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1. Introduction

A primary question in the study of the asymptotic behaviour of a discrete time
Markov chain on Zd is that of recurrence. When the jumping law is the same
everywhere (homogeneous case), this problem concerns Birkhoff sums Sn =
X1 + · · ·+Xn, where the (Xi) are Zd-valued random variables, independent and
identically distributed (i.i.d.), with common law μ. Improving a former result
of Chung and Fuchs, Spitzer’s analytical recurrence criterion (1957, cf [14], T2)
states that transience is equivalent to the integrability of Re(1/(1 − μ̂)) on the
unit cube of Rd. Importantly, this result doesn’t require any moment condition.
For an inhomogeneous random walk on Zd, the transition law at x ∈ Zd is
given by a probability measure μx and the question of the recurrence is often
very delicate, one having to understand some “geometry” determined by the
environment (Zd, (μx)x∈Zd). We next describe a situation where the i.i.d. case
is helpful.

Given subsets Zd = F0 ⊃ · · · ⊃ FK = {0}, observe first that a general Markov
chain on Zd, starting at 0, is recurrent at 0 if and only if, inductively on k ↑,
the induced walk in Fk almost-surely visits Fk+1 infinitely often. Depending
on the (Fi), a quasi-unavoidable difficulty is that the induced Markov chains
are heavy-tailed. This naive approach however works for random walks in a
stratified environment, as considered in [3, 1, 2], due to the existence of a natural
filtration. Let us discuss the example of a nearest-neighbour Markov chain in
Z2, when the transition laws only depend on the second coordinate. The vertical
component of the random walk, in restriction to vertical movements, is then a
nearest-neighbour one-dimensional Markov chain. The necessary and sufficient
condition for its recurrence is well-known, for example in the theory of birth
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and death processes. It corresponds to the recurrence of the initial random walk
in Z × {0}, leading to choose Z2 = F0 ⊃ F1 = Z × {0} ⊃ F2 = {0}. When
it holds, the induced random walk in Z × {0} is heavy-tailed, but nevertheless
i.i.d., due to the invariance of the environment by horizontal translations. This
naturally orientates the analysis in the direction of precising the jumping law
of this random walk, in order to next apply Spitzer’s recurrence criterion for
Z-valued i.i.d. sums; cf [1, 2].

A point that is not a detail is that the proofs of [1, 2] would have been far
more delicate to handle if having to use the Chung-Fuchs result in place of
Spitzer’s criterion. In an attempt to now make a small step outside stratified
random walks, one has to develop results around the cornerstone that constitutes
Spitzer’s theorem and, as a first natural extension, to prove for Kemperman’s
oscillating random walk [9] a result in the same spirit. Kemperman’s results [9]
on this model indeed correspond to the Chung-Fuchs theorem for homogeneous
random walks.

A preliminary step of clarification is necessary concerning Spitzer’s theorem.
The known proof, available in [14], is long, not linear and disseminated in the
text (for a reconstitution, see Kesten-Spitzer [10], section 1). Revisiting Spitzer’s
proof, we present here a simplified version, highlighting that it consists in com-
puting some second derivative at infinity of the Green function in two different
ways, a probabilistic one and one relevant from Fourier Analysis. Then, invig-
orating a lemma due to Chung from the Potential Theory of discrete recurrent
Markov chains, we show that the probabilistic part is in fact very general. The
harmonic part, more involved, will not be discussed here. We next consider
Kemperman’s oscillating random walk on the integers. As a preliminary study
towards a “Spitzer’s type” theorem, the results of [9] on the recurrence of this
model are reproved in a simple way, using a combinatorial remark simplifying
the analysis. In the last section, we discuss the Fourier transform of probability
measures on N∗ and point out some links with renewal theory.

This text is mainly a revisit, the material and the results being essentially
not new. Our effort has been concentrated on the exposition, which tries to
be in straight line and self-contained. Many questions are addressed along the
way, essentially on inner products of probabilistic Green functions and their
translations in Harmonic analysis.

We fix Z as state space, except for section 4. We now recall classical facts
and notations.

2. Preliminaries

1) Laws and characteristic functions. Consider a non-constant Z-valued random
variable X, with law L(X) = μ and gcd(Supp(μ)) = 1. Let (Xn)n≥1 be i.i.d.
copies. Introduce the characteristic function μ̂(t) = E(eitX), t ∈ R, 2π-periodic.
With d = gcd(Supp(L(X1 −X2))) ≥ 1, we have:

μ̂(t) = 1 iff t ∈ 2πZ and |μ̂(t)| = 1 iff t ∈ (2π/d)Z.
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Write Sn =
∑n

i=1 Xi, with S0 = 0. Since |μ̂(t)| < 1, except for finitely many
t ∈ [0, 2π], the law L(Sn) does not concentrate around any point, as n → +∞:

∀y ∈ Z, P (Sn = y) = 1
2π

∫ 2π

0
e−ity(μ̂(t))n dt →n→+∞ 0.

For some α > 0 and small t, Re(1 − μ̂(t)) ≥ αt2. Indeed, take M > 0 so that
P (0 < |X| < M) > 0. Then for |t| ≤ π/M , Re(1 − μ̂(t)) = 2E(sin2(tX/2)) ≥
2π−2t2E(X21|X|<M ).

2) Markov chains and Green functions. For any Markov chain (Sn) on Z, Px

and Ex stand for x ∈ Z as starting point. Let the Green function G(x, y) =
Ex(

∑
n≥0 1Sn=y) and finite versions GN (x, y) = Ex(

∑
0≤n<N 1Sn=y), N ≥ 1.

For y ∈ Z, set Ty = min{n ≥ 1, Sn = y}. Then:

∀x 
= y, GN (x, y) =
∑

1≤k<N

Px(Ty = k)GN−k(y, y). (1)

Hence GN (x, y) ≤ GN (y, y) and G(x, y) = Px(Ty < ∞)G(y, y). The recurrence
of x ∈ Z, i.e. the property Px(Tx < ∞) = 1, is equivalent to G(x, x) = +∞,
since classically G(x, x) =

∑
n≥0 Px(Tx < ∞)n = 1/(1 − Px(Tx < ∞)).

For any x 
= y with Px(Ty < ∞) > 0, note that Px(Tx < Ty) < 1. Then, in
the same way:

Ex

⎛⎝Ty−1∑
n=0

1Sn=x

⎞⎠ = 1 +
∑
n≥1

Px(Tx < Ty)n = 1
1 − Px(Tx < Ty)

< ∞. (2)

Still for any x 
= y, we have:

GN (x, x) = Ex

⎛⎝Ty∧N−1∑
n=0

1Sn=x

⎞⎠ + Ex

⎛⎝1Ty<N

N−1∑
n=Ty

1Sn=x

⎞⎠
= Ex

⎛⎝Ty∧N−1∑
n=0

1Sn=x

⎞⎠ +
N−1∑
k=1

Px(Ty = k)GN−k(y, x). (3)

Thus, 0 ≤ GN (x, x) −GN (y, x) ≤ Ex(
∑Ty∧N−1

n=0 1Sn=x). We deduce the impor-
tant claim: for x 
= y with Px(Ty < ∞) > 0, then (GN (x, x) −GN (y, x))N≥0 is
bounded.

In the particular case when the chain is homogeneous, G(x, y) = G(x− y, 0)
and GN (x, y) = GN (x − y, 0). Notice also that for x 
= y, we have Px(Tx <
Ty) = Py(Ty < Tx), since:

Px(Tx < Ty) =
∑
k≥1

P (Sk = 0, Sl 
∈ {0, y − x}, 0 < l < k)
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=
∑
k≥1

P (Sk = 0, Sk − Sl 
∈ {0, x− y}, 0 < l < k) = Py(Ty < Tx).

In the homogeneous case, with a step X of law μ, we often put μ as a superscript
and write Sμ

n , Gμ(x, y), Gμ
N (x, y), as well as Eμ(f(X)) for

∫
Z
fdμ.

3. Homogeneous case: Spitzer’s analytical criterion

Let (Sn) be a homogeneous random walk on Z with step μ, not Dirac and
gcd(Supp(μ)) = 1. On (0, 2π), the function t �−→ Re (1/(1 − μ̂(t))) is > 0,
continuous and invariant under the symmetry t �−→ 2π − t. It thus belongs to
L1(0, 2π) iff it is in L1(0, ε), for some ε > 0.

