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Abstract: Envelope methods offer targeted dimension reduction for var-
ious statistical models. The goal is to improve efficiency in multivariate
parameter estimation by projecting the data onto a lower-dimensional sub-
space known as the envelope. Envelope approaches have advantages in an-
alyzing data with highly correlated variables, but their iterative Grassman-
nian optimization algorithms do not scale very well with high-dimensional
data. While the connections between envelopes and partial least squares
in multivariate linear regression have promoted recent progress in high-
dimensional studies of envelopes, we propose a more straightforward way
of envelope modeling from a new principal component regression perspec-
tive. The proposed procedure, Non-Iterative Envelope Component Estima-
tion (NIECE), has excellent computational advantages over the iterative
Grassmannian optimization alternatives in high dimensions. We develop a
unified theory that bridges the gap between envelope methods and princi-
pal components in regression. The new theoretical insights also shed light
on the envelope subspace estimation error as a function of eigenvalue gaps
of two symmetric positive definite matrices used in envelope modeling. We
apply the new theory and algorithm to several envelope models, including
response and predictor reduction in multivariate linear models, logistic re-
gression, and Cox proportional hazard model. Simulations and illustrative
data analysis show the potential for NIECE to improve standard methods
in linear and generalized linear models significantly.
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1. Introduction

The idea of envelope modeling is to exploit the covariance structure in variables
and identify and eliminate the part of data tangent to the parameter space of in-
terest but only brings extraneous variability to model fitting. Firstly introduced
in Cook, Li and Chiaromonte (2010), envelope methods have demonstrated
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promising performances in various multivariate statistical problems. Different
envelope structures are proposed in the multivariate linear regression model,
for example, partial envelope (Su and Cook, 2011), inner envelope (Su and
Cook, 2012), scaled envelope (Cook and Su, 2013), and simultaneous envelope
(Cook and Zhang, 2015a). Connections between envelopes and classical mul-
tivariate analysis methods are intensively studied: envelope and partial least
squares (Cook, Helland and Su, 2013a), envelope and reduced-rank regression
(Cook, Forzani and Zhang, 2015), envelope and Bayesian statistics (Khare et al.,
2017), envelope and discriminant analysis (Zhang and Mai, 2019), and among
others. Recent extensions of envelopes beyond the standard linear models is
also an emerging field of research. Cook and Zhang (2015b) proposed a general
constructive framework for adapting envelope methods to any estimation pro-
cedure, and applied this to generalized linear models and Cox regression. More
recently, envelope methodology has been extended to quantile regression (Ding
et al., 2021), Huber regression (Zhou, Cook and Zou, 2020), matrix-variate (Ding
and Cook, 2018) and tensor-variate regressions (Li and Zhang, 2017). See Cook
(2018) for a detailed introduction, and Cook (2020) and Lee and Su (2020) for
recent reviews, on envelopes.

In this paper, we will study two challenging and fundamental questions in
high-dimensional envelopes: (i) How to overcome the computational bottleneck
of envelope estimation in ultra high-dimensions; and (ii) How to quantify the
envelope subspace estimation error in a generic model-free setting, especially
when the dimension p diverges much faster than the sample size n. To address
the computational issue (i) and the theoretical issue (ii) of high-dimensional
envelopes, we propose a scalable and straightforward envelope estimation pro-
cedure based on a novel principal components regression formulation. Computa-
tionally, the proposed novel procedure, Non-Iterative Envelope Component Es-
timation (NIECE), is a perfect complement to the more delicate and much more
expensive iterative Grassmannian optimization approaches that were used in the
literature (i.e. all the envelope methods as mentioned earlier). Theoretically, a
unified theory for NIECE shows that we can estimate the envelope subspace
consistently when the dimension diverges exponentially fast as the sample size
in a wide range of models and applications. To the best of our knowledge, this
paper is also the first in (a) establishing the finite sample connections between
envelope estimation and principal components; (b) providing non-asymptotic
analysis of envelope subspace estimation error; (c) devising a novel “eigenvalue
gap” argument for theoretical analysis on two positive semi-definite matrices M
and U in a model-free setting of envelopes: For NIECE, we extract the eigen-
vectors vi of M and examine the “eigen-gaps” of the quadratic form vT

i Uvi.
In what follows, we outline in Sect. 1.1 the population construct of an envelope

EM(U) following the same notation in Cook and Zhang (2015b) for a general-
purpose multivariate parameter estimation. We provide a literature review on
the computational aspects, algorithms, and existing high-dimensional theory of
envelopes in Sect. 1.2. The population-level connections between envelopes and
principal components are given in Sect. 1.3 to motivate our methodology. The
specific goals and organization of this article are outlined in Sect. 1.4.



Envelopes and principal component regression 2449

1.1. Envelopes: definition and working mechanism

For a matrix B ∈ R
p×d with full column rank d, let B = span(B) ⊆ R

p denote
the subspace spanned by the columns of B. Let PB = PB = B(BTB)−1BT

denote the projection onto B, and QB = QB = Ip − PB denote the projection
onto the orthogonal complement of B, where Ip is the p × p identity matrix.
Formally, an envelope is defined as follows (see, Cook and Zhang, 2015b, for
example), where the notion of reducing subspace is from functional analysis
(e.g. Conway, 1990).
Definition 1. A reducing subspace of a symmetric matrix M ∈ R

p×p is defined as
the subspace R ⊆ R

p such that M = PRMPR + QRMQR. An M-envelope of
a subspace U = span(U) ⊆ R

p, denoted as EM(U) or EM(U), is the intersection
of all reducing subspaces of M that contain U .

The construction and estimation of envelope EM(U) is the center of our
future development. Cook, Li and Chiaromonte (2010) showed that the envelope
EM(U) is unique and always exists. In multivariate analysis, U comes from

Fig 1. The working mechanism of envelope methodology when estimating the mean difference
of X across two groups (indicated by red and blue colors). The plot illustrates the efficiency
gain by envelope methods in estimating the mean difference θ = μ2 − μ1; representative
projection paths, labeled ‘E’ for envelope analysis and ‘S’ for standard analysis.
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the parameter of interest; and M represents a helpful nuisance parameter. The
specific choices of M and U depend on the context of applications and the
goals of studies. They may vary from one model to another, as we see later
in analyzing several envelope models in later sections (including response and
predictor envelopes in linear regression, envelopes in logistic regression and Cox
model).

Figure 1 illustrates the working mechanism of envelope methods. Consider
a simple case with group indicator G ∈ {1, 2} and predictor X = (X1, X2)T ∈
R

2. The target parameter is the mean difference θ = μ2 − μ1 = E(X | G =
2) − E(X | G = 1) or equivalently the matrix form Θ = θθT (i.e. the U
matrix in Definition 1). The nuisance parameter is the marginal covariance
ΣX = cov(X) (i.e. the M matrix in Definition 1); and it helps improving the
estimation efficiency in the mean difference as illustrated in Fig. 1. The two
ellipses represent the contours of the conditional distributions of X within each
of the two classes. We can see that the mean difference lies in the shorter axis of
the ellipses, while the long axis brings large variability but does not contribute
to comparing the means. Therefore, if we calculate the difference in the sample
means, the differences will also be blurred. For X1, as shown in Fig. 1, we can
see that the two empirical distributions of X1 | (G = 1) and X1 | (G = 2),
as the two lower flatten curves represented, are almost indistinguishable. In
contrast, the envelope method can identify the ellipses’ longer axis as immaterial
variation. The envelope estimation procedure will project all the data first onto
the envelope, which contains all the material variation, and then onto each axis
of X to compare the two classes. The elimination of immaterial variation leads to
much well-separated two distributions as shown in Fig. 1, and therefore massive
gain in estimation accuracy of θ = μ2 − μ1.

1.2. A brief overview of envelope estimation

Without loss of generality, we assume U is symmetric positive semi-definite
henceforth because we can always replace U with UUT ≥ 0 without chang-
ing the column subspace span(U) and the envelope EM(U). The dimension of
EM(U), denoted by u, 0 ≤ u ≤ p, is important for all envelope methods and
can be estimated consistently (Zhang and Mai, 2018). In this paper, we assume
the envelope dimension u ≥ 1 is known or pre-specified.

Given the dimension of an envelope, envelope estimation generally reduces
to solving for Γ̂ ∈ R

p×u from the following constrained optimization and letting
ÊM(U) = span(Γ̂),

Γ̂ = argmin
ΓTΓ=Iu

Jn(Γ), Jn(Γ) = log |ΓTM̂Γ| + log |ΓT(M̂ + Û)−1Γ|, (1)

where the symmetric matrices M̂ > 0 and Û ≥ 0 are finite sample estimators
of their population counterparts M and U. From the orthogonality constraint
ΓTΓ = Iu, we note that (1) is a non-convex optimization on Stiefel manifolds.
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Equivalently, if we consider the subspace as the argument in the above optimiza-
tion, then (1) is also equivalent to a non-convex optimization on Grassmann
manifolds (aka Grassmannian).

Almost all envelope methods are connected to this type of optimization. For
a broad class of envelope estimators, it was shown in Cook and Zhang (2015b)
that the partially maximized log-likelihood function is (−n/2) times certain
sample version of (1). Therefore, normal likelihood-based envelope methods are
usually required to solve a version of (1). Furthermore, given a parameter vector
of interests, θ ∈ R

p, and some standard
√
n-consistent estimator θ̂, the particu-

lar choice of U = θθT and M being the asymptotic covariance of θ̂ reproduces
these likelihood-based envelope methods in the literature. The envelope estima-
tor θ̂Env = Γ̂Γ̂

T
θ̂ is asymptotically more efficient than the standard estimator θ̂

in various contexts such as linear and generalized linear models. Such envelope
estimation solves for Γ̂ based on (1) and then plugs-in θ̂Env = Γ̂Γ̂

T
θ̂, is essen-

tially a two-stage projection pursuit multivariate parameter estimation relying
on this generic objective function of envelope basis. In this paper, we focus on
the envelope subspace estimation problem and characterizing the estimation er-
ror in terms of the distance between the true and estimated envelope subspaces
when p is allowed to diverge much faster than n.

Most computational methods for manifold optimizations can be directly used
to solve (1), see Edelman, Arias and Smith (1998); Absil, Mahony and Sepul-
chre (2009) and Wen and Yin (2013) for more background. By exploiting the
geometry of envelopes, Cook and Zhang (2016) developed the 1D algorithm that
approximately solves (1) by sequential optimization over u one-dimensional vec-
tors than over p× u matrices. Relatedly, Cook and Zhang (2018) developed the
envelope coordinate descent algorithm that sequentially solves the same 1D al-
gorithm objective functions and is shown to be even faster than the original
1D algorithm. Another approach for solving (1) is proposed by Cook, Forzani
and Su (2016). The authors suggest to remove the orthogonality constraint by
rotating Γ to as Γ = (Iu,AT)TG for some coordinates A ∈ R

(p−u)×u and a
full rank matrix G ∈ R

u×u. Then the iterative Grassmannian optimization is
transformed into unconstrained iterative optimization over matrix A. All such
computational methods adopt gradient-based iterative schemes for a highly non-
convex objective function, which involves log-determinant of symmetric positive
definite matrices, and are quite sensitive to initialization when dimensions (p, u)
are high.

