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structure of the underlying observed process X(t). In this paper we con-
sider this problem both for deterministic and nondeterministic processes
and survey some recent results. We focus on the less investigated case – de-
terministic processes. It turns out that for nondeterministic processes the
asymptotic behavior of the prediction error is determined by the depen-
dence structure of the observed process X(t) and the differential properties
of its spectral density f , while for deterministic processes it is determined
by the geometric properties of the spectrum of X(t) and singularities of its
spectral density f .
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1. Introduction

1.1. The finite prediction problem

Let X(t), t ∈ Z := {0,±1, . . .}, be a centered discrete-time second-order station-
ary process. The process is assumed to have an absolutely continuous spectrum
with spectral density function f(λ), λ ∈ [−π, π]. The ‘finite’ linear prediction
problem is as follows.

Suppose we observe a finite realization of the process X(t):

{X(t), −n ≤ t ≤ −1}, n ∈ N := {1, 2, . . .}.

We want to make an one-step ahead prediction, that is, to predict the unobserved
random variable X(0), using the linear predictor

Y =
n∑

k=1

ckX(−k).

The coefficients ck, k = 1, 2, . . . , n, are chosen so as to minimize the mean-
squared error : IE |X(0) − Y| 2, where IE[·] stands for the expectation operator.
If such minimizing constants ĉk := ĉk,n can be found, then the random variable

X̂n(0) :=
n∑

k=1

ĉkX(−k)

is called the best linear one-step ahead predictor of X(0) based on the observed
finite past: X(−n), . . . , X(−1). The minimum mean-squared error:

σ2
n(f) := IE

∣∣∣X(0) − X̂n(0)
∣∣∣ 2 ≥ 0

is called the best linear one-step ahead prediction error of X(t) based on the
past of length n.

One of the main problem in prediction theory of second-order stationary
processes, called the’direct’ prediction problem is to describe the asymptotic
behavior of the prediction error σ2

n(f) as n → ∞. This behavior depends on the



Asymptotic behavior of the prediction error 667

regularity nature (deterministic or nondeterministic) of the observed process
X(t).

Observe that σ2
n+1(f) ≤ σ2

n(f), n ∈ N, and hence the limit of σ2
n(f) as

n → ∞ exists. Denote by σ2(f) := σ2
∞(f) the prediction error of X(0) by the

entire infinite past: {X(t), t ≤ −1}.
From the prediction point of view it is natural to distinguish the class of

processes for which we have error-free prediction by the entire infinite past,
that is, σ2(f) = 0. Such processes are called deterministic or singular. Processes
for which σ2(f) > 0 are called nondeterministic.

Note. The term’deterministic’ here is not used in the usual sense of absence of
randomness. Instead determinism of a process means that there is an extremely
strong dependence between the successive random variables forming the process,
yielding error-free prediction when using the entire infinite past (for more about
this term see Section 2.4, and also Bingham [10], and Grenander and Szegő [31],
p.176.)

Define the ‘relative’ prediction error

δn(f) := σ2
n(f) − σ2(f),

and observe that δn(f) is non-negative and tends to zero as n → ∞. But what
about the speed of convergence of δn(f) to zero as n → ∞? The paper deals
with this question. Specifically, the prediction problem we are interested in is
to describe the rate of decrease of δn(f) to zero as n → ∞, depending on the
regularity nature of the observed process X(t).

We consider the problem both for deterministic and nondeterministic pro-
cesses and survey some recent results. We focus on the less investigated case
– deterministic processes. It turns out that for nondeterministic processes the
asymptotic behavior of the prediction error is determined by the dependence
structure of the observed process X(t) and the differential properties of its spec-
tral density f , while for deterministic processes it is determined by the geometric
properties of the spectrum of X(t) and singularities of its spectral density f .

1.2. A brief history

The prediction problem stated above goes back to classical works of A. N. Kol-
mogorov [44, 45], G. Szegő [67, 70] and N. Wiener [75]. It was then considered
by many authors for different classes of nondeterministic processes (see, e.g.,
Baxter [1], Devinatz [17], Geronimus [22, 23], Golinski [26], Golinski and Ibragi-
mov [27], Grenander and Rosenblatt [29, 30], Grenander and Szegő [31], Helson
and Szegő [33], Hirshman [34], Ibragimov [36, 37], Ibragimov and Rozanov [39],
Ibragimov and Solev [40], Inoue [41], Pourahmadi [53], Rozanov [60], and refer-
ence therein). More references can be found in the survey papers Bingham [10]
and Ginovyan [25]. In Section 4 of the paper we state some important known
results for nondeterministic processes.

We focus in this paper on deterministic processes, that is, on the class of
processes for which σ2(f) = 0. This case is not only of theoretical interest,
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but is also important from the point of view of applications. For example, as
pointed out by Rosenblatt [59] (see also Pierson [50]), situations of this type arise
in Neumann’s theoretical model of storm-generated ocean waves. Such models
are also of interest in meteorology (see, e.g., Fortus [20]).

Only few works are devoted to the study of the speed of convergence of
δn(f) = σ2

n(f) to zero as n → ∞, that is, the asymptotic behavior of the
prediction error for deterministic processes. One needs to go back to the classical
work of M. Rosenblatt [59]. Using the technique of orthogonal polynomials on
the unit circle (OPUC), M. Rosenblatt investigated the asymptotic behavior of
the prediction error σ2

n(f) for deterministic processes in the following two cases:

(a) the spectral density f(λ) is continuous and positive on a segment of [−π, π]
and is zero elsewhere,

(b) the spectral density f(λ) has a very high order of contact with zero at
points λ = 0,±π, and is strictly positive otherwise.

Later the problems (a) and (b) were studied by Babayan [2, 3], Babayan and
Ginovyan [4, 5, 6], Babayan et al. [7] (see also Davisson [15] and Fortus [20]),
where some generalizations and extensions of Rosenblatt’s results have been
obtained.

1.3. Notation and conventions

Throughout the paper we will use the following notation and conventions.
The standard symbols N, Z, R and C denote the sets of natural, integer,

real and complex numbers, respectively. Also, we denote Z+ := {0, 1, 2, . . .},
Λ := [−π, π], D := {z ∈ C : |z| < 1}, T := {z ∈ C : |z| = 1}. For a point
λ0 ∈ Λ and a number δ > 0 by Oδ(λ0) we denote a δ-neighborhood of λ0, that
is, Oδ(λ0) := {λ ∈ Λ : |λ − λ0| < δ}. By Lp(μ) := Lp(T, μ) (p ≥ 1) we denote
the weighted Lebesgue space with respect to the measure μ, and by ‖ · ‖p,μ we
denote the norm in Lp(μ). In the special case where μ is the Lebesgue measure,
we will use the notation Lp and || · ||p, respectively. For a function h ≥ 0 by G(h)
we denote the geometric mean of h. For two functions f(λ) ≥ 0 and g(λ) ≥ 0
we will write f(λ)∼g(λ) as λ → λ0 if limλ→λ0 f(λ)/g(λ) = 1; f(λ)
g(λ) as
λ → λ0 if limλ→λ0 f(λ)/g(λ) = c > 0, and f(λ)�g(λ) if there are constants
c1, c2 (0 < c1 ≤ c2 < ∞) such that 0 < c1 ≤ f(λ)/g(λ) ≤ c2 < ∞ for all λ ∈ Λ.
We will use similar notation for sequences: for two sequences {an ≥ 0, n ∈ N}
and {bn > 0, n ∈ N}, we will write an ∼ bn if limn→∞ an/bn = 1, an
bn if
limn→∞ an/bn = c > 0, an�bn if c1 ≤ an/bn ≤ c2 for all λ ∈ N, an = O(bn) if
an/bn is bounded, and an = o(bn) if an/bn → 0 as n → ∞. For a set E by E
we denote the closure of E. The letters C, c, M and m with or without indices
are used to denote positive constants, the values of which can vary from line to
line.

We will use the abbreviations: OPUC for ’orthogonal polynomials on the
unit circle’, PACF for ’partial autocorrelation function’, and ’a.e.’ for ’almost
everywhere’ (with respect to the Lebesgue measure). We will assume that all the
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relevant objects are defined in terms of Lebesgue integrals, and so are invariant
under change of the integrand on a null set.

1.4. The structure of the paper

The paper is structured as follows. In Section 2 we describe the model of interest
– a stationary process, and recall some key notions and results from the theory
of stationary processes. In Section 3 we present formulas for the finite predic-
tion error σ2

n(f), and state some preliminary results. In Section 4 we state some
well known results on asymptotic behavior of the prediction error for nonde-
terministic processes. Asymptotic behavior of the finite prediction error σ2

n(f)
for deterministic processes is discussed in Section 5. Here we state extensions
of Rosenblatt’s and Davisson’s results, and discuss a number of examples. In
Section 6 we analyze the relationship between the rate of convergence to zero of
the prediction error σ2

n(f) and the minimal eigenvalue of a truncated Toeplitz
matrix generated by the spectral density f . In Section 7 we briefly discuss the
tools, used to prove the theorems stated in the paper.

2. The model. Key notions and some basic results

In this section we introduce the model of interest – a second-order stationary
process, and recall some key notions and results from the theory of stationary
processes.

2.1. Second-order (wide-sense) stationary processes

Let {X(t), t ∈ Z} be a centered real-valued second-order (wide-sense) stationary
process defined on a probability space (Ω,F , P ) with covariance function r(t),
that is,

IE[X(t)] = 0, r(t) = IE[X(t + s)X(s)], s, t ∈ Z,

where IE[·] stands for the expectation operator with respect to the measure P .
By the Herglotz theorem (see, e.g., Brockwell and Davis [12], p. 117-118),

there is a finite measure μ on Λ such that the covariance function r(t) admits
the following spectral representation:

r(t) =
∫ π

−π

e−itλdμ(λ), t ∈ Z. (2.1)

The measure μ in (2.1) is called the spectral measure of the process X(t). If μ is
absolutely continuous (with respect to the Lebesgue measure), then the function
f(λ) := dμ(λ)/dλ is called the spectral density of X(t). We assume that X(t)
is a non-degenerate process, that is, Var[X(0)] := IE|X(0)|2 = r(0) > 0 and,
without loss of generality, we may take r(0) = 1. Also, to avoid the trivial cases,
we assume that the spectral measure μ is non-trivial, that is, μ has infinite
support.
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Notice that if the spectral density f(λ) exists, then f(λ) ≥ 0, f(λ) ∈ L1(Λ),
and (2.1) becomes

r(t) =
∫ π

−π

e−itλf(λ)dλ, t ∈ Z. (2.2)

Thus, the covariance function r(t) and the spectral function F (λ) (resp. the
spectral density function f(λ)) are equivalent specifications of the second order
properties for a stationary process {X(t), t ∈ Z}.
Remark 2.1. The parametrization of the unit circle T by the formula z =
eiλ establishes a bijection between T and the interval [−π, π). By means of
this bijection the measure μ on Λ generates the corresponding measure on the
unit circle T, which we also denote by μ. Thus, depending on the context, the
measure μ will be supported either on Λ or on T. We use the standard Lebesgue
decomposition of the measure μ:

dμ(λ) = dμa(λ) + dμs(λ) = f(λ)dλ + dμs(λ), (2.3)

where μa is the absolutely continuous part of μ (with respect to the Lebesgue
measure) and μs is the singular part of μ, which is the sum of the discrete and
continuous singular components of μ.

By the well-known Cramér theorem (see, e.g., Cramér and Leadbetter [14],
Sec. 7.5, Doob [18], p. 481, Shiryaev [66], p. 430), for any stationary process
{X(t), t ∈ Z} with spectral measure μ there exists an orthogonal stochastic
measure Z = Z(B), B ∈ B(Λ), such that for every t ∈ Z the process X(t)
admits the following spectral representation:

X(t) =
∫

Λ
e−itλdZ(λ), t ∈ Z. (2.4)

Moreover, IE
[
|Z(B)|2

]
= μ(B) for every B ∈ B(Λ). Here B(Λ) stands for the

Borel σ-algebra of the sets of Λ. For definition and properties of orthogonal
stochastic measures and stochastic integral in (2.4) we refer, e.g., Cramér and
Leadbetter [14], Ibragimov and Linnik [38], and Shiryaev [66].

2.2. Linear processes. Existence of spectral density functions

We will consider here stationary processes possessing spectral density functions.
For the following results we refer to Ibragimov and Linnik [38], Sect. 16.7, The-
orem 16.7.1.

Theorem 2.1. The following assertions hold.

(a) The spectral function F (λ) of a stationary process {X(t), t ∈ Z} is abso-
lutely continuous (with respect to the Lebesgue measure), that is, F (λ) =∫ λ

−π
f(x)dx, if and only if it can be represented as an infinite moving av-

erage:

X(t) =
∞∑

k=−∞
a(t− k)ξ(k),

∞∑
k=−∞

|a(k)|2 < ∞, (2.5)
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where {ξ(k), k ∈ Z} ∼ WN(0,1) is a standard white-noise, that is, a se-
quence of orthonormal random variables.

(b) The covariance function r(t) and the spectral density f(λ) of X(t) are
given by formulas:

r(t) = IEX(t)X(0) =
∞∑

k=−∞
a(t + k)a(k), (2.6)

and

f(λ) = 1
2π

∣∣∣∣∣
∞∑

k=−∞
a(k)e−ikλ

∣∣∣∣∣
2

= 1
2π |â(λ)|2, λ ∈ Λ. (2.7)

(c) In the case where {ξ(k), k ∈ Z} is a sequence of Gaussian random vari-
ables, the process {X(t), t ∈ Z} is Gaussian.

2.3. Dependence (memory) structure of the model

Depending on the memory (dependence) structure, we will distinguish the fol-
lowing types of stationary models:

(a) short memory (or short-range dependent),
(b) long memory (or long-range dependent),
(c) intermediate memory (or anti-persistent).
The memory structure of a stationary process is essentially a measure of the

dependence between all the variables in the process, considering the effect of all
correlations simultaneously. Traditionally memory structure has been defined
in the time domain in terms of decay rates of the autocorrelations, or in the
frequency domain in terms of rates of explosion of low frequency spectra (see,
e.g., Beran et al. [9], and references therein).

It is convenient to characterize the memory structure in terms of the spectral
density function.

2.3.1. Short memory models

A stationary process {X(t), t ∈ Z} with spectral density function f(λ) is said
to be a short memory process if the spectral density f(λ) is bounded away from
zero and infinity, that is, there are constants C1 and C2 such that

0 < C1 ≤ f(λ) ≤ C2 < ∞.

A typical short memory model example is the stationary Autoregressive Moving
Average (ARMA)(p, q) process X(t) defined to be a stationary solution of the
difference equation:

ψp(B)X(t) = θq(B)ε(t), t ∈ Z,

where ψp and θq are polynomials respectively of degrees p and q having no zeros
on the unit circle T, B is the backshift operator defined by BX(t) = X(t− 1),
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and {ε(t), t ∈ Z} is a WN(0,σ2) white noise, that is, a sequence of zero-mean,
uncorrelated random variables with variance σ2. The covariance function r(t)
of (ARMA)(p, q) process is exponentially bounded:

|r(t)| ≤ Cr−t, t = 1, 2, . . . ; 0 < C < ∞; 0 < r < 1,

and the spectral density f(λ) is a rational function (see, e.g., Brockwell and
Davis [12], Section 3.1):

f(λ) = σ2

2π · |θq(e
−iλ)|2

|ψp(e−iλ)|2 . (2.8)

2.3.2. Long-memory and anti-persistent models

A long-memory model is defined to be a stationary process with unbounded spec-
tral density, and an anti-persistent model – a stationary process with vanishing
(at some fixed points) spectral density (see, e.g., Beran et al. [9], Brockwell and
Davis [12], and references therein).

