL and
HE, which will be compared in the simulation study.

2.4.1. Splitting estimators. The LT scheme (10) follows a Gaussian distribution. Conse-
quently, the objective function corresponds to (twice) the negative pseudo-log-likelihood:

L[LT](X0:tN ; θ)
θ= N log

(
det�h(θ)

)
+

N∑
k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))��h(θ)−1

× (Xtk − μh

(
f h(Xtk−1;β);β)).

(12)

The S splitting (11) is a nonlinear transformation of the Gaussian random variable μh(f h/2 ×
(Xtk−1;β);β) + ξh,k . We first define

Ztk (β) := f −1
h/2(Xtk ;β) − μh

(
f h/2(Xtk−1;β);β).(13)

Afterwards, we apply a change of variables to derive the following objective function:

(14)

L[S](X0:tN ; θ)
θ= N log

(
det�h(θ)

)+ N∑
k=1

Ztk (β)��h(θ)−1Ztk (β)

− 2
N∑

k=1

log
∣∣detDf −1

h/2(Xtk ;β)
∣∣.
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The last term is due to the nonlinear transformation and is an extra term that does not
appear in commonly used pseudo-likelihoods.

The inverse function f −1
h may not exist for all parameters in the search domain of the

optimization algorithm. However, this problem can often be solved numerically. When f −1
h

is well defined, we use the identity − log |detDf −1
h (x;β)| = log |detDf h(x;β)| in (14) to

increase the speed and numerical stability.
Finally, we define the estimators as

(15) θ̂
[k]
N := arg min

θ
L[k](X0:tN ; θ), k ∈ {LT,S}.

2.4.2. Euler–Maruyama. The EM method uses first-order Taylor expansion of (1):

X[EM]
tk

:= X[EM]
tk−1

+ hF
(
X[EM]

tk−1
;β)+ ξ

[EM]
h,k ,(16)

where ξ
[EM]
h,k

i.i.d.∼ Nd(0, h���) for k = 1, . . . ,N (Kloeden and Platen (1992)). The transition
density p[EM](Xtk |Xtk−1; θ) is Gaussian, so the pseudo-likelihood follows trivially.

2.4.3. Kessler’s Gaussian approximation. The K estimator uses Gaussian transition den-
sities p[K](Xtk |Xtk−1; θ) with the true mean and covariance of the solution X (Kessler (1997)).
When the moments are unknown, they are approximated using the infinitesimal generator
(Lemma 2.1). We implement the estimator K based on the 2nd-order approximation:

(17)

X[K]
tk

:= X[K]
tk−1

+ hF
(
X[K]

tk−1
;β)+ ξ

[K]
h,k

(
X[K]

tk−1

)
+ h2

2

(
DF

(
X[K]

tk−1
;β)F(X[K]

tk−1
;β)+ 1

2

[
Tr
(
���HF (i)

(
X[K]

tk−1
;β))]di=1

)
,

where ξ
[K]
h,k(X

[K]
tk−1

) ∼ Nd(0,�
[K]
h,k(θ)), and �

[K]
h,k(θ) = h��� + h2

2 (DF(X[K]
tk−1

;β)��� +
���D�F(X[K]

tk−1
;β)). The covariance matrix is not constant, which makes the algorithm

slower for a larger sample size.

2.4.4. Ozaki’s local linearization. Ozaki’s LL method approximates the drift of (1) be-
tween consecutive observations by a linear function (Jimenez, Shoji and Ozaki (1999)). The
LL method consists of the following steps:

(1) Perform LL of the drift F in each time interval [t, t + h) by the Itô–Taylor series;
(2) Compute the analytic solution of the resulting linear SDE.

The approximation becomes

X[LL]
tk

:= X[LL]
tk−1

+ �
[LL]
h

(
X[LL]

tk−1
; θ)+ ξ

[LL]
h,k

(
X[LL]

tk−1

)
,(18)

where ξ
[LL]
h,k (X[LL]

tk−1
) ∼ Nd(0,�

[LL]
h,k (θ)), and

�
[LL]
h,k (θ) :=

∫ h

0
e
DF(X[LL]

tk−1
;β)(h−u)

���e
DF(X[LL]

tk−1
;β)�(h−u) du,

�
[LL]
h (x; θ) := Rh,0

(
DF(x;β)

)
F(x;β) + (hRh,0

(
DF(x;β)

)
− Rh,1

(
DF(x;β)

))
M(x; θ),

Rh,i

(
DF(x;β)

) := ∫ h

0
exp
(
DF(x;β)u

)
ui du, i = 0,1,
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M(x; θ) := 1

2

(
Tr H1(x; θ), . . . ,Tr Hd(x; θ)

)�
,

Hk(x; θ) :=
[[

���]
ij

∂2F (k)

∂x(i)∂x(j)
(x)

]d
i,j=1

.

We can efficiently compute Rh,i and �
[LL]
h,k (θ) using formulas from (Van Loan (1978)); see

(Gu, Wu and Xue (2020)). For more details, see the Supplementary Material (Pilipovic, Sam-
son and Ditlevsen (2024)).