Extending envelope methods to high dimensional data analysis is challenging,
mainly due to the delicate and complicated optimization in (1) that provides no
closed-form for Γ̂ and thus makes the envelope estimator θ̂Env = Γ̂Γ̂

T
θ̂ almost

mysterious. Nevertheless, some progress on this problem has been made. Su et al.
(2016) proposed a sparse envelope estimator for response reduction and variable
selection; and Zhu and Su (2020) proposed a sparse envelope estimator for pre-
dictor reduction and variable selection. Both methods rely on a penalized version
of (1) with sparsity inducing penalties on rows of Γ. This type of coordinate-
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free penalty (Chen, Zou and Cook, 2010) takes the form of Pλ(Γ) = λi‖γi‖2,
i = 1, . . . , p, where γi ∈ R

u is the i-th row of Γ. Their approaches come at
the cost of assuming that the dimension p (i.e. the total number of response or
predictor variables) can not diverge too quickly: (p + s) log(p)/n → 0, where s
is the sparsity level. Moreover, the p tuning parameters are assumed to satisfy√
nλi → 0 for the s truly active variables and

√
nλi → ∞ for the (p−s) inactive

variables.
To overcome the computational bottleneck of envelope estimation in the ultra

high-dimensional regimes, i.e. log(p)/n → 0, we need alternative objectives of
envelope estimation. Indeed, we propose a sparse principal component approach
to envelope estimation that does not involve the usual manifold optimizations.
The new approach aims not to replace the existing methods when applicable
but to provide a feasible approach when they are not. It also fills the gap in
theoretical analysis and provides valuable insights about principal components
in regression.

1.3. Envelope and principal components

Principal component analysis (Jolliffe, 2002; Jolliffe and Cadima, 2016) is rou-
tinely used in exploratory data analysis as a dimension reduction and visu-
alization method and in regression to improve prediction. In some cases, the
PCs with the smallest variances (also known as the minor components, see Oja
(1992) for example) are kept for subsequent analysis in addition to the PCs
with the largest variances. Using latent variable and normal likelihood, Tipping
and Bishop (1999) provided a model-based probabilistic formulation for princi-
pal component analysis where only the leading PCs are relevant in the analysis;
Welling, Williams and Agakov (2004) generalized such approach to probabilistic
models where the maximum likelihood estimation for the dimension reduction
subspace is a combination of PCs with largest and smallest variances; Zhang
and Chen (2020) discussed scenarios that the maximum likelihood is attained
by any combinations of PCs.

On principal component regression, Jolliffe (1982) noted that the PCs with
smaller variability could be as useful as PCs with the largest variability; more
recently, Lang and Zou (2020) provided a response-guided formulation for re-
gression with PCs that unifies the usual principal component regression with
ridge regression (Hoerl and Kennard, 1970).

Our approach is conceptually closely related to principal components regres-
sion but is formulated in more general settings (i.e. beyond linear regression)
with rigorous theoretical justification using envelopes. From Definition 1, the
subspace spanned by any set of eigenvectors of M is a reducing subspace of M.
In this article, to ensure identifiability, we assume that the first d � n eigen-
values of M are distinct and their span contains span(U). In practice, we will
specify d � n in the proposed algorithm so that we lose little information by
focusing on the first d eigenvectors. When some of the eigenvalues coincide, we
will be targeting an upper bound of the envelope EM(U), similar to Proposition
4 in Cook and Zhang (2018).
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In many applications, M = ΣX ≡ cov(X) > 0. Then the population level
connection between envelope EM(U) and the principal components (PCs) of X
can be easily shown as follows,

EM(U) =
d∑

i=1,
vT
i Uvi �=0

span(vi), (2)

where vi ∈ R
p is the i-th eigenvector of M = ΣX and hence the i-th PC. Our

algorithm is an efficient realization of the above characteristics of envelopes and
is thus straightforward to implement based on the penalized matrix decomposi-
tion (PMD, Witten, Tibshirani and Hastie, 2009). In our theoretical study, we
first establish the consistency of PMD, which is of independent interest. It is
also straightforward to adopt other sparse PC methods in our algorithm (Zou,
Hastie and Tibshirani, 2006; Shen and Huang, 2008; Amini and Wainwright,
2009; Ma, 2013; Vu and Lei, 2013).

Several recent studies have connected envelopes with PCs. In particular, Li
et al. (2016) studied the supervised dimension reduction problem, where the
envelope is formed as the leading PCs in a latent variable model and estimated
by EM algorithm. The covariance can be written as ΣX = VΣfVT + σ2Ip,
where Σf ∈ R

u×u is the covariance of the u latent variables f and V ∈ R
p×u is

the basis of the u-dimensional target subspace. Franks and Hoff (2019) studied
a shared subspace spiked model that ΣX|Y =k = σ2

k(VΨkVT + Ip) for groups
of observations indexed by k = 1, . . . ,K, where Ψk symmetric positive definite
matrix and V ∈ R

p×u is the basis of the u-dimensional target subspace. More
recently, Franks (2020) extended the model of Li et al. (2016) to large-p-small-n
setting by adopting the Monte Carlo EM algorithm similar to that in Franks and
Hoff (2019). These models, as well as the common principal component analysis
models (Flury, 1984, 1988; Schott, 1999), can be viewed as special forms of the
more general envelope structure in this paper. However, none of these methods
has established consistency in subspace estimation when p diverges with n.
Although the population level connections between the envelope and principal
components, including (2), are noticed by several recent studies, we provide
for the first time a unified computational and theoretical approach for ultra
high-dimensional envelope estimation.

It is also worth mentioning that envelope methods in multivariate linear re-
gression are regarded as a likelihood-based alternative to the partial least squares
(PLS) regression: Cook, Helland and Su (2013a) showed that the sequence of
Krylov subspaces in PLS algorithm (De Jong, 1993; Helland, 1990) converges in
population to the same envelope subspace. This connection between envelopes
and partial least squares has promoted recent progress in high-dimensional stud-
ies of envelopes and PLS (Cook et al., 2019; Zhu and Su, 2020). Our method
can thus also be viewed as an extension of the sparse PLS methods (Chun and
Keleş, 2010; Chun et al., 2011) because it applies to a wide range of multivariate
analysis problems beyond linear regression.
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1.4. Notation and organization

For any matrix M, we will let λj(M) be the j-th eigenvalue of M, e.g. λ1(M) is
the largest eigenvalue of M. We use the Frobenius norm, operator norm, �1 norm
and the maximum norm of matrices. For a matrix Ω ∈ R

p1×p2 , let ωij denote
its (i, j)-th element, then its Frobenius norm is ‖Ω‖F =

√∑
i,j ω

2
ij ; its operator

norm ‖Ω‖op is its largest eigenvalue; its �1 norm is ‖Ω‖1 = maxj

∑
i |ωij |; and

its maximum norm is ‖Ω‖max = maxi,j |ωij |.
We will study the estimation error of envelopes, characterized by the distance

between two subspaces E = span(Γ) and Ê = span(Γ̂) For Γ, Γ̂ ∈ R
p×u such

that ΓTΓ = Iu = Γ̂
T
Γ̂, we let γi, γ̂i ∈ R

p, i = 1, . . . , u, be the i-th columns of
Γ and Γ̂, respectively. Similar to Yu, Wang and Samworth (2014), we define the
u×u diagonal matrix Θ(Γ̂,Γ) such that the j-th principal angle between the two
subspace span(Γ) and span(Γ̂) is at the j-th diagonal element of Θ(Γ̂,Γ), and let
sinΘ(Γ̂,Γ) ∈ R

u×u be defined entrywise. The principal angles between the two
subspace span(Γ) and span(Γ̂) are denoted as θj , j = 1, . . . , u, then cos(θj) =√

1 − sin2(θj) = λj(ΓTΓ̂), which is the j-th eigenvalue of ΓTΓ̂. In sufficient
dimension reduction literature, distance between two subspace E = span(Γ)
and Ê = span(Γ̂) are also commonly characterized as ‖PÊ − PE‖F instead of
sinΘ(Γ̂,Γ). A simple (and somewhat well-known) equivalence is provided in
the following.

Lemma 1. ‖PÊ − PE‖F =
√

2‖ sinΘ(Γ̂,Γ)‖F .

Unless otherwise specified, we will be using ‖PÊ −PE‖F as the natural mea-
sure for the distance between the true and estimated envelope subspaces.

The rest of the article is organized as follows. Section 2 introduces the pro-
posed Non-Iterative Envelope Component Estimation (NIECE) and a general
approach to connect the subspace estimation error with the newly introduced
“envelope scores”. The general theory is applied to the multivariate linear model
in Sect. 2.3, where we allow both the numbers of predictors and responses to
diverge with the sample size. Section 3 provides the sparse NIECE for high-
dimensional data analysis, using the penalized matrix decomposition (PMD,
Witten, Tibshirani and Hastie, 2009). The general theory for the sparse NIECE
is established first, including the high-dimensional consistency result of PMD,
and then applied to the linear and generalized linear models and the Cox
model. Section 4 discusses some practical considerations of using NIECE in
high-dimensional regression as an alternative to principal component regression.
Simulations and real data analysis are presented in Sects. 5 and 6, followed by a
brief discussion in Sect. 7. The Appendix contains additional numerical studies
and a discussion on generalizing NIECE to the situation where M has common
eigenvalues. Finally, the Supplementary Materials contains all technical details
and additional numerical results.
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2. Non-iterative envelope component estimation

2.1. Population algorithm and envelope scores

We propose the following NIECE procedure in population. The sample algo-
rithm is readily available by replacing M and U with their sample counterparts
and is shown to be consistent in terms of envelope subspace estimation when p
grows at a relatively slow rate of the sample size n.

1. Input: symmetric p × p matrices M > 0 and U ≥ 0; number of principal
components d; envelope dimension u. Note that 0 ≤ u ≤ d ≤ p.

2. Obtain the first d eigenvectors of M: Vd = (v1, . . . ,vd) ∈ R
p×d that satis-

fies VT
dVd = Id. The corresponding d eigenvalues are λ1(M) ≡ vT

1Mv1 >
· · · > λd(M) ≡ vT

dMvd > 0.
3. Calculate the envelope scores: φj ≡ vT

j Uvj for j = 1, . . . , d, and organize
them in descending order φ(1) ≥ · · · ≥ φ(d) and define v(j) such that
φ(j) = vT

(j)Uv(j).
4. Output: envelope is EM(U) = span(v(1), . . . ,v(u)).

Formally, we provide the following fundamental property of envelopes and,
more importantly, the newly introduced envelope scores.

Lemma 2. Suppose that EM(U) ⊆ span(Vd) for some d ≤ p and that λj(M) 
=
λk(M) for any j, k ∈ {1, . . . , d} and j 
= k. Then (2) holds, the envelope can
be written as EM(U) = span(v(1), . . . ,v(u)), and the envelope scores satisfy
φ(1) ≥ · · · ≥ φ(u) > φ(u+1) = · · · = φ(d) = 0.