A typical model example that displays long-memory and intermediate mem-
ory (anti-persistent) is the Autoregressive Fractionally Integrated Moving Aver-
age (ARFIMA)(p, d, q) process X(t) defined to be a stationary solution of the
difference equation (see, e.g., Brockwell and Davis [12], Section 13.2):

ψp(B)(1 −B)dX(t) = θq(B)ε(t), d < 1/2,

where B is the backshift operator, ε(t) is a WN(0,σ2) white noise, and ψp and
θq are polynomials of degrees p and q, respectively. The spectral density fX(λ)
of X(t) is given by

fX(λ) = |1 − e−iλ|−2df(λ) = (2 sin(λ/2))−2df(λ), d < 1/2, (2.9)

where f(λ) is the spectral density of an ARMA(p, q) process, given by (2.8).
The condition d < 1/2 ensures that

∫ π

−π
f(λ)dλ < ∞, implying that the process

X(t) is well defined because IE|X(t)|2 =
∫ π

−π
f(λ)dλ.

Observe that for 0 < d < 1/2 the model X(t) specified by the spectral density
(2.9) displays long-memory. In this case we have f(λ) ∼ c |λ|−2d as λ → 0, that
is, f(λ) blows up at λ = 0 like a power function, which is the typical behavior of
a long memory model. For d < 0, the model X(t) displays intermediate-memory,
and in this case, the spectral density in (2.9) vanishes at λ = 0. For d = 0 the
model X(t) displays short-memory. For d ≥ 1/2 the function fX(λ) in (2.9) is
not integrable, and thus it cannot represent a spectral density of a stationary
process.

2.4. Deterministic and nondeterministic processes

In this section we state Kolmogorov’s isometric isomorphism theorem and the in-
finite prediction problem. We give time-domain (Wold’s theorem) and frequency-
domain (Kolmogorov-Szegő theorem) characterizations of deterministic and non-
deterministic processes.
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2.4.1. Kolmogorov’s isometric isomorphism theorem

Given a probability space (Ω,F , P ), define the L2-space of real-valued random
variables ξ = ξ(ω) with IE[ξ] = 0:

L2(Ω) :=
{
ξ : ||ξ||2 :=

∫
Ω
|ξ(ω)|2dP (ω) < ∞

}
. (2.10)

Then L2(Ω) becomes a Hilbert space with the following inner product: for ξ, η ∈
L2(Ω)

(ξ, η) = IE[ξη] =
∫

Ω
ξ(ω)η(ω)dP(ω). (2.11)

For a, b ∈ Z, −∞ ≤ a ≤ b ≤ ∞, we define the space Hb
a(X) to be the closed

linear subspace of the space L2(Ω) spanned by the random variables X(t) =
X(t, ω), t ∈ [a, b], ω ∈ Ω:

Hb
a(X) := sp{X(t), a ≤ t ≤ b}L2(Ω). (2.12)

Observe that the space Hb
a(X) consists of all finite linear combinations of the

form
∑b

k=a ckX(k), as well as, their L2(Ω)-limits.
The space H(X) := H∞

−∞(X) is called the Hilbert space generated by the
process X(t), or the time-domain of X(t).

Let μ be the spectral measure of the process {X(t), t ∈ Z}. Consider the
weighted L2-space L2(μ) := L2(μ,Λ) of complex-valued functions ϕ(λ), λ ∈ Λ,
defined by

L2(μ) :=
{
ϕ(λ) : ||ϕ||2μ :=

∫
Λ
|ϕ(λ)|2dμ(λ) < ∞

}
. (2.13)

Then L2(μ) becomes a Hilbert space with the following inner product: for ϕ,ψ ∈
L2(μ)

(ϕ,ψ)μ =
∫

Λ
ϕ(λ)ψ(λ)dμ(λ). (2.14)

The Hilbert space L2(μ,Λ) is called the frequency-domain of the process X(t).

Theorem 2.2 (Kolmogorov’s isometric isomorphism theorem). For any station-
ary process X(t), t ∈ Z, with spectral measure μ there exists a unique isomet-
ric isomorphism V between the time-domain H(X) and the frequency-domain
L2(μ), such that V [X(t)] = eit for any t ∈ Z.

Thus, in view of Theorem 2.2, any linear problem in the time-domain H(X)
can be translated into one in the frequency-domain L2(μ), and vice versa. This
fact allows to study stationary processes using analytic methods.
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2.4.2. The infinite least-squares prediction problem

Observe first that since by assumption X(t) is a non-degenerate process, the
time-domain H(X) of X(t) is non-trivial, that is, H(X) contains elements dif-
ferent from zero.

Definition 2.1. The space Ht
−T (X) is called the finite history, or past of length

T and present of the process X(u) up to time t. The space Ht(X) := Ht
−∞(X)

is called the entire history, or infinite past and present of the process X(u) up
to time t. The space

H−∞(X) := ∩tH
t
−∞(X) (2.15)

is called the remote past of the process X(u).
It is clear that

H−∞(X) ⊂ · · · ⊂ Ht
−∞(X) ⊂ Ht+τ

−∞(X) ⊂ · · · ⊂ H(X), τ ∈ N. (2.16)

The Hilbert space setting provides a natural framework for stating and solving
the problem of predicting future values of the process X(u) from the observed
past values. Assume that a realization of the process X(u) for times u ≤ t is
observed and we want to predict the value X(t + τ) for some τ ≥ 1 from the
observed values. Since we will never know what particular realization is being
observed, it is reasonable to consider as a predictor X̂(t, τ) for X(t+τ) a function
of the observed values, g({X(u), u ≤ t}), which is good “on the average”. So,
as an optimality criterion for our predictor we take the L2-distance, that is,
the mean squared error, and consider only the linear predictors. With these
restrictions, the infinite linear prediction problem can be stated as follows.

The infinite linear least-squares prediction problem. Given a’param-
eter’ of the process X(u) (e.g., the covariance function r(t) or the spectral
function F (λ)), the entire history Ht

−∞(X) of X(u), and a number τ ∈ N, find
a random variable X̂(t, τ) such that

a) X̂(t, τ) is linear, that is, X̂(t, τ) ∈ Ht
−∞(X),

b) X̂(t, τ) is mean-square optimal (best) among all elements Y ∈ Ht
−∞(X),

that is, X̂(t, τ) minimizes the mean-squared error ||X(t + τ) − Y ||2L2(Ω):

||X(t + τ) − X̂(t, τ)||2L2(Ω) = min
Y ∈Ht

−∞(X)
||X(t + τ) − Y ||2L2(Ω). (2.17)

The solution – the random variable X̂(t, τ) satisfying a) and b), is called the
best linear τ -step ahead predictor for an element X(t+τ) ∈ H(X). The quantity

σ2(τ) := ||X(t+ τ)− X̂(t, τ)||2L2(Ω) = ||X(t+ τ)||2L2(Ω)−||X̂(t, τ)||2L2(Ω), (2.18)

which is independent of t, is called the prediction error (variance).
The advantage of the Hilbert space setting now becomes apparent. Namely,

by the projection theorem in Hilbert spaces (see, e.g., Pourahmadi [53], p. 312),
such a predictor X̂(t, τ) exists, is unique, and is given by

X̂(t, τ) = PtX(t + τ), (2.19)
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where Pt := P t
−∞ is the orthogonal projection operator in H(X) onto Ht

−∞(X).

Remark 2.2. The reason for restricting attention to linear predictors is that
the best linear predictor X̂(t, τ), in this case, depends only on knowledge of the
covariance function r(t) or the spectral function F (λ). The prediction problem
becomes much more difficult when nonlinear predictors are allowed (see, e.g.,
Hannan [32], Koopmans [46]).

2.4.3. Deterministic (singular) and nondeterministic processes.
Characterizations

From prediction point of view it is natural to distinguish the class of processes
for which we have error-free prediction, that is, σ(τ) = 0 for all τ ≥ 1, or
equivalently, X̂(t, τ) = X(t + τ) for all t ∈ Z and τ ≥ 1. In this case, the
prediction is called perfect. It is clear that a process X(t) possessing perfect
prediction represents a singular case of extremely strong dependence between the
random variables forming the process. Such a process X(t) is called deterministic
or singular. From the physical point of view, singular processes are exceptional.
From application point of view, of considerable interest is the class of processes
for which we have σ(τ) > 0 for all τ ≥ 1. In this case the prediction is called
imperfect, and the process X(t) is called nondeterministic.

Observe that the time-domain H(X) of any non-degenerate stationary pro-
cess {X(t), t ∈ Z} can be represented as the orthogonal sum H(X) = H1(X)⊕
H−∞(X), where H−∞(X) is the remote past of X(t) defined by (2.15), and
H1(X) is the orthogonal complement of H−∞(X). So, we can give the following
geometric definition of the deterministic (singular), nondeterministic and purely
nondeterministic (regular) processes.

Definition 2.2. A stationary process {X(t), t ∈ Z} is called

• deterministic or singular if H−∞(X) = H(X), i.e., Ht
−∞(X) = Hs

−∞(X)
for all t, s ∈ Z,

• nondeterministic if H−∞(X) is a proper subspace of H(X), i.e., H−∞(X) ⊂
H(X),

• purely nondeterministic (PND) or regular if H−∞(X) = {0}, that is, the
remote past H−∞(X) of X(t) is the trivial subspace, consisting of the
singleton zero.

The next theorem contains a characterization of deterministic and purely
nondeterministic processes in terms of prediction error.

Theorem 2.3. A stationary process {X(t), t ∈ Z} is

(a) deterministic if and only if σ(τ0) = 0 for some τ0 ≥ 1, τ0 ∈ N (then
σ(τ) = 0 for all τ ∈ N).

(b) purely nondeterministic if and only if limτ→∞ σ2(τ) = E|X(t)|2 = r(0).

Remark 2.3. Every purely nondeterministic process X(t) is nondeterministic,
but the converse is generally not true. An example of such process provides the
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process X(t) = ε(t) + ξ, where {ε(t), t ∈ Z} is a WN(0, σ2) (a centered white
noise with variance σ2), and ξ is a random variable such that V ar(ξ) = σ2

0 and
(ε(t), ξ) = 0 for all t ∈ Z (see Pourahmadi [53], p. 163). Observe also that the
only process X(t) that is both deterministic and purely nondeterministic is the
degenerate process. Assuming that X(t) is a non-degenerate process, we exclude
this trivial case.

The next result, known as Wold’s decomposition theorem (see, e.g., Brockwell
and Davis [12], Sec. 5.7, Shiryaev [66], Sec. VI.5), provides a key step for solu-
tion of the infinite prediction problem in the time-domain setting, and essentially
says that any stationary process can be represented in the form of a sum of two
orthogonal stationary components, one of which is perfectly predictable (singu-
lar component), while for the other (regular component) an explicit formula for
the predictor can be obtained.
Theorem 2.4 (Wold’s decomposition). Every centered non-degenerate discrete-
time stationary process X(t) admits a unique decomposition:

X(t) = XS(t) + XR(t),

where
(a) the processes XR(t) and XS(t) are stationary, centered, mutually uncorre-

lated (orthogonal), and completely subordinated to X(t), i.e., Ht
−∞(XR) ⊆

Ht
−∞(X) and Ht

−∞(XS) ⊆ Ht
−∞(X) for all t ∈ Z.

(b) the process XS(t) is deterministic (singular),
(c) the process XR(t) is purely nondeterministic (regular) and has the infinite

moving-average representation:

XR(t) =
∞∑
k=0

akε0(t− k),
∞∑
k=0

|ak|2 < ∞, (2.20)

where ε0(t) is an innovation of XR(t), that is, ε0(t) is a standard white-
noise process, such that Ht

−∞(XR) = Ht
−∞(ε0) for all t ∈ Z.

The next result describes the asymptotic behavior of the prediction error
σ2
n(μ) for a stationary process X(t) with spectral measure μ of the form (2.3) and

gives spectral characterizations of deterministic, nondeterministic and purely
nondeterministic processes (see, e.g., Grenander and Szegő [31], p. 44, and Ibrag-
imov and Rozanov [39], p. 35–36).
Theorem 2.5. Let X(t) be a non-degenerate stationary process with spectral
measure μ of the form (2.3). The following assertions hold.
(a) (Kolmogorov-Szegő Theorem). The following relations hold.

lim
n→∞

σ2
n(μ) = lim

n→∞
σ2
n(f) = σ2(f) = 2πG(f), (2.21)

where G(f) is the geometric mean of f , namely

G(f) :=
{

exp
{

1
2π
∫ π

−π
ln f(λ) dλ

}
if ln f ∈ L1(Λ)

0, otherwise,
(2.22)
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(b) H0
−∞(μs) = H(μs) ⇔ σ2(μ) = 0 ⇔ X(t) is deterministic,

(c) (Kolmogorov-Szegő alternative). Either

H0
−∞(μa) = H(μa) ⇔

∫ π

−π

ln f(λ) dλ = −∞ ⇔ σ2(f) = 0,

or else

H0
−∞(μa) �= H(μa) ⇔

∫ π

−π

ln f(λ) dλ > −∞ ⇔ σ2(f) > 0.

(d) The process X(t) is regular (PND) if and only if it is nondeterministic
and μs ≡ 0.

Remark 2.4. The second equality in (2.21) was proved by Szegő in 1920, while
the first equality was proved by Kolmogorov in 1941 (see, e.g., Hoffman [35], p.
49). It is remarkable that (2.21) is independent of the singular part μs.

The condition ln f ∈ L1(Λ) in (2.22) is equivalent to the Szegő condition:∫ π

−π

ln f(λ) dλ > −∞ (2.23)

(this equivalence follows because ln f(λ) ≤ f(λ)). The Szegő condition (2.23) is
also called the non-determinism condition.

In this paper we consider the class of deterministic processes with absolutely
continuous spectra.

We will say that the spectral density f(λ) has a very high order of contact
with zero at a point λ0 if f(λ) is positive everywhere except for the point λ0, due
to which the Szegő condition (2.23) is violated. Observe that the Szegő condition
is related to the character of the singularities (zeroes and poles) of the spectral
density f , and does not depend on the differential properties of f . For example,
for any a > 0, the function f̂a(λ) = exp{−|λ|−a} is infinitely differentiable. In
addition, for a < 1 Szegő’s condition is satisfied, and hence the corresponding
process X(t) is nondeterministic, while for a ≥ 1 Szegő’s condition is violated,
and X(t) is deterministic (see, e.g., Pourahmadi [53], p.68, Rakhmanov [55]).
Thus, according to the above definition, for a ≥ 1 this function has a very high
order of contact with zero at the point λ = 0.

3. Formulas for the finite prediction error σ2
n(f) and some

properties

In this section, we provide various formulas for the prediction error σ2
n(f) in

terms of orthogonal polynomials and their parameters (Verblunsky’s coeffi-
cients), Toeplitz determinants, state Szegő’s, Verblunsky’s and Rakhmanov’s
theorems, and list a number of properties of σ2

n(f).
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3.1. Formulas for the prediction error σ2
n(f)

We present here formulas for the finite prediction error σ2
n(f) and state some

preliminary results, which will be used in the sequel.
Suppose we have observed the values X(−n), . . . , X(−1) of a centered, real-

valued stationary process X(t) with spectral measure μ of the form (2.3). The
one-step ahead linear prediction problem in predicting a random variable X(0)
based on the observed values X(−n), . . . , X(−1) involves finding constants ĉk :=
ĉk,n, k = 1, 2, . . . , n, that minimize the one-step ahead prediction error:

σ2
n(μ) := min

{ck}
IE

∣∣∣∣∣X(0) −
n∑

k=1
ckX(−k)

∣∣∣∣∣ 2 =IE

∣∣∣∣∣X(0) −
n∑

k=1
ĉkX(−k)

∣∣∣∣∣ 2. (3.1)

Using Kolmogorov’s isometric isomorphism V : X(t) ↔ eitλ, in view of (3.1),
for the prediction error σ2

n(μ) we can write

σ2
n(μ) = min

{ck}

∥∥∥∥∥1 −
n∑

k=1
cke

−ikλ

∥∥∥∥∥
2

2,μ

= min
{qn∈Qn}

‖qn‖2
2,μ , (3.2)

where || · ||2,μ is the norm in L2(T, μ), and

Qn :=
{
qn : qn(z) = zn + c1z

n−1 + · · · cn
}

(3.3)

is the class of monic polynomials (i.e. with c0 = 1) of degree n. Thus, the
problem of finding σ2

n(μ) becomes to the problem of finding the solution of the
minimum problem (3.2)–(3.3).

