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Replication Success Under Questionable
Research Practices—a Simulation Study
Francesca Freuli, Leonhard Held and Rachel Heyard

Abstract. Increasing evidence suggests that the reproducibility and repli-
cability of scientific findings is threatened by researchers employing ques-
tionable research practices (QRPs) in order to achieve statistically significant
results. Numerous metrics have been developed to determine replication suc-
cess but it has not yet been investigated how well those metrics perform in
the presence of QRPs. This paper aims to compare the performance of dif-
ferent metrics quantifying replication success in the presence of four types of
QRPs: cherry picking of outcomes, questionable interim analyses, question-
able inclusion of covariates, and questionable subgroup analyses. Our results
show that the metric based on the version of the sceptical p-value that is re-
calibrated in terms of effect size performs better in maintaining low values
of overall type-I error rate, but often requires larger replication sample sizes
compared to metrics based on significance, the controlled version of the scep-
tical p-value, meta-analysis or Bayes factors, especially when severe QRPs
are employed.

Key words and phrases: Questionable research practices, replication suc-
cess, simulation study, type-I error rate, power, rejection ratio.

1. INTRODUCTION

Large-scale replication projects in psychology, cancer
biology and other fields continue to report low replicabil-
ity rates (Open Science Collaboration, 2015, Errington et
al., 2021). A possible reason for these low rates is that the
original studies that were replicated have been impacted
by so-called questionable research practices (QRPs). Re-
searchers may engage in QRPs to increase their chance
of achieving a positive result which, in return, increases
the chance of getting their results published (Simmons,
Nelson and Simonsohn, 2011, Nosek, Spies and Motyl,
2012). Examples of QRPs are manifold and they dif-
fer depending on which “researcher degrees of freedom”
(Wicherts et al., 2016) were exploited in order to ob-
tain statistically significant results. It has been well doc-
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umented that such practices can increase the probability
of false positive results substantially, potentially making
them unreliable (Simmons, Nelson and Simonsohn, 2011,
Roettger, 2019). The success of a replication of an orig-
inal study with suspected QRPs might therefore be com-
promised, especially since QRPs are likely not recorded
nor reported. There is evidence suggesting that QRPs
are frequently employed. Between 39% and 51% of re-
searchers admit already having applied at least one of
them (Wolff, Baumann and Englert, 2018, Gopalakrishna
et al., 2022), while they are often not aware that such prac-
tices are problematic (Bishop, 2019, Rabelo et al., 2020).
Some recent studies showed that young researchers and
students had applied QRPs because they received pres-
sure from their supervisors (Moran et al., 2022, Christian
et al., 2021).

Replications are essential to establish the validity of re-
search findings. We define a scientific finding as replica-
ble if consistent results are obtained across studies aimed
at answering the same scientific question, each of which
collecting its own data (National Academies of Sciences,
Engineering, Medicine, 2019). Schmidt (2009) differenti-
ates between direct and conceptual replications. We will
focus on direct replications, as conceptual replications
go further in testing hypotheses in a slightly different
experimental set-up. As replications of scientific studies
are becoming more and more common, metrics to assess
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whether a replication was successful started to emerge
(Anderson and Maxwell, 2016). There is no universally
agreed-up on criterion for replication success. Therefore,
most large replication projects used a whole set of met-
rics. The Reproduciblity Project Psychology (Open Sci-
ence Collaboration, 2015), for example, used significance
and p-values, effect sizes, subjective assessment of repli-
cation teams, and meta-analyses of effect sizes to evaluate
the replicability of the original studies.

Using standard significance as an indicator for replica-
tion success, that is, declaring a replication successful if
both the original and the replication studies yield a sig-
nificant result (in the same direction), has long been cus-
tom in drug development where it is referred to as the
“two-trials rule” (Senn, 2021). This criterion however ig-
nores the effect size of the original and the replication
studies and has other shortcomings (Simonsohn, 2015). In
contrast, the Q-test assesses compatibility of the original
and replication effect sizes without considering the cor-
responding p-values (Hedges and Schauer, 2019). Meta-
analytic approaches use the effect sizes and their uncer-
tainty of the original and the replication studies and sum-
marise them into an overall effect size estimate. An often
discussed shortcoming of meta-analytic approaches is that
they ignore the successive nature of original and replica-
tion studies. A more recently developed metric, the scep-
tical p-value (Held, 2020, Held, Micheloud and Pawel,
2022) combines significance of the original and replica-
tion studies together with their effect sizes. It is important
to note that all these metrics address slightly different as-
pects of replicability (Anderson and Maxwell, 2016).

In an attempt to find the best metric to quantify repli-
cation success in terms of frequentist operating charac-
teristics, Muradchanian et al. (2021) conducted a simu-
lation study to compare the performance of a variety of
metrics in the presence of different levels of publication
bias. The authors compared standard replication success
metrics based on statistical significance or meta-analysis
with more recently developed approaches, like the Small
Telescopes by Simonsohn (2015) or the sceptical p-value
and Bayesian approaches (as described in Verhagen and
Wagenmakers (2014)). There was no single metric which
performed best for all levels of publication bias, while the
sceptical p-value and the Bayes factor approach slightly
outperformed the more standard frequentist metrics, that
is, meta-analysis and standard significance.

Little is known on how the different replication success
metrics behave in the presence of QRPs. As the list of
potential QRPs is long, we focus on a subset that are of-
ten referred to as “p-hacking”, defined as “any measure
that a researcher applies to render a previously nonsignif-
icant p-value significant” (Stefan and Schönbrodt, 2023).
For the present simulation study, we took inspiration from
the QRPs considered in Simmons, Nelson and Simonsohn
(2011). We consider the following:

• We simulate a specific form of outcome reporting bias
(Kirkham et al., 2010, Kirkham et al., 2018) assum-
ing that a researcher considers several outcomes for
the same research hypothesis and only reports the
outcome with the most favorable result, defined as
the outcome yielding the smallest p-value. This QRP
is a common form of p-hacking (Head et al., 2015,
Moran et al., 2022) and has been referred to as cherry
picking of outcomes (Mayo-Wilson et al., 2017).

• We simulate questionable interim analyses (Pocock,
1977, Sagarin, Ambler and Lee, 2014), where the re-
searcher performs multiple statistical analyses during
the data collection phase and stops adding new observa-
tions once a statistically significant result is observed.
More than half of the researchers participating in sur-
veys declared to have collected more data after check-
ing for significance of results (John, Loewenstein and
Prelec, 2012, Agnoli et al., 2017).

• We simulate a QRP where different covariates are
added one-by-one to a regression model in order to find
a significant effect (Wicherts et al., 2016, Wang et al.,
2017). We will refer to this QRP as questionable inclu-
sion of covariates.