Lemma 2 is a consequence of Proposition 2.2 in Cook, Li and Chiaromonte
(2010), but it allows easy construction of envelope estimation in a non-iterative
manner. We make the following remarks regarding the assumptions in Lemma 2.

First of all, the assumption that EM(U) ⊆ span(Vd) for some d ≤ p is trivially
true if we take d = p, which is a reasonable choice in low-dimensional settings.
However, when p > n, we have to make such an assumption for some d < n;
otherwise, the envelope EM(U) is not estimable. Intuitively, this is because there
is only a limited number of eigenvectors of M estimable in high dimensions. In
all our theoretical studies, we treat d as fixed for simplicity and allow both
n, p → ∞.

Second, the distinct eigenvalue assumption that λj(M) 
= λk(M) for any
j, k ∈ {1, . . . , d} and j 
= k is to ensure the identifiability of each eigenvectors.
Moreover, this assumption is crucial to the high-dimensional theoretical analysis
of the penalized matrix decomposition (PMD, Witten, Tibshirani and Hastie,
2009) method, which sequentially obtains the sparse estimates for the eigen-
vectors and is adopted in our sparse NIECE approach. The distinct eigenvalue
assumption may be relaxed if we estimate the principal subspaces (e.g., Vu and
Lei, 2013) instead of vectors. We define the minimal eigen-gap of the first d
eigenvalues of M as follows,

0 < Δ = min
j=1,...,d

{λj(M) − λj+1(M)}. (3)
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Unless otherwise noted, we will make the assumptions as in Lemma 2. The en-
velope is thus constructed by the eigenvectors v(1), . . . ,v(u). Let π(·) : {1, . . . , d}
�→ {1, . . . , d} be the permutation of indices according the envelope scores (cf.
Step 3 of the NIECE algorithm), so that v(j) is π(j)-th eigenvector of M and
λπ(j)(M) = vT

(j)Mv(j).
Finally, we note that the envelope scores, which satisfy φ(1) ≥ · · · ≥ φ(u) >

φ(u+1) = · · · = φ(d) = 0, do not need to be distinct from each other. We only
need a gap between the u-th and (u + 1)-th envelope scores. In our theoretical
analysis, the following envelope score gap plays a crucial role

ΔU ≡ φ(u) − φ(u+1) = vT
(u)Uv(u) > 0. (4)

In the next section, we show how the minimal eigen-gap Δ and the envelope
score gap ΔU would affect the subspace estimation in finite sample.

For the sample NIECE procedure, we simply replace M and U with their
sample counterparts (e.g. sample covariance matrices). We let v̂(j), j = 1, . . . , u,
be the π̂(j)-th eigenvectors of M̂, where π̂(·) is the permutation of indices
in {1, . . . , d} according the the estimated envelope scores φ̂j = v̂T

j Ûv̂j for
j = 1, . . . , d. One critical condition that is necessary for the consistency of
the envelope estimation is that the index set {π̂(j) | j = 1, . . . , u} converges to
the true set {π(j) | j = 1, . . . , u}. In fact, we prove a slightly stronger condition
π̂(j) → π(j) for all j = 1, . . . , u in our theoretical studies. This requires accurate
envelope scores estimation. The following proposition summarizes what aspects
of v̂i are important to ensure the accurate envelope scores estimation.

Proposition 1. For i = 1, . . . , d, we have the following conclusions:

1. If ‖Û− U‖op ≤ ε, ε ≤ Δ/4, sin Θ(v̂i,vi) ≤ 2ε
Δ , and and ‖v̂i‖2 = 1, then

|φ̂i − φi| ≤
(

1 + 10ν
Δ

)
ε, (5)

where ν = ‖U‖op is the largest eigenvalue of U ≥ 0.
2. If ‖Û− U‖max ≤ ε, sin2 Θ(v̂i,vi) ≤ c0τ

2ε, and ‖v̂i‖1 ≤ τ , then

|φ̂i − φi| ≤
{

(c0 + 1)τ2 + 2ν
Δ

}
ε. (6)

The first part of Proposition 1 states the relationship between the accuracy of
sample eigenvectors and the accuracy of sample envelope scores. The accuracy of
sample eigenvector sin Θ(v̂i,vi) ≤ 2ε/Δ, where Δ > 0 is the eigenvalue gap, is a
direct consequence of Corollary 1 in Yu, Wang and Samworth (2014). This part
of Proposition 1 leads to the estimation results of the sample NIECE algorithm
in Theorem 1. The second part of Proposition 1 is useful for high-dimensional
sparse settings: Theorem 1 for sparse NIECE based on penalized matrix decom-
position. In high-dimensional sparse settings, we only need to modify Step 2
of the algorithm, by adopting the penalized eigen-decomposition or penalized
principal component analysis.
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2.2. Theory for the sample NIECE algorithm

We first present a generic theory to characterize how the envelope subspace
estimation error is affected by: (i) the envelope dimension; (ii) the estimation
errors, measured in operator norms, of sample matrices Û and M̂; (iii) the
minimal eigen-gap Δ defined in (3); (iv) the envelope score gap ΔU defined
in (4); and (v) the largest eigenvalue of U denoted as ν = ‖U‖op. The following
theory is for the analysis in relatively low-dimensional data, and it is not easy
to find estimates satisfying (7) in high dimensions.

Theorem 1. For any ε > 0 and ε ≤ max
{

Δ
4 ,

ΔU

2
(
1 + 10ν

Δ
)−1

}
, if we have

‖M̂ − M‖op ≤ ε, ‖Û − U‖op ≤ ε, (7)

then ‖PÊ −PE‖F ≤ 2
√

2u
Δ ε, where Ê and E are the envelope ÊM(U) and EM(U),

respectively.

In Theorem 1 and all our theoretical analysis later, the envelope subspace
estimation error is measured by ‖PÊ −PE‖F , which is bounded between 0 and√

2u by definition. Therefore, it is natural to see ‖PÊ − PE‖F proportional to√
2u in our results. From Theorem 1, the subspace estimation error is propor-

tional to the estimation error of the matrices M and Û, which is indicated by ε;
and is inversely proportional to the minimal eigen-gap Δ, which directly affects
the estimation of eigenvectors v(1), . . . ,v(u) that lie within the envelope. On the
other hand, the envelope score gap ΔU together ν, which indicates the mag-
nitude of U, affects the envelope subspace estimation error indirectly because
Û is only used in Step 3 of NIECE procedure to determine the index ordering.
When the matrices M̂ and Û are close enough to their population counterparts,
i.e. ε ≤ ΔU

2
(
1 + 10ν

Δ
)−1, the estimated index set {π̂(j) | j = 1, . . . , u} converges

to the true set {π(j) | j = 1, . . . , u}.
In the Supplementary Materials, Lemma 4, we consider the ideal setting

where {π̂(j) | j = 1, . . . , u} = {π(j) | j = 1, . . . , u}. Then we may replace the
minimal eigen-gap Δ of the d eigenvalues of M to the following quantity that
only involves u ≤ d eigenvalues. For simplicity, suppose the eigenvalues λπ(j)’s,
j = 1, . . . , u, are all distinct, then we may re-define Δ = minj=1,...,u Δj , where
Δj = min{λπ(j)−1(M) − λπ(j)(M), λπ(j)(M) − λπ(j)+1(M)} and λ−1 ≡ −∞,
λp+1 ≡ ∞. In the Supplementary Materials, we show that the similar results of
Theorem 1 still holds by re-defining Δ, even when some of these λπ(j)’s are not
distinct.

To apply the sample NIECE in different contexts, we only need to calculate
the probability of (7) to verify the consistency of envelope subspace estimation.
This theory allows us to study the un-penalized envelopes with (slowly) diverg-
ing dimensions. We next demonstrate that such results hold for the simultaneous
predictor and response reduction.
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2.3. Simultaneous envelopes in multivariate linear regression

To illustrate the application of Theorem 1, we consider the simultaneous en-
velopes model (Cook and Zhang, 2015a). The simultaneous envelopes are con-
structed, by jointly estimating the response envelope (Cook, Li and Chiaromonte,
2010) and the predictor envelope (Cook, Helland and Su, 2013a), to simulta-
neous reduce the multivariate response Y ∈ R

r and predictor X ∈ R
p in the

following regression model,

Y = α + βX + ε, (8)

where α ∈ R
r is the intercept vector, β ∈ R

r×p is the regression coefficient
matrix, and ε ∈ R

r is independent of X.
In the classical likelihood-based envelope methods, the response is reduced by

projecting onto the response envelope EΣ(β), whose likelihood-based estimation
is derived from the normal error ε ∼ N(0,Σ). On the other hand, the predictor
reduction is achieved by projection onto the predictor envelope EΣX

(βT), whose
likelihood-based estimation is derived from further assuming X ∼ N(0,ΣX).
Thus, for predictor reduction and simultaneous reduction, the joint normality of
(XT,YT)T is required. We consider the following sub-Gaussian tail distribution
assumption that is weaker than the joint normality assumption.

We assume that there exists σ > 0 such that for any w ∈ R
p+r, ‖w‖2 = 1,

we have

P

(∣∣∣∣wT
(

X
Y

)∣∣∣∣ ≥ t

)
≤ 2 exp

(
− t2

σ2

)
. (9)

While alternating updates obtain the likelihood-based simultaneous envelopes
estimators, we apply the NIECE to the predictor and response envelopes sep-
arately. For response envelope, note that EΣ(β) = EΣY

(ΣYX), where ΣY ∈
R

r×r is the covariance matrix of Y and ΣYX ≡ ΣT
XY ∈ R

r×p is the cross-
covariance matrix. For predictor envelope, we exploit the symmetry by noticing
EΣX

(βT) = EΣX
(ΣXY). Given the data, the NIECE estimator is obtained by us-

ing the sample covariances M̂ = Σ̂Y and Û = Σ̂YXΣ̂XY for response reduction,
and M̂ = Σ̂X and Û = Σ̂XYΣ̂YX for predictor reduction.

We have the following result that applies to both response and predictor
envelopes (i.e. simultaneous envelopes), where EM(U) = EΣY

(ΣYX) ⊆ R
r for

response envelope and is re-defined as EM(U) = EΣX
(ΣXY) ⊆ R

p for predictor
envelope. Other quantities such as Ê , Δ, ΔU, u and ν also alters when we switch
from response envelope to predictor envelope.

Theorem 2. For any ε > 0 such that ε ≤ max
{

Δ
4 ,

ΔU

2
(
1 + 10ν

Δ
)−1

}
and ε ≤

‖ΣXY‖1 + ‖ΣYX‖1 < c1 for some constant c1, we have

‖PÊ − PE‖F ≤ 2
√

2uε
Δ , (10)

with a probability greater than 1 − Cr2 exp(−C nε2

r2 ) − Cpr exp(−C nε2

r2 )
− Cpr exp(−C nε2

p2 ).
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To the best of our knowledge, the above theorem is the first result in estab-
lishing non-asymptotic properties of any envelope estimators without sparsity.
It also leads to the first known consistency result of envelope subspace estima-
tion with diverging n, p, and r. Specifically, we have the following Corollary by
letting ε = pr

√
(log p + log r)/n → 0.