Thus, p[LL](Xtk |Xtk−1; θ) is Gaussian and standard likelihood inference applies. Similar to

K, �
[LL]
h,k (θ) depends on the previous state X[LL]

tk−1
, which is a major downside since it is harder

to implement and slower to run due to the computation of N − 1 covariance matrices. Unlike
K, LL does not Taylor expand the approximated drift and covariance matrix, so the influence
of sample size N on computational times is much larger.

2.4.5. Aït-Sahalia’s infinite Hermite expansion. The HE method (Aït-Sahalia (2002,
2008)) approximates the likelihood using two transformations to make data resemble a nor-
mal distribution, facilitating corrections for finite samples. First, Xt is transformed to unit
diffusion Yt , using the Lamperti transform. Then Yt is transformed into a more normal-like
Zt . Finally, the objective function is a Hermite expansion in terms of convergent power series
in h, around this normal density before reverting back to Xt . The Lamperti transform can be
omitted for nonreducible diffusions (Aït-Sahalia (2008)). For additive noise, the HE objective
function of order J is given as

L[HE](X0:tN ; θ)
θ= N log

(
det���)

− 2
N∑

k=1

(
C

(−1)
Y (γ (Xtk )|γ (Xtk−1))

h
+

J∑
j=0

hj

j ! C
(j)
Y

(
γ (Xtk )|γ (Xtk−1)

))
.

(19)

Function γ is the Lamperti transform, and functions C
(j)
Y , for j = −1,0,1, . . . , J are calcu-

lated recursively according to Theorem 1 in (Aït-Sahalia (2008)).

2.5. An example: The stochastic Lorenz system. The Lorenz system is a 3D system intro-
duced by Lorenz (1963) to model atmospheric convection. The model is originally determin-
istic exhibiting deterministic chaos, that is, tiny differences in initial conditions lead to un-
predictable and widely diverging trajectories. The Lorenz system evolves around two strange
attractors, implying that trajectories remain within some bounded region, while points that
start in close proximity may eventually separate by arbitrary distances as time progresses
(Hilborn (1994)). We add noise to include unmodeled forces and randomness. The stochastic
Lorenz system is given by

dXt = p(Yt − Xt) dt + σ1 dW
(1)
t ,

dYt = (rXt − Yt − XtZt) dt + σ2 dW
(2)
t ,

dZt = (XtYt − cZt) dt + σ3 dW
(3)
t .

(20)

The variables Xt , Yt and Zt represent convective intensity, and horizontal and vertical temper-
ature differences, respectively. Parameters p, r and c denote the Prandtl number, the Rayleigh
number and a geometric factor, respectively (Tabor (1989)). Lorenz (1963) used the values
p = 10, r = 28 and c = 8/3, yielding chaotic behavior.

The system does not fulfill the global or the one-sided Lipschitz condition because it is
a second-order polynomial (Humphries and Stuart (1994)). However, it has a unique global
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FIG. 1. An example trajectory of the stochastic Lorenz system (20) starting at (0,1,0) for N = 10,000 and
h = 0.005. The first row shows the evolution of the individual components X, Y and Z. The second row shows
the evolution of component pairs: (Y,Z), (X,Z) and (X,Y ). Parameters are p = 10, r = 28, c = 8/3, σ 2

1 = 1,

σ 2
2 = 2 and σ 2

3 = 1.5.

solution and an invariant probability (Keller (1996)). Thus, all assumptions (A2)–(A5), except
(A1) hold. Even so, we show in Section 6 that the estimators work.

Different approaches for estimating parameters in the Lorenz system have been pro-
posed, mostly in the deterministic case. Zhuang et al. (2020) and Lazzús, Rivera and López-
Caraballo (2016) used sophisticated optimization algorithms to achieve better precision.
Dubois et al. (2020) and Ann et al. (2022) used deep neural networks in combination with
other machine learning algorithms. Ozaki, Jimenez and Haggan-Ozaki (2000) used Kalman
filtering based on LL on the stochastic Lorenz system.

Figure 1 shows an example trajectory of the stochastic Lorenz system. The trajectory was
generated by subsampling from an EM simulation, such that N = 10,000 and h = 0.05,
with parameter values p = 10, r = 28, c = 8/3, σ 2

1 = 1, σ 2
2 = 2 and σ 2

3 = 1.5. Even if the
trajectory had not been stochastic, the unpredictable jumps in the first row of Figure 1 would
still have been there due to the chaotic behavior.

We suggest to split SDE (20) by choosing the OU part (3) as the linearization around
one of the two fixed points (x
, y
, z
) = (±√

c(r − 1),±√
c(r − 1), r − 1). For sim-

plicity, we exclude the fixed point (0,0,0) since X and Y spend little time around this
point; see Figure 1. Specifically, we apply a mixture of two splittings, linearizing around
(
√

c(r − 1),
√

c(r − 1), r − 1) when X > 0 and around (−√
c(r − 1),−√

c(r − 1), r − 1)

when X < 0. We denote these estimators by LTmix and Smix. The splitting is given by

Amix =
⎡⎣−p p 0

1 −1 −x


y
 x
 −c

⎤⎦ , bmix =
⎡⎣x


y


z


⎤⎦ , Nmix(x, y, z) =
⎡⎣ 0
−(x − x
)(z − z
)(
x − x
)(y − y
)

⎤⎦ .