These three first QRPs are directly derived from Sim-
mons, Nelson and Simonsohn (2011), while we decided
against simulating their fourth QRP the flexible report-
ing of subsets of experimental conditions. This QRP is
difficult to simulate under the alternative hypothesis as it
requires specification of several effect sizes, not just one.
Indeed, if we wanted to simulate three conditions (e.g.,
high, medium and low) under the alternative, we would
need to specify the effect estimate of two comparisons of
conditions (e.g., high vs. low and medium vs. low). As
this quickly becomes intricate with more conditions we
decided to simulate an alternative, but closely connected
QRP:

• We refer to this alternative QRP as questionable sub-
group analyses (Rosenkranz, 2019, Chapter 3), where
binary characteristics are used instead of experimental
conditions. In this setting we assume that multiple sub-
group analyses are performed based on binary charac-
teristics (gender, seniority, . . . ) and only the most favor-
able result is reported, defined as the subgroup yielding
the smallest p-value (Brookes et al., 2004). The fre-
quency of questionable subgroup analyses has not yet
been directly investigated, but the multiplicity problem
inherent in subgroup analyses has often been described
(Matthews, 2006, Chapter 9).

Even if the positive effect of QRPs on type-I error
(T1E) rate, that is, the false positive rate, has already
been intensively investigated (Simmons, Nelson and Si-
monsohn, 2011, Nosek, Spies and Motyl, 2012, Roettger,
2019), their influence on replication success has not. In
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a simulation study, Ulrich and Miller (2020) investigated
the effect of p-hacking on the probability of a successful
replication using only the two-trials rule as a metric. Their
general conclusion suggested that the effects of p-hacking
“are unlikely to be massive”. The aim of the simulation
study presented in this paper is to study the characteris-
tics of different replication success metrics when QRPs
are suspected to be present in the original study. The met-
rics used are described in detail in Section 2.1. The design
of the simulation study is outlined in Section 2.2 with sep-
arate sections for the original studies with QRP in Sec-
tion 2.2.1 and the replication studies in Section 2.2.2. In
order to assess how well the metrics perform, we need
clear measures of comparison which are defined in Sec-
tion 2.3. The results are outlined in Section 3 and the pa-
per ends with a discussion of our results, our study’s lim-
itations and some recommendations.

2. METHODS

While planning our simulation study, we followed the
recommendations outlined in Morris, White and Crowther
(2019). We wrote a simulation study protocol which
we preregistered on the Open Science Framework (doi:
10.17605/OSF.IO/YDBSH) before writing the code as
suggested in Burton et al. (2006). The next sections will
reiterate the most important steps of the methodology
used, while we refer to the protocol for more details. We
only consider continuous outcomes in the simulation of
all the scenarios and apply throughout one-sided (one- or
two-sample) t-tests which take into account the direction
of the effect estimate.

2.1 Metrics for Replication Success

We will now introduce and define the five replication
success metrics to be compared in detail. The standard
significance level for one-sided hypothesis testing in drug
development of α = 0.025 (Senn, 2021, Chapter 12.2.5)
will be used.

• The first metric is the two-trials rule, which is based on
standard statistical significance. The two-trials rule has
long been custom in drug development where a drug’s
efficiency needs to be demonstrated in two independent
trials (Senn, 2021). According to the two-trials rule,
a replication is marked as successful if the replication
shows a statistically significant effect in the same direc-
tion as the significant original study. Let us assume that
po refers to the one-sided p-value in the original study
and pr is the corresponding replication p-value; then,
the two-trials rule marks a replication as successful if

max{po,pr} < α = 0.025.

Thresholding both, original and replication, p-values
at α ensures that we control the overall T1E rate (i.e.,

rate of false positive replication success) at α2, and this
is what we also try to achieve with alternative metrics
(Rosenkranz, 2023).

• The second metric to quantify replication success
is based on meta-analysis. According to the meta-
analytical metric, a replication is successful if the effect
estimate of a fixed effects meta-analysis combining the
original and the replication study is significant in the
anticipated direction, at a one-sided significance level
α2. If pMA is the meta-analytical one-sided p-value, we
flag replication success if

pMA < α2 = 0.0252 = 0.000625.

The α2 threshold ensures the same overall T1E con-
trol as for the two-trials rule. Original and replica-
tion studies are assumed to be exchangeable. Stouffer’s
method which is based on the Z-scores1 of the origi-
nal and replication study, is used to compute the meta-
analytical p-values. We will use the weighted version
of Stouffer’s method as described in Cousins (2007)
with weights wo = 1 for the original and wr = σo/σr

for the replication study, where σo and σr are the stan-
dard errors of the effect in the original and replication
study, respectively. The resulting p-value is related to
the “pooled trials rule” which is equivalent to investi-
gating whether the overall effect of a fixed-effect meta-
analysis is significant (Senn, 2021, Section 12.2.8).

• The next two metrics are based on the sceptical p-
value, a method that combines a reverse-Bayes ap-
proach with a prior-data conflict assessment (Held,
2020, Held et al., 2022). Using the data from the origi-
nal study, the method first determines a so-called scep-
tical prior for the underlying effect size which would
deem the resulting posterior no longer significant. The
sceptical p-value pS then quantifies the conflict be-
tween the replication data and the sceptical prior. Repli-
cation success is achieved if

pS < α = 0.025.

A necessary but not sufficient condition for success of
the original proposal by Held (2020) is significance of
both the original and the replication study. The orig-
inal sceptical p-value will therefore flag success less
often than the two-trials rule and has a smaller overall
T1E rate. In the following, we will consider two recali-
brations that have been proposed to make the sceptical
p-value less stringent:
– The golden sceptical p-value, our third metric, is

based on a recalibration to ensure that replication
success of borderline significant original studies

1The Z-score of study i is computed through Zi = �−1(1 − pi)

where �−1 is the quantile function of the standard normal distribution
and pi is the p-value.

https://osf.io/aevyp/
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(po ≈ α) is possible, but only if there is no shrinkage
of effect size (Held, Micheloud and Pawel, 2022).
We have shrinkage whenever the replication effect
estimate is smaller than the original effect estimate.
The golden sceptical p-value has overall T1E rate
smaller than α2 as long as the variance ratio is larger
than 1.

– The controlled sceptical p-value, our fourth method,
is a recently proposed extension that guarantees ex-
act overall T1E control at level α2, the overall T1E
rate of the two-trials rule (Micheloud, Balabdaoui
and Held, 2023).

