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Abstract: Bayes estimators are well known to provide a means to incor-
porate prior knowledge that can be expressed in terms of a single prior
distribution. However, when this knowledge is too vague to express with a
single prior, an alternative approach is needed. Gamma-minimax estimators
provide such an approach. These estimators minimize the worst-case Bayes
risk over a set Γ of prior distributions that are compatible with the avail-
able knowledge. Traditionally, Gamma-minimaxity is defined for paramet-
ric models. In this work, we define Gamma-minimax estimators for general
models and propose adversarial meta-learning algorithms to compute them
when the set of prior distributions is constrained by generalized moments.
Accompanying convergence guarantees are also provided. We also introduce
a neural network class that provides a rich, but finite-dimensional, class of
estimators from which a Gamma-minimax estimator can be selected. We
illustrate our method in two settings, namely entropy estimation and a
prediction problem that arises in biodiversity studies.
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1. Introduction

A variety of principles can be used to guide the search for a suitable statisti-
cal estimator. Asymptotic efficiency (Pfanzagl, 1990), minimaxity (Wald, 1945)
and Bayes optimality (Berger, 1985) are popular examples of such principles.
Defining the performance criteria underlying these principles requires specify-
ing a model space, that is, a collection of possible data-generating mechanisms
known to contain the true, underlying distribution.

It is often desirable to incorporate prior information about the true data-
generating mechanism into a statistical procedure. This might be done differ-
ently in different statistical paradigms. For frequentist methods, such as those
based on the asymptotic efficiency or minimax principle, the primary way to
incorporate this information is via the definition of the model space. In the
Bayesian paradigm, such information may be represented by further specifying
a prior distribution (or prior for short) over the model space and aiming for
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an estimator that minimizes the induced Bayes risk. However, in many cases,
there may be several priors that are compatible with the available information,
especially in the context of rich model spaces.

The Gamma-minimax paradigm, proposed by Robbins (1951), provides a
principled means to overcome the challenge of specifying a single prior distribu-
tion. Under this paradigm, a statistician first specifies a set Γ of all priors that
are consistent with the available prior information and subsequently seeks an
estimator that minimizes the worst-case Bayes risk over this set of priors. The
Gamma-minimax paradigm may be viewed as a robust version of the Bayesian
paradigm that is less sensitive to misspecification of a prior distribution (Vi-
dakovic, 2000). When it is infeasible to specify a prior due to the complexity of
the model space, the Gamma-minimax paradigm may also be viewed as a fea-
sible substitute for the Bayesian paradigm. The Gamma-minimax paradigm is
closely related to Bayes and minimax paradigms: when the set of priors consists
of a single prior, a Gamma-minimax estimator is Bayes with respect to that
prior; when the set Γ of priors is the entire set of possible prior distributions, a
Gamma-minimax estimator is also minimax.

Gamma-minimax estimators have been studied for a variety of problems.
Some explicit forms of Gamma-minimax estimators have been obtained. For
example, Olman and Shmundak (1985) studied Gamma-minimax estimation of
the mean of a normal distribution for the set of symmetric and unimodal priors
on an interval and obtained an explicit form when this interval is sufficiently
small. Eichenauer-Herrmann (1990) generalized this result to more general para-
metric models and Eichenauer-Herrmann, Ickstadt and Weiß (1994) obtained a
further generalization with the requirement of symmetry on the priors dropped.
Chen, Eichenauer-Herrmann and Lehn (1988) studied Gamma-minimax esti-
mation for multinomial distributions and the set of priors with bounded mean.
Chen et al. (1991) studied Gamma-minimax estimation for one-parameter ex-
ponential families and the set of priors that place certain bounds on the first
two moments. These results do not deal with general model spaces, such as
semiparametric or nonparametric models, and general forms of the set of priors
that may not directly impose bounds on prior moments of the parameters of
interest. One reason for this lack of generality might be that, in the existing
literature, Gamma-minimaxity is defined only for parametric models. However,
an issue with parametric models is that they often fail to contain the true data-
generating mechanism, in which case output from the aforementioned statistical
procedures may no longer be interpretable. Another possible reason is that it
is typically intractable to analytically derive Gamma-minimax estimators, even
for parametric models.

To overcome this lack of analytical tractability, meta-learning algorithms to
compute a minimax or Gamma-minimax estimator have been proposed. Still,
most of these works focus on parametric models. For example, Nelson (1966)
and Kempthorne (1987) each proposed an algorithm to compute a minimax
estimator. Bryan et al. (2007) and Schafer and Stark (2009) proposed an algo-
rithm to compute an approximate confidence region of optimal expected size in
the minimax sense. Noubiap and Seidel (2001) proposed an iterative algorithm
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to compute a Gamma-minimax decision for the set of priors constrained by
generalized moment conditions. More recent works explored computing estima-
tors under more general models. For example, Luedtke et al. (2020) introduced
an approach, termed Adversarial Monte Carlo meta-learning (AMC), for con-
structing minimax estimators. In the special case of prediction problems with
mean-squared error, Luedtke, Chung and Sofrygin (2020) studied the invariance
properties of the decision problem and their implications for AMC.

In this paper, we make the following contributions:

1. We propose iterative adversarial meta-learning algorithms for constructing
Gamma-minimax estimators for a general model space and class of esti-
mators. We further provide convergence guarantees for these algorithms.

To our best knowledge, this is the first algorithm to compute Gamma-minimax
estimators under general models, including infinite-dimensional models. We also
show that, for certain problems, there is a unique Gamma-minimax estimator
and our computed estimator converges to this estimator as the number of iter-
ations increases to infinity.

Like the approach proposed in Noubiap and Seidel (2001), we consider sets
of priors characterized by (in)equality constraints on prior generalized moments
and our proposed iterative algorithm involves solving a discretized Gamma-
minimax optimization problem in each intermediate step. However, we explic-
itly describe algorithms to solve these minimax problems, which facilitates the
use of our approach by practitioners. When the space of estimators can be pa-
rameterized by a Euclidean space and gradients are available, we propose to use
a gradient-based algorithm or a stochastic variant thereof. When gradients are
unavailable, we propose to instead use fictitious play (Brown, 1951; Robinson,
1951) to compute a stochastic estimator, which is a mixture of deterministic es-
timators belonging to some specified collection. We also provide a convergence
result that is applicable even when this collection has infinite cardinality. This
is in contrast to the results in Robinson (1951), which require that each player
has only finitely many possible deterministic strategies.

2. We propose a Markov chain Monte Carlo (MCMC) method to construct
the approximating grids defining the discretized Gamma-minimax prob-
lems used in our iterative scheme.

Like the approach proposed in Noubiap and Seidel (2001), our proposed iterative
algorithm relies on increasingly fine finite grids over the model space. However,
since we allow the model space to be high or even infinite-dimensional, randomly
adding points to the grid may lead to unacceptably slow convergence. To over-
come this challenge, we propose to use MCMC to efficiently construct such grids.

Our theoretical results allow for many different choices of classes of estima-
tors. Our final contribution concerns the introduction of one such class:

3. We introduce a new neural network architecture that can be used to pa-
rameterize statistical estimators and argue that this class represents an
appealing class to optimize over.
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For this final point, we build on existing works in adversarial learning (e.g.,
Goodfellow et al., 2014; Luedtke et al., 2020; Luedtke, Chung and Sofrygin,
2020) and extreme learning machines (Huang, Zhu and Siew, 2006). Thanks to
the universal approximation properties of neural networks (e.g., Hornik, 1991;
Csáji, 2001) and extreme learning machines (Huang, Chen and Siew, 2006), we
also show that both of these parameterizations can achieve good performance for
sufficiently large networks. Furthermore, inspired by pre-training (e.g., Erhan
et al., 2010) and transfer learning (e.g., Torrey and Shavlik, 2009), we recom-
mend leveraging knowledge of existing estimators as inputs to the network in
settings where this is possible. Under such choices of the space of estimators, we
can expect to obtain a useful estimator even if the associated nonconvex-concave
minimax problems prove to be difficult.

This paper is organized as follows. In Section 2, we introduce the frame-
work of Gamma-minimax estimation and regularity conditions that we assume
throughout the paper. In Section 3, we describe our proposed iterative adver-
sarial meta-learning algorithms. In Section 4, we discuss considerations when
choosing hyperparameters in the algorithms. In Section 5, we demonstrate our
method in three simulation studies. We conclude with a discussion in Section 6.
Proof sketches of key results are provided in the main text, and complete proofs
can be found in the appendix. We also provide a table summarizing the fre-
quently used symbols in Table 7 in the appendix. The code for our simulations
is available on GitHub (Qiu, 2022).

2. Problem setup

Let M be a separable Hausdorff space of data-generating mechanisms that
contains the truth P0 and is equipped with a metric ρ. Under a data-generating
mechanism P ∈ M, let X∗ ∈ X ∗ denote the random data being generated,
where X ∗ is the space of values that the random data takes. Let C denote
a known coarsening mechanism such that the observed data X = C(X∗) ∈ X ,
where X is the space of observed data. In some cases, the coarsening mechanism
will be the identity map, whereas in other settings, such as those in which
missing, censored or truncated data is present, the coarsening mechanism will
be nontrivial (e.g., Birmingham, Rotnitzky and Fitzmaurice, 2003; Gill, van der
Laan and Robins, 1997; Heitjan and Rubin, 1991; Heitjan, 1993, 1994). Let D
denote the space of estimators (or decision functions) equipped with a metric �.
In practice, for computational feasibility, we will mainly consider an estimator
space D that contains estimators parameterized by a Euclidean space such as
linear estimators or neural networks, and approximates a more general space D0,
for example, the space of all estimators satisfying certain smoothness conditions.
We discuss considerations concerning the choice of D in Section 4.2 and note that
our proposed methods may be applied to broader estimator classes. We treat D
as fixed throughout this paper. Let R : D×M → R denote a risk function that
measures the performance of an estimator under a data-generating mechanism
such that smaller risks are preferable. We suppose throughout that M and D
are equipped with the topologies induced by ρ and �, respectively.
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We now present three examples in which we formulate statistical decision
problems in the above form. The first example is a general example of point
estimation. We use this example to illustrate how the Gamma-minimax esti-
mation framework naturally fits into many statistical problems. The other two
examples are more concrete and we will study them in the simulations and data
analyses.
Example 1 (Point estimation). Suppose that M is a statistical model, which
may be parametric, semiparametric, or nonparametric (Bickel et al., 1993). The
data X∗ consists of n independently and identically distributed (iid) random
variables Oi, i = 1, . . . , n, following the true distribution P0 ∈ M. We set C
to be the identity function so that X = X∗. We wish to estimate an aspect
Ψ(P0) ∈ R of P0. Then, we can consider D to be a set of X → R functions
and the mean-squared error risk R(d, P ) = EP [{d(X) − Ψ(P )}2]. Some specific
examples of estimands include:

i) Mean: Ψ(P ) = EP [Oi];
ii) Cumulative distribution function at a point o: Ψ(P ) = PP (Oi ≤ o);
iii) Correlation: with Oi = (Xi, Yi) ∈ R2, Ψ(P ) = EP [XiYi] − EP [Xi]EP [Yi].

Example 2 (Predicting the expected number of novel categories to be observed
in a new sample). Suppose that M consists of multinomial distributions with an
unknown number of categories. Let an iid random sample of size n be generated
from the true multinomial distribution, so that X∗ is a multiset containing the
number Xk of observations in each category k. Suppose that only categories
with nonzero occurrences are observed, so that X is a left-truncated version of
X∗. In other words, X is the multiset C(X∗) = {Xk : Xk > 0}. Then, we may
wish to predict the number of new categories that would be observed if a new
sample of size m were collected. This problem has been extensively studied in
the literature, with applications in microbiome data, species taxonomic surveys,
and assessment of vocabulary size, among other areas (e.g., Shen, Chao and
Lin, 2003; Bunge, Willis and Walsh, 2014; Orlitsky, Suresh and Wu, 2016).
This prediction problem can be formulated in our framework. For each P ∈
M, let pk (k = 1, . . . ,KP ) be the probability of category k, and Ψ(P )(X∗)
be

∑KP

k=1 I(Xk = 0)(1 − (1 − pk)m), the expected number of new observed
categories given the current full data X∗. We consider D to be a set of X → R

functions and set the risk to be the mean-squared error, that is, R(d, P ) =
EP [{d(X) − Ψ(P )(X∗)}2]. This prediction problem is known to be intrinsically
difficult when the future sample size m is greater than the observed sample size
n, and we might expect prior information to substantially improve prediction.
Example 3 (Entropy estimation). Consider the same data-generating mechanism
and observed data as in Example 2. We may wish to estimate Shannon entropy
(Shannon, 1948) Ψ(P ) = −

∑KP

k=1 pk log pk, a measure of diversity. We consider
D to be a set of X → R functions and set the risk to be the mean-squared
error, that is, R(d, P ) = EP [{d(X) − Ψ(P )}2]. Jiao et al. (2015) proposed a
rate-minimax estimator. Thus, in contrast to Example 2, this is an example of
a statistical problem with a satisfactory solution. For these problems, we might
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not expect prior information to substantially improve estimation.
We now define Gamma-minimaxity within our decision-theoretic framework.

We assume that M is equipped with the Borel σ-field B and let Π denote the
set of all probability distributions on the measurable space (M,B). We also
assume that, for any d ∈ D and any π ∈ Π, P �→ R(d, P ) is π-integrable.
The Bayes risk corresponding to an estimator d and a prior π is defined as
r : (d, π) �→

∫
R(d, P )π(dP ). Let Γ ⊆ Π be the set of priors such that all π ∈ Γ

are consistent with the available prior information. An estimator is called a
Γ-minimax estimator if it is in the set

argmin
d∈D

sup
π∈Γ

r(d, π). (1)

Throughout the rest of this paper, we assume the existence of this solution set
and other solution sets to minimax problems, and that supπ∈Γ r(d, π) is finite
for any d ∈ D.

In this paper, we consider the case in which Γ is characterized by finitely
many generalized moment conditions, that is,

Γ =
{
π ∈ Π : Φk ∈ L1(π),

∫
Φk(P )π(dP ) ≤ ck, k = 1, . . . ,K

}

where each Φk : M → R is a prespecified function that extracts an aspect of a
data-generating mechanism and ck ∈ R is a prespecified constant. The validity
of our proposed template to find a Γ-minimax estimator in Section 3.1 does not
require Γ to take this form, but our proposed algorithms in Sections 3.2 and 3.3
are computationally feasible for such constraints because these linear constraints
lead to linear programs, which can be solved efficiently (e.g., Jiang et al., 2020).
In principle, more general constraints can be handled by using suitable minimax
problem solvers. Such constraints were considered in Noubiap and Seidel (2001)
and can represent a variety of forms of prior information. For example, with
Φk = ±Ψκ for some κ ≥ 1, Γ imposes bounds on prior moments of Ψ(P ); with
Φk(P ) = ±1(Ψ(P ) ∈ I) for some known interval I, Γ imposes bounds on the
prior probability of Ψ(P ) lying in I. Similar prior information on aspects of P0
other than Ψ(P0) can also be represented. In addition, since an equality can
be equivalently expressed by two inequalities, Γ may also impose equality con-
straints on prior generalized moments. Such information is commonly used to
choose prior distributions in Bayesian settings (Sarma and Kay, 2020). Since we
do not require specifying a parametric model or specifying an entire prior distri-
bution for any finite-dimensional summary of P0, specifying a set Γ of prior dis-
tributions in the above form is no more difficult — and often easier — than spec-
ifying a single prior distribution, as would be required in a Bayesian approach.