The OU process is mean-reverting toward bmix = (x
, y
, z
). The nonlinear solution is

f mix,h(x, y, z) =
⎡⎣ x(

y − y
) cos
(
h
(
x − x
))− (z − z
) sin

(
h
(
x − x
))+ y
(

y − y
) sin
(
h
(
x − x
))+ (z − z
) cos

(
h
(
x − x
))+ z


⎤⎦ .

The solution is a composition of a 3D rotation and translation of (y, z) around the fixed point.
The inverse always exists, and thus, Assumption (A6) holds. Moreover, detDf −1

mix,h(·) = 1.
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The mixing strategy does not increase the complexity of the implementation significantly,
and it is straightforward to incorporate into the existing framework. Thus, this splitting strat-
egy is convenient when the model has several fixed points.

An alternative splitting linearizes around the average of the observations. Let (μx,μx,μz)

be the average of the data, where we put μx = μy since the difference of their averages is
small, around 10−3. We denote these estimators by LTavg and Savg. The splitting is given by

Aavg =
⎡⎣ −p p 0
r − μz −1 −μx

μx μx −c

⎤⎦ , bavg =
⎡⎣μx

μx

μz

⎤⎦ ,

Navg(x, y, z) =
⎡⎢⎣ 0
−(x − μx)(z − μz) + (r − 1 − μz)μx

(x − μx)(y − μx) + μ2
x − cμz

⎤⎥⎦ .

The nonlinear solution is

f avg,h(x, y, z) =
⎡⎣ μx

μx+ cμz−μ2
x

x−μx

μz+μx(r−1−μz)
x−μx

⎤⎦

+

⎡⎢⎢⎢⎣
x−μx(

y−μx− cμz−μ2
x

x−μx

)
cos
(
h(x−μx)

)
−
(

z−μz−μx(r−1−μz)
x−μx

)
sin
(
h(x−μx)

)
(

y−μx− cμz−μ2
x

x−μx

)
sin
(
h(x−μx)

)
+
(

z−μz−μx(r−1−μz)
x−μx

)
cos
(
h(x−μx)

)
⎤⎥⎥⎥⎦ ,

where f avg,h(μx, y, z) := (μx, y +hμx(r − 1 −μz), z+hμ2
x − cμz)

� and detDf −1
avg,h(·) =

1.

3. Order of one-step predictions and Lp convergence. In this section, we investigate
Lp convergence of the splitting schemes and the order of the one-step predictions. Theo-
rem 2.1 in Tretyakov and Zhang (2013) extends Milstein’s fundamental theorem on Lp con-
vergence for global Lipschitz coefficients (Milstein (1987)) to Assumptions (A1) and (A2).
This theorem provides the theoretical underpinning for our approach, drawing on the key
concepts of Lp consistency and boundedness of moments.

DEFINITION 3.1 (Lp consistency of a numerical scheme). The one-step approximation
�̃h of the solution X is Lp consistent, p ≥ 1, of order q2 − 1/2≥ 0, if for k = 1, . . . ,N and
some q1 ≥ q2 + 1/2: ∥∥E[Xtk − �̃h(Xtk−1)|Xtk−1 = x

]∥∥= R
(
hq1,x

)
,(

E
[∥∥Xtk − �̃h(Xtk−1)

∥∥2p|Xtk−1 = x
]) 1

2p = R
(
hq2,x

)
.

DEFINITION 3.2 (Bounded moments of a numerical scheme). A numerical approxima-
tion X̃ of the solution X has bounded moments, if for all p ≥ 1, there exists constant C > 0,
such that, for k = 1, . . . ,N :

E
[‖X̃tk‖2p]≤ C

(
1 + ‖x0‖2p).

The following theorem (Theorem 2.1 in Tretyakov and Zhang (2013)) gives sufficient
conditions for Lp convergence of a numerical scheme in a one-sided Lipschitz framework.
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THEOREM 3.3 (Lp convergence of a numerical scheme). Let Assumptions (A1) and
(A2) hold, and let X̃tk be a numerical approximation of the solution Xtk of (1) at time tk . If:

(1) The one-step approximation X̃tk = �̃h(X̃tk−1) is Lp consistent of order q2 − 1/2; and
(2) X̃ has bounded moments,

then X̃ is Lp convergent, p ≥ 1, of order q2 − 1/2, that is, for k = 1, . . . ,N , it holds:(
E
[‖Xtk − X̃tk‖2p]) 1

2p = R
(
hq2−1/2,x0

)
.

3.1. Lie–Trotter splitting. We first show that the one-step LT approximation is of or-
der R(h2,x0) in mean. The following proposition is proved in the Supplementary Material
(Pilipovic, Samson and Ditlevsen (2024)) for scheme (10), as well as for the reversed order
of composition. We demonstrate that the order of one-step prediction cannot be improved
unless the drift F is linear.