The polynomial pn(z) := pn(z, μ) which solves the minimum problem
(3.2)–(3.3) is called the optimal polynomial for μ in the class Qn. This min-
imum problem was solved by G. Szegő by showing that the optimal polynomial
pn(z) exists, is unique and can be expressed in terms of orthogonal polynomials
on the unit circle with respect to the measure μ (see Theorem 3.2 below).

To state Szegő’s solution of the minimum problem (3.2)–(3.3), we first recall
some facts from the theory of orthogonal polynomials on the unit circle (OPUC).

The system of orthogonal polynomials on the unit circle associated with the
measure μ:

{ϕn(z) = ϕn(z; f), z = eiλ, n ∈ Z+}
is uniquely determined by the following two conditions:

(i) ϕn(z) = κnz
n + · · · + ln is a polynomial of degree n, in which the leading

coefficient κn is positive;
(ii) (ϕk, ϕj)μ = δkj for arbitrary k, j ∈ Z+, where δkj is the Kronecker delta.

Define the monic (pn(z)) and the reciprocal (p∗n(z)) polynomials (see, e.g., Simon
[65], p. 2):

pn(z) := pn(z, μ) = κ−1
n ϕn(z) = zn + · · · + lnκ

−1
n , (3.4)
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p∗n(z) := p∗n(z, μ) = znpn(1/z) = lnκ
−1
n zn + · · · + 1. (3.5)

We have
||pn||2,μ = ||p∗n||2,μ = κ−2

n . (3.6)
The polynomials pn(z) and p∗n(z) satisfy Szegő’s recursion relation (see Simon

[65], p. 56):
pn+1(z) = zpn(z) − vn+1p

∗
n(z), n ∈ Z+ (3.7)

where
vn+1 = −pn+1(0) = ln+1κ

−1
n+1, |vn+1| < 1. (3.8)

In view of (3.7) we have (see Simon [65], p. 56)

||pn||22,μ = (1 − |vn|2)||pn−1||22,μ =
n∏

j=1
(1 − |vj |2), n ∈ N. (3.9)

From (3.6) and (3.9) we obtain

κ2
nκ

−2
n+1 = 1 − |vn+1|2. (3.10)

The parameters vn := vn(μ) (n ∈ N), which play an important role in the theory
of OPUC, are called Verblunsky coefficients (also known as the Szegő, Schur,
and canonical moments; see Simon [65], Sect. 1.1, and Dette and Studden [16],
Sect. 9.4).

Note. The term ’Verblunsky coefficient’ is from Simon [65]. Observe that we
write vn+1 for Simon’s αn, and so one has n ∈ N for Simon’s n ∈ Z+. Our
notational convention is already established in the time-series literature and is
more convenient in our context of the PACF (defined below), where n ∈ N (see
Bingham [10], Brockwell and Davis [12], Sec. 5.2, Inoue [41], Pourahmadi [53],
Sec. 7.3).

The following result shows that Verblunsky coefficients provide a convenient
way for the parametrization of probability measures on the unit circle T (see,
e.g., Verblunsky [72, 73], Ramsey [56], Simon [65], p. 2).

Theorem 3.1 (Verblunsky [72]). Let D
∞ := ×∞

k=0D be the set of complex
sequences v := (vn, n ∈ N) with vn ∈ D. The map S : μ �−→ v is a bijection
between the set of nontrivial probability measures {μ} on T and D

∞.

This result was established by Verblunsky [72] in 1935, in connection with
OPUC. It was re-discovered by Ramsey [56] in 1974, in connection with
parametrization of time-series models.

Partial autocorrelation function(PACF). For a stationary process X(t) with
a non-trivial spectral measure μ the partial autocorrelation function (PACF)
of X(t), denoted by πn = πn(μ) (n ∈ N), is defined to be the correlation
coefficient between the forward and backward residuals in the linear prediction
of the variables X(n) and X(0) on the basis of the intermediate observations
X(1), . . . , X(n− 1), that is,

πn := corr(X(n) − X̂(n), X(0) − X̂(0)).
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It turns out that the Verblunsky coefficients vn and the PACF πn coincide,
that is, vn = πn for all n ∈ N (see Dette and Studden [16], Sect. 9.6). Thus, the
Verblunsky sequence v := (vn, n ∈ N) provides a link between OPUC and time-
series analysis, and, in view of the equality vn = πn, the Verblunsky bijection
gives a simple and unconstrained parametrization of stationary processes, in
contrast to using the covariance function, which has to be positive-definite.

The next result by Szegő solves the minimum problem (3.2)–(3.3) (see, e.g.,
Grenander and Szegő [31], p. 38).

Theorem 3.2 (Szegő). The unique solution of the minimum problem (3.2)–(3.3)
is the monic polynomial pn(μ) := pn(z, μ) given by formula (3.4), and the min-
imum in (3.2) is equal to ||pn||2,μ = κ−2

n (see (3.6)).

Thus, for the prediction error σ2
n(μ) we have the following formula:

σ2
n(μ) = min

{qn∈Qn}
‖qn‖2

2,μ = ‖pn(μ)‖2
2,μ = κ−2

n . (3.11)

Remark 3.1. Define

Q∗
n :=

{
qn : qn(z) = c0z

n + c1z
n−1 + · · · cn, cn = 1

}
, (3.12)

and observe that the classes of polynomials Qn and Q∗
n defined in (3.3) and (3.12),

respectively, differ by normalization: in (3.12) we have cn = 1, while in (3.3) we
have c0 = 1. Also, the optimal polynomial for μ in the class Q∗

n is the reciprocal
polynomial p∗n(z) (see (3.5)). Taking into account (3.6), we have the following
formula for the prediction error σ2

n(μ) in terms of the optimal polynomial p∗n(z):

σ2
n(μ) = min

{qn∈Q∗
n}

‖qn‖2
2,μ = ‖p∗n(μ)‖2

2,μ . (3.13)

Remark 3.2. Denote by Dn(μ) the nth Toeplitz determinant generated by the
measure μ:

Dn(μ) := det[r(t− s), t, s = 0, 1, . . . n],
where r(t) is the covariance function given by (2.1). Taking into account that
κ2
n = Dn−1(μ)/Dn(μ) (see, e.g., Grenander and Szegő [31], p. 38), in view

of (3.11) we obtain the following formula for the prediction error σ2
n(μ) in terms

of Dn(μ):

σ2
n(μ) = Dn(μ)

Dn−1(μ) . (3.14)

Remark 3.3. In view of (3.11), the formulas (3.9) and (3.10) can be written
as follows

σ2
n(μ) =

n∏
j=1

(1 − |vj |2) and
σ2
n+1(μ)
σ2
n(μ) = 1 − |vn|2. (3.15)

From the second formula in (3.15), it follows that the convergence of the se-
quences |vn| and σn+1(μ)/σn(μ) are equivalent, and, the greater the limiting
value of |vn|, the faster the rate of decrease of σn(μ).
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For a general measure μ of the form (2.3) the asymptotic relation

lim
n→∞

vn(μ) = 0 (3.16)

is of special interest in the theory of OPUC. In this respect the following question
arises naturally: what is the’minimal’ sufficient condition on the measure μ
ensuring the relation (3.16)? The next result of Rakhmanov [54, 55] shows that
for (3.16) (or equivalently, for limn→∞ σn+1(μ)/σn(μ) = 1) it is enough only to
have a.e. positiveness on T of the spectral density f (see also Babayan et al. [7]
and Simon [65], p. 5).
Theorem 3.3 (Rakhmanov [54]). Let the measure μ have the form (2.3) with
f > 0 a.e. on T. Then the asymptotic relation (3.16) is satisfied.

Note that the converse of Rakhmanov’s theorem, in general, is not true. A
partial converse of Rakhmanov’s theorem is stated in Theorem 5.7.

Bello and López [8] proved the following extension of Rakhmanov’s theorem:
Let Γδ be a closed arc of the unit circle of length 2δ (0 < δ ≤ π), and let μ and
(vn) be as in Rakhmanov’s Theorem. Assume that the measure μ is supported
on the arc Γδ with f > 0 a.e. on Γδ. Then limn→∞ |vn| = cos(δ/2). The case
δ = π corresponds to Rakhmanov’s theorem.

3.2. Properties of the prediction error σ2
n(f)

In what follows we assume that the spectral measure μ is absolutely continuous
with spectral density f , and instead of σ2

n(μ), pn(μ) and Dn(μ) we use the
notation σ2

n(f), pn(f) and Dn(f), respectively.
In the next proposition we list a number of properties of the prediction error

σ2
n(f). The proof can be found in Babayan and Ginovyan [5].

Proposition 3.1. The prediction error σ2
n(f) possesses the following properties.

(a) σ2
n(f) is a non-decreasing functional of f : σ2

n(f1) ≤ σ2
n(f2) when f1(λ) ≤

f2(λ), λ ∈ [−π, π].
(b) If f(λ) = g(λ) almost everywhere on [−π, π], then σ2

n(f) = σ2
n(g).

(c) For any positive constant c we have σ2
n(cf) = cσ2

n(f).
(d) If f̄(λ) = f(λ− λ0), λ0 ∈ [−π, π], then σ2

n(f̄) = σ2
n(f).

4. Asymptotic behavior of the prediction error δn(f) for
nondeterministic processes

In this section we study the asymptotic behavior of the the relative prediction
error δn(f) = σ2

n(f) − σ2(f) for nondeterministic processes, and review some
important known results.

4.1. Asymptotic behavior of δn(f) for short-memory processes

Recall that a short memory processes is a second order stationary processes
possessing a spectral density f which is bounded away from zero and infinity.
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4.1.1. Exponential rate of decrease of δn(f)

The first result of this type goes back to the Grenander and Rosenblatt [29].
The next theorem was proved by Ibragimov [36].

Theorem 4.1 (Ibragimov [36]). A necessary and sufficient condition for

δn(f) = O(qn), q = e−c, c > 0, n → ∞ (4.1)

is that f(λ) is a spectral density of a short-memory process, and 1/f(λ) ∈ Ac,
where Ac is the class of 2π–periodic continuous functions ϕ(λ), λ ∈ R, admitting
an analytic continuation into the strip z = λ + iμ, −∞ < λ < ∞, |μ| ≤ c.

Observe that (4.1) will be true for all c > 0 if and only if the analytic
continuation of f(λ) is an entire function of z = λ + iμ.

Thus, to have exponential rate of decrease to zero for δn(f) the underly-
ing model should be a short-memory process with sufficiently smooth spectral
density.

4.1.2. Hyperbolic rate of decrease of δn(f)

Here we are interested in estimates for δn(f) of type

δn(f) = O(n−γ), γ > 0, n → ∞. (4.2)
δn(f) = o(n−γ), γ > 0, n → ∞. (4.3)

Bounds of type (4.2) with γ > 1 for different classes of spectral densities were
obtained by Baxter [1], Devinatz [17], Geronimus [23, 24], Grenander and Rosen-
blatt [29], Grenander and Szegő [31], and others (see, e.g., Ginovyan [25], and ref-
erences therein). The most general result in this direction has been obtained by
Ibragimov [36]. To state Ibragimov’s theorem, we first introduce Hölder classes
of functions.

For a function ϕ(λ) ∈ Lp(T), we define its Lp-modulus of continuity by

ωp(ϕ; δ) = sup
0<|t|≤δ

||ϕ(· + t) − ϕ(·)||p, δ > 0. (4.4)

Given numbers 0 < α < 1, r ∈ Z0 := {0, 1, 2 . . .}, and p ≥ 1, we put γ := r + α.
A Hölder class of functions, denoted by Hp(γ), is defined to be the set of those
functions ϕ(λ) ∈ Lp(T) that have r-th derivative ϕ(r)(λ), such that ϕ(r)(λ) ∈
Lp(T) and ωp(ϕ(r); δ) = O(δα) as δ → 0.

Theorem 4.2 (Ibragimov [36]). A necessary and sufficient condition for

δn(f) = O(n−γ), γ = 2(r + α) > 1; 0 < α < 1, r ∈ Z0, as n → ∞ (4.5)

is that f(λ) is a spectral density of a short-memory process belonging to H2(γ).
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Bounds of type (4.3) for short memory models have been obtained by Baxter
[1], Devinatz [17], Hirshman [34] and Golinskii [26]. For ’large’ values of γ (γ >
1), Hirshman has obtained the following necessary and sufficient condition for
(4.3) (see Hirshman [34], p. 314).

Theorem 4.3 (Hirshman [34]). If X(t) is a short-memory process, then δn(f) =
o(n−γ) with γ > 1 as n → ∞ if and only if

∑
|t|≥n |r(t)|2 = o(n−γ) as n → ∞,

where r(t) is the covariance function of X(t).

The next theorem was proved by G. Baxter (see Baxter [1], Theorem 3.1).

Theorem 4.4 (Baxter [1]). If X(t) is a short-memory process with covariance
function r(t) satisfying

∑∞
t=1 t

γ |r(t)| < ∞, γ > 0, then δn(f) = o(n−2γ) as
n → ∞.

Remark 4.1. It follows from Theorem 4.2 that if δn(f) = O(n−γ) with γ > 1,
then the underlying model X(t) is necessarily a short-memory process. More-
over, as it was pointed out by Grenander and Rosenblatt [29] (see, also, Devinatz
[17], p. 118), if the model is not a short-memory process, that is, the spectral
density f has zeros or is unbounded, then, in general, we cannot expect δn(f)
to go to zero faster than 1/n as n → ∞. This question we discuss in the next
section.

4.2. Asymptotic behavior of δn(f) for anti-persistent and
long-memory processes

In this section we describe the rate of decrease of the relative prediction error
δn(f) to zero as n → ∞, in the case where the underlying process X(t) is
nondeterministic and is anti-persistent or has long-memory, that is, the spectral
density f(λ) of X(t) has zeros or is unbounded at a finite number of points, such
that ln f(λ) ∈ L1(T). This case is of great interest because in many applications
the model is described by processes of a such type.

4.2.1. An example

We start with an example, which shows that the asymptotic behavior of the pre-
diction error δn(f) essentially depends on the dependence (memory) structure
of the underlying model X(t) (see, e.g., Grenander and Szegő [31], p. 191).

Example 4.1. Consider a first-order moving-average MA(1) process X(t):

X(t) = ε(t) − b · ε(t− 1), ε(t) ∼ WN(0, σ2
ε), 0 ≤ b ≤ 1.

The spectral density is f(λ) = σ2
ε

2π · |1 − beiλ|2 (see formula (2.8)).
a) First assume that X(t) has short-memory, that is, 0 ≤ b < 1. It is easy to

check that

δn(f) = σ2
n(f) − σ2(f) = b2n(b2 − b4)

1 − b2n+2 ∼ b2n as n → ∞,
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showing that in this case δn(f) goes to zero with exponential rate.
b) Now let b = 1. We have f(λ) = σ2

ε

2π · |1 − eiλ|2, that is, the process X(t) is
anti-persistent. In this case we have

δn(f) = σ2
n(f) − σ2(f) = 1

n + 2 ∼ 1
n

as n → ∞,

showing that δn(f) goes to zero at precisely the rate 1/n. The slow rate is due
to the presence of a zero of f(λ) at λ = 0 (see Grenander and Szegő [31], p.
191).

It can be shown that for models with spectral densities of the form f(λ) =
σ2
ε

2π · |q(eiλ)|2, where q(eiλ) is a polynomial with at least one root on the unit
circle T, we have δn(f) ∼ 1

n as n → ∞.

4.2.2. The ARFIMA(p, d, q) model

As was mentioned in Section 2.3 a well-known example of processes that dis-
plays long memory or is anti-persistent is an ARFIMA(p, d, q) process X(t) with
spectral density fX(λ) given by (see (2.9)):

fX(λ) = |1 − e−iλ|−2df(λ), d < 1/2, (4.6)

where f(λ) is the spectral density of an ARMA(p, q) process, given by (2.8).
Recall that for 0 < d < 1/2 the model X(t) specified by spectral density (4.6)
displays long-memory, for d < 0 it is anti-persistent, and for d = 0 it displays
short-memory.