3. Proposed meta-learning algorithms to compute a Γ-minimax
estimator

Since both the model space M and the estimator space D may be infinite, it is
computationally infeasible to directly solve the minimax problem (1) defining
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Fig 1. Illustration of grid M� = {P(1), P(2), P(3), . . . , P(T )} ⊆ M approximating the entire
model space M. Examples of densities of distributions P(t) (t = 1, . . . , T ) in the grid are
displayed. A prior distribution with support in M� is parameterized by the probability mass
at each distribution P(t). An example of a prior distribution is displayed as black bars with
their heights being proportional to the probability masses.

a Γ-minimax estimator. Similarly to Noubiap and Seidel (2001), our general
strategy is to discretize M and thus consider prior distributions with discrete
supports. Once the supports of prior distributions are discrete, the optimiza-
tion over prior distributions only involves finitely many parameters, namely the
probability masses at support points, and thus is computationally possible. We
will show that, when the grid is sufficiently fine, a solution to the discretized
minimax problem is close to a solution to the original minimax problem.

Our proposed algorithm consists of two main steps. The first step is to dis-
cretize the model space M and consider an approximating grid M� instead
of the original complicated model space M. This discretization is illustrated
in Fig. 1. We will describe M� in more detail in Section 3.1. In the second
step, we consider a set Γ� of priors with support contained M� and compute a
Γ�-minimax estimator. We will describe two classes of algorithms to solve this
discretized minimax problem in Sections 3.2 and 3.3, respectively.

3.1. Grid-based approximation of Γ-minimax estimators

We first define the discretization of the model space M that we will use. Let
{M�}∞�=1 be an increasing sequence of finite subsets of M such that

⋃∞
�=1 M�

is dense in M. That is, {M�}∞�=1 is an increasingly fine grid over M. Since M
is separable, such an {M�}∞�=1 necessarily exists. Define

Γ� := {π ∈ Γ : π has support in M�} and rsup(d,Γ′) := sup
π∈Γ′

r(d, π)

for any d ∈ D and Γ′ ⊆ Π.
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Algorithm 1 describes how the grids M� are used to compute an approxi-
mately Γ-minimax estimator in our proposed algorithms. We will show that the
approximation error decays to zero as � grows to infinity. Here and in the rest
of the algorithms in the paper, for any real-valued function f , when we assign
argminx f(x) or argmaxx f(x) to a variable, we arbitrarily pick a minimizer or
maximizer if there are multiple optimizers. In practice, the user may stop the
iteration at some � and use a Γ�-minimax estimator d∗� as the output estimator.
We discuss the stopping criterion in more detail at the end of this section.

Algorithm 1 Iteratively approximate a Γ-minimax estimator over an increas-
ingly fine grid.
1: for � = 1, 2, . . . do
2: Construct a grid M� ⊆ M such that M�−1 � M�

3: d∗� ← argmind∈D supπ∈Γ�
r(d, π)

We note that the minimax problem in Line 3 of Algorithm 1 is nontrivial
to solve, and therefore we propose two algorithms that can solve this minimax
problem in Sections 3.2 and 3.3.

We assume that the following conditions hold throughout the rest of the
paper.
Condition 1. There exists a limit point d∗ ∈ D of the sequence {d∗�}∞�=1.

Condition 1 holds if the sequence {d∗�}∞�=1 eventually falls in a compact set.
For example, if D is a space of neural networks and we take � to be the Eu-
clidean norm in the coefficient space, then we expect Condition 1 to hold if all
coefficients are restricted to fall in a bounded set, which is a common restriction
in theoretical analyses of neural networks (see, e.g., Goel et al., 2016; Zhang, Lee
and Jordan, 2016; Eckle and Schmidt-Hieber, 2019) and often leads to desirable
generalization bounds (see, e.g., Bartlett, 1997; Bartlett, Foster and Telgarsky,
2017; Neyshabur et al., 2017). Our theoretical results hold for any limit point
d∗ in Condition 1, even if there is more than one of them.
Condition 2. The mapping d �→ R(d, P ) is continuous at d∗ for all P ∈ M.

Condition 2 also often holds. For example, when parameterized using neural
networks, all estimators are continuous functions of coefficients for common acti-
vation functions such as the sigmoid or the rectified linear unit (ReLU) (Glorot,
Bordes and Bengio, 2011) function, and therefore d �→ R(d, P ) is continuous
everywhere.

We next present a sufficient condition to ensure that d∗ is Γ-minimax, so that
d∗� is approximately Γ-minimax for sufficiently large �.
Condition 3. We assume that there exists an increasing sequence {Ω�}∞�=1 of
subsets of M such that

1.
⋃∞

�=1 Ω� = M;
2. for all � = 1, 2, . . . and all d ∈ D, define Γ̃� := {π ∈ Γ : π has support in Ω�}

and Γ̃i|� := {π ∈ Γ : π has support in Mi

⋂
Ω�}. For any π ∈ Γ̃� with a fi-
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nite support, there exists a sequence πi ∈ Γ̃i|� such that r(d, πi) → r(d, π)
as i → ∞.

We note that, in contrast to M�, Ω� may be an infinite set. We may expect
Condition 3 to hold in many cases, especially when P �→ R(d, P ) is continuous
at each d ∈ D and the grid M� contains a variety of distributions that are
consistent with prior information represented by Γ. We illustrate this point
with two counterexamples in Appendix A. We will check the plausibility of
Condition 3 for Example 2 in our simulation and data analysis in Section 5.1 for
exemplar prior information; an almost identical argument shows the plausibility
of Condition 3 for Example 3.

We now present the theorem on Γ-minimaxity of d∗.

Theorem 1 (Validity of grid-based approximation). Under Conditions 1–3, d∗
is Γ-minimax and

rsup(d∗� ,Γ�) ↗ min
d∈D

rsup(d,Γ) as � → ∞.

To prove Theorem 1, we utilize a result in Pinelis (2016) to establish that
rsup(d,Γ) can be approximated arbitrarily well by a discrete prior in Γ for any
d ∈ D. This is a key ingredient in the proof of Lemma 1, which states that, for
any d ∈ D, rsup(d, Γ̃�) converges to rsup(d,Γ). Then, we show that the sequence
{rsup(d∗� ,Γ�)}∞�=1 is nondecreasing and upper bounded by infd∈D rsup(d,Γ), which
is less than or equal to the Γ-maximal Bayes risk rsup(d∗,Γ) of the limit point
d∗ of {d∗�}∞�=1 in Condition 1. Therefore, rsup(d∗� ,Γ�) converges to a limit. We
finally use a contradiction argument to prove that this limit is greater than or
equal to rsup(d∗,Γ), which implies Theorem 1.

We have the following corollary on the uniqueness of the Γ-minimax estimator
and the convergence of {d∗�}∞�=1 for certain problems.

Corollary 1 (Convergence of Γ�-minimax estimator). Suppose that D is a con-
vex subset of a vector space, d �→ R(d, P ) is strictly convex for each P ∈ M,
and rsup(d,Γ) is attainable for each d ∈ D in the sense that, for all d ∈ D, there
exists a π ∈ Γ such that r(d, π) = rsup(d,Γ). Under Conditions 1–3, d∗ is the
unique Γ-minimax estimator and

d∗� → d∗ as � → ∞.

We prove Corollary 1 by establishing that d �→ rsup(d,Γ) is strictly convex.
In practice, the user also needs to specify a stopping criterion for Algorithm 1.

In Noubiap and Seidel (2001), the authors recommended computing or approx-
imating rsup(d∗� ,Γ) and stop if rsup(d∗� ,Γ) is sufficiently close to rsup(d∗� ,Γ�).
However, the procedure to approximate rsup(d∗� ,Γ) in that work relies on the
compactness of M, but we do not want to assume this condition because it
may restrict the applicability of the method. Therefore, we propose to use the
following alternative criterion: stop if rsup(d∗� ,Γ�+1)− rsup(d∗� ,Γ�) ≤ ε for a pre-
specified tolerance level ε > 0. This criterion was proposed but not recommended
in Noubiap and Seidel (2001) because it does not guarantee that rsup(d∗� ,Γ�) is
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close to rsup(d∗,Γ). For example, if M�+1 \M� is small, it is even possible that
rsup(d∗� ,Γ�+1) − rsup(d∗� ,Γ�) = 0, but d∗� is far from being Γ-minimax. In con-
trast, we recommend this criterion for our proposed methods because we allow
more flexibility in model specification, that is, M need not be compact. We
discuss this issue in more detail in Section 4.1.

We finally remark that rsup(d,Γ�) may be difficult to evaluate exactly. Since
the risk is often an expectation, we recommend approximating rsup(d,Γ�) for any
given d via Monte Carlo as follows: first, estimate risks R(d, P ) for all P ∈ M�

with a large number of Monte Carlo runs; second, estimate the corresponding
least favorable prior πd,� ∈ argmaxπ∈Γ�

r(d, π) using the estimated risks; third,
estimate the risks R(d, P ) (P ∈ M�) again with independent Monte Carlo runs,
and, finally, calculate r(d, πd,�) with the estimated risks and the estimated least
favorable prior. Using two independent estimates of the risk can remove the
positive bias that would otherwise arise due to using the same data to estimate
the risks and the least favorable prior.

3.2. Computation of an estimator on a grid via stochastic gradient
descent with max-oracle

In this section, we present methods to compute a Γ�-minimax estimator, which
corresponds to Line 3 in Algorithm 1. Gradient descent with max-oracle (GDmax)
and its stochastic variant (SGDmax), which were presented in Lin, Jin and Jor-
dan (2020), can be used to solve general minimax problems in Euclidean spaces.
We focus on SGDmax in the main text and present GDmax in Appendix B. To
apply these algorithms to find a Γ�-m inimax estimator, we need to assume that
D can be parameterized by a subset of a Euclidean space, that is, that for any
d ∈ D, there exists a real vector-valued coefficient β ∈ RD such that d may be
written as d(β). For example, D may be a neural network class. More discussions
on the parameterization of D can be found in Section 4.2. In this section, in a
slight abuse of notation, we define R(β, P ) := R(d(β), P ), r(β, π) := r(d(β), π)
and rsup(β,Γ�) := rsup(d(β),Γ�) for a coefficient β ∈ RD, a data-generating
mechanism P ∈ M and a prior π ∈ Γ. We assume that β �→ R(β, P ) is differ-
entiable for all P ∈ M, and hence so is β �→ r(β, π) for all π ∈ Γ.

It is often the case that R(β, P ) is expressed as an expectation. In this case,
R(β, P ) may instead be approximated using Monte Carlo techniques. With ξ
being an exogenous source of randomness according to law Ξ, let R̂(β, P, ξ) be
an unbiased approximation of R(β, P ) with E[‖∇β{R̂(β, P, ξ) − R(β, P )}‖2] ≤
σ2 < ∞, where ‖ · ‖ denotes the �2-norm in Euclidean spaces. Let r̂(β, π, ξ) :=∫
R̂(β, P, ξ)π(dP ) for π ∈ Γ�. In this case, SGDmax (Algorithm 2) may be used

to find a (locally) Γ�-minimax estimator. Note that Algorithm 2 represents a
generalization of the nested minimax AMC strategy in Luedtke et al. (2020) to
Γ�-minimax problems.

We next present two conditions needed for the validity of Algorithm 2.
Condition 4. For each � = 1, 2, . . . and all β ∈ RD, β �→ R(β, P ) is Lipschitz
continuous with a universal Lipschitz constant L1 independent of P ∈ M�.
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Algorithm 2 Stochastic gradient descent with max-oracle (SGDmax) to com-
pute a Γ�-minimax estimator
1: Initialize β(0) ∈ RD. Set learning rate η > 0, max-oracle accuracy ζ > 0 and batch size J .
2: for t = 1, 2, . . . do
3: Stochastic maximization: use a stochastic procedure to find π(t) ∈ Γ� such that

E[r(β(t−1), π(t))] ≥ maxπ∈Γ�
r(β(t−1), π) − ζ, where the expectation is over the random-

ness in stochastic maximization (e.g., variants of stochastic gradient ascent).
4: Generate iid copies ξ1, . . . , ξJ of ξ.
5: Stochastic gradient descent: β(t) ← β(t−1) − η

J

∑J
j=1 ∇β r̂(β, π(t), ξj)|β=β(t−1) .

Note that Condition 4 differs from Condition 2 in that the former relies on the
parameterization of D in a Euclidean space equipped with the Euclidean norm,
while the latter may rely on a different metric on D such as an L2-distance.
Condition 5. For each � = 1, 2, . . . and all β ∈ RD, ∇βR(β, P ) is bounded;
β �→ ∇βR(β, P ) is Lipschitz continuous with a universal Lipschitz constant L2
independent of P ∈ M�.

Under these conditions, using the results in Lin, Jin and Jordan (2020), we
can show that SGDmax yields an approximation to a local minimum of β �→
rsup(β,Γ�) when the algorithms’ hyperparameters are suitably chosen. Before we
formally present the theorem, we introduce some definitions related to the local
optimality of a potentially nondifferentiable and nonconvex function. A real-
valued function f is called q-weakly convex if x �→ f(x) + (q/2)‖x‖2 is convex
(q > 0). The Moreau envelope of a real-valued function f with parameter q > 0
is fq : x �→ minx′ f(x′)+‖x′−x‖2/(2q). A point x is an ε-stationary point (ε ≥ 0)
of a q-weakly convex function f if ‖∇f1/(2q)(x)‖ ≤ ε. Similarly, a random point
x is an ε-stationary point (ε ≥ 0) of a q-weakly convex function f in expectation
if E[‖∇f1/(2q)(x)‖] ≤ ε. If x is an ε-stationary point in expectation, we may
conclude that it is an ε-stationary point with high probability by Markov’s
inequality. Lemma 3.8 in Lin, Jin and Jordan (2020) shows that an ε-stationary
point of f is close to a point x′ at which f has at least one small subgradient
for small ε, so that f(x′) is close to a local minimum. In other words, if an
algorithm outputs an estimator d̂ = d(β̂) such that β̂ is an ε-stationary point of
β �→ rsup(β,Γ�), then we know that rsup(β̂,Γ�) is close to a local minimum of
β �→ rsup(β,Γ�).

We next present the validity result for Algorithm 2.