• Our last and fifth metric to assess replication success
is the replication Bayes factor (BF) (Verhagen and Wa-
genmakers, 2014). A BF quantifies the evidence for the
null versus the alternative hypothesis (BF01). The com-
plete BF is based on both the original and replication
data and can be written as the product of the replication
BF and the BF based on the original data only (Ly et al.,
2018). Exact overall T1E control of a Bayesian proce-
dure is difficult (Grieve, 2016), but a suitable threshold
for the replication BF can be obtained by a transforma-
tion of the one-sided 0.025 p-value threshold to the BF
scale. To do so we utilize Equation 11 in Held and Ott
(2018) to obtain the corresponding Bayes factor thresh-
old 1/3.989 ≈ 1/4, assuming that the power to detect
the original effect estimate was chosen to be 85%, the
value we use in our simulation study. Replication suc-
cess with the replication Bayes factor is achieved if

replication BF01 < 1/4.

Note that the overall T1E rate control of the metrics
based on p-values is only valid in the absence of QRPs
and publication bias. The two-trials rule represents our
benchmark as it is the approach most commonly used in
large reproducibility projects (e.g., Open Science Collab-
oration, 2015). Meta-analytical approaches have been re-
ported to outperform this commonly used method in terms
of frequentist operating characteristics, while in the pres-
ence of publication bias the sceptical p-value was found
to perform particularly well (Muradchanian et al., 2021).
As also other Bayesian metrics were found to perform
well in Muradchanian et al. (2021), we additionally added
the replication BF as a Bayesian success metric.

2.2 Design of the Simulation Study

Before describing the simulation of each QRP in de-
tail, we introduce some common choices and parame-
ters. We consider different levels of severity k ∈ {0, . . . ,9}
for each QRP. This level of severity is interpreted differ-
ently depending on the QRP. Level k = 0 represents the
absence of QRP. Original studies are reported (i.e., pub-
lished) only if they yield a positive and significant result,
leading to 100% publication bias. Replication studies are

simulated based on the published original results, but they
themselves do not include any QRPs as replication studies
tend to be preregistered and conducted more rigorously.
We simulate under both hypotheses, the null (H0) and the
alternative (H1). The effect size under the alternative is
fixed to θ = 0.34 to achieve a power of 1 −β = 85% with
a sample size of no = 80 in the original study with a one-
sample t-test, and no = 157 per group if a two-sample
test is used. Under the null hypothesis of no effect we
have θ = 0. As outlined in our protocol, to ensure that
the Monte Carlo error of our proportions of interest stays
below 0.5%, the number of simulations of original stud-
ies was set to N = 400,000 among which N · α = 10,000
would result in a significant result and a replication. The
simulation procedure includes five main steps: simulation
of the original study, extraction of the significant results,
estimation of the replication study sample size (based on
the published original results), simulation of the replica-
tion study, and estimation of the rates of replication suc-
cess using the metrics described above.

2.2.1 Simulating original studies with QRPs. The
QRPs considered and described in the following were
simulated separately without any combinations of QRPs.

Cherry picking. We simulate this QRP for each k ∈
{0, . . . ,9}, where k represents the number of additional
outcomes that are analysed, additional to the first one. We
draw, for each individual i ∈ {1, . . . , no}, a set of k + 1
outcomes from a multivariate normal distribution with
mean θ and correlation matrix � of size (k +1)× (k +1).
The correlation matrix has standard deviation 1 on the di-
agonal and correlation ρ = 0.5 on the off-diagonal fol-
lowing Simmons, Nelson and Simonsohn (2011) and θ is
a vector of length k + 1 with elements θ . Let us assume Y
represents the simulated data set, then

Y =
⎡
⎢⎣

yT
1
...

yT
no

⎤
⎥⎦ =

⎡
⎢⎣

y1,1 · · · y1,k+1
...

...

yno,1 · · · yno,k+1

⎤
⎥⎦ ,

where

yi ∼ Nk+1(θ,�).

Note that the rows yT
i of Y are independent and iden-

tically distributed (i.i.d.). Next, a one-sample t-test is ap-
plied on each of the k + 1 columns and k + 1 one-sided
p-values p0, . . . , pk are retained. A researcher practicing
cherry picking reports only the smallest p-value as the p-
value of the original study:

po = min{p0, . . . , pk}.
No multiplicity correction is performed. It is further as-
sumed that only those simulated studies indicating a sig-
nificant positive effect with po < α are published and will
be replicated. We will simulate data for all k = 0, . . . ,9
severity levels, for H0 where θ = 0 and for H1 where
θ = (θ, . . . , θ)T.
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Questionable interim analyses. For this QRP, we as-
sume that the researchers planned to recruit no = 80 indi-
viduals for their original study. However, for a specific k ∈
{0, . . . ,9}, they decide to do k unplanned and therefore
questionable interim analyses. The number of new partic-
ipants per interim analysis is defined as m = no/(k + 1).
A noninteger value of m is rounded up for a suitable num-
ber of interim analyses while rounded down for the re-
maining ones to ensure that the total sample size is still
no (see the online protocol for more details). To simu-
late questionable interim analyses with k ≥ 1, we first
draw a sample y1 = (y1, . . . , ym)T from a normal distri-
bution with mean θ and variance 1, y1 ∼ Nm(θ,1). We
now assume that the researcher tests for a positive effect
using a one-sample t-test leading to a one-sided p-value
p1. A significant result with p1 < α leads to a replica-
tion study and we move to the next simulation. Otherwise
and k ≥ 2, we assume that m more individuals are re-
cruited and simulate y2 = (ym+1, . . . , y2m)T ∼ Nm(θ,1).
The next p-value p2 is achieved through a t-test per-
formed on the combination of both samples (y1,y2) with
sample size 2m. If the null hypothesis is rejected at this
stage, a replication is designed and performed based on
the published original study of sample size 2m. Other-
wise a next sample of size m is drawn until either a sig-
nificant result is observed or the total sample size reaches
the maximum no. Note that we again simulate data for all
k = 0, . . . ,9 levels of severity and both hypotheses, H0
with θ = 0 and H1 with θ = 0.34.

Questionable inclusion of covariates. To simulate ques-
tionable inclusion of covariates we need to consider
two samples (Simmons, Nelson and Simonsohn, 2011,
Roettger, 2019), for example, two different treatment
groups. Therefore, a larger original sample size is re-
quired to achieve the same power of 85% given an effect
size of θ = 0.34 under the alternative. For both (treat-
ment) groups, we simulate two data matrices, Ya and Yb,
each with na

o = nb
o = 157 rows (observations) and k + 1

columns. The first column represents the outcomes ya

and yb respectively, and the remaining k columns rep-
resent the covariates which are assumed to be unrelated to
the outcome and treatment. Ya and Yb are drawn from a
multivariate normal distribution with respective means θa

and θb and correlation matrix � of size (k + 1) × (k + 1)

(with standard deviation 1 on the diagonal and correlation
ρ = 0.5 on the off-diagonal). Under the null hypothesis,
θa = θb = 0 and the means of the distributions are de-
fined as θa = θb = (θa,0) = (0,0) (where 0 is a vector
of size k − 1). Under the alternative, we have θa = 0 and
θb = 0.34. The mean for Ya is θa = (θa,0) = (0,0) and
the mean for Yb is θb = (θb,0) = (0.34,0). To obtain a
set of k binary covariates, the negative elements of the co-
variate columns will be transformed to 0, and the positive
element will be transformed to 1. Note that we test the
one-sided alternative hypothesis H1: θb > θa .