PROPOSITION 3.4 (One-step prediction of LT splitting). Assume (A1)–(A2), let X be the
solution to (1) and let �

[LT]
h be the LT approximation (10). Then, for k = 1, . . . ,N , it holds:∥∥E[Xtk − �

[LT]
h (Xtk−1)|Xtk−1 = x

]∥∥= R
(
h2,Xtk−1

)
.

Lp convergence of the LT splitting scheme is established in Theorem 2 in Buckwar et al.
(2022), which we repeat here for convenience.

THEOREM 3.5 (Lp convergence of the LT splitting). Assume (A1)–(A2), let X[LT] be the
LT approximation defined in (10) and let X be the solution of (1). Then there exists C ≥ 1
such that for all p ≥ 2, and k = 1, . . . ,N , it holds:(

E
[∥∥Xtk − X[LT]

tk

∥∥p]) 1
p = R(h,x0).

Now, we investigate the same properties for the S splitting.

3.2. Strang splitting. The following proposition states that the S splitting (11) has higher
order one-step predictions than the LT splitting (10). The proof can be found in the Supple-
mentary Material (Pilipovic, Samson and Ditlevsen (2024)).

PROPOSITION 3.6. Assume (A1)–(A2), let X be the solution to (1) and let �
[S]
h be the S

splitting approximation (11). Then, for k = 1, . . . ,N , it holds:∥∥E[Xtk − �
[S]
h (Xtk−1)|Xtk−1 = x

]∥∥= R
(
h3,Xtk−1

)
.(21)

REMARK 7. Even though LT and S have the same order of Lp convergence, the crucial
difference is in the one-step prediction. The approximated transition density between two
consecutive data points depends on the one-step approximation. Thus, the objective function
based on pseudo-likelihood from the S splitting is more precise than the one from the LT.

To prove Lp convergence of the S splitting scheme for (1) with one-sided Lipschitz drift,
we follow the same procedure as in Buckwar et al. (2022). The proof of the following theorem
is in the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).
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THEOREM 3.7 (Lp convergence of S splitting). Assume (A1), (A2) and (A6), let X[S] be
the S splitting defined in (11) and let X be the solution of (1). Then there exists C ≥ 1 such
that for all p ≥ 2 and k = 1, . . . ,N , it holds:(

E
[∥∥Xtk − X[S]

tk

∥∥p]) 1
p = R(h,x0).

Before we move to parameter estimation, we prove a useful corollary.

COROLLARY 3.8. Let all assumptions from Theorem 3.7 hold. Then (E[‖Ztk −
ξh,k‖p])1/p = R(h,x0).

PROOF. From the definition of Ztk in (13), it is enough to prove that(
E
[∥∥f −1

h/2(Xtk ) − μh

(
f h/2(Xtk−1)

)− ξh,k

∥∥p])1/p = R(h,x0).

From (11), we have that ξh,k = f −1
h/2(X

[S]
tk

) − μh(f h/2(X
[S]
tk−1

)). Then

E
[∥∥f −1

h/2(Xtk ) − μh

(
f h/2(Xtk−1)

)− ξh,k

∥∥p]1/p

≤ C
(
E
[‖f −1

h/2(Xtk ) − f −1
h/2

(
X[S]

tk

)‖p]+E
[‖f h/2(Xtk−1) − f h/2

(
X[S]

tk−1

)‖p])1/p

≤ C
(
E
[∥∥Xtk − X[S]

tk

∥∥p]+E
[∥∥Xtk−1 − X[S]

tk−1

∥∥p])1/p + R(h,x0).

We used Proposition 2.2 that X, X[S] have finite moments and f h/2, f −1
h/2 grow polynomially.

The result follows from Lp convergence of the S splitting scheme, Theorem 3.7. �

4. Auxiliary properties. This paper centers around proving the properties of the S es-
timator. There are two reasons for this. First, most numerical properties in the literature are
proved only for LT splitting because proofs for S splitting are more involved. Here, we estab-
lish both the numerical properties of the S splitting as well as the properties of the estimator.
Second, the S splitting introduces a new pseudo-likelihood that differs from the standard
Gaussian pseudo-likelihoods. Consequently, standard tools, like those proposed by Kessler
(1997), do not directly apply.

The asymptotic properties of the LT estimator are the same as for the S estimator. However,
the following auxiliary properties will be stated and proved only for the S estimator. They can
be reformulated for the LT estimator following the same logic.

Before presenting the central results for the estimator, we establish the groundwork with
two essential lemmas that rely on the model assumptions. Lemma 4.1 (Lemma 6 in Kessler
(1997)) deals with the pth moments of the SDE increments and also provides a moment
bound of a polynomial map of the solution. The proof of this lemma in the Supplementary
Material (Pilipovic, Samson and Ditlevsen (2024)) differs from that in Kessler (1997) due to
our relaxation of the global Lipschitz assumption of the drift F. Instead, we use a one-sided
Lipschitz condition in conjunction with the generalized Grönwall’s inequality (Lemma 2.3
in Tian and Fan (2020) to establish the result, see the Supplementary Material (Pilipovic,
Samson and Ditlevsen (2024))).