The following theorem was proved by A. Inoue (see Inoue [41], Theorem 4.3).

Theorem 4.5 (Inoue [41]). Let fX(λ) have the form (4.6) with 0 < d < 1/2,
where f(λ) is the spectral density of an ARMA(p, q) process. Then

δn(f) ∼ d2

n
as n → ∞. (4.7)

Remark 4.2. Note that for ARFIMA(0, d, 0) model the asymptotic relation
(4.7) remains valid for all d < 1/2 (d �= 0). In this case, for the Verblunsky
coefficients (parameters) vn we have vn = d

n−d+1 (see Golinskii [26], p. 703).

4.2.3. The Jacobian model

Another well-known example of processes that display long memory or is anti-
persistent is the Jacobian model. We say that a stationary process X(t) is a
Jacobian process, and the corresponding model is a Jacobian model, if its spec-
tral density f(λ) has the following form:

f(λ) = f1(λ)
m∏

k=1
|eiλ − eiλk |−2dk , (4.8)
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where f1(λ) is the spectral density of a short-memory process, the points λk ∈
[−π, π] are distinct, and dk ≤ 1/2, k = 1, . . . ,m.

The asymptotic behavior of δn(f) as n → ∞ for Jacobian model (4.8) has
been considered in a number of papers (see, e.g., Golinskii [26], Grenander and
Rosenblatt [29], Ibragimov [36], Ibragimov and Solev [40].)

The following theorem was proved in Ibragimov and Solev [40].

Theorem 4.6 (Ibragimov and Solev [40]). Let f(λ) have the form (4.8), where
f1(λ) is the spectral density of a short-memory process, the points λk ∈ [−π, π]
are distinct, and dk ≤ 1/2, k = 1, . . . ,m. If the function f1(λ) satisfies a Lips-
chitz condition with exponent α ≥ 1/2, then

δn(f) ∼ 1/n as n → ∞. (4.9)

5. Asymptotic behavior of the finite prediction error σ2
n(f) for

deterministic (singular) processes

5.1. Background

The linear prediction problem has been studied most intensively for nondeter-
ministic processes, that is, in the case where the prediction error is known to be
positive (σ2(f) > 0) (see Section 4).

In this section we focus on the less investigated case – deterministic processes,
that is, when σ2(f) = 0. This case is not only of theoretical interest, but is
also important from the point of view of applications. For example, as pointed
out by Rosenblatt [59] (see also Pierson [50]), situations of this type arise in
Neumann’s theoretical model of storm-generated ocean waves. Such models are
also of interest in meteorology (see, e.g., Fortus [20]).

Only few works are devoted to the study of the speed of convergence of
δn(f) = σ2

n(f) to zero as n → ∞, that is, the asymptotic behavior of the pre-
diction error for deterministic processes. One needs to go back to the classical
work of M. Rosenblatt [59]. Using the technique of orthogonal polynomials on
the unit circle, M. Rosenblatt investigated the asymptotic behavior of the pre-
diction error σ2

n(f) for deterministic processes in the following two cases:

(a) the spectral density f(λ) is continuous and positive on a segment of [−π, π]
and zero elsewhere.

(b) the spectral density f(λ) has a very high order of contact with zero at
points λ = 0,±π, and is strictly positive otherwise.

Later the problems (a) and (b) were studied by Babayan [2, 3], Babayan and
Ginovyan [4, 5, 6], and Babayan et al. [7] (see also Davisson [15] and Fortus
[20]), where some generalizations and extensions of Rosenblatt’s results were
obtained.

We start by describing Rosenblatt’s results concerning the asymptotic be-
havior of the prediction error σ2

n(f), obtained in Rosenblatt [59] for the above
stated cases (a) and (b).
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5.2. Rosenblatt’s results about speed of convergence

For the case (a) above, M. Rosenblatt proved in [59] that the prediction error
σ2
n(f) decreases to zero exponentially as n → ∞. More precisely, M. Rosenblatt

proved the following theorem.

Theorem 5.1 (Rosenblatt’s first theorem). Let the spectral density f of a
discrete-time stationary process X(t) be positive and continuous on the segment
[π/2 − α, π/2 + α], 0 < α < π, and zero elsewhere. Then the prediction error
σ2
n(f) approaches zero exponentially as n → ∞. More precisely, the following

asymptotic relation holds:

σ2
n(f) 
 (sin(α/2))2n+1 as n → ∞. (5.1)

Thus, when the spectral density f is continuous and vanishes on an entire
segment, then the prediction error σ2

n(f) approaches zero with a sufficiently high
speed, namely as a geometric progression with common ratio sin2(α/2) < 1.
Notice that (5.1) implies that

lim
n→∞

n
√
σn(f) = sin(α/2). (5.2)

Concerning the case (b) above, for a specific deterministic process X(t),
Rosenblatt proved in [59] that the prediction error σ2

n(f) decreases to zero like
a power as n → ∞. More precisely, the deterministic process X(t) considered
in Rosenblatt [59] has the spectral density

fa(λ) := e(2λ−π)ϕ(λ)

cosh (πϕ(λ)) , fa(−λ) = fa(λ), 0 ≤ λ ≤ π, (5.3)

where ϕ(λ) = (a/2) cotλ and a is a positive parameter.
Using the technique of orthogonal polynomials on the unit circle and Szegő’s

results, Rosenblatt [59] proved the following theorem.
Theorem 5.2 (Rosenblatt’s second theorem). Suppose that the process X(t)
has spectral density fa given by (5.3). Then the following asymptotic relation
for the prediction error σ2

n(fa) holds:

σ2
n(fa) ∼

Γ2 ((a + 1)/2)
π22−a

n−a as n → ∞. (5.4)

Note that the function in (5.3) was first considered by Pollaczek [51], and
then by Szegő [69], as a weight-function of a class of orthogonal polynomials that
serve as illustrations for certain’irregular’ phenomena in the theory of orthogonal
polynomials. For the function fa in (5.3), we have the following asymptotic
relation (for details see Szegő [69], Babayan and Ginovyan [5], and Section 5.5.4):

fa(λ) ∼
{

2ea exp {−aπ/|λ|} as λ → 0,
2 exp {−aπ/(π − |λ|)} as λ → ±π.

(5.5)

Thus, the function fa in (5.3) has a very high order of contact with zero at points
λ = 0,±π, due to which the process with spectral density fa is deterministic
and the prediction error σ2

n(fa) in (5.4) decreases to zero like a power as n → ∞.
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Remark 5.1. In view of formulas in (3.15), under the conditions of Theo-
rem 5.1, we have

lim
n→∞

σ2
n+1(f)/σ2

n(f) = sin2(α/2) and lim
n→∞

|vn(f)| = cos(α/2).

Similarly, under the conditions of Theorem 5.2, we have

lim
n→∞

σn+1(fa)/σn(fa) = 1 and lim
n→∞

vn(fa) = 0,

where vn(f) and vn(fa) are the Verblunsky coefficients corresponding to func-
tions f and fa, respectively.

In the papers Babayan [2, 3], Babayan and Ginovyan [4, 5, 6], and Babayan et
al. [7], the above stated Theorems 5.1 and 5.2 were extended to broader classes
of spectral densities.

Concerning Theorem 5.1, in Babayan et al. [7] (see also Babayan [2, 3])
there was described an extension of the asymptotic relation (5.2) to the case
of several arcs, without having to stipulate continuity of the spectral density f
(see Theorem 5.3 in Section 5.3.1).

As for the extension of Theorem 5.2, in Babayan et al. [7] (see also Babayan
and Ginovyan [4, 5]) it was proved that if the spectral density f is such that
the sequence σn(f) is weakly varying (a term defined in Section 7.2) and if, in
addition, g is a nonnegative function that can have arbitrary power type sin-
gularities, then the sequences {σn(fg)} and {σn(f)} have the same asymptotic
behavior as n → ∞, up to some positive multiplicative factor. This allows to
derive the asymptotic behavior of σn(fg) from that of σn(f).

Using this result, Rosenblatt’s Theorem 5.2 was extended in Babayan and
Ginovyan [5] and in Babayan et al. [7] to a class of spectral densities of the form
f = fag, where fa is as in (5.3) and g is a nonnegative function that can have
arbitrary power type singularities (see Corollary 5.5 in Section 5.5.2).

5.3. Extensions of Rosenblatt’s first theorem

In this section we extend Rosenblatt’s first theorem (Theorem 5.1) to a broader
class of deterministic processes, possessing spectral densities. More precisely, we
extend the asymptotic relation (5.2) to the case of several arcs, without having to
stipulate continuity of the spectral density f . Besides, we state necessary as well
as sufficient conditions for the exponential decay of the prediction error σn(f).
Also, we calculate the transfinite diameters of some subsets of the unit circle,
and thus, obtain explicit asymptotic relations for σn(f) similar to Rosenblatt’s
relation (5.2).

5.3.1. Extensions of Theorem 5.1

In what follows, by Ef we denote the spectrum of the process X(t), that is,

Ef := {eiλ : f(λ) > 0}. (5.6)
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Thus, the closure Ef of Ef is the support of the spectral density f .
The next theorem extends Rosenblatt’s first theorem (Theorem 5.1). More

precisely, the result that follows extends the asymptotic relation (5.2) to the case
of several arcs, without having to stipulate continuity of the spectral density f .

Theorem 5.3 (Babayan et al. [7]). Let the support Ef of the spectral density
f of the process X(t) consists of a finite number of closed arcs of the unit circle
T, and let f > 0 a.e. on Ef . Then the sequence n

√
σn(f) converges, and

lim
n→∞

n
√

σn(f) = τf , (5.7)

where τf := τ(Ef ) is the transfinite diameter of Ef .

The definition and properties of the transfinite diameter and related metric
characteristics (the Chebyshev constant and the capacity) are discussed later in
the paper (see Section 7.1).

Remark 5.2. In Theorem 5.1, Ef = {eiλ : λ ∈ [π/2 − α, π/2 + α]}, which
represents a closed arc of length 2α, and, according to Proposition 7.2(d), we
have τ(Ef ) = sin(2α/4) = sin(α/2). Thus, the asymptotic relation (5.2) is a
special case of (5.7).

We will need the following definition, which characterizes the rate of variation
of a sequence of non-negative numbers compared with a geometric progression
(see also Simon [65], p. 91).

Definition 5.1. (a) A sequence {an ≥ 0, n ∈ N} is called exponentially neutral
if

lim
n→∞

n
√
an = 1.

(b) A sequence {bn ≥ 0, n ∈ N} is called exponentially decreasing if

lim sup
n→∞

n
√

bn < 1.

For instance, the sequence {an = nα, α ∈ R, n ∈ N} is exponentially neutral
because ln n

√
nα = (α/n) lnn → 0 as n → ∞. The geometric progression {bn =

qn, 0 < q < 1, n ∈ N} is exponentially decreasing because n
√
bn = qn/n = q < 1.

The sequence {bn = nαqn, α ∈ R, 0 < q < 1, n ∈ N} is also exponentially
decreasing because n

√
bn = nα/nq → q < 1. In fact, it can easily be shown that a

sequence {cn ≥ 0, n ∈ N} is exponentially decreasing if and only if there exists
a number q (0 < q < 1) such that cn = O(qn) as n → ∞.

Remark 5.3. It follows from relation (5.7) that the question of exponential
decay of the prediction error σn(f) as n → ∞ is determined solely by the value
of the transfinite diameter of the support Ef of the spectral density f , and does
not depend on the values of f on Ef . Denoting γn := σn(f)/τnf , from (5.7) we
infer that limn→∞ n

√
γn = 1 and

σn(f) = τnf · γn. (5.8)
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Thus, in the case where τf < 1, the prediction error σn(f) is decomposed into
a product of two factors, one of which (τnf ) is a geometric progression, and the
second (γn) is an exponentially neutral sequence. Also, if g is another spectral
density satisfying the conditions of Theorem 5.3, then in view of (5.8), we have

σn(g)
σn(f) =

(
τg
τf

)n

· γ′
n,

where γ′
n is an exponentially neutral sequence. It is worth noting that the last

relation does not depend on the structures of the supports Ef and Eg (viz., the
number and the lengths of arcs constituting these sets, as well as, their location
on the unit circle T).

The following result provides a sufficient condition for the exponential decay
of the prediction error σn(f).

Theorem 5.4 (Babayan et al. [7]). If the spectral density f of the process X(t)
vanishes on an arc, then the prediction error σn(f) decreases to zero exponen-
tially. More precisely, if f vanishes on an arc Γδ ⊂ T of length 2δ (0 < δ < π),
then

lim sup
n→∞

n
√
σn(f) ≤ cos(δ/2) < 1. (5.9)

The next result gives a necessary condition for the exponential decay of σn(f).

Theorem 5.5 (Babayan et al. [7]). A necessary condition for the prediction
error σn(f) to tend to zero exponentially is that the spectral density f should
vanish on a set of positive Lebesgue measure.

Remark 5.4. Theorem 5.5 shows that if the spectral density f is almost every-
where positive, then it is impossible to obtain exponential decay of the prediction
error σn(f), no matter how high the orders of the zeros of f .

In view of (3.15), as a consequence of Theorem 5.3, we obtain the following
result.

Theorem 5.6 (Babayan et al. [7]). Let the support Ef and the spectral density
f satisfy the conditions of Theorem 5.3. If the sequence of Verblunsky coefficients
vn(f) converges in modulus, then

lim
n→∞

|vn(f)| =
√

1 − τ2
f . (5.10)

Remark 5.5. It is well-known that for an arbitrary sequence of positive num-
bers an the convergence an+1/an → a implies the convergence n

√
an → a. The

converse, in general, is not true, that is, the sequence n
√
an can be convergent,

while an+1/an divergent. Indeed, for the sequence an:

an :=
{

2−3k if n = 2k − 1
2−(3k+1) if n = 2k, k ∈ N,

we have limn→∞ n
√
an = 2−3/2, while the limit limn→∞ an+1/an does not exists.
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In the context of the considered sequences, |vn(f)| and n
√
σn(f), in view

of (3.15), we can assert that the convergence of |vn(f)| (or equivalently, the
convergence of σn+1(f)/σn(f)) implies the convergence of n

√
σn(f), but not

the converse. Hence, the condition of convergence (in modulus) of Verblunsky
sequence in Theorem 5.6 is essential.

As a consequence of Theorem 5.3 we obtain the following result (see Geron-
imus [21]), which is a partial converse of Rakhmanov’s theorem:

Theorem 5.7. If the sequence σn(f) satisfies the following condition:

lim sup
n→∞

n
√

σn(f) = 1 (5.11)

(in particular, if limn→∞ vn(f) = 0), then Ef = T, i.e. the spectrum of the
process is dense in T.

The next theorem extends Theorem 5.3.

Theorem 5.8 (Babayan [2]). Let Ef be the spectrum of a stationary process
X(t) possessing a spectral density f(λ), that is, Ef = {λ : f(λ) > 0}, and
let τ(Ef ), τ∗(Ef ) and τ∗(Ef ) be the transfinite diameter and the inner and
the outer transfinite diameters of Ef , respectively (for definition of τ∗(Ef ) and
τ∗(Ef ) see formula (7.8)). Then the following assertions hold.

(a) The following inequalities hold:

lim sup
n→∞

(σn(f))1/n ≤ τ∗(Ef ), (5.12)

lim inf
n→∞

(σn(f))1/n ≥ τ∗(Ef ). (5.13)

(b) If the spectrum Ef consists of a countable number of open arcs of the unit
circle T and is τ -measurable, that is, τ∗(Ef ) = τ∗(Ef ) = τ(Ef ), then

lim
n→∞

n
√

σn(f) = τ(Ef ). (5.14)

As an immediate corollary of Theorem 5.8 we have the following result.

Corollary 5.1. A sufficient condition for the prediction error σn(f) of a deter-
ministic stationary sequence to decrease to zero at least exponentially as n → ∞,
that is, σn(f) = O(e−bn) for some b > 0, is that the outer transfinite diameter
of the spectrum Ef should be less than unity.