We now follow Wang et al. (2017) and assume that
the researcher wants to test for a positive treatment ef-
fect on the outcome y = (ya,yb) and applies a simple lin-
ear model with the treatment indicator as sole indepen-
dent variable, without any additional covariates. This re-
sult yields a first one-sided p-value p0 for the treatment
effect. If p0 < α the researcher publishes the significant
result as such and a replication study can be designed and
performed. Otherwise and if k ≥ 1, k covariates are added
to the model in a sequential way. Every time a new covari-
ate is added to the model the researcher assesses whether
the resulting p-value for the treatment effect is smaller
than α. If yes those results are published. Otherwise an-
other covariate is added. This practice is repeated until a
significant treatment effect can be reported or all k co-
variates are included in the final model. The data are sim-
ulated for each k = 0, . . . ,9 and both hypotheses, H0 and
H1.

Questionable subgroup analyses. To simulate this prac-
tice for each k = 0, . . .9 under H0 and H1, we draw a data
matrix Y with no = 80 rows and k + 1 columns from a
multivariate normal distribution with mean θ and correla-
tion matrix � with standard deviation 1 on the diagonal
and correlation ρ = 0 on the off-diagonal (the columns
of the matrix will not be correlated). As for question-
able inclusion of covariates, the first column of Y rep-
resents the outcome y and the remaining k columns rep-
resent the covariates used for subgroup splitting. Under
the null hypothesis we have θ = 0 and under H1 we
have θ = (0.34,0). First, a one-sample t-test is applied
on the outcome y, resulting in a first one-sided p-value
p0. A significant result leads to a replication study. With-
out a significant result and for k ≥ 1, the outcome y, will
be randomly split k times, following the sign of the k co-
variates obtaining 2k subgroups. For instance, if k = 3, y
is randomly split two times and we obtain 2(k − 1) = 4
subgroups. Each of the subgroups might have a different
sample size msj with j = 1, . . . ,4. Note that the sample
is not split into four parts, but two times into two parts. As
an example, we can imagine that a researcher used two bi-
nary covariates, gender and age (young vs. old), and first
considers gender (men vs. women) to split the sample and
then age (young vs. old). Each subgroup is analyzed sep-
arately with a one-sample t-test resulting in 2k one-sided
p-values (e.g., a one-sample t-test is applied on all the
women, on all the men, on all the young participants, and
on all the old participants, respectively). If the lowest p-
value is smaller than α, only the results of the subgroup
with lowest p-value would be published, and a replication
study can be designed and conducted.

2.2.2 Planning and simulating replication studies with-
out QRPs. Whenever the simulated original study with
QRP yields a significant result, a replication study is de-
signed based on the published original results. The pub-
lished sample size n′

o depends on the QRP investigated
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and, in the presence of cherry picking and questionable
inclusion of covariates, is simply the original sample size
no regardless of which level of severity k was employed.
For the other QRPs the published sample size n′

o ≤ no

depends on which level yielded a significant result. For
questionable interim analyses, if a significant result was
found after the j th interim analysis, then n′

o = j · m. For
questionable subgroup analyses the published sample size
is no if a significant result was found on the whole sample,
and msj if the smallest significant p-value is observed in
subgroup j with sample size msj .

For each significant original study, a sample size cal-
culation will be performed to define the relative sample
size c = nr/n′

o, where nr is the sample size of the repli-
cation study. In particular, the replication of each signifi-
cant original study is designed in two ways: c will either
be fixed at c = 1 as this is what replication researchers
have intuitively been doing, or chosen adaptively based
on the original study result and the designated replication
success metric. The adaptive sample size calculation is
of particular interest as the design of replication studies
should ideally match the type of analysis (Anderson and
Kelley, 2022). Specifically, assuming that the reported ef-
fect size in the original study is the true effect size, we
will compute:

• the required relative sample size to achieve a significant
positive effect in the replication study,

• the required relative sample size to obtain a meta-
analytical p-value pMA < α2,

• the required relative sample size to achieve replication
success according to the golden sceptical p-value,

• the required relative sample size to achieve replication
success according to the controlled sceptical p-value,

• and the required relative sample size to obtain a repli-
cation Bayes factor < 1/4.

All are based on standard normality assumptions aim-
ing to achieve a power of 85% to detect the published
effect estimate from the original study. Further details
on the different sample size calculations are described in
the relevant literature (Micheloud and Held, 2022, Held,
2020, Held, Micheloud and Pawel, 2022, Micheloud, Bal-
abdaoui and Held, 2023, Pawel, Consonni and Held,
2023). When the meta-analytic metric for replication suc-
cess is used a very convincing original study with po

much smaller than α2 would almost certainly lead to
success regardless of the results of the replication study
(Micheloud and Held, 2022, Section 2.2.3) and the repli-
cation study would actually not be required. Therefore,
one would expect the relative sample size to converge to
0 with decreasing po. In this case, to ensure large enough
replication sample size in order to perform the required
tests, we fix c to 0.1 whenever po < 0.0037, which is the
original p-value for which the required relative sample

size to obtain pMA < α2 is c = 0.1. Further, since the rel-
ative sample size c might be noninteger valued, the re-
sulting replication sample size nr = c · n′

o is rounded to
the next integer. We further include an upper bound of
c ≤ 100 to ensure the replication study does not become
unpractically large and a lower bound of nr ≥ 2, as other-
wise no tests can be performed. A relative sample size of
c = 100 may not be feasible in most disciplines, although
a sample size increase by almost 20 (no = 75, nr = 1488)
has been used in one of the replication studies in Open
Science Collaboration (2015).

The replication study is simulated following the same
procedure as for the original studies with k = 0. How-
ever, for original studies with questionable inclusion of
covariates the same number of covariates as reported in
the original study is used because the replication authors
would exactly follow the reported original studies. Fig-
ure 1 represents a diagram of the design of the simulation
study.

