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ANOVA for Metric Spaces, with Applications
to Spatial Data
Raoul Müller, Dominic Schuhmacher and Jorge Mateu

Abstract. We give a review of some recent ANOVA-like procedures for test-
ing group differences based on data in a metric space and present a new such
procedure. Our statistic is derived from the classic Levene’s test for detect-
ing differences in dispersion. It uses only pairwise distances of data points
and can be computed quickly and precisely in situations where the computa-
tion of barycenters (“generalized means”) in the data space is slow, only by
approximation or even infeasible. It also satisfies asymptotic normality.

We discuss the relative merits of the various procedures based on simu-
lation studies for spatial point patterns and image data in a 1-way ANOVA
setting. As applications, we perform 1- and 2-way ANOVAs on a data set of
bubbles in a mineral flotation process and a data set of local pest counts in
Madrid.

Key words and phrases: ANOVA, images, Levene’s test, metric spaces,
spatial point patterns.

1. INTRODUCTION

Real-world statistical data is often not Euclidean, in-
volving components that are most suitably analyzed in
a more complicated space. Examples include spaces of
point patterns and more general subsets, trees and more
general graphs, functions and images.

In recent years, a number of methods have been pro-
posed for analyzing group differences of such data by ge-
neralizing classical analysis of variance (ANOVA) ideas
to more complex data spaces. Examples include [12] for
functional data, [30] for data on Riemannian manifolds
and [36] for point pattern data. A common feature of the
underlying spaces is that there is typically a more or less
natural concept of distance between data points available.
In addition to the more obvious choices of distances on
function spaces and Riemannian manifolds, suitable met-
rics for tree spaces, graph spaces and point pattern spaces
can be found in [7, 20] and [35], respectively.

In the present paper, we focus on generalized ANOVA
procedures for metric spaces without using any more spe-
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cial structure of the space. There is a number of preceding
articles that work in similar generality.

[2] proposes to perform ANOVA based on pairwise
dissimilarities of observations rather than Euclidean dis-
tances between observations and their group means, and
introduces the name PERMANOVA for this procedure.
While not directly referring to any more abstract spaces
than R

d , that article clearly discusses the abstract template
of doing non-Euclidean ANOVA without using a centroid
object. We discuss this further in Section 3.1. [3] pro-
poses multidimensional scaling followed by a Levene’s
test (using the centroid object in the principal coordinate
space) for detecting differences of within-group disper-
sions (scatter, variability). This is referred to as PER-
MDISP; see [4]. [5] and [24] correct the PERMANOVA
statistic for heteroscedasticity in the unbalanced setting
based on the variants of classical ANOVA by Brown–
Forsythe and Welch, respectively.

A somewhat different approach to decomposing an
overall dispersion was introduced in [37] under the name
of DISCO, but concentrated on αth powers of Euclidean
distances, where α ∈ (0,2], including classic ANOVA for
the choice α = 2.

More fundamentally different is the approach by [16],
where an ANOVA procedure on metric spaces is designed
using Fréchet means as centroid objects. The authors pro-
pose to use as statistic the sum of an ANOVA term and a
Levene term. We discuss this further in Section 3.2.

Other methods, which we do not consider here, are
graph-based approaches such as [45, 40], which use statis-
tics based on between- and within-group counts of edges
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in minimal spanning trees and possibly other distance-
based graphs. These methods are typically designed for
big data settings and do not directly take into account the
set of all pairwise distances between observations.

Yet another approach comes from kernel-based meth-
ods. Very recently, [44] introduced a multisample gener-
alization of the two-sample kernel method in [23], includ-
ing various substantial improvements. In these methods,
data elements on a separable metric space are mapped
in a suitable reproducing kernel Hilbert space (RKHS)
via the canonical feature map. A test for the equality of
distributions is then based on the mean embeddings of
the groups in the RKHS using an approximation of the
asymptotic distribution under the null hypothesis. Kernel-
based methods are especially suited for high-dimensional
and functional data.

For further literature that largely falls into the above cat-
egories, we refer to the introductory sections of [44] and
[40].

In the present paper, we formulate Anderson’s PERM-
ANOVA on general metric spaces. We simply refer to the
resulting method as Anderson ANOVA, because the use
of M (due to the use of Rd in Anderson’s work) seems in-
appropriate in our context and the use of PER (referring to
the fact that a permutation test is performed) does not dis-
tinguish it from the other methods used. Rather than pur-
suing the PERMDISP method mentioned above, we intro-
duce a new test for detecting differences of within-group
dispersion based on Levene’s procedure and refer to it as
L-test. Our test statistic works directly with the pairwise
distances between observations without using any kind of
group centroid, neither in the original metric space nor
in any principal coordinate space. We show that it has an
asymptotic χ2

1 -distribution, but we recommend using it
with a permutation test just as the other statistics.

We also study the two summands used by [16] as sepa-
rate test statistics for detecting differences in location and
dispersion, respectively.

We refer to Table 1 for an overview of the methods dis-
cussed. This table does not necessarily provide a useful
classification for the other approaches mentioned above.
It is meant as a helpful guiding principle for the methods
treated in more detail in the current paper and we use it as
a starting point for the final discussion in Section 8.

Although the methods described are applicable in gen-
eral metric spaces, our central goal in undertaking this re-
search was to be able to perform ANOVA for point pat-
terns and other spatial data; see also the discussion sec-
tion of [35]. We therefore focus in the later part of the
present paper on spaces of finite point patterns equipped
with the TT-metric from [35] and space of images with an
unbalanced or balanced Wasserstein metrics. As in many
other spaces, exact Fréchet means can be computed within
reasonable time only for (very) small data sets and one

TABLE 1
Overview of the non-Euclidean ANOVA methods studied in this paper.

Procedures targeting location are derived from the classic ANOVA
statistic, whereas those targeting dispersion are derived from the
classic Levene’s statistic (ANOVA statistic for “deviations”). The
rows distinguish whether computationally a procedure is based on
(simple arithmetics of) pairwise distances or on a centroid object

(here a Fréchet mean) in the metric space

Location Dispersion

Pairwise distances Anderson, New L-test,
Section 3.1 Section 4

Fréchet means Dubey–Müller, Dubey–Müller,
Section 3.2 Section 3.2

typically has to resort to a heuristic algorithm that finds
only local minima of the Fréchet functional, which in our
situations have been empirically investigated and are of
good quality. We present simulation studies to compare
the powers of the four tests across various situations and
to understand the quality of approximation by the limit-
ing χ2

1 -distribution from a practical point of view. We also
present application of 1- and 2-way ANOVAs to two data
sets: bubbles in a mineral flotation process and pest counts
in the city of Madrid.

The plan of the paper is as follows: Section 2 contains
a brief reminder of central aspects of classical ANOVA
including Levene’s test. In Section 3, we give a rather de-
tailed presentation of Anderson ANOVA in metric spaces
and the two summands proposed by Dubey and Müller. In
Section 4, we introduce our new L-statistic, discuss its re-
lation to the other methods and the original Levene’s test,
and show its asymptotic distribution. Section 5 is a short
overview of the metric space of point patterns and the (un-
balanced) Wasserstein space of images. In Sections 6 and
7, we present the simulation studies and the real-world
data example. The paper ends with some further conclu-
sions in Section 8.

2. CLASSIC ANOVA

For self-containedness and easy reference, we briefly
remind the reader of some facts and formulae in the con-
text of the classical ANOVA going back to [17]. Details
can be found in [38].

One-way ANOVA. Given independent observations
xij ∈ R, 1 ≤ j ≤ ni , 1 ≤ i ≤ k, from k potentially dif-
ferent distributions P1, . . . ,Pk , we do the following sum-
of-squares decomposition

TSS = MSS + RSS,

where

TSS =
k∑

i=1

ni∑
j=1

(xij − x̄··)2 (total sum of squares),
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MSS =
k∑

i=1

ni(x̄i· − x̄··)2 (model sum of squares),

RSS =
k∑

i=1

ni∑
j=1

(xij − x̄i·)2 (residual sum of squares).

Here, x̄i· = 1
ni

∑ni

j=1 xij denotes the ith group mean and

x̄·· = 1
n

∑k
i=1

∑ni

j=1 xij denotes the overall mean. We write

n = ∑k
i=1 ni for the total number of observations.

Assume for now that the group distributions Pi are
Gaussian with the same variance. Under the null hypo-
thesis that also the means are the same (hence all data
comes from the same normal distribution), it is well
known that the ANOVA statistics

(1) F = n − k

k − 1

MSS

RSS
,

describing the ratio between the variability explained by
the model and the total variability in the data, is F -
distributed with k−1 and n−k degrees of freedom. Since

T ∼ F(d1, d2) implies d1T
D−→ χ2

d1
as d2 → ∞, we ob-

tain

(2) (k − 1)F
D−→ χ2

k−1 as n → ∞.

The asymptotic result remains true even if P1 = P2 =
· · · = Pk is non-Gaussian, but has second moments and
there are λ1, . . . , λk > 0 such that the ratios of group sizes
satisfy ni

n
→ λi ; see, for example, [43], Section 3.6.2.

REMARK 1. Strictly speaking ANOVA techniques
are designed for inference within a linear model of differ-
ent group means plus errors. Based on an error distribu-
tion P with mean zero, one considers the model equations

xij = μi + εij , 1 ≤ j ≤ ni,1 ≤ i ≤ k,

where μi ∈ R are the different group means and εij are
i.i.d. P -distributed error terms. In terms of the group dis-
tributions above this means that Pi = P ∗ δμi

, that is, Pi

is obtained by shifting P by μi . Note that the asymp-
totic χ2

k−1-test does not need this assumption since in any
case the null hypothesis just correspond to having k times
the same distribution. At the same time, we cannot ex-
pect this test to achieve high power against all alternatives
that have substantially different group distributions (see
also the paragraph on Levene’s test below). We will take
up this point when discussing ANOVA on metric spaces,
where typically “shifting the distribution” is meaningless
(but may have an intuitive counterpart).

Two-way ANOVA. As soon as more than one grouping
factor is involved, important design decisions come into
play, such as if factors are (partially) nested or if we allow
for interaction terms between several factors on the same
level. ANOVA has a long standing history with many dif-
ferent designs. As an example, which is pursued further in

later sections, we remind the reader of the balanced two-
way ANOVA (two main factors, with interaction terms,
same number ñ of observations for each factor combina-
tion).