Corollary 1. Suppose max
(
pr
√

log p + log r, prΔ−1
U

√
log p + log r

)
= o(

√
n)

and ‖ΣXY‖1 + ‖ΣYX‖1 < c1 for some constant c1, then ‖PÊ − PE‖F → 0 in
probability as n, p, r → ∞.

The above result holds for both predictor and response envelopes. We have
thus established the consistency of the simultaneous envelopes. Analogous to
Theorem 2 and Corollary 1, it is straightforward to show similar results for
other types of envelopes by applying Theorem 1. We omit details for such ex-
tensions and study some of them (envelopes in the generalized linear model and
Cox model) in the more challenging high-dimensional settings in the following
sections.

2.4. Comparing envelope algorithms

We first compare NIECE with two fast envelope algorithms, CFS (Cook, Forzani
and Su, 2016) and ECD (Cook and Zhang, 2018) that are both recently pro-
posed state-of-the-art algorithms and were shown to be much faster and more
stable than the full Grassmannian optimization (Edelman, Arias and Smith,
1998; Absil, Mahony and Sepulchre, 2009) and sequential 1D algorithm (Cook
and Zhang, 2016) in the literature. We consider the moderately high-dimensions,
where (n, p, u) = (200, 100, 5), because the CFS and ECD are not applicable to
high-dimensional settings. We set M = ΓΩΓT + Γ0Ω0ΓT

0 , U = ΔU · ΓΦΓT,
where Γ = (v2,v3,v10,v11,v19) and Ω and Ω0 are diagonal matrix of eigen-
values λk = k3 for k = 1, . . . , 20 and λk = 0.05 for k > 20, Φ = OuDOT

u

with orthonormal matrix Ou ∈ R
u×u and D = diag(1, . . . , u). We tried three

different signal strength settings with ΔU = 0.01, 1, and 100. For each set-
ting, we randomly generated 100 replicates of M̂ and Û from Wishart distri-
butions with degrees of freedom n and means M and U to mimic the sample
covariances in regression models. We reported the subspace estimation error
D(Γ̂,Γ) = D(Ê , E) = ‖PE − PÊ‖F /

√
2u, which is a number between 0 and 1,

and the logarithm of CPU time.
Figure 2 shows the advantages of NIECE in both subspace estimation accu-

racy and computational speed. This numerical study is an illustration of our
theoretical analysis in the previous section. When the eigenvalue gap Δ in M
is large enough, the NIECE procedure is very fast (due to the computational
advantage of SVD in NIECE versus manifold optimizations in others) and also
very accurate for a wide range of signal strengths measured by ΔU.
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Fig 2. Advantages of NIECE over the state-of-the-art envelope algorithms in both accuracy
(left three panels; smaller value D indicates more accurate subspace estimation) and time
(right three panels; logarithm of CPU time in seconds), and across a wide range of signal
strengths: weak signal (left, ΔU = 0.01), moderate signal (middle, ΔU = 1), and strong
signal (right, ΔU = 100).

3. NIECE for high-dimensional data analysis

3.1. High-dimensional sparse NIECE

In high-dimensional sparse envelope settings, we only need to modify Step 2
of NIECE sample algorithm, by replacing the eigen-decomposition of sample
matrix M̂ with the penalized eigen-decomposition or penalized principal com-
ponent analysis methods that are more suitable for such scenarios. Without
loss of generality, we assume d < n and obtain the d sparse eigenvectors. For
almost all envelope problems, we can write M̂ = XT

nXn from some data matrix
Xn ∈ R

n×p. As we have seen from the previous Section, the data matrix Xn can
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be either the n samples of X or Y. For envelopes in GLM and Cox model, Xn is
also the n samples of X. Another example is the weighted least squares envelope
(Cook and Zhang, 2015b), where the i-th row of Xn is the squared-root weight√
Wi times the predictor vector Xi.
For simplicity, the data matrix Xn ∈ R

n×p is henceforth defined as the n
i.i.d. samples of mean zero random variable X ∈ R

p. We obtain the d sparse
eigenvectors of M̂ ≥ 0 based on the penalized matrix decomposition (PMD)
method from Witten, Tibshirani and Hastie (2009). Because n � p is very
common in high-dimensional data analysis, we adopt the special type of PMD
named PMD(·, L1) on Xn instead of the much bigger matrix M̂ as follows.

Let X1 = Xn be the original data matrix. For k = 1, . . . , d, we sequentially
solve for

(ûk, v̂k) = argmax
u∈Rn,v∈Rp

uTXkv subject to ‖v‖1 ≤ c, ‖v‖2
2 ≤ 1, ‖u‖2

2 ≤ 1; (11)

and then deflate the data matrix as Xk+1 = Xk−σ̂kûkv̂T
k , where σ̂k = ûT

kXkv̂k.
To solve (11), we need alternating updates between u ∈ R

n and v ∈ R
p.

Since there is no penalty on u, we can see that the solution for ûk has to be

ûk = Xkv̂k

‖Xkv̂k‖2
, (12)

which leads to the following equivalent presentation.

Lemma 3. The optimization in (11) is equivalent to (12) and

v̂k = arg max
v

vTM̂kv subject to ‖v‖1 ≤ τ and ‖v‖2
2 ≤ 1, (13)

where M̂k = (Xk)TXk and Xk = Xk−1(Ip − v̂k−1v̂T
k−1).

As noted in Witten, Tibshirani and Hastie (2009), by the Karush-Kuhn-
Tucker conditions in convex optimization, the solution to (13) is also the solution
to

v̂k = arg max
v

vTM̂kv subject to ‖v‖1 ≤ c, and ‖v‖2
2 = 1, (14)

if c is chosen so that the maximizer of vTM̂kv subject to only one constraint
‖v‖1 ≤ c has L2 norm greater than or equals to 1.

3.2. A general high-dimensional theory

Notice that we have re-defined v̂k as the PMD solution for the high-dimensional
sparse NIECE. Moreover, we re-define V̂d = (v̂1, . . . , v̂d) and other estimates
for ease of presentation. However, it is important to note that v̂k is no longer the
eigenvector of M̂ and that orthogonality among eigenvectors no longer holds,
i.e. V̂T

d V̂d 
= Id. Furthermore, σ̂2
k = v̂T

kM̂v̂k is different from the eigenvalue
λk(M̂). Due to the non-orthogonality among v̂k’s and related issues, the de-
flation of data matrix is not easy to handle. Nevertheless, we are able to show
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consistency of v̂1, . . . , v̂d by analyzing Xk = Xn

∏k−1
j=1 (Id − v̂jv̂T

j ) based on
Lemma 3. Because we assume that the eigenvalues are distinct, PMD offers a
computationally efficient way to estimate the eigenvectors. If we use principal
subspace estimation (e.g., Cai et al., 2013), the rate may potentially be improved
but with higher computation costs.

We first show a general theory of PMD, which is of independent interest.
The sparsity in the true eigenvectors vk (e.g. sparsity in principal component
loadings) is imposed as follows.

τ0 = max
1≤k≤d

‖vk‖1, (15)

where a small value of τ0 implies that the first d eigenvectors of M are all
reasonably sparse in high dimensions.

Theorem 3. If τ > τ0 and ‖M̂ − M‖max ≤ ε, then there exists a constant
c0 > 0 that does not depend on n, p or ε, such that,

sin2 Θ(vk, v̂k) ≤ c0ετ
2, k = 1, . . . , d. (16)

Hence, to show the consistency of NIECE in high-dimensional settings, we
only need to verify ‖M̂ − M‖max ≤ ε, which is weaker than the assumption of
‖M̂ − M‖op ≤ ε in the non-sparse settings. This is because we apply regular-
ization to obtain accurate estimates of vk in high dimensions. Also, note that
‖M̂ − M‖op ≤ ε generally cannot hold in high dimensions, while later we will
show that ‖M̂ − M‖max ≤ ε holds with a probability tending to 1 under mild
conditions.

Theorem 4. Assume that τ > τ0, ‖M̂ − M‖max ≤ ε and ‖Û − U‖max ≤ ε,
then if ΔU >

√
8c0ν2τ2ε + (2c0ν + 1)τ2ε with constant c0 defined in (16), then

there exists a constant C > 0 that does not depend on n, p or ε such that
‖PÊ − PE‖2

F ≤ Cετ2.

Theorem 4 is a general result that guarantees that as long as we start with a
reasonably accurate estimator M̂, we can estimate the envelope with the speci-
fied error bound. Next, we demonstrate that Theorem 4 leads to the consistency
of sparse NIECE under several important envelope models.

3.3. Envelope in multivariate linear model

In this section, we consider the multivariate linear model (8) with jointly sub-
Gaussian data (9). To avoid redundancy, we only consider the response envelope.
The predictor envelope in linear model is analogous to the response envelope
and similar to the predictor envelope in the generalized linear model in the next
section.

Recall that the NIECE estimator for response envelope is obtained by using
the sample covariances M̂ = Σ̂Y and Û = Σ̂YXΣ̂XY. In high-dimensional
sparse setting, e.g. the eigenvectors of M = ΣY satisfies (15), we have the
following results.
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Theorem 5. For any ε such that 0 < ε ≤ 1/p, assume that τ > τ0 and ΔU >√
8c0ν2τ2ε + (2c0ν + 1)τ2ε with constant c0 defined in (16), then there exists a

constant C > 0 that does not depend on n, r, p or ε such that

‖PÊ − PE‖F ≤ Cετ2 (17)

with a probability greater than 1 − Cr2 exp(−Cnε2) − Cpr exp(−Cnε2).

The above non-asymptotic result leads to the following consistency of sparse
NIECE.

Corollary 2. If
√

log p + log r = o(
√
n),

√
log p + log r <

√
n/p and ΔU and τ

satisfy that

max
(
τ2
√

log p + log r, Δ−2
U τ2

√
log p + log r

)
= o(

√
n),

then we have ‖PÊ − PE‖F → 0 in probability as n, p, r → ∞.

The requirement that
√

log p + log r <
√
n/p implies that the number of

predictors can not diverge quickly (p grow slower than
√
n), while the response

envelope allows the number of responses to diverge much faster. To see this
clearly, we let p fixed in the following Corollary.

Corollary 3. If log r = o(n), and ΔU and τ satisfy that max(τ2√log r,
Δ−2

U τ2√log r) = o(
√
n), we have ‖PÊ − PE‖F → 0 in probability as n, r → ∞.

This justifies applying the NIECE approach for response envelope reduction
in ultra high-dimensional settings, i.e. (log r)/n → 0. Similarly, for the predictor
envelope in the linear model, if we fix the number of responses, consistency is
achieved when (log p)/n → 0.