5.3.2. Examples. Calculation of transfinite diameters of some special sets

Motivated by Theorems 5.1 and 5.3 and Remark 5.2, the following question
arises naturally: calculate the transfinite diameter τ(Ef ) of the set Ef consisting
of several closed arcs of the unit circle T, and thus, obtain an explicit asymptotic
relation for the prediction error σn(f) similar to Rosenblatt’s relation (5.2).
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The calculation of the transfinite diameter (and hence, the capacity and the
Chebyshev constant) is a challenging problem (for details see Section 7.1), and
in only very few cases has the transfinite diameter been exactly calculated (see,
e.g., Landkof [48], p. 172–173, Ransford [57], p.135, and Proposition 7.2). One
such example provides Theorem 5.1, in which case the transfinite diameter of
the set Ef := {eiλ : λ ∈ [π/2 − α, π/2 + α]} is sin(α/2). Below we give some
other examples, where we can explicitly calculate the Chebyshev constant (and
hence the transfinite diameter and the capacity) by using some properties of the
transfinite diameter, stated in Proposition 7.2, and results due to Fekete [19]
and Robinson [58] concerning the relation between the transfinite diameters of
related sets (see Propositions 7.3 and 7.5).

The examples given below show that Fekete’s formula (7.9) and Robinson’s
formula (7.12) give a simple way to calculate the transfinite diameters of some
subsets of the unit circle, based only on the formula of the transfinite diameter
of a line segment (see Proposition 7.2(e)).

We will use the following notation: given 0 < β < 2π and z0 = eiθ0 , θ0 ∈
[−π, π), we denote by Γβ(θ0) an arc of the unit circle of length β which is
symmetric with respect to the point z0 = eiθ0 :

Γβ(θ0) := {eiθ : |θ − θ0| ≤ β/2} = {eiθ : θ ∈ [θ0 − β/2, θ0 + β/2]}. (5.15)

Example 5.1. Let Γ2α := Γ2α(0). Then the projection Γx
2α of Γ2α onto the real

axis is the segment [cosα, 1] (see Figure 1a)), and by Proposition 7.2(e) for the
transfinite diameter τ(Γx

2α) we have

τ(Γx
2α) = 1 − cosα

4 = sin2(α/2)
2 .

Hence, according to Robinson’s formula (7.12), we obtain

τ(Γ2α) = [2τ(Γx
2α)]1/2 =

[
2sin2(α/2)

2

]1/2

= sin(α/2). (5.16)

Taking into account that the transfinite diameter is invariant with respect to
rotation (see Proposition 7.2(b)), from (5.16) for any θ0 ∈ [−π, π) we have

τ(Γ2α(θ0)) = sin(α/2). (5.17)

Remark 5.6. Notice that the expression sin(α/2) in (5.16) was first obtained
by Szegő [68], where he calculated it as the Chebyshev constant of the arc
Γ2α(π/2), then it was deduced by Rosenblatt [59], as the capacity of Γ2α(π/2).

Example 5.2. Let Γ2α(α) be an arc of length 2α, defined by (5.15): Γ2α(α) =
{eiθ : θ ∈ [0, 2α]}, and let Γ(2, α) be the preimage of the arc Γ2α(α) under the
mapping p(z) = z2. It can be shown (see Babayan et al. [7] for details) that
the set Γ(2, α) is the union of two closed arcs of equal lengths α, symmetrically
located with respect to the center of the unit circle (see Figure 1b):

Γ(2, α) = {eiω : ω ∈ [−π,−π + α] ∪ [0, α]}. (5.18)
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Fig 1. a) The sets Γ2α and Γx
2α. b) The set Γ(k, α) with k = 2.

Then, by the Fekete theorem (see Proposition 7.3) and formula (5.17), for the
transfinite diameter τ(Γ(2, α)) we have

τ(Γ(2, α)) = [τ(Γ2α(α))]1/2 = (sin(α/2))1/2 .

The above result can easily be extended to the case of k (k > 2) arcs. Let Γ(k, α)
be the union of k (k ∈ N, k ≥ 2) closed arcs of equal lengths α, which are sym-
metrically located on the unit circle (the arcs are assumed to be equidistant). It
can be shown that the set Γ(k, α) is the preimage (to within rotation) under the
mapping p(z) = zk of the arc Γkα(kα/2) of length kα defined by (5.15). There-
fore, by Fekete’s formula (7.9) and the invariance property of the transfinite
diameter with respect to rotation (see Proposition 7.2(b)), for the transfinite
diameter τ(Γ(k, α)), we have

τ(Γ(k, α)) = (sin(kα/4))1/k . (5.19)

Example 5.3. Let α > 0, δ ≥ 0 and α + δ ≤ π. Consider the set

Γα,δ(θ0) := Γα+δ(θ0) \ Γδ(θ0) (5.20)

consisting of the union of two arcs of the unit circle of lengths α, the distance
of which (over the circle) is equal to 2δ. Define (see Fig. 2a)):

Γα,δ := Γα,δ(0) = {eiθ : θ ∈ [−(δ + α),−δ] ∪ [δ, δ + α]}. (5.21)

Then the projection Γx
α,δ of Γα,δ onto the real axis is the segment Γx

α,δ = [cos(α+
δ), cos δ], and by Proposition 7.2(e) for the transfinite diameter τ(Γx

α,δ) we have

τ(Γx
α,δ) = cos δ − cos(α + δ)

4 = sin(α/2) sin(α/2 + δ)
2 .

Hence, according to Robinson’s formula (7.12), for the transfinite diameter
τ(Γα,δ), we obtain

τ(Γα,δ) = [2τ(Γx
α,δ)]1/2 = (sin(α/2) sin(α/2 + δ))1/2 . (5.22)
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Fig 2. a) The set Γα,δ. b) The set Δα,δ.

In view of Proposition 7.2(b), from (5.22) for any θ0 ∈ [−π, π) we have

τ(Γα,δ(θ0)) = (sin(α/2) sin(α/2 + δ))1/2 . (5.23)

Observe that for δ = 0 we have Γα,δ(θ0) = Γ2α(θ0) (see (5.15) and (5.20)),
and formula (5.23) becomes (5.17).

Example 5.4. Let the arc Γα,δ be as in Example 5.3 (see (5.21)) with α, δ
satisfying α+ δ ≤ π/2, that is, Γα,δ is a subset of the right semicircle T. Denote
by Γ′

α,δ the symmetric to Γα,δ set with respect to y-axis, that is,

Γ′
α,δ := {eiθ : θ ∈ [−π + δ,−π + (δ + α)] ∪ [π − (δ + α), π − δ]}.

Define Δα,δ := Γα,δ ∪ Γ′
α,δ, and observe that the set Δα,δ consists of four arcs

of equal lengths α, which are symmetrically located with respect to both axes
(see Figure 2b)). It is easy to see that the set Δα,δ is the preimage (to within
rotation) of the set Γ2α,2δ under the mapping p(z) = z2. Hence, according to
Fekete’s formula (7.9) and (5.22), for the transfinite diameter τ(Δα,δ), we obtain

τ(Δα,δ) = (τ(Γ2α,2δ))1/2 = (sinα sin(α + 2δ))1/4 . (5.24)

Denote by Δα,δ(θ0) the image of the set Δα,δ under mapping q(z) = eiθ0z, that
is, under the rotation by the central angle θ0 around the origin. Then, in view
of Proposition 7.2(b)), from (5.24) for any θ0 ∈ [−π, π) we have

τ(Δα,δ(θ0)) = (sinα sin(α + 2δ))1/4 . (5.25)

5.3.3. A consequence of Theorem 5.3

Now we apply Theorem 5.3 to obtain the asymptotic behavior of the prediction
error σn(f) in the cases where the spectrum of a stationary process X(t) is
as in Examples 5.1–5.4. Specifically, putting together Theorem 5.3 and Exam-
ples 5.1–5.4, we obtain the following result.
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Theorem 5.9 (Babayan et al. [7]). Let Ef be the support of the spectral density
f of a stationary process X(t), and let f > 0 a.e. on Ef . Then for the prediction
error σn(f) the following assertions hold.

(a) If Ef = Γ2α(θ0), where Γ2α(θ0) is as in Example 5.1, then

lim
n→∞

n
√
σn(f) = sin(α/2).

(b) If Ef = Γ(k, α), where Γ(k, α) is as in Example 5.2, then

lim
n→∞

n
√
σn(f) = (sin(kα/4))1/k .

(c) If Ef = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 5.3, then

lim
n→∞

n
√
σn(f) = (sin(α/2) sin(α/2 + δ))1/2 .

(d) If Ef = Δα,δ(θ0), where Δα,δ(θ0), is as in Example 5.4, then

lim
n→∞

n
√

σn(f) = (sinα sin(α + 2δ))1/4 .

Remark 5.7. The assertion (a) is a slight extension of the Rosenblatt rela-
tion (5.2). The assertion (c) is an extension of assertion (a), which reduces to
assertion (a) if δ = 0.

5.4. Davisson’s theorem and its extension

In this section, we consider a question of bounding the prediction error σ2
n(f).

Using constructive methods, Davisson [15] obtained an upper bound (rather
than an asymptote) for the prediction error σ2

n(f) without imposing a continu-
ity requirement on the spectral density f(λ). Specifically, in Davisson [15] was
proved the following result:

Theorem 5.10 (Davisson [15]). Let the spectral density f(λ), λ ∈ [−π, π] of the
process X(t) be identically zero on a closed interval of length 2π−2α, 0 < α < π.
Then for the prediction error σ2

n(f) the following inequality holds:

σ2
n(f) ≤ 4c (sin(α/2))2n−2

, (5.26)

where c = r(0) and r(·) is the covariance function of X(t) (see formula (2.2)).

The theorem that follows, proved in Babayan and Ginovyan [6], extends
Davisson’s theorem to the case where the spectrum of the process X(t) consists
of a union of two equal arcs.

Let α > 0, δ ≥ 0 and α + δ ≤ π, and let Γα,δ be the set defined by (5.21).
Recall that Γα,δ is the union of two arcs of the unit circle of lengths α, the
distance between which (over the circle) is equal to 2δ (see Example 5.3 and
Figure 2a)).
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Theorem 5.11 (Babayan and Ginovyan [6]). Let the spectral density f(λ), λ ∈
[−π, π] of the process X(t) vanish outside the set Γα,δ. Then for the prediction
error σ2

n(f) the following inequality holds:

σ2
n(f) ≤ 4c (sin(α/2))n−1 (sin(α/2 + δ))n−1

, (5.27)

where c is as in Theorem 5.10.
Remark 5.8. For δ = 0 the set Γα,δ defined by (5.21) is an arc of length 2α,
and, in this case, the inequality (5.27) becomes Davisson’s inequality (5.26).

5.5. Extensions of Rosenblatt’s second theorem

In this section, we analyze the asymptotic behavior of the prediction error in
the case where the spectral density f(λ), λ ∈ [−π, π] of the model is strictly
positive except one or several points at which it has a very high order contact
with zero, so that the Szegő condition (2.23) is violated.

Based on Rosenblatt’s result for this case, namely Theorem 5.2, we can expect
that for any deterministic process with spectral density possessing a singularity
of the type (5.5), the rate of the prediction error σ2

n(f) should be the same
as in (5.4). However, the method applied in Rosenblatt [59] does not allow us
to prove this assertion. In Babayan and Ginovyan [4, 5] and in Babayan et al.
[7], using a different approach, Rosenblatt’s second theorem was extended to
broader classes of spectral densities. To state the corresponding results, we first
examine the asymptotic behavior as n → ∞ of the ratio:

σ2
n(fg)
σ2
n(f) ,

where g is a non-negative function.
To clarify the approach, we first assume that f is the spectral density of a

nondeterministic process, in which case the geometric mean G(f) is positive
(see (2.21) and (2.22)). We can then write

lim
n→∞

σ2
n(fg)
σ2
n(f) = σ2

∞(fg)
σ2
∞(f) = 2πG(fg)

2πG(f) = G(f)G(g)
G(f) = G(g). (5.28)

It turns out that under some additional assumptions imposed on functions f and
g, the asymptotic relation (5.28) remains also valid in the case of deterministic
processes, that is, when G(f) = 0.

5.5.1. Preliminaries

In what follows we consider the class of deterministic processes possessing spec-
tral densities f for which the sequence of prediction errors {σn(f)} is weakly
varying (see Definition 7.1 in Section 7.2), and denote by F the class of the
corresponding spectral densities:

F :=
{
f ∈ L1(Λ) : f ≥ 0, G(f) = 0, lim

n→∞
σn+1(f)
σn(f) = 1

}
. (5.29)
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Remark 5.9. According to Rakhmanov’s theorem (Theorem 3.3), a sufficient
condition for f ∈ F is that f > 0 almost everywhere on Λ and G(f) = 0.
Thus, the considered class F includes all deterministic processes (G(f) = 0)
with almost everywhere positive spectral densities (f > 0 a.e.). On the other
hand, according to Theorem 3.2 and Remark 5.5, the class F does not contain
spectral densities which vanish on an entire segment of Λ (or on an arc of the
unit circle T). Also, from Theorem 5.7 and Remark 5.5 we infer that a necessary
condition for f ∈ F is that the spectrum Ef is dense in Λ.

Definition 5.2. Let F be the class of spectral densities defined by (5.29). For
f ∈ F denote by Mf the class of nonnegative functions g(λ) (λ ∈ Λ) satisfying
the conditions: G(g) > 0, fg ∈ L1(Λ), and

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g), (5.30)

that is,

Mf :=
{
g ≥ 0, G(g) > 0, fg ∈ L1(Λ), lim

n→∞
σ2
n(fg)
σ2
n(f) = G(g)

}
. (5.31)

The next proposition shows that the class F is closed under multiplication
by functions from the class Mf .

Proposition 5.1 (Babayan and Ginovyan [5]). If f ∈ F and g ∈ Mf , then
fg ∈ F .

The next result shows that the class Mf in a certain sense is closed under
multiplication.

Proposition 5.2 (Babayan and Ginovyan [5]). Let f ∈ F . If g1 ∈ Mf and
g2 ∈ Mfg1 , then g := g1g2 ∈ Mf and fg ∈ F . In particular, if g ∈ Mf ∩Mfg,
then g2 ∈ Mf .

In the next definition we introduce certain classes of bounded functions.

Definition 5.3. We define the class B to be the set of all nonnegative, Rie-
mann integrable on Λ = [−π, π] functions h(λ). Also, we define the following
subclasses:

B+ := {h ∈ B : h(λ) � m}, B− := {h ∈ B : h(λ) � M}, B−
+ := B+ ∩B−,

(5.32)
where m and M are some positive constants.

In the next proposition we list some obvious properties of the classes B+, B−

and B−
+ .

Proposition 5.3. The following assertions hold.

a) If h ∈ B+(B−), then 1/h ∈ B−(B+).
b) If h1, h2 ∈ B+(B−), then h1 + h2 ∈ B+(B−) and h1h2 ∈ B+(B−).
c) If h1, h2 ∈ B− and h1/h2 is bounded, then h1/h2 ∈ B−.
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d) If h1, h2 ∈ B−
+ , then h1 + h2 ∈ B−

+ , h1h2 ∈ B−
+ and h1/h2 ∈ B−

+ .

In the next proposition we list some properties of weakly varying sequences
for functions from the above defined classes B+, B− and B−

+ (see Babayan et
al. [7]).

Proposition 5.4. Let the spectral density f be such that the sequence σn(f) is
weakly varying. The following assertions hold.

a) If g ∈ B−
+ , then the sequence σn(fg) is also weakly varying.

b) If g ∈ B− with G(g) = 0, then σn(fg) = o(σn(f)) as n → ∞. Thus,
multiplying singular spectral densities we obtain a spectral density with
higher’order of singularity’.

c) If g ∈ B+ with G(g) = ∞, and fg ∈ B, then σn(f) = o(σn(fg)) as
n → ∞.

5.5.2. Extensions of Rosenblatt’s second theorem

The following theorem, proved in Babayan et al. [7], describes the asymptotic
behavior of the ratio σ2

n(fg)/σ2
n(f) as n → ∞, and essentially states that if

the spectral density f is from the class F (see (5.29)), and g is a nonnega-
tive function, which can have polynomial type singularities, then the sequences
{σn(fg)} and {σn(f)} have the same asymptotic behavior as n → ∞ up to a
positive numerical factor.