Theorem 2 (Validity of SGDmax (Algorithm 2)). Suppose that Conditions 1–
2 and 4–5 hold. Let ε > 0 be fixed and define Δ := (rsup)1/(2L1)(β(0)) −
minβ∈RD (rsup)1/(2L1)(β), where we recall that (rsup)1/(2L1) is the Moreau enve-
lope of rsup with parameter 1/(2L1). In Algorithm 2, with η = ε2/[L1(L2

2 +σ2)],
ζ = ε2/(24L1) and J = 1, β(t) is an ε-stationary point of β �→ rsup(β,Γ�) in
expectation for t = O(L1(L2

2 + σ2)Δ/ε4), and is thus close to a local minimum
of β �→ rsup(β,Γ�) with high probability.

The assumption that the batch size J = 1 is purely for convenience since
increasing J corresponds to decreasing variance σ2. To run Algorithm 2 in prac-
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tice, the user only needs to specify tuning parameters in Line 1 and all other
constants in Theorem 2 need not be known. In general, a small learning rate
η, a stringent accuracy ζ, and a large batch size J make Algorithm 2 likely to
eventually reach an approximation of a local minimum of β �→ rsup(β,Γ�), but
computation time might increase. Similar to most numeric optimization algo-
rithms, fine-tuning is needed to achieve a balance between convergence guaran-
tee and computation time, but a conservative choice of tuning parameters would
typically result in convergence at the cost of computation time.

We note that Line 3 in Algorithm 2 may be inconvenient to implement be-
cause linear program solvers often do not use stochastic optimization. Therefore,
we propose to use a convenient variant (Algorithm 6 in Appendix B), where the
stochastic maximization step (Line 3 in Algorithm 2) is replaced by solving a lin-
ear program where the objective is approximated via Monte Carlo. This variant
has similar validity under similar conditions. We also note that the two uni-
form Lipschitz continuity conditions (4 and 5) heavily rely on the fact that M�

is finite and the compactness of a set containing the coefficients. Nevertheless,
the latter compactness restriction is common in theoretical analyses of neural
networks (see, e.g., Goel et al., 2016; Zhang, Lee and Jordan, 2016; Eckle and
Schmidt-Hieber, 2019). Moreover, these two conditions are sufficient conditions
for the validity of the gradient-based methods, namely SGDmax, our variant of
SGDmax and GDmax; a guarantee similar to these validity results might hold
when two conditions are violated.

We finally remark that other algorithms similar to SGDmax can be applied,
for example, (stochastic) gradient descent ascent with projection (Lin, Jin and
Jordan, 2020), (stochastic) mirror descent ascent, or accelerated (stochastic)
mirror descent ascent (Huang, Wu and Huang, 2021). It is of future research
interest to develop gradient-based methods to solve minimax problems with
convergence guarantees under weaker conditions.

3.3. Computation of an estimator on a grid via fictitious play

The algorithms in Section 3.2 may be convenient in many cases, but the re-
quirements such as parameterization of the space D of estimators in a Euclidean
space, differentiability of the risk function R with respect to the coefficients β,
and uniform Lipschitz continuity may be restrictive for certain problems. In this
section, we propose an alternative algorithm, fictitious play, that avoids these
requirements. We also present its convergence results.

Brown (1951) introduced fictitious play as a means to find the value of a
zero-sum game, that is, the optimal mixed strategy for both players and their
expected gains. Robinson (1951) then proved that fictitious play can be used
to iteratively solve a two-player zero-sum game for a saddle point that is a pair
of mixed strategies where both players have finitely many pure strategies. Our
problem of finding a Γ-minimax estimator may also be viewed as a two-player
zero-sum game where one player chooses a prior from Γ and the other player
chooses an estimator from D. If we assume that, for the Γ-minimax problem at
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hand, the pair of both players’ optimal strategies is a saddle point, which holds
in many minimax problems (e.g., v. Neumann, 1928; Fan, 1953; Sion, 1958), then
fictitious play may also be used to find a Γ-minimax estimator. Since Γ may be
too rich to allow for feasible implementation of fictitious play, we propose to use
this algorithm to find a Γ�-minimax estimator.

In the fictitious play algorithm in Robinson (1951), the two players take turns
to play the best pure strategy against the mixture of the opponent’s historic pure
strategies, and the final output is a pair of mixtures of the two players’ historic
pure strategies. Since this algorithm aims to find minimax mixed strategies,
we consider stochastic estimators. That is, consider the Borel σ-field F over
D and let Π denote the set of all probability distributions on the measurable
space (D,F). We define D to be the space of stochastic estimators with each
element taking the following form: first draw an estimator from D according to
a distribution � ∈ Π with an exogenous random mechanism and then use the
estimator to obtain an estimate based on the data. Note that we may write any
d ∈ D as d(�) for some � ∈ Π. We consider estimators in D throughout this
section, with the definition of Γ-minimaxity extended in the natural way, so that
d
∗ = d(�∗) ∈ D is Γ-minimax if rsup(d∗,Γ) = mind∈D rsup(d,Γ); we similarly

extend all other definitions from Section 2. We assume that there exists π∗
� ∈ Γ�

(� = 1, 2, . . .) such that

r(d∗, π∗
� ) = sup

π∈Γ�

inf
d∈D

r(d, π) = inf
d∈D

sup
π∈Γ�

r(d, π). (2)

In other words, (d∗, π∗
� ) is a saddle point of r in D × Γ�. Under this condition

and the further conditions that D is convex and d �→ R(d, P ) is convex for all
P ∈ M, it is possible to use a Γ-minimax estimator over the richer class D of
stochastic estimators to derive a Γ-minimax estimator over the original class D.
Indeed, for any d(�) ∈ D and P ∈ M, by Jensen’s inequality, R(d(�), P ) =∫
R(d, P )�(dd) ≥ R(d(�), P ) where d(�) :=

∫
d�(dd) ∈ D is the average of

the stochastic estimator d(�); that is, the risk of d(�) is never greater than
that of d(�). Therefore, we may use the fictitious play algorithm to compute
d(�∗

� ) for each � and further apply Algorithm 1 to compute d(�∗). After that,
we may take d(�∗) as the final output deterministic estimator.

Algorithm 3 presents the fictitious play algorithm for finding a Γ�-minimax
estimator in D. Note that Γ� is convex, and hence π always lies in Γ� throughout
the iterations. In practice, we may initialize � as a point mass at an initial
estimator in D. In addition, similarly to Robinson (1951), we may replace Line 5
with d†(t) ← argmind∈D r(d, π(t)), that is, minimizing the Bayes risk with the
most recently updated prior rather than with the previous prior.

We next present a convergence result for this algorithm.

Theorem 3 (Validity of fictitious play (Algorithm 3)). Assume that there ex-
ists a compact subset D̄ of D that contains all d†(t) (t = 1, 2, . . .). Under Condi-
tions 1–2, it holds that

r(d†(t), π(t−1)) ≤ r(d(�∗
� ), π∗

� ) ≤ r(d(�(t−1)), π†
(t))
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Algorithm 3 Fictitious play to compute a Γ�-minimax stochastic estimator
1: Initialize �(0) ∈ Π and π(0) ∈ Γ�.
2: for t=1,2,. . . do
3: π†

(t) ← argmaxπ∈Γ�
r(d(�(t−1)), π)

4: π(t) ← t−1
t

π(t−1) + 1
t
π†
(t)

5: d†(t) ← argmind∈D r(d, π(t−1))
6: �(t) ← t−1

t
�(t−1) + 1

t
δ(d†(t)), where δ(d) denotes a point mass at d ∈ D.

for all t and

lim
t→∞

[
r(d(�(t−1)), π†

(t)) − r(d†(t), π(t−1))
]

= 0.

Consequently, the Γ�-maximal risk of d(�(t)) converges to the Γ�-minimax risk,
that is,

rsup(d(�(t−1)),Γ�) → rsup(d(�∗
� ),Γ�) as t → ∞.

Robinson (1951) proved a similar case for two-player zero-sum games where
each player has finitely many pure strategies. In contrast, in our problem, each
player may have infinitely many pure strategies. A natural attempt to prove
Theorem 3 would be to consider finite covers of D̄ and Γ�, that is, D̄ =

⋃I
i=1 Di

and Γ� =
⋃J

j=1 Πj , such that the range of r(d, π) in each Di and Πj is small
(say less than ε), bin pure strategies into these subsets, and then apply the
argument in Robinson (1951) to these bins. The collection of Di and Πj may
be viewed as finitely many approximated pure strategies to Γ� and D̄ up to
accuracy ε, respectively. Unfortunately, we found that this approach fails. The
problem arises because Robinson (1951) inducted on I and J , and, after each
induction step, the corresponding upper bound becomes twice as large. Unlike
the case with finitely many pure strategies that was considered in Brown (1951)
and Robinson (1951), as the desired approximation accuracy ε approaches zero,
the numbers of approximated pure strategies, I and J , may diverge to infinity,
and so does the number of induction steps. Therefore, the resulting final upper
bound is of order 2I+Jε and generally does not converge to zero as ε tends to
zero. To overcome this challenge, we instead control the increase in the relevant
upper bound after each induction step more carefully so that the final upper
bound converges to zero as ε decreases to zero, despite the fact that I and J
may diverge to infinity.

We remark that, because Line 5 of Algorithm 3 typically involves another
layer of iteration in addition to that over t, this algorithm will often be more
computationally intensive than SGDmax. Nevertheless, Algorithm 3 provides an
approach to construct Γ�-minimax estimators in cases where these other algo-
rithms cannot be applied, for example, in settings where the risk is not differen-
tiable in the parameters indexing the estimator or uniform Lipschitz conditions
fail. In our numerical experiments, we have implemented this algorithm in the
context of mean estimation (Appendix C).
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4. Considerations in implementation

4.1. Considerations when constructing the grid over the model space

By Theorem 1, rsup(d∗� ,Γ�) ↗ mind∈D rsup(d,Γ) whenever Conditions 1–3 hold
and the increasing sequence {M�}∞�=1 is such that

⋃∞
�=1 M� is dense in M.

Though this guarantee holds for all such sequences {M�}∞�=1, in practice, judi-
ciously choosing this sequence of grids of distributions can lead to faster conver-
gence. In particular, it is desirable that the least favorable prior Γ� puts mass
on some of the distributions in M�\M�−1 since, if this is not the case, then
d∗� will be the same as d∗�−1. While we may try to arrange for this to occur by
adding many new points when enlarging M�−1 to M�, it may not be likely that
any of these points will actually modify the least favorable prior unless they are
carefully chosen.

To better address this issue, we propose to add grid points using a Markov
chain Monte Carlo (MCMC) method. Our intuition is that, given an estimator d,
the maximal Bayes risk is likely to significantly increase if we add distributions
that (i) have a high risk for d, and (ii) are consistent with prior information so
that there exists some prior such that these distributions lie in a high-probability
region. We propose to use the MCMC algorithm to bias the selection of distri-
butions in favor of those with the above characteristics. Let τ : M → [0,∞)
denote a function such that τ(P ) > τ(P ′) if P is more consistent with prior
information than P ′. For example, given a prior mean μ of some real-valued
summary Ψ(P ) of P and an interval I that contains Ψ(P ) with prior probabil-
ity at least 95%, we may choose τ : P �→ φ(Ψ(P )), where φ is the density of
a normal distribution that has mean μ and places 95% of its probability mass
in I. We call τ a pseudo-prior. Then, with the current estimator being d, we
wish to select distributions P for which R(d, P )τ(P ) is large. We may use the
Metropolis-Hastings-Green algorithm (Metropolis et al., 1953; Hastings, 1970;
Green, 1995) to draw samples from a density proportional to P �→ R(d, P )τ(P ).
We then let M� be equal to the union of M�−1 and the set containing all unique
distributions in this sample.

Details of the proposed scheme are provided in Algorithm 4. To use this pro-
posed algorithm, we rely on it being possible to define a sequence of parametric
models {Ω̃�}∞�=1 such that M̃ := ∪∞

�=1Ω̃� is dense in M�—this is possible in
many interesting examples (see, e.g., Chen, 2007). When combined with sepa-
rability of M, this condition enables the definition of an increasing sequence of
grids of distributions {M�}∞�=1 such that, for each �, M� ⊆ M̃.

The following theorem on distributional convergence follows from that for the
Metropolis-Hastings-Green algorithm (see Section 3.2 and 3.3 of Green, 1995).

Theorem 4 (Validity of MCMC algorithm (Algorithm 4)). Suppose that P �→
R(d∗�−1, P )τ(P ) is bounded and integrable with respect to some measure μ on M̃
and let L denote the probability law on M̃ whose density function with respect
to μ is proportional to this function. Suppose that the MCMC is constructed
such that the Markov chain is irreducible and aperiodic. Then, P(t) converges
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Algorithm 4 MCMC algorithm to construct M�

Require: Previous grid M�−1, current estimator d∗�−1 and number T of iterations. We define
M−1 := ∅. An initial estimator d∗0 must be available if � = 1.

1: Initialize P(0) ∈ M̃.
2: for t = 1, 2, . . . , T do
3: Propose a distribution P ′ ∈ M̃ from P(t−1)
4: Calculate the MCMC acceptance probability paccept of P ′ for target density P �→

R(d∗�−1, P )τ(P )
5: With probability paccept, accept P ′ and P(t) ← P ′

6: if P ′ is not accepted then
7: P(t) ← P(t−1)

8: M� ← unique elements of the multiset M�−1
⋃
{P(1), P(2), . . . , P(T )}

weakly to L as t → ∞.

Therefore, if L corresponds to a continuous distribution with nonzero density
over the parameter space of M̃, then Theorem 4 implies that

⋃∞
�=1 M� is dense

in M, as required by Algorithm 1.
Implementing Algorithm 4 relies on the user making several decisions. These

decisions include the choice of the pseudo-prior τ and the technique used to
approximate the risk R(d, P ) to a reasonable accuracy. Fortunately, regardless
of the decisions made, Theorem 1 suggests that rsup(d∗� ,Γ�) ↗ mind∈D rsup(d,Γ)
for a wide range of sequences {M�}∞�=1. Indeed, all that theorem requires on this
sequence is that the grid M� becomes arbitrarily fine as � increases. Though
the final decisions made are not important when � is large, we still comment
briefly on the decisions that we have made in our experiments, First, we have
found it effective to approximate R(d, P ) via a large number of Monte Carlo
draws. Second, in a variety of settings, we have also identified, via numerical
experiments, candidate pseudo-priors that balance high risk and consistency
with prior information (see Sections 5.1 and 5.2 for details).

4.2. Considerations when choosing the space of estimators

It is desirable to consider a rich space D0 of estimators to obtain an estimator
with low maximal Bayes risk, and thus good general performance. However,
to make numerically constructing these estimators computationally feasible, we
usually have to consider a restricted space D of estimators. This approximation
is justified because, if estimators in D can approximate the Gamma-minimax
estimator in D0 well, then we expect the resulting excess maximal Bayes risk is
small.