Theorem 3.1 (Spitzer, 1957). The point 0 is transient for (Sn) iff
∫ 2π
0 Re

(1/(1 − μ̂(t))) dt < +∞.

The result follows from the next proposition, where constants are optimal.

Proposition 3.2. We have G(0, 0) ≤ 1
π

∫ 2π
0 Re (1/(1 − μ̂(t))) dt ≤ 2G(0, 0).

Proof of the proposition. Setting bN (y) = GN (0, 0) − GN (0, y) = GN (0, 0) −
GN (−y, 0), we show that (bN (y))N≥0 is bounded. Take y 
= 0. This is clear if
0 is transient. If it is recurrent, then P0(T−y < ∞) = 1, as gcd(Supp(μ)) = 1.
The claim above implies that (bN (y))N≥0 is bounded.

Step 1. Let x > 0. We show that Δ(x) := limN→+∞(bN (x) + bN (−x)) exists.
We have:

bN (x) + bN (−x) = 1
2π

∫ 2π

0
(2 − e−itx − eitx)

N−1∑
n=0

(μ̂(t))ndt

= 1
π

∫ 2π

0

1 − cos(tx)
1 − μ̂(t) (1 − (μ̂(t))N )dt.

From |1 − μ̂(t)| ≥ Re(1 − μ̂(t)) ≥ αt2, we get that (1 − cos(tx))/(1 − μ̂(t)) is
integrable, as x is fixed. As |μ̂(t)| < 1 except for finitely many values of t, the
required limit exists and satisfies:

Δ(x) = 1
π

∫ 2π

0

1 − cos(tx)
1 − μ̂(t) dt = 1

π

∫ 2π

0
(1 − cos(tx))Re((1 − μ̂(t))−1)dt. (4)

Step 2. For x > 0, we give a probabilistic expression for Δ(x). First, if y 
= 0,
using (1) and (3):

bN (y) = E0

⎛⎝Ty∧N−1∑
n=0

1Sn=0

⎞⎠ +
N−1∑
k=1

P0(Ty = k)(GN−k(y, 0) −GN−k(y, y)).
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By homogeneity, bN (y)=E0(
∑Ty∧N−1

n=0 1Sn=0) −
∑

1≤k<N P0(Ty = k)bN−k(−y).
Taking y = x and adding bN (−x) we obtain:

bN (x) + bN (−x)

= E0

(
Tx∧N−1∑

n=0
1Sn=0

)
+

N−1∑
k=1

P0(Tx = k)(bN (−x) − bN−k(−x))

+ P0(Tx ≥ N)bN (−x).

Consider the terms on the right, when N → +∞. The first one tends to
E0(

∑Tx−1
n=0 1Sn=0). As P0(Sn = y) →n→+∞ 0, we get limN→+∞ bN+1(y) −

bN (y) = 0 and thus limN→+∞ bN (−x) − bN−k(−x) = 0 for fixed k. By domi-
nated convergence, the second term goes to zero, as (bN (−x))N≥0 is bounded.
The latter also implies that the third term goes to zero in case of recurrence and
to P0(Tx = ∞)G(0, 0)(1 − P0(T−x < ∞)) in case of transience. Thus, if x > 0:

Δ(x) = E0

(
Tx−1∑
n=0

1Sn=0

)
+ 1TRG(0, 0)P0(Tx = ∞)P0(T−x = ∞). (5)

Step 3. By (4)= (5), for any δ > 0, π−1 ∫ 2π−δ

δ
(1− cos(tx))Re((1− μ̂(t))−1)dt ≤

2G(0, 0). When x → +∞, we get π−1 ∫
[δ,2π−δ] Re((1− μ̂(t))−1)dt ≤ 2G(0, 0), by

the Riemann-Lebesgue lemma. Letting δ → 0, we get the second inequality. For
the other direction, by (5)= (4):

E0

(
Tx−1∑
n=0

1Sn=0

)
≤ (1/π)

∫ 2π

0
(1 − cos tx)Re((1 − μ̂(t))−1)dt.

If Re((1 − μ̂(t))−1 ∈ L1(0, 2π), then again the Riemann-Lebesgue lemma with
x → +∞ in the right-hand side gives the first inequality (which is obvious if
Re((1 − μ̂(t))−1 
∈ L1(0, 2π)).

Remark. — When transience holds, constants in Prop. 3.2 are optimal.
If Supp(μ) ⊂ N∗, then G(0, 0) = 1 and Δ(x) = 2 − P0(Tx < ∞) → 2 −
1/E(X), as x → +∞, by renewal theory (this is reproved later in the paper).
As limx→+∞ Δ(x) = π−1 ∫ 2π

0 Re((1− μ̂(t))−1)dt, we conclude with the fact that
E(X) can take any value in [1,+∞]. Lemma 6.1 below gives another proof.

Remark. — The idea, used by Spitzer, of approaching G(0, 0) in two steps,
first by the finite limN→+∞(2GN (0, 0) − GN (0, x) − GN (0,−x)) and next the
limit as x → +∞, is classical and profound. A similar one is for instance de-
veloped by Riemann in the first chapters of the theory of trigonometric series.
As we shall see in the next section, the first limit as N → +∞ exists for any
irreducible aperiodic Markov on a countable state space, but the weights have
to be changed into more intrinsic ones, unique in general.
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Remark. — The weak form of the theorem, due to Chung and Fuchs (1951),
can be reduced to the following observation, where interversion is direct for
0 < s < 1:

Gμ(0, 0) = lim
s↑1

∑
n≥0

snPμ(Sn = 0) = lim
s↑1

∑
n≥0

1
2π

∫ 2π

0
sn(μ̂(t))n dt

= lim
s↑1

1
2π

∫ 2π

0
Re

(
1

1 − sμ̂(t)

)
dt. (6)

Hence, the finiteness of the right-hand side is a transience criterion for the
random walk. Observe that the operation s ↑ 1 is not natural in this problem,
as the level sets of z �−→ Re(1/(1−z)) in the unit disk are horocycles (Euclidean
circles, tangent at 1). There is no monotony in the limit and indeed, as seen
above, the right-hand side may differ from (2π)−1 ∫ 2π

0 Re((1 − μ̂(t))−1)dt.
Remark. — The theorem has been extended to general countable discrete

Abelian groups by Kesten and Spitzer [10], to Rd by Ornstein [11] and Port and
Stone [12]. Also limN→+∞ bN (x) exists and is called the potential kernel; see
Spitzer [14], chap. 7.

Remark. — In the second step of the proof of the proposition and in the
transient case, one can directly write Δ(x) = G(0, 0)(2−P0(Tx < ∞)−P0(T−x <
∞)), when x > 0. It is interesting to check equality with (5) in this case, i.e.
that for x 
= 0:

G(0, 0)(2 − P0(Tx < ∞) − P0(T−x < ∞))

= 1
1 − P0(T0 < Tx) + G(0, 0)P0(Tx = ∞)P0(T−x = ∞).

This is a consequence of the following general result.

Lemma 3.3. Let (Sn) be any Markov chain on Z and x 
= y. Then:

G(x, x) = 1
1 − Px(Tx < Ty)

× 1
1 − Px(Ty < ∞)Py(Tx < ∞) . (7)

Proof of the lemma. Let T (0) = 0 and next T (k+1) be the first time > T (k) of
passage at x after having visited y at least once. Then (the kth term below being
0 if T (k) = +∞):

G(x, x) =
∑
k≥0

Ex

⎛⎝T (k+1)−1∑
n=T (k)

1Sn=x

⎞⎠ .

Call Ak the generic term in the above sum. Then:

A0 = Ex

⎛⎝T (1)−1∑
n=0

1Sn=x

⎞⎠ = Ex

⎛⎝Ty−1∑
n=0

1Sn=x

⎞⎠ = 1
1 − Px(Tx < Ty)

.
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When k ≥ 1, Ak = Px(T (k) < ∞)A0 = (Px(T (1) < ∞))kA0. Now, Px(T (1) <
∞) = Px(Ty < ∞)Py(Tx < ∞) and this gives the announced formula when
summing on k ≥ 0.

A related result is Lemma 4.1 below, on the existence of limN→+∞ GN (x,
x)/GN (y, y). Observe that Px(Ty < ∞)Py(Tx < ∞) is related with loops, more
precisely:

Px(Ty < ∞)Py(Tx < ∞) = Px(Ty < Tx < ∞)
1 − Px(Tx < Ty)

.