Lemma 4.2 (Lemma 8 in Kessler (1997), Lemma 2 in Sørensen and Uchida (2003)) con-
stitutes a central ergodic property that is essential for establishing the asymptotic behavior
of the estimator. The proof when the drift F is one-sided Lipschitz is identical to the one
presented in Kessler (1997), particularly when combined with Lemma 4.1.

LEMMA 4.1. Assume (A1)–(A2). Let X be the solution of (1). For tk ≥ t ≥ tk−1, where
h = tk − tk−1 < 1, the following two statements hold:
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(1) For p ≥ 1, there exists Cp > 0 that depends on p, such that

E
[‖Xt − Xtk−1‖p|Ftk−1

]≤ Cp(t − tk−1)
p/2(1 + ‖Xtk−1‖

)Cp .

(2) If g : Rd × � → R is of polynomial growth in x uniformly in θ , then there exist con-
stants C and Ct−tk−1 that depends on t − ttk−1 , such that

E
[∣∣g(Xt ; θ)

∣∣|Ftk−1

]≤ Ct−tk−1

(
1 + ‖Xtk−1‖

)C
.

LEMMA 4.2. Assume (A1), (A2), (A3) and let X be the solution to (1). Let g :Rd ×� →
R be a differentiable function with respect to x and θ with derivative of polynomial growth in
x, uniformly in θ . If h → 0 and Nh → ∞, then

1

N

N∑
k=1

g(Xtk , θ)
Pθ0−−−−→

Nh→∞
h→0

∫
g(x, θ) dν0(x),

uniformly in θ .

Lastly, we state the moment bounds needed for the estimator asymptotics. The proof is in
the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

PROPOSITION 4.3 (Moment bounds). Assume (A1), (A2), (A6). Let X be the solution of
(1), and Ztk as defined in (13). Let g(x;β) be a generic function with derivatives of polynomial
growth, and β ∈ �β . Then, for k = 1, . . . ,N , the following moment bounds hold:

(i) Eθ0[Ztk (β0)|Xtk−1 = x] = R(h3,Xtk−1)

(ii) Eθ0[Ztk (β0)g(Xtk ;β)�|Xtk = x] = h
2 (���

0 D�g(x;β) + Dg(x;β)���
0 ) +

R(h2,Xtk−1);
(iii) Eθ0[Ztk (β0)Ztk (β0)

�|Xtk−1 = x] = h���
0 + R(h2,Xtk−1).

5. Asymptotics. The estimators θ̂N are defined in (15). However, the full objective func-
tions (12) and (14) are not needed to prove consistency and asymptotic normality. It is enough
to approximate �h up to the second order by h��� + h2

2 (A��� + ���A�) (see equation
(6)). Indeed, after applying Taylor series on the inverse of �h, we get

�h(θ)−1= 1

h

(
���)−1

(
I + h

2

(
A(β) + ���A(β)�

(
���)−1)−1

)
+ R(h,x0)

= 1

h

(
���)−1

(I − h

2

(
A(β) + ���A(β)�

(
���)−1)+ R(h,x0)

= 1

h

(
���)−1 − 1

2

((
���)−1A(β) + A(β)�

(
���)−1)+ R(h,x0).

Similarly, we approximate the log-determinant as

log det�h(θ)= log det
(
h��� + h2

2

(
A(β)��� + ���A(β)�

))+ R
(
h2,x0

)
θ= log det���+ log det

(
I + h

2

(
A(β) + ���A(β)�

(
���)−1))+ R

(
h2,x0

)
= log det��� + h

2
Tr
(
A(β) + ���A(β)�

(
���)−1)+ R

(
h2,x0

)
= log det��� + hTr A(β) + R

(
h2,x0

)
.
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Using the same approximation, we obtain

2 log
∣∣detDf h/2(x;β)

∣∣= 2 log
∣∣∣∣det

(
I + h

2
DN(x;β)

)∣∣∣∣
= 2 log

∣∣∣∣1 + h

2
TrDN(x;β)

∣∣∣∣+ R(h,x)

= hTrDN(x;β) + R
(
h2,x0

)
.

Retaining terms up to order R(Nh2,x0) from (12) and (14), we establish the approximate
objective functions:

L[LT]
N (θ) := N log det���+NhTr A(β)

+ 1

h

N∑
k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))�(���)−1

× (Xtk − μh

(
f h(Xtk−1;β);β))(22)

−
N∑

k=1

(
Xtk − μh

(
f h(Xtk−1;β);β))�(���)−1

× A(β)
(
Xtk − μh

(
f h(Xtk−1;β);β)),

L[S]
N (θ) := N log det���+NhTr A(β) + 1

h

N∑
k=1

Ztk (β)�
(
���)−1Ztk (β)

(23)

−
N∑

k=1

Ztk (β)�
(
���)−1A(β)Ztk (β) + h

N∑
k=1

TrDN(Xtk ;β).