Given independent observations xi1i2j ∈ R, 1 ≤ j ≤ ñ,
1 ≤ i1 ≤ k1, 1 ≤ i2 ≤ k2 from groups obtained by crossing
a Factor a with k1 levels and a Factor b with k2 levels
(with ni1i2 := ñ observations for each combination), we
can perform a finer sum-of-squares decomposition

TSS = SSa + SSb + SSi + RSS,

splitting up the model sum of squares into sums of
squares for the individual factors and an interaction sum
of squares. In formulae,

TSS =
k1∑

i1=1

k2∑
i2=1

ñ∑
j=1

(xi1i2j − x̄···)2,

RSS =
k1∑

i1=1

k2∑
i2=1

ñ∑
j=1

(xi1i2j − x̄i1i2·)2,

SSa =
k1∑

i1=1

k2ñ(x̄i1·· − x̄···)2,

SSb =
k2∑

i2=1

k1ñ(x̄·i2· − x̄···)2,

SSi =
k1∑

i1=1

k2∑
i2=1

ñ(x̄i1i2· − x̄i1·· − x̄·i2· + x̄···)2,

where the various means are taken over the dot com-
ponents while keeping the given indices fixed. Set n =
k1k2ñ = ∑k1

i1=1
∑k2

i2=1 ni1i2 .
In addition to performing an omnibus test for group dif-

ferences as for one-way ANOVA, we may then test for
effects of Factors a and b separately, as well as for an in-
teraction effect. The corresponding statistics are

Fa = n − k1k2

k1 − 1

SSa

RSS
, Fb = n − k1k2

k2 − 1

SSb

RSS
,

F i = n − k1k2

(k1 − 1)(k2 − 1)

SSi

RSS
.

If the observations come from Gaussian distributions
with equal variances, each of the three statistics is F -
distributed again under the corresponding null hypothesis
that different levels of the factor or interaction to be tested
do not lead to different shifts in mean. The degrees of free-
dom can be read from the denominator and the numerator,
respectively, of the first ratio in each statistic.

Levene’s test. The test first proposed in [32] was origi-
nally developed as a preliminary test to check for equal
variances before applying the basic ANOVA F -test in
the Gaussian setting. This was important, as it was well
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known at the time that for the goal of inference about
differences in the means of the various groups (see Re-
mark 1), the size of the F -test can depart substantially
from its nominal size if group variances are not equal.

[32] proposed to use as test statistic the usual ANOVA
statistic, but to replace the observations xij by the abso-
lute differences from their group means zij = |xij − x̄i·|,
that is,

F̃ = n − k

k − 1
·

∑k
i=1 ni(z̄i· − z̄··)2∑k

i=1
∑ni

j=1(zij − z̄i·)2
.(3)

If the observations are independently sampled from the
same Gaussian distributions, it is plausible that F̃ is still
approximately F -distributed, because the dependence be-
tween the zij is small even at moderate group sizes. This
was confirmed by simulation in [32]. [10] present a larger
simulation experiment suggesting that replacing the x̄i· in
the definition of zij by a trimmed mean or median leads
to a more robust test for non-Gaussian data.

Current best practice suggests to perform a Welch-
modified ANOVA directly if the assumption of equal vari-
ance is unclear as it results only in a small loss of power
in the case where the variances are indeed equal. We refer
to [18] for a comprehensive presentation on Levene’s test
including this question and many further developments.

Levene’s test and its variants remain highly important
today as differences in variances (or some other measure
of dispersion) are often in the center of attention in their
own rights. In the rest of the paper, we present tests on dif-
ferences in “location” of groups and differences in “dis-
persion” of groups, both based on interpoint distances in
a metric space. Our goal is to combine one of either kind
in order to detect group differences in some universality.

3. NON-EUCLIDEAN ANOVA

In this and the next sections, we assume that our data
lies in a general metric space (X , d). We present exist-
ing methods of testing for group differences based on
ANOVA-like ideas. For the presentation, we focus on gen-
eralizations of 1-way ANOVA, but provide further infor-
mation on which methods can easily be extended to more
complex designs. We always assume having n = ∑k

i=1 ni

independent observations xij ∈ X , 1 ≤ j ≤ ni , 1 ≤ i ≤ k

from k potentially different distributions P1, . . . ,Pk on X
(with Borel σ -algebra).

3.1 Anderson ANOVA

[2] argues, in the context of data sets in ecology, that
traditional multivariate analogues of ANOVA are too
stringent in their assumptions. These are typically based
on similar statistics as (1), but with absolute values re-
placed by Euclidean norms; see, for example, [33] Sec-
tion 12.3. We may avoid the use of means of observations

by writing TSS − RSS instead of MSS and replacing the
sums of squared deviations from the mean with the help
of the formula

m∑
j=1

‖yj − y‖2 = 1

2m

m∑
j1,j2=1

‖yj1 − yj2‖2

= 1

m

m,<∑
j1,j2=1

‖yj1 − yj2‖2,

where we indicate by “<” in the summation bound that
the sum is to be taken over strictly ordered summands
only; here, j1 < j2. Anderson proposes to replace the pair-
wise Euclidean distances by more general dissimilarities
between observations and performs a permutation test. In
our context, we simply use the pairwise distances in the
metric space. Thus,

TSS = 1

n

(
k,<∑

i1,i2=1

ni1∑
j1=1

ni2∑
j2=1

d2(xi1j1, xi2j2)

+
k∑

i=1

ni,<∑
j1,j2=1

d2(xij1, xij2)

)
,

RSS =
k∑

i=1

1

ni

ni,<∑
j1,j2=1

d2(xij1, xij2),

MSS = TSS − RSS

and the final Anderson ANOVA statistic becomes

FA = n − k

k − 1

MSS

RSS
.

It has been noted in various places that this statistic may
suffer from type I error inflation (in terms of a null hy-
pothesis of equal means in Euclidean space) and substan-
tial loss of power in the unbalanced setting if the groups
are heteroscedastic; see, for example, [1]. [5] and [24]
propose improvements based on the classical ANOVA
variants by [11] and [42], respectively. In the former, the
F -statistic is replaced by

FBF = MSS∑k
i=1(1 − ni

n
) 1
ni(ni−1)

∑ni,<
j1,j2=1 d2(xij1, xij2)

.

For the simulation studies in Section 6, we concentrate
on the balanced setting, for which Anderson FA per-
forms typically well even in presence of heteroscedacity.
We therefore do not discuss these improvements further,
which in the balanced setting do not change the statistic.

3.2 Fréchet ANOVA

[16] introduce ANOVA-like terms that use distances in
the metric d to Fréchet means rather than absolute dif-
ferences to averages. For observation y1, . . . ym ∈ X , the
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Fréchet mean is defined as

ȳ = argmin
z∈X

m∑
i=1

d2(yi, z).(4)

One of the assumptions in [16] is that all Fréchet means
considered exist and are unique. For our usual set of
observations, we denote by x̄i· the Fréchet mean of
xi1, . . . , xini

, i = 1, . . . , k and by x̄·· the Fréchet mean of
all observations. Following the notation in [16], we write
the Fréchet variance for the ith group and the total Fréchet
variance as

V̂i = 1

ni

ni∑
j=1

d2(xij , x̄i·) and

V̂p = 1

n

k∑
i=1

ni∑
j=1

d2(xij , x̄··),

respectively. While V̂i is the mean of d2(xij , x̄i·), j =
1, . . . , ni , we also require the corresponding variance

σ̂ 2
i = 1

ni

ni∑
j=1

d4(xij , x̄i·) − V̂ 2
i .

Setting λi = ni

n
, one finally obtains

Un =
k,<∑

i1,i2=1

λi1λi2

σ̂ 2
i1
σ̂ 2

i2

(V̂i1 − V̂i2)
2,

Fn = V̂p −
k∑

i=1

λiV̂i,

T = nUn∑k
i=1

λi

σ̂ 2
i

+ nF 2
n∑k

i=1 λ2
i σ̂

2
i

=: TL + TF .

In the Euclidean setting of Section 2, the term Fn is
equal to 1

n
(TSS − RSS) and the denominator of TF is

then an estimator for the variance of 1
n

RSS, so that TF

has close ties to the ANOVA F-statistic. The unweighted
summands (V̂i1 − V̂i2)

2 of Un are similar in spirit to the
terms (z̄i· − z̄··)2 from the definition of Levene’s statistic,
and in fact it appears that in the Euclidean case TL cor-
responds exactly to a simpler variant of Welch’s ANOVA
applied to d2(xij , x̄i·), j = 1, . . . , ni , i = 1, . . . , k; see the
computation in formulae (8)–(16) in [24]. Thus, TL has
close ties to Levene’s statistic.

Dubey and Müller show under a list of conditions per-
taining to existence and uniqueness of theoretical and em-
pirical Fréchet means and the complexity of the metric
space (in terms of entropy integrals) that

nUn∑k
i=1

λi

σ̂ 2
i

D−→ χ2
k−1 and

nF 2
n∑k

i=1 λ2
i σ̂

2
i

D−→ 0 as n → ∞.

The authors advocate the simple addition of the two terms
in order to obtain a single test statistic T , maybe with
weights if there is prior information available whether
to rather look out for inequality of Fréchet means or of
Fréchet variances. However, due to the unbalanced con-
vergence of the two terms and the fact that the reason for
the concrete normalization (especially) of TF remains a
bit inscrutable to us, we prefer to analyze the two sum-
mands separately in Section 6.

4. A NEW NON-EUCLIDEAN METHOD OF LEVENE
TYPE

What appears to be missing is a test for detecting dif-
ferences of within-group dispersion that is based directly
on pairwise distances between observations in the metric
space. The idea of the PERMDISP test mentioned in the
Introduction, that is, performing multidimensional scal-
ing and applying Levene’s test in the principal coordinate
space, is to some extent applicable here. However, it is
rather an indirect method and it is methodologically not
on the same level as the Anderson FA. Indeed multidi-
mensional scaling can be applied in combination with any
Euclidean procedure, so the PERMDISP method should
be rather paired up with the analog method of multidi-
mensional scaling plus applying Euclidean (M)ANOVA.
What is more, it contains an unwelcome tuning parame-
ter, the number of principal coordinates, which is not easy
to choose, but may be crucial. Instead we propose the fol-
lowing test of Levene type for data in a metric space.

4.1 Form and Properties

We assume the same setup as in the previous section,
that is, there are n = ∑k

i=1 ni independent observations
xij ∈ X , 1 ≤ j ≤ ni , 1 ≤ i ≤ k from k potentially different
distributions P1, . . . ,Pk on X . Set Ni = ( ni

2

)
and N =∑k

i=1 Ni . As a surrogate for the individual deviation terms
zij from Levene’s statistic (3), which in a general metric
space would require the use of a Fréchet or similar mean,
we use di,{j1,j2} := 1

2d(xij1, xij2). To simplify the notation,
we enumerate the two-element subsets of {1, . . . , ni} by
j = 1, . . . ,Ni and use dij rather than di,{j1,j2} for the j th
half-distance in the ith group.

