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tion. Despite this historical interweaving, it turned out that semimartin-
gales should be considered the ‘natural’ class of processes for many concepts
first developed in the Markovian framework. As an example, stochastic dif-
ferential equations have been invented as a tool to study Markov processes
but nowadays are treated separately in the literature. Moreover, the killing
of processes has been known for decades before it made its way to the
theory of semimartingales most recently.

We describe, when these and other important concepts have been in-
vented in the theory of Markov processes and how they where transferred
to semimartingales. Further topics include the symbol, characteristics and
generalizations of Blumenthal-Getoor indices. Some additional comments
on relations between Markov processes and semimartingales round out the
paper.
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1. Introduction

Brownian motion has been a starting point for several developments in the
theory of stochastic processes. In a way it is at the heart and the center of
the universe of processes. Brownian motion is a martingale, a Lévy process, a
Gaussian process, and finally it is both, Markovian and a semimartingale.

Several developments from Brownian motion to semimartingales took a de-
tour via Markov processes. Sometimes this was natural and in a way semi-
martingales were a further generalization coming from Markov processes. On
other occasions this was not the case: Markov processes have been at the cen-
ter of the studies in the field of stochastic processes at a certain time, and,
hence, questions which naturally belong to the theory of semimartingales were
somehow treated in the ‘wrong’ framework first. This is not surprising, since
the concept of semimartingales is much younger than the one of Markov pro-
cesses. Jarrow and Protter describe it as follows ([56], p.76): ‘The beginnings of
the theory of stochastic integration (...) were motivated and intertwined with
the theory of Markov processes’. In the subsequent sections we will see how the
Markovian world has influenced the development of semimartingales and – on
the other hand – how some concepts could have been invented directly in the
‘right’ framework.

We can not retell the whole story of Markov processes (or semimartingales).
We try to describe the most important steps from our point-of-view and give
detailed references wherever possible. Our focus is always on when and how
ideas from Markov processes were transferred to semimartingales.

The purpose of this paper is threefold: We would like to bring together results
from Markov processes and semimartingales. Two topics which are nowadays
treated separately most of the time but have had a close relationship in their
development. Secondly, the transition of the ideas and results from Markov
processes to semimartingales might serve as a blueprint in order to transfer
more results from one class of processes to another one. Thirdly, we provide a
platform for further research, in particular for younger researchers who are not
able to overlook the vast literature on the topics treated here.

In the subsequent section, we introduce the classes of processes under consid-
eration. We present a few historical details and fix the notation. Let us already
mention that neither the notation nor the classes’ names are uniform in the
literature, e.g. there are various classes which are called ‘Itô process’. Further-
more, dealing with ‘Feller semigroups’, some authors use the bounded continuous
functions as the basic space, while in the interplay with semimartingales, the
continuous functions vanishing at infinity are much more natural.
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In the third section we consider an aspect which is common in Markovian
theory: the exictence of a ‘killing point’ or ‘cemetery’. Blumenthal and Getoor
describe this intuitively as follows ([15], page 21): ‘we regard t �→ Xt(ω) as the
path (or trajectory) of a particle moving in the space E (...) until it dies at
which time it is transported to Δ where it remains forever.’ This concept is
transferred to the theory of semimartingales. It is not straightforward to carry
this out, since one of the main tools in semimartingale theory is to work locally.
This means that one finds a sequence of stopping times (approaching ∞) and
such that the stopped processes admit certain properties. It would be natural to
consider a sequence approaching the killing time of the process in the generalized
framework. This is not possible, since a jump to Δ can happen all of a sudden,
that is, the killing time might not be predictable. The idea is to separate the
killing into explosions and other kinds of killing (cf. [19] and [87]).

For Feller processes the infinitesimal generator contains a lot of information
concerning the process itself. For semimartingales the infinitesimal behavior is
described by the so called characteristics. In the fourth section we reconsider the
definition of the characteristics of a semimartingale as it is done in the classical
literature, moreover we consider semimartingales with killing which we have in-
troduced in Section 3 and the accompanying need for a new characteristic. In
particular, we state some historical facts concerning the semimartingale charac-
teristics together with some, from our point of view, important results on this
topic.

In Section 5 we recall the notion of the ‘symbol’ of a stochastic process which
generalizes the well-known characteristic exponent of the Lévy framework. If the
generator of a Feller process admits a sufficiently rich domain, it is a pseudo-
differential operator. In its Fourier representation, such an operator can be writ-
ten as the multiplication with the so called symbol. Jacob [45] came up with
the idea to use a probabilistic formula in order to calculate this symbol, without
even writing down the semigroup and the generator. Subsequently, it was shown
that this formula (or slight modifications of it) could be used to generalize the
symbol even beyond the Markovian framework and that the symbol still carries
information on the process.

The symbol can be used to generalize the Blumenthal-Getoor indices. We
describe this procedure in the sixth section and present some results on the
usability of these indices.

Stochastic differential equations (SDEs) where introduced to analyze Markov
process from a new perspective. However, stochastic integration, stochastic dif-
ferentials and SDEs have been generalized since then. In fact, there exist inter-
esting classes of SDEs with non-Markovian solutions. This topic is treated in
Section 7.

Section 8 contains several complementary topics, which we only sketch. They
all have in common that the interplay or connections between Markov processes
and semimartingales are investigated.

Notation: Most of the notation we are using is standard. In the context of
semimartingales we mainly follow [54]. Nevertheless, we want to state the most
important notations frequently used throughout this work: If not mentioned
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otherwise, we consider every stochastic process X := (Xt)t≥0 on a stochastic
basis (Ω,A, (At)t≥0, P) with values in (Rd, B(Rd)). We assume the filtration
(At)t≥0 to be right-continuous and complete with respect to P. That is, to
assure that every martingale can be assumed to càdlàg. The σ-algebra B(Rd)
is the σ-field of Borel sets. Let P be the σ-algebra on R+ × Ω generated by
all left-continuous adapted processes. We call this σ-algebra the ‘predictable’ σ-
algebra. Furthermore, we call a stochastic process predictable if it is measurable
with respect to P. We denote by ΔXt := Xt − Xt− the jump of the process
at time t ≥ 0, where Xt− := lims↑t Xs, and for a stopping time τ we call
Xτ := X1�0,τ� + Xτ1�τ,∞� the stopped process. Here, the stochastic interval
�τ, σ� for two stopping times τ, σ is defined by {(ω, t) ∈ Ω × R+ : τ(ω) ≤
t < σ(ω)}. The stochastic intervals �τ, σ�, �τ, σ�, �τ, σ� are defined alike. For
suitable processes H and Y the map H �→ H • Y denotes the stochastic integral
(Itô integral), and for a random measure μ and an appropriate function f we
define W ∗ μ to be the stochastic integral for a random measure (for more
details see Chapter I.4d resp. Chapter II.1a of [54]). For a, b ∈ R we define
a∧b := min{a, b} and a∨b := max{a, b}.Vectors are always meant to be column
vectors. The transposed vector or matrix is written as v′ or Q′.

2. The classes of processes under consideration

Since several classes of processes are important in our investigations, and since
some of these classes are not defined in a unique way in the literature, we have
decided to fix some definitions and notations in this section. Readers who are
familiar with these classes of processes may skip this section and get back to it
later if they want to check a certain definition. In the present paper all stochastic
processes under consideration take values in E ⊆ R

d, where one or two points of
no return are added. Admittedly, Markov processes could be treated in a more
general framework and there have been attempts to introduce more general state
spaces for semimartingales as well (cf. [67]). However, it seems that most of the
literature on semimartingales is still restricted to Euclidean space. The killing
of processes will later be treated separately, hence, the processes (Xt)t≥0 in this
section are all conservative, that is, P(Xt ∈ Rd) = 1 for every t ≥ 0.

A good interim class between Brownian motion on one side and Markov pro-
cesses respectively semimartingales on the other side are Lévy processes. These
are stochastic processes with values in R

d having stationary and independent
increments. In addition, it is demanded that the paths are càdlàg, that is, they
are right-continuous with finite left limits. There is a vast literature on these
processes, which are an interesting class on their own right, a building block for
more complicated classes of processes and the starting point for many investi-
gations considering Markov processes and semimartingales. Let us mention the
monographs [9] and [75] for details on this famous class of processes. One result
on Lévy processes is of particular interest for the following sections: It is a well
known fact that the characteristic function ϕZt : R

d → C of such a process
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Z = (Zt)t≥0 being started in z ∈ R
d can be written as (t ≥ 0)

ϕZt(ξ) = E
z
(
ei(Zt−z)′ξ

)
= E

0
(
eiZ

′
tξ
)

= e−tψ(ξ) (1)

where

ψ(ξ) = −i�′ξ + 1
2ξ

′Qξ −
∫
Rd\{0}

(
eiy

′ξ − 1 − iy′ξ · χ(y)
)
N(dy). (2)

Here, � ∈ R
d, Q is a positive semidefinite matrix, N the so called Lévy mea-

sure (cf. [75] (8.2)) and χ : Rd → R is a cut-off function. The function ψ is a
continuous negative definite function in the sense of Schoenberg (cf. [10], Sec-
tion 7). Functions of this kind will appear on several occasions subsequently.
The function ψ ist called characteristic exponent of the Lévy process.

In Section 6 we will deal with a particular subclass of Lévy processes, namely
(one-dimensional strictly) α-stable processes. These are Lévy processes Z with
characteristic function

ϕZt(ξ) = e−ct|ξ|α

with constants c > 0 and 0 < α ≤ 2. Compare in this context [75] Section 14.
Before we recall the definition of the most important class of processes under

consideration in this article, namely semimartingales, we have to reconsider
some fundamental classes of processes first: We denote by Md the set of all
local martingales with values in Rd, and by Md

0 all processes belonging to Md

and starting in 0. The class (V+)d contains all adapted, càdlàg processes with
increasing paths starting in 0 and values in R

d, similarly Vd denotes all adapted,
càdlàg processes with paths of finite variation starting in 0 and values in R

d.
The index d is omitted if we consider one-dimensional processes. Moreover,

for a class of processes C we denote by Cloc the localized class of C, i.e., a process
X belongs to Cloc if there exists an increasing sequence of stopping times (Tn)n∈N

such that limn→∞ Tn = ∞ a.s. and that each stopped process XTn belongs to
C.