The left-hand side is Px(reach y and come back at x). Decomposing it as the
probability of making first n ≥ 0 loops at x without touching y, then going di-
rectly to y and finally coming back to x, this equals

∑
n≥0 Px(Tx < Ty)nPx(Ty <

Tx < ∞), so the right-hand side expression.
In the homogeneous case and using the notations of Prop. 3.2, notice also

that one readily derives from (7), convening that 1/0+ = +∞, the following
always valid form for Δ(x), x > 0:

Δ(x) = E0

(
Tx−1∑
n=0

1Sn=0

)(
1 +

(
1 + P0(Tx < ∞)

P0(Tx = ∞) + P0(T−x < ∞)
P0(T−x = ∞)

)−1
)
.

4. A general probabilistic result

The proof of Proposition 3.2 consists in computing some second derivative of
the Green function in two different ways, an analytical one, giving (4), and a
probabilistic one, leading to (5). We show here that the probabilistic part is
very general.

Consider a general irreducible Markov chain (Sk)k≥0 on a countable state
space. Fix two points x 
= y and set:

cN = Ex

⎛⎝Ty∧N−1∑
n=0

1Sn=x

⎞⎠ and dN = Ey

(
Tx∧N−1∑

n=0
1Sn=y

)
.

Then cN ↑ c := Ex(
∑Ty−1

n=0 1Sn=x) and dN ↑ d := Ey(
∑Tx−1

n=0 1Sn=y), finite
quantities. Taking N ≥ 3, let us develop relation (3), namely:

GN (x, x) = cN +
N−1∑
k=1

Px(Ty = k)GN−k(y, x)

= cN +
N−1∑
k=1

Px(Ty = k)
N−k−1∑

l=1
Py(Tx = l)GN−k−l(x, x)

= cN +
N−1∑
m=2

GN−m(x, x)Rm, (8)
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where Rm =
∑

k,l≥1,k+l=m Px(Ty = k)Py(Tx = l), symmetric in x and y. Notice
that

∑
m≥2 Rm = Px(Ty < ∞)Py(Tx < ∞) ≤ 1, with equality iff the random

walk is recurrent. In the same way :

GN (y, y) = dN +
N−1∑
m=2

GN−m(y, y)Rm.

We establish the following Doeblin type ratio limit theorem (cf Revuz [13],
chap.4, ex. 4.10).

Lemma 4.1. For any irreducible Markov chain on a countable state space and
any points x 
= y:

i) The sequence (dGN (x, x) − cGN (y, y))N≥0 is bounded.

ii) We have:

lim
N→+∞

GN (x, x)
GN (y, y) = α(x, y), with

α(x, y) :=
Ex(

∑
0≤n<Ty

1Sn=x)
Ey(

∑
0≤n<Tx

1Sn=y)
= 1 − Py(Ty < Tx)

1 − Px(Tx < Ty)
.

Moreover, α(x, y) = G(x, x)/G(y, y) in the transient case and α(x, y) = π(x)/π(y)
in the recurrent case, where π is the unique (up to a positive multiple) invariant
σ-finite measure.

Proof of the lemma.
i) This is clear if the random walk is transient, so suppose it is recurrent. Set

uN = dGN (x, x)−cGN (y, y) and εN = dcN −cdN . We shall prove that for some
C > 0, ∀n ≥ 2, |εn| ≤ C

∑
m≥n Rm.

Supposing this true, fix N ≥ 3 and maybe increase C so that |un| ≤ C, for
n < N . The equality uN = εN +

∑
2≤m<N RmuN−m then furnishes:

|uN | ≤ |εN | +
∑

2≤m<N

Rm|uN−m| ≤ C
∑
m≥N

Rm +
∑

2≤m<N

RmC ≤ C.

The property |un| ≤ C is thus transmitted by recursion on n ≥ N , giving the
required boundedness. To establish the missing point, write εN = d(cN − c) −
c(dN − d) and note that:

c− cN = Ex

⎛⎝1Ty>N

Ty−1∑
k=N

1Sk=x

⎞⎠ = Ex

⎛⎝1S1 
=y,··· ,SN 
=yESN

⎛⎝Ty−1∑
k=0

1Sk=x

⎞⎠⎞⎠
= Ex

(
1Ty>NPSN

(T ∗
x < Ty)c

)
,
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with T ∗
x = min{n ≥ 0 | Sn = x}. Hence 0 ≤ c−cN ≤ cPx(Ty > N). We conclude

with the remark that
∑

m≥N Rm ≥ Px(∞ > Ty > N)Py(∞ > Tx > 0), where
Py(∞ > Tx > 0) > 0 and Px(∞ > Ty > N) = Px(Ty > N), as the random walk
is recurrent.

ii) In the transient case, directly from relation (8), GN (x, x) → G(x, x) = c/(1−∑
m≥2 Rm). Idem, GN (y, y) → G(y, y) = d/(1−

∑
m≥2 Rm), giving the result. In

the recurrent case, this follows from the boundedness of (dGN (x, x)−cGN (y, y)).
In this situation, as π is proportional to z �−→ Ey(

∑
0≤n<Ty

1Sn=z), we obtain:

π(x)
π(y) =Ey

⎛⎝Ty−1∑
n=0

1Sn=x

⎞⎠ /1=Py(Tx<Ty)Ex

⎛⎝Ty−1∑
n=0

1Sn=x

⎞⎠= 1 − Py(Ty<Tx)
1 − Px(Tx<Ty)

.

We used (2) at the end. We recognize α(x, y) and this concludes the proof of
the lemma.

Remark. — Notice that by definition, α(x, z) = α(x, y)α(y, z), for any x, y, z.
When the regime is known (recurrence or transience), then α(x, y) has a projec-
tive form (a function of x divided by the same function of y), unclear a priori.

Lemma 4.2. Consider an irreducible and aperiodic Markov chain (Sn) on a
countable state space. Define aN (x, y) = GN (x, x) − GN (y, x) ≥ 0. Fixing two
points x 
= y, we have:

lim
N→+∞

aN (x, y) + α(x, y)aN (y, x)

= Ex

⎛⎝Ty−1∑
n=0

1Sn=x

⎞⎠ + 1TRG(x, x)Px(Ty = ∞)Py(Tx = ∞).

Proof of the lemma. Let again c = Ex(
∑

0≤n<Ty
1Sn=x) and d = Ey(

∑
0≤n<Tx

1Sn=y). Using (3) and (1):

daN (x, y) + caN (y, x)
= d(GN (x, x) −GN (y, x)) + c(GN (y, y) −GN (x, y))

= d

[
cN +

N−1∑
k=1

Px(Ty = k)(GN−k(y, x) −GN (y, x)) − Px(Ty ≥ N)GN (y, x)
]

+ c

[
N−1∑
k=1

Px(Ty = k)(GN (y, y) −GN−k(y, y)) + Px(Ty ≥ N)GN (y, y)
]
.

Set bN = cGN (y, y) − dGN (y, x) = cGN (y, y) − dGN (x, x) + d(GN (x, x) −
GN (y, x)). By Lemma 4.1 i) and the claim of the first section, (bN ) is bounded.
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Therefore:

daN (x, y) + caN (y, x) = dcN +
N−1∑
k=1

Px(Ty = k)(bN − bN−k) + Px(Ty ≥ N)bN .

Let us study the limit of each term in the right-hand side, as N → +∞. The
first one tends to cd. For the other ones, we distinguish the natural cases:

- Transience. Then bN → cG(y, y) − dG(y, x) = d(G(x, x) − G(y, x)). By dom-
inated convergence, the second term goes to zero. The limit thus exists and
equals:

cd + Px(Ty = ∞)d(G(x, x) −G(y, x)) = cd + Px(Ty = ∞)Py(Tx = ∞)dG(x, x).

- Null recurrence. Then Pu(Sn = v) → 0, for any u, v. This gives bN −bN+1 → 0
and so bN − bN−k → 0 for fixed k. By dominated convergence the second term
goes to zero. As Px(Ty ≥ N)bN → 0, the limit is thus cd in this case.

- Positive recurrence. Again the third term tends to 0. Aperiodicity implies that
Pu(Sn = v) → π(v), where π is the invariant probability measure for the chain.
For fixed k, bN − bN−k → ckπ(y)−dkπ(x) = 0, as π(x)/π(y) = c/d in this case.
By dominated convergence once more the second term goes to 0 and the limit
also equals cd.

This concludes the proof of the lemma.