In a first step, we assume that n1 = · · · = nk (balanced
case) and emulate the statistics (3) by setting

L := N − k

k − 1

∑k
i=1 ni(d̄i· − d̄··)2∑k

i=1
∑Ni

j=1(dij − d̄i·)2
,(5)

where

d̄i· = 1

Ni

Ni∑
j=1

dij and d̄·· = 1

N

k∑
i=1

Ni∑
j=1

dij

denote the ith group mean and the overall mean over pair-
wise distances, respectively.
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Typographically, the main fractions of equations (5)
and (3) are very similar, but the way they use the data
xij is quite different in that we replace zij = |xij − x̄i·|,
1 ≤ j ≤ ni by di,{j1,j2} = 1

2d(xij1, xij2), 1 ≤ j1 < j2 ≤ ni .
Note that we keep ni in the numerator rather than replac-
ing it by Ni , which might have seemed more natural at
first glance. The reason is the substantial dependence of
the random variables di,{j1,j2} (as opposed to the less sub-
stantial dependence between the zij ) for each i, which im-
plies that ni , not Ni , is the correct scaling factor; see Sec-
tion 4.2. Note further that, for the same reason, the main
denominator is not the most natural choice here, but it is
convenient since it keeps the statistic similar to the orig-
inal Levene statistic, is fast to compute and empirically
performs no worse than the more natural choice discussed
in Section 4.2.

Note that for a translation invariant metric on a group
(in the algebraic sense of the word) we may perform joint
translations of all data points within each of the k obser-
vation groups separately without changing the value of L.
As a consequence, the statistic L cannot detect differences
between P1, . . . ,Pk that are purely due to different loca-
tions. The same holds true for the classic Levene’s statistic
and the statistics introduced in (6) and (7) below.

There are various ways how one might generalize (5) to
general group sizes. We propose using

L := N − k

k − 1

1
n

∑k−1
i=1

∑k
j=i+1 ninj (d̄i· − d̄j ·)2∑k

i=1
∑Ni

j=1(dij − d̄i·)2
.(6)

Direct computation shows that equations (6) and (5) agree
in the balanced case, but not in general; see Remark 9. The
statistic (6) performs well in several respects: it allows for
an asymptotic distribution (χ2

k−1 up to a deterministic fac-
tor, see Corollary 3), is still fast to compute and shows
a reasonable performance with unequal group sizes (see
also Section 6.1), though it may well be that a more ju-
dicious scaling that takes more proper care of different
group sizes would be superior.

We briefly come back to this last point in Section 6,
but do not go much deeper in the present paper because
based on additional considerations, both theoretical and
from simulation studies, we do not see any clear improve-
ments when choosing different normalizations.

In spite of the limit distribution, which we compute in
the next section, we recommend performing a permuta-
tion test as for the other statistics considered. For this, we
permute the observations, not only their distances, that is,
new permutations use distances that are potentially differ-
ent from the pairwise within-group distances of the orig-
inal data. As a consequence, not only the RSS changes
with permutations, but also the TSS.

It is easy enough to generalize the construction of the
above test statistic to more complex experimental designs.
As an example, we take up the balanced two-way ANOVA

from Section 2 and form the corresponding Levene-type
statistics for (X , d). For the specific statistics, see Sec-
tion 7.1.

4.2 Limit Distribution

In this subsection, we derive asymptotic distributions
for the statistic L from (6) and for the related statistic

L̃ := N∗ − k

k − 1

1
n

∑k−1
i=1

∑k
j=i+1 ninj (d̄i· − d̄j ·)2

4Tn

,(7)

where N∗ = ∑k
i=1 ni(ni − 1)2 and

Tn =
k∑

i=1

ni∑
j1,j2,j3=1
j1 /∈{j2,j3}

(di,{j1,j2} − d̄i·)(di,{j1,j3} − d̄i·).(8)

The previous formula makes it necessary to use the more
complicated notation di,{j1,j2} = 1

2d(xij1, xij2) from the
beginning of Section 4.1. Note that 1

N∗−k
Tn is a natural

group based estimator of Cov(1
2d(X1,X2),

1
2d(X1,X3)),

where X1,X2,X3 are three independent random variables
sampled from the distribution of the group. The normal-
ization by N∗ − k rather than N∗ is simply modeled after
the bias correcting term for independent data points.

In spite of the ANOVA-like construction, we cannot use
the asymptotic theory for ANOVA directly, because the
distances di,{j1,j2}, our “data,” stem from dependent ran-
dom variables for each i. This dependence is taken into
account by using the factor ninj

n
rather than Ni or Nj in

the numerator and by normalizing with 1
N∗−k

4Tn in (7),
which then still allows to obtain the asymptotic χ2

k−1-
distribution for (k − 1)L̃. In contrast, (k − 1)L converges
“only” toward a multiple of χ2

k−1 that depends on param-
eters of the group distribution.

THEOREM 2. Assume that the Borel σ -algebra for
(X , d) is countably generated. In the usual 1-way setup
of Section 4.1, assume that P1 = · · · = Pk = P for a dis-
tribution P that is not a Dirac distribution and satisfies∫
X

∫
X d2(x, y)P (dx)P (dy) < ∞. Suppose that there are

λi > 0 such that ni/n → λi for every i as n → ∞. Then
we have

(k − 1)L̃
D−→ χ2

k−1 as n → ∞.

COROLLARY 3. Under the conditions of Theorem 2,
we obtain

(k − 1)L
D−→ 4γ 2

σ 2 χ2
k−1 as n → ∞,

where with independent X,Y,Z ∼ P we have

γ 2 = Cov
(
d(X,Y ), d(X,Z)

);
σ 2 = Var

(
d(X,Y )

)
.
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PROOF OF THEOREM 2. Under the null hypothesis,
our data is generated by independent X -valued random
elements Xij ∼ P , 1 ≤ j ≤ ni , 1 ≤ i ≤ k and the dis-
tances di,{j1,j2} are realizations of the random variables
1
2d(Xij1,Xij2), 1 ≤ j1 < j2 ≤ ni , 1 ≤ i ≤ k. Under the
conditions on P , we have asymptotic normality of the U -
statistics

Ui = U
(n)
i =

(
ni

2

)−1 ni,<∑
j1,j2=1

1

2
d(Xij1,Xij2),

for i = 1, . . . , k

(9)

by a straightforward generalization of Hoeffding’s theo-
rem to random elements in X ; see Theorem 6 in the Ap-
pendix. More precisely, we have with X,Y,Z ∼ P inde-
pendent that

√
ni

(
Ui − 1

2
Ed(X,Y )

)
D−→ N

(
0, γ 2)

as ni → ∞,

(10)

where γ 2 = Cov(d(X,Y ), d(X,Z)) = Var(E(d(X,Y )|
X)) = 4γ 2

h in the notation of the Appendix with h = 1
2d .

In view of the 1-way ANOVA construction, on which L is
based, we define the “design matrix” D = Dn ∈R

n×k by

D′ :=

⎛⎜⎜⎜⎝
1 · · · 1 0 · · · 0 · · · 0 · · · 0
0 · · · 0 1 . . . 1 · · · 0 · · · 0

...
. . .

...

0 · · · 0 0 · · · 0 · · · 1 . . . 1

⎞⎟⎟⎟⎠
∈R

k×n,

(11)

where the ith row has exactly ni ones, and the “contrast
matrix”

C :=

⎛⎜⎜⎜⎝
1 0 · · · 0 −1
0 1 0 −1
...

. . .
...

0 0 1 −1

⎞⎟⎟⎟⎠ ∈ R
(k−1)×k.(12)

Setting 	 = limn→∞ 1
n
D′

nDn = diag(λ1, . . . , λn), we ob-
tain with U = U(n) = (U1, . . . ,Uk)

′ by independence of
the components and ni → ∞ as n → ∞ (since λi > 0)
that

Zn := γ −1√n	1/2(U −EU)
D−→Nk(0, Ik)

as n → ∞.
(13)

Setting ν = (n1, . . . , nk)
′, we may further compute

C′(C(D′D)−1C′)−1C = D′D − 1
n
νν′ (see Lemma 8 in

the Appendix for the calculation) and, therefore,

(14) L̃ = N∗ − k

k − 1

U ′C′(C(D′
nDn)

−1C′)−1CU

4Tn

.

Since EU = 1
2Ed(X,Y ) ·1 ∈ R

k and C ·1 = 0, we obtain

(k − 1)L̃ = γ 2 Z′
n(

1
n
Wn)Zn

4
N∗−k

Tn

,

where Wn := 	−1/2C′(C(D′
nDn)

−1C′)−1C	−1/2. Note
that

W := lim
n→∞

1

n
Wn = 	−1/2C′(C	−1C′)−1

C	−1/2

is a symmetric and idempotent matrix of rank k − 1 and,
therefore, Z′WZ ∼ χ2

k−1 for Z ∼ Nk(0, Ik) by Lemma 10
from the Appendix. Using (13), it is straightforward to
show with the help of the continuous mapping theorem
that

Z′
n

(
1

n
Wn

)
Zn

D−→ χ2
k−1.

So, it suffices to show that 1
N∗−k

Tn
p−→ γ 2

d/2. For this,
we note that the normalized inner sum of (8) satisfies

1

ni(ni − 1)2

ni∑
j1,j2,j3=1
j1 /∈{j2,j3}

(di,{j1,j2} − d̄i·)(di,{j1,j3} − d̄i·)

= ni(ni − 1)(ni − 2)

ni(ni − 1)2︸ ︷︷ ︸
−→1

× 1

ni(ni − 1)(ni − 2)

ni , �=∑
j1,j2,j3=1

(di,{j1,j2} − d̄i·)(di,{j1,j3} − d̄i·)

︸ ︷︷ ︸
−→Cov( 1

2 d(X1,X2), 1
2 d(X1,X3))=γ 2

d/2

+ 1

ni − 1︸ ︷︷ ︸
−→0

1

ni(ni − 1)

ni , �=∑
j1,j2

(di,{j1,j2} − d̄i·)2

︸ ︷︷ ︸
−→Var( 1

2 d(X1,X2))=σ 2
d/2

,

(15)

where convergence of the averages is almost surely and
follows after expansion of the products by the strong law
of large numbers for U -statistics using the prerequisite
E(d(X1,X2)

2) < ∞; see [29].
Thus, for the total term,

1

N∗ − k
Tn

= 1

N∗ − k

k∑
i=1

ni(ni − 1)2 · 1

ni(ni − 1)2

×
ni∑

j1,j2,j3=1
j1 /∈{j2,j3}

(di,{j1,j2} − d̄i·)(di,{j1,j3} − d̄i·)

−→ γ 2
d/2. �

PROOF OF COROLLARY 3. This follows from Theo-
rem 2 because

L = 4
1

N∗−k
Tn

1
N−k

∑k
i=1

∑Ni

j=1(dij − d̄i·)2
L̃,
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where the numerator is a consistent estimator of γ 2/4
and the denominator is a consistent estimator of σ 2/4;
see (15). �

REMARK 4. The convergence (13) remains true un-
der the alternative hypothesis if we replace γ by a k×k di-
agonal matrix with entries γi = CovPi

(d(X,Y ), d(X,Z)),
1 ≤ i ≤ k. This opens up the way for studying the distribu-
tion of L̃ under certain alternatives. For example, assum-
ing for simplicity again that γi = γ for all i, we obtain
under an alternative of the form

HA : EPi
d(X,Y ) = μ + n−1/2hi, 1 ≤ i ≤ k,

for some μ ∈ R and some h ∈R
k \ {0} the convergence

Zn := γ −1√n	1/2(U − μ1)
D−→ Nk

(
γ −1	1/2h, Ik

)
as a replacement of (13). Therefore, continuing in the
analogous way as in the proof of Theorem 2 and using
Lemma 10 in its general form, we obtain under HA,

(k − 1)L̃
D−→ χ2

k−1
(
γ −2h′	h

)
as n → ∞,

that is, a noncentral χ2-limit distribution with noncentral-
ity parameter γ −2h′	h.