3.4. Envelope in generalized linear model

Cook and Zhang (2015b) extended the envelope model from multivariate linear
regression context to generalized linear model with canonical link functions, Cox
model, and general multivariate parameter estimation problems. We consider
the envelope generalized linear model and the envelope Cox model in this and
the following sections. The sparse NIECE procedure extends these non-standard
envelope models from low dimensional settings to high-dimensional.

We replace the joint sub-Gaussian tail distribution of (XT,YT)T with the
following sub-Gaussian tail assumption on X. Similar to (9), this is weaker than
assuming the normality and is widely used to prove the consistency of penalized
methods (e.g., Negahban et al., 2012). Suppose that there exists σ > 0 such
that for any w ∈ R

p, ‖w‖2 = 1, we have

P (|wTX| ≥ t) ≤ 2 exp
(
− t2

σ2

)
. (18)
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In the generalized linear model with canonical link functions, the response Y
follows some exponential family distributions with probability density (or mass)
function as

f(y | ϑ, ϕ) = exp
(
yϑ− b(ϑ)

a(ϕ) + c(y, ϕ)
)
,

where the canonical parameter ϑ is set to be ϑ = βTX by the canonical link
function, ϕ is the dispersion parameter, and functions a, b and c can be spec-
ified for different families of the distribution of Y . For simplicity, we focus on
one-parameter family so that the dispersion parameter is not included (or, equiv-
alently, ϕ is set to be 1). As such, we can write the log-likelihood as

�n(β) =
n∑

i=1
log f(Yi | β,Xi) =

n∑
i=1

{Yi(βTXi) − b(βTXi)}, (19)

where the function b(t) = t2/2 for normally distributed Y ; it is exp(t) for Pois-
son regression and is log{1 + exp(t)} for Logistic regression. The envelope is
EΣX

(β) ⊆ R
p where β ∈ R

p×1 is the regression coefficient vector from above.
To avoid redundancy, we only show the results for high-dimensional penalized

Logistic regression where Y = 0 or 1, and �n(β) =
∑n

i=1{Yi(βTXi) − log(1 +
eβ

TXi)}. For normally distributed Y , the GLM reduces to the predictor envelope
with a univariate response. We have shown that Σ̂X is an accurate estimator
for ΣX. For β, note that the sparsity of the envelope implies the sparsity of β.
We can obtain β̂ by �1 logistic regression with a tuning parameter λn,

β̂ = arg min
β

1
n

n∑
i=1

{−Yi(βTXi) + log(1 + eβ
TXi)} + λn‖β‖1, (20)

which is based on minimizing the negative log-likelihood plus an �1-regularization
term. Then the NIECE procedure is based on M̂ = Σ̂X and Û = β̂β̂

T
.

Theorem 6. If τ > τ0, λn = 4ε/
√
s, and ΔU >

√
8c0ν2τ2ε + (2c0ν + 1)τ2ε

with constant c0 defined in (16), then there exists a constant C > 0 that does
not depend on n, p or ε such that

‖PÊ − PE‖F ≤ Cτ2ε (21)

with a probability greater than 1 − Cp2 exp(−Cnε2) − Cp exp(−Cnε2/s). Fur-
thermore, if s log p = o(n) and that λn, τ and ΔU satisfy max{τ2

√
s log p

n ,

Δ−2
U τ2

√
s log p

n , λ−1
n

√
log p
n } = o(1), we have ‖PÊ − PE‖F → 0 in probability

as n, p → 0.

Theorem 6 thus summarizes both the non-asymptotic and asymptotic results
for the sparse NIECE procedure in logistic regression.
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3.5. Envelope in Cox proportional hazards model

We consider the Cox regression (Cox, 1972) that is widely used in survival data
analysis. The hazard function is assumed to be h(t | X) = h0(t) exp(βTX),
where h0(t) is the baseline hazard function and β ∈ R

p×1 is the regression
coefficients of the p-dimensional covariate vector X ∈ R

p. Let Y and C be the
failure time and censoring time, then we assume Y and C are conditionally
independent given X. Define δ = I(Y ≤ C) and T = min(Y,C), then the
observed data consists of independent copies of {Ti, δi,Xi}, i = 1, . . . , n.

Estimation of β is typically achieved by maximizing the Cox’s partial like-
lihood (Cox, 1975), or equivalently by minimizing the following negative loga-
rithm of that,

�n(β) = − 1
n

n∑
i=1

δi

⎡⎣βTXi − log

⎧⎨⎩
n∑

j=1
I(Tj ≥ Ti) exp(βTXj)

⎫⎬⎭
⎤⎦ . (22)

When the covariates in X are highly correlated with each other, Cook and
Zhang (2015b) proposed to construct envelope estimator

β̂Env = arg min
β=Γη

�n(β) − 1
n
Mn(Γ), (23)

where Mn(Γ) = −n
2 (log |ΓTSXΓ| + log |ΓTS−1

X Γ|) is the partially maximized
log likelihood of X ∼ N(μX,ΣX) under the envelope structure span(Γ) =
EΣX

(β). It is shown to be more efficient than the partial least squares in Cox
regression Nygård et al. (2008). However, the optimization is similar to (or
even more challenging than) the Grassmannian optimization (1) discussed in
the Introduction section and is thus not feasible in the high-dimensional Cox
model.

In the high-dimensional setting, to incorporate variable selection, we consider
the following �1-penalized maximum (partial) likelihood estimator,

β̂ = arg min
β

�n(β) + λn‖β‖1, (24)

where λn > 0 is the tuning parameter. Similar to the envelope GLM, the sparsity
of the envelope EΣX

(β) implies the sparsity of β. Then the NIECE procedure
is based on M̂ = Σ̂X and Û = β̂β̂

T
. The convergence of Σ̂X is guaranteed

by sub-Gaussian distribution of X, i.e. (18). Properties of Û is based on the
estimation consistency of the Lasso estimator β̂ that is derived in Huang et al.
(2013). Similar results for using the SCAD penalty (Fan and Li, 2001) instead
of Lasso can be found in Bradic, Fan and Jiang (2011).

Following Huang et al. (2013), we consider the following two conditions.
(i) Uniformly bounded covariates. There exists some constant C such that

the covariates are bounded as maxi<i′≤n ‖Xi − Xi′‖∞ ≤ C.
(ii) Restricted eigenvalue lower bound. There exists positive constants t and

M such that the smallest eigenvalue of the population matrix Σ(t,M) is greater
than some constant ρ∗.
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These conditions are derived from Theorem 4.1 of Huang et al. (2013), where
the introduction of Σ(t,M) is rather technical and relegated to the Supple-
mentary Materials. The lower bound ρ∗ on the smallest eigenvalue of Σ(t,M)
provides a lower bound for the compatibility and cone invertibility factors and
the restricted eigenvalue in high-dimensional Cox regression.

Theorem 7. If τ > τ0, there exists some constant Cρ and Cλ such that if
s
√

log p
n < Cρ and λn = Cλε, and ΔU >

√
8c0ν2τ2ε+(2c0ν+1)τ2ε with constant

c0 defined in (16), then there exists a constant C > 0 that does not depend on
n, r, p or ε such that

‖PÊ − PE‖F ≤ Cτ2ε (25)

with a probability greater than 1 − Cp2 exp(−Cnε2) − Cp exp(−Cnε2/s). Fur-
thermore, if s log p = o(n) and that λn, τ and ΔU} satisfy max

{
τ2√s log p,

Δ−2
U τ2√s log p, λ−1

n

√
log p

}
= o(

√
n), we have ‖PÊ − PE‖F → 0 in probability

as n, p → ∞.

These asymptotic and non-asymptotic properties for sparse NIECE in the
Cox model are analogous to Theorem 6 for logistic regression. Hence, we have
illustrated the widely applicable Theorem 4 of NIECE in high-dimensional mul-
tivariate analysis.

4. Practical considerations

The theory and methods presented so far in this paper are enough to justify
NIECE procedures’ applications in high-dimensional settings. When implement-
ing the algorithms, however, several additional practical issues arise. This sec-
tion considers these practical issues and how to deal with them in a sensible
data-driven fashion. Because NIECE is a flexible framework for envelope esti-
mation in various settings, we only provide general guidance on dealing with
these practical issues, while additional information from specific models and
problems would also be helpful.

First, we consider the constrained and the projected envelope estimators.
Recall from Sect. 1.2 that the envelope estimator for θ ∈ R

p is the projected
estimator θ̂Env = Γ̂Γ̂

T
θ̂ that improves over the standard estimator θ̂, where

Γ̂ ∈ R
p×u is the estimated envelope basis. In many multivariate parameter

estimation problems (see Cook and Zhang, 2015b, for more background), this
projected envelope estimator coincides with the constrained envelope estimator,
which is obtained from optimizing a likelihood-based objective function under
the constraint θ = Γ̂

T
η for some η ∈ R

u. In low-dimensional settings, Cook
and Zhang (2015b) showed that the constrained and the projected envelope es-
timators are often asymptotically equivalent if not exactly the same. However,
in the high-dimension estimation, the two estimators could be very different. In
our experience (e.g. simulations in Sect. 5), the constrained envelope estimator
is generally more robust and accurate in parameter estimation than the pro-
jected estimator. As such, we suggest using the constrained envelope estimator
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in practice by refitting the model (linear, generalized linear, or Cox proportional
hazard model) on the reduced data Γ̂

T
X ∈ R

u to obtain the parameters η̂ and
θ̂Env = Γ̂η̂. We implemented this procedure in all of our numerical studies.

Another important issue in practice is the tuning parameter selection. The
sparsity level in high-dimensional NIECE procedure arises from the penalized
matrix decomposition step (11), where we follow Witten, Tibshirani and Hastie
(2009) to use cross-validation to select the parameter c > 0, which is the maximal
L1 norm of the sparse singular vectors. Specifically, we choose c that minimizes
the cross-validated prediction mean squared error in the linear model; and in
the logistic regression model and Cox model, we choose c that minimizes the
cross-validated negative log-likelihood.

Finally, the envelope dimension selection problem is still an open question
in high dimensions. Selecting the envelope dimension u is a crucial step in all
envelope methods. Zhang and Mai (2018) recently proposed a versatile BIC-
type criterion to select u consistently without restricting to a specific model.
However, the theory and optimization techniques are only applicable to low-
dimensional problems. This paper assumes the envelope dimension u is known
and leaves the dimension selection problem for future studies. In practice, the
envelope dimension u and the number of principal components d may be selected
by cross-validation, which is widely used in practice (Bro et al., 2008; Josse and
Husson, 2012). In simulation studies (Sect. 5), we use the true dimension u for
our methods and others and compare their subspace and parameter estimation
accuracies, where the number of principal components d is fixed at a much big-
ger number than u. In real data analysis (Sect. 6), we consider tuning d and
u together as d = 2u to reduce the computational cost. The idea behind this
practice is to view the envelope as an alternative to principal component regres-
sion: Instead of reducing the data into k principal components un-supervised,
we choose k envelope components from the first 2k principal components.