Definition 2.1 (see Definitions I.4.21 of [54]). We call a stochastic process
X = (Xt)t≥0 on the stochastic basis (Ω,F , (Ft)t≥0,P) a semimartingale if it is
of the form

X = X0 + M + A,

where X0 is finite-valued and F0-measurable, M ∈ M0, and A ∈ V.
Moreover, we call a d-dimensional stochastic process Xt = (X(1)

t , ..., X
(d)
t )′ a

d-dimensional semimartingale if X(i) is a semimartingale for all i ∈ {1, ..., d},
and we denote by Sd the class of d-dimensional semimartingales.

By the famous Lévy-Itô decomposition (cf. [75] Chapter 4), every Lévy pro-
cess is a semimartingale (with respect to its natural filtration). While the term
‘semimartingale’ or ‘s-martingale’ was first used by Doob in [28] to denote what
we call nowadays sub- and supermartingale. The notion of semimartingales was
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introduced by Fisk in [31] under the name ‘quasimartingale’ to investigate nec-
essary and sufficient conditions for a stochastic process to posses a decomposi-
tion into the sum of a martingale and a process with paths of finite variation.
However, semimartingale and its application in stochastic integration was first
introduced by Meyer in [69] in 1967, where he defined a stochastic process X to
be a semimartingale if it is right-continuous and possesses a decomposition

X = M + A

into a martingale M and a stochastic process with paths of finite variation A.
Indeed, Meyer was inspired by the famous paper [63] by Kunita and Watanabe
who investigated a more general version of Itô’s formula, namely replacing the
Brownian motion by martingales which are not necessarily continuous. The non-
continuity led to a much more complicated form.

In his paper, which was one of four on the topic of stochastic integration,
Meyer was able to leave the Markovian framework behind. As the attentive
reader might have noticed, Meyer’s definition as stated above, is not the most
general definition as it is known today. This was introduced by Doléans-Dade
and Meyer [27] in 1970.

For a much more detailed look into the development of stochastic integration,
semimartingales and mathematical finance until 1970 we refer to the interesting
article [56].

Most textbooks which introduce semimartingales follow, in some sense, the
historical approach as stated above to define semimartingales. A different ap-
proach was taken by Protter in [72]. In contrast to Definition 2.1, Protter defined
semimartingales to be those processes for which the stochastic integral is contin-
uous (for a more precise definition see Chapter II.2 of [72]). Indeed, this provides
some advantages to the classical procedure, since the proofs of some important
results are much more intuitive. In the preface to the first edition to his book,
Protter emphasizes that this approach is originally due to Dellacherie [26]. By
the famous theorem of Bichteler and Dellacherie (see Theorem 43 of [72]), both
definitions of semimartingales are equivalent. Let us mention that there is a
Banach space valued theory of semimartingales and stochastic integration (cf.
[67]).

The second main class of process we consider are Markov processes: We call
a family X := (Ω,M, (Mt)t≥0, (Xt)t≥0, (θt),Px)x∈Rd Markov process if the fol-
lowing conditions hold

(M1) The mapping x �→ P
x(Xt ∈ B) is B(Rd)-measurable for all t ≥ 0 and

B ∈ B(Rd),
(M2) For all t, h ∈ R+ we have Xt ◦ θh = Xt+h, and
(M3)

P
x(Xt+s ∈ B | Mt) = P

Xt(Xs ∈ B) (MP)

for all x ∈ R
d, B ∈ B(Rd), and s, t ≥ 0.

We call (MP) the Markov property and the filtration (Mt)t≥0 the Markov filtra-
tion. In addition θt is called the (time-)shift-operator. We assume that M = M
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and (Mt)t≥0 = (Mt)t≥0 where M resp. Mt is the completion of M resp. Mt

with respect to {Px : x ∈ R
d} (cf. [15] Section I.5). Moreover, we assume all

filtrations encountered in the following to be right-continuous. Being Markovian
means in particular that the following formula holds

Pw
s,t(x,A) = P x

0,t−s(x,A) =: Pt−s(x,A), (3)

where Pw
s,t(x,A) is the regular version of Pw(Xt ∈ A |Xs = x) with w, x ∈ R

d,
s ≤ t and A is a Borel set in R

d. Markov processes of this kind are often
called Markov families or universal Markov processes (cf. [7], [48]). We assume
that every Markov process is normal, that is, Px(X0 = x) = 1. This is not a
severe restriction. Furthermore, we consider only R

d as state space, since we
are interested in the connection with semimartingales having values in the same
space. In Section 3 additional points outside the Euclidean space are considered.

In this context, Cad denotes the class of all processes Y ∈ C being additive:
We call a process Y additive on an interval [0,K] (in the literature also the term
additive functional is used) if Y0 = 0 and if for every s, t, s + t ∈ [0,K] it holds
true that Ys+t = Ys +Yt ◦ θs a.s.. Moreover, we define for a process Z and s ≥ 0
the so-called ‘big shifts’ Θs by (ΘsZ)t := Zt−s ◦ θs1[s,∞)(t) for t ≥ 0.

As usual, we associate a semigroup (Tt)t≥0 of operators on Bb(Rd), the
bounded Borel-measurable functions, with every (universal) Markov process by
setting

Ttu(x) := E
xu(Xt), t ≥ 0, x ∈ R

d.

For every t ≥ 0, Tt is a contractive, positivity preserving and sub-Markovian
operator on Bb(Rd). In order to use methods from functional analysis, we need
more structure on the underlying space. Therefore, (C∞(Rd), ‖·‖∞) denotes the
Banach space of all functions u : R

d → R which are continuous and vanish-
ing at infinity, that is, lim‖x‖→∞ u(x) = 0. We call (Tt)t≥0 a Feller semigroup
and (Xt)t≥0 a Feller process if the semigroup is strongly continuous, that is,
‖Ttu− u‖∞ → 0 for t ↓ 0, and if the following condition is satisfied:

Tt : C∞(Rd) → C∞(Rd) for every t ≥ 0. (4)

Without loss of generality we assume all Feller processes we encounter to be
càdlàg (cf. [74] Theorem III.2.7). This is natural, because we are dealing with
semimartingales all the time. The generator of the Feller process (A,D(A)) is
the closed operator given by

Au := lim
t↓0

Ttu− u

t
for u ∈ D(A) (5)

where the domain D(A) consists of all u ∈ C∞(Rd) for which the limit (5) exists
uniformly. A Feller process is called rich if C∞

c (Rd) ⊆ D(A), that is, the test
functions are contained in the domain of the generator. In the literature this
property is sometimes called ‘nice’ or (R).

A Markov process X is called Markov semimartingale if X is for every P
x a

semimartingale ([54] Definition I.4.21). If it is in addition quasi-left-continuous,
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it is called Hunt semimartingale. In [79], [88] it has been shown that every rich
Feller process is a Hunt semimartingale and even an Itô process in the sense of
Çinlar, Jacod, Protter and Sharpe [21], that is, a Markov semimartingale with
characteristics (cf. Definition 4.1) of the following form

B
(j)
t (ω) =

∫ t

0
�(j)(Xs(ω)) ds

C
(jk)
t (ω) =

∫ t

0
Q(jk)(Xs(ω)) ds

ν(ω; ds, dw) = N(Xs(ω), dw) ds

(6)

for every x ∈ R
d with respect to a fixed cut-off function χ. Here �(x) =

(�(j)(x))1≤j≤d ∈ R
d, Q(x) = (Q(jk)(x))1≤j,k≤d is a symmetric positive semidefi-

nite matrix, N(x, dw) is a measure on Rd\{0} such that
∫
w �=0(1∧‖w‖

2)N(x, dw)<
∞. We call �, Q and n :=

∫
w �=0(1 ∧ ‖w‖2) N(·, dw) the differential character-

istics of the process. The class of semimartingales (which are not necessarily
Markovian), having characteristics as described in (6) are called homogeneous
diffusions with jumps (cf. [54] Definition 3.2.18).

Lévy processes are exactly those Markov processes being homogeneous in
time and space (having càdlàg paths) and they are exactly the homogeneous
diffusion with jumps having deterministic differential characteristics.

For the readers convenience we include the following diagram (Figure 1),
parts of which have been presented in various of our papers ([83], [84], [86]).
Here, the abbreviation h.d.w.j stands for homogeneous diffusion with jumps
and every inclusion in this diagram is strict.

h.d.w.j ⊂ semimartingale
∪ ∪

Lévy ⊂ rich
Feller ⊂ Itô ⊂ Hunt

semimartingale ⊂ Markov
semimartingale

∩ ∩ ∩

Feller ⊂ Hunt ⊂ Markov

Fig 1. Relations between the classes of processes under consideration.

3. Killing of Markov processes and semimartingales

As we have mentioned above, historically, while exploring the area of semi-
martingales many researchers took properties of Markov processes as guidelines
for new results on semimartingales. The first topic on which we will emphasize
this procedure is the killing of processes. If Markov processes are defined via
martingale problems, or sub Markovian kernels, probability mass might be lost
over time. In this case one usually adds an ideal point ∂ to the state space E and
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allows for a transition to this graveyard or killing point (cf. [30] page 166). In this
case, ∂ is a point-of-no-return in the sense that, if Xs(ω) = ∂ then Xt(ω) = ∂ for
all t ≥ s. Moreover, the stopping time ζ(ω) := inf{t ≥ 0 : Xt(ω) = ∂} is called
the lifetime of the Markov process X. Although, well observed and understood,
the concepts of killing points and lifetimes were not integrated into the classical
theory of semimartingales for a long time.