We assess the convergence speed of L̃ under the null
hypothesis in the context of simulated point pattern data in
Appendix B. While convergence seems to be rather fast in
the simulated examples, we use permutation-based tests
in the remainder of the paper. This ensures an honest p-
value across all the different examples, albeit one that is
random because permutations must be sampled in all but
the smallest of examples. Permutation tests are also in the
tradition of previous methods; see, for example, [4, 16].

5. METRIC SPACES OF SPATIAL DATA

In Sections 6 and 7, we apply the four statistics from
Table 1 to spatial data, most prominently point pattern
data. For self-containedness, we give a short summary of
the relevant concepts for the space of finite point patterns
equipped with the metric introduced in [35], to which
we refer as MSM20, as well as to the space of images
equipped with an unbalanced Wasserstein metric.

5.1 Finite Point Pattern Data

For n ∈ Z+, write [n] = {1,2, . . . , n} (including [0] =
∅). Denote by Nfin the space of finite multisets on a com-
plete separable metric space (R, �). We refer to the ele-
ments ξ = {x1, x2, . . . , xn} ∈Nfin as point patterns, where
n ∈ Z+ = {0,1,2, . . .} and xi ∈ X , i ∈ [n]. Note that
xi = xj for i �= j is allowed and that the point patterns can
be identified with the counting measure

∑n
i=1 δxi

, which
is often helpful for theoretical considerations. We write
|ξ | to denote the total number of points in the pattern ξ .

DEFINITION 5 (Definition 1 of MSM20). Let C > 0
and p ≥ 1 be two parameters, referred to as penalty and
order, respectively.

For ξ = {x1, . . . , xm}, η = {y1, . . . , yn} ∈ Nfin define
the transport-transform (TT) metric by

dTT(ξ, η) = d
(C,p)
TT (ξ, η)

=
(

min

(
(m + n − 2l)Cp

+
l∑

r=1

�(xir , yjr )
p

))1/p

,

(16)

where the minimum is taken over equal numbers of pair-
wise different indices i1, . . . , il in [m] and j1, . . . , jl in
[n], that is, over the set

S(m,n) = {
(i1, . . . , il; j1, . . . , jl);

l ∈ {
0,1, . . . ,min{m,n}},

i1, . . . , il ∈ [m] pairwise different,

j1, . . . , jl ∈ [n] pairwise different
}
.

The distance dTT(ξ, η) can be computed by filling up
the smaller point pattern with dummy points located at
distance C until it has the same cardinality n as the larger
point pattern and then solving a standard assignment
problem with cost min{d(x, y),21/pC} between points
x, y (MSM20, Theorem 1). The classical worst-case com-
plexity of this is O(n3) (MSM20, Remark 1), which can
be somewhat improved to order n2.5 up to polylogarithmic
factors [31]. Practical computation times for well over
n = 1000 points are less than one second (R package
ttbary, [34], using the auction algorithm from [6]).

The TT-metric can be interpreted as an unbalanced
Wasserstein metric (MSM20, Remark 3). Computing
Fréchet means in Wasserstein spaces is a topic of ac-
tive research; see, for example, [8, 9, 27] and references
therein for recent developments the space of discrete mea-
sures. In our context, an additional increase in difficulty
comes from the constraint that the result must be a dis-
crete measure with integer cardinality.

In MSM20, we therefore propose a heuristic to obtain a
local minimizer of the Fréchet functional in (4), which
we refer to as pseudo-barycenter. Our algorithm starts
by filling up all the point patterns with dummy points
to a suitable number n (which may have to be larger
than the maximal cardinality of the point patterns) and
initializing a pseudo-barycenter at random. Then it pro-
ceeds by alternating between matching the points of each
pattern to the current pseudo-barycenter and recentering
each point of the pseudo-barycenter within each cluster of
matched points in a way similar to a k-means algorithm,
but with some additional heuristics for switching pseudo-
barycenter points between dummy points and real points.
This procedure converges in finitely many steps.
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The resulting pseudo-barycenters are obtained much
faster and appear to be of good quality (consistent objec-
tive function values and results conform with intuition),
but are by no means perfect and still require consider-
able computation time for hundreds of patterns with hun-
dred of points (Tables 1–4 in MSM20). All of the Dubey–
Müller statistics in Section 6.1 and 6.2 are based on such
pseudo-barycenters.

In view of the conditions for Theorem 2, completeness
and separability are inherited from (X , �) to (Nfin, dTT).
This is straightforward to see by the fact that dTT(ξN,

ξ) → 0 iff |ξN | → |ξ | and each point x of ξ is approx-
imated by exactly one point of ξN (if x is a multipoint of
cardinality k, this means that there is a total of k points
in ξN , possibly forming multipoints of their own, that
converge to x). Since dTT(ξ, η) ≤ 21/pC max{|ξ |, |η|}1/p ,
the condition

∫
X

∫
X d2(x, y)P (dx)P (dy) < ∞ is satis-

fied for dTT as long as E|�|2/p < ∞ for � ∼ P , which
is the case for all point process distributions considered in
Section 6.

For the simulation study in the next section, it is helpful
to understand some basic probability measures on Nfin.
Suppose that R ⊂ R

d is compact (in the next section
we only use a unit square in R

2). A random element in
the metric space (Nfin, dTT), equipped with its Borel σ -
algebra is called a point process, that is, a point process is
a measurable map from a probability space to Nfin. The
Borel σ -algebra coincides with the smallest σ -algebra
that makes ξ �→ ξ(A) measurable for every measurable
A ⊂ R, which is the usual σ -algebra considered on Nfin;
see Proposition 9.1.IV in [14].

We say a point process � satisfies complete spatial ran-
domness (CSR) if it is a Poisson process with intensity
measure ν = λLebd , where λ ≥ 0 and Lebd is Lebesgue
measure (on R). This means that �(A) ∼ Po(ν(A)) for all
measurable A ⊂ R and that �(A1), . . . ,�(Al) are inde-
pendent for all l ∈ N and all measurable A1, . . . ,Al ⊂ R
that are pairwise disjoint; see, for example, Section 2.4
in [13] for more details on the Poisson process.

5.2 Image Data

By an image, we mean here simply an r × s matrix
with nonnegative entries, where r, s ∈ N. Real data may
come from satellite pictures, medical imaging methods or
microscopy, among others. Given two images X = (xi,j ),
Y = (yk,l) ∈ R

r×s+ and pixel distances ρ(i,j),(k,l) that come
typically from an �1- or �2-metric, we may define an un-
balanced Wasserstein metric of order p ≥ 1 by

dUBW(X,Y )

:=
(

min
π

((‖X‖1 + ‖Y‖1 − 2‖π‖1
)
Cp

+ ∑
i,j,k,l

ρ(i,j),(k,l)π(i,j),(k,l)

))1/p

,

(17)

where the minimum is taken over all π = (π(i,j),(k,l)) ∈
R

r×s+ ×R
r×s+ such that∑

k,l

π(i,j),(k,l) ≤ xi,j ,

∑
i,j

π(i,j),(k,l) ≤ yk,l

for all i, k ∈ [r], j, l ∈ [s] and, furthermore,

‖X‖1 = ∑
i,j

xi,j , ‖Y‖1 = ∑
k,l

yk,l,

‖π‖1 = ∑
i,j,k,l

π(i,j),(k,l).

In this way, π(i,j),(k,l) may be interpreted as the amount
of mass transported from pixel (i, j) to pixel (k, l).
Clearly, dUBW is in the same spirit as the TT metric in the
previous subsection, and indeed both definitions derive
the same unbalanced Wasserstein metric on more abstract
spaces of measures. The metric dUBW and the computa-
tion of corresponding Fréchet means was recently studied
in [26]. Note that the parameter C has a slightly differ-
ent scaling in that paper. We compute dUBW-distances
and their barycenters on the given pixel grid with the
R packages transport [39] and WSGeometry [25], re-
spectively. The latter provides an adapted version of the
Matrix-based Adaptive Alternating Interior-Point Method
(MAAIPM) by [19] for this task.

6. SIMULATION STUDIES

In what follows, we investigate the different statistics
from Table 1 for simulated point pattern and image data
under various distributions.

In spatial statistics, there are usually two fundamentally
different ways how point process distributions can deviate
from CSR. One is spatial inhomogeneity of points, that
is, points may be more or less likely to occur in different
regions of the space. The ability of tests to detect devia-
tions from CSR against various spatially inhomogeneous
alternatives is studied in Section 6.1. The other way is
interaction of points, that is, presence of points in one re-
gion may excite or inhibit the presence of other points
nearby. In Section 6.2, we study how well the statistics
discern between various interaction strengths in homo-
geneous Strauss processes. We consider simulated image
data in Section 6.3.

For the evaluations in Sections 6.1 to 6.3, we perform
permutation tests. These are based on generating M inde-
pendent uniform permutations of the indices of the group
elements resulting in alternative split-ups of the data into
k groups of sizes ni , 1 ≤ i ≤ k. We then determine the
rank r of the statistic-value for the original split-up within
the statistic-values of the alternative split up (from r = 1
for the highest value to r = M + 1 for the lowest value).
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It is easily checked (and well known) that p = r
M+1 is an

honest p-value (i.e., P(p ≤ α) ≤ α for every α ∈ (0,1)).
We reject the null if p ≤ 0.05.