Unlike other likelihood-based methods, such as Kessler (1997), Aït-Sahalia (2002, 2008),
Choi (2013, 2015), Yang, Chen and Wan (2019), our estimators do not involve expansions.
The objective functions are formulated in simple terms without hyperparameters, such as
the order of the expansions. Hence, our approach is robust and user friendly, as we directly
employ (12) and (14). The approximations (22) and (23) are only used for the proofs.

5.1. Consistency. Now, we state the consistency of β̂N and �̂�
�
N . The proof of Theo-

rem 5.1 is in the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

THEOREM 5.1. Assume (A1)–(A6). Let X be the solution of (1) and θ̂N = (β̂N, �̂�
�
N)

be the estimator that minimizes either (22) or (23). If h → 0 and Nh → ∞, then

β̂N

Pθ0−−→ β0, �̂�
�
N

Pθ0−−→ ���
0 .

5.2. Asymptotic normality. First, we need some preliminaries. Let ρ > 0 and Bρ(θ0) =
{θ ∈ �|‖θ − θ0‖ ≤ ρ} be a ball around θ0. Since θ0 ∈ �, for sufficiently small ρ > 0,
Bρ(θ0) ∈ �. Let LN be either (22) or (23). For θ̂N ∈ Bρ(θ0), the mean value theorem yields

(24)
(∫ 1

0
HLN

(
θ0 + t (θ̂N − θ0)

)
dt

)
(θ̂N − θ0) = −∇LN(θ0).

With ς := vech(���) = ([���]11, [���]12, [���]22, . . . , [���]1d, . . . , [���]dd), we
half-vectorize ��� to avoid working with tensors when computing derivatives with respect
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to ���. Since ��� is a symmetric d × d matrix, ς is of dimension s = d(d + 1)/2. For a
diagonal matrix, instead of a half-vectorization, we use ς := diag(���). Define

CN(θ) :=

⎡⎢⎢⎣
1

Nh
∂ββLN(θ)

1

N
√

h
∂βςLN(θ)

1

N
√

h
∂βςLN(θ)

1

N
∂ςςLN(θ)

⎤⎥⎥⎦ ,(25)

sN :=
⎡⎣√

Nh(β̂N − β0)√
N(ς̂N − ς0)

⎤⎦ , λN :=

⎡⎢⎢⎣− 1√
Nh

∂βLN(θ0)

− 1√
N

∂ςLN(θ0)

⎤⎥⎥⎦ ,(26)

and DN := ∫ 1
0 CN(θ0 + t (θ̂N − θ0)) dt . Then (24) is equivalent to DN sN = λN . Let

C(θ0) :=
[
Cβ(θ0) 0r×s

0s×r Cς (θ0)

]
,(27)

where[
Cβ(θ0)

]
i1,i2

:=
∫ (

∂βi1
F0(x)

)�(
���

0
)−1(

∂βi2
F0(x)

)
dν0(x), 1 ≤ i1, i2 ≤ r,

[
Cς (θ0)

]
j1,j2

:= 1

2
Tr
((

∂ςj1���
0
)(

���
0
)−1(

∂ςj2���
0
)(

���
0
)−1)

, 1 ≤ j1, j2 ≤ s.

Now, we state the theorem for asymptotic normality; the proof is in the Supplementary
Material (Pilipovic, Samson and Ditlevsen (2024)).

THEOREM 5.2. Assume (A1)–(A6). Let X be the solution of (1), and θ̂N = (β̂N, ς̂N) be
the estimator that minimizes either (22) or (23). If θ0 ∈ �, C(θ0) is positive definite, h → 0,
Nh → ∞ and Nh2 → 0, then under Pθ0 ,[√

Nh(β̂N − β0)√
N(ς̂N − ς0)

]
d−→ N

(
0,C−1(θ0)

)
.(28)

The estimator of the diffusion parameter converges faster than the estimator of the drift
parameter. Gobet (2002) showed that for a discretely sampled SDE model, the optimal con-
vergence rates for the drift and diffusion parameters are 1/

√
Nh and 1/

√
N , respectively.

Thus, our estimators reach optimal rates. Moreover, the estimators are asymptotically effi-
cient since C is the Fisher information matrix for the corresponding continuous-time dif-
fusion (see Kessler (1997), Gobet (2002)). Finally, since the asymptotic correlation is zero
between the drift and diffusion estimators, they are asymptotically independent.

6. Simulation study. This section presents the simulation study of the Lorenz system,
illustrating the theory and comparing the proposed estimators with other likelihood-based
estimators. We briefly recall the estimators, describe the simulation process and the opti-
mization in the programming language R (R Core Team (2022)), and present and analyze the
results.