Remark. — This lemma in the recurrent case is due to Chung, see Kemeny-
Snell-Knapp [8], Theorem 9.7. The proof is somehow identical to that in Step
2 of Proposition 3.2. Again, when y goes to infinity, the right-hand side of the
formula has rough order G(x, x). The idea would be now to understand the
left-hand side with analytical tools. The quantity α(x, y) has to be analyzed
closely. Recall that for a homogeneous random walk, always α(x, y) = 1, since
Px(Tx < Ty) = Py(Ty < Tx) for x 
= y, cf the end of the preliminary section,
making emerge the “discrete Laplacian” 2GN (0, 0) −GN (0, x) −GN (0,−x).

Remark. — An irreducible aperiodic Markov chain is “normal” if limN→+∞
aN (x, y) exists, for any x, y. There exist non normal chains, see Kemeny and
Snell [7]. In this case, for some x 
= y, α(x, y) is therefore the only real α such
that aN (x, y) + αaN (y, x) converges, as N → +∞.

5. Kemperman’s oscillating random walk

Back to Z as state space, we now consider the inhomogeneous model of oscil-
lating random walks introduced by Kemperman in [9]. Define a Markov chain,
written as (Sn), which jumps according to probability measures μ on (−∞, 0]
and ν on [1,+∞), respectively. In view of later applications, no moment as-
sumption is made on either μ or ν.
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We consider “horizon measures” μ+ and ν− associated respectively to μ and
ν, defined as the one-sided sub-probability measures, with Supp(μ+) ⊂ N∗ and
Supp(ν−) ⊂ −N∗, such that:

μ+(k)=Pμ
0 (Sn enters N∗ at k) and ν−(−k)=P ν

0 (Sn enters −N∗ at −k), k ≥ 1.
(9)

The recurrence of 0 for (Sn) is a property of the sole couple (μ+, ν−). A classical
analytical link between μ and μ+ (or ν and ν−) appears in the Wiener-Hopf
factorization. As will be seen below, the recurrence question involves some inner
product of the right Wiener-Hopf factor of μ with the left Wiener-Hopf factor
of ν.

5.1. Link between μ and μ+

For a measure w on Z, define the restrictions w− = w1≤0 and w+ = w1≥1.
We place in the commutative Banach algebra of signed measures on Z, with
convolution as product, written as w1w2. Recall the fundamental property of the
exponential, exp(w1 + w2) = exp(w1) exp(w2), as well as the following identity
for a non-negative measure w with mass < 1:

δ0 − w = exp(−Lw), where Lw =
∑
n≥1

wn

n
.

Given a probability measure w on Z, write (Sw
n ) for the i.i.d. random walk with

step w, setting Sw
0 = 0. When several (Sw

n ) appear, corresponding to different
probability measures, they are supposed to be independent.

Proposition 5.1. Let μ be a probability measure on Z and μ+ defined as in (9).
Then μ+ is a probability measure iff

∑
n≥1 μ

n(N∗)/n = +∞. When μ̂+(t) 
= 1:

1
1 − μ̂+(t) = lim

s↑1
e
∑

n≥1 sn (̂μn)+(t)/n.

Proof of the proposition. Let 0 < s < 1 and define L±
μ =

∑
n≥1 s

n(μn)±/n.
Then δ0 − sμ = exp(−L+

μ ) exp(−L−
μ ). Set N = min{n ≥ 1, Sμ

n ≥ 1}, η0 = δ0
and ηn(A) = Pμ(N ≥ n, Sn ∈ A), n ≥ 1. Let η =

∑
n≥0 s

nηn.
By definition, ηn+1 = (ηn)−μ. Summing on n ≥ 0 with coefficients sn+1, we get
η− δ0 = η−sμ. This gives η−(δ0 − sμ) = δ0 − η+ and therefore η− exp(−L−

μ ) =
(δ0−η+) exp(L+

μ ). The left-hand side is a measure on (−∞, 0] and the right-hand
side on [0,+∞), with mass at 0 equal to one.
Hence η− exp(−L−

μ ) = (δ0−η+) exp(L+
μ ) = δ0. This gives δ0−η+ = exp(−L+

μ ) or
equivalently

∑
n≥0(η+)n = exp(L+

μ ), from which the assertions follow (observing
that μ+ = lims↑1 η

+).

Remark. — If μ+ is a probability and if |μ̂| < 1 on (0, 2π), is it possible
to write the limit as exp(

∑
n≥1 (̂μn)+(t)/n), 0 < t < 2π, hence suppressing the

unpleasant lims↑1?
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5.2. The concentrated Markov chain; “Chung-Fuchs” type results

Lemma 5.2.
i) If either μ+(N∗) < 1 or ν−(−N∗) < 1, then 0 is transient for (Sn).

ii) If μ+(N∗) = ν−(−N∗) = 1, call (Zn) the Markov chain jumping with μ+ on
(−∞, 0] and ν− on [1,+∞). Then 0 is recurrent for (Sn) if and only if 0 is
recurrent for (Zn).

Proof of the lemma.
i) If μ+(N) < 1, then (Sμ

n) a.-s. makes only finitely many records in the right
direction, giving Sμ

n → −∞, a.-s.. Thus P0(Sμ
n → −∞, with Sμ

k ≤ 0, ∀k ≥ 0) >
0 and so P0(Sn → −∞ and Sk ≤ 0, ∀k ≥ 0) > 0. Hence 0 is transient for (Sn).
The situation ν−(−N∗) < 1 is treated similarly.

ii) Let μ+(N∗) = ν−(−N∗) = 1. Then (Sn) visits both (−∞, 0] and [1,+∞)
infinitely often, a.-s.. Start (Zn) at 0. Idem, start (Sn) at 0 and let τ be its a.-s.
finite entrance time in [1,+∞). Then Sτ has the law of Z1. Looking now at
(Sτ+n)n≥0 at left record times on [1,+∞) and right record times on (−∞, 0],
then (Sτ+n)n≥0 a.-s. comes back to 0 iff (Zn)n≥1 does.

We now suppose that μ+(N∗) = ν−(−N∗) = 1. This property may not be
sufficient for recurrence, as rarely, very large jumps across 0 may occur, ensuring
|Sn| → +∞. Using the previous lemma, we focus on (Zn). The latter random
walk is rather particular, as it can essentially be reduced to the two sequences
of positive and negative jumps (written in the order they appear).

Lemma 5.3.
i) Let 0 ≤ k ≤ n and x, y ∈ Z. The sequences (l+i )1≤i≤k and (−l−j )1≤j≤n−k are
respectively the ordered sequences of positive and negative jumps of a trajectory
(which is then unique) of (Zm)0≤m≤n, with Z0 = x and Zn = y, if and only
if

∑
1≤i≤k l

+
i −

∑
1≤j≤n−k l

−
j = y − x and (l+k ≥ y, if k ≥ 1 & y > 1) and

(−l−n−k ≤ y − 1, if n− k ≥ 1 & y ≤ −1).

ii) We have Px(Zn = y) =
∑n

k=0 P (Sμ+
k +S

ν−
n−k =y−x,X

μ+
k ≥y,X

ν−
n−k≤y−1),

for any n ≥ 0 and x, y ∈ Z. The second condition disappears if k = 0, the third
one if n− k = 0.

iii) The Green function GZ of (Zn) verifies GZ(0, 0) =
∑

m≥0 G
μ+(0,m)

Gν−(0,−m).

Proof of the lemma.
i) Starting from a trajectory of (Zm)0≤m≤n, denote by (l+i )1≤i≤k and (−l−j )1≤j≤n−k,
for some 0 ≤ k ≤ n, the ordered sequences of positive and negative jumps. These
two sequences allow to recover the trajectory, just observing that the current
position of the walker gives the direction of the next jump. Hence, starting for
example from x ≤ 0, use first the (l+i ) until reaching [1,+∞), next the (l−j ) until
coming back to (−∞, 0], etc, until exhausting the two lists.
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Starting from x and arriving at y, we have
∑

i l
+
i −

∑
j l

−
j = y − x. Suppose

that k ≥ 1 and y > 1 (the cases n− k ≥ 1 and y ≤ −1 would be treated in the
same way). When running the exhaustion process of the lists, two cases may
occur:
- the (l+i ) are finished first. When this happens, the position is > y and the last
positive jump must have been > y. The path to y is ended with the remaining
negative jumps.
- the list (l−i ) is ended first. The trajectory then terminates with positive jumps
(each with a starting point in (−∞, 0]) and the last one has to be ≥ y.