In 2005 Cheridito, Filipović and Yor (see [19]) finally dealt with this topic:
Similar to the Markovian context the authors have considered a stochastic pro-
cess with values in a state space (E ∪ {∂}, E∂) where E is a closed subset of
R

d. They have set ‖∂‖ := ∞ and T∂ := inf{t ≥ 0 : Xt = ∂ or Xt− = ∂}. The
authors have discovered that a transition to ∂ occurs either by a jump or by an
explosion (see below). The main idea was to separate the space of paths depend-
ing on the kind of killing that occurs. To this end they have used a sequence of
stopping times. The processes they have considered are no semimartingales in
the usual sense. To turn them into classical semimartingales Cherdito et al. have
separated the killing state like the space of paths. Here, Δ denotes the state,
which is reached all of a sudden. They have picked an arbitrary point y in R\E
and set Δ := y. If E = R

d even an artificial new dimension was added in order
to include one of the points of no return into Euclidean space. Explosions can
not be treated in the same way. Hence, the authors have demanded that for an
announcing sequence of the explosion time, every stopped process is a classical
semimartingale. Summing up: They have dealt with two possible kinds of killing
in different ways, but in each case, they got rid of the points that are not in the
Euclidean space. Afterwards, they treated the process as in the classical theory
of semimartingales. Using this procedure, the information on killing is lost. One
can not write down a representation of the whole process, and the new process
is not canonical, because the point y can be chosen arbitrarily. In [87] Schnurr
has used the idea to separate the process considering the two ways of killing.
However, there Δ remains what it is, namely a point outside the Euclidean
space. Explosions can be treated by stopping along an announcing sequence.
A new characteristic is introduced, which describes the sudden killing. This is
in-line with the characteristic exponent of Lévy processes and allows to treat
the generator of Markov semimartingales via (four) characteristics.

In the following let E ⊆ R
d be a closed set, and let E be the Borel σ-field on E.

We equip E with the so-called killing points, namely, ∞ and Δ, lying outside Rd.
From a topological point-of-view E∪{∞} is the Alexandrov compactification of
E, afterwards one adds another singular point Δ to the (now compact) space.
Let Ẽ and Ẽ be the smallest σ-field on Ẽ containing E , {∞}, and {Δ}. We
consider a càdlàg stochastic process X on a stochastic basis (Ω,F , (Ft)t≥0,P)
with values in Ẽ. Moreover, we define FX

t := σ(Xs : s ≤ t) for t ∈ R+ and
FX=

∨
t FX

t . We establish the following calculation rules for the points ∞ and
Δ:

Definition 3.1. Let ∞ and Δ be as above. Then the following holds:

• ∞ + r = ∞ and Δ + r = Δ for r ∈ R
d and Δ + Δ = Δ, ∞ + Δ = Δ.

• Δ − r = Δ for r ∈ R
d ∪ {∞} and ∞− r = ∞ for r ∈ R

d.
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• Δ · r = Δ and ∞ · r = ∞ for r ∈ R
d \ {0} and Δ · 0 = 0, ∞ · 0 = 0.

• The Euclidean norm || · || of ∞ and Δ equals +∞.

Definition 3.2. Let (σ′
n)n∈N be an increasing sequence of stopping times de-

fined by
σ′
n := inf{t ≥ 0 : ||Xt|| ≥ n or ||Xt−|| ≥ n}.

We call (σ′
n)n∈N a separating sequence.

As the name of the sequence of stopping times indicates it provides a sepa-
ration between the two different ways in which the process X is able to leave
the classical space E and takes the values ∞ or Δ. The next definition shows
exactly this:

Definition 3.3. Let X be a stochastic process with separating sequence (σ′
n)n.

We define stopping times ζ∂ , ζΔ, ζ∞ and σn as follows

ζ∂ := inf{t ≥ 0 : Xt ∈ {Δ,∞}}

ζΔ :=
{
ζ∂ , if σ′

n = ζ∂ for some n ∈ N

∞, if σ′
n < ζ∂ for all n ∈ N

ζ∞ :=
{
ζ∂ , if σ′

n < ζ∂ for all n ∈ N

∞, if σ′
n = ζ∂ for some n ∈ N

σn :=
{
σ′
n, if σ′

n < ζ∂

∞, if σ′
n = ζ∂

.

The stopping time ζ∂ is the first time the process X leaves E, and, moreover,
the stopping time σ′

n stops the process at the time where its norm exceeds
n. Since, in the case where ζΔ is finite, it coincides with σ′

n for one n, one can
think of ζΔ as a sudden killing. Moreover, by the definition of ζ∞ the separating
sequence never equals ζ∂ (also when ζΔ is finite), and in this case one can think
of ζ∞ as some kind of explosion.

∞ Δ

Fig 2. Illustration of the explosion Killing. Fig 3. Illustration of the sudden Killing.

Let us mention that it might appear more canonical to separate between
predictable and totally inaccessible killing. In fact, this leads nowhere. The
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only useful separation in this case is ‘explosion vs. everything else’. Indeed,
the explosion time is predictable, thus, there is a sequence of stopping times
almost surely smaller than the explosion time and convergent from below to ζ∞

a.s.. This sequence is called announcing sequence. In order to be more general,
we allow a transition from ∞ to Δ, that is, we treat processes of the following
kind:

Definition 3.4. Let X be a stochastic process on (Ω,FX , (FX
t )t≥0,P) with

values in Ẽ. Moreover, let ζ∞ posses the announcing sequence (σn∧n)n and let
ζΔ be as above.

Then X is called a process with killing, if

X1�0,ζ∞� ⊆ E, X1�ζ∞,ζΔ� = ∞ and X1�ζΔ,∞� = Δ.

Thereby, we set [ζ∞(ω), ζΔ(ω)[= ∅ if ζ∞(ω) ≥ ζΔ(ω). In particular, if ζΔ =
+∞, we call X a process with explosion.

As an example for a process of this kind, one can consider the solution of a
SDE with locally Lipschitz coefficients. This solution might already have explo-
sion times. This process is then multiplied with another one, which is 1 until
an exponentially distributed killing time, sending it to Δ. In this case, a tran-
sition from ∞ to Δ is possible. A process of this kind is even a generalized
semimartingale (see below).

We now adapt the concept of killing to various classes of processes. Since
the main goal is to define semimartingales with killing, it is useful to define
processes with finite variation and martingales with killing also. The natural
way to do so is to demand a process to fulfill the required properties (i.e. the
finite variation or the martingale property) before it leaves the state space E.
We will later see that such a definition is what is required for a proper definition
of a semimartingale with killing.

Definition 3.5. Let X be a process with killing and killing times ζ∞, ζΔ, and
let (τn)n∈N be the announcing sequence of ζ∞.

We define for every n ∈ N the following stopping time

αn := τn ∧ ζΔ

and call the sequence (αn)n∈N the pre-explosion sequence of X.
Let C be a class of processes on a stochastic basis (Ω,F , (Ft)t≥0,P). We

denote by C† the set of all processes X with killing on (Ω,F , (Ft)t≥0,P) and
values in Ẽ such that X belongs to C on �0, αn� for all n ∈ N.

Definition 3.6. We call a stochastic process X̃ ∈ S† a generalized semimartin-
gale. Such a process possesses a decomposition of the form

X̃t = Xt + Kt

where (Xt)t≥0 is a process with explosion and Xαn−
t ∈ S for all n ∈ N and

(Kt(ω))t≥0 := (Δ · 1�ζΔ,∞�(ω, t))t≥0

is the so called killing process.
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Remark 3.7. Without loss of generality we are able to choose αn = ζΔ for all
n ∈ N if ζΔ < ζ∞. This is the case since τn ↑ ζ∞ for n → ∞.

With that, the following proposition obviously holds true:

Proposition 3.8. The process X̃ with killing and killing times ζ∞, ζΔ is a
generalized semimartingale if and only if

X̃t = X̃0 + Vt + Mt, t ≥ 0

for processes M ∈ L† and V ∈ V†.

The class of generalized semimartingales is big enough to contain various ex-
amples like Lévy processes with killing, solutions of SDEs with locally Lipschitz
coefficients and certain Markov processes defined by sub-Markovian kernels. Fur-
thermore, this class can be treated in a similar way as classical semimartingales.
Example 3.9. The characteristic exponent ψ of each Lévy process is a continuous
negative definite function in the sense of Schoenberg (cf. [10] Section 7). It is
a well-known fact in potential theory that each function of this class can be
represented in the following way:

φ(ξ) = a− i�′ξ + 1
2ξ

′Qξ −
∫
Rd\{0}

(
eiy

′ξ − 1 − iy′ξ · χ(y)
)
N(dy). (7)

That is, the component a > 0 does not have a stochastic counterpart in the
classical Lévy world. However, even with the additional component one can as-
sociate a stochastic process Z̃ with this characteristic exponent via (1). This
process is the Lévy process Z associated with (�,Q,N) with the following mod-
ification: with a we associate a killing time, which is exponentially distributed
with parameter a and independent of Z. The new process Z̃ (with killing) be-
haves like Z, but as soon as the killing time is reached, it jumps to Δ. In our
notation from above, this can be written as Z̃t = Zt + Kt where K = (Kt)t≥0
denotes the ‘killing process’ which only attains values in {0,Δ}.

4. Semimartingale characteristics

Markov processes can be analyzed or even characterized by their generator.
Lévy processes are in 1:1 correspondence with their exponential exponent (cf.
[75] Thm. 8.1 and Cor. 11.6). It is not a surprise that people felt the demand
to possess similar tools like this in the framework of semimartigales. This led to
the concept of semimartingale characteristics. All of these objects have in com-
mon that they describe the infinitesimal behavior of the stochastic process. The
search for indices or parameters of this kind can be traced back to Kolmogorov
[59].

Before we come to the definition of the characteristics for a generalized semi-
martingale, i.e., for a process with killing, we reconsider the characteristics of a
semimartingale in the classical sense: For a semimartingale X = X0 +M +A we
denote by Xc the continuous martingale part of X, i.e., the unique continuous
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martingale such that M = M0 + Xc + Md where Md is a purely discontinuous
local martingale. Moreover, for two locally square integrable martingales M,N
we define 〈M,N〉 to be the unique predictable process such that MN −〈M,N〉
is a local martingale. Let us recall, that a truncation-function h : Rd → R

d is
a measurable function with compact support which coincides with the identity
in a neighborhood of zero. Most of the time we write χ·id for the truncation
function h, where χ is measurable with compact support and equal to 1 in a
neighborhood of zero. A possible way to choose the cut-off functions χ in dif-
ferent dimensions m ∈ N is as follows: Take a one-dimensional cut-off function
χ : R → R and define for x ∈ R

m: χ̃(x) := χ(x(1)) · · ·χ(x(m)) as the product of
the one-dimensional cut-off function.