2.3 Measures of Comparison

For each QRP, each level k and each design for the rel-
ative sample size, we compute the average relative ef-
fect size (under H1), defined as the average of the ra-
tio between effect estimate of the replication studies and
the effect estimate of the original study. A relative ef-
fect size smaller than 1 means that there is shrinkage of
the effect. Then, to investigate the performance of the
five metrics under different levels of QRP we will fol-
low Muradchanian et al. (2021) and compute the propor-
tion of successful replications using the different metrics.
We compute two different proportions: one based on the
total number of simulations and one based on the num-
ber of significant original studies, that is, the number of
replication studies. The proportions based on the total
number of simulations correspond to the estimated over-
all type-I error (T1E) rate or the project power depending
on whether the data were simulated under the null or the
alternative hypothesis. The overall T1E rate of the two-
trials rule in the absence of QRPs is the squared nominal
T1E rate α2 = 0.0252 = 0.000625 and the project power
of the two-trials rule in the absence of QRPs would be the
squared nominal power: (1 − β)2 = 0.852 = 0.7225. The
proportions calculated for all the replications correspond
to estimated T1E rate and power, respectively. In theory,
the overall and standard false-positive rate should be kept
low, while the project and standard power should be high.

It is important not to investigate power and T1E rate
in isolation. An increase of power with k could be inter-
preted as a benefit, but at the same time we may also ob-
serve an increase of T1E rate, which in turn should cause
concern. To combine T1E rate and power in one measure,
Bayarri et al. (2016) suggested the pre-experimental re-
jection ratio

Rpre = Power

T1E rate
.
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FIG. 1. A diagram explaining the main steps in our simulation study.

It can be interpreted as the odds of a correct rejection of
the null hypothesis to an incorrect rejection of the null.
The higher this ratio, the better the performance of the
metric in correctly classifying replication success. Using
overall T1E rate and project power in the above equation
leads to the overall rejection ratio. The overall Rpre is (1−
β)2/α2 = 342 = 1156.

3. RESULTS

We first investigate the effect of the (different levels of)
QRPs on the original studies. The strong positive effect of
QRPs on T1E rate was already described elsewhere (Sim-
mons, Nelson and Simonsohn, 2011, Roettger, 2019), but
in order to fully understand what this means for replica-
tion success we start by investigating the influence on the
original studies.

3.1 Original Studies with QRP

The T1E rate for different severity levels k are shown
in Figure 2.A. In the absence of QRP (k = 0) the T1E rate
in the original studies is, as expected, equal to α = 0.025.
Already weak QRP (k = 1,2) doubles the T1E rate for
cherry picking, questionable interim and subgroup analy-
ses. Only the questionable inclusion of covariates does not
increase the proportion of false positives as quickly. Fig-
ure 2.B shows the proportion of significant results under

the alternative hypothesis (H1), that is, the power, depend-
ing on the severity level k. In the absence of QRP (k = 0)
the power is equal to 0.85. Then, with increasing k the
chance of finding a true effect quickly increases. We ob-
serve the fastest increase for cherry picking and the lowest
for questionable interim analyses.

We show the pre-experimental rejection ratio of H1
to H0 in Figure 2.C. The ordering of the different prac-
tices with respect to T1E rate is reversed for the pre-
experimental rejection ratio. Questionable subgroup anal-
yses, has the lowest rejection ratio for all levels k: for
very severe questionable subgroup analyses (k = 9) we
observe around one false rejection for every five true re-
jections of the null hypothesis.

Turning to the estimated effect size, Figure 3. A shows
the original effect size observed in the studies with sig-
nificant results, depending on the QRP and its level of
severity, under the alternative hypothesis. The average ef-
fect size with k = 0 of those studies is larger than the true
effect θ = 0.34, illustrating the increase of effect size—
also called the “winner’s curse” (van Zwet and Cator,
2021)—caused by the fact that we induced 100% publi-
cation bias. The practice of questionable interim analyses
has the strongest (positive) impact on the effect size in the
original study. On the other hand, the questionable inclu-
sion of covariates negatively affects the effect size, as the
additional covariates absorb some of the effect of interest.
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FIG. 2. Original studies: The estimated T1E rate (A), the power (B) and the pre-experimental rejection ratio (C) depending on the level of severity
k and the QRP.

The practice of questionable subgroup analyses leaves the
effect size almost unaffected.

As previously mentioned, for the questionable interim
and subgroup analyses the reported sample size n′

o of the
original study can be smaller than no = 80. Figure 3.B
shows the reduction of average sample size of the origi-
nal studies with significant effect induced by those QRPs,
under the alternative hypothesis. The average published
sample size for questionable interim analyses for k = 2
is only 53. The larger the severity k of questionable in-

terim analyses, the more the published sample size of the
original study drops under the alternative hypothesis. It
decreases less fast for questionable subgroup analyses,
where the researcher first tests for an effect on the full
sample of no = 80 and only starts splitting the sample if
no significant effect could be found. The same quantities
as in Figure 3, but under the null hypothesis, can be found
in Figure S.2 in the Supplementary Material (Freuli, Held
and Heyard, 2023).

FIG. 3. Average effect size in the significant original study depending on the QRP and the level of severity k, under the alternative hypothesis (A);
and the average published sample size of the significant original studies for questionable interim analyses and subgroup analyses depending on the
level of severity k, under the alternative hypothesis (B). For cherry picking and questionable inclusion of covariates, the published sample size stays
equal to the originally defined sample size of no = 80 and no = 157, respectively.
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FIG. 4. The average relative sample size c depending on the adaptive design chosen to compute the sample size for all QRPs and level of severity,
under the alternative hypothesis. If the design is fixed c is always 1.

3.2 Design of Replication Studies

For each original study with a significantly positive ef-
fect estimate, a replication study is designed based on the
published results (i.e., the effect size, reported sample size
and p-value). As described in Section 2.2.1, we used dif-
ferent designs to calculate the sample size of the replica-
tion studies (fixed and adaptive design).

If computed adaptively, the average relative sample size
c = nr/n′

o (averaged over all designed replications) de-
pends on the QRP, its level of severity and the chosen
metric for replication success, as shown in Figure 4 un-
der the alternative hypothesis. For all QRPs but cherry
picking higher severity levels increase the relative sam-
ple size at least slightly. The adaptive relative sample size
is based on the p-value of the original study which—on
average—increases with higher levels of severity for these
same QRPs (see Figure S.1 in the Supplementary Mate-
rial). When adaptively designing c, larger p-values in the
original study tend to require a larger replication sample
size. Using the golden sceptical p-value to design c leads
to larger relative sample sizes when k and the original p-
values increase. Especially for questionable interim anal-
yses, c based on the golden sceptical p-value becomes
sometimes unreasonably large. On the contrary, since the
original p-values decrease with k for cherry picking, the
original studies are interpreted as very convincing and

smaller sample sizes are sufficient for successful replica-
tions (c decreases with k for cherry picking for all met-
rics). Note that for cherry picking, c chosen using meta-
analysis becomes very small as with a very convincing
original study, a replication study would no longer be re-
quired for success. The corresponding Figure of the re-
sults under the null hypothesis can be found in the Sup-
plementary Material (Figure S.3).