Theorem 5.12 (Babayan et al. [7]). Let f be an arbitrary function from the
class F , and let g be a function of the form:

g(λ) = h(λ) · t1(λ)
t2(λ) , λ ∈ Λ, (5.33)

where h ∈ B−
+ , t1 and t2 are nonnegative trigonometric polynomials, such that

fg ∈ L1(Λ). Then g ∈ Mf and fg ∈ F , that is, fg is the spectral density of a de-
terministic process with weakly varying prediction error, and the relation (5.30)
holds.

In view of Remark 5.9, as a consequence of Theorem 5.12 we obtain the
following result.

Corollary 5.2. Let the spectral density f of a deterministic process X(t) be
a.e. positive, and let g be as in Theorem 5.12. Then g is the spectral density of
a nondeterministic process and the relation (5.30) holds.

As an immediate consequence of Theorem 5.12 and Proposition 7.7(d), we
have the following result.

Corollary 5.3. Let the functions f and g be as in Theorem 5.12. Then the
sequence σn(fg) is also weakly varying.
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The theorems that follow extend the above stated Theorem 5.12 to a broader
class of spectral densities, for which the function g can have arbitrary power
type singularities.

Theorem 5.13 (Babayan and Ginovyan [5]). Let f be an arbitrary function
from the class F , and let g be a function of the form:

g(λ) = h(λ) · |t(λ)|α, α > 0, λ ∈ Λ, (5.34)

where h ∈ B−
+ and t is an arbitrary trigonometric polynomial. Then g ∈ Mf

and fg ∈ F , that is, fg is the spectral density of a deterministic process with
weakly varying prediction error, and the relation (5.30) holds.

Using inductive arguments and Theorem 5.13 we can state the following
result.

Corollary 5.4. The conclusion of Theorem 5.13 remains valid if the function
g has the following form:

g(λ) = h(λ) · |t1(λ)|α1 · |t2(λ)|α2 · · · · · |tm(λ)|αm , λ ∈ Λ,

where h ∈ B−
+ , t1, t2, . . . , tm are arbitrary trigonometric polynomials, α1, α2, . . .,

αm are arbitrary positive numbers, and m ∈ N.

Theorem 5.14 (Babayan and Ginovyan [5]). Let f be an arbitrary function
from the class F , and let g be a function of the form:

g(λ) = h(λ) · t−α(λ), α > 0, λ ∈ Λ, (5.35)

where h ∈ B−
+ and t is a nonnegative trigonometric polynomial. Then the fol-

lowing assertions hold.

(a) g ∈ Mf and fg ∈ F provided that α ∈ Z and ft−α ∈ L1(Λ).
(b) g ∈ Mf and fg ∈ F provided that α /∈ Z and ft−(k+1) ∈ L1(Λ), where

k := [α] is the integer part of α.

To state the next result we need the following definition.

Definition 5.4. Let E1 and E2 be two numerical sets such that for any x ∈ E1
and y ∈ E2 we have x < y. We say that the sets E1 and E2 are separated from
each other if supE1 < inf E2. Also, we say that a numerical set E is separated
from infinity if it is bounded from above.

Theorem 5.15 (Babayan and Ginovyan [5]). Let f(λ) and f̂(λ) (λ ∈ Λ) be
spectral densities of stationary processes satisfying the following conditions:

1) f, f̂ ∈ B−;
2) the functions f(λ) and f̂(λ) have k common essential zeros

λ1, λ2, . . . , λk ∈ Λ (−π < λ1 < λ2 < · · · < λk ≤ π, k ∈ N),

that is,
lim

λ→λj

f(λ) = lim
λ→λj

f̂(λ) = 0, j = 1, 2, . . . , k; (5.36)
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3) the functions f(λ) and f̂(λ) are infinitesimal of the same order in a neigh-
borhood of each point λj (j = 1, 2, . . . , k), that is,

lim
λ→λj

f̂(λ)
f(λ) = cj > 0, j = 1, 2, . . . , k; (5.37)

4) the functions f(λ) and f̂(λ) are bounded away from zero outside any neigh-
borhood Oδ(λj) (j = 1, 2, . . . , k), which is separated from the neighboring
zeros λj−1 and λj+1 of λj, that is, there is a number m := mδ > 0 such
that f(λ) ≥ m and f̂(λ) ≥ m for almost all λ /∈ ∪k

j=1Oδ(λj). Then the
following assertions hold:

a)

h(λ) := f̂(λ)
f(λ) ∈ B−

+ ;

b) the processes with spectral densities f and f̂ either both are deterministic
or both are nondeterministic;

c) if one of the functions f and f̂ is from the class F , then so is the other,
and the following relation holds:

lim
n→∞

σ2
n(f̂)

σ2
n(f) = G(h) > 0. (5.38)

Remark 5.10. The conditions of Theorem 5.15 mean that the points λj (j =
1, 2, . . . , k) are the only common zeros of functions f(λ) and f̂(λ). Besides, in the
case of deterministic processes, at least one of these zeros should be of sufficiently
high order. Also, notice that the conditions 1) and 4) of Theorem 5.15 will be
satisfied if the functions f(λ) and f̂(λ) are continuous on Λ.

Theorem 5.16 (Babayan and Ginovyan [5]). Let f be an arbitrary function
from the class F , and let g be a function of the form:

g(λ) = h(λ) · |q(λ)|α, α ∈ R, λ ∈ Λ, (5.39)

where h ∈ B−
+ , q is an arbitrary algebraic polynomial with real coefficients, and

fg ∈ L1(Λ). Then fg ∈ F and g ∈ Mf .

Taking into account that the sequence {n−α, n ∈ N, α > 0} is weakly vary-
ing, as an immediate consequence of Theorems 5.13, 5.14, 5.16 or Corollary 5.4,
we have the following result (see Babayan and Ginovyan [5], and Babayan et al.
[7]).

Corollary 5.5. Let the functions f and g satisfy the conditions of one of The-
orems 5.13, 5.14, 5.16 or Corollary 5.4, and let σn(f) ∼ cn−α (c > 0, α > 0)
as n → ∞. Then

σn(fg) ∼ cG(g)n−α as n → ∞,

where G(g) is the geometric mean of g.
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The next result, which immediately follows from Theorem 5.2 and Corol-
lary 5.5, extends Rosenblatt’s second theorem (Theorem 5.2) (see Babayan and
Ginovyan [5], and Babayan et al. [7]).

Theorem 5.17 (Babayan and Ginovyan [5]). Let f = fag, where fa is de-
fined by (5.3), and let g be a function satisfying the conditions of one of Theo-
rems 5.13, 5.14, 5.16 or Corollary 5.4. Then

δn(f) = σ2
n(f) ∼

Γ2 (a+1
2
)
G(g)

π22−a
n−a as n → ∞,

where G(g) is the geometric mean of g.

We thus have the same limiting behavior for σ2
n(f) as in the Rosenblatt’s

relation (5.4) up to an additional positive factor G(g).

Remark 5.11. In view of Remark 5.9 it follows that all the above stated results
remain true if the condition f ∈ F is replaced by the following slightly strong but
more constructive condition: ’the spectral density f is positive (f > 0) almost
everywhere on Λ and G(f) = 0’.

5.5.3. Examples

In this section we discuss examples demonstrating the result stated in Sec-
tion 5.5.2. In these examples we assume that {X(t), t ∈ Z} is a stationary
deterministic process with a spectral density f satisfying the conditions of The-
orem 5.12, and the function g is given by formula (5.33). To compute the geo-
metric means we use the properties stated in Proposition 7.8(a).

Example 5.5. Let the function g(λ) be as in (5.33) with h(λ) = c > 0 and
t1(λ) = t2(λ) = 1, that is, g(λ) = c > 0. Then for the geometric mean G(g) we
have

G(g) = G(c) = c, (5.40)

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = c.

Thus, multiplying the spectral density f by a constant c > 0 multiplies the
prediction error by c.

Example 5.6. Let the function g be as in (5.33) with h(λ) = eϕ(λ), where ϕ(λ)
is an arbitrary odd function, and let t1(λ) = t2(λ) = 1, that is, g(λ) = eϕ(λ).
Then for the geometric mean G(g) we have

G(g) = G(eϕ(λ)) = exp
{

1
2π

∫ π

−π

ln g(λ) dλ
}

= exp
{

1
2π

∫ π

−π

ϕ(λ) dλ
}

= e0 = 1, (5.41)
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and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = 1.

Thus, multiplying the spectral density f by the function eϕ(λ) with odd ϕ(λ)
does not change the asymptotic behavior of the prediction error.

Example 5.7. Let the function g be as in (5.33) with h(λ) = λ2 + 1 and
t1(λ) = t2(λ) = 1, that is, g(λ) = λ2 + 1. Then for the geometric mean G(g) by
direct calculation we obtain

G(g) = exp
{

1
2π

∫ π

−π

ln(λ2 + 1) dλ
}

= exp{ln(1 + π2) − 2 + 2
π

arctan π} ≈ 3.3, (5.42)

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = exp{ln(1 + π2) − 2 + 2

π
arctan π} ≈ 3.3.

Thus, multiplying the spectral density f by the function λ2 + 1 multiplies the
prediction error approximately by 3.3.

Example 5.8. Let the function g be as in (5.33) with h(λ) = t2(λ) = 1, and
t1(λ) = sin2k(λ − λ0), where k ∈ N and λ0 is an arbitrary point from [−π, π],
that is, g(λ) = sin2k(λ − λ0). To compute the geometric mean G(g), we first
find the algebraic polynomial s2(z) in the Fejér-Riesz representation (7.15) of
the non-negative trigonometric polynomial sin2(λ − λ0) of degree 2. For any
λ0 ∈ [−π, π] we have

sin2(λ− λ0) = | sin(λ− λ0)|2 =
∣∣∣∣12(e2i(λ−λ0) − 1)

∣∣∣∣2 =
∣∣s2(eiλ)

∣∣2 ,
where

s2(z) = 1
2(e−2iλ0z2 − 1). (5.43)

Therefore, by Proposition 7.8(d) and (5.43), we have

G(sin2(λ− λ0)) = |s2(0)|2 =
(

1
2

)2

= 1
4 . (5.44)

Now, in view of Proposition 7.8(a) and (5.44), for the geometric mean of g(λ) =
t1(λ) = sin2k(λ− λ0) (k ∈ N), we obtain

G(g) = G(sin2k(λ− λ0)) = Gk(sin2(λ− λ0)) = 4−k, (5.45)

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = 1

4k .
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Thus, multiplying the spectral density f by the non-negative trigonometric poly-
nomial sin2k(λ−λ0) of degree 2k (k ∈ N), yields a 4k-fold asymptotic reduction
of the prediction error.

Example 5.9. Let the function g be as in (5.33) with h(λ) = t1(λ) = 1, and
t2(λ) = sin2l(λ−λ0), where l ∈ N and λ0 is an arbitrary point from [−π, π], that
is, g(λ) = sin−2l(λ−λ0). Then, in view of the third equality in (7.14) and (5.45)
for the geometric mean G(g) we have

G(g) = G(sin−2l(λ− λ0)) = G−1(sin2l(λ− λ0)) = 4l, (5.46)

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = 4l.

Thus, dividing the spectral density f by the non-negative trigonometric poly-
nomial sin2l(λ− λ0) of degree 2l (l ∈ N), yields a 4l-fold asymptotic increase of
the prediction error.

Notice that the values of the geometric mean G(g) obtained in (5.45) and
(5.46) do not depend on the choice of the point λ0 ∈ [−π, π].

Putting together Examples 5.5–5.9 and using Proposition 7.8(a) we have the
following summary example.

Example 5.10. Let {X(t), t ∈ Z} be a stationary deterministic process with
a spectral density f satisfying the conditions of Theorem 5.12. Let h(λ) =
ceϕ(λ)(λ2 + 1), t1(λ) = sin2k(λ − λ1) and t2(λ) = sin2l(λ − λ2), where c is an
arbitrary positive constant, ϕ(λ) is an arbitrary odd function and λ1, λ2 are
arbitrary points from [−π, π]. Let the function g be defined as in (5.33), that is,

g(λ) = h(λ) · t1(λ)
t2(λ) = ceϕ(λ)(λ2 + 1)sin2k(λ− λ1)

sin2l(λ− λ2)
. (5.47)

Then, in view of Proposition 7.8(a) and relations (5.40)–(5.42) and (5.45)–(5.47),
we have

G(g) = G(h)G(t1)
G(t2)

= G(c)G(eϕ)G(λ2 + 1)G(sin2k(λ− λ1))G(sin−2l(λ− λ2))

= (c)(1) exp{ln(1 + π2) − 2 + 2
π

arctan π}(4−k)(4l) ≈ 3.3c4l−k, (5.48)

and in view of (5.30) and (5.48), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) ≈ 3.3c4l−k.

Example 5.11. Let the function g(λ) (λ ∈ Λ) be as in (5.34) with h(λ) = 1
and t(λ) = sin(λ − λ0), where λ0 is an arbitrary point from [−π, π], that is,
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g(λ) = | sin(λ−λ0)|α, α > 0. Then, according to Example 5.8, for the geometric
mean of sin2(λ− λ0) we have

G(sin2(λ− λ0)) = 1
4 . (5.49)

According to Proposition 7.8(a) and (5.49), for the geometric mean of g(λ), we
obtain

G(g) = G(| sin(λ− λ0)|α) = G
((

sin2(λ− λ0)
)α/2)

= Gα/2(sin2(λ− λ0)) = 1
2α , (5.50)

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) = 1

2α .

Thus, multiplying the spectral density f(λ) by the function g(λ) = | sin(λ−λ0)|α
yields a 2α-fold asymptotic reduction of the prediction error.

Example 5.12. Let the function g(λ) be as in (5.39) with h(λ) = 1 and q(λ) =
λ, that is, g(λ) = |λ|α, α ∈ R. By direct calculation we obtain

lnG(g) = 1
2π

∫ π

−π

ln |λ|α dλ = α

π

∫ π

0
lnλ dλ = α ln(π/e).

Therefore

G(g) = (π/e)α ≈ (1.156)α,

and in view of (5.30), we get

lim
n→∞

σ2
n(fg)
σ2
n(f) = G(g) =

(π
e

)α
≈ (1.156)α.

Thus, multiplying the spectral density f(λ) by the function g(λ) = |λ|α multi-
plies the prediction error asymptotically by (π/e)α ≈ (1.156)α.

It follows from Proposition 3.1(d) that the same asymptotic is true for the
prediction error with spectral density ḡ(λ) = |λ− λ0|α, λ0 ∈ [−π, π].

5.5.4. Rosenblatt’s second theorem revisited

We first analyze the Pollaczek-Szegő function fa(λ) given by (5.3) (cf. Pollaczek
[51] and Szegő [69]). We have

fa(λ) = 2e2λϕ(λ)e−πϕ(λ)

eπϕ(λ) + e−πϕ(λ) = 2e2λϕ(λ)

e2πϕ(λ) + 1
, 0 ≤ λ ≤ π, (5.51)
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where ϕ(λ) := ϕa(λ) = (a/2) cotλ. Observe that ϕ(λ) → +∞ as λ → 0+, and
we have

ϕ(λ) ∼ a/(2λ), e2λϕ(λ) ∼ ea, e2πϕ(λ) + 1 ∼ eaπ/λ as λ → 0+. (5.52)

Taking into account that fa(λ) is an even function, from (5.51) and (5.52) we
obtain the following asymptotic relation for fa(λ) in a vicinity of the point
λ = 0.

fa(λ) ∼ 2ea exp {−aπ/|λ|} as λ → 0. (5.53)

Next, observe that ϕ(λ) → −∞ as λ → π, and we have as λ → π

ϕ(λ) = −ϕ(π − λ) ∼ (−a/2)(π − λ), 2λϕ(λ) ∼ −aπ/(π − λ). (5.54)

In view of (5.51) and (5.54) we obtain the following asymptotic of the function
fa(λ) in a vicinity of the point λ = π.

fa(λ) ∼ 2e2λϕ(λ) ∼ 2 exp {−aπ/(π − λ)} as λ → π. (5.55)

Putting together (5.53) and (5.55), and taking into account evenness of fa(λ),
we conclude that

fa(λ) ∼
{

2ea exp {−aπ/|λ|} as λ → 0,
2 exp {−aπ/(π − |λ|)} as λ → ±π,

(5.56)

Thus, the function fa(λ) is positive everywhere except for points λ = 0,±π,
and has a very high order of contact with zero at these points, so that Szegő’s
condition (2.23) is violated implying that G(fa) = 0. Also, observe that fa(λ) is
infinitely differentiable at all points of the segment [−π, π] including the points
λ = 0,±π, and attains it maximum value of 1 at the points ±π/2. For some
specific values of the parameter a the graph of the function fa(λ) is represented
in Figure 3a).