Reciprocally, suppose the conditions satisfied and for instance k ≥ 1 & y ≥ 1.
Starting from x, run the exhaustion process of the lists. If the (l−j ) finish first,
only positive jumps remain. As the last one is ≥ y, this last sequence of jumps
will have non-positive starting points, so the trajectory will be “admissible”. If
the (l+i ) are ended first, we are > y when this happens. Only remain negative
jumps for going to y, hence the trajectory is also “admissible”.

ii) Let independent (Xμ+
k , X

ν−
l )k,l≥0, with L(Xμ+

k ) = μ+, L(Xν−
l ) = ν−. Run-

ning from some fixed x the exhaustion process with the two lists (Xμ+
k )k≥0

and (Xν−
l )l≥0, we obtain a realization of (Zn)n≥0, with Z0 = x. By i), {Zn =

y, with k positive jumps} = {Sμ+
k + S

ν−
n−k = y − x, X

μ+
k ≥ y, X

ν−
n−k ≤ y − 1}.

Take the probability and sum on 0 ≤ k ≤ n to get the result.

iii) From P0(Zn = 0) =
∑n

k=0 P
(
S
μ+
k + S

ν−
n−k = 0

)
=

∑n
k=0(μk

+ν
n−k
− )(0), we

obtain:

GZ(0, 0) =
∑
k,l≥0

(μk
+ν

l
−)(0)

=
∑
m≥0

∑
k,l≥0

μk
+(m)νl−(−m) =

∑
m≥0

Gμ+(0,m)Gν−(0,−m).

Remark. — The proof of iii) also gives the following interesting relation,
interpreting the recurrence criterion in terms of intersections of two independent
random walks:

GZ(0, 0) =
∑
k,l≥0

P (Sμ+
k = −S

ν−
l ) = E(card({Sμ+

k , k ≥ 0} ∩ {−S
ν−
l , l ≥ 0})).

Rather clearly, the right-hand side is 1/(1 − P ({Sμ+
k , k ≥ 1} ∩ {−S

ν−
l , l ≥

1} 
= ∅)), hence the recurrence of (Zn) is equivalent to P ({Sμ+
k , k ≥ 1}∩{−S

ν−
l ,

l ≥ 1} 
= ∅) = 1.
The Green function of (Zn) is related to the l2-inner product of the Green

functions Gμ+ and Gν− . We now consider analytical expressions involving μ̂+
and ν̂−, of Chung-Fuchs type. See Theorems 4.6 and 4.8 of Kemperman [9].
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Proposition 5.4.
i) We have the following relations:

a)

GZ(0, 0) = lim
s↑1

1
2π

∫ 2π

0
Re

(
(1 − sμ̂+(t))−1(1 − sν̂−(t))−1) dt.

b)

GZ(0, 0) + 1 = lim
s↑1

1
π

∫ 2π

0
Re

(
(1 − sμ̂+(t))−1)Re

(
(1 − sν̂−(t))−1) dt.

c)

−GZ(0, 0) + 1 = lim
s↑1

1
π

∫ 2π

0
Im

(
(1 − sμ̂+(t))−1) Im (

(1 − sν̂−(t))−1) dt.
In a similar way:

d)

GZ(0, 0) = lim
r↑1

1
2π

∫ 2π

0
Re

(
1

1 − Eμ+((reiθ)X)
1

1 − Eν−((re−iθ)−Y )

)
dt.

e)

GZ(0, 0)+1=lim
r↑1

1
π

∫ 2π

0
Re

(
1

1 − Eμ+((reiθ)X)

)
Re

(
1

1 − Eν−((re−iθ)−Y )

)
dt.

f)

−GZ(0, 0) + 1=lim
r↑1

1
π

∫ 2π

0
Im

(
1

1−Eμ+((reiθ)X)

)
Im

(
1

1−Eν−((re−iθ)−Y )

)
dt.

ii) When ν−(A) = μ+(−A), A ⊂ Z, then GZ(0, 0) = (2π)−1 ∫ 2π
0 |1− μ̂+(t)|−2dt.

iii) If
∫ 2π
0 |1 − μ̂+(t)|−2dt < ∞ and

∫ 2π
0 |1 − ν̂−(t)|−2dt < ∞, then (Sn) is

transient.

Proof of the proposition.
i) Take 0<s<1 and t∈ [0, 2π]. Developing 1/(1− sμ̂+(t))=

∑
n≥0 s

nEμ+(eitSn),
we obtain:

1
1 − sμ̂+(t) =

∑
m≥0

eitm
∑
n≥0

snP (Sμ+
n = m) and

1
1 − sν̂−(t) =

∑
m≥0

e−itm
∑
n≥0

snP (Sν−
n = −m),
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giving:

1
2π

∫ 2π

0

1
1 − sμ̂+(t)

1
1 − sν̂−(t) dt− 1

= 1
π

∫ 2π

0
Re

(
1

1 − sμ̂+(t)

)
Re

(
1

1 − sν̂−(t)

)
dt− 2

= − 1
π

∫ 2π

0
Im

(
1

1 − sμ̂+(t)

)
Im

(
1

1 − sν̂−(t)

)
dt

=
∑
m≥1

⎛⎝∑
n≥0

snP (Sμ+
n = m)

∑
n′≥0

sn
′
P (Sν−

n′ = −m)

⎞⎠ .

By monotone convergence, as s ↑ 1, and Lemma 5.3 iii), the limit of the last
term in the right-hand side is GZ(0, 0)− 1. This shows a), b), c). Then d), e), f)
are proved similarly, starting this time with 1/(1−Eμ+(zX)) =

∑
n≥0 E

μ+(zSn),
for |z| ≤ 1.

ii) In this case, μ̂+(t) is the conjugate of ν̂−(t), t ∈ R. By i)a), 2πGZ(0, 0)
equals:

lim
s↑1

∫ 2π

0
|1−sμ̂+(t)|−2dt = lim

s↑1
s−2

∫ 2π

0
|s−1−μ̂+(t)|−2dt =

∫ 2π

0
|1−μ̂+(t)|−2dt,

where monotone convergence is used at the end (this does not work in general).

iii) Under the hypotheses, using ii) and Lemma 5.3 iii), the sequences
(Gμ+(0,m))m≥0 and (Gν−(0,−m))m≥0 are in l2. Hence (Gμ+(0,m)Gν−(0,
−m))m≥0 is l1, by the Cauchy-Schwarz inequality. By Lemma 5.3 iii), 0 is
transient for (Zn), hence for (Sn).

Remark. — Using Fatou’s lemma in i)b), the transience of (Zn) implies that:

Re
(
(1 − μ̂+)−1)Re

(
(1 − ν̂−)−1) ∈ L1(0, 2π).

It is a general property of real even functions f > 0 and g > 0 in L1(0, 2π)
having real non-negative Fourier coefficients that (1/2π)

∫ 2π
0 fg dt ≤

∑
n≥0 f̂(n)

ĝ(n). Indeed, with the Fejer kernel Kn:

(Kn ∗ f)(t) =
n∑

j=−n

(
1 − |j|

n + 1

)
f̂(j)eijt.

For M > 0, (1/2π)
∫ 2π
0 (Kn ∗f)(g∧M)dt ≤ (1/2π)

∫ 2π
0 (Kn ∗f)gdt=

∑n
j=−n(1−

|j|
n+1 )f̂(j)ĝ(j). Using Kn ∗f → f in L1 for the left-hand side and monotone con-
vergence for the right-hand side, we get (1/2π)

∫ 2π
0 f(g∧M)dt ≤

∑
n≥0 f̂(n)ĝ(n).

Let finally M → +∞.
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Remark. — The question of the sign of Re((1 − μ̂+(t))−1(1 − ν̂−(t))−1)
is delicate. One can build examples such that this quantity is negative along
a sequence (tk) ↓ 0. However such t’s seem to be very rare and the previous
function of t should be positive near 0 in a very strong statistical sense. Towards
a Spitzer type result, a necessary preliminary step is to show that the integral∫
Re((1 − μ̂+)−1(1 − ν̂−)−1) has a meaning, certainly in the sense that the

negative part of Re((1 − μ̂+)−1(1 − ν̂−)−1) is in L1(0, 2π).

5.3. Invariant measure and related remarks

The process (Zn) admits a natural invariant measure, thus giving a characteri-
zation of its positive recurrence. See also Vo [15], where an invariant measure for
a related process is also exhibited, leading to an interesting recurrence sufficient
condition.