In all of these tests, we use M = 999 permutations if
no barycenter computation is needed and M = 99 per-
mutations if barycenter computation is needed. In view
of the enormous number of possible split-ups (

( 40
20

) ≈
1.4 · 1011 in most of the experiments considered below),
this means that there is a high degree of randomization
in each individual test. The small M = 99 was neces-
sary due to the large computational burden of computing
pseudo-barycenters in point pattern space (see Section 5).
For statistics that do not require barycenter computation,
choosing M = 999 typically results in much faster com-
putation time than the choice of M = 99 for statistics that
do require barycenter computation. For reproducibility of
individual test results, a higher M or (where possible)
comparing within all possible split-ups into groups would
be desirable in both cases.

Preferring exact permutation tests over tests based on
the limit χ2-distribution is in agreement with the recom-
mendations from previous papers and corresponds to our
own experience. However, the χ2-approximation of our
L-statistic is quite fast as we can see in Appendix B,
where we compare the finite sample distributions of the
new L- and the Dubey–Müller statistics.

In all tests, we use as the underlying space R =
[0,1]2 ⊂ R

2 with the Euclidean metric. The significance
level is always α = 0.05. Furthermore, we choose as or-
der p = 2 and as penalty C = 0.25, which means that√

2 · 0.25 ≈ 0.35 is the maximal contribution that a sin-
gle matched point pair makes to the corresponding TT-
distance (or a single unit of mass transported makes to
the unbalanced Wasserstein distance in the image case),
that is, the actual Euclidean distances are cut off at this
value. In applications, the choice of C is often based on
the physical reality of the data and possibly the goal of
the analysis. For the present simulation study, we tried
not to restrict a substantial proportion of matching dis-
tances while keeping the contribution of additional points
or additional pixel mass reasonably low. In the point pat-
tern case, Table 2 gives an overview of the ratio of point
pairs matched above the cutoff distance relative to pairs
matched below the cutoff distance for various values of
C based on pairwise comparisons of 1000 point patterns
simulated according to CSR with intensity λ = 35. For
C = 0.25 we have for every matching above the cutoff
distance 1/0.038 ≈ 26 matchings below the cutoff dis-
tance.

6.1 Inhomogeneity in Point Pattern Data

We compare k = 2 groups of ñ = n1 = n2 = 20 point
patterns. Patterns in Group 2 are simulated from CSR
with λ = 35. In Group 1, they are simulated from various

TABLE 2
Pairwise comparison within 1000 patterns simulated from CSR on
[0,1]2 with intensity λ = 35 for various penalties C. The first two

columns give the ratios of the point pairs above cutoff and the
unpaired points, both relative to the point pairs below cutoff. The last

column is the mean dTT-distance among the
( 1000

2

)
pairwise

comparisons

Above cutoff Unpaired Mean dTT

C = 0.1 0.424 0.311 0.309
C = 0.15 0.167 0.257 0.393
C = 0.2 0.078 0.24 0.457
C = 0.25 0.038 0.233 0.512
C = 0.3 0.017 0.23 0.561
C = 0.35 0.006 0.229 0.609

inhomogeneous scenarios, that is, from Poisson process
distributions where the intensity function (the density of
the measure ν with respect to Lebesgue measure) deviates
more or less from a constant but still integrates up to 35
over the whole window R = [0,1]2.

In Scenarios 1–3, the intensity is obtained by adding a
number of rotation-invariant Gaussian distributions with
different means but the same covariance matrix σ 2I and
scaling to total mass 35. For simplicity, we do not restrict
the intensity to R, but as can be seen from Figure 1 only
very few points outside R occur. Scenarios 4–6 use as
intensity an exponential function that is constant in the y-
coordinate and induces a certain tendency for points to lie
in the left part of the window rather than in the right part.

Table 3 provides more information about the chosen pa-
rameters. Figure 1 shows five example point patterns for
each scenario. In addition, we add a Scenario 0, which
corresponds to simulating the first group also from CSR
with λ = 35.

TABLE 3
Overview of the Poisson process

intensities for the six scenarios. The
proportionality constant is chosen such
that the expected number of points in

each scenario is 35. By ϕμ,σ 2 , we denote
the density of the bivariate normal
distribution with mean μ ∈R

2 and
covariance matrix σ 2I . The different μi

used are seen in Figure 1

Scenario λ(x, y) proportional to

1
∑3

i=1 ϕμi,0.075(x, y)

2
∑3

i=1 ϕμi,0.1(x, y)

3
∑4

i=1 ϕμi,0.1(x, y)

4 exp(−2x)

5 exp(−1x)

6 exp(−0.02x)
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FIG. 1. Sample patterns for the six scenarios in Section 6.1. For each scenario there are five patterns simulated from the same inhomogeneous
Poisson process distribution, which are depicted with individual colors and symbols. The intensities (up to constants) are given in Table 3. The
dotted line delimits the window [0,1]2.

Table 4 gives the results in terms of numbers of rejec-
tions (out of 100) of the null hypothesis of equal distribu-
tion in both groups.

We observe that the direct ANOVA procedures perform
much better than the Levene (or indirect ANOVA) pro-
cedures. This is not so surprising, because the inhomo-
geneity experiment considers two groups of distributions
that are different in terms of their location in the point pat-
tern space. To see this intuitively, think about the distribu-

TABLE 4
Numbers of rejections of the null hypothesis “equal distribution in

both groups” based on 100 data sets per column. In each data set, the
first group is sampled from the scenario indicated in the column and

the second group is sampled from Scenario 0

Scenario 1 2 3 4 5 6 0

Anderson FA 100 100 100 100 99 39 2
New L 93 76 77 14 7 9 3
Fréchet TF 100 100 100 99 11 0 4
Fréchet TL 59 24 47 13 9 12 4

tions in Scenarios 1–6 (and 0 as a boundary case) in terms
of producing locally perturbed versions of a typical point
pattern, which is more or less any one of the example
point patterns in Figure 1 (more appropriately one would
rather think of an idealized version of these patterns, such
as the Fréchet mean). Among the direct ANOVA methods,
Anderson FA performs substantially better than Fréchet
TF and has still a reasonable chance to detect the faint dif-
ferences between Scenarios 6 and 0 when presented with
the 20 patterns from each group. Our new L-test performs
somewhat better than the Fréchet L-test, but both tests are
only able to detect the inhomogeneity (with reasonable
probability) when it is very obvious (Scenarios 1–3).

To give an impression of the unbalanced situation, we
repeat the experiment with groups of sizes n1 = 10 (Sce-
narios 0–6) and n2 = 30 (Scenario 0); see Table 5.

As one might have expected, the empirical power de-
teriorates compared to the balanced setting, but the effect
is not particularly strong. The relative performance of the
various tests remains largely the same as in the balanced
setting.
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TABLE 5
Numbers of rejections of the null hypothesis “equal distribution in
both groups” based on 100 data sets per column in the unbalanced
setting. In each data set, the first group is sampled from the scenario

indicated in the column and the second group is sampled from
Scenario 0

Scenario 1 2 3 4 5 6 0

Anderson FA 100 100 100 100 90 33 5
New L 81 53 55 9 4 12 8
Fréchet TF 100 100 100 100 76 29 7
Fréchet TL 51 27 36 11 3 6 4

6.2 Interaction in Point Pattern Data

Again we compare groups of ñ = 20 point patterns.
This time the group distributions are homogeneous (sta-
tionary) but differ in the degree of point interaction. For
this, we consider the distribution of the homogeneous
Strauss process on the unit square R = [0,1]2, which is
obtained by specifying the density f : Nfin →R+,

f (ξ) := c · β |ξ | · γ sR(ξ),

with respect to CSR with intensity 1 on R, where

sR(ξ) = ∑
{x,y}⊂ξ

1
{‖x − y‖ ≤ R

}
is the number of pairs of points at distance ≤ R from
one another. Here, R > 0 is the range of the interaction,
β > 0 is the so-called activity (which controls the inten-
sity of the process via an increasing function, that is how-
ever only accessible numerically) and γ ∈ [0,1] is the
strength of the interaction. The constant c normalizes the
density to an overall integral of 1 and is also not avail-
able in closed form. We write Strauss(β, γ ;R) for this
point process distribution. Intuitively, a Strauss(β, γ ;R)

process is obtained from a CSR(β) process by penaliz-
ing each outcome according to a factor γ per R-close
point pair. Correspondingly, we have Strauss(β,1;R) =
CSR(β) (regardless of R). At the other end of the spec-
trum, Strauss(β,0;R) is the distribution of a hard core
process with no points allowed within distance R of other
points.

For the simulation, we set R = 0.1 and consider sce-
narios based on the six different values γ = 0, 0.2, 0.4,
0.6, 0.8, 1. The activity β is adapted so that each time
λ = 35. Figure 2 shows one realization for each of the six
scenarios.

A comparison of all six groups in a single ANOVA
yields perfect rejection for almost all test statistics (TF

only rejects 95 of 100). To have a reasonable basis for
comparing the statistics, we perform separate omnibus
tests for the three groups with γ ∈ {0,0.2,0.4} (referred to
as small γ ), and the three groups with γ ∈ {0.6,0.8,1.0}
(large γ ). Subsequently, we also test between each pair

of groups within the small and the large setting. Table 6
gives the results in terms of numbers of rejections out of
100.

In contrast to the situation in the previous subsection
(different inhomogeneity), we now observe that the indi-
rect ANOVA procedures, that is, the Levene-type tests,
perform considerably better than the direct ANOVA pro-
cedures. Again this is intuitively understandable because
a small γ in the Strauss process leads to less dispersion,
both in terms of a smaller variance for the total number of
points and also with respect to typical distances of points
from one another: for small γ , the points are quite regu-
larly placed, whereas for larger γ there are erratic patches
that are free of points leading typically to some points
that have to be matched over longer distances, which in
the squared Euclidean metric has quite some influence. A
small γ will also lead to smaller average distances than
a larger γ (either between point patterns or relative to a
barycenter), which may explain why the difference in the
performance of the indirect and direct ANOVA tests is
somewhat less pronounced than in the inhomogeneity ex-
periment.

Note again that the powers of the tests based on pair-
wise distances are slightly better than those of the tests
based on barycenters.