Let X be a d-dimensional semimartingale and h a truncation function. We
define two processes as follows:

Ẋ(h)t :=
∑
s≤t

(ΔXs − h(ΔXs)), t ≥ 0

X(h) := X − Ẋ(h).

A closer look on these processes and the truncation function h provides that
the stochastic process (ΔX − h(ΔX)) �= 0 only if there exists an ε > 0 such
that |ΔX| > ε. It follows that Ẋ is well-defined, since it is the sum of the big
jumps of X of which only countable-many exist pathwise. Moreover, the process
belongs to Vd, and we deduce that X(h) is a d-dimensional semimartingale.

By observing the jumps of X(h), we easily see that

ΔX(h) = ΔX − ΔẊ(h) = h(ΔX).

So it follows that ΔX(h) is bounded since h is. Therefore, X(h) is a special
semimartingale, i.e., a semimartingale with a predictable finite variation part,
by Proposition I.4.24 of [54] and possesses the following canonical decomposition

X(h) = X0 + M(h) + B(h), (8)

where M(h) ∈ Ld and B(h) ∈ Vd is predictable. With this, we are now able to
define the characteristics of a semimartingale.

Definition 4.1. Let h be a truncation function and X be a d-dimensional
semimartingale.

(i.) We define B := (B(1), ..., B(d))′ to be the predictable process B(h) defined
in (8).

(ii.) We define C := (C(ij))i,j≤d to be the continuous process belonging to
Vd×d defined by

C(ij) := 〈X(i),c, X(j),c〉

for i, j ∈ {1, ..., d}, where 〈·, ·〉 is the predictable quadratic covariation
defined in Theorem I.4.2 of [54].
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(iii.) We define the predictable random measure ν on R+ × R
d to be the pre-

dictable compensator (see Theorem II.1.8 of [54]) of the integer-valued
random measure μX .

We call the triplet (B,C, ν) the characteristics of X.

In some sense, the process B describes a predictable ‘drift’ of the semimartin-
gale X through time, C describes the ‘volatility’ of the continuous martingale
part X(i),c, and ν describes the rate of jumps. This resembles the characteristic
triplet of a Lévy process.
Remark 4.2. To our knowledge the first time that semimartinale characteristics
have been defined in the modern way was by Jacod and Mémin [53] in 1976. In
their work, the authors defined the characteristics almost as above but only con-
sidering the cut-off-function χ(x) = 1[0,1](|x|). They investigated how a change
of measure effects the characteristics of a semimartingale.

The first idea for the characteristics of a semimartingale dates back to Grige-
lionis [38] in 1971 or in English language in [37] in 1972. In order to investigate
problems like nonlinear filtering of stochastic processes or absolute continuity of
measures corresponding to stochastic processes Grigelionis wanted to consider
a wide class of stochastic processes for which one could naturally define local
coefficients of drift, diffusion and Lévy measure. Thus, in his paper Grigelionis
considered a càdlàg process (Xt)t≥0 with values in (Rd,B(Rd)) on a complete
stochastic basis (Ω,F , (Ft)t≥0,P), a function Π : R+ × Ω × B(Rd) → R where
Π(ω, t; dx) is B(R+) ⊗ F-measurable for fixed (t, ω), Π(T,Γ) is FT -measurable
for every (Ft)t≥0-stopping time T and every Borel set Γ. Moreover,

E

(∫ t

0
Π(s, Uε) ds

)
< ∞,E

(∫ t

0

∫
|x|≤1

|x|2Π(s, dx)ds
)

< ∞,

where t > 0, ε > 0 and ∑
s≤t

1Λ(ΔXs) −
∫ t

0
Π(s,Λ) ds

is a right continuous square integrable (Ft)t≥0-martingale, and Λ ∈ B(Rd)∩Uε.
Moreover Grigelionis considered a d-dimensional, product-measurable func-

tion bt : (Rd,B(Rd)) → (R,B(R)), and a d×d-dimensional, product-measurable
function ct : (Rd×d),B(Rd×d) → (R,B(R)) with

E

(∫ t

0
b2s ds

)
< ∞, E(ct) < ∞

and such that
X̃t −

∫ t

0
bs ds

is a continuous, d-dimensional, square-integrable martingale, and〈
X̃

(i)
t −

∫ t

0
bs ds, X̃

(i)
t −

∫ t

0
bs ds

〉
=
∫ t

0
ci,js ds
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with

X̃t := Xt − 2
∫ t

0

∫
{|x|≤1}

x

⎛⎝∑
u≤s

δΔXu
(dx)

⎞⎠ ds

−
∫ t

0

∫
{|x|≤1}

x

(∫ s

0
Π(u, dx) du

)
ds.

Grigelionis called processes X possessing characteristics as mentioned above
locally infinitely divisible stochastic processes. The characteristics of locally in-
finitely divisible stochastic process X as defined in modern times would be

Bt =
∫ t

0
bs ds

Ct =
∫ t

0
cs ds

ν(ω; dt, dx) = dt Π(ω, t; dx).

Nowadays, processes of this kind are called Itô semimartingales. Let us mention,
that estimating the characteristics of such processes by observing the process in
a high frequency regime has been a fruitful question in the theory of statistics
of stochastic processes (cf. [2], [3] and the references given therein).

As mentioned above, up to this point we considered the characteristics of a
classical semimartingale. But when working with generalized semimartingales
we have to redefine the three characteristics as follows.

Definition 4.3. Let X̃ be a d-dimensional generalized semimartingale with
killing times ζ∞, ζΔ and pre-explosion sequence (αn)n∈N and let (Bn, Cn, νn)
be the characteristics of the semimartingale X̃αn−.

We call the processes B and C, and the random measure ν the characteristics
of X̃ if they coincide with the characteristics (Bn, Cn, νn) of Xαn− on �0, αn�
for every n ∈ N.

Remark 4.4. (a.) Since the characteristics are unique up to an evanescent set,
and Xαn− = Xαn+1− on �0, αn� the characteristics of a generalized semi-
martingale are well-defined.

(b.) By the previous definition, the characteristics of a generalized semimartin-
gale are uniquely defined on �0, ζΔ ∧ ζ∞� only. Thus, we set

Ct(ω) = C(ζΔ(ω)∧ζ∞(ω))−(ω) ∀t ≥ (ζΔ ∧ ζ∞)(ω),
Bt(ω) = B(ζΔ(ω)∧ζ∞(ω))−(ω) ∀t ≥ (ζΔ ∧ ζ∞)(ω),
ν
(
ω, [ζΔ ∧ ζ∞(ω),∞[×E

)
= 0 ∀ω ∈ Ω.

For a classical semimartingale X the random measure ν compensates the
jumps of X. But it is obvious that we are not able to use ν to compensate a jump
with height ∞, namely the jump to Δ. Therefore, we are not able to use only
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the three characteristics (B,C, ν) to determine a generalized semimartingale X̃.
We are in the need of a new characteristic, and to this end it seems natural not
to compensate the jump to Δ itself, but to keep track, when this jump occurs.

Definition 4.5. Let X̃ be a generalized semimartingale with values in Ẽ and
stopping times ζ∞, ζΔ. We define the process (At)t≥0 to be the predictable
compensator of the process 1�ζΔ,∞�.

We call A the fourth characteristic of a generalized semimartingale, and,
moreover, the quadruple (A,B,C, ν) the characteristics of a generalized semi-
martingale.

Definition 4.6. Let X̃ be a generalized semimartingale with characteristics
(A,B,C, ν). We call X̃ an autonomous semimartingale if the characteristics are
of the form

At =
∫ t

0
a(X̃s) ds,

B
(i)
t =

∫ t

0
b(i)(X̃s) ds,

C
(ij)
t =

∫ t

0
c(ij)(X̃s) ds,

ν(ω; dt, dx) = K̃(X̃t(ω); dx) ds.

Lévy processes with killing (cf. Example 3.9) are exactly those autonomous
semimartingales having deterministic differential characteristics.

Having defined the characteristics of a generalized semimartingale, we want
to state some of the, in our point of view, most important results concerning
semimartingale characteristics. For the sake of readability, the proofs of the
subsequent results are shifted to the appendix.

The characteristics of X̃ are unique only up to an evanescent set, and thus
it is possible to modify the characteristics on such a set, in order to obtain
what we will call the ‘good’ version of (A,B,C, ν). The following theorem will
provide this version, and is one of the main results of this section. Indeed, it is
a generalization of Proposition II.2.9 of [54].

Theorem 4.7. Let X̃ be a generalized semimartingale with characteristics
(A′, B′, C ′, ν′). Then there exists a version (A,B,C, ν) of (A′, B′, C ′, ν′) sat-

isfying the following conditions:

At =
∫ t

0
as dFs (9)

B
(i)
t =

∫ t

0
b(i)s dFs (10)

C
(ij)
t =

∫ t

0
c(ij)s dFs (11)

ν(ω; dt, dx) = dFt(ω)Kω,t(dx), (12)



584 A. Schnurr and S. Rickelhoff

where we have

(i.) a predictable process F belonging to A+
loc,

(ii.) a predictable process a,
(iii.) a predictable process b = (b(1), ..., b(d))′,
(iv.) a predictable process c = (c(ij))i,j≤d taking values in the set of all sym-

metric, non-negative d× d-matrices,
(v.) a transition kernel Kω,t(dx) from (Ω×R+,P) into (Rd,B(Rd)) satisfying

• Kω,t({0}) = 0
•
∫

(|x|2 ∧ 1) Kω,t(dx) ≤ 1
• ΔAt(ω)Kω,t(Rd) ≤ 1.

Furthermore, the upper ‘good’ version of (A′, B′, C ′, ν′) satisfies

(1.) (C(ij)
t − C

(ij)
s )i,j≤d is a symmetric non-negative matrix for s ≤ t.