Finally, after all replication studies are designed, they
are simulated without QRP. Figure 5 shows the average of
the relative effect sizes, depending on the QRP and level
of severity. This figure shows the commonly observed
shrinkage effect when the researcher engages in cherry
picking or questionable interim analyses: the replication
effect size is smaller than the original effect size due to
bias in the original study. In the presence of questionable
subgroup analyses, the relative effect size stays close to
1 for all k as this QRP does not inflate the original effect
size as much. The original effect size under questionable
inclusion of covariates decreases and the relative effect
size increases with k. We will refer to this phenomenon
as “inverse shrinkage”.

3.3 Replication Success

The next sections will investigate the differences in per-
formance of the replication success metrics in the pres-
ence of different (levels of) QRPs, under both, the null
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FIG. 5. The average relative effect size depending on the QRP and the level of severity k, under the alternative hypothesis. For this Figure we only
show the results with fixed sample size where c = 1.

and alternative hypotheses. The results for all metrics with
fixed replication sample size (c = 1) are presented to-
gether with the results with adaptive design. We will sep-
arately analyse and discuss the effects of QRPs on the
overall T1E rate, the project power and the overall rejec-
tion ratio. Figures S.5–S.7 in the Supplementary Mate-
rial show the corresponding quantities when the propor-
tions are computed for all conducted replications. Those
proportions represent the T1E rate of the replication, the
replication power and pre-experimental rejection ratio of
the replication.

3.3.1 Overall type-I error. Firstly, Figure 6 closely ex-
amines how varying levels of QRP affect the overall
T1E rate when defining replication success using differ-
ent metrics and either designing the replication adaptively
or not.

In the absence of QRPs (k = 0) and apart from the repli-
cation BF, all metrics are defined in a way to control the
overall T1E rate approximately at level α2 = 0.000625.
The results for the two-trials rule at k = 0 show perfect
overall T1E rate control at α2. The overall T1E rate at
k = 0 for the controlled and golden sceptical p-values and
the meta-analysis are slightly smaller than α2 because of
the 100% publication bias in our simulation study. The
controlled sceptical p-value is defined as to exactly con-
trol this overall T1E rate, so if nonsignificant results were
replicated, the overall T1E rate would be equal to α2 when
k = 0. Still at k = 0, the golden sceptical p-value com-
bined with an adaptive design results in an even lower
overall T1E rate which comes from the fact that the adap-
tive design leads to very large—sometimes even unrea-
sonably large—relative sample sizes (see Figure S.3 in
the Supplementary Material). From Equation 5 in Held,
Micheloud and Pawel (2022), we know that increasing the
replication sample size leads to a more stringent require-
ment for replication success which in turn, under the null
hypothesis, lowers the chance of a replication study that

is convincing enough. The overall T1E rate of the replica-
tion BF is not bounded at α2 as can be seen for c = 1 and
k = 0.

Regardless of the QRP investigated, the false-positive
rate increases with k because it is influenced by the in-
crease in the number of false-positive original results (as
seen in Figure 2). This increase is most pronounced when
the original studies suffer from questionable subgroup
analyses followed by the setting with cherry picked orig-
inal results. Questionable inclusion of covariate, on the
other hand, has virtually no effect on the overall T1E rate
as it also did not increase the T1E rate of the original stud-
ies much. For all k and QRPs, defining replication success
with the golden sceptical p-value and designing the repli-
cation adaptively leads to the lowest overall T1E rate. It
also increases less fast with k as compared to the other
metrics which can be explained by the fact that the golden
sceptical p-value penalizes shrinkage (see Figure 5). This
metric flags a replication as successful only if both stud-
ies, the original and the replication, are convincing by
themselves. When applying a fixed design, the ordering
in overall T1E rate observed for the different metrics is
consistent for all QRPs: the replication BF results in the
largest overall T1E rate followed by the two-trials rule
for all k. The smallest overall T1E rate is observed with
either the golden sceptical p-value or the meta-analysis
as metrics. Comparing the influence of the QRPs on the
performance of the metrics is easier with fixed c. Ap-
plying cherry picking leads to a lot of shrinkage with
increasing k which is penalized by the golden sceptical
p-value, explaining the good performance of the metric.
For questionable interim analyses and questionable inclu-
sion of covariates combined with a fixed design, the meta-
analysis performs slightly better, while the overall T1E
for the golden sceptical p-value and the meta-analysis
with fixed design are very similar for questionable sub-
group analyses. The potential superior performance of the
metric based on meta-analysis disappears with an adap-
tive design, especially for cherry-picking. As discussed
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FIG. 6. The estimated overall T1E rate for increasing severity level of different QRPs, depending on the metric for replication success used and
the design. The overall T1E rate of the two-trials rule in the absence of QRPs and publication bias is α2 = 0.000625.
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above, severe cherry-picking decreases the original p-
value which increases the chance of defining replication
success with a meta-analysis. This is particularly the case
with adaptive design where c is always larger than 2 with
meta-analysis as criterion (see Figure S.3 in the Supple-
mentary Material) as this might in addition decrease the
replication p-values. The jump in overall T1E from fixed
to adaptive design with the meta-analysis is similar for
questionable subgroup analyses, but less strong for the
remaining two QRPs. The original p-values are less af-
fected by severe questionable subgroup analyses and stay
relatively small, while they increase with questionable in-
clusion of covariates and interim analyses.

The adaptive replication BF usually performs better
than the fixed version (with lower overall T1E rate) be-
cause, under H0, the adaptive c tends to be larger than
1 which decreases the chance of a convincing replication
study. As the replication BF needs the replication study
to be convincing and cares less about the evidence from
the original study this leads to a lower share of replica-
tion success under H0. The metric based on the controlled
sceptical p-value results in an overall T1E always lower to
the one with the two-trials rule. This result is certainly in-
fluenced by the simulation of 100% publication bias, but
the gap between the overall T1E rate of the two metrics
increases with k.

The T1E rate using the metric based on meta-analysis
would be inflated even more if nonsignificant original re-
sults were replicated, as it is possible to have the meta-
analysis flag a replication successful even if the original
result was not convincing with a large p-value, whenever
the estimated effect in the replication study is very strong
and vice versa (as can be inferred from Figure 9). Inter-
pretation for the replication BF in comparison to the met-
rics based on p-values is not straightforward. However,
the overall T1E rate inflation would be even more pro-
nounced for the replication BF if nonsignificant original
studies would have been replicated. Indeed, the replica-
tion BF does not directly depend on how much evidence
the original study provides against the null and can there-
fore flag replication success with an unconvincing orig-
inal study as long as the replication result is compelling
(Pawel and Held, 2022).