6.1. Estimators used in the study. The EM transition distribution (16) for the Lorenz
system (20) is⎡⎣Xtk

Ytk

Ztk

⎤⎦∣∣∣∣∣∣
⎡⎣Xtk−1

Ytk−1

Ztk−1

⎤⎦=
⎡⎣x

y

z

⎤⎦∼ N

⎛⎜⎝
⎡⎣ x + hp(y − x)

y + h(rx − y − xz)

z + h(xy − cz)

⎤⎦ ,

⎡⎢⎣hσ 2
1 0 0

0 hσ 2
2 0

0 0 hσ 2
3

⎤⎥⎦
⎞⎟⎠ .
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We do not write the closed-form distributions for K (17), LL (18) and HE (19), but we use
the corresponding formulas to implement the likelihoods. We implement the two splitting
strategies proposed in Section 2.5, leading to four estimators: LTmix, LTavg, Smix and Savg.
To further speed up computation time, we use the same trick for calculating �h in (6) as for
calculating �

[LL]
h ; see the Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

6.2. Trajectory simulation. To simulate sample paths, we use the EM discretization with
a step size of hsim = 0.0001, which is small enough for the EM discretization to perform
well. Then we subsample the trajectory to get a larger time step h, decreasing discretization
errors. We perform M = 1000 Monte Carlo repetitions.

6.3. Optimization in R. To optimize the objective functions, we use the R package
torch (Falbel and Luraschi (2022)), which uses AD instead of the traditional finite dif-
ferentiation used in optim. The two main advantages of AD are precision and speed. Finite
differentiation is subject to floating point precision errors and is slow in high dimensions
(Baydin et al. (2017)). Conversely, AD is exact and fast, and thus used in numerous applica-
tions, such as MLE or training neural networks.

We tried all available optimizers in the torch package and chose the resilient backpropa-
gation algorithm optim_rprop based on Riedmiller and Braun (1992). It performed faster
than the rest and was more precise in finding the global minimum. We used the default hyper-
parameters and set the optimization iterations to 200. We chose the precision of 10−5 between
the updated and the parameters from the previous iteration as the convergence criteria. For
starting values, we used (0.1,0.1,0.1,0.1,0.1,0.1). All estimators except HE converged af-
ter approximately 80 iterations. The HE estimator only converged with the smallest time step,
h = 0.005, achieving convergence in 43%–72% of cases across various sample sizes N . This
probably occurs due to a polynomial approximation of the likelihood that can be unstable at
the boundaries, especially for larger h. Incorporating higher-order approximations and adding
constraints in the optimization step might improve performance. For further analysis, see the
Supplementary Material (Pilipovic, Samson and Ditlevsen (2024)).

6.4. Comparing criteria. We compare eight estimators based on their precision and
speed. We compute the absolute relative error (ARE) for each component θ̂

(i)
N of the esti-

mator θ̂N :

ARE
(
θ̂

(i)
N

)= 1

M

M∑
r=1

|θ̂ (i)
N,r − θ

(i)
0,r |

θ
(i)
0,r

.

For S and LL, we compare the distributions of θ̂N − θ0 more closely.
The running times are calculated using the tictoc package in R, measured from the

start of the optimization step until the convergence criterion is met. To avoid the influence of
running time outliers, we compute the median over M repetitions.

6.5. Results. In Figure 2, AREs are shown on log scale as a function of h. While most
estimators work well for a step size no greater than 0.01, only LL, Smix and Savg perform
well for h = 0.05. The LTavg is not competitive even for h = 0.005. The performance of
LTmix varies, sometimes approaching the performance of K, while other times performing
similarly to EM. Thus, LTmix is not a good choice for this specific model. The bias of EM
starts to show for h = 0.01 escalating for h = 0.05. The largest bias appears in the diffusion
parameters due to the poor approximation of �EM

h . K is less biased than EM except for p and
r when h = 0.05. The HE estimator converged only for h = 0.005. The ARE is calculated



SDE PARAMETER ESTIMATION USING SPLITTING SCHEMES 861

FIG. 2. Comparing the absolute relative error (ARE) as a function of increasing discretization step h for eight
estimators in the stochastic Lorenz system. The sample size is N = 10,000. The y-axis is on log scale. The HE
estimator (purple dot) converged only for h = 0.005, and only for 60% of the simulated data sets.

from the 601 simulations out of a total of 1000 in which convergence was achieved. For these,
the performance of HE in estimating drift parameters is comparable to the best estimators.
However, the diffusion parameters are not well estimated, with the estimation of σ 2

3 being the
least accurate. Drift parameters are generally estimated better for larger h for fixed N due to
a longer observation interval T = Nh, reflecting the

√
Nh rate of convergence.

We zoom in on the distributions of Smix, Savg, LL in Figure 3. We also include HE for
h = 0.005, based on the 60% converged estimates. For clarity, we removed some outliers
for σ 2

1 and σ 2
2 . This did not change the shape of the distributions, it only truncated the tails.