(2.) (|x|2 ∧ 1) ∗ ν ∈ Aloc and ν({t} × R
d) ≤ 1.

If we combine a generalized semimartingale with the stochastic basis of a
strong Markov process we are able to formulate the following stronger version
of the above theorem. It is based on Theorem 6.27 of [21].

Lemma 4.8. Let (Ω,M, (Mt)t≥0, (Xt)t≥0, (θt)t≥0,P
x)x∈Rd be a strong Markov

process, and let Y be a generalized P
x-semimartingale which is additive and

quasi-left continuous. Then the characteristics (A,B,C, ν) of Y are of the form

At =
∫ t

0
a(Xs) dFs (13)

B
(i)
t =

∫ t

0
b(i)(Xs) dFs (14)

C
(ij)
t =

∫ t

0
c(ij)(Xs) dFs (15)

ν(ω; dt, dx) = dFt(ω)K̃(Xt(ω); dx) (16)

where

(i.) F is continuous, additive, and belongs to V+(Px) for every P
x,

(ii.) a is B(R)d-measurable,
(iii.) b is B(R)d-measurable,
(iv.) c is B(R)d-measurable, d× d- dimensional, and takes values in the set of

all symmetric non-negative matrices,
(v.) K̃(ω, t; dx) is a transition kernel from (Ω × R+,O(Ht)) into (Rd,B(Rd))

with K̃({0}) = 0 and
∫

(|x|2 ∧ 1) K̃(dx) < ∞.

Theorem 4.9. Let X̃ be a d-dimensional generalized semimartingale with char-
acteristics (A,B,C, ν) relative to χ. Then X̃ possess the following ‘canonical’
representation:

X = X0 + Xc + (χ · id) ∗ (μX − ν) + (id(1 − χ)) ∗ μX + B + Δ1�ζΔ,∞�
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Theorem 4.10. Let X̃ be a process with killing and killing times ζ∞, ζΔ. Let
(τn)n∈N be the announcing sequence of ζ∞. The following two statements are
equivalent

(a.) X̃ is a generalized semimartingale with killing times ζ∞, ζΔ and pre-
explosion sequence (αn)n, and characteristics (A,B,C, ν).

(b.) The following processes are local martingales for each n ∈ N:
(i.) M(h)αn ,
(ii.)

(
M(h)(j)M(h)(k) − C̃jk

)αn for each 0 ≤ j, k ≤ d,

(iii.)
(
g ∗ μX̃αn− − g ∗ ν

)αn

for g ∈ C+(Rd),

(iv.) (1�ζΔ,∞� −A).

The proof of the previous two theorems are outlined in Section 2 of [87].

Notation 4.11. (i.) We denote the vector (1, ..., 1)′ ∈ R
d by writing 1.

(ii.) Let X̃ be a generalized semimartingale with values in Ẽ and characteristics
(A,B,C, ν). Let Xn := X̃αn− possess the characteristics (Bn, Cn, νn). We
define a complex-valued, predictable process Ln(u) by

Ln(u)t := eiu
′1·1

�ζΔ,∞� • At − iu′Bn
t − 1

2u
′Cn

t u

+
∫
Rd

(eiu
′x − 1 − iu′h(x)) νn([0, t] × dx), t ≥ 0.

Proposition 4.12. Let X̃ be a process with killing, possessing killing times
ζ∞, ζΔ. Let Xn be defined as before and Hn := Xn + 1 · 1�ζΔ,∞�. Then the
following statements are equivalent:

(a.) X̃ is a generalized semimartingale with characteristics (A,B,C, ν).
(b.) The process

eiu
′Hn − eiu

′Hn
• A− eiu

′Xn
− • Ln(u)

is a complex valued, local martingale for every n ∈ N.
(c.) The process

f(Hn) − f(X0) −
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Bn)(i)

− 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Xn
−)
)

• (Cn)(ij)

−
[
f(Xn

− + x) − f(Xn
−) −

d∑
i=1

(
∂

∂x(i) f(Xn
−)
)
h((Xn))(i)

]
∗ νn

− Δf(Hn) • A

is a local martingale for every n ∈ N and every function f ∈ C2
b (Rd).
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5. The symbol of a stochastic process

The so called ‘symbol’ of a stochastic process is another concept, which has
been used in the context of Markov processes before it was transferred to the
theory of semimartingals, a class to which it belongs – in a way – naturally. The
symbol has proved to be useful in order to derive properties of the process like
conservativeness (cf. [77], Theorem 5.5), strong γ-variation (cf. [82] Corollary
5.10), Hausdorff-dimension (cf. [78], Theorem 4), Hölder conditions [79], ultra-
contractivity of semigroups [80], laws of iterated logarithm [81] and stationary
distributions of Markov processes [8].

Again, we do not describe the whole history, but focus on the transition
from Markov processes to semimartingales. However, it is important to recall
that the notion of the symbol is much older and that it has not been invented
in the theory of stochastic processes: The term ‘symbol’ was first introduced
in the framework of singular integral operators by S.G. Michlin in the 1940s.
Later on, in the 1960s pseudo- differential operators emerged in analysis (c.f.
e.g. Hörmander [40]). Pseudo-differential operators are defined by their symbols.
Courrège [25] showed that the generator A of a rich Feller process (restricted to
the test functions C∞

c (Rd)) is a pseudo differential operator. In fact, Courrège
did not deal with stochastic processes. He proved that operators satisfying the
so called positive maximum principle are operators of this kind (cf. in this
context also von Waldenfels [91] and [92]). It was Jacob, who recognized that
the mentioned generators always fulfill this principle. Hence, Jacob ([49], [50])
introduced the notion of pseudo differential operators into the theory of Markov
processes: For rich Feller processes the generator A can be written as

Au(x) = −
∫
Rd

eix
′ξq(x, ξ)û(ξ) dξ, u ∈ C∞

c (Rd), (17)

where û(ξ) = (2π)−d
∫
e−iy′ξu(y)dy denotes the Fourier transform. Let us men-

tion that a simplified proof for (17) can be found in [17]. The function q :
R

d ×R
d → C is locally bounded and, for fixed x, a continuous negative definite

function in the sense of Schoenberg in the co-variable ξ (cf. [10] Chapter II).
This is equivalent to the fact that it admits a Lévy-Khintchine representation

q(x, ξ) = −i�′(x)ξ + 1
2ξ

′Q(x)ξ −
∫
w �=0

(
eiξ

′w − 1 − iξ′w · χ(w)
)
N(x, dw),

(18)

where �(x) = (�(1)(x), ..., �(d)(x))′, Q(x), N(x, dw) are as above in (6) and χ :
R

d → R is a cut-off function. The function q : R
d × R

d → C which is often
written as q(x, ξ) is called the symbol of the operator. For details on the rich
theory of the interplay between processes and their symbols we refer the reader
to [46, 47, 48] and for a survey on recent results to [17]. In the special case
of Lévy processes, the symbol and the characteristic exponent coincide. In the
framework of rich Feller processes, the conditions (G) and (S) play an important
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role: The growth condition is fulfilled if there exists a c > 0 such that

‖q(·, ξ)‖∞ ≤ c(1 + ‖ξ‖2) (G)

for every ξ ∈ R
d. The sector condition, which is needed only for some of the

results, is fulfilled if there exists a c0 > 0 such that for every x, ξ ∈ R
d

|�(q(x, ξ))| ≤ c0�(p(x, ξ)), (S)

where � resp. � denote the real resp. the imaginary part of the function.
There exists another perspective on the symbol: In [45] Jacob came up with

the idea to use a probabilistic formula in order to calculate the (functional
analytic) symbol defined above:

p(x, ξ) := − lim
t↓0

E
xei(Xt−x)′ξ − 1

t
. (19)

In [77] the classical formula has been generalized to rich Feller processes satis-
fying the properties (G) and (S). The focus in this work still was to present a
new way to calculate the functional analytic symbol q(x, ξ) in a context where
it already existed. In proving (19), ‘Markovianity’ enters essentially in form of
Dynkin’s formula (see [29] page 133 or [17] 1.55). That is, for the generator
(A,D(A)), u ∈ D(A) and a stopping time τ with E

x(τ) < ∞:

E
x(u(Xτ )) − u(x) = E

x

(∫ τ

0
Au(Xs) ds

)
.

Thus,
∫ t

0 Au(Xs) ds is the compensator of u(Xt) − u(x). Using Itô’s formula
on u(Xt) − u(x) one can write a compensator in terms of the semimartingale
characteristics. This is another point, where a Markovian concept morphs into
the semimartingale framework.

Leaving the Feller property and (G) behind, the symbol for quite general
Markov processes was calculated in [88] Chapter 4, namely for Itô processes.
Unlike in earlier papers, the proof relied on the semimartingale structure in
particular on the semimartingale characteristics (6). On the other hand, the
earlier results where included, since, as we have mentioned above, every rich
Feller process is an Itô process. The new idea of proof opened the door to define
the symbol for general semimartingales (cf. [88] Definition 4.3):

Definition 5.1. Let X be a stochastic process starting in x, which is conser-
vative, that is, the process does not admit a killing. Fix a starting point x and
define σ = σx

K to be the first exit time from a compact neighborhood K := Kx

of x:
σ := inf{t ≥ 0 : Xx

t /∈ K}.
For ξ ∈ Rd we call p : Rd × Rd → C given by

p(x, ξ) := − lim
t↓0

E
x e

i(Xσ
t −x)′ξ − 1

t
(20)
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the (probabilistic) symbol of the process, if the limit exists and coincides for
every choice of K.

Theorem 5.2. Let X be a homogeneous diffusion with jumps such that the
differential characteristics �, Q and n are continuous. In this case the limit (20)
exists and the symbol of X is

p(x, ξ) = −i�(x)′ξ + 1
2ξ

′Q(x)ξ −
∫
y �=0

(
eiy

′ξ − 1 − iy′ξ · χ(y)
)
N(x, dy). (21)

In fact, it is sufficient that the differential characteristics are locally bounded
and finely continuous. Fine continuity has its origins in the framework of Markov
processes (cf. [15] Section II.4 and [33]). Classical continuity is general enough
for all practical purposes. Since we have dealt with killing in the framework of
semimartingales already, we can also consider the following – more general –
version of the symbol, as it has been introduced in [87].