5. Simulation studies

In this section, we study the empirical performances of the sample NIECE pro-
cedure (Sect. 2) and the high-dimensional sparse NIECE (SNIECE; Sect. 3)
procedure through simulations. We consider four envelope models in high di-
mensions (response and predictor envelopes in linear regression, envelope in
logistic regression, and envelope in Cox proportional hazards model), where
we reduce the p-dimensional predictor (or r-dimensional response) onto the u-
dimensional envelopes without loss of relevant information in regression. In all
simulation models, we set the sample size n = 200, the envelope dimension
u = 3, and the dimension p = 400 or 1600. Note that for response reduction
in the linear models, we let p be the number of response variables and q be
the predictor dimension (in contrast to the r and p notation in the previous
sections). The main goal is to estimate a three-dimensional sparse subspace in
high dimensions, where we set the sparsity level s = 10. Specifically, the key
parameter is Γ = (ΓT

s ,0T)T ∈ R
p×u, where entries in Γs ∈ R

s×u are generated
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from Uniform[0, 1] and then orthogonalized such that ΓTΓ = ΓT
sΓs = Iu. To

introduce complex correlations among the s relevant variables, we consider the
following three types of envelope covariance structures that will be used in each
of the four models.

• Σ1 = VDVT, where V = (v1, . . . ,vs) ∈ R
s×s is a randomly gener-

ated orthogonal matrix and D = diag(D11, . . . , Dss) ∈ R
s×s is a diag-

onal matrix consists of distinct eigenvalues. In multivariate linear mod-
els, the Dkk = (k + 1)3, k = 1, . . . , s; In logistic regression and Cox
model, Dkk = 3k+1, k = 1, . . . , s. The envelope is constructed from
Γs = (v7,v8,v9).

• Σ2 = ΓsΩΓT
s + Γ0sΩ0ΓT

0s, where Γ0s ∈ R
s×(s−u) is the orthogonal com-

pletion of Γs and Ω,Ω0 are symmetric positive definite matrices. In mul-
tivariate linear models, we generate Ω as ODOT, where O is a randomly
generated orthogonal matrix and D is diagonal with entries (k + 1)3,
k = 1, . . . , u; Ω0 is a diagonal matrix with entries 50, 1, 1, . . . , 1. In lo-
gistic regression and Cox model, we change the entries in D to (k + 1)2,
k = 1, . . . , u, and the diagonals of Ω0 to 50, 0.01, . . . , 0.01.

• Σ3 is generated similar to Σ2. We set the eigenvalues in Ω (i.e. diagonals
of D) as (k + 1)2, k = 1, . . . , u and let Ω0 = 0.01Is−u.

The covariance Σ1 contains eigenvalues that are very well-separated, where
the largest one is many magnitudes larger than the smallest ones. Both the
covariances Σ1 and Σ2 are created such that the largest eigenvalue associated
eigenvector is orthogonal to the envelope. Therefore, as seen in the specific
models, the first principal component of the data is irrelevant to the regression
but only brings substantial amounts of estimative variability. In contrast, the
covariance Σ3 is created in favor of principal component regression – the leading
u eigenvalues are well-separated and more than a hundred times larger than the
remaining eigenvalues. Then these covariance structures will be used in the
following four models.

M1: Response envelope model in multivariate linear regression. For
predictor dimension q = 10, we generate the sparse coefficient parameter
β∗ ∈ R

p×q as β∗ = Γη and then standardized to β = 10 · β∗/‖β∗‖F ,
where the entries in η ∈ R

u×q are sampled from Uniform[0, 1]. The re-
sponse is generated as Yi = βXi + εi, i = 1, . . . , n, where the error
εi ∼ N(0,diag(ΣA, Ip−s)) for A = 1, 2, 3 three different covariance struc-
tures. The predictors are generated from N(0, 30Iq) when ΣA = Σ1 due
to high variance in Σ1, and are generated from N(0, Iq) for ΣA = Σ2
and Σ3.

M2: Predictor envelope model in multivariate linear regression. For
response dimension q = 5, we generate β ∈ R

p×q in the same way as in
Model M1. Then Yi = βTXi + εi, i = 1, . . . , n, where the predictor Xi ∼
N(0,diag(ΣA, 0.01Ip−s)) and the error εi ∼ N(0, σ2Iq). The magnitude of
error is controlled by σ2 to be comparable with the predictor variability.
Specifically, σ = 200, 20, 10 for A = 1, 2, 3 respectively.
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M3: Envelope logistic regression. The sparse coefficient vector β = Γη ∈
R

p is generated in the same way as in Model M1 where we set q =
1. The predictor Xi is also generated in the same way except that we
change ΣA to its scaled version ΣA/‖ΣA‖, so that the classification accu-
racy by envelope logistic regression is around 20% (neither too challeng-
ing nor too easy). The Yi follows Bernoulli distribution with probability
exp(βTXi)/(1 + exp(βTXi)).

M4: Envelope Cox proportional hazards model. The procedure for gen-
erating β ∈ R

p and Xi are the same as in Model M3. Then the failure
time Yi and censoring time Ci are generated from exponential distribution
Exp(βTXi) and Exp(0.5), respectively. Finally, we let Ti = min(Yi, Ci)
and δi = I(Yi ≤ Ci).

We focus on the parameter estimation error ‖β − β̂‖F and the subspace
estimation error ‖PΓ − PΓ̂‖F /

√
2u ∈ [0, 1]. For comparison purpose, we fo-

cus on principal component regression (PCR, Jolliffe, 1986) and sparse prin-
cipal component regression (SPCR) based on the same penalized matrix de-
composition algorithm (Witten, Tibshirani and Hastie, 2009) that was used in
SNIECE. We also include partial least squares regression (PLS, Wold, 1966),
sparse partial least square regression (SPLS, Chun and Keleş, 2010), sparse
reduced-rank regression (SRRR, Chen and Huang, 2012), reduced rank stochas-
tic regression (RSSVD, Chen, Chan and Stenseth, 2012), supervised princi-
pal component regression (SupPCR, Bair et al., 2006). In multivariate linear
models, we also include ordinary least squares (OLS) and Lasso (Tibshirani,
1996) estimators as benchmarks for estimating regression parameter β; in lo-
gistic regression model and Cox proportional hazards model, we include �1-
penalized MLE (PMLE, Friedman, Hastie and Tibshirani, 2010) for compar-
ison while PLS and SPLS are not directly applicable. In all models, we set
d = 10 > u = 3 in the NIECE and SNIECE procedures. In our experience, mod-
erately increase d will not change the performance of our methods under these
simulation settings. The implementation of SupPCR provided by Bair et al.
(2006) is limited to univariate response Y, which pre-screens some predictors
based on their correlations with the response and performs classical principal
component analysis on the selected predictors. To compare supervised princi-
pal component regression under our simulated models with predictor envelope
(M2–M4), we implement the pre-screening step using Lasso for multivariate
linear model and penalized MLE for logistic regression and Cox proportional
hazards model.

Figures 3–6 summarize the results for all the four models across the three
covariance structures. In Sect. A of the Appendix, we provide the average and
median estimation errors in Tables 2 and 3, respectively.

We have confirmed the following theoretical findings for linear, logistic, and
Cox models through numerical experiments. (i) Under covariance structure Σ3,
where the leading principal components span the envelope subspace, our NIECE
procedure correctly identified these principal components as relevant informa-
tion in regression. As a result, the NIECE estimator coincided with the PCR
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Fig 3. Summary plot for M1: response envelope model in multivariate linear regression.
Reported are estimation errors of parameter Δβ = ‖β − β̂‖F and envelope subspace ΔΓ =
‖PΓ − PΓ̂‖F /

√
2u. For each method, the left and right bars correspond to r = 400 and

r = 1600, respectively. Results are based on 200 replications.

estimator; and the SNIECE coincided with the SPCR. However, SNIECE con-
siders the information in the response Y while selecting the tuning param-
eter and can perform more stable than SPCR as shown by Fig. 4. (ii) Un-
der covariance structures Σ1 and Σ2, either the first or the second princi-
pal component is orthogonal to the envelope. Our NIECE procedure correctly
identified the corresponding leading principal components as irrelevant infor-
mation in regression and eliminated it in subsequent estimation. As a result,
the NIECE and SNIECE estimators substantially improved over the unsuper-
vised counterparts PCR and SPCR, respectively. The advantages were reflected
in both subspace estimation and parameter estimation. (iii) In these high-
dimensional sparse settings, both the SPCR (under covariance structure Σ3)
and SNIECE converged much faster than their un-penalized counterparts (PCR
and NIECE).

Although we did not establish the parameter estimation consistency of β̂Env
in theoretical analysis, the overall simulation results showed that the NIECE
estimators (penalized or un-penalized) had a promising performance. They out-
performed the standard solutions such as OLS, Lasso in multiple linear regres-
sion, and �1-penalized MLE in logistic and Cox models. The significant im-
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Fig 4. Summary plot for M2: Predictor envelope model in multivariate linear regression.
Reported are estimation errors of parameter Δβ = ‖β − β̂‖F and envelope subspace ΔΓ =
‖PΓ − PΓ̂‖F /

√
2u. For each method, the left and right bars correspond to p = 400 and

p = 1600, respectively. Results are based on 200 replications. Under covariance structure Σ1,
Lasso and SRRR had very big estimation errors (Δβ > 30 and Δβ > 100, respectively) and
were excluded in comparison for better visualization; similarly, RSSVD also failed due to
extremely high variability in data.

provements are due to our design of highly correlated variables. On the other
hand, while PCR and SPCR were widely used in such high correlation data
applications, the NIECE and SNIECE can be viewed as practical and straight-
forward improvements. Finally, we have also seen significant improvements in
SNIECE over popular multivariate regression methods such as SPLS, SRRR,
and RSSVD. We want to remark that these simulations were designed to be
very challenging and in favor of NIECE procedures to confirm their theoretical
properties and potential advantages in a wide range of applications. The NIECE
and those methods are not directly comparable because of their different focuses
in the regression. For example, SRRR failed under Model M2 because it focused
on imposing group sparsity on column vectors of the coefficient matrix β and
failed to select the important predictors when there is a large variation in the
error term.
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Fig 5. Summary plot for M3: Envelope logistic regression. Reported are estimation errors of
parameter Δβ = ‖β− β̂‖F and envelope subspace ΔΓ = ‖PΓ−PΓ̂‖F /

√
2u. For each method,

the left and right bars correspond to p = 400 and p = 1600, respectively. Results are based on
200 replications.

6. Real data illustration

In this section, we include three datasets to illustrate the various applications
of the proposed high-dimensional sparse NIECE procedure in logistic regression
and linear regression with either univariate response or multivariate response.
We focus on the predictive results of SNIECE in comparison to SPCA and
�1-penalized (generalized) linear model (i.e. LASSO estimator). Following the
practical suggestions in Sect. 4, we use d = 2u principal components for each
envelope dimension u ∈ {1, . . . , 20} in SNIECE.