3.3.2 Project power. Next, Figure 7 shows the influ-
ence of varying levels of QRPs on the project power when
defining replication success using different metrics with
an adaptive and fixed design.

Starting with the interpretation of project power at k =
0 we observe that only the two-trials rule with fixed de-
sign leads to a project power of approximately (1 − β)2.
To design the replication studies adaptively we assumed
that the original effect size was the truth. However, due
to the 100% publication bias, the original effect size is—
on average—larger than the truth. Therefore, the adaptive

version of the project power for the two-tirals rule with
k = 0 is smaller than (1 − β)2.

Higher severity of cherry picking positively influences
the overall power when using the meta-analytical metric
to quantify replication success, or combine a fixed design
of the relative sample size with any of the other metrics.
The metrics other than meta-analysis with adaptive design
lead to a decreased project power once k ≥ 2. As previ-
ously seen (in Figure 4), the average relative sample size
from an adaptive design decreases with k as the effect size
of the original significant result to be replicated increases.
This has a direct effect on the project power.

When questionable interim analyses are applied we ob-
serve an interesting phenomenon where the ordering of
the metrics by project power is reversed once k ≥ 2. In
general, severe levels of questionable interim analyses
have a detrimental effect on the project power, especially
with fixed design or golden sceptical p-value. This can
be explained by the fact that this QRP induces important
shrinkage and leads to small original sample sizes, which
in turn, make the extreme original effect hard to replicate
with c = 1. Adaptively designing the replication study
seems to preserve a higher project power for all metrics
but the golden sceptical p-value. For the latter metric the
questionable interim analyses lead to very large c which
leads to more stringent success requirements. In the pres-
ence of inverse shrinkage as for questionable inclusion of
covariates, an inflation of project power is observed also
for the adaptive version of the golden sceptical p-value.
Questionable subgroup analyses have a less strong effect
on the project power and we observe less obvious differ-
ences between the metrics.

3.3.3 Overall rejection ratio. Finally, the overall rejec-
tion ratio in Figure 8 provides a summary of the previous
results.

The overall rejection ratio confirms the results observed
under the null hypothesis: for all QRPs, we observe higher
ratios estimated for the adaptive version of the golden
sceptical p-value which indicates the largest number of
true rejections for each false rejection of replication suc-
cess. The overall rejection ratios decrease with k for all
metrics and QRP while they are almost stable for ques-
tionable inclusion of covariates since the overall T1E rate
for this QRP and publication bias does not increase much.
Also, for all practices and large values of k, the overall re-
jection ratio is smaller than 1156, the ratio for the two-
trials rule in the absence of QRP, which indicates that
the presence of QRP in the original study render false
rejections of replication success more likely, regardless
of the replication success metric used. Only the adap-
tive version of the sceptical p-value and the fixed ver-
sion of the meta-analysis stay above this value for all
k in the presence of questionable inclusion of covari-
ates.
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FIG. 7. The estimated project power for increasing severity level of different QRPs, depending on the metric for replication success used and the
design. The project power of the two-trials rule in the absence of QRPs and publication bias is (1 − β)2 = 0.7225.
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FIG. 8. The estimated overall rejection ratio for increasing severity level of different QRPs, depending on which metric defines replication success
and which design was used. The ratio for the two-trials rule in the absence of QRPs and publication bias is (1 − β)2/α2 = 1156.
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FIG. 9. Violin plots of the replication p-values (larger than 10−8) of those replication studies that were judged successful by the different metrics
(on the y-axis), depending on whether c was fixed to one or estimated adaptively under the null and the alternative hypotheses. The results are
presented for k = 0, under both the null and the alternative hypothesis for all QRPs pooled together. The red dashed lines represent the significance
level α = 0.025. The percentage of values larger than α are reported. Note that by design all original p-values were significant.

Regardless of the practice studied, the meta-analytical
metric to quantify replication success performs relatively
well (i.e., large overall rejection ratios which mean a high
number of true rejections for each false rejection of repli-
cation success). To understand why, we refer to Figure 9.
Here we see for each hypothesis and design, the p-values
computed in those replication studies that were successful
depending on the definition of replication success. With
the meta-analytical metric, we can obtain replication suc-
cess even if the replication p-value is large. The meta-
analysis allows such large replication p-values whenever
the original study was very convincing. This metric does
not require both studies to be “convincing on its own”,
in contrast to the common understanding of a success-
ful replication. This figure also shows how, for the golden
and controlled sceptical p-value to flag success the repli-
cation p-value does not have to be smaller than α, but
the study has to be convincing. The replication BF sel-
domly allows the p-values of the replication to be larger
than α, and if it does, this p-value is still very close
to α. Hence, it is crucial not to investigate one oper-
ating characteristic in isolation, but rather weight them

against each other and inspect replication success case-
by-case.

4. DISCUSSION

In this simulation study, we compared the performance
of different replication success metrics in the presence of
QRPs. The simulations were performed under both the
null and the alternative hypotheses. Only the significant
original results were replicated since we assumed 100%
publication bias, where only the studies with significant
results would get published. The replication studies were
designed based on the published results. Diverse metrics
were proposed to quantify replication success, and we
compared the performance of the following metrics: stan-
dard significance, often referred to as two-trial rule, the
meta-analytical approach, two versions of the sceptical
p-value, with “golden” or “controlled” recalibration, re-
spectively, and replication BF. In addition, we allowed
for increasing levels of severity k for each of the four
QRPs studied: cherry picking, questionable interim analy-
ses, questionable inclusion of covariates and questionable
subgroup analyses. To compare the performance of the
replication success metrics, we estimated the overall T1E
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rate, the project power and the overall rejection ratio. The
design of our simulation study was preregisted on OSF.

We found that applying QRPs in the original study has
a strong effect on the operating characteristics of the orig-
inal study, typically leading to an increase in T1E rate,
and a decrease in power and rejection ratio. Furthermore,
QRPs affected the original effect sizes substantially, pro-
ducing a strong shrinkage effect for cherry picking and
questionable interim analyses and inverse shrinkage for
questionable inclusion of covariates. These effects in turn
influenced the replicability of the original results. Using
the golden sceptical p-value to define replication suc-
cess and computing the replication sample size led to the
smallest values of overall T1E rate for all severity levels k,
QRPs. This could potentially be explained by the fact that
the sceptical p-values requires both studies to be convinc-
ing enough with respect to the p-values but also the rela-
tive effect size. On the other hand, other metrics, such as
the two-trial rule, might declare replication success even if
there is substantial shrinkage of the replication effect size,
for example, caused by QRPs in the original study. This
is especially likely if the relative sample size is larger.