Dealing with the symbol, we could work on E with its relative topology. We
make things a bit easier by prolonging the process to R

d by setting Xt := x for
x ∈ R

d\E and t ≥ 0. Hence, from now on we assume that our processes live
on R

d respectively on R̃d = R
d ∪ {∞,Δ}. Starting with a process on E, local

boundedness and fine continuity of the differential characteristic are not harmed
by this extension.

Definition 5.3. Let X be an R̃d-valued semimartingale with respect to P
x

for every x ∈ R
d. Fix a starting point x ∈ R

d and let K ⊆ R
d be a compact

neighborhood of x. Define σ to be the first exit time of X from K:

σ := σx
K := inf

{
t ≥ 0 : Xt ∈ R̃d\K

}
. (22)

The function p : Rd × Rd → C given by

p(x, ξ) := − lim
t↓0

E
x
(
ei(X

σ
t −x)′ξ − 1

)
t

(23)

is called the (probabilistic) symbol of the process if the limit exists for every
x ∈ R

d, ξ ∈ R
d independently of the choice of K.

Let us emphasize, that the difference of the formulas (20) and (23) is that no
stopping time has been used and no killing was included (20). If we need the
symbol on R̃d, it is defined as follows: In Δ it is zero and in ∞ it is the local
killing rate (starting in ∞) limh↓0

P
∞(Xh=Δ)

h . The following result is Theorem
2.18 in [87].

Theorem 5.4. Let X be an autonomous semimartingale on R̃d such that the
differential characteristics a, �, Q and n are continuous for every Px (x ∈ Rd).
In this case the limit (20) exists and the symbol of X is

p(x, ξ) = a(x) − i�(x)′ξ + 1
2ξ

′Q(x)ξ −
∫
y �=0

(
eiy

′ξ − 1 − iy′ξ · χ(y)
)
N(x, dy).

(24)
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As in other contexts, it was possible to leave the Markov property behind.
Indeed, it would have been possible to define the symbol directly for semimartin-
gales, without any knowledge of the connection to the generator in the Marko-
vian framework. Coming from the Feller process theory, the formula (19) can be
interpreted as follows: One plugs the function y �→ ei(y−x)′ξ which is bounded,
measurable and complex valued into the generator (5). However, without this
interpretation, the probabilistic symbol can still be considered a natural object
in order to study the behavior of the process: If we forget about the minus sign
for a second, p(x, ξ) is the state space dependent right hand side derivative (in
time) of the characteristic function of the process (cf. (19)). Since the character-
istic function offers a unique way to describe the distribution at a certain point
in time, it is a natural idea to analyze the infinitesimal change of this function
in order to derive properties of the process. In the next section we will see some
examples on how the symbol can be used to do this.

6. Blumenthal-Getoor indices

For α-stable processes, there exists a natural index which can be related to dif-
ferent properties of the process (like Hausdorff dimension of the paths, strong
variation,...). The analysis of the interplay between the stability index α and
properties of this kind dates back to Bochner [16] and McKean [66]. Having
generalized these results to the multivariate framework in [13], Blumenthal and
Getoor [14] introduced in 1961 the indices which were named after them. These
indices allowed to analyse more general Lévy processes. In [73], Pruitt intro-
duced another index γ which complements the aforementioned indices. Schilling
generalized all of these indices to rich Feller processes satisfying (G) and (S).
Since the space homogeneity could be left behind, this has probably been the
biggest jump in the development of indices of this kind (cf. [79]).

In order to define the generalized Blumenthal-Getoor indices one uses the
following quantities for x ∈ R

d and R > 0:

H(x,R) := sup
‖y−x‖≤2R

sup
‖ε‖≤1

∣∣∣p(y, ε
R

)∣∣∣ (25)

H(R) := sup
y∈Rd

sup
‖ε‖≤1

∣∣∣p(y, ε
R

)∣∣∣ (26)

h(x,R) := inf
‖y−x‖≤2R

sup
‖ε‖≤1

�
(
p
(
y,

ε

4κR

))
(27)

h(R) := inf
y∈Rd

sup
‖ε‖≤1

�
(
p
(
y,

ε

4κR

))
(28)

In (27) and (28) κ = (4 arctan(1/2c0))−1 where c0 comes from the sector condi-
tion (S). In particular, h(x,R) and h(R) are only defined if (S) is satisfied and
only in this case they are used.

As one can see, the definition relies only on the symbol of the process. So,
having generalized the symbol to the world of homogeneous diffusions with
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jumps, it was easy to define these quantities and the related indices in this more
general framework. However, it was not clear, whether the close relationship
between indices of this kind and properties of the process would remain valid.

Definition 6.1. The quantities (cf. [79] Definitions 4.2 and 4.5)

β0 := sup
{
λ ≥ 0 : lim sup

R→∞
RλH(R) = 0

}
β0 := sup

{
λ ≥ 0 : lim inf

R→∞
RλH(R) = 0

}
δ0 := sup

{
λ ≥ 0 : lim sup

R→∞
Rλh(R) = 0

}
δ0 := sup

{
λ ≥ 0 : lim inf

R→∞
Rλh(R) = 0

}
are called indices of X at the origin, while

βx
∞ := inf

{
λ > 0 : lim sup

R→0
RλH(x,R) = 0

}
βx
∞ := inf

{
λ > 0 : lim inf

R→0
RλH(x,R) = 0

}
δx∞ := inf

{
λ > 0 : lim sup

R→0
Rλh(x,R) = 0

}
δx∞ := inf

{
λ > 0 : lim inf

R→0
Rλh(x,R) = 0

}
are the indices of X at infinity.

Here, ‘origin’ refers to ξ = 0 relative to the symbol, and ‘infinity’ refers to
|ξ| → ∞. In the case of symmetric α-stable processes all indices coincide and
they are equal to α. For so called stable-like Feller processes (cf. [6], [71]) with
uniformly bounded exponential function, that is, 0 < α0 ≤ α(x) ≤ α∞ < 1, one
obtains β0 = β0 = α0 and δ0 = δ0 = α∞ (see [79] Example 5.5).

In order to use the symbol and the related indices to derive properties of
the process, the following proposition is the key ingredient. Similar results were
proved for Lévy processes by Pruitt in [73] and for rich Feller processes satisfy-
ing (G) and (S) by Schilling in [79]. The version presented here is taken from
Schnurr [83]. Surprisingly enough, the Markov property was not needed in order
to derive results of this kind. We write

(X· − x)∗t := sup
s≤t

‖Xs − x‖ , t ≥ 0

for the maximum process.

Proposition 6.2. Let X be a homogeneous diffusion with jumps such that the
differential characteristics of X are locally bounded and finely continuous. In
this case we have

P
x
(
(X· − x)∗t ≥ R

)
≤ cd · t ·H(x,R) (29)
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for t ≥ 0, R > 0 and a constant cd > 0 which can be written down explicitly and
only depends on the dimension d.

If (S) holds in addition, we have

P
x
(
(X· − x)∗t < R

)
≤ cκ · 1

t
· 1
h(x,R) (30)

for a constant cκ only depending on the c0 of the sector condition (S).

Using this result and standard Borel-Cantelli techniques one obtains the fol-
lowing two theorems which describe the behavior of the process at infinity re-
spectively zero. Let us mention again that no Markov property is needed in
order to derive these results. The whole theory relies only on the semimartin-
gale structure.

Theorem 6.3. Let X be a homogeneous diffusion with jumps such that the
differential characteristics of X are locally bounded and finely continuous. Then
we have

lim
t→∞

t−1/λ(X· − x)∗t = 0 for all λ < β0 (31)

lim inf
t→∞

t−1/λ(X· − x)∗t = 0 for all β0 ≤ λ < β0. (32)

If the symbol p of the process X satisfies (S), then we have in addition

lim sup
t→∞

t−1/λ(X· − x)∗t = ∞ for all δ0 < λ ≤ δ0 (33)

lim
t→∞

t−1/λ(X· − x)∗t = ∞ for all δ0 < λ. (34)

All these limits are meant Px-a.s with respect to every x ∈ R
d.

Theorem 6.4. Let X be a homogeneous diffusion with jumps such that the
differential characteristics of X are locally bounded and finely continuous. Then
we have

lim
t→0

t−1/λ(X· − x)∗t = 0 for all λ > βx
∞ (35)

lim inf
t→0

t−1/λ(X· − x)∗t = 0 for all βx
∞ ≥ λ > βx

∞. (36)

If the symbol p of the process X satisfies (S) then we have in addition

lim sup
t→0

t−1/λ(X· − x)∗t = ∞ for all δx∞ > λ ≥ δx∞ (37)

lim
t→0

t−1/λ(X· − x)∗t = ∞ for all δx∞ > λ. (38)

All these limits are meant Px-a.s with respect to every x ∈ R
d.