Proposition 5.5. Let μ+(N∗) = ν−(−N∗) = 1 and suppose that (Zn) is irre-
ducible on Z. The measure

π(y) = μ+(≥ y)1y≥1 + ν−(≤ y − 1)1y≤0

is invariant for (Zn). Hence (Zn) is positive recurrent iff Eμ+(X) < ∞ and
Eν−(X) > −∞. If among Eμ+(X) and Eν−(X) exactly one is finite, then (Zn)
is null recurrent.

Proof of the proposition. Let the measure π(y) = μ+(≥ y)1y≥1 + ν−(≤ y −
1)1y≤0. Taking y0 ≥ 1, we have:

∑
y>y0

μ+(≥ y)ν−(y0 − y) +
∑
y≤0

ν−(≤ y − 1)μ+(y0 − y)

=
∑
z>y0

μ+(z)
∑

y0<y≤z

ν−(y0 − y) +
∑
z≥y0

μ+(z)ν−(≤ y0 − z − 1)

=
∑
z>y0

μ+(z)(ν−([y0 − z,−1]) + ν−(≤ y0 − z − 1))

+ μ+(y0)ν−(≤ −1) = μ+(≥ y0).

The case y0 ≤ 0 is treated similarly. For the last point, suppose that Eμ+(X) <
∞ and Eν−(X) = −∞. Then limm→+∞ Gμ+(0, dm) = d/Eμ+(X) > 0, by the
renewal theorem, writing d ≥ 1 for the period of μ+. By Lemma 5.3 iii), for
the recurrence of (Zn) it is then sufficient to show

∑
m≥0 G

ν−(0,−dm) = +∞.
However if d′ ≥ 1 is the period of ν−, then clearly

∑
m≥0 G

ν−(0,−mdd′) = +∞,
which gives the result. The other case is similar. This concludes the proof of the
proposition.

Towards a Spitzer type result for Kemperman’s random walk, a possible
strategy suggested by the present text is to use Lemma 4.2. Recall for (Zn),
the quantity α(x, y) = limN→+∞ GN (x, x)/GN (y, y), introduced and studied
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in Lemma 4.1. It verifies the obvious relations α(x, z) = α(x, y)α(y, z) and
α(x, x) = 1. We make the following remark.

Lemma 5.6. Let μ+(N∗) = ν−(−N∗) = 1 and (Zn) be irreducible on Z. For
any y ∈ Z, we have the formulas:

α(y, 0) = α(y, 1) =
{

μ+(≥ y) +
∑

1≤z<y μ+(z)Pz(T0 = +∞), y ≥ 1,
ν−(≤ y − 1) +

∑
y≤z≤−1 ν−(z)Pz+1(T1 = +∞), y ≤ 0.

Proof of the lemma. Let us take y ≥ 1. The case y ≤ 0 would be treated in the
same way. By Lemma 4.1, in the recurrence case, α(y, 0) = μ+(≥ y), where we
use the invariant measure given in Prop. 5.5. We now suppose transience. Then,
using Lemma 5.3 ii):

GN (y, y)
GN (0, 0) =

1 +
∑N−1

n=1 (Vn−1μ+,≥y)(0)
GN (0, 0) =

1 +
∑

z≥y μ+(z)
∑N−2

n=0 Vn(−z)
GN (0, 0) .

As
∑N−2

n=0 Vn(−z) = GN−1(z, 0), we obtain by monotone convergence, both in
the numerator and in the denominator:

α(y, 0) = lim
N→+∞

GN (y, y)
GN (0, 0) =

1 +
∑

z≥y μ+(z)G(z, 0)
G(0, 0) .

Since G(0, 0) = 1 +
∑

z≥1 μ+(z)G(z, 0), the numerator is G(0, 0) −
∑

1≤z<y

μ+(z)G(z, 0) or G(0, 0)(1 −
∑

1≤z<y μ+(z)Pz(T0 < ∞)) = G(0, 0)(μ+(≥ y) +∑
1≤z<y μ+(z)Pz(T0 = +∞)), giving the announced formula.

Remark. — Always α(0, 1) = α(1, 0) = 1. As y ↑ +∞, α(y, 0) is non-
increasing, tending to 0 in case of recurrence and, when transience holds, to∑

z≥1 μ+(z)Pz(T0 = +∞) > 0.

6. Fourier transform of probability measures on N∗

To prepare further work, we study here some properties of 1/(1 − μ̂+) when
μ+ is a probability measure on N∗. By Theorem 3.1, the transience of the
random walk with step μ+ implies that Re(1/(1 − μ̂+)) ∈ L1(0, 2π). In fact
(1/(2π))

∫ 2π
0 Re(1/(1 − μ̂+(t)))dt ≤ 1, directly by (6) and Fatou’s lemma, as

Gμ+(0, 0) = 1. The exact value would follow easily from the considerations of
Prop. 3.2 combined with renewal theory.

We instead make an Herglotz type computation, using complex analysis. This
allows to next derive the renewal theorem directly from the Riemann-Lebesgue
lemma. We next show that the Fourier coefficients of Re(1/(1 − μ̂+)) have an
interesting probabilistic interpretation. Notice for the sequel that 1/(1−μ̂+(2π−
t)) is the conjugate of 1/(1− μ̂+(t)). This allows to simplify several statements
below.
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Lemma 6.1. Let μ+, with Supp(μ+) ⊂ N∗ and gcd(Supp(μ+)) = 1. Then
t �−→ Re(1/(1 − μ̂+(t)) is real, positive, even and in L1(0, 2π), with:

1
2π

∫ 2π

0
Re

(
1

1 − μ̂+(t)

)
dt = 1 − 1

2Eμ+(X) . (10)

Proof of the lemma. Introduce f(z) = 1/(1 − Eμ+(zX)), holomorphic in Δ =
{|z| < 1}. For 0 ≤ r ≤ 1, the map z �−→ Re(f(rz)) is > 0 and harmonic on Δ.
Fixing 0 < r < 1 and using the Poisson kernel:

Re(f(rz)) = 1
2π

∫ 2π

0
Re

(
eiθ + z

eiθ − z

)
Re(f(reiθ))dθ, z ∈ Δ. (11)

By holomorphic extension (and f(0) = 1 ∈ R):

f(rz) = 1
2π

∫ 2π

0

eiθ + z

eiθ − z
Re(f(reiθ))dθ, z ∈ Δ. (12)

Taking z = 0 in (11), we get 1 = 1
2π

∫ 2π
0 Re(f(reiθ))dθ, so the positive measures

(νr)0<r<1 on the torus R\2πZ with density θ �−→ Re(f(reiθ)) have constant
mass 2π. Let us take a cluster value ν of νr, as r ↑ 1, for the weak-∗ topology.
We get from (12), fixing first z ∈ Δ:

f(z) = 1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ) = 1

2π

∫ 2π

0

⎛⎝1 + 2
∑
n≥1

zne−inθ

⎞⎠ dν(θ).

Permuting the sum and the integral in the last expression, the Fourier coeffi-
cients of ν are uniquely determined by the development in series of f around 0.
Hence ν is unique and we conclude that (νr) converges to ν, as r ↑ 1. We shall
now determine this measure.

First, when θ ∈ R\2πZ is fixed, then μ̂+(θ) 
= 1, so limr↑1 Re(f(reiθ)) =
Re(1/(1−μ̂+(θ))). Thus ν is locally Re(1/(1−μ̂+(θ)))dθ. Finally ν = Re(1/(1−
μ̂+(θ)))dθ + α0δ0 and hence:

1
1 − Eμ+(zX) = 1

2π

∫ 2π

0

(
eiθ + z

eiθ − z

)
Re

(
1

1 − μ̂+(θ)

)
dθ + α0

2π

(
1 + z

1 − z

)
, z ∈ Δ.

To determine α0, take z = e−u, with a real u ↓ 0, and multiply both sides by
1 − e−u:

1 − e−u

1 − Eμ+(e−uX)

= 1
2π

∫ 2π

0
(1 − e−u)

(
eiθ + e−u

eiθ − e−u

)
Re

(
1

1 − μ̂+(θ)

)
dθ + α0

2π (1 + e−u).
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The left-hand side goes to 1/Eμ+(X), monotonically. As (1 − e−u) × (eiθ +
e−u)/(eiθ−e−u) stays bounded by 2, the first term on the right-hand side tends
to 0 by dominated convergence. Finally, α0/π = 1/Eμ+(X) and we get the
relation:

1
1 − Eμ+(zX)

= 1
2π

∫ 2π

0

(
eiθ + z

eiθ − z

)
Re

(
1

1 − μ̂+(θ)

)
dθ + 1

2Eμ+(X)

(
1 + z

1 − z

)
, z ∈ Δ.