Feedforward neural networks (or neural networks for short) are natural op-
tions for the space of estimators because of their universal approximation prop-
erty (e.g., Hornik, 1991; Csáji, 2001; Hanin and Sellke, 2017; Kidger and Lyons,
2020). However, training commonly used neural networks can be computation-
ally intensive. Moreover, a space of neural networks is typically nonconvex, and
hence it may be difficult to find a global minimizer of the maximal Bayes risk
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Fig 2. Example of neural network estimator architecture utilizing an existing estimator. The
arrows from the input nodes to the existing estimator are omitted from this graph.

even if the risk is convex in the estimator. Therefore, the learned estimator
might not perform well.

To help overcome this challenge, we advocate for utilizing available statistical
knowledge when designing the space of estimators. We call estimators that take
this form statistical knowledge networks. In particular, if a simple estimator is
already available, we propose to use neural networks with such an estimator as
a node connected to the output node. An example of such an architecture is
presented in Fig. 2. In this sample architecture, each node is an activation func-
tion such as the sigmoid or the rectified linear unit (ReLU) (Glorot, Bordes and
Bengio, 2011) function applied to an affine transformation of the vector contain-
ing the ancestors of the node. The only exception is the output node, which is
again an affine transformation of its ancestors but uses the identity activation
function. When training the neural network, we may initialize the affine trans-
formation in the output layer to only give weight to the simple estimator. Under
this approach, the space of estimators is a set of perturbations of an existing
simple estimator. Although we may still face the challenge of nonconvexity and
local optimality, we can at least expect to improve the initial simple estimator.

In the simulation we describe in Appendix C, we compared the empirical
performance of several spaces of estimators. This simulation concerns the simple
problem of estimating the mean of a true distribution whose support has known
bounds (Example 1), and the existing simple estimator we use in the statistical
neural network is the sample mean. Fig. 3 presents the trajectory of estimated
Bayes risks. As shown in subfigures (b)–(d), using the statistical knowledge
network, the estimator is almost Γ-minimax after a few iterations; on the other
hand, it took about 1000 iterations for the feedforward neural network to reach
an approximately Γ-minimax estimator. Therefore, in this simple problem where
the true Γ-minimax estimator is a shifted and scaled sample mean, statistical
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Fig 3. Estimated Bayes risks of the estimator over iterations when computing a Γ1-minimax
estimator. The lines are the current Bayes risks (y-axis) over iterations (x-axis) (unbiased
estimates with 50 Monte Carlo runs for Algorithm 6; exact values for Algorithm 3). The
solid lines are the Bayes risks after an update in the estimator to decrease the Bayes risk.
The dashed lines are the Bayes risks after an update in the prior to increase the Bayes risk.
The two horizontal lines are the Bayes risk of the sample mean (dashed) and d∗ (solid),
respectively, for π∗. For ease of visualization, in subfigures (a) and (b), the Bayes risks are
plotted every 50 iterations; in subfigures (c) and (d), the Bayes risks are plotted every 200
iterations; subfigure (d) contains the part in subfigure (c) after 500 iterations.

knowledge substantially reduced the number of iterations required to obtain an
approximately Γ-minimax estimator. For more complicated problems, we expect
statistical knowledge to further help improve the performance of the computed
estimator.

We note that we might overcome the challenge of nonconvexity and local
optimality by using an extreme learning machine (ELM) (Huang, Zhu and Siew,
2006) to parameterize the estimator. ELMs are neural networks for which the
weights in hidden nodes are randomly generated and are held fixed, and only the
weights in the output layer are trained. Thus, the space of ELMs with a fixed
architecture and fixed hidden layer weights is convex. Like traditional neural
networks, ELMs have the universal approximation property (Huang, Chen and
Siew, 2006). In addition, Corollary 1 may be applied to an ELM so that the Γ�-
minimax estimator may converge to the Γ-minimax estimator. As for traditional
neural networks, we may incorporate knowledge of existing statistical estimators
into an ELM.

We finally remark that, besides computational intensity when constructing
(i.e., learning) a Γ-minimax estimator, another important factor to be consid-
ered when choosing D is the computational intensity to evaluate the learned es-
timator at the observed dataset. This is another reason for our choosing neural
networks or ELMs as the space of estimators. Indeed, existing software packages
(e.g., Paszke et al., 2019) make it easy to leverage graphics processing units to
efficiently evaluate the output of neural networks for any given input. Therefore,
if the existing estimator being used is not too difficult to compute, then estima-
tors parameterized using similar architectures to that displayed in Figure 2 will
be able to be computed efficiently in practice. This efficiency may be especially
important in settings where the estimator will be applied to many datasets, so
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that the cost of learning the estimator is amortized and the main computational
expense is evaluating the learned estimator.

5. Simulations and data analyses

We illustrate our methods in Examples 1–3. A toy example of Example 1 is
presented in Appendix C. We focus on the more complex Examples 2 and 3 in
this section.

5.1. Prediction of the expected number of new categories

We apply our proposed method to Example 2. In the simulation, we set the
true population to be an infinite population with the same categories and same
proportions as the sample studied in Miller and Wiegert (1989), which consists
of 1088 observations in 188 categories. This setting is the same as the simulation
setting in Shen, Chao and Lin (2003). We set the sample size to be n = 100
and the size of the new sample to be m = 200. In this setting, the expected
number of new categories in the new sample unconditionally on the observed
sample, namely Φ(P0) := EP0 [Ψ(P0)(X∗)], can be analytically computed and
equals 48.02. We note that this quantity can also be computed via simulation:
(i) sample n and m individuals with replacement from the dataset in Miller and
Wiegert (1989), (ii) count the number of new categories in the second sample,
and (iii) repeat steps (i) and (ii) many times and compute the average.

It is well known that this prediction problem is difficult when m > n, and
we run this simulation to investigate the potential gain from leveraging prior
information by computing a Gamma-minimax estimator for such difficult or
even ill-posed problems. We consider three sets of prior information:

1. strongly informative: prior mean of Φ(P ) in [45, 50], ≥ 95% prior proba-
bility that Φ(P ) lies in [40, 55];

2. weakly informative: prior mean of Φ(P ) in [40, 55], ≥ 95% prior probability
that Φ(P ) lies in [30, 65]; and

3. almost noninformative: prior mean of Φ(P ) in [35, 60], ≥ 95% prior prob-
ability that Φ(P ) lies in [20, 75].

We note that a traditional Bayesian approach would require specifying a prior
on M, including the total number of categories and the proportion of each
category, which may be difficult in practice.

We check the plausibility of Condition 3 in this context. We take the strongly
informative prior information as an example. Take Ω� to be the collection of
multinomial distributions with at most � categories. It is obvious that

⋃∞
�=1 Ω� =

M. Let d ∈ D be fixed and π ∈ Γ̃� be a fixed prior with finite support, that
is, π =

∑J
j=1 qjδ(Qj) where δ(·) denotes the point mass distribution, Qj ∈ Ω�,

qj > 0 and
∑J

j=1 qj = 1. Let ε > 0 be an arbitrary small number such that∑J
j=1 qjΦ(Qj) ≤ 50 − ε or

∑J
j=1 qjΦ(Qj) ≥ 45 + ε. Since

⋃∞
�=1 M� is dense in
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Fig 4. Architecture of the neural network estimator of the expected number of new categories.
Xk: number of categories with k observations; OSW: the estimator proposed in Orlitsky,
Suresh and Wu (2016); SCL: the estimator proposed in Shen, Chao and Lin (2003). The
arrows from data (X1, . . . , Xn) to the OSW and SCL estimators are omitted from this graph.

M and Φ is continuous, there exists a sufficiently large i such that, for every
distribution Qj , there exists Pj ∈ Mi ∩ Ω� satisfying the following:

• |Φ(Pj) − Φ(Qj)| ≤ ε;
• if Φ(Qj) ∈ [40, 55], then Φ(Pj) ∈ [40, 55];
• |R(d, Pj) −R(d,Qj)| ≤ ε.

Take πi to be
∑J

j=1 qjδ(Pj). Then it is easy to verify that |
∑J

j=1 qjΦ(Pj) −∑J
j=1 qjΦ(Qj)| ≤ ε and thus

∑J
j=1 qjΦ(Pj) ∈ [45, 50]; moreover, Φ(Qj) ∈

[40, 55] implies that Φ(Pj) ∈ [40, 55] and therefore
∑J

j=1 qj1(Φ(Pj) ∈ [40, 55]) ≥∑J
j=1 qj1(Φ(Qj) ∈ [40, 55]) ≥ 95%. Thus, πi ∈ Γ̃i|�. Moreover, |r(d, π) −

r(d, πi)| ≤ ε. Therefore, r(d, πi) → r(d, π) as i → ∞ and Condition 3 holds.
We design the architecture of the neural network estimator as in Fig. 4. We

choose two existing estimators (referred to as the OSW and SCL estimators,
respectively) proposed by Orlitsky, Suresh and Wu (2016) and Shen, Chao and
Lin (2003) as human knowledge inputs to the architecture. We use the ReLU
activation function. There are 50 hidden nodes in the first hidden layer. We
initialize the neural network that we train to output the average of these two
existing estimators.

We use Algorithm 4 to construct M�. There are 2000 grid points in M1, and
we add 1000 grid points each time we enlarge the grid. When generating M1,
we chose the starting point to be a distribution P(0) with 146 categories and
Φ(P(0)) = 49.9. The choice of this starting point P(0) was quite arbitrary. We
first generated a sample from P0 and treated it as data from a pilot study. We
then came up with a distribution P(0) such that five random samples generated
from P(0) all appear qualitatively similar to the pilot data. In practice, this
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starting point can be chosen based on prior knowledge. Our chosen grid sizes
for Algorithm 4 were quite arbitrary. For M1, the generated distributions P(t)
appear similar for all t, and thus the initial grid size 2000 and the increment
size 1000 appeared sufficient. Smaller grid sizes would simply lead to more it-
erations in Algorithm 1, which effectively increases the grid size. We selected
the log pseudo-prior as a weighted sum of two log density functions: (i) a nor-
mal distribution with the mean being the midpoint of the interval constraint on
the prior mean of Φ(P ) and central 95% probability interval being the interval
with at least 95% prior probability, (ii) a negative-binomial distribution of the
total number of categories with success probability 0.995 and 2 failures until
the Bernoulli trial is stopped so that the mode and the variance are approxi-
mately 200 and 8 × 104, respectively. These log-densities are provided weights
30 and 10, respectively. We selected the weights based on the empirical obser-
vation that distributions with only a few categories tend to have high risks, but
these distributions are relatively inconsistent with prior information and may
well be given almost negligible probability weight in a computed least favor-
able prior, thus contributing little to computing a Γ-minimax estimator. We
chose the aforementioned weights so that Algorithm 4 can explore a fairly large
range of distributions and does not generate too many distributions with too
few categories.

We use Algorithm 6 with learning rate η = 0.005 and batch size J = 30 to
compute Γ�-minimax estimators. The number of iterations is 4,000 for Γ1 and
200 for Γ� (� > 1). The stopping criterion in Algorithm 1 is that the estimated
maximal Bayes risk with 2000 Monte Carlo runs does not relatively increase
by more than 2% or absolutely increase by more than 0.0001. We chose the
aforementioned tuning parameters based on the prior belief that at least one
of OSW and SCL estimators should perform reasonably well, but the perfor-
mance of SGDmax (Algorithm 6) and Algorithm 4 might be sensitive to tuning
parameters. Thus, the network we used is neither deep nor wide. We chose a
moderately small learning rate and a large number of iterations for SGDmax.
Our chosen learning rate and chosen number of iterations led to a trajectory of
estimated Bayes risks that approximately reached a plateau with small fluctua-
tions, suggesting that the obtained estimator is approximately Γ1-minimax (see
Fig. 5). In practice, such trajectory plots may help tune the learning rate and
the number of iterations.

We also run additional simulations to investigate the sensitivity of our meth-
ods to tuning parameter selections. We present these simulations in Appendix D.
The results suggest that our methods may be insensitive to tuning parameter
selections.

We examine the performance of the OSW estimator, the SCL estimator and
our trained Γ-minimax estimator by comparing their risks under our set data-
generating mechanism computed with 20000 Monte Carlo runs. We also compare
their Bayes risks under the computed prior from Algorithm 6 using the last and
finest grid in the computation with 20000 Monte Carlo runs. We present the
results in Table 1. In this simulation experiment, our Γ-minimax estimator sub-
stantially reduces the risk compared to two existing estimators. The Γ-minimax
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Table 1

Risks and Bayes risks of estimators. R(d, P0): risk of the estimator under the true
data-generating mechanism P0. r(d, π̂∗): Bayes risk under prior π̂∗, the computed prior

from Algorithm 6 in the last and finest grid in the computation.
Strength of prior Estimator R(d, P0) r(d, π̂∗)
strong OSW 265 303

SCL 146 159
Γ-minimax 18 35

weak OSW 265 328
SCL 146 184
Γ-minimax 17 61

almost none OSW 265 293
SCL 146 124
Γ-minimax 24 81

Fig 5. Estimated Bayes risks of the estimator over iterations when computing a Γ1-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The two dashed horizontal lines are the risks of the OSW
(upper) and the SCL (lower) estimators, respectively, under P0 in the simulation. The solid
horizontal line is the risk of the computed Γ-minimax estimator under P0. For clearness of
visualization, the estimated Bayes risks are plotted every 50 iterations.

estimator also has the lowest Bayes risk in all cases. Therefore, incorporating
fairly informative prior knowledge into the estimator may lead to a significant
improvement in predicting the number of new categories. We expect similar
substantial improvement for difficult or even ill-posed statistical problems by
incorporating prior knowledge.

Fig. 5 presents the unbiased estimator of Bayes risks over iterations when
computing a Γ1-minimax estimator. The Bayes risks appear to have a decreasing
trend and to approach a liming value. Over iterations, the Bayes risks decrease
by a considerable amount. The limiting value of the Bayes risks appears to be
slightly higher than the risk of the computed Γ-minimax estimator under P0.
This might indicate that P0 is not an extreme distribution that yields a high
risk.

We also apply the above methods to analyze the dataset studied in Miller and
Wiegert (1989), which is used as the true population in the simulation. Based
on this sample consisting of n = 1088 observations in 188 categories, we use var-
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Table 2

Predicted number of new categories (rounded to the nearest integer) in a new sample with
size 2000 based on the sample with size 1088 studied in Miller and Wiegert (1989). The

strength of prior information in Γ-minimax estimators is shown in brackets.
Estimator Predicted #

new categories
OSW 72
SCL 51
Γ-minimax (strong) 57
Γ-minimax (weak) 57
Γ-minimax (almost none) 58

ious methods to predict the number of new categories that would be observed if
another m = 2000 observations were to be collected. We train Gamma-minimax
estimators using exactly the same tuning parameters as those in the above sim-
ulation, except that the starting point in Algorithm 4 has more categories. The
predictions of all methods are presented in Table 2. The Γ-minimax estimator
outputs a more similar prediction to the SCL estimator. This similarity appears
different from our observation in the simulation, but can be explained by the fact
that having more observations (n = 1088 vs n = 100; m = 2000 vs m = 200)
decreases the variance of the number of new observed categories and thus lowers
discrepancies between predictions from these methods. Since the SCL estimator
outperforms the OSW estimator in the above simulation where this dataset is
the true population, we expect the SCL estimator to achieve reasonably good
performance in this application. Moreover, given that the Γ-minimax estimators
outperform the SCL estimator in the above simulation, we expect that 57 or 58
represents an improved prediction of the number of new categories as compared
to the SCL prediction of 51 in the case where there is limited prior information
available.