The first study is the meat property data from Sæbø et al. (2008), where
they collected the Near-infrared (NIR) spectroscopy measurements and water,
fat, protein compositions for n = 103 meat samples. Cook, Helland and Su
(2013b) took spectral measurements at every fourth wavelength between 850
nm and 1050 nm as predictors, yielding p = 50; and they showed promising per-
formance of the predictor envelope in the linear regression model to predict the
protein content. We use the spectral measurements at every two wavelengths
as predictors, yielding a higher predictor dimension of p = 100. We then use
this to illustrate the envelope logistic regression model with NIECE to clas-
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Fig 6. Summary plot for M4: Envelope Cox proportional hazards model. Reported are esti-
mation errors of parameter Δβ = ‖β− β̂‖F and envelope subspace ΔΓ = ‖PΓ −PΓ̂‖F /

√
2u.

For each method, the left and right bars correspond to p = 400 and p = 1600, respectively.
Results are based on 200 replications.

sify the n = 103 meat samples into 49 beef samples and 54 pork samples. The
binary response and highly correlated predictors brought additional challenges
than the previous analysis. The second study is the riboflavin production data
from Bühlmann, Kalisch and Meier (2014). It contains the riboflavin produc-
tion of n = 71 Bacillus subtilis samples. The univariate continuous response is
log-transformed riboflavin production; the high-dimensional predictor variables
measure the logarithm of the expression level of p = 4088 genes. The third
study is the music data from Zhou, Claire and King (2014) and downloaded
from the UCI machine learning repository (https://archive.ics.uci.edu/
ml/datasets/Geographical+Original+of+Music). It includes n = 1059 music
tracks with p = 116 audio features, and the r = 2 bivariate response describes
the origin location of a track, represented by standardized latitude and longi-
tude.

For each dataset, we randomly split the data 100 times into a training set
of size ntrain and a testing set of size ntest, the averaged mis-classification error∑ntest

i=1 I(Yi 
= Ŷi)/ntest × 100% or the averaged prediction mean squared error∑ntest
i=1 ‖Yi−Ŷi‖2

2/ntest is then recorded for each number of component u ranges
from 1 to 20. For the meat data and the riboflavin data, the training and testing

https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
https://archive.ics.uci.edu/ml/datasets/Geographical+Original+of+Music
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Fig 7. The average prediction errors using 100 random data splittings where we vary the
number of components in PCR and the envelope dimension in NIECE. For the meat data
(left panel), the prediction error is defined as the misclassification rate in percentage; for the
riboflavin data and the music data, the prediction error is the prediction mean squared error.

sample size ratio is four to one (i.e. five-fold cross-validation); for the music data,
we set ntrain = 100 to produce the high-dimension low-sample size scenario.

Figure 7 summarizes the prediction error. In the meat data, the NIR spec-
tral measurements make the predictors extremely highly-correlated. Therefore,
the classification errors of both SPCR and SNIECE decrease as we increase the
number of components and eventually converge to nearly perfect classification.
With a small number of components, the SNIECE is more effective than SPCR.
This phenomenon can be explained by noticing that the first principal compo-
nent is not useful for classification at all – a situation resembles our simulations.
For this data set, the �1-penalized logistic regression ignores the predictor cor-
relation and has an error rate of about 8%. In the riboflavin production data,
the prediction error of SNIECE is uniformly smaller than that of SPCR for
the whole range of dimensions. For this very high-dimensional data with much
weaker correlations than in the meat data, the envelope approach still signifi-
cantly improved over the lasso regression while SPCR fails to achieve so. These
are very encouraging results and, to the best of our knowledge, the first real
data application of envelope regression with p in thousands. Finally, in the mu-
sic data, the prediction error curves of SNIECE and SPCA in Fig. 7 is another
typical situation: the SNIECE can achieve a much smaller error than SPCA and
is also uniformly better than both SPCA and Lasso regression for a wide range
of dimensions, 2 ≤ u ≤ 14. Based on the results in Fig. 7, we have confirmed the
potential advantages of NIECE over PCR in the high-dimensional setting. The
proposed estimator can be widely adopted as a simple, unified, and effective
alternative to SPCR.

7. Discussion

In this article, we develop a new method and theory for envelope subspace es-
timation by connecting envelope method with principal component regression.
We establish a general theory for the non-iterative envelope component esti-
mation (NIECE) algorithm in both sparse and non-sparse settings, where the
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dimensionality diverges with the sample size. More importantly, the NIECE al-
gorithm is computationally straightforward and easily generalizable to various
supervised learning problems. Our numerical studies show the method performs
well in regression problems with high-dimensional highly correlated predictors.

A direction for future research direction is the selection of envelope dimen-
sion u when p is large. For NIECE procedure, the envelope dimension selection
problem is more challenging than the likelihood-based envelope estimation. This
because it also relies on the specification of d, the number of top principal com-
ponents (PCs) to be used in the NIECE algorithm. We suggest using d = 2u as
a conservative way of improving over PCR: Instead of reducing the data into u
PCs un-supervised, we choose u components from the first 2u PCs. In all the
three real datasets, we observe a robust and consistent improvement over PCR
for a wide range of choices u ∈ {1, . . . , 20}. Because our methodology is very
general and easy to modify, one can adopt other ways of tuning u and d in
practice and study the theoretical properties in the future.

Throughout the paper we assume that the first d eigenvalues of M are dis-
tinct. In presence of common eigenvalues, we can re-define the eigengap Δ and
relax this assumption to some extent. See Appendix B for a more detailed dis-
cussion. For future studies, we plan to incorporate principal subspace estimation
into the NIECE algorithm and fully investigate the algorithm and theory in such
a more challenging settings.

Appendix A: Additional numerical results

A.1. Additional real data analysis results

Furthermore, it is common in PCA to choose number of components that can
explain a specific proportion of variability in data. Thus in meat property data,
we also compare the classification performance by first applying PCA and sparse
PCA on the original data and observe the number of components u1 needed for
PCA and u2 needed for sparse PCA, to explain 90%, 95% and 99% of total
variance. The comparison results are summarized in Table 1, to explain the
same amount of variation in data, SNIECE achieves the lowest classification
error.

A.2. Additional simulation results

Tables 2 & 3 demonstrate that the proposed SNIECE achieved the lowest median
and average estimation errors. However, due to the challenging model settings
such that the variation in data can be very large, the average errors are slightly
higher than the median errors for SNIECE in most settings. Notably, under
Model M2 and covariance structure Σ2, SNIECE yielded a considerably higher
average error than median error. This observation is also supported by the out-
liers of SNIECE displayed in Fig. 4. For predictor envelope in linear regression,
note that EΣX

(βT ) = EΣX
(ΣXY) at the population level, which gives additional



2476 X. Zhang et al.

Table 1

Envelope logistic regression on meat property data. Reported are the mean and standard
error (in parenthesis) of mis-classification rates (%) for 100 random data splits. Var.

denotes total variance explained. u1 is number of components for PCR and NIECE, u2 is
number of components for SPCR and SNIECE.

Var. u1 u2 PMLE PCR NIECE SPCR SNIECE

90% 2 5 7.55 40.15 34.90 8.50 5.90
(0.61) (1.06) (1.64) (0.61) (0.51)

95% 2 7 7.55 40.15 34.90 2.65 2.15
(0.61) (1.06) (1.64) (0.39) (0.37)

99% 3 12 7.55 8.20 8.20 0.90 0.55
(0.61) (0.51) (0.51) (0.22) (0.17)

Fig 8. Summary plot for M2: Predictor envelope model in multivariate linear regression.
Reported are estimation errors of parameter Δβ = ‖β − β̂‖F and envelope subspace ΔΓ =
‖PΓ − PΓ̂‖F /

√
2u. SNIECE uses Û = Σ̂XYΣ̂YX; SNIECE_lasso and SNIECE_spls use

Û = β̂
T
β̂. For SNIECE_lasso, β̂ is the sparse estimate from Lasso; for SNIECE_spls, β̂ is

the sparse estimate from SPLS.

flexibility regarding the choice of Û in the proposed NIECE procedure. In the
present implement of SNIECE in simulations, Û was set to Σ̂XYΣ̂YX. How-
ever, an alternative choice is to set Û to β̂

T
β̂, where β̂ is some sparse estimate

from high-dimensional regression methods including Lasso or sparse partial least
square regression. Figure 8 summarizes the performance of SNIECE when Û is
specified by sample covariance, Lasso, and sparse partial least square under
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Model M2. The performance of SNIECE varied significantly depending on the
choice of Û. Specifically, under covariance structure Σ1, Lasso failed to select
important predictors due to large variation in the error term. Consequently,
initializing Û with Lasso resulted in poor estimation performance for SNIECE;
under covariance Σ2, SNIECE initializing Û with sparse estimates Lasso or
SPLS obtained more stable estimation compared to initializing with sample co-
variance Σ̂XY; under covariance Σ3, all three initialization methods for Û gave
similar results. Thus, while implementing the proposed NIECE for linear re-
gression with high-dimensional predictors, users have the flexibility to specify
different Û based on the particular problem and data at hand.

Appendix B: A brief discussion on common eigenvalues

If the eigenvalues λπ(j)’s, j = 1, . . . , u, are all distinct, we define the following
population quantities

Δ = min
j=1,...,u

Δj , Δj ≡ min{λπ(j)−1(M)−λπ(j)(M), λπ(j)(M)−λπ(j)+1(M)}.
(26)

In presence of common eigenvalues for some j = 1, . . . , u, denoted as λπ1 =
· · · = λπm with π1 > · · · > πm, m ≤ u, we re-define Δj as

Δj ≡ min{λπ1−1(M) − λπ1(M), λπm(M) − λπm+1(M)}. (27)

Note that we need to assume these eigenvalues are distinct from the eigenvalues
associated with eigenvectors in E⊥

M(U) (an extreme case will be M = I, then
the NIECE algorithm needs modification), otherwise we need to modify/replace
M by M + U.

Lemma 4. Assume Δ > 0, and let ε > 0 be a constant such that ‖M̂−M‖op ≤
ε, assume that {π̂(j) | j = 1, . . . , u} = {π(j) | j = 1, . . . , u}, then

‖ sinΘ(Γ, Γ̂)‖F ≤ 2
√
uε

Δ . (28)

Proof. From Corollary 1 of Yu, Wang and Samworth (2014), we have that for
distint eigenvalues,

sin Θ(vj , v̂j) ≤
2‖M̂− M‖op

min(λj−1 − λj , λj − λj+1)
≤ 2‖M̂ − M‖op

Δj
≤ 2‖M̂− M‖op

Δ .

(29)
For common eigenvalues, λπ1 = · · · = λπm with π1 > · · · > πm, we let Wj =
(vπ1 , . . . ,vπm) and Ŵj = (v̂π1 , . . . , v̂πm). Then we have,

‖ sinΘ(Wj ,Ŵj)‖F ≤ 2
√
m‖M̂ − M‖op

Δj
≤ 2

√
m‖M̂ − M‖op

Δ . (30)
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Table 2

The average estimation errors for the parameter Δβ = ‖β − β̂‖F and for the envelope
subspace ΔΓ = ‖PΓ − PΓ̂‖F /

√
2u. Results are based on 200 replications. The maximum

standard error among all estimators in each setting (i.e. each column of the Table) are
included. In Model M2 with covariance structure Σ1, SRRR had very big estimation errors
(Δβ > 100) and was excluded in comparison; similarly, RSSVD also failed due to extremely

high variability in data.