6.3 Image Data

In our final simulation study, we consider image data,
using the concepts and notation from Section 5.2. We al-
ways compare 2 groups of ñ = n1 = n2 = 10 images of
size 16 × 16. Compared to real images from biomedicine,
remote sensing or similar disciplines this is a mere toy
example, but the fact that we want to include Fréchet
ANOVA with exact barycenters and perform 100 tests per
experiment (albeit again with only 99 permutations) es-
sentially restricts us to such a data size. If it were for a
single Anderson ANOVA and new Levene test based on a
moderate number of group elements, images of sizes up
to 128 × 128 would be unproblematic, and sizes beyond
that would be well possible depending on sparsity fea-
tures of the images and computation power invested. In
all cases (including Fréchet ANOVA), one could also re-
sort to dimensionality reduction techniques ranging from
simple coarsening of larger images to the use of regular-
ized optimal transport methods if very fine features of the
original images are deemed not so important.

In our simulation scenarios, we consider “abstract” im-
ages obtained by simulating from random fields with
values in [0,1] to represent grayscale pixel values. For
the pixels, we use a regular subdivision of the unit
square [0,1]2, placing pixel centers at (u, v) ∈ G :=
{ 1

32 , 3
32 , . . . , 31

32}2. Then we obtain images as (f (Z(u,v))),
where f : R → (0,1), f (x) = (1 + exp(−x))−1, is the
standard logistic function and (Z(u,v)) is a Gaussian ran-
dom field with mean zero and exponential covariance
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FIG. 2. Simulations from Strauss(β, γ ;0.1)-distributions, where rowwise from left to right γ = 0,0.2,0.4,0.6,0.8,1 and β is adjusted such that
λ = 35. For γ = 0 we have a realization of a hard core process, for γ = 1 a realization from CSR.

function, that is, (Z(u,v))(u,v)∈G is multivariate Gaussian
with EZ(u,v) = 0 and

Cov(Z(u,v),Z(u′,v′)) = σ 2 exp
(
−

∥∥∥∥(
u

v

)
−

(
u′
v′

)∥∥∥∥
2
/γ

)
for some variance σ 2 > 0 and a length scale parameter
γ > 0. We try again to capture appropriate concepts for
different locations and different dispersions between the
groups in our two experiments.

For the first experiment, we simulate two images as
Gaussian random field with mean zero, standard deviation
σ = 1/6 and length scale γ = 0.1. Then we add 10 times
i.i.d. Gaussian noise with mean 0 and standard deviation
σ = 5/6 to each image before applying the logistic func-

tion to arrive at the two groups. Figure 3 shows in the first
column the underlying initial images for the two groups.
These remain the same for all 100 repetitions of the exper-
iment. Then there are four sample images for each group
(rows) belonging to one particular repetition. The sample
images all use the same color scale, whereas the scale of
the initial images is exaggerated for better visibility.

For the second experiment, we directly use independent
simulations from a Gaussian random field with mean zero
and standard deviation σ = 1, but having different length
scales of γ = 0.1 and γ = 0.25 for the two groups. Fig-
ure 4 gives five sample images for each group (rows) all
on the same color scale. While in the first experiment the
true difference between the groups is due to their varying

TABLE 6
Numbers of rejections of the null hypothesis “equal distribution in all groups” based on 100 data sets per column. In each data set, the point

patterns in all groups are sampled from a Strauss distribution with λ = 35 and R = 0.1, but different γ . The left-hand side of the table tests among
groups sampled with small γ , the right-hand side among large γ

γ ∈ {0,0.2,0.4} Omnibus 0 vs. 0.4 0 vs. 0.2 0.2 vs. 0.4

Anderson FA 87 90 55 17
New L 94 96 60 28
Fréchet TF 65 76 45 18
Fréchet TL 70 82 33 21

γ ∈ {0.6,0.8,1} Omnibus 0.6 vs. 1 0.6 vs. 0.8 0.8 vs. 1

Anderson FA 6 8 8 4
New L 59 67 18 20
Fréchet TF 6 8 7 6
Fréchet TL 46 53 16 17
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FIG. 3. First image experiment. The first image in each row is the underlying image used for the construction of the data (color scale exaggerated).
Then for each group (row) four sample images, obtained by adding i.i.d. noise, are shown, all using the same scale of inverse heat colors from 0
(light yellow) to 1 (dark red).

average pixel intensity according to location, the group
difference in the second experiment is based on the more
global feature of correlation.

Table 7 lists the number of rejected tests out of 100
based on the unbalanced Wasserstein metric with param-
eters p = 2 and C = 0.25. We observe a similar phe-
nomenon as for the point pattern data. In the first ex-
periment, where the group data scatters around different
means, the location tests based on statistics FA and TF

perform considerably better. In the second experiment,
where the groups scatter around the same mean, but to a
different extent in terms of their average pixel value over
the whole space, the dispersion tests based on the new

L statistic and TL perform much better. Again it appears
that in addition to being several orders of magnitude faster
than the Fréchet ANOVAs, the pairwise distance based
tests also have the edge regarding discriminatory power.

7. APPLICATIONS

In this section, we apply the pairwise distance tests to
real data examples. We investigate the location of bub-
bles in a mineral flotation experiment and count-based
images of pests in the city of Madrid. The structure of
the data calls for a two factor design. For both the An-
derson ANOVA and our new L, the corresponding statis-

FIG. 4. Second image experiment. Five sample images for each group (row) are shown, all using the same scale of inverse heat colors from 0
(light yellow) to 1 (dark red). The samples have been generated from logit-Gaussian random fields with length scales γ = 0.1 in the top row and
γ = 0.25 in the bottom row.
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TABLE 7
Numbers of rejections of the null hypothesis “equal distribution in all
groups” based on 100 data sets per column. In the first experiment,
images in the two groups have been generated by adding Gaussian

white noise to two different initial images. In the second experiment,
images in the two groups have been generated from Gaussian random
field distributions differing in the length scales γ = 0.1 and γ = 0.25

of their (exponential) covariance function

First experiment Second experiment

Anderson FA 45 26
new L 4 78
Fréchet TF 39 14
Fréchet TL 4 65

tics are straightforward to derive from the classic balanced
two-way ANOVA (see Section 2). For Anderson ANOVA,
these statistics are given in [2], for our new L we provide
them below. We do not consider the Fréchet statistics in
this section because their two-way formulation is not so
straightforward, and we did not find a recommended ver-
sion, neither in [16] nor elsewhere.

7.1 Balanced Two-Way Levene’s Test

As mentioned in Section 4.1, it is easy to generalize
statistic (5) to a two-way design, which will further be
useful for the two applications analyzed in this section.

Suppose we have independent observations xi1i2j ∈ X ,
1 ≤ j ≤ ñ, 1 ≤ i1 ≤ k1, 1 ≤ i2 ≤ k2 from groups obtained
by crossing a Factor a with k1 levels and a Factor b with
k2 levels with ñ observations for each combination. In a
similar way as above, we denote by di1i2j the j th half-
distance in the group (i1, i2), where j = 1, . . . , Ñ := (

ñ
2

)
.

Set then

RSS =
k1∑

i1=1

k2∑
i2=1

Ñ∑
j=1

(di1i2j − d̄i1i2·)2,

MSS =
k1∑

i1=1

k2∑
i2=1

ñ(d̄i1i2· − d̄···)2,

SSa =
k1∑

i1=1

k2ñ(d̄i1·· − d̄···)2,

SSb =
k2∑

i2=1

k1ñ(d̄·i2· − d̄···)2,

SSi =
k1∑

i1=1

k2∑
i2=1

ñ(d̄i1i2· − d̄i1·· − d̄·i2· + d̄···)2,

where the various means are taken over the dot compo-
nents in the usual way. Note that we never use any dis-
tances between observations of different factor combina-
tions.

In addition to the omnibus test for group differences as
in one-way ANOVA, we may then perform Levene-type
tests for effects of Factors a and b separately, as well as
for an interaction effect. The corresponding statistics are

L = N − k1k2

(k1k2 − 1)

MSS

RSS
, La = N − k1k2

k1 − 1

SSa

RSS
,

Lb = N − k1k2

k2 − 1

SSb

RSS
, Li = N − k1k2

(k1 − 1)(k2 − 1)

SSi

RSS
.

7.2 Bubbles in a Mineral Flotation Experiment

We consider the data from [21], which provides loca-
tions of bubbles in a mineral flotation experiment, where
the interest is analyzing if the spatial distribution might be
affected by frother concentrations and volumetric airflow
rates. Indeed, the data set consists of 54 images contain-
ing a total of 8385 floating bubbles. The images of bub-
bles can be regarded as spatial point patterns where the
centroids of the bubbles correspond to the points. In ad-
dition, we have three frother concentration levels (5 ppm,
10 ppm, 15 ppm) as well as three volumetric airflow rate
levels (5 l/min, 8 l/min, 10 l/min), and we have six repli-
cates of point patterns at each combination of levels of
such factors. The treatment combinations of the experi-
ment, as well as the observed bubble point patterns, are
represented in Figure 5.

We used the two-way design of Levene’s statistic from
Section 7.1 to test for influence of the individual factors
and the interaction, as well as for an overall difference
between the groups in the context of the point pattern
space introduced in 5.1. For comparison, we also used the
two factor statistics from [2], we performed a two-factor
ANOVA on the number of points per pattern, and finally
complemented our analysis with a two-factor ANOVA
with K-functions, so as to link our analysis with that of
[21]. We did a permutation test with 999 permutations.

In Section 6, the cutoff was always fixed to C = 0.25.
This was a reasonable value for point patterns with ex-
pected 35 points in the unit square. In the bubble data,
the number of points per observed pattern ranges from
21 to 353. With such a great variability in the number of
points, we suggest adjusting the cutoff to prevent that dis-
tances between two patterns are dominated by their dif-
ferent numbers of points. For the results presented in this
section, we computed the mean number of points of the
tested patterns n̄ and used the cutoff C̄ = 0.25 · 35/n̄ for
the computations of dT T . For more details to the cutoff,
see (16).

The p-values of the permutation tests are shown in Ta-
bles 8 and 9. In particular, Table 8 shows results for the
whole data set, while Table 9 depicts results for only part
of the data, leaving out the third column, that is, any pat-
terns from frother concentration of 15 ppm. In both cases,
our new Levene, Anderson FA, the ANOVA on the num-
ber of points per pattern, and the ANOVA for K-functions



ANOVA FOR DATA IN METRIC SPACES 277

FIG. 5. Arrangement of floating bubbles data. Rows represent the three frother concentration levels and columns the three volumetric air flowrate
levels (treatments). Each cell contains six spatial point patterns (responses).

detect significant influence of each of the two factors and
the interaction. We already recommended to always per-
form both, the tests for differences in variability and the
test for differences of means. In the second test scenario,

TABLE 8
Results of the different tests for the bubble data. Quantiles are

obtained by a permutation test with 999 permutations. The cutoff is
C = 0.0564, the maximal radius for the K-functions is r = 0.15

p-values FC VA Interaction Overall

Anderson FA 0.003 0.001 0.001 0.001
new L 0.001 0.001 0.001 0.001
Number of points 0.001 0.001 0.001 0.001
K-functions 0.005 0.001 0.001 0.001∗∗

**
This is the p-value for the sum of both factors, not the overall

ANOVA statistic.

both Levene’s test and Anderson FA detect significance
for the frother concentration and the interaction of both
parameters for our usual significance level of 5%. But the

TABLE 9
Results for the different tests for the bubble data, leaving out the

frother concentration of 15ppm. Quantiles are obtained by a
permutation test with 999 permutations. The cutoff is C = 0.0636, the

maximal radius for the K-functions is r = 0.15

p-values FC VA Interaction Overall

Anderson FA 0.043 0.001 0.019 0.001
New L 0.001 0.001 0.001 0.001
Number of points 0.001 0.002 0.001 0.001
K-functions 0.002 0.022 0.002 0.006∗∗

**
This is the p-value for the sum of both factors, not the overall

ANOVA statistic.