The computation time to compute an approximated Γ-minimax estimator
was about five to seven hours on an AWS EC2 instance (Amazon, 2019) with
at least 4 vCPUs and at least 8 GiB of memory, depending on the number of
times the grid was enlarged. As shown in Fig. 5, far few iterations are needed for
SGDmax to output a good approximation of a Γ1-minimax estimator, which is
itself quite close to Γ-minimax. Therefore, with suitably less conservative tuning
parameters or more adaptive minimax problem solvers, the computation time
might drastically decrease. Moreover, the computation time needed to evaluate
the computed Γ-minimax estimator at any sample is almost zero.

5.2. Estimation of the entropy

We also apply our method to estimate the entropy of a multinomial distribution
(Example 3). The data-generating mechanism is the same as that described in
Example 2, and the estimand of interest is Shannon entropy (Shannon, 1948),
that is, Ψ(P0) = −

∑K
k=1 pk log pk. In the simulation, we choose the same true

population and the same sample size n = 100 as in Section 5.1. The true entropy
Ψ(P0) is 4.57. As a reference, the entropy of the uniform distribution with
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the same number of categories—which corresponds to the maximum entropy of
multinomial distributions with the same total number of categories—is 5.24.

Jiao et al. (2015) developed a minimax rate optimal estimator of the Shan-
non entropy, and we run this simulation to investigate the potential gain of
computing a Gamma-minimax estimator in well-posed problems with satisfac-
tory solutions. As in Section 5.1, we consider three sets of prior information:

1. Strongly informative: Prior mean of Ψ(P ) in [4.3, 4.7], ≥ 95% probability
that Ψ(P ) lies in [4, 5];

2. Weakly informative: Prior mean of Ψ(P ) in [4, 5], ≥ 95% probability that
Ψ(P ) lies in [3.5, 5.5];

3. Almost noninformative: Prior mean of Ψ(P ) in [3.7, 5.3], ≥ 95% probabil-
ity that Ψ(P ) lies in [3, 6].

The architecture of our neural network estimator is almost identical to that
in Section 5.1 except that the existing estimator being used is the one proposed
in Jiao et al. (2015) (referred to as the JVHW estimator), and we initialize the
network to return the JVHW estimator. We use Algorithm 4 to construct M�

and Algorithm 6 to compute a Γ�-minimax estimator. The tuning parameters
in the algorithms are identical to those used in Section 5.1 except that, in Al-
gorithm 6, (i) the learning rate is η = 0.001, and (ii) the number of iterations is
6,000 for Γ1. We change these tuning parameters because the JVHW estimator
is already minimax in terms of its convergence rate (Jiao et al., 2015), and we
may need to update the estimator in a more cautious manner in Algorithm 6
to obtain any possible improvement. The trajectories of the estimated Bayes
risks (Fig. 6) all appear to approximately reach a plateau, suggesting that the
obtained estimator approximately Γ1-minimax and that our choice of a smaller
learning rate and a larger number of iterations is valid. Because of the additional
complexity of the JVHW estimator, we ran our simulations on an AWS EC2 in-
stance (Amazon, 2019) with 4 vCPUs and 32 GiB of memory. The computation
time was ten to seventeen hours, depending on the number of times the grid
was enlarged. The longer computation time than that described in Section 5.1
is primarily due to more iterations in SGDmax and the additional complexity
of the JVHW estimator.

We compare the risk of the JVHW estimator and our trained Γ-minimax es-
timator under our set data-generating mechanism computed with 20000 Monte
Carlo runs. We also compare their Bayes risk under the computed prior from
Algorithm 6 using the last and finest grid in the computation with 20000 Monte
Carlo runs. The results are summarized in Table 3. In this simulation experi-
ment, our Γ-minimax estimator reduces the risk by a fair percentage compared
with the JVHW estimator and achieves lower worst-case Bayes risk. According
to these simulation results, we conclude that incorporating informative prior
knowledge into the estimator may result in some improvement in estimating en-
tropy. Thus, for well-posed statistical problems with satisfactory solutions, we
expect mild or no substantial improvement and little deterioration from using
a Gamma-minimax estimator.

Fig. 6 presents the unbiased estimator of Bayes risks over iterations when
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Fig 6. Estimated Bayes risks of the estimator over iterations when computing a Γ1-minimax
estimator. The lines are unbiased estimates of the current Bayes risks (y-axis) with 30 Monte
Carlo runs over iterations (x-axis). The horizontal lines are the risks of the JVHW (dashed)
and the computed Γ-minimax (solid) estimators, respectively, under P0 in the simulation. For
clearness of visualization, the estimated Bayes risks are plotted every 100 iterations.

Table 3

Risks and Bayes risks of estimators. R(d, P0): risk of the estimator under the true
data-generating mechanism P0. r(d, π̂∗): Bayes risk under prior π̂∗, the computed prior

from Algorithm 6 in the last and finest grid in the computation.
Strength of prior Estimator R(d, P0) r(d, π̂∗)
strong JVHW 0.041 0.035

Γ-minimax 0.036 0.021

weak JVHW 0.041 0.028
Γ-minimax 0.018 0.024

almost none JVHW 0.041 0.031
Γ-minimax 0.025 0.016

computing a Γ1-minimax estimator. With strongly informative prior information
present, the Bayes risks appear to fluctuate without an increasing or decreasing
trend at the beginning and decrease slowly after several thousand iterations.
With weakly informative or almost no prior information, the Bayes risks also
decrease slowly. A reason may be that the JVHW estimator is already minimax
rate optimal (Jiao et al., 2015). The computed Γ-minimax estimators also appear
to be somewhat similar to the JVHW estimator: in the output layer of the
three settings with different prior information, the coefficients for the JVHW
estimator are 0.97, 0.90 and 0.89, respectively; the coefficients for the previous
hidden layer are 0.17, 0.17 and 0.20, respectively; the intercepts are 0.06, 0.30
and 0.30, respectively.

We further use the above methods to estimate entropy based on the dataset
used as the true population in the simulation. The tuning parameters of the Γ-
minimax estimators are exactly the same as those in the above simulation except
that the starting point in Algorithm 4 has more categories. The estimates are
presented in Table 4. All methods produce almost identical estimates. Because
the sample size is more than ten times the sample size in the simulation and
the JVHW estimator is minimax rate optimal (Jiao et al., 2015), we expect
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Table 4

Estimated entropy based on the sample with size 1088 studied in Miller and Wiegert (1989).
The strength of prior information in Γ-minimax estimators is shown in brackets.

Estimator Estimated entropy
JVHW 4.709
Γ-minimax (strong) 4.709
Γ-minimax (weak) 4.708
Γ-minimax (almost none) 4.703

the JVHW estimator to have little room for improvement, which explains why
the three Γ-minimax estimators perform similarly to the JVHW estimator. In
other words, Gamma-minimax estimators appear to maintain, if not improve,
the performance of the original JVHW estimator.

6. Discussion

We propose adversarial meta-learning algorithms to compute a Gamma-minimax
estimator with theoretical guarantees under fairly general settings. These algo-
rithms still leave room for improvement. As we discussed in Section 3.1, the
stopping criterion we employ does not necessarily indicate that the maximal
Bayes risk is close to the true minimax Bayes risk. In future work, it would
be interesting to derive a better criterion that necessarily does indicate this
near optimality. Our algorithms also require the user to choose increasingly
fine approximating grids to the model space. Although we propose a heuristic
algorithm for this procedure that performed well in our experiments, at this
point, we have not provided optimality guarantees for this scheme. It may also
be possible to improve our proposed algorithms to solve intermediate minimax
problems in Section 3.1 by utilizing recent and ongoing advances from the ma-
chine learning literature that can be used to improve the training of generative
adversarial networks.

We do not explicitly consider uncertainty quantification such as confidence
intervals or credible intervals under a Gamma-minimax framework. Uncertainty
quantification is important in practice since it provides more information than a
point estimator and can be used for decision-making. In theory, our method may
be directly applied if such a problem can be formulated into a Gamma-minimax
problem. However, such a formulation remains unclear. The most challenging
part is to identify a suitable risk function that correctly balances the level of
uncertainty and the size of the output interval/region. Though the risk function
used in Schafer and Stark (2009) appears to provide one possible starting point,
it is not clear how to extend this approach to nonparametric settings.

It is possible to allow the space of estimators D to increase as the grid M� in-
crease. For example, we may specify an increasing sequence of estimator spaces
{D�}∞�=1 whose limit is dense in a general space D0; then, in Line 3 of Algo-
rithm 1, we compute a Γ�-minimax estimator in D�, namely replace D with D�.
This sequence of estimators might converge to a Γ-minimax estimator in D0. One
possible choice of D� (� > 1) in this approach is a space of statistical knowledge
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networks with the given estimator being the computed Γ�−1-minimax estimator
in D�−1. It is of future interest to investigate the properties of such an approach.

In conclusion, we propose adversarial meta-learning algorithms to compute
a Gamma-minimax estimator under general models that can incorporate prior
information in the form of generalized moment conditions. They can be useful
when a parametric model is undesirable, semi-parametric efficiency theory does
not apply, or we wish to utilize prior information to improve estimation.

Appendix A: Two counterexamples of Condition 3

We provide two counterexamples of Condition 3 to illustrate that this condition
fails in extremely ill cases.

In the first counterexample, P �→ R(d, P ) is discontinuous: we set R(d, P ∗)
to be zero for a fixed P ∗ ∈ M and R(d, P ) to be one for all other P ∈ M. If we
choose the grid M� to be dense in M but to never contain P ∗, then Condition 3
does not hold since rsup(d, Γ̃�) = 1 for sufficiently large � such that P ∗ ∈ Ω�

but rsup(d, Γ̃i|�) = 0 for all i and �. This issue can be resolved by choosing a
continuous risk function.

In the second counterexample, M� does not contain distributions that are
consistent with prior information. Suppose that Γ = {π ∈ Π :

∫
Φ(P )π(dP ) =

0} where Φ(P ) := EP [X2]. In other words, it is known that the true data-
generating mechanism P0 must be a distribution that is a point mass at zero, and
thus Γ also only contains a point mass at P0. If Φ(P ) �= 0 for every P ∈ ∪∞

i=1Mi,
then, even if

⋃∞
�=1 M� is dense in M, Γ̃i|� = ∅ and thus Condition 3 does not

hold. This issue can be resolved by rewriting the problem such that these hard
constraints on M are incorporated into the specification of M rather than Γ.

Appendix B: Additional gradient-based algorithms

If we can evaluate R(β, P ) exactly for all β ∈ H and P ∈ M�, then the GDmax
algorithm (Algorithm 5) may be used. Note that Line 3 can be formulated into a
linear program, which can always be solved in polynomial time with an interior
point method (e.g., Jiang et al., 2020) and often be solved in polynomial time
with a simplex method (Spielman and Teng, 2004).

Algorithm 5 Gradient descent with max-oracle (GDmax) to compute a Γ�-
minimax estimator
1: Initialize β(0) ∈ RD. Set learning rate η > 0 and max-oracle accuracy ζ > 0.
2: for t = 1, 2, . . . do
3: Maximization: find π(t) ∈ Γ� such that r(β(t−1), π(t)) ≥ maxπ∈Γ�

r(β(t−1), π) − ζ
4: Gradient descent: β(t) ← β(t−1) − η∇βr(β, π(t))|β=β(t−1)

We have the following result on the validity of GDmax.

Theorem 5 (Validity of GDmax (Algorithm 5)). Under conditions in The-
orem 2, in Algorithm 5, with η = ε2/(L1L

2
2) and ζ = ε2/(24L1), β(t) is an
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ε-stationary point of β �→ rsup(β,Γ�) for t = O(L1L2Δ/ε4), and is thus close to
a local minimum of β �→ rsup(β,Γ�).

Therefore, we propose a variant (Algorithm 6) by replacing this line with
Lines 3–4 so that ordinary linear program solvers can be directly applied. The
following theorem justifies this variant.

Algorithm 6 Convenient variant of SGDmax (Algorithm 2) to compute a Γ�-
minimax estimator
1: Initialize β(0) ∈ RD. Set learning rate η > 0 and batch sizes J , J ′.
2: for t = 1, 2, . . . do
3: Generate iid copies ξ1, . . . , ξJ′ of ξ.
4: Stochastic maximization: π(t) ← argmaxπ∈Γ�

1
J′

∑J′
j=1 r̂(β(t−1), π, ξj).

5: Generate iid copies of ξJ′+1, . . . , ξJ′+J of ξ.
6: Stochastic gradient descent: β(t) ← β(t−1) − η

J

∑J′+J
j=J′+1 ∇β r̂(β, π(t), ξj)|β=β(t−1) .

The validity of this variant of SGDmax is given in Theorem 6 below.

Theorem 6 (Validity of convenient variant of SGDmax (Algorithm 6)). Sup-
pose that {ξ �→ r̂(β, π, ξ) : β ∈ RD, π ∈ Γ�} is a Ξ-Glivenko-Centelli class
(van der Vaart and Wellner, 2000). Then, for any ζ > 0, there exists a suffi-
ciently large J ′ such that

E[r(β(t−1), π(t))] ≥ max
π∈Γ�

r(β(t−1), π) − ζ

for all t, where the expectation is taken over π(t) and β(t−1) is fixed. Therefore,
with the chosen parameters in Theorem 2, we may choose a sufficiently large
J ′ so that β(t) is an ε-stationary point of β �→ rsup(β,Γ�) in expectation for
t = O(L1(L2

2+σ2)Δ/ε4) and is thus close to a local minimum of β �→ rsup(β,Γ�)
with high probability.

We prove Theorem 6 by showing that maxπ∈Γ�
r(β(t−1), π)−E[r(β(t−1), π(t))]

converges to 0 as J ′ → ∞. The proof is essentially an application of empirical
process theory to the study of an M-estimator.

Appendix C: Additional simulation: mean estimation

In this appendix, we illustrate our proposed methods via simulation in a special
case of Example 1, namely for estimating the mean of a distribution. We assume
that M consists of all probability distributions defined on the Borel σ-algebra
on [0, 1] and we observe X = (X1, X2, . . . , Xn), where X1, . . . , Xn

iid∼ P0 ∈ M.
Here we take n = 10. The estimand is Ψ(P0) =

∫
xP0(dx). We use the mean

squared error risk introduced in Example 1. Suppose that we represent the prior
information by Γ = {π ∈ Π :

∫
Ψ(P )π(dP ) = 0.3}, which corresponds to the

set of prior distributions in Π that satisfy an equality constraint on the prior
mean of Ψ(P ).
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Fig 7. Architecture of the permutation invariant neural network estimator of the mean in
Dskn. Xi: observation i in the sample;

∑
: the node that sums up all ancestor nodes. In the

first two hidden layers, all input nodes are transformed by the same function. The arrows
from the input nodes to the sample mean estimator are omitted from this graph. Each node
in the hidden layers represents a vector.