For a > 0 and λ ∈ [−π, π], consider the pair of functions f̂1(λ) and f̂2(λ)
defined by formulas:

f̂1(λ) := exp {−aπ/|λ|} , f̂2(λ) := exp {−aπ/(π − |λ|)} . (5.57)

Observe that the function f̂1(λ) is positive everywhere except for point λ = 0
at which it has the same order of contact with zero as fa(λ), and hence G(f̂1) =
0. Also, f̂1(λ) is infinitely differentiable at all points of the segment [−π, π]
except for the points λ = ±π, where it attains its maximum value equal to e−a.
As for the function f̂2(λ), it is positive everywhere except for points λ = ±π, at
which it has the same order of contact with zero as fa(λ), and hence G(f̂2) = 0.
Also, f̂2(λ) is infinitely differentiable at all points of the segment [−π, π] except
for the point λ = 0, where it attains its maximum value equal to e−a. For some
specific values of the parameter a the graphs of functions f̂1(λ) and f̂2(λ) are
represented in Figure 4.
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Fig 3. a) Graph of the function fa(λ). b) Graph of the function f̂a(λ).

Fig 4. a) Graph of the function f̂1(λ). b) Graph of the function f̂2(λ).

Denote by f̂a(λ) the product of functions f̂1(λ) and f̂2(λ) defined in (5.57)
and normalized by the factor e4a:

f̂a(λ) := e4af̂1(λ)f̂2(λ) = e4a exp
{
−aπ2/(|λ|(π − |λ|))

}
, (5.58)

and observe that f̂a(λ) behaves similar to fa(λ). Indeed, the function f̂a(λ) also
is positive everywhere except for points λ = 0,±π, it is infinitely differentiable
at all points of the segment [−π, π] including the points λ = 0,±π, and attains
it maximum value of 1 at the points ±π/2. Also, in view of (5.56) and (5.58),
at points λ = 0,±π the function f̂a(λ) has the same order of zeros as fa(λ),
and hence G(f̂a) = 0. Thus, the process X(t) with spectral density f̂a(λ) is
deterministic. For some specific values of the parameter a the graph of the
function f̂a(λ) is represented in Figure 3b).
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Table 1

The values of constants Ĉ(a) and C(a)

a Γ2((a+1)/2)
π22−a Ĉ(a) C(a)

0.1 0.223 0.797 0.178
0.5 0.169 1.113 0.188
1.0 0.159 2.545 0.406
1.5 0.185 6.446 1.193
2.0 0.250 16.830 4.214
3.0 0.637 119.220 76.379
3.3 0.902 215.715 194.656

3.4 1.020 263.173 268.375
5.0 10.186 6128.990 62429.000
10.0 223256 1.104 ·108 2.428 ·1013

The functions fa(λ) and f̂a(λ) defined by (5.3) and (5.58), respectively, satisfy
the conditions of Theorem 5.15. Therefore, we have (see (5.38))

lim
n→∞

σ2
n(f̂a)

σ2
n(fa)

= G(f̂a/fa) := Ĉ(a) > 0. (5.59)

In view of (5.4) and (5.59) we have

σ2
n(f̂a) ∼ C(a) · n−a as n → ∞. (5.60)

where

C(a) := Γ2 ((a + 1)/2) Ĉ(a)
π22−a

. (5.61)

The values of the constants Ĉ(a) and C(a) for some specific values of the
parameter a are given in Table 1.

Now we compare the prediction errors σ2
n(f̂1) and σ2

n(f̂2) with σ2
n(fa). To

this end, observe first that the function g1(λ) := fa(λ)/f̂1(λ) has a very high
order of contact with zero at points λ = ±π, so that Szegő’s condition (2.23)
is violated, implying that G(g1) = 0. Besides, the function g1(λ) is continuous
on [−π, π], and hence g1 ∈ B−. Therefore, according to Proposition 5.4 b), we
have

σ2
n(fa) = o

(
σ2
n(f̂1)

)
as n → ∞. (5.62)

Similar arguments applied to the function f2(λ) yield

σ2
n(fa) = o

(
σ2
n(f̂2)

)
as n → ∞. (5.63)

The relations (5.62) and (5.63) show that the rate of convergence to zero of
the prediction errors σ2

n(f̂1) and σ2
n(f̂2) is less than the one for σ2

n(fa), that is,
the power rate of convergence n−a (see (5.60)). Thus, the rate of convergence
n−a is due to the joint contribution of all zeros λ = 0,±π of the function fa(λ),
whereas none of these zeros separately guarantees the rate of convergence n−a.
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6. An Application. Asymptotic behavior of the extreme eigenvalues
of truncated Toeplitz matrices

In this section we analyze the relationship between the rate of convergence to
zero of the prediction error σ2

n(f) and the minimal eigenvalue of a truncated
Toeplitz matrix generated by the spectral density f , by showing how it is pos-
sible to obtain information in both directions.

The problem of asymptotic behavior of the extreme eigenvalues of truncated
(finite sections) Toeplitz matrices goes back to the classical works by Kac, Mur-
doch and Szegő [42], Parter [49], Widom [74], and Chan [13], where the problem
was studied for truncated Toeplitz matrices generated by continuous and con-
tinuously differentiable functions (symbols). Since then the problem for various
classes of symbols was studied by many authors. For instance, Pourahmadi [52],
Serra [62, 63], and Babayan and Ginovyan [6] considered the problem in the
case where the symbol of Toeplitz matrix is not (necessarily) continuous nor
differentiable (see also Böttcher and Grudsky [11]). In this section, we review
and summarize some known results from the above cited references and state
some new results.

6.1. Extreme eigenvalues of truncated Toeplitz matrices

Let f(λ) be a real-valued Lebesgue integrable function defined on Λ := [−π, π],
Tn(f) := ||rk−j ||, j, k = 0, 1, ..., n, be the truncated Toeplitz matrix generated
by the Fourier coefficients of f , and let λ1,n(f) ≤ λ2,n(f) ≤ · · ·λn+1,n(f) be
the eigenvalues of Tn(f). We denote by mf := ess inff and Mf := ess supf the
essential minimum and the essential maximum of f , respectively. We will refer
to f(λ) as a symbol for the Toeplitz matrix Tn(f).

We first recall Szegő’s distribution theorem (see, e.g., Grenander and Szegő
[31], p. 64–65).

Theorem 6.1. For every continuous function F defined in [mf ,Mf ] the fol-
lowing asymptotic relation holds:

lim
n→∞

1
n + 1

n+1∑
k=1

F (λk,n(f)) = 1
2π

∫ π

−π

F (f(u)) du. (6.1)

Moreover, the spectrum of Tn(f) is contained in (mf ,Mf ), and

lim
n→∞

λ1,n(f) = mf and lim
n→∞

λn+1,n(f) = Mf . (6.2)

The problem of interest is to describe the rate of convergence in (6.2), de-
pending on the properties of the symbol f . In the following, without loss of
generality, we assume that mf := ess inff = 0. Also, we study the asymptotic
behavior of the minimum eigenvalue of Tn(f), for the maximum eigenvalue it is
sufficient to consider the minimum eigenvalue of the matrix Tn(−f).
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The rate of convergence of extreme eigenvalues has been studied by Kac,
Murdoch and Szegő [42], Parter [49], Widom [74] and Chan [13], under the
following regularity condition on f (see, e.g., Grenander and Szegő [31], Section
5.4(a), p. 72).

Condition A. Let f(λ), λ ∈ [−π, π] be real and periodic with period 2π,
satisfying the conditions:

(A1) f has a zero at λ = λ0 of order 2k (k ∈ N), that is, f(λ) � (λ− λ0)2k;
(A2) f is continuous and has continuous derivatives of order 2k in a neigh-

borhood of λ = λ0 with f (2k)(λ0) �= 0;
(A3) λ = λ0 is the unique zero of f in [−π, π].

Theorem 6.2 (Kac, Murdoch and Szegő [42]). Under Condition A the following
asymptotic relation holds:

λ1,n(f) 
 n−2k as n → ∞. (6.3)

Observe that conditions (A2) and (A3) are too restrictive which may be
hard to verify or may even be unsatisfied in some areas of application such
as prediction theory of stationary processes and signal processing, where f is
viewed as a spectral density of a stationary process.

By using new linear algebra tools, Serra [62] has extended Theorem 6.2, by
proving that the rate of convergence of λ1,n(f) depends only on the order of
the zero of f , but not (necessarily) on the smoothness of f (conditions (A2))
as required in Theorem 6.2. In particular, in Serra [62] was proved the following
result.

Proposition 6.1 (Serra [62], Corollary 2.1). Let f be a nonnegative integrable
function on [−π, π]. If f has a unique zero of order 2k at a point λ = λ0
(conditions (A1) and (A3)), then λ1,n(f) � n−2k.

Moreover, in Serra [64] this theory was further extended to the case of a
function f ∈ L1[−π, π] having several global minima (zeros) by suppressing
the condition (A3) as well, by showing that the maximal order of the zeros of
function f is the only parameter which characterizes the rate of convergence of
λ1,n(f) (see Serra [64], Theorem 4.2).

6.2. The relationship between the prediction error and the minimal
eigenvalue

Let X(t), t = 0,±1, . . ., be a stationary sequence possessing a spectral density
function f(λ), λ ∈ [−π, π], and let σ2

n(f) be the prediction error in predicting
X(0) by the past of X(t) of length n (see formula (3.1)).

The next proposition provides a relationship between the minimal eigenvalue
λ1,n(f) of a truncated Toeplitz matrix Tn(f) generated by spectral density f
and the prediction error σ2

n(f) (see Pourahmadi [52] and Serra [62]).
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Proposition 6.2. Let f , λ1,n(f) and σ2
n(f) be as above. Then for any n ∈ N

the following inequalities hold:

λ1,n(f) ≤ σ2
n(f) ≤ Mf

λ1,n(f)
λ1,n−1(f) . (6.4)

The first inequality in (6.4) was proved in Pourahmadi [52], while the proof
of the second inequality in (6.4) can be found in Serra [62].

Recall that for a stationary process X(t) with spectral density f(λ) by Ef we
denote the spectrum of X(t), that is, Ef := {λ : f(λ) > 0} (see (5.6)). Thus,
the closure Ef of Ef is the support of the spectral density f . Also, by τ∗(Ef )
we denote the outer transfinite diameter of the set Ef (defined by (7.8)).

The following theorem is an immediate consequence of Theorem 5.8(b) and
Proposition 6.2 (cf. Pourahmadi [52].)

Theorem 6.3. Let f , λ1,n(f) and τ∗(Ef ) be as above. Then the following
inequality holds:

lim sup
n→∞

2n
√
λ1,n(f) ≤ τ∗(Ef ). (6.5)

Thus, in order that the minimal eigenvalue λ1,n(f) should decrease to zero at
least exponentially as n → ∞, it is sufficient that the outer transfinite diameter
of the spectrum of the process X(t) be less than 1. As such the continuity and
differentiability of spectral density f are not required for the exponential rate
of convergence of the minimal eigenvalue λ1,n(f) to zero.

Now we proceed to discuss two specific models of deterministic processes,
for which one can obtain more information on the rate of convergence of the
minimal eigenvalue λ1,n(f) to zero as n → ∞ from that of prediction error
σ2
n(f). Notice that, for the first model, the spectral density f of the process is

discontinuous and has uncountably many zeros, while, for the second model, the
function f has a zero of exponential order at points 0,±π. Therefore, in both
cases, Condition A of Kac, Murdoch and Szegő is violated.

6.2.1. A model with spectral density f which is discontinuous, zero on an
interval, and positive elsewhere

Let X(t) be a stationary process for which the support Ef of the spectral density
f(λ) is as in Examples 5.1–5.4. Then, we can apply Theorems 5.9 and 6.3 to
obtain asymptotic estimates for the minimal eigenvalue λ1,n(f).

In the next theorem we state the result in the cases where the support Ef

of f is as in Examples 5.1 and 5.3, similar estimates can be stated in the cases
where Ef is as in Examples 5.2 and 5.4.

Theorem 6.4 (Babayan and Ginovyan [6]). Let Ef be the support of the spectral
density f of a stationary process X(t). Then for the the minimal eigenvalue
λ1,n(f) of Tn(f) the following asymptotic estimates hold.
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(a) If Ef = Γ2α(θ0), where Γ2α(θ0) is as in Example 5.1, then

lim sup
n→∞

n

√
λ1,n(f) ≤ sin2 (α/2) . (6.6)

(b) If Ef = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 5.3, then

lim sup
n→∞

n

√
λ1,n(f) ≤ sin(α/2) sin(α/2 + δ). (6.7)

It is important to note that in Theorem 6.4 the essential infimum mf = 0
is attained at uncountably many points, and the spectral density f , in general,
is not continuous on Ef or at the endpoints of Ef . Thus, f does not satisfy
Condition A and yet the rate of convergence of λ1,n(f) to zero is much faster
than in (6.3).

Using Davisson’s theorem (Theorem 5.10) and its extension (Theorem 5.11)
we obtain exact upper bounds for the minimal eigenvalue λ1,n(f) rather than
the asymptotic estimates (6.6) and (6.7).

Theorem 6.5 (Babayan and Ginovyan [6]). Let Ef be the support of the spectral
density f of a stationary process X(t). Then for the minimal eigenvalue λ1,n(f)
the following inequalities hold.

(a) If Ef = Γ2α(θ0), where Γ2α(θ0) is as in Example 5.1, then in view of (5.26)
and the first inequality in (6.4) we have

λ1,n(f) ≤ 4c (sin(α/2))2n−2
, (6.8)

where c = r(0) and r(·) is the covariance function of X(t).
(b) If Ef = Γα,δ(θ0), where Γα,δ(θ0) is as in Example 5.3, then in view

of (5.27) and the first inequality in (6.4) we have

λ1,n(f) ≤ 4c (sin(α/2))n−1 (sin(α/2 + δ))n−1
. (6.9)

6.2.2. A model with spectral density f possessing exponential order zero

Let X(t) be a stationary process with spectral density fa given by formula (5.3),
that is, fa is the Pollaczek-Szegő function. As it was observed (see (5.5))

fa(λ) ∼
{

2ea exp {−aπ/|λ|} as λ → 0,
2 exp {−aπ/(π − |λ|)} as λ → ±π.

Thus, the function fa in (6.10) has a zero at points x = 0,±π of exponential
order and is positive elsewhere (mf = 0 < Mf ). Then by Theorem 5.2 we have

δn(fa) = σ2
n(fa) ∼ n−a as n → ∞. (6.10)

Now, by using the first inequality in (6.4), from (6.10) we conclude that

λ1,n(fa) = O
(
n−a

)
as n → ∞. (6.11)

Thus, by choosing a large enough one can obtain a very fast rate of convergence
of λ1,n(fa) to zero as n → ∞.
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Remark 6.1. The asymptotic relation (6.11) remains valid for more general
models. Indeed, let X(t) be a stationary process with spectral density given by
f(λ) = fa(λ)g(λ), where fa(λ) is as in (5.3), and g(λ) is a function satisfying the
conditions of one of Theorems 5.12, 5.13, 5.14, 5.16 or Corollary 5.4. Then for
the minimal eigenvalue λ1,n(f) of a truncated Toeplitz matrix Tn(f) generated
by spectral density f , we have

λ1,n(f) = O
(
n−a

)
as n → ∞.