Regardless of the metric, the overall rejection ratio de-
creases with the severity level k for all practices except
for questionable inclusion of covariates where it is con-
stant. Also for this ratio the golden sceptical p-value per-
forms best (i.e., highest values) for all QRPs and severity
levels, while the controlled sceptical p-value is consis-
tently better than the two-trials rule and the replication
BF when comparing the same designs, but worse than the
meta-analytical approach and at a similar level.

Interestingly, with respect to its operating characteris-
tics, the meta-analysis performed strikingly well in the
simulation study: low overall T1E rate and high project
power. However, this observation is only linked to the fact
that we only simulated the replications of those original
studies that yield a significant result. The behavior of the
meta-analytical approach is much different from the two-
trial rule and sceptical p-value as it can lead to replica-
tion success if the replication study is not significant and
shows substantial shrinkage. Such replication results can-
not be successful when using the golden sceptical p-value
as it penalizes shrinkage. Even though the golden scepti-
cal p-value performs well, it also requires larger relative
sample size. Hence, it is a trade-off that has to be con-
sidered, as the required relative sample size may be very
large rendering a reasonably powered replication unfeasi-
ble. The replication BF does not consider both studies of
equal importance, but can rather be very small and lead
to success if the replication is very convincing even if the
original study is not. This scenario is not simulated here,
leading to largly underestimated overall T1E rates.

This is the first study investigating the performance of
different replication success metrics in the presence of a

set of QRPs. The obtained results show interesting per-
spectives for future studies. First of all, we did not investi-
gate the effect of combinations of different QRPs, as done
in Simmons, Nelson and Simonsohn (2011). In addition,
it is necessary to emphasize that in our study we simulated
the QRPs following one of the multiple descriptions re-
ported in the literature (Wang et al., 2017). More compar-
isons, and even neutral comparison studies (Boulesteix,
Lauer and Eugster, 2013), of the golden sceptical p-value,
which was the most promising in our study, with other
replication success metrics are needed. Finally, in-depth
analyses of the implications of the designs to determine
the relative sample size could give insight into and rec-
ommendations on which designs should be used in which
situation. Another interesting extension in our simulation
study could be to allow varying base rates of true effects
as did Ulrich and Miller (2020), because they found low
base rates being an important contributor of low replica-
bility.

Our study is not without limitations. We only focused
on a subset of four QRPs which were reasonably straight-
forward to simulate. We are aware that also simulation
studies can be subject to QRPs and made an effort to
avoid them by preregistering our study protocol (Pawel,
Kook and Reeve, 2023). We only designed and simu-
lated a replication study if the original study showed a
significant result. This does not affect the overall T1E
rate of the two-trials rule, but it does reduce the overall
T1E rate of other methods. Specifically, the sceptical p-
value in both the golden and controlled version avoids the
“double dichotomisation” of the two-trials rule and can
flag replication success even if the p-value of the origi-
nal study is somewhat larger than α. A restriction to sig-
nificant studies only will hence reduce both overall T1E
rate and project power (Held, Micheloud and Pawel, 2022,
Section 3). The meta-analytical approach and replication
BF may even flag replication success if one of the stud-
ies is not convincing at all and the restriction to signif-
icant original studies again reduces overall T1E rate and
project power. We made this choice in the assumption that
a researcher performs QRPs only to get a significant re-
sult that can easily be published. Furthermore, conduct-
ing replication studies of nonsignificant original studies
will increase the costs of large-scale replication projects
in practice. However, it would be interesting to assess the
performance of the replication success metrics consider-
ing all original results. Finally, the simulation study could
be extended to “many-to-one” replication designs (Klein
et al., 2014).

It is important to note that in our simulation study, the
replication followed exactly the same (simple) design as
the original study (without QRPs). In real world replica-
tions this is not guaranteed and differences in study design
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might influence replication success. Further, in our simu-
lation setup we are interested in the proportion of replica-
tion successes (under the null and the alternative hypothe-
ses) recorded as a binary measure of success. This could
be seen as a limitation and it would be of interest to also
analyse replication success from a quantitative perspec-
tive.

5. SOFTWARE, DATA, AND SOURCE FILES

All materials related to this paper are available from
gitlab.uzh.ch/rachel.heyard/qrpsimulations and OSF (osf.
io/ydbsh/). This paper can be reproduced using the
Rmarkdown version of the document. The scripts used
for the simulations are also included in the gitlab reposi-
tory. The entire study was conducted in R (version 4.2.3)
and the simulation was designed using the SimDesign
package. The methodology based on the sceptical p-
value is implemented in the R package Replication-
Success available from CRAN. We used the replica-
tion BF functionality from the package BayesRep avail-
able on gitlab (gitlab.uzh.ch/samuel.pawel/BayesRep)
and BayesRepDesign available from CRAN.
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SUPPLEMENTARY MATERIAL

Supplement to “Replication Success Under Ques-
tionable Research Practices—a Simulation Study”
(DOI: 10.1214/23-STS904SUPP; .pdf). Figure S.1: sig-
nificant original p-values. This Figure shows violin plots
of the p-values of the significant original studies under
H1. Figure S.2: The average significant original effect
sizes and the published original sample size under the
null hypothesis. The first part of the Figure (A) shows the
average effect size of all those original studies yielding a
positive significant results under the null hypothesis, de-
pending on the QRP and the level of severity employed.
The figure shows how large the bias of the published re-
sults under the null is already without QRP (k = 0), and
how it is affected by the QRP. For questionable interim
analyses and subgroup analyses the average published
sample size of the significant original studies under the
null is represented in the second part of the Figure (B).
Figure S.3: The average relative sample size c under the
null hypothesis. The figure presents the relative sample
size c averaged over all designed replications under the

null hypothesis for different QRPs and different levels of
severity k. Compared to the average relative sample size
under the alternative presented in the main manuscript,
c is less affected by the QRPs and their level of sever-
ity. Figure S.4: The proportion of significant original re-
sults per 1000 simulated studies. The proportion of signif-
icant original results per 1000 simulated studies in both,
the null and the alternative, are shown in this figure de-
pending on the QRP employed and the level of severity.
The representations directly relate to the T1E rate and the
power (of the original studies). Figure S.5–S.7: Perfor-
mance of replication success metrics for different QRPs.
These figures present the T1E rate, the power, and the
pre-experimental rejection ratios. Unlike in the main pa-
per, these quantities are computed as the share (or the ratio
of the shares) of successful replications among all repli-
cations or original significant results, under the null and
the alternative hypothesis respectively.
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