We apply our method to three spaces of estimators separately. The first
space, Dlinear, is the set of affine transformations of the sample mean, that is,
Dlinear = {d : d(X) = β0+β1

∑n
i=1 Xi/n, β0, β1 ∈ R}. As shown in Proposition 1

in Appendix E.5, there is an estimator d∗ in Dlinear that is Γ-minimax in the
space of all estimators that are square-integrable with respect to all P ∈ M, so
we consider this simple space to better compare our computed estimator with
that theoretical Γ-minimax estimator. When computing a Γ-minimax estimator
in Dlinear, we initialize the estimator to be the sample mean, that is, we let
β0 = 0 and β1 = 1.

The second space, Dskn (statistical knowledge network), is a set of neural
networks designed based on statistical knowledge that includes the sample mean
as an input. We consider this space to illustrate our proposal in Section 4.2.
More precisely, we use the architecture in Fig. 7, which is similar to the deep
set architecture (Zaheer et al., 2017; Maron et al., 2019) and is a permutation
invariant neural network. We use such an architecture to account for the fact
that the sample is iid. In this architecture, the sample mean node is used as
an augmenting node to an ordinary deep set network and is combined with the
output of that ordinary network in the fourth hidden layer to obtain the final
output. Note that Dskn ⊃ Dlinear. When computing a Γ-minimax estimator for
this class, we also initialize the network to be exactly the sample mean, which
is a reasonable choice given that the sample mean is known to be a sensible
estimator. In this simulation experiment, we choose the dimensionality of nodes
in each hidden layer in Fig. 7 as follows: each node in the first, second, third and
fourth hidden layer represents a vector in R10, R5, R10 and R, respectively. We do
not use larger architectures because usually the sample mean is already a good
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estimator, and we expect to obtain a useful estimator as a small perturbation
of this estimator. We also use the ReLU as the activation function. We did not
use ELMs in this and the following simulations because we found that neural
networks perform well.

The third space, Dnn, is a set of neural networks that do not utilize knowledge
of the sample mean. We consider this space to illustrate our method without
utilizing existing estimators. These estimators are also deep set networks with
similar architecture as Dskn in Fig. 7. The main difference is that the explicit
sample mean node and the fourth hidden layer are removed. When computing
a Γ-minimax estimator in Dnn, we also randomly initialize the network, unlike
Dlinear and Dskn, in order not to input statistical knowledge. Because the ReLU
activation function is used, Dnn ⊃ Dlinear, and we do not expect that optimizing
over Dnn should not lead to a Γ-minimax estimator with worse performance
than those in Dlinear and Dskn.

To construct the grid M� for this problem, we use a simpler method than Al-
gorithm 4. As indicated by Lemma 6 in Appendix E.5, for estimators in Dlinear,
Bernoulli distributions tend to have high risks since all probability weights lie
on the boundary of [0, 1]; in addition, a prior π∗ for which d∗ is Bayes is a
Beta prior over Bernoulli distributions. Therefore, we randomly generate 2000
Bernoulli distributions as grid points in M1. We also include two degenerate
distributions in this grid, namely the distribution that places all of its mass
at 0 and that which places all of its mass at 1. When constructing M� from
M�−1, we still add in more complicated distributions to make the grid dense
in the limit: we first randomly generate 500 discrete distributions with support
being those in M�−1; then we randomly generate 10 new support points in [0, 1]
and 1000 distributions with support points being the union of the new support
points and the existing support points in M�−1.

When computing the Γ-minimax estimator, for each grid M�, we compute
the Γ�-minimax estimator for all three estimator spaces with Algorithm 6. We
set the learning rate η = 0.005, the batch size J = 50 and the number of
iterations to be 200 for Γ� (� > 1). The number of iterations for Γ1 is larger
because, in our experiments, we saw that a Γ1-minimax estimator is already
close to a Γ-minimax estimator, and using a large number of iterations in this
step can improve the initial estimator substantially. For Dlinear and Dskn, the
number of iterations for Γ1 is 2000; the corresponding number for Dnn is 6000 to
account for the lack of human knowledge input. We also use Algorithm 3 with
10000 iterations to compute a Γ�-minimax estimator for Dlinear for illustration.
In this setup, as described in Section 3.3, we take the average of the computed
Γ-minimax stochastic estimator as the final output estimator in Dlinear. We do
not apply Algorithm 3 to Dskn or Dnn because it is computationally intractable
for these estimator spaces.

We set the stopping criterion in Algorithm 1 as follows. When Algorithm 6
is used to compute Γ�-minimax estimators, we estimate both rsup(d∗�−1,Γ�) and
rsup(d∗�−1,Γ�−1) with 2000 Monte Carlo runs as described in Section 3.1; when
Algorithm 3 is used, rsup(d∗�−1,Γ�) and rsup(d∗�−1,Γ�−1) are computed exactly
because R(d, P ) has a closed-form expression for all d ∈ Dlinear and P ∈ M�.
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Table 5

Coefficients and Bayes risks of estimators of the mean. Unrestricted space: the space of all
estimators that are square-integrable with respect to all P ∈ M.

Estimator space Method to obtain d∗ β0 β1 r(d, π∗)
Unrestricted space Theoretical derivation 0.072 0.760 0.012
Dlinear Algorithms 1 &6 0.072 0.763 0.012
Dskn Algorithms 1 &6 0.071 0.767 0.012
Dnn Algorithms 1 &6 — — 0.012
Dlinear Algorithms 1 &3 0.072 0.760 0.012

We set the tolerance ε to be equal to 0.0001 so that we stop Algorithm 1 if
rsup(d∗�−1,Γ�) − rsup(d∗�−1,Γ�−1) ≤ ε.

After computation, we report the Bayes risk of the computed and theoretical
Γ-minimax estimators under π∗, the prior such that r(d∗, π∗) = infd∈D rsup(d,Γ).
For the estimators in Dlinear, we further report their coefficients. We also report
two coefficients of the computed estimator in Dskn as follows. Since Dlinear ⊆
Dskn and we initialize the estimator to be the sample mean for Dskn, we would
expect that the bias β0 and the weight of the sample mean β1 in the output
layer for the computed Γ-minimax estimator in Dskn may correspond to those
in Dlinear. Therefore, we also report these two coefficients β0 and β1 for Dskn.
This may not be the case for Dnn because the sample mean is not explicit in
its parameterization and all coefficients are randomly initialized, so we do not
report any coefficients for Dnn.

Table 5 presents the computation results. By Theorem 7 in Appendix E.5,
these computed estimators are all approximately Γ-minimax since their Bayes
risks for π∗ are all close to that of a theoretical Γ-minimax estimator. The
coefficients β0 and β1 of the computed estimators in Dlinear and Dskn are also
close to a theoretically derived estimator. For the computed estimator in Dskn,
the weight of the other ancestor node in the output layer (i.e., the node in
the 4th hidden layer in Fig. 7) is 0.000. Therefore, our computed Γ-minimax
estimator in Dskn is also close to a theoretically derived Γ-minimax estimator.

In our experiments, Algorithm 1 converged after computing a Γ1-minimax
estimator except when using Algorithm 6 for Dlinear. Even in this exceptional
case, the computed Γ1-minimax estimator is still approximately Γ-minimax. We
think the algorithm does not stop then in these cases because of Monte Carlo
errors when computing rsup(d∗�−1,Γ�) and rsup(d∗�−1,Γ�−1).

Fig. 3 presents the Bayes risks (or its unbiased estimates) over iterations when
computing a Γ1-minimax estimator. In all cases using Algorithm 6, the Bayes
risks appear to decrease and converge. When using Algorithm 3, the upper and
lower bounds both converge to the same limit. The limiting values of the Bayes
risks in all cases are close to r(d∗, π∗) because Γ1 can approximate π∗ well.

Appendix D: Sensitivity analysis for tuning parameter selection

For the simulation in Section 5.1 with strongly informative prior information, we
conduct three simulations to investigate the sensitivity of our proposed method
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Fig 8. Architecture of the deeper and wider neural network estimator of the expected number
of new categories.

Table 6

Table similar to Table 1 for sensitivity analysis with strongly informative prior information.
Varied tuning parameter R(d, P0) r(d, π̂∗)
Initial distribution in MCMC 19 44
Grid size 15 34
Statistical knowledge network structure 17 38

to the selection of tuning parameters. In each simulation below, we vary one
set of tuning parameters and rerun the algorithm to obtain an estimator. In
the first simulation, we vary the starting point of Algorithm 4 to construct the
first grid M1. The new starting point is a distribution with 173 categories and
Φ(P(0)) = 61, and so this starting point is qualitatively different from the one
chosen in the original simulation. In the second simulation, we vary the grid
sizes: There are 500 grid points in M1 and we add 500 grid points each time we
enlarge the grid. In the third simulation, we chose a wider and deeper statistical
knowledge network (see Fig. 8): Compared to the original simulation, we add
one more hidden layer and increased the number of hidden nodes in the first
two hidden layers to 100. As shown in Table 6, the results in these sensitivity
simulations appear similar to that in Section 5.1 within the variation due to
randomness in MCMC (Algorithm 4) and SGDmax (Algorithm 6).

Appendix E: Proofs

E.1. Proof of Theorem 1 and Corollary 1

Lemma 1. If {Ω�}∞�=1 is an increasing sequence of subsets of M such that⋃∞
�=1 Ω� = M, then, for any d ∈ D, rsup(d, Γ̃�) ↗ rsup(d,Γ) (� → ∞).
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Proof of Lemma 1. Since Γ̃� ⊆ Γ̃�+1 ⊆ Γ, it holds that

rsup(d, Γ̃�) ≤ rsup(d, Γ̃�+1) ≤ rsup(d,Γ),

and so we only need to lower bound rsup(d, Γ̃�). Fix ε > 0. By Corollary 5
of Pinelis (2016), rsup(d,Γ) can be approximated by r(d, ν) arbitrarily well for
priors ν ∈ Γ with a finite support; that is, there exists ν ∈ Γ with finite support
such that r(d, ν) ≥ rsup(d,Γ)−ε. For sufficiently large �, Ω� contains all support
points of ν and hence rsup(d, Γ̃�) ≥ r(d, ν) ≥ rsup(d,Γ) − ε. The desired result
follows.

Lemma 2. Under Condition 2, for any Γ′ ⊆ Γ and ε > 0, there exists δ > 0
such that rsup(d∗,Γ′) − rsup(d,Γ′) ≤ ε for all d ∈ D such that �(d, d∗) ≤ δ.

Proof of Lemma 2. By Corollary 5 of Pinelis (2016), there exists ν ∈ Γ′ with a
finite support such that rsup(d∗,Γ′) ≤ r(d∗, ν)+ε/2. By Condition 2 and the fact
that ν has a finite support, there exists δ > 0 such that, for any d ∈ D such that
�(d, d∗) ≤ δ, |r(d, ν) − r(d∗, ν)| ≤ ε/2. Since ν ∈ Γ′, we have that rsup(d,Γ′) ≥
r(d, ν) and thus rsup(d∗,Γ′) − rsup(d,Γ′) ≤ r(d∗, ν) + ε/2 − r(d, ν) ≤ ε for any
d ∈ D such that �(d, d∗) ≤ δ.

Lemma 3. Under Condition 3, it holds that limi→∞ rsup(d, Γ̃i|�) = rsup(d, Γ̃�).

Proof of Lemma 3. Let d ∈ D, � and ε > 0 be fixed. By Corollary 5 of Pinelis
(2016), rsup(d, Γ̃�) ≤ r(d, π) + ε/2 for some π ∈ Γ̃� with a finite support. Under
Condition 2, there exists a sequence πi ∈ Γ̃i|� such that, for all sufficiently
large i, r(d, πi) ≥ r(d, π) − ε/2. For such i, rsup(d, Γ̃�) ≤ r(d, πi) + ε. Since
rsup(d, Γ̃�) ≥ rsup(d, Γ̃i|�) ≥ r(d, πi), we have that r(d, πi) ≤ rsup(d, Γ̃i|�) ≤
rsup(d, Γ̃�) ≤ r(d, πi) + ε for all sufficiently large i, and thus we have proved
Lemma 3.

Proof of Theorem 1. Let ε > 0. There exists d′ ∈ D such that

rsup(d′,Γ) ≤ inf
d∈D

rsup(d,Γ) + ε.

Moreover, there exists π� ∈ Γ� such that

rsup(d′,Γ�) ≤ r(d′, π�) + ε.

Using the fact that d∗� is Γ�-minimax and the definition of rsup, it holds that

rsup(d∗� ,Γ�) ≤ rsup(d′,Γ�) ≤ r(d′, π�) + ε

≤ rsup(d′,Γ) + ε ≤ inf
d∈D

rsup(d,Γ) + 2ε.

Since this inequality holds for any ε > 0, we have that

rsup(d∗� ,Γ�) ≤ inf
d∈D

rsup(d,Γ).
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An almost identical argument shows that the sequence {rsup(d∗� ,Γ�)}∞�=1 is non-
decreasing. Therefore, this sequence converges to some limit

R ≤ inf
d∈D

rsup(d,Γ) ≤ rsup(d∗,Γ).

We next prove that rsup(d∗,Γ) ≤ R. Let ε > 0. Without loss of generality,
we may assume that M� ⊆ Ω� for all � = 1, 2, . . . in Condition 3. (Otherwise,
we may instead consider the sequence {Ω�̃}∞�̃=1 where Ω�̃ =

⋂
�′:Ω�′⊇M�

Ω�′ .
Note that Condition 3 also holds for {Ω�̃}∞�̃=1.) By Lemma 1, there exists �0

such that rsup(d∗, Γ̃�0) ≥ rsup(d∗,Γ) − ε/3. By Condition 3, there exists i1 such
that rsup(d∗, Γ̃i1|�0) ≥ rsup(d∗, Γ̃�0) − ε/3. Without loss of generality, suppose
that d∗� → d∗ (otherwise, take a convergent subsequence to this limit point).
This then implies that there exists i2 > i1 such that �(d∗i2 , d

∗) is sufficiently
small, such that, by Lemma 2, rsup(d∗i2 , Γ̃i1|�0) ≥ rsup(d∗, Γ̃i1|�0) − ε/3. More-
over, since Γ̃i1|�0 ⊆ Γ̃i1 ⊆ Γ̃i2 , it holds that rsup(d∗i2 , Γ̃i2) ≥ rsup(d∗i2 , Γ̃i1|�0).
Therefore, rsup(d∗i2 , Γ̃i2) ≥ rsup(d∗,Γ) − ε. Since the sequence {rsup(d∗� ,Γ�)}∞�=1
is nondecreasing, it holds that rsup(d∗� ,Γ�) ≥ rsup(d∗,Γ)− ε for all � ≥ i2. Since
ε is arbitrary, we have that lim inf�→∞ rsup(d∗� ,Γ�) ≥ rsup(d∗,Γ), and hence
R ≥ rsup(d∗,Γ).