(13)

Expression (10) is now given by z = 0.

Proposition 6.2. Let μ+, with Supp(μ+) ⊂ N∗ and gcd(Supp(μ+)) = 1.

i) For x ≥ 1:

1
π

∫ 2π

0
cos(tx)Re

(
1

1 − μ̂+(t)

)
dt = P

μ+
0 (Tx < ∞) − 1

Eμ+(X) . (14)

ii) The function t �−→ t/|1 − μ̂+(t)| belongs to L2(0, π). The function t �−→
Im(1/(1 − μ̂+(t)) is real and odd; if Eμ+(X) < ∞, then it does not belong to
L1(0, π). Also, for x ≥ 1:

1
π

∫ 2π

0
sin(tx)Im

(
1

1 − μ̂+(t)

)
dt = P

μ+
0 (Tx < ∞).

iii) We have |1− μ̂+|−1 ∈ Lγ(0, 2π), 0 < γ < 1. Also tε|1− μ̂+(t)|−1 ∈ L1(0, π),
ε > 0.

Proof of the proposition.
i) Start as in Prop. 3.2. Fixing x ≥ 1, we first have, for N ≥ 1:

2Gμ+
N (0, 0) −G

μ+
N (0, x) −G

μ+
N (0,−x) = 1

π

∫ 2π

0

1 − cos(tx)
1 − μ̂+(t) (1 − (μ̂+(t))N ) dt.

We can again take the limit as N → +∞ in the right-hand side and next the
real part. The limit of the left-hand side is evident, giving for any x ≥ 1:

2 − P
μ+
0 (Tx < ∞) = 1

π

∫ 2π

0
(1 − cos(tx))Re

(
1

1 − μ̂+(t)

)
dt. (15)

The fact that Re(1/(1 − μ̂+)) ∈ L1(0, 2π) can be recovered when minoring
the right-hand side by π−1 ∫ 2π−δ

δ
, δ > 0, letting x → +∞ with the Riemann-

Lebesgue lemma and finally δ → 0. Subtracting (15) to twice (10) gives the
desired relation for x ≥ 1.
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ii) Let us place on (0, π). As 1 −Re(μ̂+(t)) ≥ αt2, we have:

αt2

|1 − μ̂+(t)|2 ≤ 1 −Re(μ̂+(t))
|1 − μ̂+(t)|2 = Re

(
1

1 − μ̂+(t)

)
∈ L1(0, π).

For the imaginary part, let us write, fixing x ≥ 1 and taking N ≥ 1:

G
μ+
N (0, x) −G

μ+
N (0,−x) = 1

2π

∫ 2π

0
(e−itx − eitx)

N−1∑
n=0

(μ̂+(t))ndt

= − i

π

∫ 2π

0
sin(tx)

(
1 − (μ̂+(t))N

1 − μ̂+(t)

)
dt. (16)

As sin(tx)Im(1/(1 − μ̂+(t))) is integrable on (0, 2π), we can let N → +∞ and
then take the imaginary part inside the integral. The left-hand side limit being
evident, we obtain for x ≥ 1:

P
μ+
0 (Tx < ∞) = 1

π

∫ 2π

0
sin(tx)Im

(
1

1 − μ̂+(t)

)
dt.

Whenever Eμ+(X) < ∞, the left-hand side goes to 1/Eμ+(X) > 0, hence the
Riemann-Lebesgue lemma is not verified, giving Im(1/(1− μ̂+(t))) 
∈ L1(0, 2π).

iii) The holomorphic function f(z) = 1/(1 − Eμ+(zX)), z ∈ Δ, has a positive
harmonic real part, thus in h1(Δ). By Duren [5], Theorem 4.2, f ∈ Hγ(Δ),
0 < γ < 1, i.e.:

sup
0<r<1

∫ 2π

0
|f(reiθ)|γ dθ < ∞.

By Fatou’s lemma, as r ↑ 1, we get
∫ 2π
0 |1 − μ̂+(θ)|−γ dθ < ∞. For the last

point, write:

tε

|1 − μ̂+(t)| = tε

|1 − μ̂+(t)|ε/2 × 1
|1 − μ̂+(t)|1−ε/2 ∈ L1(0, π),

as the first term on the right-hand side is bounded. This ends the proof of the
proposition.

Remark. — In item i), the Riemann-Lebesgue lemma implies the Erdös-
Feller-Pollard [6] renewal theorem, i.e. limx→+∞ P

μ+
0 (Tx < ∞) = 1/Eμ+(X).

Another proof, even simpler, is by (15) and the Riemann-Lebesgue lemma,
giving the existence of limx→+∞ P0(Tx < ∞); then in Spitzer [14], P3, the
limit is identified as 1/Eμ+(X). The Fourier coefficients of Re((1 − μ̂+)−1) and
Im((1− μ̂+)−1) are probabilistic quantities and those of Re((1− μ̂+)−1) exactly
measure the error in the renewal theorem.



On homogeneous and oscillating random walks 107

Remark. — Another proof of (10) and (14) is via (13), when identifying
the coefficients of the developments in series, writing first (eiθ + z)/(eiθ − z) =
1+2

∑
n≥1 z

ne−inθ in the right-hand side and observing that the left-hand side
is the generating series of the potential measure:

1
1 − Eμ+(zX) =

∑
n≥0

Eμ+(zSn) =
∑
n≥0

∑
m≥0

zmPμ+(Sn = m) =
∑
m≥0

zmGμ+(0,m).

(17)
Remark. — Using Re(1−μ̂+(t))=2Eμ+(sin2(tX/2))≥(2/π2)t2Eμ+(X21X<π/t),

we get: ∫ ε

0

t2Eμ+(X21X<π/t)
|1 − μ̂+(t)|2 dt < ∞.

This is a little improvement of Proposition 6.2 ii) when X 
∈ L2. Another
question is whether t1/2+ε/|1 − μ̂+(t)| ∈ L2(0, π), for ε > 0.

Corollary 6.3.
i) Re((1 − μ̂+)−1) ∈ L2(0, 2π) iff (Gμ+(0, x) − 1/Eμ+(X))x≥0 ∈ l2.

ii) Im((1− μ̂+)−1) ∈ L2(0, 2π) iff (Gμ+(0, x))x≥0 ∈ l2. In this case |1− μ̂+|−1 ∈
L2(0, 2π).

Proof of the corollary. Point i) is clear as Re((1 − μ̂+)−1) ∈ L1(0, 2π), so the
(Gμ+(0, x)−1/Eμ+(X)) are its Fourier coefficients. Idem when Im((1−μ̂+)−1) ∈
L2(0, 2π), the (Gμ+(0, x))x≥0 are the corresponding Fourier coefficients and thus
belong to l2. Reciprocally, if (Gμ+(0, x))x≥0 is l2, define the L2 odd function
f(t) =

∑
x≥1 G

μ+(0, x) sin(xt). For all x ∈ Z, we thus have:∫ 2π

0

sin(tx)
sin t

[
sin t

(
Im((1 − μ̂+(t))−1) − f(t)

)]
dt = 0.

The function inside the brackets belongs to L2 and is even. Writing sin(t(1 +
x) + sin(t(1 − x)) = 2 sin(t) cos(tx), for x ≥ 0, the latter is thus orthogonal to
all cos(tx), x ≥ 0, hence equals zero a.-e.. Hence Im((1− μ̂+)−1) = f , a.-e., and
thus belongs to L2.

Finally, when Im((1 − μ̂+)−1) ∈ L2(0, 2π) ⊂ L1(0, 2π), then Eμ+(X) = ∞
by Proposition 6.2. The conditions on Fourier coefficients in order to belong to
L2(0, 2π), for Re((1 − μ̂+)−1) and Im((1 − μ̂+)−1), are now identical.

Remark. — Clearly
∑

x≥0 G
μ+(0, x) = +∞, hence (Gμ+(0, x))x≥0 is never in

l1. As detailed in the previous section, it is in l2 iff some symmetric oscillating
random walk on Z is transient.