Estimators Smix, Savg and LL perform similarly, especially for the smallest h, where HE
performs slightly worse, particularly for p, σ 2

2 and σ 2
3 . For h = 0.05, the drift parameters are

underestimated by approximately 5–10%, while the diffusion parameters are overestimated
by up to 20%. Both S estimators performed better than LL, except for p and σ 2

1 .
While the LL and S estimators perform similarly in terms of precision, Figure 4 shows the

superiority of the S estimators over LL in computational costs. The LL becomes increasingly
computationally expensive for increasing N because it calculates N covariance matrices for
each parameter value. The next slowest estimators are Smix and HE, followed by LTmix,
Savg, K, LTavg and, finally, EM is the fastest. The speed of EM is almost constant in N.
Additionally, it seems that the running times do not depend on h. Thus, we recommend using
the S estimators, especially for large N .

Figures 5 and 6 show that the theoretical results hold for Smix and LTmix. We compare how
the distributions of θ̂N − θ0 change with sample size N and step size h. With increasing N ,
the variance decreases, whereas the mean does not change. For that, we need smaller h. To
obtain negligible bias for LTmix, we need a step size smaller than h = 0.005. However, Smix

is practically unbiased up to h = 0.01. This shows that LT estimators might not be a good
choice in practice, while the S estimators are.
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FIG. 3. Comparing the normalized distributions of (θ̂N −θ0)�θ0 (where � is the element-wise division) of the
Lorenz system for the Smix, Savg, LL and HE estimators for N = 10,000. Each column represents one parameter,
and each row represents one value of the discretization step h. The black dot with a vertical bar in each violin
plot represents the mean and the standard deviation. The HE estimator (purple) converged only for h = 0.005,
and only for 60% of the simulated data sets.

FIG. 4. Running times as a function of N for different estimators of the Lorenz system. Each column shows one
value of h. On the x-axis is the sample size N , and on the y-axis is the running time in seconds. The HE estimator
(purple) achieved convergence only for h = 0.005, and only in 43%–72% of cases across various sample sizes N .

FIG. 5. Comparing distributions of θ̂N −θ0 for the Smix estimator with theoretical asymptotic distributions (28)
for each parameter (columns), for h = 0.01 and N ∈ {1000,5000,10,000} (colors). The black lines correspond to
the theoretical asymptotic distributions computed from data and true parameters for N = 10,000 and h = 0.01.



SDE PARAMETER ESTIMATION USING SPLITTING SCHEMES 863

FIG. 6. Comparing distributions of θ̂N − θ0 for the LTmix estimator with theoretical asymptotic distributions
(28) for each parameter (columns), for h ∈ {0.005,0.01} (rows) and N ∈ {1000,5000,10,000} (colors). The
black lines correspond to the theoretical asymptotic distributions computed from data and true parameters for
N = 10,000 and corresponding h.

The solid black lines in Figures 5 and 6 represent the theoretical asymptotic distributions
computed from (28). For the Lorenz system (20), the precision matrix (27) is given by

C(θ0) = diag
(∫

(y − x)2

σ 2
1,0

dν0(x),

∫
x2

σ 2
2,0

dν0(x),

∫
z2

σ 2
3,0

dν0(x),
1

2σ 4
1,0

,
1

2σ 4
2,0

,
1

2σ 4
3,0

)
.

The integrals are approximated by taking the mean over all data points and all Monte Carlo
repetitions.

Some outliers of σ̂ 2
2 are removed from Figures 5 and 6 by truncating the tails.

7. Conclusion. We proposed two new estimators for nonlinear multivariate SDEs. They
are based on splitting schemes, a numerical approximation that preserves all important prop-
erties of the model. It was known that the LT splitting scheme has Lp convergence rate of
order 1. We proved that the same holds for the S splitting. This result was expected because
the overall trajectories of the S and LT splittings coincide up to the first h/2 and the last
h/2 move of the flow �

[2]
h/2. Nonetheless, S splitting is more precise in one-step predictions,

which is crucial for the estimators because the objective function consists of densities be-
tween consecutive data points. Therefore, the obtained S estimator is less biased than the
LT.

We proved that both estimators have optimal convergence rates for discrete observations of
the SDEs. These rates are

√
N for the diffusion parameter and

√
Nh for the drift parameter.

We also showed that the asymptotic variance of the estimators is the inverse of the Fisher
information for the continuous time model. Thus, the estimators are efficient.

In the simulation study of the stochastic Lorenz system, we show the superior performance
of the S estimators. We compared eight estimators based on different discretization schemes.
Estimators based on Ozaki’s LL and the S splitting schemes demonstrated the highest preci-
sion. However, the running time of LL is notably influenced by the sample size N , unlike the
S estimator, which experiences a more gradual increase in runtime with larger N . This makes
the S estimator more appropriate for large sample sizes. The LT, EM, K and HE estimators
perform well for small h, but for larger h the bias increases.

While the proposed estimators are versatile, they come with certain limitations. These in-
clude assumptions like additive noise and equidistant observations. However, under specific
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conditions, the Lamperti transformation can relax the constraint of additive noise. Equidis-
tant observations can easily be relaxed due to the continuous-time formulation. Furthermore,
we assumed that the diffusion parameter ��� is invertible. However, there are applications
where models with degenerate noise naturally arise, like second-order differential equations.
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