More results concerning asymptotic behavior of the extreme eigenvalues of
truncated Toeplitz matrices can be found in Böttcher and Grudsky [11], and
Serra [62]–[64]). Observe that in the above models information from the theory
of stationary processes was used to find linear-algebra results.

7. Tools

In this section we briefly discuss the tools, used to prove the results stated in
Sections 4 and 5 (see Babayan and Ginovyan [4]–[6], and Babayan et al. [7].

7.1. Some metric characteristics of bounded closed sets in the plane

We introduce here some metric characteristics of bounded closed sets in the
plane, such as, the transfinite diameter, the Chebyshev constant, and the ca-
pacity, and discuss some properties of these characteristics. Then, we state the
theorems of Fekete and Robinson on the transfinite diameters of related sets as
well as an extension of Robinson’s theorem.

7.1.1. The transfinite diameter, the Chebyshev constant and the capacity

One of the fundamental results of geometric complex analysis is the classical
theorem by Fekete and Szegő, stating that for any compact set F in the complex
plane C the transfinite diameter, the Chebyshev constant and the capacity of F
coincide, although they are defined from very different points of view. Namely,
the transfinite diameter of the set F characterizes the asymptotic size of F ,
the Chebyshev constant of F characterizes the minimal uniform deviation of a
monic polynomial on F , and the capacity of F describes the asymptotic behavior
of the Green function at infinity. For the definitions and results stated in this
subsection we refer the reader to the following references: Fekete [19], Goluzin
[28], Chapter 7, Kirsch [43], Landkof [48], Chapter II, Ransford [57], Chapter 5,
Saff [61], Szegő [70], Chapter 16, and Tsuji [71], Chapter III.

Transfinite diameter. Let F be an infinite bounded closed (compact) set in
the complex plane C. Given a natural number n ≥ 2 and points z1, . . . , zn ∈ F ,
we define

dn(F ) := max
z1,...,zn∈F

⎡⎣ n∏
1≤j<k≤n

|zj − zk|

⎤⎦2/[n(n−1)]

, (7.1)
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which is the maximum of products of distances between the
(
n
2

)
= n(n− 1)/2

pairs of points zk, k = 1, . . . , n, as the points zk range over the set F . The
quantity dn(F ) is called the nth transfinite diameter of the set F . Note that
d2(F ) is the diameter of F , and dn(F ) ≤ d2(F ). Observe that the sequence
dn(F ) is non-increasing and non-negative, so has a finite limit as n → ∞ which
does not exceed the diameter d2(F ) of F (see, e.g., Goluzin [28], p. 294). This
limit, denoted by d∞(F ), is called the transfinite diameter of F . Thus, we have

d∞(F ) := lim
n→∞

dn(F ). (7.2)

If F is empty or consists of a finite number of points, we put d∞(F ) = 0.
Chebyshev constant. Let F be as before, we put mn(F ) := inf maxz∈F |qn(z)|,

where the infimum is taken over all monic polynomials qn(z) from the class Qn,
where Qn is as in (3.3). Then there exists a unique monic polynomial Tn(z, F )
from the class Qn, called the Chebyshev polynomial of F of order n, such that

mn(F ) = max
z∈F

|Tn(z, F )|. (7.3)

Fekete [19] proved that limn→∞(mn(F ))1/n exists. This limit, denoted by τ(F ),
is called the Chebyshev constant for the set F . Thus,

τ(F ) := lim
n→∞

(mn(F ))1/n. (7.4)

Capacity (logarithmic). Let F be as above, and let DF denote the comple-
mentary domain to F , containing the point z = ∞. If the boundary Γ := ∂DF

of the domain DF consists of a finite number of rectifiable Jordan curves, then
for the domain DF one can construct a Green function GF (z,∞) := GDF

(z,∞)
with a pole at infinity. This function is harmonic everywhere in DF , except at
the point z = ∞, is continuous including the boundary Γ and vanishes on Γ. It
is known that in a vicinity of the point z = ∞ the function GF (z,∞) admits
the representation (see, e.g., Goluzin [28]), p. 309–310):

GF (z,∞) = ln |z| + γ + O(z−1) as z → ∞. (7.5)

The number γ in (7.5) is called the Robin constant of the domain DF , and the
number

C(F ) := e−γ (7.6)
is called the capacity (or the logarithmic capacity) of the set F .

Now we are in position to state the above mentioned fundamental result of
geometric complex analysis, due to M. Fekete and G. Szegő (see, e.g., Goluzin
[28], p. 197 and Tsuji [71], p. 73).

Proposition 7.1 (Fekete-Szegő theorem). For any compact set F ⊂ C, the
transfinite diameter d∞(F ) defined by (7.2), the Chebyshev constant τ(F ) de-
fined by (7.4), and the capacity C(F ) defined by (7.6) coincide, that is,

d∞(F ) = C(F ) = τ(F ). (7.7)
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It what follows, we will use the term ’transfinite diameter’ and the notation
τ(F ) for (7.7).

The calculation of the transfinite diameter (and hence, the capacity and the
Chebyshev constant) is a challenging problem, and in only very few cases has the
transfinite diameter been exactly calculated (see, e.g., Landkof [48], p. 172–173,
Ransford [57], p.135, and also Examples 5.1–5.4).

In the next proposition we list a number of properties of the transfinite di-
ameter (and hence, of the capacity and the Chebyshev constant), which were
used to prove the results stated in Section 5.3.
Proposition 7.2. The transfinite diameter possesses the following properties.
(a) The transfinite diameter is monotone, that is, for any closed sets F1 and

F2 with F1 ⊂ F2, we have τ(F1) ≤ τ(F2) (see, e.g., Saff [61], p. 169, Tsuji
[71], p. 56).

(b) If a set F1 is obtained from a compact set F ⊂ C by a linear transforma-
tion, that is, F1 := aF + b = {az + b : z ∈ F}, then τ(F1) = |a|τ(F ).
In particular, the transfinite diameter τ(F ) is invariant with respect to
parallel translation and rotation of F (see, e.g., Goluzin [28], p. 298, Saff
[61], p. 169, Tsuji [71], p. 56).

(c) The transfinite diameter of an arbitrary circle of radius R is equal to its
radius R. In particular, the transfinite diameter of the unit circle T is
equal to 1 (Tsuji [71], p. 84).

(d) The transfinite diameter of an arc Γα of a circle of radius R with central
angle α is equal to R sin(α/4). In particular, for the unit circle T, we have
τ(Γα) = sin(α/4) (Tsuji [71], p. 84).

(e) The transfinite diameter of an arbitrary line segment F is equal to one-
fourth its length, that is, if F := [a, b], then τ(F ) = τ([a, b]) = (b − a)/4.
(see, e.g., Tsuji [71], p. 84).

The inner and outer transfinite diameters. τ -measurable sets. For an arbitrary
(not necessarily closed) bounded set E ⊂ C, we also define the inner and the
outer transfinite diameters, denoted by τ∗(E) and τ∗(E), respectively, as follows
(see, e.g., Babayan [2], Korovkin [47]):

τ∗(E) := sup
F⊂E

τ(F ) and τ∗(E) := τ(E), (7.8)

where the supremum is taken over all compact subsets F of the set E, and E
stands for the closure of E. Observe that τ∗(E) ≤ τ∗(E). The set E for which
τ∗(E) = τ∗(E) is said to be τ -measurable, and in this case, we write τ(E) for
the common value: τ(E) = τ∗(E) = τ∗(E).

7.1.2. Transfinite diameters of related sets

We state here the theorems of Fekete [19] and Robinson [58] on the transfinite
diameters of related sets, as well as, an extension of Robinson’s theorem.

The following classical theorem about the transfinite diameter of related sets
was proved by Fekete [19] (see also Goluzin [28], pp. 299–300).



714 N. M. Babayan and M. S. Ginovyan

Proposition 7.3 (Fekete’s theorem, Fekete [19]). Let F be a bounded closed
set in the complex w-plane Cw, and let p(z) := pn(z) = zn + c1z

n−1 · · · + cn
be an arbitrary monic polynomial of degree n. Let F ∗ be the preimage of F in
the z-plane Cz under the mapping w = p(z), that is, F ∗ is the set of all points
z ∈ Cz such that w := p(z) ∈ F . Then

τ(F ∗) = [τ(F )]1/n, (7.9)

where τ(F ) and τ(F ∗) stand for the transfinite diameters of the sets F and F ∗,
respectively.

Observe that if in Fekete’s theorem the mapping is carried out by an arbi-
trary (not necessarily monic) polynomial of degree n: p(z) := pn(z) = azn +
a1z

n−1 · · · + an (a �= 0), then we have

τ(F ∗) = [τ(F )/|a|]1/n. (7.10)

In Robinson [58], Fekete’s theorem was extended to the case where the mapping
is carried out by a rational function instead of a polynomial. More precisely, in
Robinson [58] was proved the following theorem.

Proposition 7.4 (Robinson’s theorem, Robinson [58]). Let p(z) := pn(z) =
zn + a1z

n−1 · · ·+ an and q(z) := qk(z) be arbitrary relatively prime polynomials
of degrees n and k, respectively, with k < n. Let F be a bounded closed set in the
complex w-plane Cw, and let F ∗ be the preimage of F in the z-plane Cz under
the mapping w = ϕ(z) := p(z)/q(z). Assume that |q(z)| = 1 for all z ∈ F ∗.
Then

τ(F ∗) = [τ(F )]1/n. (7.11)

Remark 7.1. It is clear that the condition |q(z)| = 1 for all z ∈ F ∗ in Robin-
son’s theorem can be replaced by the condition |q(z)| = C for all z ∈ F ∗ with
an arbitrary positive constant C, and, in this case, the relation (7.11) becomes
τ(F ∗) = [Cτ(F )]1/n.

Observe that in the special case where q(z) ≡ 1, Robinson’s theorem reduces
to the Fekete theorem (Proposition 7.3). Another case of special interest is
p(z) = z2 + 1 and q(z) = 2z. In this case, the mapping given by the rational
function

ϕ(z) := p(z)
q(z) = 1

2

(
z + 1

z

)
projects the subsets of the unit circle T := {z ∈ C : |z| = 1} onto the real axis
R, and, in view of Remark 7.1, Robinson’s theorem (Proposition 7.4) reads as
follows.

Proposition 7.5 (Robinson [58]). Let F be a bounded closed subset of the
complex plane C lying on the unit circle T and symmetric with respect to real
axis, and let F x be the projection of F onto the real axis. Then

τ(F ) = [2τ(F x)]1/2. (7.12)
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Remark 7.2. The examples given in Section 5.3.2 show that the formula (7.12)
gives a simple way to calculate the transfinite diameters of some subsets of the
unit circle T, based only on the formula of the transfinite diameter of a line
segment (see Proposition 7.2(e)).

7.1.3. An extension of Robinson’s theorem

As observed above, the condition |q(z)| = C for all z ∈ F ∗ in Robinson’s
theorem (Proposition 7.4) is too restrictive, and it essentially reduces the range
of applicability of the theorem into the following two cases:

(a) q(z) ≡ 1, and Robinson’s theorem reduces to the Fekete theorem.
(b) p(z) = z2 + 1 and q(z) = 2z, and, in this case, the rational function

ϕ(z) = (z2 + 1)/(2z) projects the subsets of the unit circle T onto the real axis
R.

Therefore, the question of extending Robinson’s theorem to the case where
the condition |q(z)| = M is replaced by a weaker condition becomes topical.
The next result, which was proved in Babayan and Ginovyan [6], provides such
an extension.

Proposition 7.6 (Babayan and Ginovyan [6]). Let the polynomials p(z), q(z),
the sets F , F ∗, and the mapping w = ϕ(z) := p(z)/q(z) be as in Proposition 7.4,
and let m := minz∈F∗ |q(z)| and M := maxz∈F∗ |q(z)|. Then the following in-
equalities hold:

[mτ(F )]1/n ≤ τ(F ∗) ≤ [Mτ(F )]1/n. (7.13)

Remark 7.3. If the condition |q(z)| = C is satisfied for all z ∈ F ∗, then
we have m = M = C, and Proposition 7.6 reduces to Robinson’s theorem
(Proposition 7.4).

Remark 7.4. Proposition 7.6 can easily be extended to the more general case
where p(z) := pn(z) is an arbitrary (not necessarily monic) polynomial of degree
n: p(z) = azn+a1z

n−1 · · ·+an, a �= 0. Indeed, in this case, canceling the fraction
ϕ(z) := p(z)/q(z) by a, we get ϕ(z) := p1(z)/q1(z), where now p1(z) = p(z)/a =
zn + lower order terms, is a monic polynomial. Also, we have minz∈F∗ |q1(z)| =
m/|a| and maxz∈F∗ |q1(z)| = M/|a|, where m and M are as in Proposition 7.6.
Hence we can apply the inequality (7.13) to obtain[

m

|a|τ(F )
]1/n

≤ τ(F ∗) ≤
[
M

|a|τ(F )
]1/n

.

7.2. Weakly varying sequences

We introduce here the notion of weakly varying sequences and state some of
their properties (see Babayan et al. [7]). This notion was used in the specifi-
cation of the class F of deterministic processes considered in Section 5.5 (see
formula (5.29)).
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Definition 7.1. A sequence of non-zero numbers {an, n ∈ N} is said to be
weakly varying if

lim
n→∞

an+1/an = 1.

For example, the sequence {nα, α ∈ R, n ∈ N} is weakly varying (for α < 0 it
is weakly decreasing and for α > 0 it is weakly increasing), while the geometric
progression {qn, 0 < q < 1, n ∈ N} is not weakly varying.

In the next proposition we list some simple properties of the weakly varying
sequences, which can easily be verified.

Proposition 7.7. The following assertions hold.

(a) If an is a weakly varying sequence, then limn→∞ an+ν/an = 1 for any
ν ∈ N.

(b) If an is such that limn→∞ an = a �= 0, then an is a weakly varying se-
quence.

(c) If an and bn are weakly varying sequences, then can (c �= 0), aαn (α ∈
R, an > 0), anbn and an/bn also are weakly varying sequences.

(d) If an is a weakly varying sequence, and bn is a sequence of non-zero num-
bers such that limn→∞ bn/an = c �= 0, then bn is also a weakly varying
sequence.

(e) If an is a weakly varying sequence of positive numbers, then it is exponen-
tially neutral (see Definition 5.1(a) and Remark 5.5).

7.3. Some properties of the geometric mean and trigonometric
polynomials

Recall that a trigonometric polynomial t(λ) of degree ν is a function of the form:

t(λ) = a0 +
ν∑

k=1

(ak cos kλ + bk sin kλ) =
ν∑

k=−ν

cke
ikλ, λ ∈ R,

where a0, ak, bk ∈ R, c0 = a0, ck = 1/2(ak − ibk), c−k = ck = 1/2(ak + ibk),
k = 1, 2, . . . , ν.

Recall that for a function h ≥ 0 by G(h) we denote the geometric mean of
h (see formula (2.22)). In the next proposition we list some properties of the
geometric mean G(h) and trigonometric polynomials (see Babayan et al. [7]).

Proposition 7.8. The following assertions hold.

(a) Let c > 0, α ∈ R, f ≥ 0 and g ≥ 0. Then

G(c) = c; G(fg) = G(f)G(g); G(fα) = Gα(f) (G(f) > 0). (7.14)

(b) G(f) is a non-decreasing functional of f : if 0 ≤ f(λ) ≤ g(λ), then 0 ≤
G(f) ≤ G(g). In particular, if 0 ≤ f(λ) ≤ 1, then 0 ≤ G(f) ≤ 1.
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(c) (Fejér-Riesz theorem, see. e.g., Grenander and Szegő, Sec. 1.12). Let t(λ)
be a non-negative trigonometric polynomial of degree ν. Then there exists
an algebraic polynomial sν(z) (z ∈ C) of the same degree ν, such that
sν(z) �= 0 for |z| < 1, and

t(λ) = |sν(eiλ)|2. (7.15)

Under the additional condition sν(0) > 0 the polynomial sν(z) is deter-
mined uniquely.

(d) Let t(λ) and sν(z) be as in Assertion (c). Then G(t) = |sν(0)|2 > 0.
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