Compare in this context also Fristedt [32], Taylor [90], Schilling [76] and the
monograph [17].
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7. The connection to stochastic differential equations

To better understand the historical connection between Markov processes and
stochastic differential equations, we need to take a closer look at the work of Itô,
the ‘inventor’ of the theory of stochastic differential equations: At the beginning
of the 1940s, probability theory was still in its infancy and the theory of stochas-
tic processes in continuous time had been developed very recently along with
the scheme of Markov processes discussed by Kolmogorov, Lévy and Wiener,
among others. In Japan, isolated during the Second World War, Itô considered
this new and appealing concept of Markov processes as well as Lévy’s construc-
tion of Lévy processes. He wanted to consider Lévy’s work in the light of Markov
processes in order to gain new insights and perspectives (see [44]). This led him
to the idea that Lévy processes are in a certain sense tangential to Markov pro-
cesses (see [43]) and in conclusion to the development of a complete theory of
stochastic differential equations. Itô himself describes it as follows (cf. [43]): ‘I
noticed that a Markovian particle would perform a time homogeneous differen-
tial process for infinitesimal future at every instant, and arrived at the notion of
a stochastic differential equation governing the paths of a Markov process that
could be formulated in terms of the differentials of a single differential process.’
To make a long (and interesting) story short, coming from dWt and dt as the
only allowed differentials the integrators became more and more general: mar-
tingales, local martingales + Lebesgue measure and finally semimartingales (cf.
[56], [93]). While Kunita and Watanabe [63] still used the Lévy system, which
was rooted in the theory of Markov processes, in order to describe the jump part
in the change-of-variable formula, Meyer ([68] and [69]) left Markov processes
and Lévy systems behind. This was the point, where what is now known as Itô’s
formula left the world of Markov processes and found its place in the correct
field of research. Jointly with Doléans-Dade, Meyer coined the modern term
semimartingale in [27]. In order to teach people Itô’s formula (see e.g. [72]) no
knowledge on Markov processes is needed. It would have been possible to develop
the whole theory of semimartingales, stochastic integration and SDEs without
having the Markov property in mind. Dellacherie and Bichteller proved in the
late 1970’s that semimartingales are the biggest class of stochastic processes
with respect to which a reasonable stochastic integration of adapted càglàd pro-
cesses is possible. Having this characterization, Protter used this approach to
actually define semimartingales in [72] and was able to derive a great amount
of results in the theory of stochastic integration relying on that definition. Al-
though the definition of the Itô integral and stochastic differential equations
per se do not require Markovianity, Markov processes, were some of the most
interesting stochastic processes at the time, and, therefore, indispensable for the
historical development of these concepts. Today, modern textbooks on stochas-
tic integration (cf. [22], [72]) sometimes do not even mention the term ‘Markov
process’ in the first place and teach the theories of stochastic differentials and
the corresponding equations and of Markov processes separately.

Being able to integrate with respect to (vectors of) semimartingales, it is
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natural to consider SDEs of the form

Xt = x +
∫ t

0
f(Xs) dYs, (39)

where Y is a semimartingale. For simplicity we only analyze the one-dimensional
setting. Let us consider the case, where f is only a function and not a functional
of the paths up to time s. In this case, it could be shown that the solution – if a
unique solution exists – is a Markov process (cf. [72] Section V.6) on a slightly
extended probability space if the driver Y is a Lévy process. In [55] Jacod and
Protter have shown that (if the coefficient f is never zero), this condition is
also necessary: If the solution is a Markov process, the driver has to be Lévy.
Since Lévy process are only a small subclass of general semimartingales, this
shows that the canonical case of the solution of an SDE is a process, that is
not Markovian. Like the other concepts we have studied above, the theory of
SDEs was stimulated by Markov processes, but today the concepts belong to
the world of semimartingales.

Let us shortly comment on the connection between SDEs and the probabilistic
symbol of Section 5: If the driver Y in (39) is a Lévy process with characteristic
exponent ψ(ξ), and f is so regular that the SDE admits a unique solution,
then the symbol of the solution has the nice form p(x, ξ) = ψ(f(x)′ξ) (cf. [82]
Theorem 3.1). The condition (G) in the theory of the symbol is equivalent to
bounded coefficients in the context of Lévy driven SDEs (cf. [79] Lemma 2.1
and [54] Section III.2c).

Metivier deals with different types of (Banach-space valued) SDEs in Chapter
8 of [67]. Here, the reader also finds some historic remarks. SDEs driven by
semimartingales are treated in [72] Chapter V in an accessible way. Compare in
this context also [21] Section 8.

8. Further connections between Markov processes and
semimartingales

Lastly, we would like to highlight some other connections between Markov pro-
cesses and semimartingales. These are not the focus of the present article: They
all have in common that it is not ideas and concepts that are transferred from
Markov processes to semimartingales. Rather, the connection between these two
classes of processes is explored.

Some authors consider stochastic differential equations with non-Lipschitz
coefficients, which are still continuous. In certain situations it can be shown
that solutions of these SDEs exist, but they are not unique. Among the resulting
family of solution processes, there might be Markovian ones. In this case one
calls the procedure of finding these Markov selection. This problem dates back
to a paper due to Girsanov [35] from 1962. The systematic treatment started
with [60]. Compare in the context of stochastic partial differential equation [36]
and for recent results on Lévy-type processes [61].

In [21] the following question is answered (among many others): Given a
Markov process X, for which deterministic functions f is the process f(X)
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a semimartingale? Functions of this kind are called semimartingale functions
by the authors of that groundbreaking paper. Loosely speaking the answer for
right processes is as follows: f is such a function if and only if it is locally the
difference of two excessive functions. For details cf. Section 4 of [21] and in
particular Theorem 4.6.

In Section 7 of [21] Cinlar et al. deal with the question, when a Markov process
is actually a semimartingale. They answer this question for general Markov
processes, as well as Hunt and Itô processes. The key ingredient is the so called
extended generator. Let us also mention the nice result in [20] that every Hunt
semimartingale can be obtained as a random time change of an Itô process.

Appendix

Here, we present the proofs omitted in Chapter 4. They give a nice insight into
the techniques of proof used in the context of semimartingales with killing and,
hence, have some value in their own right.

Proof of Theorem 4.7. Since B′, C ′, ν′ are the characteristics of the classical
semimartingale X̃αn− on �0, αn�, there exists a predictable process F ′n ∈ Aloc

such that (10)-(12) hold true by Proposition II.2.9 of [54]. Since F ′n = F ′n+1

on �0, αn�, (10)-(12) hold for F ′ := limn→∞ F ′n. By defining the process

F := F ′ + A (40)

we observe that dF ′ � dF and dA � dF since F ′ and A are increasing.
Moreover, Theorem 3.13 of [54] provides the existence of predictable processes
f ′ and a such that

A = a • F, and
F ′ = f ′ • F.

The associativity of the stochastic integral then provides

A = a • F

B(i) = (b(i)f ′) • F

C(ij) = (c(ij)f ′) • F

ν(ω; dt, dx) = dFt(ω)f ′
t(ω)Kω,t(dx),

The properties (i.)–(2.) follow by Proposition II.2.9 of [54] on �0, ζ∞ ∧ ζΔ�.

Proof of Lemma 4.8. At first, we want to prove the additivity of the charac-
teristics: Let (Mt)t≥0 be a Markov filtration, and let Y be additive. Then Y is
additive on �0, αn� for all n ∈ N. Thus, the processes Bn, Cn and νn are additive
on said stochastic intervals by Theorem 6.24 (iv) of [21]. The additivity of B,C
and ν follows. It remains to show that the fourth characteristic, namely A, is
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additive. Therefore, we consider the one-point jump process 1�ζΔ,∞�. A simple
computation shows that

Θs1�ζ∞,∞�(ω, t) = 1�s+ζΔ◦θs,∞�(ω, t)
= 1(0,t−s](ζΔ(θs(ω)).

Equally easy we state that

1�ζΔ,∞�(ω, t) − 1�ζΔ,∞�(ω, t ∧ s) = 1(s,t](ζΔ(ω)).

Since Y is additive, it is known that ζΔ = ζΔ ◦ θs − s for s < ζΔ. Thus,
(A,B,C, ν) are additive.

Let us now state the proof of the statement: Since Y is quasi-left continuous
B is continuous (see I.4.36 and II.2.9 (i.) in [54]) and ν is P

x quasi-left con-
tinuous (see I.2.35 in [54]). C is continuous by definition. Moreover, the quasi
left-continuity of Y implies that ζΔ is totally inaccessible, and, therefore, the
fourth characteristic A is continuous. We are now able to apply Theorem 6.19 of
[21]. Thus, there exists a continuous process F ′ ∈ V+

ad with respect to the strong
Markov filtration (Mt)t≥0 and a positive transition kernel K̃ ′ from (Rd,B(Rd))
into (E, E), such that

ν(ω; dt; dx) = dF ′
t (ω)K̃ ′(Xt(ω), dx).

Now, let
F := F ′ +

∑
i≤d

Var(B(i)) +
∑
i,j≤d

Var(Ci,j) + A.

Here, Var(X)t(ω) denotes the variation process of X ∈ V+, i.e. the total varia-
tion of the function s �→ Xs(ω) on the interval [0, t]. The so defined process F
belongs to V+ and is continuous, and additive. Moreover, we have:

dF ′ � dF, dB(i) � dF, dC(ij) � dF, dA � dF.

Theorem 3.55 of [21] provides the existence of B(R)d-measurable functions a, b, c
such that

B = b(X) • F,

C = c(X) • F,

A = a(X) • F.

The theorem follows analogously to the proof of 6.25 in [21].

Proof of Proposition 4.12. (a.) ⇒ (c.): Let X̃ be a generalized semimartingale
with characteristics (A,B,C, ν). We defined Hn to be Xn + 1 · 1�ζΔ,∞�, where
Xn := X̃αn−, and 1 = (1, ..., 1)′ ∈ R

d. Thus, the process Hn is a semimartingale,
since it possesses the decomposition

Hn = X0 + Mn +
(
An + 1 · 1�ζΔ,∞�

)
,
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where Mn ∈ L and An + 1 · 1�ζΔ,∞� ∈ V for every n ∈ N.
Let now h be the truncation function belonging to the semimartingale Xn

for every n ∈ N. In order to evaluate the characteristics of Hn, we observe that

Ḣn(h)t :=
∑
s≤t

(ΔHn
s − h(ΔHn

s ))

=
∑

s≤t<αn

(ΔHn
s − h(ΔHn

s )) + (1 − h(1))1�ζΔ,∞�(t)

=
∑
s≤t

(ΔXn
s − h(ΔXn

s )) + (1 − h(1))1�ζΔ,∞�(t)

= Ẋn(h)t + (1 − h(1))1�ζΔ,∞�(t),

and

Hn(h)t := Hn
t − Ḣn(h)t

= Xn
t + 1 · 1�ζΔ,∞�(t) −

(
Ẋn(h)t + (1 − h(1))1�ζΔ,∞�(t)

)
= Xn

t − Ẋn(h)t + h(1)1�ζΔ,∞�(t)
= Xn(h)t + h(1)1�ζΔ,∞�(t).