278 R. MÜLLER, D. SCHUHMACHER AND J. MATEU

relative difference between the p-values of the two tests
is very large. For the smaller significance level of 1%, our
Levene’s test still detects significance where Anderson FA

does not. So, the test for differences of means might not
be enough in a practical application. This is particularly
important in cases where, as it is the case for the bubble
data, the number of points plays a crucial role in the be-
havior and structure of the point patterns.

We see that for this data apparently the numbers of
points per pattern contain enough information to detect
significant influence of the factors. This is not very sur-
prising since the number of points per pattern is similar in
the 6 patterns of a single cell, but the differences between
cells are large.

This observation is reinforced by a classical multidi-
mensional scaling (mds). Based on the TT-distances be-
tween the point patterns, we translated every point pattern
into a single point in R

2. The mds was applied first for the
whole bubble data set (see Figure 6) and then for a sub-
set of the data consisting of the first and second columns,
leaving out the data with a frother concentration of 15
ppm; see Figure 7. This is the same data that we used for
our analyses in Tables 8 and 9. The three levels of the air
flow are encoded by the colors “red,” “green” and “blue,”
same color means same air flow rate, and the three levels
of the frother concentration are encoded by the symbols
“circle,” “triangle” and “cross.” When we compare these
plots to the images of the point patterns in Figure 5, we
can see that the multidimensional scaling sorts the point
patterns from left to right in ascending order by their num-
ber of points per pattern. In Figure 7, we can see that the
points that correspond to the data with a frother concen-
tration of 5 ppm, that is, the circles and the data with a
frother concentration of 10 ppm, that is, the triangles are
scattered differently. The (coordinatewise) means of the
triangles and circles are similar, but we can see that the
circles are more scattered along both axes. We conjecture
that it is this difference in scatter that our Levene’s test is
able to detect in Table 9, whereas the Anderson FA only
barely detects a slight difference in means.

7.3 Pests in the City of Madrid

As a second application, we look at the seasonal dis-
tribution of rats and cockroaches in the city of Madrid
over the years 2010–2013. The data is based on reports
by citizens of either direct sightings or clear traces of the
presence of these pests. A small subset of this data, focus-
ing on the rats in a single district, was analyzed in [41] on
a finer time and space resolution and with further covari-
ates.

For the present analysis, we consider spatial histograms
based on count data within contiguous bins of 500 ×
500m2. Figure 8 shows the seasonal counts for the year
2013 as an example. The total counts over the years have

FIG. 6. The bubble data after a multidimensional scaling into two
dimensions based on the distance matrix w.r.t. the TT-metric. Colors
according to volumetric airflow rate (VA); symbols according to frother
concentration (FC).

been fairly stable at 3000 to 4000 reported sightings with-
out a clear trend. We therefore use the year for replication
and perform a 2-way comparison with the factors season
and species in the setting of the image space introduced in
Subection 6.3. As parameters for the unbalanced Wasser-
stein metric, we choose p = 2 and C = 2000m. The latter
choice seems like a good upper bound on the interaction
radius of rats and cockroaches over longer periods of time,
but the results are quite robust to other choices, such as
C = 5000m.

A first comparison is given in Table 10. We can un-
derstand from Figure 8 (and similar observations for the
other 3 years) why almost all the tests are highly signif-
icant. There is a clearly visible seasonal trend, which is
particularly pronounced for the cockroaches. One possi-
ble explanation for the interaction term is that the sea-

FIG. 7. The bubble data without a frother concentration of 15 ppm,
after a multidimensional scaling into two dimensions based on the dis-
tance matrix w.r.t. the TT-metric. Colors according to volumetric air-
flow rate (VA); symbols according to frother concentration (FC).
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FIG. 8. Seasonal pest counts in 2013 in the city of Madrid. Numbers of sightings of rats and cockroaches (or their traces) counted in bins of
500 × 500m2. Colors range from light blue (1 sighting per season) to dark blue (10 or more sightings per season) with a maximum of 16 being
reached in summer for both rats and cockroaches.

sonal cycles are shifted: while the cockroaches reach their
highest spread in spring and especially summer and face
a substantial decline in autumn, the highest numbers of
rats are observed somewhat later in the year, with about
equal numbers in summer and autumn. The new L statis-
tic does not pick up a significant difference between the
species, which might be hidden behind the strong interac-
tion effect: if we perform ANOVA only for the species the
p-value for the L statistic is 0.007.

In a similar way as in the previous example, it is to be
expected that several of the differences we observe are
substantially influenced by the total counts in the images,
which differ especially during the winter months, see Ta-
ble 11. In a second analysis it is therefore natural to ask
for differences in the spatial distribution of the pests, re-
gardless of their total counts. For this, we normalize each
image so that its pixel values sum up to one. Thus, each
image represents the ratio of sightings per bin for the re-
spective species and season. We may then use the usual

TABLE 10
Results of the different tests for the Madrid pest data based on the
unbalanced Wasserstein-2 metric between images. Quantiles are

obtained by a permutation test with 999 permutations and the cutoff is
C = 2000m

p-values Species Season Interaction Overall

Anderson FA 0.001 0.001 0.001 0.001
New L 0.38 0.001 0.001 0.001

(balanced) Wasserstein-2 metric for comparison, which
means in terms of equation (17) that we remove the first
summand, which has the factor Cp in it. Table 12 shows
the resulting p-values.

So, even without the influence of the total counts the
results remain largely the same, indicating differences in
the spatial distributions according to species and season
(and their interaction). Again the new L test for species is
not significant, but a new L test for species alone would
be highly significant with a p-value of 0.001.

We have opted here for seasonal rather than the monthly
data to make it easier to present and discuss the data. For
completeness, we mention that in a full 2-way ANOVA
with monthly data all the tests (including the new L) give
a p-value of 0.001.

As a series of follow-up test, we compare the spatial
distributions of the species during their high seasons, that

TABLE 11
Total numbers of pest sighting per year, species and season (winter,

spring, summer, autumn)

Rats Cockroaches

Win Spr Sum Aut Win Spr Sum Aut

2010 199 295 488 383 31 635 1309 183
2011 255 485 659 655 47 765 1064 190
2012 229 435 591 375 38 673 1293 123
2013 190 321 534 615 32 378 901 146
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TABLE 12
Results of the different tests for the Madrid pest data based on the

usual Wasserstein-2 metric between normalized images. Quantiles are
obtained by a permutation test with 999 permutations

p-values Species Season Interaction Overall

Anderson FA 0.001 0.001 0.007 0.001
New L 0.138 0.001 0.001 0.001

is, rats in summer (RS), rats in autumn (RA) and cock-
roaches in summer (CS). See Table 13 for the results.
There are clear overall differences between these groups,
which are due to different spatial distributions of rats and
cockroaches. It is notable that the p-values between the
groups “rats in summer” and “rats in autumn” are exactly
one, which may be explainable by a strong correlation be-
tween the (normalized) images of subsequent seasons of
the same year, whereas the repetitions within the groups,
stemming from different years, are more independent.

8. CONCLUSIONS AND FURTHER DISCUSSION

In this paper, we have given an overview of four re-
cent ANOVA-like procedures for data in general met-
ric spaces, which according to their construction can be
cross-classified as in Table 1.

Comparing the rows of this table, we conclude that al-
though the tests based on Fréchet means have high theo-
retical appeal inasmuch as they precisely transfer the con-
cepts of means and variances to a general metric space,
they are often hampered by the high computational cost
of such (approximate) means. They also tend to perform
somewhat worse than their pairwise distance based coun-
terparts in our examples. Comparing the columns of Ta-
ble 1, we have discovered that testing for location and
dispersion translates in our spatial settings into detec-
tion power of differing spatial inhomogeneity and differ-
ing spatial dependence, respectively. In practice, unless
there is special interest in one of these phenomena (e.g.,
because the data generation process precludes the other
one), we recommend to conduct both tests of a single row.
These tests complement each other, so that in addition to
test decisions we also obtain insight into the nature of the
departure from the null hypothesis.

TABLE 13
Results of follow-up tests for the three groups “rats in summer” (RS),
“rats in autumn” (RA) and “cockroaches in summer” (CS) using the

Wasserstein-2 metric between normalized images. Quantiles are
obtained by a permutation test with 999 permutations

p-values 3 groups RS vs. RA RS vs. CS RA vs CS

Anderson FA 0.009 1 0.029 0.031
New L 0.008 1 0.023 0.029

Regarding our own contribution to this table, the new
L statistic, we were able to establish its utility in an im-
portant and rather general situation: If there are several
groups of data differing in terms of their spatial depen-
dence and the Fréchet means are expensive to compute,
then the new L test is clearly the method of choice. It
has much higher power than the location based tests and
somewhat higher power than the TL test. With respect to
the latter, it is faster by several orders of magnitude, for
example, the 100 permutation tests in Section 6.2 took
only 2 seconds for the new L (999 permutations per test),
but about 45 minutes for TL (in spite of only 99 permuta-
tions per test).

In summary, we find that the new L in combination with
the Anderson FA has a slightly better performance and
allows for considerably faster computation than the other
methods in settings where the computation of barycenters
is costly.

There are two points deserving further attention. On the
one hand, we might want to combine location and disper-
sion tests in a single test decision. As always, this can be
achieved by controlling the criterion seen as relevant (e.g.,
the familywise error rate) with an appropriate correction
procedure. [16] suggest to consider a single test for the
statistic T = TL +TF . Our experience from additional ex-
periments shows that the performance of T lies between
the performance of TL and TF , sometimes performing al-
most as good as the better of the two statistics in terms of
power (e.g., for the balanced experiment in Section 6.1),
but sometimes performing considerably worse (e.g., for
the pairwise comparisons in Section 6.2).