Combining the results from the preceding two paragraphs,

R = inf
d∈D

rsup(d,Γ) = rsup(d∗,Γ).

Consequently, d∗ is Γ-minimax. Moreover, as {rsup(d∗� ,Γ�)}∞�=1 increases to R,
this sequence also increases to rsup(d∗,Γ). This concludes the proof.

Proof of Corollary 1. We first establish the strict convexity of d �→ r(d, π) for
any π ∈ Γ. We then establish the strict convexity of d �→ rsup(d,Γ). We then
establish that there is a unique minimizer of d �→ rsup(d,Γ) and show that the
desired result follows from Theorem 1.

Let d1, d2 ∈ D and c ∈ (0, 1) be arbitrary, then by the convexity of D and
the strict convexity of d �→ R(d, P ) for each P ∈ M,

r(cd1 + (1 − c)d2, π) =
∫

R(cd1 + (1 − c)d2, P )π(dP )

<

∫
{cR(d1, P ) + (1 − c)R(d2, P )}π(dP )

= cr(d1, π) + (1 − c)r(d2, π).

Therefore, d �→ r(d, π) is strictly convex for any π ∈ Γ.
Let d1, d2 ∈ D be distinct and c ∈ (0, 1) be arbitrary. Since rsup(d,Γ) is

attainable for any d ∈ D, there exists π̃ ∈ Γ such that

rsup(cd1 + (1 − c)d2,Γ) = r(cd1 + (1 − c)d2, π̃)
< cr(d1, π̃) + (1 − c)r(d2, π̃)
≤ crsup(d1,Γ) + (1 − c)rsup(d2,Γ).
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Thus, d �→ rsup(d,Γ) is strictly convex.
As d �→ rsup(d,Γ) is strictly convex and D is convex, this function achieves

exactly one minimum on D. By Theorem 1, any limit point d∗ of {d∗�}∞�=1 is a
minimizer of d �→ rsup(d,Γ), and so the sequence has a limit point, which is also
the unique Γ-minimax estimator.

E.2. Proof of Theorems 2 & 5

We prove Theorems 2 and 5 by checking that Assumptions 3.1 and 3.6 in Lin,
Jin and Jordan (2020) are satisfied and using Theorem E.3 and E.4 in Lin,
Jin and Jordan (2020), respectively. Since Assumption 3.1 is satisfied by our
construction of R̂, we focus on Assumption 3.6 for the rest of this section.

Let M� = {P1, P2, . . . , PΛ} ⊆ M. For any π ∈ Γ�, let πλ denote the prob-
ability weight of π on Pλ (λ = 1, . . . ,Λ). For the rest of this section, we also
use π to denote the vector (π1, . . . , πΛ). We also use � to denote less than
equal to up to a universal positive constant that may depend on �. Then,
straightforward calculations imply that ∇βr(β, π) =

∑Λ
λ=1 πλ∇βR(β, Pλ) and

∇πr(β, π) = (R(β, P1), . . . , R(β, PΛ))�.
For each � = 1, 2, . . ., for any β1, β2 ∈ H and π1, π2 ∈ Γ�, by Conditions 4

and 5, ∥∥∥∇βr(β, π)|β=β1,π=π1 − ∇βr(β, π)|β=β2,π=π2

∥∥∥
=

∥∥∥∥∥
Λ∑

λ=1

{
π1
λ ∇βR(β, Pλ)|β=β1

− π2
λ ∇βR(β, Pλ)|β=β2

}∥∥∥∥∥
≤

Λ∑
λ=1

π1
λ

∥∥∥∇βR(β, Pλ)|β=β1
− ∇βR(β, Pλ)|β=β2

∥∥∥
+

∥∥∥∥∥
Λ∑

λ=1

(π1
λ − π2

λ) ∇βR(β, Pλ)|β=β2

∥∥∥∥∥
� ‖β1 − β2‖ + ‖π1 − π2‖
� ‖(β1, π1) − (β2, π2)‖,

and similarly for ∇πr(β, π),∥∥∥∇πr(β, π)|β=β1,π=π1 − ∇πr(β, π)|β=β2,π=π2

∥∥∥
=
∥∥∥(R(β1, P1) −R(β2, P1), R(β1, P2)

−R(β2, P2), . . . , R(β1, PΛ) −R(β2, PΛ)
)�∥∥∥

� ‖β1 − β2‖ ≤ ‖(β1, π1) − (β2, π2)‖.

This implies that for each �, the gradient of r(β, π) (β ∈ H, π ∈ Γ�) is Lipschitz
continuous.
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For each � = 1, 2, . . ., for any β1, β2 ∈ H and π ∈ Γ�, Condition 4 implies
that

∣∣r(β1, π) − r(β2, π)
∣∣ =

∣∣∣∣∣
Λ∑

λ=1

πλ

[
R(β1, Pλ) −R(β2, Pλ)

]∣∣∣∣∣
≤

Λ∑
λ=1

πλ

∣∣R(β1, Pλ) −R(β2, Pλ)
∣∣ � ‖β1 − β2‖.

Therefore, β �→ r(β, π) is Lipschitz continuous with a universal Lipschitz con-
stant independent of π ∈ Γ�.

Finally, it is straightforward to check that (i) π �→ r(β, π) is concave for
any β ∈ H, and (ii) Γ� is parameterized by a convex subset of a simplex in a
Euclidean space, which is a convex and bounded set. These results show that
Assumption 3.6 in Lin, Jin and Jordan (2020) is satisfied for Algorithm 5 and 2.

E.3. Proof of Theorem 6

Proof of Theorem 6. Let π(t),0 denote a maximizer of π �→ r(β(t−1), π). It holds
that

0 ≤ r(β(t−1), π(t),0) − r(β(t−1), π(t))

≤ 1
J ′

J ′∑
j=1

r̂(β(t−1), π(t), ξj) −
1
J ′

J ′∑
j=1

r̂(β(t−1), π(t),0, ξj)

+ r(β(t−1), π(t),0) − r(β(t−1), π(t))

= 1
J ′

J ′∑
j=1

{[
r̂(β(t−1), π(t), ξj) − r̂(β(t−1), π(t),0, ξj)

]

− E
[
r̂(β(t−1), π(t), ξ) − r̂(β(t−1), π(t),0, ξ)

]}

≤ sup
β∈RD,π1,π2∈Γ�

∣∣∣∣∣ 1
J ′

J ′∑
j=1

{
[r̂(β, π1, ξj) − r̂(β, π2, ξj)]

− E [r̂(β, π1, ξ) − r̂(β, π2, ξ)]
}∣∣∣∣∣.

Note that the right hand side does not depend on t. Therefore,

0 ≤ sup
t

{
r(β(t−1), π(t),0) − E[r(β(t−1), π(t))]

}

≤ E∗ sup
β∈RD,π1,π2∈Γ�

∣∣∣∣∣ 1
J ′

J ′∑
j=1

{
[r̂(β, π1, ξj) − r̂(β, π2, ξj)]
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− E [r̂(β, π1, ξ) − r̂(β, π2, ξ)]
}∣∣∣∣∣,

where E∗ stands for outer expectation. We may apply Corollary 9.27 in Kosorok
(2008) to F := {ξ �→ r̂(β, π, ξ) : β ∈ RD, π ∈ Γ�} and show that F − F :=
{f1 − f2 : f1, f2 ∈ F} ⊇ {ξ �→ r̂(β, π1, ξ) − r̂(β, π2, ξ) : β ∈ RD, π1, π2 ∈ Γ�} is a
Ξ-Glivenko-Cantelli class. Therefore,{

sup
β∈RD,π1,π2∈Γ�

∣∣∣∣∣ 1
J ′

J ′∑
j=1

{
[r̂(β, π1, ξj) − r̂(β, π2, ξj)]

− E [r̂(β, π1, ξ) − r̂(β, π2, ξ)]
}∣∣∣∣∣
}∗

≤

⎧⎨
⎩ sup

f∈F−F

∣∣∣∣∣∣
1
J ′

J ′∑
j=1

{f(ξj) − E[f(ξ)]}

∣∣∣∣∣∣
⎫⎬
⎭

∗
a.s.→ 0,

as J ′ → ∞. Here, X∗ stands for the minimal measurable majorant with respect
to Ξ of a (possibly non-measurable) mapping X (van der Vaart and Wellner,
2000).

By Problem 1 of Section 2.4 in van der Vaart and Wellner (2000), there exists
a random variable F such that F ≥ supf∈F−F |f(ξ)−E[f(ξ′)]| Ξ-almost surely
and E[F ] < ∞. Then,

sup
f∈F−F

∣∣∣∣∣∣
1
J ′

J ′∑
j=1

{f(ξj) − E[f(ξj)]}

∣∣∣∣∣∣ ≤ F

Ξ-almost surely. By dominated convergence theorem,

E∗ sup
β∈RD,π1,π2∈Γ�

∣∣∣∣∣ 1
J ′

J ′∑
j=1

{
[r̂(β, π1, ξj) − r̂(β, π2, ξj)]

− E [r̂(β, π1, ξj) − r̂(β, π2, ξj)]
}∣∣∣∣∣ → 0

as J ′ → ∞, and so does supt

{
r(β(t−1), π(t),0) − E[r(β(t−1), π(t))]

}
. Thus, for

any ζ > 0, there exists a sufficiently large J ′ such that E[r(β(t−1), π(t))] ≥
r(β(t−1), π(t),0) − ζ for all t.

E.4. Proof of Theorem 3

Our proof of Theorem 3 builds on that of Robinson (1951). Major modifications
are needed to allow for more general definitions that can accommodate for po-
tentially infinite spaces of pure strategies and a more careful control on a bound
on r(d(�(t−1)), π†

(t)) − r(d†(t), π(t−1)) towards the end of the proof.
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In this appendix, we slightly abuse the notation and use D to denote the
compact set D̄ that contains all d†(t) (t = 1, 2, . . .). We first introduce the notion
of cumulative Bayes risk functions. Under Algorithm 3, we let U0 : D → R and
V0 : Γ� → R be any two continuous functions such that

min
d∈D

U0(d) = max
π∈Γ�

V0(π) (3)

and recursively define

Ut+1(d) := Ut(d) + r(d, π†
(t)), Vt+1(π) := Vt(π) + r(d†(t), π) (4)

for d ∈ D and π ∈ Γ�. Here, we let π†
(t) ∈ argmaxπ∈Γ�

Vt−1(π) and d†(t) ∈
argmind∈D Ut−1(d). Note that the choices of π†

(t) and d(t) in Algorithm 3 cor-
responds to setting U0 ≡ 0 and V0 ≡ 0, in which case Ut(d) = t · r(d, π(t)) and
Vt(π) = t · r(d(�(t)), π). In general,

Ut(d) = U0(d) + t · r(d, π(t)), Vt(π) = V0(π) + t · r(d(�(t)), π) (5)

for some π(t) ∈ Γ and d(�(t)) ∈ D. Later in this section, we will also make use
of Ut and Vt with other initializations U0 and V0.

To make notations concise, we define mind∈D′ Ut := mind∈D′ Ut(d) for any
D′ ⊆ D, and define maxD′ Ut, minΠ′ Vt and maxΠ′ Vt (Π′ ⊆ Γ�) similarly. We
also drop the subscript denoting the set when the set is the whole space we
consider, that is, D or Γ�. Note that for any t1, t2 = 1, 2, . . ., under the setting
of Algorithm 3 and (2), it holds that

minUt1/t1 = min
d∈D

r(d, π(t1))

≤ max
π∈Γ�

min
d∈D

r(d, π) = r(d(�∗
� ), π∗

� ) = min
d∈D

max
π∈Γ�

r(d, π)

≤ max
π∈Γ�

r(d(�(t2)), π) = max Vt2/t2

Therefore, to prove the first result in Theorem 3, it suffices to show that
lim supt→∞(max Vt − minUt)/t ≤ 0.

We next introduce additional definitions related to iterations. We say that
π ∈ Γ� is eligible in the interval [t1, t2] if there exists t ∈ [t1, t2] such that
Vt(π) = max Vt; we say that d ∈ D is eligible in the interval [t1, t2] if there
exists t ∈ [t1, t2] such that Ut(d) = minUt. We also define eligibility for sets.
We say that Π′ ⊆ Γ� is eligible in the interval [t1, t2] if there exists π ∈ Π′ that
is eligible in that interval; we say that D′ ⊆ D is eligible in the interval [t1, t2]
if there exists d ∈ D′ that is eligible in the interval [t1, t2]. In addition, for any
D′ ⊆ D, we define maximum variation MVt(D′) := supd∈D′ Ut(d)−infd∈D′ Ut(d)
and MVt(Π′) similarly for any Π′ ⊂ Γ�. By Condition 2, there exists B ∈ (0,∞)
such that R ∈ [−B,B]. Note that by Condition 1 and Lemma 2, given an
arbitrary desired approximation accuracy ε > 0, D can be covered by finitely
many compact subsets with the maximum variation of each subset bounded by
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εt for all t; by Condition 2, since Γ� is parameterized by a compact subset of a
simplex in a Euclidean space, Γ� can also be covered by finitely many compact
subsets with the maximum variation of each subset bounded by εt for all t. These
covers can be viewed as discrete finite approximations to D and Γ�, respectively.

All of the above definitions are associated with the space of estimators D and
the set of priors Γ�. We call {(Ut, Vt)}t a pair of cumulative Bayes risk functions
constructed from the pair (D,Γ�) of the space of estimators and the set of priors,
and will consider pairs of cumulative Bayes risk functions constructed from other
pairs (D′,Π′) of the space of estimators and the set of priors in the subsequent
proof. We can define the above quantities similarly for such cases.

The following lemma gives an upper bound on the maximum variation of Us+t

and Vs+t over the corresponding entire space from which they are constructed
after t iterations from s when essentially all parts of these spaces are eligible in
[s, s + t].

Lemma 4. Suppose that {(Ut, Vt)}t is a pair of cumulative Bayes risk functions
constructed from (D′,Π′). Suppose that D′ =

⋃I
i=1 Di and Π′ =

⋃J
j=1 Πj where

sup
i,t

MVt(Di)/t ≤ A, sup
j,t

MVt(Πj)/t ≤ A

for A < ∞. If all Di and Πj are eligible in [s, s + t], then maxD′ Us+t −
minD′ Us+t ≤ (2B + A)t and maxΠ′ Vs+t − minΠ′ Vs+t ≤ (2B + A)t.

Proof of Lemma 4. Without loss of generality, assume that

d̃ ∈ (argmax
d∈D′

Us+t)
⋂

D1.