We already know that Xn(h) is a special semimartingale. Thus, the previous
equality shows that Hn(h) also is a special semimartingale with canonical rep-
resentation

Hn(h) = Xn(h) + h(1)1�ζΔ,∞�

= X0 + Mn(h) +
(
Bn(h) + h(1)1�ζΔ,∞�

)
,

where Mn(h) + Bn(h) + X0 is the canonical representation of Xn(h). This
decomposition allows to determine the characteristics Bn and Cn of Hn:

Bn := Bn(h) + h(1)1�ζΔ,∞�,

Cn(ij) := 〈(Hn)(i),c, (Hn)(j),c〉 = 〈(Xn)(i),c, (Xn)(j),c〉 = (Cn)(ij)

for i, j ∈ {1, ..., d}. Analogously to the proof of Theorem II.2.42 of [54] we apply
Itô’s formula to Hn and obtain

f(Hn
t ) − f(X0) =

d∑
i=1

(
∂

∂x(i) f(Hn
−)
)

• Mn(i)
t +

d∑
i=1

(
∂

∂x(i) f(Hn
−)
)

• Bn(i)
t

+ 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Hn
−)
)

• Cn(i,j)
t

+
∑
s≤t

[
f(Hn

s ) − f(Hn
s−) −

d∑
i=1

(
∂

∂x(i) f(Hn
s−)

)
h((Hn

s )(i))
]
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=
d∑

i=1

(
∂

∂x(i) f(Hn
−)
)

• Mn(i)
t +

d∑
i=1

(
∂

∂x(i) f(Hn
−)
)

• (Bn)(i)t

+
d∑

i=1

(
∂

∂x(i) f(Hn
−)
)

•
(
h(1)1�ζΔ,∞�

)
+ 1

2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Hn
−)
)

• Cn(i,j)
t

+
∑
s≤t

[
f(Xn

s ) − f(Xn
s−) −

d∑
i=1

(
∂

∂x(i) f(Xn
s−)

)
h((Xn

s )(i))
]

+ Δf(Hn
ζΔ)1�ζΔ,∞� −

d∑
i=1

∂

∂x(i) f(Hn
ζΔ−)h(1)1�ζΔ,∞�

=
d∑

i=1

(
∂

∂x(i) f(Hn
−)
)

• (Mn)(i)t +
d∑

i=1

(
∂

∂x(i) f(Hn
−)
)

• (Bn)(i)t

+
d∑

i=1

(
∂

∂x(i) f(Hn
ζΔ−)

)
h(1)1�ζΔ,∞�

+ 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Hn
−)
)

• (Cn)(i,j)t

+
∑
s≤t

[
f(Xn

s ) − f(Xn
s−) −

d∑
i=1

(
∂

∂x(i) f(Xn
s−)

)
h((Xn

s )(i))
]

+ Δf(Hn
ζΔ)1�ζΔ,∞� −

d∑
i=1

∂

∂x(i) f(Hn
ζΔ−)h(1)1�ζΔ,∞�

We now use the fact, that Bn
t ,M

n
t and Cn

t are constant for t ≥ αn(ω):

=
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Mn)(i)t +
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Bn)(i)t

+ 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Xn
−)
)

• (Cn)i,jt

+
∑
s≤t

[
f(Xn

s ) − f(Xn
s−) −

d∑
i=1

(
∂

∂x(i) f(Xn
s−)

)
h((Xn

s )(i))
]

+ Δf(Hn
ζΔ)1�ζΔ,∞�

=
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Mn)(i)t +
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Bn)(i)t
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+ 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Xn
−)
)

• (Cn)i,jt

+
[
f(Xn

− + x)−f(Xn
−)−

d∑
i=1

(
∂

∂x(i) f(Xn
−)
)
h((Xn))(i)

]
∗μXn

+ Δf(Hn) • 1�ζΔ,∞�

The above equality provides that

f(Hn) − f(X0) −
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Bn)(i)

− 1
2

d∑
i,j=1

(
∂2

∂x(i)∂x(j) f(Xn
−)
)

• (Cn)(i,j)

−
[
f(Xn

− + x) − f(Xn
−) −

d∑
i=1

(
∂

∂x(i) f(Xn
−)
)
h((Xn))(i)

]
∗ νn − Δf(Hn) • A

=
d∑

i=1

(
∂

∂x(i) f(Xn
−)
)

• (Mn)(i)

+
[
f(Xn

− + x) − f(Xn
−) −

d∑
i=1

(
∂

∂x(i) f(Xn
−)
)
h((Xn))(i)

]
∗
(
μXn − νn

)
+ Δf(Hn) • (1�ζΔ,∞� −A)t

Since the right hand side belongs to Md, the statement follows.
(c.) ⇒ (b.)
Let f : Rd → C;x �→ eiu

′x with u ∈ Rd. Obviously, f is bounded, and belongs
to C2(Rd), and we have

∂

∂x(j) f(x) = iu(j)f(x), and

∂2

∂x(j)∂x(k) f(x) = −u(k)u(j)f(x).

If we compute the expression in (c.) for the function f , we obtain that

eiu
′Hn

t −
d∑

j=1
(iu(j)eiu

′Xn
t−) • (Bn)(j)t − 1

2

d∑
j,k=1

u(j)u(k)(eiu
′Xn

t−) • (Cn)jkt

−
∫

[0,t]×Rd

eiu
′Xn

−(eiu
′x − 1 − iu′h(x)) νn(ds× dx)

− Δeiu
′Hn

• At

= eiu
′Hn

t −
d∑

j=1
(iu(j)eiu

′Xn
t−) • (Bn)(j)t − 1

2

d∑
j,k=1

u(j)u(k)(eiu
′Xn

t−) • (Cn)jkt
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− eiu
′Xn

t− •

∫
Rd

(eiu
′x − 1 − iu′h(x)) νn([0, t] × dx)

−
(
eiu

′Hn − eiu
′Hn

−
)

• At

= eiu
′Hn

t −
d∑

j=1
(iu(j)eiu

′Xn
t−) • (Bn)(j)t − 1

2

d∑
j,k=1

u(j)u(k)(eiu
′Xn

t−) • (Cn)jkt

− eiu
′Xn

t− •

∫
Rd

(eiu
′x − 1 − iu′h(x)) νn([0, t] × dx))

−
(
eiu

′Hn − eiu
′Xn

−e
iu′

(
1·1

�ζΔ,∞�

))
• At

= eiu
′Hn

t − eiu
′Hn

• At − eiu
′Xn

− •

(
e
iu′

(
1·1

�ζΔ,∞�

)
• At − iu′Bn

t − 1
2u

′Cn
t u

+
∫
Rd

(eiu
′x − 1 − iu′h(x)) νn([0, t] × dx)

)
is a local martingale for every n ∈ N.

(b.) ⇒ (a.)
Let now eiu

′Hn
t − eiu

′Hn
• At − eiu

′Xn
− • Ln(u) be a local martingale for every

n ∈ N and arbitrary u ∈ R
d. The process(

eiu
′Hn

t − eiu
′Hn

• At − eiu
′Xn

− • Ln(u)
)αn−

=eiu
′Xn − eiu

′Xn
− •

(
iu′Bn

t − 1
2u

′Cn
t u +

∫
(eiu

′x − 1 − iu′h(x)) νn([0, t] × dx)
)

is a local martingale. Application of Theorem II.2.42 of [54] provides that Xn is
a semimartingale with characteristics (Bn, Cn, νn). Thus, the generalized semi-
martingale X̃ possesses the characteristics (B,C, ν). It remains to show that
the process A is the fourth characteristic of X̃. Let therefore be A′ the fourth
characteristic of X̃. We already know that implication (a.) ⇒ (b.) holds. Let
L′n(u) be the process mentioned in Notation 4.11 with (A′, Bn, Cn, νn) such
that

eiu
′Hn

t − eiu
′Hn

• A′
t − eiu

′Xn
− • L′n(u)

is a local martingale for every n ∈ N. It follows that

eiu
′Hn

t − eiu
′Hn

• At − eiu
′Xn

− • Ln(u) −
(
eiu

′Hn
t − eiu

′Hn
• A′

t − eiu
′Xn

− • L′n(u)
)

=
(
eiu

′Hn

+ eiu
′(Xn

−+1·1
�ζΔ,∞�

)
)

• A′ −
(
eiu

′Hn

+ eiu
′(Xn

−+1·1
�ζΔ,∞�

)
)

• A

belongs to Md for all u ∈ Rd. Therefore, A′ − A also belongs to Md. Thus, A
is the fourth characteristics of X̃.
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Symbols

1 := (1, ..., 1)′ ∈ R
d

585
Bb(Rd) bounded Borel-measurable functions mapping

R
d to R

574

B(Rd) σ-algebra of Lebesgue sets 571
C complex numbers 571
Cad class of all processes belonging to C and being

additive 574

C2
b (Rd) two times continuously differentiable, bounded

functions, mapping R
d to R

585

C∞
c (Rd) infinitly often differentiable functions with com-

pact support, mapping Rd to R
586

χ cut-off function 580
C∞(Rd) continuous functions vanishing at infinity, map-

ping R
d to R

574

Cloc localization of the class of processes C 572
E Borel σ-algebra of the set E 576
Ẽ := E ∪ {∞} ∪ {Δ} 576
FX

t := σ(Xs : s ≤ t) 576
FX :=

∨
t FX

t 576
� imaginary part of a complex number 587
∨ the pointwise maximum function; a ∨ b :=

max{a, b} 571

Md class of all local martingales with values in R
d

572
Md

0 class of all local martingales with values in R
d

starting in 0 572

∧ the pointwise minimum function; a ∧ b :=
min{a, b} 571

P generic probability measure 571
R

d d-dimensional Euclidian space 571
� real part of a complex number 587
Sd class of all d-dimensional semimartingales 572
θt the shift operator of a Markov process 573
Θs the ‘Big Shifts’ 574
Vd class of all adapted, càdlàg processes with paths

of finite variation starting in 0 and values in R
d 572
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(V+)d class all adapted, càdlàg processes with increas-
ing paths starting in 0 and values in R

d 572
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