Another point is the influence of the cutoff parameter
C in the metrics, which determines at what cost mass can
be created or destroyed and, thereby, up to what distance
mass is transported. In Section 6, we chose C = 0.25 so
as to keep the proportion of distances cut off small while
not making the penalty for extra mass overly large. If in-
stead we choose C = 0.1, say, we observe that the Ander-
son FA and the Dubey–Müller TF statistics considerably
lose power to detect interaction differences (in Table 6 we
would go from 55 to 11 rejections for FA and from 45
to 14 rejections for TF when testing γ = 0 vs. γ = 0.2),
while our new L and the Dubey–Müller TL considerably
gain power (from 60 to 99 rejections for L and from 33
to 87 rejections for TL when testing γ = 0 vs. γ = 0.2).
This indicates that a judicious choice of C can make an
important difference.

For future research, one might take a closer look at the
estimator of the covariance γ used in our L̃ statistic. This
estimator is not unbiased, and it remains open if a statistic
with an unbiased estimator works even better, in particu-
lar, for an asymptotic test.

Also it would be interesting to study the four pro-
cedures in Table 1 theoretically and empirically for 2-
way ANOVA, both in the crossed balanced situation of
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Section 7 and for more complex (possibly unbalanced)
designs. Relevant applications include designed experi-
ments in agriculture and microbiology, where entire pat-
terns or images of plants on plots of land or bacteria in
Petri dishes (rather than only their total counts) could be
analyzed under combinations of treatments.

APPENDIX A: AUXILIARY RESULTS USED FOR THE
PROOF OF THEOREM 2

For completeness and self-containedness, we state here
(consequences of) results from the literature as well as
some additional calculations needed for the proof of The-
orem 2.

First, we formulate a straightforward generalization of
Hoeffding’s theorem for the asymptotic normality of U -
statistics (univariate version of Theorem 7.1 in [28]) for
random elements in the general metric space X with
countably generated Borel σ -algebra. See also Theo-
rem 1(b) of [15], where this result is further generalized
to (weakly) dependent sequences of random elements.

THEOREM 6. Let (Xn)n∈N be an i.i.d. sequence of
X -valued random elements. Let h : Xm → R be sym-
metric and nondegenerate in the sense that there are
x2, . . . , xm ∈ X such that

Eh(X1, x2, . . . , xm) �= 0.

Suppose further that E(h(X1, . . . ,Xm)2) < ∞. We write

Un =
(

n

m

)−1 n∑
i1,...,im=1
i1<···<im

h(Xi1, . . . ,Xim).

for the U -statistic with kernel h. Then
√

n
(
Un −E(Un)

) D−→ N
(
0,m2γ 2

h

)
,

where for an independent copy (X̃2, . . . , X̃m) of (X2, . . . ,

Xm)

γ 2
h = Cov

(
h(X1,X2, . . . ,Xm),h(X1, X̃2, . . . , X̃m)

)
= Var

(
E

(
h(X1, . . . ,Xm)|X1

))
.

REMARK 7. In the setting of Theorem 6 above, The-
orem 5.2 of [28] yields

m2γ 2
h ≤ nVar(Un) ≤ mVar

(
h(X1, . . . ,Xm)

)
for all n ≥ m. The right-hand bound is sharp for n = m

and nVar(Un) ↘ m2γ 2
h as n → ∞.

The above inequality means in particular that for finite

n the expression m2

n
γ 2
h can only underestimate Var(Un).

The exact formula for m = 2 is

nVar(Un) = n − 2

n − 1
· 4γ 2

h + 1

n − 1
· 2 Var

(
h(X1,X2)

)
.

The next result is similar to classical ANOVA. For com-
pleteness, we give its proof.

LEMMA 8. Let C ∈ R
(k−1)×k as in (12), D ∈R

n×k as
in (11), U = (u1, . . . , uk)

′ and ν = (n1, . . . , nk)
′. We have

C′(C(
D′D

)−1
C′)−1

C = D′D − 1

n
νν′

and

U ′
(
D′D − 1

n
νν′

)
U = 1

n

k−1∑
i=1

k∑
j=i+1

ninj (ui − uj )
2

PROOF. Define

ν(i) := (n1, . . . , ni)
′, �(i) := diag(ν(i)) ∈ R

i×i and

1(i) := (1, . . . ,1)′ ∈ R
i .

Then 1(i)1′
(i) is the i × i matrix of 1’s. We build up the

equality step by step. Since D′D = �(k) and, therefore,(
D′D

)−1 = (�(k))
−1 = diag(1/n1, . . . ,1/nk),

We obtain

C
(
D′D

)−1
C′ = (�(k−1))

−1 + 1

nk

· 1(k−1)1
′
(k−1)

and (
C

(
D′D

)−1
C′)−1 = �(k−1) − 1

n
· ν(k−1)ν

′
(k−1),

and finally

C′(C(
D′D

)−1
C′)−1

C = �(k) − 1

n
· νν′

When we multiply the vector U from left and right, the
ij th entry in the matrix is the coefficient of uiuj . This
leads to

U ′
(
D′D − 1

n
νν′

)
U

=
k∑

i=1

niu
2
i − 1

n

k∑
i=1

n2
i u

2
i − 1

n

k−1∑
i=1

k∑
j=i+1

2ninjuiuj

= 1

n

k∑
i=1

niu
2
i

k∑
j=1

nj − 1

2n

k∑
i=1

n2
i

(
u2

i + u2
i

)

− 1

n

k−1∑
i=1

k∑
j=i+1

2ninjuiuj

= 1

2n

k∑
i=1

k∑
j=1

ninj

(
u2

i + u2
j

) − 1

2n

k∑
i=1

n2
i

(
u2

i + u2
i

)

− 1

n

k−1∑
i=1

k∑
j=i+1

2ninjuiuj

= 1

n

k−1∑
i=1

k∑
j=i+1

ninj

(
u2

i + u2
j

) − 1

n

k−1∑
i=1

k∑
j=i+1

2ninjuiuj

= 1

n

k−1∑
i=1

k∑
j=i+1

ninj (ui − uj )
2.

�
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REMARK 9. Let ū = 1
k

∑k
i=1 ui . An equivalent ex-

pression for U ′(D′D − 1
n
νν′)U in Lemma 8 can be com-

puted as

1

n

k−1∑
i=1

k∑
j=i+1

ninj (ui − uj )
2

= 1

2n

k∑
i=1

k∑
j=1

ninj

(
(ui − ū) + (ū − uj )

)2

= 1

2n

k∑
i=1

k∑
j=1

ninj (ui − ū)2

+ 1

2n

k∑
i=1

k∑
j=1

ninj (ū − uj )
2

+ 1

2n

k∑
i=1

k∑
j=1

ninj (ui − ū)(ū − uj )

=
k∑

i=1

ni(ui − ū)2 + 1

2n

k∑
i=1

ni(ui − ū)

k∑
j=1

nj (ū − uj )

=
k∑

i=1

ni(ui − ū)2 + 1

2n

(
k∑

i=1

ni(ui − ū)

)2

If n1 = · · · = nk = ñ, we see directly from the right-hand
side that

1

n

k−1∑
i=1

k∑
j=i+1

ninj (ui − uj )
2 =

k∑
i=1

ni(ui − ū)2

= ñ

k∑
i=1

(ui − ū)2.

The following is a well-known lemma about the dis-
tribution of quadratic forms, proved in [22], Theorem 2.
Denote by χ2

r (λ) the noncentral χ2-distribution with r de-
grees of freedom and noncentrality parameter λ. By defi-
nition, this is the distribution of

∑r
i=1 Y 2

i for any indepen-
dent Yi ∼N (μi,1) with λ = ∑r

i=1 μ2
i (note that we use a

slightly different parametrization than [22]).

LEMMA 10. Let Z ∼ Nk(μ, I ) for some μ ∈ R
k

and let G ∈ R
k×k be symmetric and idempotent. Then

Z′GZ ∼ χ2
r (λ), where r = trace(G) = rank(G) and λ =

μ′μ.

APPENDIX B: SIMULATION STUDY FOR THE
CONVERGENCE SPEED IN THEOREM 2

In the present subsection, we numerically assess the
speed of convergence of our new L̃ statistic under the null
hypothesis of equal group distributions toward the χ2

k−1
distribution as presented in Section 4.2. For comparison,

we also consider the Fréchet TL and T statistics, which
were shown in [16] to have a limiting χ2

k−1 distribution as
well.

Our experiments are based on k = 2 groups, both simu-
lated from the same distribution, which is either CSR(35)

or the Strauss hard core distribution with λ = 35. These
are the extreme distributions having either no interaction
or very strong interaction in Section 6.2. As group size,
we consider ñ = 5,20,50,200. The computation of the
Fréchet T and TL depend on the calculation of a barycen-
ter. For this, we used the heuristic algorithm presented in
[35]. The calculation of an exact barycenter is computa-
tionally infeasible for this kind of data. To compensate
that we do not get the optimal solution, we did 5 restarts
in every barycenter calculation and used the best of the 5
solutions as the barycenter.

Block A of Figure 9 shows QQ-plots for the empirical
distributions of our new Levene statistic L̃, the Fréchet
statistic TL and the Fréchet statistic T on the y-axis and
the theoretical χ2

1 distribution on the x-axis. The data are
the CSR(35) point patterns. In the first column, the groups
consist of ñ = 5 patterns, in the second column of ñ = 20
patterns and so on. For the two Levene statistics L̃ and
TL, we can see the computed quantiles approach the the-
oretical quantiles as the group size ñ gets larger. Even for
a medium group size ñ = 50 the computed quantiles are
very close to the theoretical quantiles of a χ2

1 distribution.
Similarly, Block B of Figure 9 shows QQ-plots for

hardcore Strauss distributed point patterns. Again the
four columns correspond to the four group sizes ñ =
5,20,50,200 and the three rows correspond to the three
statistics. For this data, the computed quantiles are already
very close to the theoretical quantiles of a χ2

1 distribution
for ñ = 20 for the two Levene statistics.

In both cases, the third row, the combined Fréchet
statistic T , yields quantiles that are far from the theoreti-
cal quantiles. This is solely due to the summand TF that
is not considered in the second row.
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FIG. 9. QQ-plots of the percentiles based on 500 statistics values (on the y-axis) versus χ2
1 -percentiles. Based on k = 2 groups of

ñ = 5,20,50,200 patterns from CSR(35) (Block A, top) and from a Strauss hard core distribution with λ = 35 (Block B, bottom). In either
block, the first row is our new L̃ statistic (7), the second and third rows are the Fréchet TL statistic from Section 3.2 and the Fréchet T statistic,
respectively.
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