M1 (Response envelope in linear model) M2 (Predictor envelope in linear model)
ΣA Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

p 400 1600 400 1600 400 1600 400 1600 400 1600 400 1600
OLS Δβ 2.89 3.24 5.38 9.64 4.72 9.29 – – – – – –
Lasso Δβ – – – – – – 30.00 29.00 8.08 8.22 12.80 12.69

PLS Δβ 2.81 2.92 3.72 5.56 3.05 5.19 3.00 3.57 5.50 8.02 6.08 8.48
ΔΓ 0.30 0.35 0.51 0.67 0.53 0.69 0.39 0.44 0.44 0.64 0.54 0.79

SRRR Δβ 2.42 2.54 3.61 5.63 2.74 5.12 – – 38.84 23.23 21.12 14.90
ΔΓ 0.28 0.31 0.49 0.65 0.47 0.66 1.00 1.00 0.97 0.94 0.93 0.89

RSSVD Δβ 2.40 2.39 2.65 2.66 1.36 1.42 – – 8.64 6.05 10.65 10.12
ΔΓ 0.26 0.26 0.31 0.32 0.12 0.15 – – 0.74 0.62 0.73 0.72

PCR Δβ 3.20 3.24 3.81 4.57 2.23 3.92 6.92 6.95 8.39 8.66 6.52 8.91
ΔΓ 0.58 0.58 0.59 0.62 0.31 0.53 0.58 0.59 0.61 0.67 0.54 0.79

SupPCR Δβ – – – – – – 5.89 9.57 8.13 8.08 10.96 11.37
ΔΓ – – – – – – 0.64 0.68 0.61 0.61 0.74 0.75

NIECE Δβ 2.44 2.48 3.04 4.11 2.23 3.92 3.11 3.30 5.72 7.42 6.52 8.87
ΔΓ 0.26 0.27 0.27 0.42 0.31 0.53 0.27 0.30 0.44 0.60 0.54 0.79

SPLS Δβ – – – – – – 3.23 3.28 3.58 3.28 4.38 4.52
ΔΓ – – – – – – 0.59 0.59 0.36 0.32 0.45 0.48

SPCR Δβ 3.21 3.21 3.51 3.52 1.30 1.34 6.87 6.86 8.47 8.52 1.74 3.75
ΔΓ 0.58 0.58 0.58 0.58 0.06 0.07 0.58 0.58 0.58 0.58 0.13 0.26

SNIECE Δβ 2.43 2.44 2.73 2.72 1.30 1.34 3.04 3.08 3.40 3.49 1.74 2.08
ΔΓ 0.25 0.25 0.21 0.21 0.06 0.07 0.26 0.28 0.25 0.25 0.13 0.15

S.E.≤ Δβ (0.13) (0.13) (0.07) (0.05) (0.11) (0.09) (0.09) (0.09) (0.19) (0.19) (0.30) (0.29)
ΔΓ (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) (0.03) (0.03)

M3 (Logistic regression) M4 (Cox hazards model)
ΣA Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

p 400 1600 400 1600 400 1600 400 1600 400 1600 400 1600
PMLE Δβ 7.45 7.56 8.73 8.57 9.94 9.84 5.57 5.83 8.05 8.05 10.62 10.75

PCR Δβ 5.88 7.71 9.33 9.48 3.36 5.39 6.10 6.60 9.67 9.69 1.55 2.66
ΔΓ 0.65 0.76 0.63 0.73 0.23 0.42 0.59 0.63 0.59 0.62 0.10 0.20

SupPCR Δβ 8.41 14.11 11.98 17.14 20.40 94.61 3.64 3.67 9.10 10.16 11.74 13.11
ΔΓ 0.76 0.77 0.87 0.89 0.94 0.94 0.67 0.67 0.83 0.84 0.85 0.86

NIECE Δβ 5.38 7.67 5.17 7.76 3.41 5.39 2.80 4.48 2.74 4.50 1.56 2.67
ΔΓ 0.56 0.75 0.42 0.66 0.25 0.43 0.25 0.43 0.19 0.34 0.12 0.22

SPCR Δβ 4.37 4.26 9.38 9.43 2.09 2.08 5.76 5.66 9.71 9.72 0.97 0.99
ΔΓ 0.59 0.59 0.58 0.58 0.09 0.09 0.58 0.58 0.58 0.58 0.05 0.06

SNIECE Δβ 2.47 2.65 2.12 2.08 2.03 2.04 1.62 1.44 1.49 1.48 0.97 0.98
ΔΓ 0.19 0.22 0.21 0.26 0.09 0.08 0.12 0.10 0.11 0.11 0.05 0.06

S.E.≤ (0.14) (0.13) (0.18) (0.11) (0.18) (0.14) (0.01) (0.01) (0.01) (0.02) (0.01) (0.01)

Since ‖ sinΘ(Γ, Γ̂)‖2
F =

∑u
j=1 sin2(θj), where θj ’s are the principal angles, we

have

‖ sinΘ(Γ, Γ̂)‖F =
√∑

j∈J1

sin2 Θ(vj , v̂j) +
∑
j∈J2

‖ sinΘ(Wj ,Ŵj)‖2
F



Envelopes and principal component regression 2479

Table 3

The median estimation errors for the parameter Δβ = ‖β − β̂‖F and for the envelope
subspace ΔΓ = ‖PΓ − PΓ̂‖F /

√
2u. Results are based on 200 replications. The maximum

standard error among all estimators in each setting (i.e. each column of the Table) are
included. In Model M2 with covariance structure Σ1, SRRR had very big estimation errors
(Δβ > 100) and was excluded in comparison; similarly, RSSVD also failed due to extremely

high variability in data.

M1 (Response envelope in linear model) M2 (Predictor envelope in linear model)
ΣA Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

p 400 1600 400 1600 400 1600 400 1600 400 1600 400 1600
OLS Δβ 2.89 3.24 5.38 9.63 4.72 9.26 – – – – – –
Lasso Δβ – – – – – – 26.18 25.48 7.89 7.79 12.88 12.70

PLS Δβ 2.80 2.90 3.69 5.55 3.03 5.19 2.96 3.48 5.43 8.02 6.06 8.47
ΔΓ 0.28 0.32 0.50 0.67 0.51 0.69 0.39 0.43 0.44 0.63 0.54 0.79

SRRR Δβ 2.42 2.54 3.61 5.63 2.74 5.11 – – 38.91 23.23 21.06 14.93
ΔΓ 0.26 0.30 0.47 0.65 0.47 0.66 1.00 1.00 0.97 0.94 0.93 0.89

RSSVD Δβ 2.41 2.41 2.65 2.65 1.36 1.39 – – 8.58 5.95 10.27 9.85
ΔΓ 0.24 0.24 0.26 0.27 0.11 0.12 – – 0.74 0.61 0.71 0.70

PCR Δβ 3.21 3.21 3.50 3.51 1.30 1.34 6.98 7.04 8.40 8.66 6.49 8.92
ΔΓ 0.58 0.58 0.59 0.62 0.31 0.53 0.58 0.59 0.61 0.67 0.54 0.79

SupPCR Δβ – – – – – – 4.67 4.86 8.16 8.16 11.30 11.80
ΔΓ – – – – – – 0.65 0.66 0.61 0.61 0.74 0.75

NIECE Δβ 2.36 2.40 2.99 4.08 2.22 3.91 2.86 3.07 4.78 7.16 6.49 8.87
ΔΓ 0.20 0.21 0.24 0.41 0.31 0.53 0.22 0.24 0.38 0.59 0.54 0.79

SPLS Δβ – – – – – – 3.02 3.06 3.80 2.93 2.65 3.85
ΔΓ – – – – – – 0.60 0.71 0.31 0.23 0.73 0.74

SPCR Δβ 3.21 3.21 3.50 3.51 1.30 1.34 6.93 6.95 8.49 8.52 1.75 2.00
ΔΓ 0.58 0.58 0.58 0.58 0.06 0.07 0.58 0.58 0.58 0.58 0.13 0.15

SNIECE Δβ 2.35 2.37 2.62 2.63 1.30 1.34 2.83 2.88 2.10 2.24 1.75 1.89
ΔΓ 0.19 0.19 0.15 0.15 0.06 0.07 0.20 0.21 0.17 0.17 0.13 0.14

S.E.≤ Δβ (0.01) (0.02) (0.01) (0.01) (0.02) (0.01) (0.17) (0.13) (0.02) (0.02) (0.05) (0.07)
ΔΓ (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.01) (0.01) (0.00) (0.00) (0.02) (0.01)

M3 (Logistic regression) M4 (Cox hazards model)
ΣA Σ1 Σ2 Σ3 Σ1 Σ2 Σ3

p 400 1600 400 1600 400 1600 400 1600 400 1600 400 1600
PMLE Δβ 7.10 7.32 8.11 8.24 9.11 9.15 5.50 5.76 7.94 7.99 10.50 10.61

PCR Δβ 5.86 7.68 9.37 9.51 3.17 5.28 6.15 6.61 9.68 9.70 1.43 2.64
ΔΓ 0.65 0.76 0.63 0.73 0.23 0.42 0.59 0.63 0.59 0.62 0.10 0.20

SupPCR Δβ 8.26 12.55 11.36 14.24 19.92 26.93 3.62 3.67 9.57 10.51 11.98 11.93
ΔΓ 0.73 0.74 0.85 0.89 0.94 0.96 0.67 0.67 0.84 0.85 0.86 0.86

NIECE Δβ 5.35 7.66 5.14 7.72 3.19 5.28 2.59 4.40 2.46 4.36 1.43 2.64
ΔΓ 0.54 0.75 0.39 0.64 0.23 0.42 0.24 0.43 0.18 0.33 0.10 0.20

SPCR Δβ 4.34 4.22 9.42 9.47 1.81 1.64 5.82 5.72 9.72 9.74 0.84 0.81
ΔΓ 0.58 0.59 0.58 0.58 0.08 0.08 0.58 0.58 0.58 0.58 0.05 0.05

SNIECE Δβ 2.22 2.37 1.83 1.86 1.65 1.51 1.27 1.30 1.16 1.25 0.84 0.81
ΔΓ 0.17 0.19 0.11 0.11 0.07 0.07 0.10 0.10 0.08 0.08 0.05 0.04

S.E.≤ (0.02) (0.02) (0.01) (0.01) (0.02) (0.02) (0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

≤ 2
√
u‖M̂ − M‖op

Δ , (31)

where the index sets J1 is for distinct eigenvalues and index set J2 is for common
eigenvalues. The conclusion follows from ‖M̂ − M‖op ≤ ε.
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Supplementary Material

Supplementary material for “Envelopes and principal component re-
gression”
(doi: 10.1214/23-EJS2154SUPP; .pdf). The supplementary material contains
detailed proofs of lemmas and theorems and is provided in a separate file.
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