Remark. — For complex numbers a and b, write 〈a, b〉 = Re(ab̄) for the real
inner product of the vectors in R2 with affixes a and b. As a corollary of Prop. 6.2,
although 1/(1− μ̂+) may not belong to L1(0, 2π), making unclear the definition
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of Fourier coefficients, we always have t �−→ 〈(1 − μ̂+(t))−1, eitx〉 ∈ L1(0, 2π),
for all x ∈ Z, with:⎧⎨⎩

1
π

∫ 2π
0 〈(1 − μ̂+(t))−1, eitx〉 dt = 2Gμ+(0, x) − 1/Eμ+(X), x ≥ 0,

1
π

∫ 2π
0 〈(1 − μ̂+(t))−1, e−itx〉 dt = −1/Eμ+(X), x ≥ 1.

Even if this is not always true, in general Im(μ̂+(t)) ≥ 0 for small t > 0, so
in this case 1/(1 − μ̂+(t)) is in the first quadrant, as well as eitx, x ≥ 1, and
contrary to e−itx. Hence it seems natural that the first integral above is larger
than the second one.

To conclude this section, we present a variation on Lemma 6.1, with a real
parameter a > 0. Formula (10) is obtained when letting a → +∞.

Lemma 6.4. Let μ+, with Supp(μ+) ⊂ N∗ and gcd(Supp(μ+)) = 1. Then, for
any real a > 0:

1
2π

∫ 2π

0
Re

(
1

1 − μ̂+(t)

)(
1 +

(
sin(t/2)

sinh(a/2)

)2
)−1

dt

= tanh(a/2)
1 − Eμ+(e−aX) − 1

2Eμ+(X) .

Proof of the lemma. Introduce the homography ρ(z) = (1−z)/(1+z), exchang-
ing the open unit disk Δ and the half plane Re > 0. Let a > 0 be real and
f(z) = 1/(1 − Eμ+(e−aρ(z)X)), z ∈ Δ. This function is holomorphic in Δ and
Re(f) is > 0 and harmonic on Δ. By harmonicity at z = 0, for 0 < r < 1:

1/(1 − Eμ+(e−aX)) = 1
2π

∫ 2π

0
Re(f(reiθ)dθ.

Proceeding as in Lemma 6.1, we get:

f(z) = 1
2π

∫ 2π

0

eiθ + z

eiθ − z
dν(θ), z ∈ Δ,

where ν is the limit as r ↑ 1 of the positive measures νr on R\2πZ with density
Re(f(reiθ)). In order to detail ν, note first that when θ ∈ (−π, π) is fixed, then:

lim
r↑1

ρ(reiθ) = 1 − eiθ

1 + eiθ
= −i tan(θ/2).

When also θ 
∈ {2 arctan(2kπ/a), k ∈ Z}, then Eμ+(eia tan(θ/2)X) 
= 1 and ν is
locally g(θ)dθ, with g(θ) = Re(1/(1−Eμ+(eia tan(θ/2)X))). Hence ν decomposes
as:

ν = Re(1/(1 − Eμ+(eia tan(t/2)X)))dt + απδπ +
∑
k∈Z

αkδθk ,
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where θk := 2 arctan(2πk/a), for non-negative απ and αk, k ∈ Z. In order to
determine these coefficients, start from the relation, for z ∈ Δ:

1
1 − Eμ+(e−aρ(z)X)

= 1
2π

∫ π

−π

(
eiθ + z

eiθ − z

)
g(θ)dθ + απ

2π

(
1 − z

1 + z

)
+

∑
k∈Z

αk

2π

(
eiθk + z

eiθk − z

)
.

Recall that g is integrable and
∑

k αk < ∞ (the mass of ν being 2π/(1 −
Eμ+(e−aX))). Take z = −r above, as r ↑ 1, and multiply first both sides by
1− r. Notice that for θ ∈ (−π, π), (1− r)× (eiθ − r)/(eiθ + r) stays bounded by
2 and converges to 0. Hence as r ↑ 1, by dominated convergence, the right-hand
side converges to απ

2π (1 + 1), whereas the left-hand side is equivalent to (1 − r)
and therefore goes to 0. We obtain απ = 0.
Fixing k ∈ Z, take now z = reiθk and let r ↑ 1, after multiplying both sides by
(1 − r). Idem, for θ ∈ (−π, π)\{θk}, (1 − r) × (eiθ + reiθk)/(eiθ − reiθk) stays
bounded by 2 and converges to 0. By dominated convergence the right-hand
side converges to αk/π, and this equals:

lim
r↑1

1 − r

1 − Eμ+(e−aρ(reiθk )X)
.

To determine the limit, note first that limu↓0+ u/(1−Eμ+(e−uX)) = 1/Eμ+(X),
by monotone convergence. Next, ρ(eiθk) = −i tan(θk/2) = −2ikπ/a, so the de-
nominator is:

1 − Eμ+(e−a(ρ(reiθk )−ρ(eiθk ))X).
We next have, decomposing in real and imaginary parts:

ρ(reiθk) − ρ(eiθk) = 2(1 − r)eiθk
(1 + reiθk)(1 + eiθk)

= 1 − r

cos(θk/2)
(1 + r) cos(θk/2) + i(1 − r) sin(θk/2)

(1 + r)2 cos2(θk/2) + (1 − r)2 sin2(θk/2)
= A(r) + iB(r).

- Case 1: Eμ+(X) = +∞. Then, as A(r)/(1 − r) →r↑1 1/(2 cos2(θk/2)) > 0:∣∣∣∣ 1 − r

1 − Eμ+(e−aρ(reiθk )X)

∣∣∣∣ ≤ 1 − r

1 − Eμ+(e−aA(r)X)
→r↑1 0.

- Case 2: Eμ+(X) < +∞. Then:

1 − Eμ+(e−a(ρ(reiθk )−ρ(eiθk ))X)
1 − r
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= 1 − Eμ+(e−aA(r)X)
1 − r

+ Eμ+(e−aA(r)X(1 − e−iaB(r)X)/(1 − r)).

As r ↑ 1, the first term on the right-hand side tends to aEμ+(X)/(2 cos2(θk/2)).
Since t �−→ eit is 1-Lipschitz on R, |1 − e−iaB(r)X |/(1 − r) ≤ a|B(r)|X/(1 − r).
As |B(r)| ≤ C(1−r)2, the previous quantity is both bounded by C ′X and tends
to 0 as r ↑ 1. Since Eμ+(X) < ∞, by dominated convergence the second term
goes to 0 as r ↑ 1. Finally, αk/π = 2 cos2(θk/2)/(aEμ+(X)). As cos2(θk/2) =
1/(1 + (2πk/a)2), this leads to:

1
1 − Eμ+(e−aρ(z)X)

= 1
2π

∫ π

−π

(
eiθ + z

eiθ − z

)
Re

(
1

1 − Eμ+(eia tan(θ/2)X)

)
dθ

+ 1
Eμ+(X)

∑
k∈Z

(
eiθk + z

eiθk − z

)
a

a2 + 4π2k2 , z ∈ Δ.

Taking z = 0 and making the change of variable θ = 2 arctan(t/a) in the integral:

1
1 − Eμ+(e−aX)

= 1
π

∫ ∞

−∞
Re

(
1

1 − μ̂+(t)

)
a

a2 + t2
dt + 1

Eμ+(X)
∑
k∈Z

a

a2 + 4π2k2

= 1
π

∫ 2π

0
Re

(
1

1 − μ̂+(t)

)∑
k∈Z

a

a2 + (t + 2kπ)2 dt + 1
Eμ+(X)

∑
k∈Z

a

a2 + 4π2k2 .

Finally, for a real α 
= 0 and a complex number z, we have (cf Cartan [4], ex. 4,
p172):

π

α

sinh(2πα)
cosh(2πα) − cos(2πz) =

∑
k∈Z

1
α2 + (z + k)2 .

Therefore:

1
1 − Eμ+(e−aX)

= 1
2π

∫ 2π

0
Re

(
1

1 − μ̂+(t)

)
sinh(a)

cosh(a) − cos(t)dt + 1
2Eμ+(X)

sinh(a)
cosh(a) − 1 .

(18)

This gives the announced formula.

Remark. — When defining f , the term Eμ+(e−aρ(z)X) could be replaced by
Eμ+(h(z)X) or Eμ+(h(zX)), for any h holomorphic in Δ with |h| < 1 in Δ, for
example an automorphism of Δ. This would give new relations, but in general
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limr↑1 E
μ+(h(reiθ)X) is delicate to determine concretely. Mention also that one

may deduce from (18) the asymptotics as a ↓ 0 of:∫ 2π

0
Re

(
1

1 − μ̂+(t)

)
1

a2 + t2
dt.
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