Since D1 is eligible in [s, t], there exists t̃ ∈ [s, s+ t] such that (argmind∈D′ Ut̃)
⋂

D1 �= ∅. By the recursive definition of the sequence {Ut}t in (4), the bound on the
risk, and the assumption that supi,t MVt(Di)/t ≤ A, we have that maxD′ Us+t =
Us+t(d̃) ≤ Ut̃(d̃)+B(s+t−t̃) ≤ minD′ Ut̃+At+B(s+t−t̃) ≤ minD′ Ut̃+(A+B)t.
Letting d̃′ ∈ argmind∈D′ Us+t, by the bound on the risk, we can derive that
minD′ Us+t = Us+t(d̃′) ≥ Ut̃(d̃′) − B(s + t − t̃) ≥ minD′ Ut̃ − Bt. Combine
these two inequalities and we have that maxD′ Us+t −minD′ Us+t ≤ (2B +A)t.
An identical argument applied to the sequence {Vt}t shows that maxΠ′ Vs+t −
minΠ′ Vs+t ≤ (2B + A)t.

The next lemma builds on the previous lemma and provides an upper bound
on max Vs+t − minUs+t under the same conditions.

Lemma 5. Under the same setup and conditions as in Lemma 4, maxΠ′ Vs+t−
minD′ Us+t ≤ (4B + 2A)t.

Proof of Lemma 5. Summing the two inequalities in Lemma 4 and rearranging
the terms, we have that maxΠ′ Vs+t −minD′ Us+t ≤ (4B + 2A)t+ minΠ′ Vs+t −
maxD′ Us+t. It therefore suffices to show that minΠ′ Vs+t ≤ maxD′ Us+t.

Let τ := s + t. There exists π′ ∈ Π′ and a stochastic strategy d
′ ∈ D′ such

that Uτ (d) = U0(d) + τ · r(d, π′) and Vτ (π) = V0(π) + τ · r(d′, π) for all d ∈ D′
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and all π ∈ Π′. Therefore, for this choice of π′ and d
′, using (3), minΠ′ Vτ ≤

Vτ (π′) = V0(π′)+τ ·r(d′, π′) ≤ maxΠ′ V0+τ ·r(d′, π′) = minD′ U0+τ ·r(d′, π′) ≤
U0(d

′) + τ · r(d′, π′) = Uτ (d
′) ≤ maxD′ Uτ .

Proof of Theorem 3. It suffices to show that lim supt→∞(max Vt−minUt)/t ≤ 0
by letting U0 ≡ 0 and V0 ≡ 0, which corresponds to Algorithm 3. Let ε > 0.
Note that r is Lipschitz continuous by Lemma 2 and the fact that r(d, π) is
an average of bounded risks with weights π. Furthermore, D and Γ� are both
compact. In addition, U0 and V0 are both continuous. Therefore, there exist
covers D =

⋃I
i=1 Di and Γ� =

⋃J
j=1 Πj such that (i) Di and Πj are all compact,

and (ii) supi,t MVt(Di)/t ≤ ε, supj,t MVt(Πj)/t ≤ ε. (Note that I and J may
depend on ε.) For index sets I ⊆ {1, 2, . . . , I} and J ⊆ {1, 2, . . . , J}, define
DI :=

⋃
i∈I Di and ΠJ :=

⋃
j∈J Πj . We show that max Vt − minUt ≤ Cεt for

an absolute constant C and all sufficiently large t via induction on the sizes of
I and J .

Let {(Ut, Vt)}t be a pair of cumulative Bayes risk functions constructed from
(DI ,ΠJ ) where |I| = |J | = 1. By (5) and the fact that MVt(DI) ≤ εt and
MVt(ΠJ ) ≤ εt, we have that

min
DI

Ut = min
d∈DI

[U0(d) + t · r(d, π(t))] ≥ Ed∼�(t) [U0(d)] + t · r(d(�(t)), π(t)) − εt

≥ min
d∈DI

U0(d) + t · r(d(�(t)), π(t)) − εt

= max
π∈ΠJ

V0(π) + t · r(d(�(t)), π(t)) − εt

≥ V0(π(t)) + t · r(d(�(t)), π(t)) − εt

≥ max
π∈ΠJ

[V0(π) + t · r(d(�(t)), π)] − 2εt = max
ΠJ

Vt − 2εt.

Therefore, maxΠJ Vt − minDI Ut ≤ 2εt.
Let ε′ > 0 be arbitrary. Suppose that there exists t0 such that, for any I ′ ⊆ I

and J ′ ⊆ J such that I ′ �= I or J ′ �= J , for any pair of cumulative Bayes risk
functions {(Ut, Vt)}t constructed from (DI′ ,ΠJ ′), it holds that maxΠJ′ Vt −
minDI′ Ut ≤ ε′t for all t ≥ t0. We next obtain a slightly greater bound on
maxΠJ Vt − minDI Ut for all sufficiently large t.

We first prove that if, for a given pair of cumulative Bayes risk functions
{(Ut, Vt)}t constructed from (DI ,ΠJ ), there exists i′ ∈ I or j′ ∈ J such that
Di′ or Πj′ is not eligible in an interval [s, s + t0], then

max
ΠJ

Vs+t0 − min
DI

Us+t0 ≤ max
ΠJ

Vs − min
DI

Us + ε′t0. (6)

Suppose that Di′ is not eligible in [s, s + t0], then define U ′
t := Us+t and

V ′
t := Vs+t − maxΠJ Vs + minDI Us for all t ≥ 0. It is straightforward to

check that {(U ′
t , V

′
t )}t0t=0 satisfies the recursive definition of a pair of cumulative

Bayes risk functions constructed from (DI\{i′},ΠJ ). By the induction hypothe-
sis, maxΠJ V ′

t0 −minDI\{i′} U
′
t0 ≤ ε′t0. Therefore, maxΠJ Vs+t0 −minDI Us+t0 =

maxΠJ V ′
t0 −minDI\{i′} U

′
t0 + maxΠJ Vs −minDI Us ≤ maxΠJ Vs −minDI Us +

ε′t0. Similar argument can be applied if Πj′ is not eligible in [s, s + t0].
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Now we obtain a bound on maxΠJ Vt−minDI Ut. Let t > t0, Q := �t/t0� ≥ 1
and R := t/t0 − Q ∈ [0, 1). There are two cases.
Case 1: There exists s0 ≤ Q such that Di and Πj are eligible in [(s0 − 1 +
R)t0, (s0 +R)t0] for all i ∈ I and j ∈ J . Take s0 to be the largest such integer.
Then, repeatedly apply (6) to intervals [(s0 + R)t0, (s0 + 1 + R)t0], [(s0 + 1 +
R)t0, (s0 + 2 + R)t0], . . . , [(Q − 1 + R)t0, (Q + R)t0] = [t− t0, t] and we derive
that

max
ΠJ

Vt − min
DI

Ut ≤ max
ΠJ

V(s0+R)t0 − min
DI

U(s0+R)t0 + ε′(Q − s0)t0.

By Lemma 5, maxΠJ V(s0+R)t0 − minDI U(s0+R)t0 ≤ (4B + ε)t0. Therefore,

max
ΠJ

Vt − min
DI

Ut ≤ (4B + ε)t0 + ε′(Q − s0)t0 ≤ (4B + ε)t0 + ε′t.

Case 2: There is no integer s0 satisfying the condition in Case 1. Then, repeat-
edly apply (6) to intervals [Rt0, (1 + R)t0], [(1 + R)t0, (2 + R)t0], . . . , [(Q− 1 +
R)t0, (Q + R)t0] = [t− t0, t], we derive that

max
ΠJ

Vt − min
DI

Ut ≤ max
ΠJ

VRt0 − min
DI

URt0 + ε′Qt0.

By the bound on the risk, maxΠJ VRt0 ≤ BRt0 and minDI URt0 ≥ −BRt0.
Hence,

max
ΠJ

Vt − min
DI

Ut ≤ 2BRt0 + ε′Qt0 ≤ (4B + ε)t0 + ε′t.

Thus, in both cases, it holds that maxΠJ Vt−minDI Ut ≤ (4B+ ε)t0 + ε′t for
t > t0. Let C > 0 be any constant (which may depend on ε, the approximation
error of the covers, that is, the bound on MVt/t). The following holds for any
sufficiently large t,

max
ΠJ

Vt − min
DI

Ut ≤ (4B + ε)t0 + ε′t ≤ (1 + C)ε′t. (7)

In other words, we show that after increasing the size of either index set by
1, for all sufficiently large t, we obtain a bound on maxΠJ Vt − minDI Ut that
grows by a multiplicative factor of (1 + C) relative to the original bound.

It takes finitely many, say N , steps to induct from the initial case where the
sizes of both index sets are one to the case of interest with index sets {1, . . . , I}
and {1, . . . , J}. (Note that N may also depend on ε through its dependence on
I and J .) Take C = 1/N in (7) and we derive that, for all sufficiently large t,

max Vt − minUt = max
Π{1,...,J}

Vt − min
D{1,...,I}

Ut ≤ (1 + 1/N)N · 2εt ≤ 2eεt

where e is the base of natural logarithm. Since ε is arbitrary, we show that
lim supt→∞(max Vt − minUt)/t ≤ 0.
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E.5. Derivation of Γ-minimax estimator of the mean in Section C

In this section, we show that, for the problem of estimating the mean in Sec-
tion C, one Γ-minimax estimator lies in Dlinear. This is formally presented below.

Proposition 1. Let M consist of all probability distributions defined on the
Borel σ-algebra on [0, 1]. Let X1, . . . , Xn

iid∼ P0 ∈ M and X = (X1, X2, . . . , Xn)
be the observed data. Let Ψ : P �→

∫
xP (dx) denote the mean parameter and

Γ = {π ∈ Π :
∫

Ψ(P )π(dP ) = μ} be the set of priors that represent prior
information. Let D denote the space of estimators that are square-integrable
with respect to all P ∈ M. Consider the risk in Example 1, R : (d, P ) �→
EP [(d(X)−Ψ(P ))2]. Define X̄ =

∑n
i=1 Xi/n and d0 : X �→ (μ+

√
nX̄)/(1+

√
n).

Then d0 ∈ Dlinear is Γ-minimax over D.

We first present a theorem on a criterion of Γ-minimaxity.

Theorem 7. Suppose that d0 ∈ D is a Bayes estimator for π0 ∈ Γ and
r(d0, π0) = rsup(d0,Γ). Then d0 is a Γ-minimax estimator in D.

Proof of Theorem 7. Clearly rsup(d0,Γ) ≥ infd∈D rsup(d,Γ). Fix d′ ∈ D. Then,
rsup(d′,Γ) ≥ r(d′, π0) ≥ r(d0, π0) = rsup(d0,Γ). Since d′ is arbitrary, this shows
that infd∈D rsup(d,Γ) ≥ rsup(d0,Γ). Thus, rsup(d0,Γ) = infd∈D rsup(d,Γ) and d0
is Γ-minimax.

We now present a lemma that is used to prove Proposition 1.

Lemma 6. Let a < b and suppose that M denotes the model space that consists
of all probability distributions defined on the Borel σ-algebra on [a, b] ⊆ R with
mean μ ∈ [a, b]. Let X denote a generic random variable generated from some
P ∈ M. Then maxP∈M VarP (X) = VarP∗(X) = (b − μ)(μ − a), where P ∗ is
defined by P ∗(X = a) = (b− μ)/(b− a) and P ∗(X = b) = (μ− a)/(b− a).

Proof of Lemma 6. Without loss of generality, we may assume that a = −1
and b = 1. Note that for any P ∈ M, it holds that VarP (X) = EP [X2] −
EP [X]2 = EP [X2] − μ2 ≤ 1 − μ2, where the equality is attained if P (X ∈
{−1, 1}) = 1. Therefore, the maximum variance is achieved at the distribution
with the specified mean μ and support being {a, b}, that is, at the distribution
P ∗ defined in the lemma statement. Straightforward calculations show that
VarP∗(X) = (b− μ)(μ− a).

Proof of Proposition 1. Let M′ := {Bernoulli(θ) : θ ∈ (0, 1)} ⊆ M and let π0
be a prior distribution over M′ such that the prior distribution on the suc-
cess probability θ is Beta(μ

√
n, (1 − μ)

√
n). By Theorem 1.1 in Chapter 4 of

Lehmann and Casella (1998), a Bayes estimator for π0 minimizes the risk under
the posterior distribution, whose minimizer over D is the posterior mean d0 for
our choice of risk. That is, d0 is a Bayes estimator in D for π0.

We next show that r(d0, π0) = supπ∈Γ r(d0, π). Let π ∈ Γ be arbitrary. Since
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Table 7

Summary of frequently used symbols.
Symbol
P0 True data-generating mechanism
M Space of data-generating mechanisms containing P0
X∗ and X = C(X∗) Full generated data and coarsened data
D Space of candidate estimators or decision functions (e.g., neural net-

works)
R Risk function
r Bayes risk function r : (d, π) �→

∫
R(d, P )π(dP )

Γ(⊆ Π) Set of prior distributions consistent with prior knowledge
Ψ Functional defining the estimand Ψ(P0) in Examples 1–3
M� An increasing sequence of finite subsets of M
Γ� Set of priors in Γ with support in M�

rsup Worst-case Bayes risk function rsup : (d,Γ′) �→ supπ∈Γ′ r(d, π)
d∗� Γ�-minimax estimator in D
d∗ A limit point of sequence {d∗�}∞�=1, which is Γ-minimax in D by The-

orem 1
β(∈ RD) Coefficient of a finite-dimensional estimator (e.g., neural network)
ξ ∼ Ξ Exogenous randomness
R̂(β, P, ξ) Unbiased approximation of R(β, P )
d(�) Stochastic estimator following distribution � over D
D Space of stochastic estimators d(�)
d
∗ = d(�∗) Γ-minimax estimator in D

EP [X̄] = Ψ(P ) and VarP (X̄) = VarP (X1)/n, we can derive that

r(d0, π) =
∫

EP

[{
μ +

√
nX̄

1 +
√
n

− Ψ(P )
}2]

π(dP )

=
∫

EP

[{ √
n

1 +
√
n

(
X̄ − Ψ(P )

)
+ μ− Ψ(P )

1 +
√
n

}2]
π(dP )

=
∫ {

1
(1 +

√
n)2

VarP (X1) + (μ− Ψ(P ))2

(1 +
√
n)2

}
π(dP )

Apply Lemma 6 to VarP (X1) and the display continues as

≤
∫ {

1
(1 +

√
n)2

Ψ(P )(1 − Ψ(P )) + (μ− Ψ(P ))2

(1 +
√
n)2

}
π(dP )

=
∫ 1

(1 +
√
n)2

{
μ2 + (1 − 2μ)Ψ(P )

}
π(dP ) = μ(1 − μ)

(1 +
√
n)2

.

This upper bound can be attained by any π with support contained in M′, for
example, π0. Therefore, rsup(d0,Γ) = r(d0, π0). By Theorem 7, d0 is Γ-minimax
over D.
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